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Abstract

Runtime specialization optimizes programs based on partial information available only at run time. It is

applicable when some input data is used repeatedly while other input data varies. This technique has the

potential of generating highly efficient codes.

In this thesis we explore the potential for obtaining speed-ups for sparse matrix-dense vector multipli-

cation using runtime specialization, in the case where a single matrix is to be multiplied by many vectors.

We experiment with five methods involving run-time specialization with parallelization, comparing them

to methods that do not (including Intel’s MKL library). For this work, our focus is the evaluation of the

parallel speed-ups that can be obtained with runtime specialization without considering the overheads of

the code generation.

Our experiments run on four different machines with 88 matrices from the Matrix Market and Florida

collections, among others. In 348 of those 352 cases, the specialized code runs faster than any version without

specialization. In the worst case, the specialized code is 7 percent slower than the Intel’s MKL library. If

we only use specialization, the average speedup with respect to Intel’s MKL library ranges from 1.416x to

1.470x, depending on the machine. We have also found that the best method depends on the matrix and

machine; no method is best for all matrices and machines 1.

.

1This material is based upon work supported by the National Science Foundation under Award CCF 1017077
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Chapter 1

Introduction

The technique of program specialization begins with the observation that many computations get their

inputs in two parts: an early, stable part, and a late, dynamic part. One then asks the question: Given the

early data, can we fashion a new, specialized, program that will process the dynamic data very efficiently?

For example, in some numerical applications, a single matrix M is multiplied by many vectors v; M is early

and stable, the vectors late and dynamic. Can we create a very efficient function multByM (v, w) to multiply

M by an input vector v and place the result in w?

Program specialization is a well-studied area [1, 2, 3]. Research has produced many examples of programs,

in many problem domains, that have been optimized by specialization. However, most of the work has focused

on languages and infrastructure, rather than realistic applications. Take the matrix multiplication example

again. The “optimal” approach is simply to unfold the calculation. Instead of a loop iterating over M and

v, multByM consists of a long sequence of assignment statements of the form

w[i] += Mi,j0 * v[j0] + Mi,j1 * v[j1] + . . .;

where the italicized parts — i, Mi,j0 , j0, etc. — are fixed values, not variables or subscripted arrays. (The

simpler case of vector-vector dot product is a standard “toy” example in this field [4]; a variation of sparse

matrix-vector multiplication was recently posed as a Shonan Challenge [5]). This code is “optimal” in the

sense of producing the minimum instruction count; a standard Compressed-Sparse-Row (CSR) loop (see

Section 2.2) will execute perhaps five times as many instructions as this unfolded code. They will, of course,

execute the same number of floating-point operations; the additional instructions are all integer, control, or

load operations.

However, it will come as no surprise to those who work in the area of high-performance computing that

instruction count tells only a part of the story. Execution speed is affected by such factors as the quality

of the code (e.g. register usage), and memory system performance. Traditionally, the latter is concerned

primarily with avoiding cache misses when accessing v and w (with accesses to M being purely sequential

and therefore not subject to optimization); a new concern that arises here is access to the code itself.

This work addresses the potential for optimizing parallel sparse matrix–dense vector multiplication by
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specialization relative to the matrix M , using matrices of realistic size and structure. To that end, we explore

a variety of methods and report on their efficiency. The methods (described in detail in Section 2) are these:

Compressed sparse row (CSR). This is the straightforward implementation using the most traditional

representation for sparse matrices. Some efficiency is gained by unrolling the inner loop; we refer to

CSR with the inner loop unrolled u times as CSRu.

Unfolding. This is the simple unfolded code described above.

CSRbyNZ. This method generates a loop for each group of rows that contain a given number of non-

zeros [6]. In effect, this provides a perfect unrolling of the inner loop of CSR.

Stencil. This method analyzes the matrix to find the patterns of non-zero entries in each row of M , and

generates, for each pattern, a loop that handles all the rows that have that pattern.

GenOSKI. This method analyzes the matrix to find the patterns of non-zero entries in each block of size

r × c, and for each pattern generates straight-line code [7]. A motivation of this method is to avoid

the zero-fill problem of OSKI [8], that generates efficient per-block code by inserting some zeros into

the matrix data.

We tested all the methods on 88 matrices and 4 different machines. Most of the matrices are from the

Matrix Market [9] or Florida collections [10, 11]. A few are matrices obtained from the discretization of a

Poisson problem and used as GPU SpMV data sets [12, 13]. Our experimental results show the two main

points of this work:

1. Speed-ups can be obtained by runtime specialization. In most cases, one of the methods involving

runtime code generation is the fastest.

2. There is no one best method: it varies both across machines and across matrices.

Specifically, out of our 352 (88×4) trials, the best specializers were: Stencil (50), GenOSKI (38),

Unfolding (98), CSRbyNZ (61), CSR (101), and baseline MKL (4).

We compare our results with three state of the art libraries: the Intel MKL library, BiCSB [14], and CSX [15].

BiCSB [16] is implemented on top of CSB [17], a new parallel sparse matrix data structure that allows efficient

SpMV on multicores. BiCSB requires some restructuring of the data, but no runtime generation of the code.

CSX [18] is based on the Compressed Sparse eXtended (CSX) format that allows for a flexible storage format
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to support a variety of patterns within the sparse matrix, such as horizontal, vertical, diagonal, anti-diagonal,

or blocks 1.

We can classify all libraries in three groups: those that are completely generic and operate on the standard

CSR representation (CSR); those that require some restructuring of the data but no runtime generation

of code (CSB, BiCSB, and OSKI); and those that require runtime code generation (Unfolding, CSRbyNZ,

Stencil, GenOSKI2, and CSX). The distinction matters because it refers to the latency of each method —

the preparation time needed before a method can report its first result. CSRu has zero latency, and methods

that only restructure the data have lower latency than methods that generate code. Of course, latency varies

widely within the latter two categories as well.

The main contribution of this thesis is a systematic comparison of a number of methods for performing

sparse matrix–dense vector multiplication, including methods that are specialized to a particular matrix. The

methods evaluated are “generic” in the sense that they are not designed for matrices of any very particular

form, but would apply in general to sparse matrices of the kind found in the Matrix Market [9] and Florida

Sparse Matrix Collection [10, 11].

We discuss some of the reasons for the timings we are seeing, including matrix characteristics, the effect

of code and data size and cache size and the machines configuration. In addition, we explain how this work

fits into the overall goal of creating a matrix-vector multiplication library.

The structure of the thesis is this: Chapter 2 describes in detail the methods we are studying for

performing matrix-vector multiplication; most involve code generation. Chapter 3 discusses some aspects of

the methods that affect performance. Chapter 4 describes our experimental setup, including the machines

on which we have run our tests and the matrices we used; Chapter 5 shows our performance numbers. In

Chapter 6, we discuss how this work might find applications in practice, the central issue being how to deal

with latency. Chapter 7 discusses related work; conclusions are presented in Chapter 8.

1These methods are only ran for 23 of the 88 matrices. Due to some library conflicts, CSX only runs on two of the four
machines.

2Potentially, the code for any possible pattern of GenOSKI can be generated off-line; however, because there are too many
possibilities (e.g. 216 when using 4 × 4 blocks), opting for runtime generation is likely to be more feasible for this method.
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Chapter 2

Methods

In this section, we describe the methods we use. In this discussion, we assume M is an n× n matrix, with

nz non-zeros. We use zero-based indexing for all arrays. The code shown in this section is drawn from the

actual generated code. After discussing the methods, in Sections 3.1 through 3.4, we discuss some aspects

of the methods that seem likely to affect performance; we will return to these in Section 5, after seeing the

actual timings.

2.1 Compressed Sparse Rows (CSR)

The most common representation for sparse matrices is Compressed Sparse Rows (CSR). It consists of three

arrays:

• mvalues is an array of floating-point numbers of length nz containing the non-zero values of M in

row-major order.

• cols is an integer array of length nz. Element i of this array contains the column number of the ith

element in the mvalues array.

• rows is an integer array of length n + 1. Element j of this array gives the mvalues-index of the first

non-zero element of row j.

With this representation, a standard CSR loop looks as follows (recall that v is the input vector, w is the

output vector):

for (i = 0; i < n; i++){

ww = 0.0;

k = rows[i]; // mvalues[k] = M[i,cols[k]],

// the first non-zero in row i

for (; k < rows[i+1]; k++)

ww += mvalues[k] * v[cols[k]];

w[i] += ww;

}

4



2.2 CSR Unrolling

CSRu partially unrolls the inner loop of the standard CSR method u times. This method requires the addition

of a “clean-up” loop handling the leftover elements. The data layout is identical to CSR. Unrolling can produce

more efficient code than CSR due to additional instruction level parallelism and reduced loop overhead.

However, the difference in performance between CSR and CSRu is expected to be small. In reality, our

experiment shows that CSR1 (without unrolling) generally performs better than any higher level of unrolling,

because the compiler can do very well in loop unrolling nowadays.

2.3 CSRbyNZ

This method groups the rows of M according to the number of non-zeros they contain, and generates one

loop for each group. The array rows contains a permutation of the row numbers, in which all the rows with

a particular non-zero count are grouped together; cols and mvalues serve the same purpose as with CSR.

So, for example, if there are exactly six rows of M that have three non-zeros, the loop for those rows would

be:

for (i = 0; i < 6; i++) {

row = rows[a++];

w[row] += mvalues[b] * v[cols[b]]

+ mvalues[b+1] * v[cols[b+1]]

+ mvalues[b+2] * v[cols[b+2]];

b += 3;

}

Here, a indexes over rows and b indexes over mvalues. mvalues contains the non-zeros of M in the order

in which they are consumed by these loops.

This method gains its efficiency from long basic blocks in each loop, which can be compiled efficiently. It

provides, in effect, a perfect unrolling of the inner loop of CSR. (CSRbyNZ is similar to the method described

by Mellor-Crummey and Garvin [6].)

2.4 Unfolding

Unfolding completely unfolds the CSR loop and produces a straight-line program, Despite its simplicity,

it needs a detailed explanation as the code it generates has interesting and important implications on the

5



binary code produced by the compiler.

First, recall that this method generates a statement per each matrix row i in the following way:

w[i] += Mi,j0 * v[j0] + Mi,j1 * v[j1] + . . .;

In principle as well as in practice, this method produces the lowest number of dynamic instructions.

However, it also produces, by far, the longest code. Indeed, from a memory point of view, it provides an

extremely wasteful encoding of the basic data needed for this calculation. Yet, surprisingly, in our tests, we

have seen that Unfolding occasionally beats the other methods substantially, even for very large matrices.

The reason for this is that many matrices have repeated values; indeed, the number of distinct values in our

sample matrices is usually much less than nz (see Table A.2).

This produces speed-ups for two reasons: reduced memory load, and reduced instructions because of

common subexpressions. To see this, suppose there are only three distinct values in the matrix (say, 3, 5,

and 9) and let the first two lines of the generated code be

w[0] += 9*v[2] + 9*v[3] + 5*v[8] + 3*v[9];

w[1] += 5*v[8] + 3*v[9] + 9*v[11];

Having a nonzero value repeated on the same row of the matrix allows applying anti-distribution of

multiplication over addition (i.e. c×vi + c×vj = c× (vi +vj)). Having the same value repeated on the same

column of the matrix enables common subexpression elimination (CSE). After applying both optimizations,

the above code would look like this:

double temp = 5*v[8] + 3*v[9];

w[0] += 9*(v[2] + v[3]) + temp;

w[1] += temp + 9*v[11];

The floating point constants are emitted by the compiler — we examined icc, gcc, and clang — into the

data section of the object code, and loaded into registers. When the distinct values are very few, registers

can be reused to reduce memory loads. In effect, the code above can be compiled as if it were:

double M[3] = {9, 5, 3};

double temp = M[1]*v[8] + M[2]*v[9];

double m9 = M[0];

w[0] += m9*(v[2] + v[3]) + temp;

w[1] += temp + m9*v[11]; // m9 reused

Unlike all our other methods, and contrary to what we said in the introduction, specialization by this

method actually allows a reduction in the number of floating point operations.

6



It is worth mentioning that, although the number of distinct values is usually much less than nz, this fact

alone is not that helpful; the number has to be small enough that we are likely to see many repeated values

in each row and column, thus allowing the optimizations described. Furthermore, by causing references to

matrix values to be accessed out of order — in all other methods, these values are stored in an array that

is accessed in strictly sequential order — these optimizations can have a negative effect on locality.

2.5 Stencil

Where CSRbyNZ divides up the rows of M according to the number of non-zeros, Stencil divides them up

according to the exact pattern of non-zeros in a row. Specifically, the “stencil” of each row is defined as the

location of non-zeros relative to the main diagonal. So, if row r has non-zeros in columns r − 1, r, r + 1,

and r + 3, its stencil would be {−1, 0, 1, 3}. All the rows that have the same stencil can be handled in a

single loop. For example, if rows 2, 4, and 6 are the only ones with stencil {−1, 0, 1, 3}, then the loop for

this stencil is shown below, where the values of M are laid out in the order in which they are consumed by

these loops:

int stencil_rows[3] = {2, 4, 6};

for (i = 0; i < 3; i++) {

row = stencil_rows[i];

vv = v + row;

w[row] += mvalues[0] * vv[-1] + mvalues[1] * vv[0]

+ mvalues[2] * vv[1] + mvalues[3] * vv[3];

mvalues += 4;

}

Notice that if a stencil pattern has only one row, the loop can be eliminated by using the inner block of

the loop:

w[8385] += mvalues[0] * vv[-1] + mvalues[1] * vv[0] + mvalues[2] * vv[1] + mvalues[3] * vv[3];

Like CSRbyNZ, Stencil gets its efficiency from the long basic blocks inside each loop. But Stencil also

gains an advantage in memory accesses, because it entirely eliminates the cols array and the indirect access

to v. Thus, for matrices with a modest number of stencils, this method can be the most efficient. However,

when the matrix has many stencils, the code size can get quite large, reducing its efficiency.
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2.6 GenOSKI

This method is based on OSKI [8, 19, 20] and is similar to PBR [7]. The idea of OSKI is to divide the matrix

into dense blocks (of size, say, b × b) and perform the multiplication on a block basis. By having a loop

whose body handles blocks of size b × b , the goal of this optimization is to increase register reuse. It may

also reduce the amount of memory required to store indices for the matrix M , since a single pair of indices

is stored per block. (For example, if all blocks were perfectly dense, arrays rows and cols would each be of

length nz/b2, for a total size of 2nz/b2, as compared to the total size of nz + n for these arrays in CSR.)

The drawback of OSKI is that non-empty blocks may still contain zeros, and those have to be added to

M explicitly. This increases both the number of floating-point operations and memory communication. This

zero fill substantially determines whether this method will be efficient. Our experience shows that 1 × 2,

2× 1, and 2× 2 blocks are occasionally efficient, but larger blocks almost never are. GenOSKI is our attempt

to overcome the zero fill problem by generating code.

GenOSKI has one loop for each block pattern of non-zeros in this matrix. For each pattern, two arrays

hold the list of “block locations,” the indices of the northwest corner of the blocks that have that pattern.

For example, consider a matrix divided into 3 × 3 blocks and having 18 blocks conforming to the pattern

of non-zeros 1,1,0; 1,1,1; 0,1,1: the first two columns on row 0; all three columns on row 2; the second and

third columns on row 3. The loop to handle these 18 blocks is shown below and the pattern is shown in

Figure 2.1. Here a and b are global variables indexing over blocks and over values, respectively.

for (i = 0; i < 18; i++, a++) {

ww = w + rows[a];

vv = v + cols[a];

ww[0] += vv[0]*mvalues[b] + vv[1]*mvalues[b+1];

b += 2;

ww[1] += vv[0]*mvalues[b] + vv[1]*mvalues[b+1]

+ vv[2]*mvalues[b+2];

b += 3;

ww[2] += vv[1]*mvalues[b] + vv[2]*mvalues[b+1];

b += 2 ;

}

GenOSKI has low overhead, and indeed often performs well, especially when most blocks are fairly dense.

This is a bit surprising, because there are many reasons it should not do so. Zero fill is not a problem

per se, but it does have an impact: we need to maintain two indexes per block (stored in the arrays rows

8



Figure 2.1: Example of genOSKI 3 pattern with six non-zero entries in a block.

and cols), so if there are many sparse blocks, this entails more data than CSR. Furthermore, GenOSKI can

potentially generate a lot of code: for 4 × 4 blocks, there are 65,535 distinct patterns, which means every

4× 4 blocks could have a different pattern. In practice, the number of patterns in a matrix is much smaller

than the maximum (Table A.2). Lastly, unlike all the other methods, GenOSKI does not calculate entire

rows at a time, which means that, where the other methods do a single write to each element of w — so

exactly n writes — GenOSKI may do as many as n/b reads and writes for each row, or a total of nz/b memory

operations on w. Nonetheless, as we have noted and will see in Section 5, it often does quite well.
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Chapter 3

Performance Issues

In this section we discuss some aspects of the methods that are likely to affect performance.

3.1 Memory Requirements

A significant difference between specialized methods and “generic” methods is that specialization can produce

large codes, which can in turn have a major impact on performance. On the other hand, by folding data

into the code, the non-code data storage requirements can be reduced. Table 3.1 contains the expressions

to compute code and data size for the various methods. Here we provide some explanation of that table.

CSRu: Code size of CSRu is constant, and, for the values of u we consider, small. Data consists of array

mvalues containing the non-zeros of M (nz doubles); array rows containing indices into the cols

array (n integers); and the cols array giving the column of each non-zero (nz integers). (Due to a

technicality of the representation, rows is actually of length n + 1.)

CSRbyNZ: Since a different loop is generated for each group of rows with the same count of non-zeros, the

code size for CSRbyNZ is a function of the number of distinct non-zero counts (Row nz), as well as the

number of non-zeros in each group (nz rowi). In practice, Row nz is usually small (Table A.2), so

code size is modest. Data size is similar toCSR except that CSRbyNZ doesn’t take care of the empty

rows that reduces the rows array in data.

Unfolding: For most matrices, Unfolding produces very much the longest code of any of our methods. (In

rare cases, Stencil can produce code as long; no other method comes close.) As discussed above,

repeated values can allow for optimizations that, in some cases, can significantly reduce code size, but

this is rare, and in any case still leaves the code very long. (At the very least, the size of the code is

O(n), since there is one assignment for each row.) As far as data size, repeated elements reduce this

significantly in many cases.

10



CSR CSRbyNZ Unfolding Stencil GenOSKI

Code Size c
Row nz∑

i=1

nz rowi ∗ c1 (possibly) nz ∗ c
stencils∑

i=1

nz stencili ∗ c1
patterns∑

i=1

nz patterni ∗ c1

Row nz ∗ c2 stencils ∗ c2 patterns ∗ c2
Data Size nz ∗ 8+ nz ∗ 8+ distinct nz ∗ 8 nz ∗ 8+ nz ∗ 8+

nz ∗ 4+ nz ∗ 4+ ner ∗ 4 nblocks ∗ (4 + 4)
(n + 1) ∗ 4 ner ∗ 4

Table 3.1: Expressions to compute Code and Data size for the different methods. ‘‘ner’’ is non-empty
rows.

Stencil: The code size of this method depends on the number of stencils and the size of each stencil. As

shown in Table A.2, the number of stencils varies widely from matrix to matrix.

GenOSKI: The code size for GenOSKI is primarily a function of the number of distinct patterns that appear

in the matrix. As with stencils, this number varies widely from matrix to matrix (Table A.2). In

practice, it is always smaller, and usually much smaller, than the number of stencils.

3.2 Memory Reference Locality

Another issue affecting performance that will vary by method is locality of memory references. All of our

methods except Unfolding maintain the values of M in an array of length nz and access it sequentially;

there is nothing to be done here about locality. Similarly, the location data in rows and cols are accessed

sequentially. The issue of locality shows up in how the methods reference the input and output vectors v

and w.

CSR: CSR maintains perfect locality relative to w, as it assigns to its elements sequentially. If M is strongly

banded — meaning the non-zeros are clustered around the main diagonal — then it will have good

locality in v as well. In most cases, there is a dense cluster of non-zeros around the main diagonal, but

also a good number of non-zeros elsewhere; in this case, access to v will begin to look random, and

locality will be poor.

CSRbyNZ: Here, because of the reordering of rows, access to w is no longer sequential. Furthermore, any

“natural” locality in v — as when a matrix is strongly banded — may be lost. As a consequence, this

method does not have particularly good memory behavior relative to either v or w.

Stencil: Memory access behavior of Stencil is similar to CSRbyNZ. Because each stencil loop may cover

rows that are randomly distributed throughout M , and also each stencil contains elements of M

potentially randomly distributed throughout a single row, accesses to v and w are arbitrary.
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GenOSKI: As with all other methods, although GenOSKI appears to access data “out of order,” the access

to the values and to rows and cols are again perfectly sequential. However, as with CSRbyNZ and

Stencil, accesses to v and w bear no obvious relation to the natural order, and are likely to be highly

non-localized. (Aside from locality issues, we noted earlier that GenOSKI performs many more memory

operations relative to w than the other methods.)

3.3 Parallelization

In this work, we run all of our codes in parallel. It is also interesting to see how these methods perform

sequentially, but most researchers are using parallel codes, so that parallel times are easier to compare to

other methods. For example, we have found that MKL does not perform very well in sequential mode, so

that without running it in parallel, comparisons are fundamentally unfair. As another example, CSX does

not claim to have good performance in the sequential case, but only when parallel execution creates memory

contention.

Parallelization of these codes is generally quite straightforward. It is just a matter of splitting M into

four horizontal tranches, with approximately equal numbers of elements, applying our methods to each,

producing four functions to be run on the four cores. For CSR and Unfolding, there is really nothing more

to it. We split M into four tranches in the obvious way (what we call “split-by-count”) for these two methods.

For CSRByNZ, Stencil, or GenOSKI, there is one choice to be made before doing the split, and that is

whether to group the rows before splitting. Consider Stencil: Suppose M has s stencils, and they are

spread throughout the matrix. If we split M by “split-by-count”, we are likely to have all s stencils, more

or less, show up in each tranche; if there are a lot of stencils, the code running on each processor will be

large. If instead we first group the rows of M by stencil and then do the split into four pieces (we call

this “split-by-pattern”), each piece will have only a portion of the stencils and will therefore have less code,

which is generally better for performance. Note that, for stencil and CSRbyNZ, we already have to sort the

rows into groups, so split-by-pattern is no extra work.

GenOSKI presents a somewhat different problem. The method divides the matrix up by patterns, and

handles every occurrence of a given pattern in a single loop. If we generate this code first, then assign a

subset of the loops to each core, it gives us an even split and minimizes code size. However, there is a

problem alluded to earlier: any of the patterns can contribute values to any of the rows causing the race

condition problem. If we had code running on separate cores reading and writing to the same location in w,

we would have to put locks on each one. On the other hand, if we split M into tranches (split-by-count),

12



loome2 loome3 i2pc3 i2pc5

genOSKI4 avg. speedup 1.28 1.09 1.80 2.16
max speedup 1.98 2.14 3.20 4.44

genOSKI5 avg. speedup 1.28 1.06 2.00 2.39
max speedup 2.08 2.03 3.60 5.01

Table 3.2: Speedup of using split-by-count vs split-by-pattern.

and generate (sequential) GenOSKI code separately in each tranche, there is no need for locks. Although

split-by-count results in larger code, the effect is more than offset by avoiding the need for locking 1.

Table 3.2 shows the speedup of split-by-count over split-by-pattern for genOSKI4 (4× 4 genOSKI block)

and genOSKI5 (5×5 genOSKI block) methods and four machines. The table shows the average and maximum

speedup for each platform and method. The average speedup ranges from 1.058 to 2.388. Accordingly, we

parallelize GenOSKI using split-by-count.

3.4 Load Balancing

We have observed a problem of load imbalance for large matrices. To address that issue, we have followed

the following strategy. Our code generator estimates the cost of each piece of code by counting the dynamic

number of flops the code executes. It then produces a list of functions with similar amount of work (dynamic

flops). We produce more functions that number of threads, so that we can evenly partition these small

functions among the threads to obtain load balance. However, for matrices with large loops, this strategy

does not work well. Thus, when the cost of a loop is greater than a certain threshold (that the programmer

specifies), we split the loop into n equal loops, where n is the number of threads running the computation.

Each loop is placed in a different function, and each function will then be assigned to a different thread.

This loop splitting approach alleviates the imbalance problem, but does not completely fix it for all

the matrices. Thus, in addition, to loop distribution, we also use “randomization”. The idea is that after

splitting the large loops among the threads, the rest of the loops (or statements) are placed in functions,

and then the functions are randomly assigned to the threads. To avoid destroying locality, rather than

randomizing individual functions, we randomize blocks of consecutive functions. Our experimental results

show that blocks of 32 consecutive functions, where each function contains approximately about 500 flops,

produce relatively better results.

We have assessed the impact of this strategy by running all the matrices and three methods (Stencil,

CSRbyNZ and Unfolding) with and without it. genOSKI cannot use this strategy, as this could cause a data

1Notice that it is possible to parallelize GenOSKI using split-by-pattern without locks by locally accumulating the partial
results of the output vector and later performing a global reduction, but we did not implement this code version.
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loome2 loome3 i2pc3 i2pc5

# matrices is better 7 4 17 11
# matrices is worse 0 0 0 0

Stencil Avg. Speedup 1.03 1.02 1.08 1.05
Avg. Speedup if better 1.16 1.15 1.25 1.25
Max Speedup 1.25 1.21 1.99 1.48

# matrices is better 5 3 7 8
# matrices is worse 0 0 0 0

CSRbyNZ Avg. Speedup 1.03 1.02 1.04 1.04
Avg. Speedup if better 1.15 1.17 1.16 1.16
Max Speedup 1.19 1.18 1.26 1.26

# matrices is better 5 4 7 6
# matrices is worse 0 0 0 1

Unfolding Avg. Speedup 1.01 1.00 1.03 1.02
Avg. Speedup if better 1.11 1.13 1.28 1.28
Max Speedup 1.12 1.19 1.67 1.60

Table 3.3: Speedup obtained by using loop Distribution and randomization.

race condition, as described in Section 3.3.

Table 3.3 shows the performance improvement by using loop distribution and randomization. To compute

the numbers on this table, we only take into account differences in running times of 10% or more. This

guarantees that the numbers reported in the table are the result of our strategy and not due to different

running times across different executions. For each machine and method, the table shows the number of

matrices that have a performance improvement over 10%, the number of matrices that have a performance

drop of 10%, the average overall speedup, the average speedup of that method only when it has performance

improvement, and the maximum speedup of that method.

As the table, shows loop distribution and randomization can reduce the load imbalance, reducing exe-

cution time in most cases. In the best case, it obtains an speedup of 1.98x (debr matrix with stencil and

running on i2pc3). In one case, this strategy results on a performance drop of 18% (s3dkq4m2 matrix with

Unfolding and running on i2pc5). For many matrices, this strategy has no impact, as the matrix does not

suffer from load imbalance.

3.5 Latency

In this work, we are not considering issues of latency, so our remarks here will be very brief. Note that

latency comes from the need to re-order data and the need to generate code. CSR and CSRu do neither, and

have no latency; all other methods do code generation.

CSRbyNZ, Stencil and GenOSKI all involve some kind of analysis prior to code generation: grouping the

rows by non-zero count, calculating the stencil of each row, classifying blocks by pattern. In general, we have
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found that low-level code generation is the most expensive part of the specialization process, and therefore

code size is the most reliable guide to specialization cost. Size was discussed when presenting the methods:

in practice, Unfolding produces the longest code, CSRbyNZ almost always produces code of modest size

(though much bigger than CSR), while the amount of code produced by Stencil and GenOSKI varies by

matrix. (We note that when those two methods do produce large codes, they usually do not perform very

well.) Performance issues, and their relation to code size, are discussed further in Section 5.

3.6 Discussion

We would like to mention two other potentially useful methods which we are not testing in this study,

vector instructions and mixed methods. In general, our methods cannot efficiently use vector units, due to

non-consecutive accesses of vector v. For matrices that are almost perfectly banded, elements can be stored

in diagonal form, and vector units can be used to advantage. However, in our experiments with this method,

it was never the best for our set of matrices. Similarly, regular (non-generative) OSKI never showed well for

us. Thus, we do not show results for these two methods.

Another option is to use mixed methods, where a matrix is decomposed into two or more matrices, and

each matrix is handled with a different method. For example, we might use the Stencil method for the

dense bands around the diagonal and CSRbyNZ for the remaining elements. We have experimented with this

idea, but we have only rarely seen it perform well. Furthermore, the algorithmic space here is so large that

it is not yet clear to us how to go about exploring it. For both these reasons, we do not show results for

mixed methods here.
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Chapter 4

Experimental Setup

We have implemented and evaluated the following methods: CSR, CSRu with u ranging from 1 to 3, CSRbyNZ,

Unfolding, Stencil, and GenOSKI. In our experiments, CSR performs a bit better than CSRu in most of

the cases so that we only report CSR1 results. For GenOSKI we only report results for split-by-count. For

CSRbyNZ and Stencil, we report results for both, split-by-pattern and split-by-count. With the split-by-

pattern approach, when a loop has to handle more than nthread×500 non-zeros, we split the loop to allow

for a better balanced workload. For GenOSKI, our experiments show that the best results are obtained with

blocks of 4× 4 or 5× 5, so we only show results for these sizes, and use the names GenOSKI4 and GenOSKI5,

respectively.

We compare our methods against the Intel MKL library version 14.0 using four threads. The four target

platforms on which we ran our experiments are listed in Table 4.1. To generate parallel code we used the

OpenMP “section” construct and created as many sections as threads. The codes were compiled with icc

with -O3 -openmp compiler flags.

Name Processor & Freq (GHz) Cores (SMP cores) Cache Sizes (Bytes) Mem OS icc
L1 (I/D) L2 L3 (GB)

loome2 Intel Core i7 880 @ 3.07 4 (8) 32K 256K 8M 8 Linux CentOS 5.8 14.0.2.144
loome3 Intel Core i5 2400 @ 3.10 4 (4) 32K 256K 6M 8 Linux CentOS 5.8 14.0.2.144
i2pc3 Intel Xeon E7-4860 @ 2.27 10 (80) 32K 256K 24M 128 Scientific Linux 6.3 14.0.2.144
i2pc5 Intel Xeon L7555 @ 1.87 8 (64) 32K 256K 24M 64 Scientific Linux 6.3 14.0.2.144

Table 4.1: Specification of experimental machines.

Table A.1 shows the 88 matrices we use. They were obtained from the Matrix Market [9], the University

of Florida Sparse Matrix collection [10, 11], or from the discretization of a Poisson problem and used as

GPU SpMV data sets [12, 13]. Many of them have over millions of none-zero elements. This helps us

understand the scalability of our specialization methods with large matrices. The table is sorted by number

of non-zeros. Some matrices are derived from graphs that model social or communication networks following

a power law distribution, while others come from Finite Element modeling (SPARSKIT), etc. Several of

these matrices have been used in previous studies [17, 15, 21, 13]. We did not select them based on any

specific pattern, but rather to have matrices that represent a variety of domains. Table A.1 also provides the

16



following information: the name and group of the matrices. Group “MM” stands for Matrix Market, and

“SpGEMM” stands for the matrices obtained from the discretization of a Poisson problem [12, 13]; “FL”

stands for Florida Sparse Matrix collection, while the name after “’FL:”, e.g. SNAP, shows the group of the

matrix; p indicates whether the matrix is a pattern matrix. Notice that some of these matrices are pattern

matrices, for which the source does not provide values; we have generated values for these matrices, with all

the generated values being different.

Table A.2 provides the matrix characteristics: n and nnz ; the denseness (nnz/n); The last few columns

give data that are useful in evaluating the performance of these methods: stencils is the number of different

stencils; genOSKI4 and genOSKI5 are the numbers of distinct patterns that appear in 4×4 and 5×5 blocks,

respectively; distVals is the number of distinct values; and Row nz is the number of distinct row non-zero

counts; emptyrow is the number of rows that have no non-zero elements.

Table A.3 shows code and data size for the matrices for the different methods when we generate OpenMP

code for 4 threads. These sizes are drawn directly from the compiled code. Code size values differ slightly

from those computed using the expressions in Table 3.1, as those expressions do not take into account the

extra loops that appear when a loop is split for parallel execution into 2 or more threads. Also, the icc

compiler unrolls some loops. In addition, to speed up compilation time1, we split the code into several

functions, grouped in multiple files. As a consequence, even if a matrix has a single distinct value, this value

will appear once in each file. Thus, for Unfolding, the data size in practice is larger than the number of

distinct values reported in the table.

To collect the timings, we did the following for each matrix/method/machine combination: (1) Performed

matrix-vector multiplication 10,000 times (on an unloaded machine); (2) repeated (1) five times; and (3)

chose the fastest of those five trials. Before each call to the multiplication function, the output vector is

zeroed.

We also compare our methods against two state-of-the-art SpMV libraries, BiCSB [14] and CSX [15], that

have online code that can be installed and run. BiCSB [16] is implemented on top of CSB [17], a new parallel

sparse matrix data structure that allows efficient SpMV on multicores. BiCSB uses bitmasked register blocks

to reduce the memory bandwidth requirement when using register blocking2. CSX [18] is based on the

Compressed Sparse eXtended (CSX) format that allows for a flexible storage format to support a variety

of structures within the sparse matrix, such as horizontal, vertical, diagonal, antidiagonal, or blocks. This

approach requires runtime code generation. We compare against the SpMV running times, without taking

1Compilers have been optimized to compile code written by humans, which tends to be small, and so they are slow when
compiling large codes produced with a code generator, as we do.

2We ran both CSB and BiCSB, but since BiCSB is always faster than CSB we only compare against BiCSB.
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email-EuAll cit-HepPh soc-Epinions1 soc-sign-Slashdot081106 web-NotreDame
webbase-1M e40r5000 fidapm11 fidapm37 m133-b3

torso2 fidap011 cfd2 m14b s3dkt3m2
conf6 0-8x8-20 ship 003 cage12 debr mc2depi

s3dkq4m2 engine thermomech dK

Table 4.2: 23 matrices used for BiCSB and CSX

into consideration the time to generate the code. For CSX, we encountered library conflicts on i2pc3 and

i2pc5 and input format issues for many matrices. Thus, we select 23 matrices, listed in Table 4.2, to run

BiCSB on all four machines and CSX on loome2 and loome3.
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Chapter 5

Experimental Results

In this section, we report our experimental results. We compare the running times of our methods in detail

with MKL for all 88 matrices and four machines using four threads. We discuss how the characteristics of the

machines and matrices help explain the timing results; the latter is important in the process of predicting the

best method. We briefly address the issue of scalability by comparing our methods to Intel MKL library when

running on eight threads (rather than our usual four). Finally, we evaluate two state-of-the-art libraries,

CSX and BiCSB, comparing to our methods and MKL library for 23 out of 88 matrices.

5.1 Comparison of Methods

Table A.4, A.5, A.6 and A.7 show, for all 88 matrices and four machines, the speedup of MKL, CSR, Stencil,

GenOSKI4, GenOSKI5, Unfolding, CSRbyNZ with respect to MKL, where the speedup is computed by dividing

the MKL running times by the running times of each method, when all run with four threads (including

MKL). The table also shows the best method for each matrix. Of course, the best method is MKL if the

“BestMethodSpeedup” is below one. The last row of each table shows the average values of each method

and the best method. For CSRbyNZ and Stencil we compare against the code version, split-by-pattern

or split-by-count, that performs the best. For GenOSKI we only compare agains split-by-count. Table A.8

compares the performance of split-by-pattern and split-by-count for CSRbyNZ and Stencil for the different

machines and matrices. Running times are similar, although split-by-pattern is usually faster, but not

always.

Table 5.1 compares the different methods. For each method and machine the table shows the average

speedup if that method is used for all the matrices, the number of matrices for which that method is the best,

the number of matrices that run faster than MKL using that method, and the average speedup of that method

if only used when it runs faster than MKL. The last two metrics tell us how often each method improves with

respect to MKL, and if it improves, what is the average speedup. The last row in the table (labeled Best)

shows the same metrics, but when the best specializer is chosen. In this case, “Avg. speedup” is the speedup
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loome2 loome3 i2pc3 i2pc5

Avg. Speedup 1.090 1.117 1.100 1.068
# matrices is best 19 22 26 34

CSR # matrices is better 82 81 71 78
Avg. Speedup if better 1.099 1.132 1.138 1.103

Avg. Speedup 1.036 0.952 1.102 1.020
# matrices is best 20 11 12 7

Stencil # matrices is better 45 38 53 41
Avg. Speedup if better 1.404 1.346 1.334 1.334

Avg. Speedup 1.055 1.052 1.025 0.975
# matrices is best 9 13 5 4

GenOSKI4 # matrices is better 53 50 45 37
Avg. Speedup if better 1.243 1.269 1.196 1.178

Avg. Speedup 0.974 0.952 0.988 0.929
# matrices is best 2 3 1 1

GenOSKI5 # matrices is better 42 37 41 29
Avg. Speedup if better 1.248 1.274 1.170 1.183

Avg. Speedup 1.008 0.899 1.263 1.181
# matrices is best 16 14 33 35

Unfolding # matrices is better 32 26 48 43
Avg. Speedup if better 1.740 1.688 1.738 1.720

Avg. Speedup 1.162 1.189 1.077 1.001
# matrices is best 22 25 8 6

CSRbyNZ # matrices is better 61 68 43 40
Avg. Speedup if better 1.271 1.278 1.285 1.208

Avg. speedup 1.453 1.437 1.470 1.416
Best #matrices is better 88 88 85 87
specialization Avg. Speedup if better 1.453 1.437 1.488 1.421

Table 5.1: Comparison between methods.

obtained if we always use a method that requires specialization (in some cases that will result in slowdowns

with respect to MKL). Notice that this value is very similar to the Avg. speedup of the best method, shown

in last row of Table 5.1.

Overall, the results show that specialization can produce significant speedups. Out of 88 matrices,

specialization produces speedups for 88, 88, 85, and 87 matrices and average speedups of 1.453, 1.437, 1.470,

and 1.416 for loome2, loome3, i2pc3, and i2pc5, respectively. The average speedups are computed using

the best method using specialization, even if this method is slower than a method that does not require

specialization.

5.2 Explaining the Timings

The natural question is how to determine what is the best method. Our results show that speedups depend

on both machine and matrix characteristics. For many matrices, 38 out 88 matrices, listed in Table 5.2,

the same method is the best across the board. For many others, the best method varies across machines.

For instance, for email-euAll and cage12, there are four different methods with very different speedups. We

20



Matrix Method n nnz nnz/n stencil genOSKI4 genOSKI5 distVals rowNZ E.row minS maxS

minnesota Unfolding 2642 3303 1.25 551 211 441 3303 3 164 1.35 1.97

pde900 Unfolding 900 4380 4.86 9 6 4 3248 3 0 1.41 1.94

dw2048 Unfolding 2048 10114 4.93 18 8 29 693 5 0 1.58 1.80

orsreg 1 Unfolding 2205 14133 6.40 27 17 21 111 4 0 1.67 2.25

mcfe CSR 765 24382 31.87 346 391 689 24381 55 0 1.30 1.42

fidap002 CSR 441 26831 60.84 436 93 112 11118 22 0 1.11 1.21

cavity05 CSR 1182 32632 27.60 395 181 310 3280 30 0 1.09 1.27

bcsstk13 CSR 2003 42943 21.43 1820 1284 2241 13781 73 0 1.06 1.26

fidap024 CSR 2283 47897 20.97 622 339 552 20387 26 0 1.04 1.15

fidap010 CSR 2410 54816 22.74 356 188 318 22939 27 0 1.08 1.16

cavity15 CSR 2597 71601 27.57 371 183 276 48418 26 0 1.09 1.20

fidap013 CSR 2568 75628 29.45 1264 225 433 39097 22 0 1.04 1.14

utm5940 genOSKI5 5940 83842 14.11 176 162 47 82768 25 0 1.10 1.35

fidap031 CSR 3909 91165 23.32 745 402 694 35726 39 0 1.03 1.11

memplus CSRbyNZ 17758 99147 5.58 16719 605 1354 50039 91 0 1.52 1.93

as-caida Unfolding 31379 106762 3.40 25184 371 755 4 158 4904 2.05 2.50

cavity23 CSR 4562 131735 28.87 440 170 293 90994 26 0 1.07 1.11

bcsstk16 CSR 4884 147631 30.22 301 246 404 15779 40 0 1.02 1.15

usroads CSRbyNZ 129164 165435 1.28 21157 688 1893 165435 4 6173 1.44 2.14

chem master1 Unfolding 40401 201201 4.98 9 9 10 20801 3 0 1.64 2.31

enron CSR 69244 276143 3.98 12725 5191 9578 276143 370 51676 1.16 1.28

af23560 genOSKI4 23560 460598 19.55 122 3 98 310480 12 0 1.18 2.56

soc-sign-Sla. Unfolding 77357 516575 6.67 40649 1212 2867 2 279 34008 2.58 2.93

m133-b3 Unfolding 200200 800800 4 200200 489 1627 2 1 0 1.19 1.40

s3dkt3m2 Stencil 90449 1888336 20.87 935 97 143 29116 23 0 1.15 1.63

cant Stencil 62451 2034917 32.58 90 182 288 108 36 0 1.14 1.63

mc2depi Unfolding 525825 2100225 3.99 2298 50 57 3584 3 0 1.24 1.66

engine Unfolding 143571 2424822 16.88 84195 108 538 1 147 0 2.86 3.89

apache2 Unfolding 715176 2766523 3.86 10 10 19 41 4 0 1.61 1.89

thermomech dK genOSKI4 204316 2846228 13.93 204290 17 329 1967432 9 0 1.00 1.11

webbase-1M Unfolding 1000005 3105536 3.10 504865 4394 11141 222 370 0 1.33 1.74

amazon0601 CSRbyNZ 403394 3387388 8.39 401861 11089 30204 3387389 10 955 1.02 1.76

sqr mtx aniso. CSRbyNZ 832081 5797879 6.96 828753 2416 8402 4361273 8 0 .093 1.15

pwtk Stencil 217918 5871175 26.94 9183 662 1214 5592868 78 0 1.13 1.69

horseshoe mtx CSRbyNZ 853761 5947651 6.96 850178 349 1501 4558272 6 0 1.01 1.16

atmosmodj Unfolding 1270432 8814880 6.93 27 4 28 5 4 0 2.05 4.42

struct. 2d 9pt Unfolding 1048576 9424900 8.98 9 3 28 3 3 0 2.90 5.06

mesh 3d h015 CSR 1088958 15392990 14.13 967799 41773 286900 8119845 37 0 1.03 1.06

Table 5.2: Matrices where the same method is the best on all platforms.

now discuss how the machine and matrix characteristics (Tables 4.1, A.2, A.3) help explain the timings

(Tables 5.1).

5.2.1 Unfolding

Unfolding is the best method when the sum of code and data size fits in the Last Level Cache (LLC)

(Table 4.1 and A.3). Many of our matrices are large, and should be large for those matrices. However, as

explained in Section 2, when the number of distinct values is small (distVals in Table A.2), the compiler can

apply certain optimizations such as CSE, that significantly reduce the code size.

From Table 5.2, we see that the matrices that benefit from this method are: minnesota, ped900, dw2049,

orsreg 1, as-caida, chem master1, soc-sign, m133-b3, mc2depi, engine, apache2, webbase-1M, atmosmodj

and structured 2d 9pt. Among these matrices, minnesota, ped900, dw2049, and orsreg 1 are small matrices.

Unfolding is the best method for these four matrices because all of them can fit into the cache (Table A.3)

and unfolding uses the least number of instructions, as discussed in Section 2.4.

Matrices as-caida, soc-sign, m133-b3, engine, apache2, atmosmodj and structured 2d 9pt have only 4, 2,
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2, 1, 41, 5 and 3 distinct values, respectively, and achieve very good speedups in all the platforms. m133-b33

obtains, in general, lower speedups than soc-sign and engine, even though it only has 2 distinct values. The

reason is that the code size of unfolding for m133-b33 is about the size of the CSR data.

For webbase-1M, the number of distinct values is 222, but it is a large matrix in terms of non-zero

elements, and thus unfolding is the best for all machines.

The matrix chem master1 has 20801 distinct values, with very few stencils, genOSKI and CSRbyNZ pat-

terns (9, 9, 10, and 3, respectively). However, unfolding still achieves good performance because unfolding

can take advantage of the relatively small number of non-zeros, reducing the bandwidth requirements. The

results also show that for i2pc3 and i2pc5, unfolding is the best method for 33 and 35 matrices. This is

because both machines have the largest LLC (24MB).

To the best of our knowledge, this is the first study that reports the benefit of Unfolding when the

number of distinct values is small. This can be applicable to a large set of matrices, like those derived from

graphs, such as the adjacency matrix or laplacian matrix. Another example are algebraic multi-grid methods

for sparse linear systems [22].

5.2.2 Stencil

Stencil has the potential to produce good speedups, but only the matrices with a small number of stencils

can benefit from it. Stencil is the best method on all platforms for s3dkt3m2, cant, and pwtk which have

935, 90 and 9183 stencils, respectively. The number of stencils by itself may not be enough to determine

that stencil is the best method comparing to other properties. s3dkt3m2 has only 23 CSRbyNZ patterns.

cant has 108 distinct values and 36 CSRbyNZ patterns. pwtk has 662 stencils and 78 CSRbyNZ patterns.

However, for these matrices stencil produces the least code and data size for these matrices (see table A.3).

Stencil is also usually good for torso2, m2depi, and e40r500. Although for these matrices Stencil is

not the best for all the machines, Stencil is usually almost as good as the best. Notice that these matrices

(together with conf6 0-8x8-20) are the matrices with the smallest number of stencils. This method delivers

significant speedups, when it is better than MKL, as shown in Table 5.1.

5.2.3 CSRbyNZ

CSRbyNZ always produces small codes. Even for the power law matrices (matrices from the SNAP group and

webbase-1M) that have a relatively large Row nz (see Table A.2), it is still much smaller than the number

of stencils or block patterns. This method tends to have modest speedups. The code executes fewer loop

overhead instructions, resulting in higher Instruction Level Parallelism (ILP). The data size of this method
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is similar to that of CSR, but it requires less data size when the matrix has a higher number of empty rows,

because only the rows that have non-zero elements are relevant in this method.

CSRbyNZ is the best method for memplus, usroads, amazon0601, square matrix anisotropic and horse-

shoe matrix anisotropic, which have 91, 4, 10, 8 and 6 CSRbyNZ patterns, respectively. It is the best method

for memplus because it has small number of CSRbyNZ patterns while its other properties such as stencils,

genOSKI patterns and distinct values are not so good. For the other three matrices, the small number of

CSRbyNZ patterns already show its superiority.

We consider this to be a default method that can be used when none of the other methods seems

appropriate. It is interesting to notice that many of the power law matrices benefit from this method in

loome2, and loome3 machines, which have smaller caches than i2pc3 and i2pc5.

5.2.4 GenOSKI

GenOSKI always produces modest code size (see Table A.3), as the number of patterns is never too big: out

of 65,535 possible patterns when using blocks of size 4×4, the maximum in Table A.2 is 4,394 (if we discount

mesh 3d h015 and amazon0601). The ability of this method to decrease data size is also important, and

that depends on the number of blocks that are empty (each block needs a cols and a rows index) and the

locality.

The matrices utm5940, af23560, thermomech dK are the ones for which genOSKI is the best method

across machines. genOSKI4 produces significant speedup for af23560 and thermomech dK, because they only

have 3 and 17 genOSKI4 patterns, respectively, resulting in smaller codes. utm5940 profits from genOSKI5

because this method produces the smallest code and data.

Speedups of this method are comparable to those of CSRbyNZ. loome2 and loome3 stand out as the

machine most favorable to GenOSKI. (4 × 4 is usually the best block size; 5 × 5 is occasionally better. We

have also evaluated smaller blocks, but we do not report results, as they are never better.)

5.2.5 CSR

CSR is the very basic and simple method to perform sparse matrix-dense vector multiplication. It is the best

method in some cases where the density (nnz/n in Table A.2 and 5.2) is high. CSR uses two nested for

loops to iterate each non-zero elements. If the density is high, then there are more non-zeros in a row, and

as a result the overhead of the outer loop can be amortized.
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Figure 5.1: MFLOP/sec for MKL and Best Method with 4 and 8 threads on i2pc3.

5.2.6 MKL

MKL, the baseline Intel library, is usually not the best method in our experiments. MKL is the best only for 1

matrix on loome3, 3 matrices on i2pc3 and 1 on i2pc5.

5.3 More Parallelism

We have also run the experiments with eight threads on i2pc3 and i2pc5 to evaluate the scalability of our

methods. Figure 5.1 and 5.2 show the throughput (MFLOPS/sec) for MKL and the best of our methods

with 4 and 8 threads on i2pc3 and i2pc5. The figures show that in most cases, a method that requires

code generation performs better than MKL. When the matrix size is small, the multi-threading overhead

can be high, in which case the runs with fewer threads take less time and obtain a higher throughput.

Moreover, we see the best specialized method with 8 threads has significantly better performance than any

other configurations, meaning that the methods that require specialization scale better than MKL.

5.4 Comparison with State of the Art Libraries

Other than Intel MKL library, we also have compared our methods with BiCSB and CSX. We could not run all

the matrices with BiCSB due to some matrix format issue that we could not address. i2pc3 and i2pc5 also
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Figure 5.2: MFLOP/sec for MKL and Best Method with 4 and 8 threads on i2pc5.

have library conflicts (Boost library). Thus, we select 23 matrices to run BiCSB on all the machines and CSX

on loome2 and loome3.

Figures 5.3, 5.4, 5.5, and 5.6 show MFLOPS/sec for all four machines for the selected 23 matrices

for MKL, Best Specializer, BiCSB and CSX. Best Specializer is the best method among CSR, stencil,

genOSKI4, genOSKI5, CSRbyNZ, and unfolding. Notice that CSX is not shown for i2pc3 and i2pc5, as dicussed

above. Results in these figures show that Best Specializer is usually also faster than MKL, CSX and BiCSB.

Moreover, i2pc3 has a similar behavior as i2pc5 and loome2 is similar to loome3.
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Figure 5.3: MFLOPs/sec for loome2 for Best Specializer, MKL, BiCSB, and CSX.

Figure 5.4: MFLOPs/sec for loome3 for Best Specializer, MKL, BiCSB, and CSX.
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Figure 5.5: MFLOPs/sec for i2pc3 for Best Specializer, MKL, and BiCSB.

Figure 5.6: MFLOPs/sec for i2pc5 for Best Specializer, MKL, and BiCSB.
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Chapter 6

Applications

Knowing that efficient codes can be produced by code generation is interesting, but is it useful? That

depends entirely upon the tolerance for latency in the particular application.

We note that it is very common for the shape of a matrix — the exact locations of its non-zeros — to be

known even when the values are not. Some of these are referred to as “pattern matrices,” and the Matrix

Market and the Florida collection include many of them. Also, for those matrices derived using Finite

Element methods [23], the shape of the matrix is usually known ahead of time, as the matrix is derived from

a mesh that is usually available before solving the problem. All of our methods except unfolding generate

code based only on the shape; by generating code for those matrices off-line — only the mvalues array needs

to be supplied at runtime — the issue of latency is entirely obviated.

The more challenging case is when nothing is known about the matrix until runtime. The work presented

here is the first step in the creation of a library for matrix-vector multiplication that will use run-time

specialization, auto-tuning, and machine learning techniques to predict the best method, as has been done

in previous work [24, 25, 26, 27, 19]. The library would be employed in cases where a single matrix M is to

be multiplied by many vectors. Here is how we envision the library working.

The user will supply the matrix to the library, and the library will produce a pointer to a function of

type void multByM (double v[], double w[]). When called subsequently, multByM will multiply M by

v and place the result in w. (The OSKI library [8, 19, 20] operates similarly.)

When first presented with M , the system will determine which method will produce the most efficient

multByM. It may determine that CSR is the best, and will immediately return a pointer to pre-existing code;

or it may determine that a specialized code, which must be generated at runtime, will be most efficient.

This process itself will take time, and generating the specialized code, if that is the decision, will take even

more; in any case, the system cannot produce overall speed-ups if the matrix is to be multiplied only a small

number of times. (The risk might be managed by running program generation in parallel with a low-latency

method like CSR until the generated code is ready.)

This library organization raises several questions:
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1. What methods of generating multByM are likely to produce efficient code and what are the kind of

speedups that these methods can deliver? This is the question we address in this thesis.

2. How can the system determine the best method for a particular matrix on a particular machine?

3. How can the latency introduced by the code specialization process be minimized?

Question (2) will be addressed by auto-tuning [24, 25, 26, 27, 19]. Here, one gathers information about

the machine at “install time,” and feeds it into the runtime specialization process, which uses it, together

with characteristics of the matrix M , to determine how best to generate multByM.

To minimize latency (question 3), we are developing specialized code generators for this problem.
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Chapter 7

Related Work

Sparse matrix-dense vector multiplication is an operation that is used in many scientific problems. It has

been studied in the OSKI project [8]. A number of researchers have looked at multi-core implementations

[28, 29, 30, 17, 14, 15, 21, 7, 6]. Among those, we have compared our codes with CSB, BiCSB [14], and CSX [15],

as their libraries were available on line. CSRByNZ is similar to the method described by Mellor-Crummey

and Garvin [6], while GenOSKI is similar to PBR [7]. Perhaps, the main difference between our work and

previous ones, is that rather than evaluating a single method, we are evaluating many. Our goal was to

understand if, and by how much, specialization could improve performance.

As discussed in Section 6, auto-tuning is used to overcome the problem that the best code for a problem

can vary from machine to machine. It is used by OSKI; other examples are [24, 25, 26, 27].

To improve performance, languages like Java, Javascript or Python have a just-in-time compiler to gen-

erate more efficient code. Compilers like the Google V8 compiler for JavaScript [31], where the programmer

does not declare the type of the variables, specialize the code to the variable that appears more often. Our

approach is similar to this in that we are specializing to the data of the matrix M that repeats, rather than

the type of the variable. It differs in that we know the algorithm that is being generated, and as a result we

can do more optimizations. Runtime specialization is a new optimization technique, and it is important to

evaluate in real codes what is the performance benefit that can be obtained, and what is the performance

degradation that can be suffered.

The area of program specialization — also called code generation, partial evaluation, or staging — has

been quite heavily studied, especially with respect to language features, such as type-checking, that pro-

mote simplicity and safety of specialization [1, 2, 3]. Program specialization using explicit annotations has

received extensive attention. However, much of the research has focused on language infrastructure, espe-

cially on type systems to statically guarantee safety of the generated program. Examples in those papers

tend to be small-sized, with no or very little benchmarking results. In a recent Nii Shonan Meeting, the

potential of using program specialization on high performance computing problems was identified [5]. A set

of problems is given as “Shonan Challenge” – a list of HPC problems amenable to specialization, among
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which there is sparse-matrix algebra library as well. Program specialization is used to address a realistic

problem, Gaussian Elimination [32], where a highly configurable generator is written that is able to produce

numerous different versions of the algorithm based on parameters such as matrix representation, pivoting

policies and result types. Program generation has been shown to produce faster marshalling (a.k.a. seri-

alization) routines for particular data types by specializing the program at run-time [33] or by benefitting

from the statically available information [34]. Work in this area specifically addressing high-performance for

realistic applications includes work on marshaling [33, 34] and on code-optimizing transformations [35]. The

transformations include loop unrolling, tiling, pipelining, scalar promotion, etc. It is shown that competitive

performance can be obtained using the generative approach. In none of these, autotuning is proposed to

select the best specializer out of several candidates – to our knowledge, ours is the first library to consider

the combination of autotuning and specialization. With runtime specialization, the focus moves toward the

efficiency of specialization itself [36, 37].

Our work draws from these three areas: We use run-time specialization to optimize matrix-vector multi-

plication, taking into account the need for auto-tuning, since the most appropriate method varies according

to the machine and matrix.
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Chapter 8

Conclusions

In this thesis we have shown that specialization can be used to obtain speed-ups for SpMV. Our experimental

results using 88 matrices and four machines show that a method requiring specialization runs faster than a

method without specialization in 347 out of 352 trials (88× 4). These experimental results include compar-

isons with state of the art libraries, such as Intel’s MKL, BiCSB, and CSX. If we only use specialization, the

average speedup with respect to Intel’s MKL library ranges from 1.41x to 1.47x, depending on the machine.

For individual matrices, these speedups can be higher.

In this thesis, rather than evaluating a single method, we are evaluating many. Our results show that

there is no one best method and that the best method depends on the machine and matrix characteristics.

Among the evaluated methods, we have found that one of our methods, Unfolding, can produce significant

speedups when the number of distinct values is small. This is important, as this can be common in matrices

that are derived from graphs, such as the Laplacian matrix, or algebraic multigrid methods for sparse linear

systems.
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Appendix A

Table A.1: List of matrices used in the experiments.

ID Name group p ID Name group p

1 minnesota FL:Gleich Y 45 ca-AstroPh FL:SNAP Y

2 pde900 MM N 46 chemmaster1 FL:Watson N

3 dw2048 MM N 47 fidap035 MM N

4 add20 MM N 48 bcsstk17 MM N

5 as-735 FL:SNAP Y 49 enron FL:LAW Y

6 orsreg1 MM N 50 e30r0500 MM N

7 ca-GrQc FL:SNAP Y 51 email-EuAll FL:SNAP Y

8 bcsstk26 MM N 52 cit-HepPh FL:SNAP Y

9 add32 MM N 53 af23560 MM N

10 sherman5 MM N 54 soc-Epinions1 FL:SNAP Y

11 saylr4 MM N 55 soc-sign-Slashdot-081106 FL:SNAP N

12 Oregon-1 MM Y 56 e40r5000 MM N

13 mcfe MM N 57 fidapm11 MM N

14 fidap002 MM N 58 fidapm37 MM N

15 cavity05 MM N 59 m133-b3 FL:JGDHomology N

16 p2p-Gnutella04 FL:SNAP Y 60 torso2 FL:Norris N

17 bcsstk13 MM N 61 fidap011 MM N

18 fidap024 MM N 62 maceconfwd500 FL:Williams N

19 fidap010 MM N 63 cop20kA FL:Williams N

20 bcsstk15 MM N 64 web-NotreDame FL:SNAP Y

21 p2p-Gnutella24 FL:SNAP Y 65 cfd2 FL:Rothberg N

22 mhd3200a MM N 66 m14b FL:DIMACS10 Y

23 cavity15 MM N 67 s3dkt3m2 MM N
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Table A.1 continued: List of matrices used in the experiments.

ID Name group p ID Name group p

24 fidap013 MM N 68 conf60-8x8-20 FL:QCD N

25 bcsstk18 MM N 69 qcd54 MM Y

26 bcsstk24 MM N 70 ship003 FL:DNVS N

27 utm5940 MM N 72 cage12 FL:vanHeukelum N

28 fidap031 MM N 72 cant FL:SNAP N

29 ca-CondMat FL:SNAP Y 73 debr FL:AG-Monien Y

30 fidap015 MM N 74 mc2depi FL:Williams N

31 memplus MM N 75 s3dkq4m2 MM N

32 mhd4800a MM N 76 engine FL:TKK N

33 wiki-Vote FL:SNAP Y 77 apache2 FL:GHSpsdef N

34 s3rmt3m3 MM N 78 thermomech-dK FL:Botonakis N

35 as-caida FL:SNAP N 79 consph FL:Williams N

36 bcsstk28 MM N 80 webbase-1M FL:Williams N

37 ca-HepPh FL:SNAP Y 81 amazon0601 FL:SNAP Y

38 cavity23 MM N 82 web-Google FL:SNAP Y

39 s2rmq4m1 MM N 83 squarematrixanisotropic SpGEMM N

40 bcsstk16 MM N 84 pwtk FL:Boeing N

41 usroads-48 FL:Gleich Y 85 horseshoematrixanisotropic SpGEMM N

42 usroads FL:Gleich Y 86 atmosmodj FL:Bourchtein N

43 fidapm29 MM N 87 structured2d9pt SpGEMM N

44 email-Enron FL:SNAP Y 88 mesh3d-h015 SpGEMM N
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Table A.2: Characteristics of the matrices used in the experiments.

ID n nnz nnz/n stencil genOSKI4 genOSKI5 distVal rowNZ emptyrows

1 2642 3303 1.25 551 211 441 3303 3 164

2 900 4380 4.87 9 6 4 3248 3 0

3 2048 10114 4.94 18 8 29 693 5 0

4 2395 13151 5.49 2128 568 1132 7390 48 0

5 7716 13895 1.80 5470 161 352 13895 35 1756

6 2205 14133 6.41 27 17 21 111 4 0

7 5242 14496 2.77 3524 126 235 14496 48 1395

8 1922 16129 8.39 1297 310 706 13480 26 0

9 4960 19848 4.00 3941 233 364 13883 6 0

10 3312 20793 6.28 140 60 114 15096 20 0

11 3564 22316 6.26 34 18 34 11 5 0

12 11492 23409 2.04 9503 230 429 23409 47 1162

13 765 24382 31.87 346 391 689 24381 55 0

14 441 26831 60.84 436 93 112 11118 22 0

15 1182 32632 27.61 395 181 310 3280 30 0

16 10879 39994 3.68 4903 267 623 39994 37 5944

17 2003 42943 21.44 1820 1284 2241 13781 73 0

18 2283 47897 20.98 622 339 552 20387 26 0

19 2410 54816 22.75 356 188 318 22939 27 0

20 3948 60882 15.42 3314 431 1918 2218 36 0

21 26518 65369 2.47 7375 113 221 65369 43 18948

22 3200 68026 21.26 55 45 182 47873 18 0

23 2597 71601 27.57 371 183 276 48418 26 0

24 2568 75628 29.45 1264 225 433 39097 22 0

25 11948 80519 6.74 8550 1420 2873 33337 32 0

26 3562 81736 22.95 1045 118 293 58571 42 0

27 5940 83842 14.11 176 162 47 82768 25 0

28 3909 91165 23.32 745 402 694 35726 39 0

29 23133 93497 4.04 17545 209 428 93497 83 4646

30 6867 96421 14.04 73 105 134 21326 12 0

31 17758 99147 5.58 16719 605 1354 50039 91 0
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Table A.2 continued: Matrix characteristics.

ID n nnz nnz/n stencil genOSKI4 genOSKI5 distVal rowNZ emptyrows

32 4800 102252 21.30 55 45 179 72344 17 0

33 8297 103689 12.50 4973 800 1878 103689 237 2187

34 5357 106240 19.83 1322 117 209 100387 36 0

35 31379 106762 3.40 25184 371 755 4 158 4904

36 4410 111717 25.33 2913 140 280 110807 68 0

37 12008 118521 9.87 9207 344 706 118521 229 2352

38 4562 131735 28.88 440 170 293 90994 26 0

39 5489 134420 24.49 167 94 141 17724 29 0

40 4884 147631 30.23 301 246 404 15779 40 0

41 126146 161950 1.28 21087 663 1791 161950 4 5783

42 129164 165435 1.28 21157 688 1893 165435 4 6173

43 13668 183394 13.42 490 193 308 96959 14 0

44 36692 183831 5.01 31838 1776 3922 183831 108 1092

45 18772 198110 10.55 15650 335 704 198110 164 2631

46 40401 201201 4.98 9 9 10 20801 3 0

47 19716 217972 11.06 202 146 287 54316 17 0

48 10974 219812 20.03 6715 232 1046 117183 54 0

49 69244 276143 3.99 12725 5191 9578 276143 370 51676

50 9661 306002 31.67 476 140 253 207699 27 0

51 265214 420045 1.58 161683 499 1088 420045 311 39805

52 34546 421578 12.20 31814 315 683 421578 162 2388

53 23560 460598 19.55 122 3 98 310480 12 0

54 75888 508837 6.71 49442 3281 8439 307854 326 15547

55 77357 516575 6.68 40649 1212 2867 2 279 34008

56 17281 553562 32.03 601 130 265 368750 25 0

57 22294 617874 27.71 4682 1197 2576 88275 22 0

58 9152 765944 83.69 8391 876 2102 350166 70 0

59 200200 800800 4.00 200200 489 1627 2 1 0

60 115967 1033473 8.91 3148 81 108 806653 3 0

61 16614 1091362 65.69 7432 1684 3315 211502 71 0

62 206500 1273389 6.17 407 445 786 118307 17 0

63 121192 1362087 11.24 96936 2940 9562 955507 24 21349
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Table A.2 continued: Matrix characteristics.

ID n nnz nnz/n stencil genOSKI4 genOSKI5 distVal rowNZ emptyrows

64 325729 1497134 4.60 126894 4135 9474 1497134 312 187788

65 123440 1604423 13.00 46535 3422 7823 1480984 27 0

66 214765 1679018 7.82 172130 3331 9099 1679018 22 6651

67 90449 1888336 20.88 935 97 143 29116 23 0

68 49152 1916928 39.00 648 22 156 84553 1 0

69 49152 1916928 39.00 648 22 156 1916929 1 0

70 121728 1949382 16.01 105098 3982 15702 49424 60 0

72 130228 2032536 15.61 130228 1100 4495 350 28 0

72 62451 2034917 32.58 90 182 288 108 36 0

73 1048576 2097149 2.00 786432 7 9 2097149 3 1

74 525825 2100225 3.99 2298 50 57 3584 3 0

75 90449 2259087 24.98 1131 380 680 8632 29 0

76 143571 2424822 16.89 84195 108 538 1 147 0

77 715176 2766523 3.87 10 10 19 41 4 0

78 204316 2846228 13.93 204290 17 329 1967432 9 0

79 83334 3046907 36.56 2431 301 694 1574941 66 0

80 1000005 3105536 3.11 504865 4394 11141 222 370 0

81 403394 3387388 8.40 401861 11089 30204 3387389 10 955

82 916428 5105039 5.57 733811 143 345 5105040 188 176974

83 832081 5797879 6.97 828753 2416 8402 4361273 8 0

84 217918 5871175 26.94 9183 662 1214 5592868 78 0

85 853761 5947651 6.97 850178 349 1501 4558272 6 0

86 1270432 8814880 6.94 27 4 28 5 4 0

87 1048576 9424900 8.99 9 3 28 3 3 0

88 1088958 15392990 14.14 967799 41773 286900 8119845 37 0
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Table A.3: Code and Data Size in MB. For Stencil and CSRbyNZ, we

use split-by-pattern. For GenOSKI, we use the split-by-count approach.

In all the cases, we generate the code for 4 threads.

ID CSR Stencil GenOSKI4 GenOSKI5 Unfolding CSRbyNZ

Code Data Code Data Code Data Code Data Code Data Code Data

1 0.002 0.088 0.062 0.031 0.053 0.044 0.106 0.042 0.098 0.028 0.000 0.047

2 0.001 0.063 0.001 0.036 0.005 0.045 0.004 0.039 0.018 0.036 0.001 0.053

3 0.001 0.147 0.008 0.084 0.005 0.096 0.021 0.099 0.096 0.041 0.003 0.123

4 0.001 0.187 0.296 0.100 0.170 0.151 0.256 0.137 0.276 0.063 0.139 0.159

5 0.001 0.276 0.352 0.106 0.104 0.197 0.154 0.193 0.355 0.109 0.050 0.181

6 0.001 0.195 0.025 0.116 0.018 0.149 0.028 0.141 0.081 0.007 0.004 0.170

7 0.001 0.245 0.360 0.110 0.038 0.217 0.053 0.216 0.361 0.113 0.106 0.180

8 0.001 0.213 0.333 0.124 0.217 0.141 0.381 0.138 0.342 0.113 0.040 0.191

9 0.001 0.302 0.438 0.152 0.239 0.193 0.292 0.193 0.435 0.114 0.003 0.246

10 0.001 0.288 0.140 0.170 0.219 0.194 0.354 0.185 0.437 0.135 0.035 0.250

11 0.001 0.309 0.019 0.183 0.018 0.237 0.076 0.223 0.220 0.003 0.003 0.269

12 0.001 0.443 0.597 0.178 0.121 0.332 0.232 0.326 0.608 0.181 0.089 0.307

13 0.001 0.290 0.463 0.187 0.316 0.232 0.414 0.220 0.552 0.190 0.165 0.281

14 0.001 0.313 0.635 0.204 0.123 0.223 0.179 0.218 0.617 0.181 0.068 0.308

15 0.001 0.391 0.420 0.250 0.333 0.284 0.554 0.276 0.679 0.136 0.062 0.378

16 0.001 0.623 0.895 0.305 0.129 0.559 0.233 0.554 0.900 0.308 0.035 0.476

17 0.001 0.522 0.954 0.327 0.770 0.380 0.967 0.367 0.930 0.245 0.121 0.499

18 0.001 0.583 0.666 0.369 0.818 0.419 1.086 0.406 1.046 0.258 0.074 0.556

19 0.001 0.664 0.604 0.424 0.419 0.489 0.905 0.469 1.234 0.350 0.063 0.636

20 0.001 0.757 1.305 0.464 0.784 0.537 1.438 0.526 1.245 0.171 0.042 0.711

21 0.001 1.152 1.434 0.499 0.038 0.887 0.113 0.878 1.457 0.502 0.059 0.777

22 0.001 0.827 0.047 0.531 0.031 0.582 1.331 0.567 1.447 0.433 0.031 0.790

23 0.001 0.859 0.468 0.554 0.377 0.629 0.897 0.607 1.591 0.486 0.071 0.829

24 0.001 0.904 1.243 0.579 0.182 0.647 0.950 0.634 1.656 0.488 0.058 0.875

25 0.001 1.103 1.687 0.625 1.358 0.798 1.869 0.755 1.769 0.459 0.030 0.967

26 0.001 0.989 0.799 0.632 0.151 0.679 0.474 0.666 1.723 0.602 0.051 0.949

27 0.001 1.050 0.194 0.661 0.152 0.767 0.074 0.716 1.795 0.635 0.026 0.982

28 0.001 1.103 1.407 0.708 0.752 0.838 1.613 0.797 2.095 0.526 0.090 1.058
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Table A.3 continued: Code and Data Size in MB.

ID CSR Stencil GenOSKI4 GenOSKI5 Unfolding CSRbyNZ

Code Data Code Data Code Data Code Data Code Data Code Data

29 0.001 1.423 2.168 0.713 0.113 1.413 0.149 1.409 2.179 0.716 0.176 1.140

30 0.001 1.208 0.066 0.761 0.227 0.859 0.372 0.834 1.971 0.460 0.013 1.129

31 0.001 1.405 2.272 0.756 0.223 0.947 0.751 0.965 1.921 0.423 0.269 1.202

32 0.001 1.243 0.058 0.798 0.025 0.876 1.832 0.853 2.172 0.650 0.032 1.188

33 0.001 1.313 2.433 0.794 0.289 1.456 0.636 1.423 2.471 0.794 1.030 1.209

34 0.001 1.297 0.848 0.825 0.174 0.883 0.303 0.867 2.216 0.784 0.040 1.236

35 0.001 1.700 2.538 0.814 0.189 1.567 0.348 1.550 1.348 0.003 0.956 1.322

36 0.001 1.345 2.373 0.855 0.247 0.931 0.522 0.912 2.389 0.851 0.124 1.295

37 0.001 1.539 2.751 0.904 0.149 1.756 0.323 1.740 2.769 0.907 0.882 1.393

38 0.001 1.577 0.544 1.020 0.256 1.150 1.058 1.116 2.956 0.946 0.077 1.525

39 0.001 1.622 0.157 1.045 0.243 1.124 0.386 1.093 2.806 0.760 0.042 1.559

40 0.001 1.764 0.251 1.143 0.353 1.249 1.048 1.214 3.117 0.430 0.078 1.708

41 0.001 3.778 2.117 1.581 0.391 2.368 1.009 2.324 4.851 1.238 0.002 2.312

42 0.002 4.356 2.133 1.618 0.395 2.416 1.039 2.368 4.953 1.265 0.002 2.362

43 0.001 2.307 0.157 1.449 0.267 1.736 0.360 1.637 4.061 1.203 0.014 2.150

44 0.001 2.663 4.207 1.410 0.697 2.328 1.186 2.264 4.272 1.408 0.284 2.239

45 0.001 2.553 4.373 1.511 0.190 2.965 0.386 2.946 4.400 1.514 0.483 2.328

46 0.001 2.919 0.003 1.689 0.032 2.072 0.046 1.964 0.190 0.938 0.003 2.456

47 0.001 2.795 0.135 1.737 0.146 2.123 0.667 1.987 4.647 0.700 0.016 2.569

48 0.001 2.683 4.117 1.687 0.226 1.860 2.071 1.827 4.680 1.488 0.096 2.557

49 0.001 4.216 6.285 2.119 1.881 3.169 2.652 3.063 6.373 2.110 2.264 3.227

50 0.001 3.649 0.358 2.369 0.143 2.665 0.275 2.572 6.796 2.088 0.082 3.538

51 0.001 8.853 11.06 3.264 0.220 6.193 0.520 6.159 11.76 3.212 1.669 5.666

52 0.001 5.351 9.220 3.216 0.181 6.347 0.409 6.330 9.270 3.219 0.555 4.947

53 0.001 5.630 0.150 3.603 0.003 3.906 0.271 3.982 9.684 2.881 0.022 5.361

54 0.001 6.981 11.50 3.890 1.296 6.872 2.724 6.701 11.53 3.890 1.851 6.053

55 0.001 7.092 11.27 3.942 0.546 7.371 1.080 7.294 4.919 0.004 1.322 6.077

56 0.001 6.598 0.429 4.287 0.141 4.820 0.305 4.653 12.28 3.789 0.080 6.400

57 0.001 7.411 5.385 4.777 1.392 6.060 2.850 5.689 13.56 1.768 0.041 7.156

58 0.001 8.905 18.76 5.843 0.850 6.852 3.106 6.570 19.14 5.622 0.472 8.800

59 0.001 12.21 18.65 6.109 0.682 10.07 2.833 9.560 9.220 0.003 0.002 9.928

39



Table A.3 continued: Code and Data Size in MB.

ID CSR Stencil GenOSKI4 GenOSKI5 Unfolding CSRbyNZ

Code Data Code Data Code Data Code Data Code Data Code Data

60 0.001 13.59 0.612 8.315 0.047 9.631 0.090 9.301 2.362 8.004 0.004 12.26

61 0.001 12.74 13.30 8.354 1.938 9.258 4.086 9.004 24.79 5.568 0.294 12.55

62 0.001 17.72 0.241 10.50 0.241 15.87 0.445 15.07 26.18 6.952 0.021 15.36

63 0.001 17.43 28.29 10.40 1.570 13.15 6.048 13.30 28.57 9.820 0.031 15.96

64 0.001 22.10 33.07 11.44 2.220 14.44 4.234 13.95 30.75 11.50 2.546 17.65

65 0.001 20.24 21.11 12.49 3.260 14.75 6.237 14.21 21.76 11.50 0.034 18.83

66 0.001 22.49 36.28 12.90 1.909 21.20 3.772 20.79 37.50 12.81 0.032 20.00

67 0.001 22.99 0.316 14.74 0.147 15.80 0.429 15.38 38.15 4.524 0.028 21.95

68 0.001 22.68 1.969 14.80 0.019 16.56 0.269 16.41 40.42 7.019 0.014 22.12

69 0.001 22.68 1.969 14.80 0.019 16.56 0.269 16.41 45.38 14.62 0.014 22.12

70 0.001 24.16 42.66 14.92 5.085 18.77 17.05 17.48 42.47 11.22 0.135 22.77

71 0.001 25.24 44.38 15.50 0.815 21.33 3.871 21.38 25.43 0.297 0.051 23.75

72 0.001 24.24 0.189 15.76 0.368 17.35 0.712 16.85 33.71 0.134 0.075 23.52

73 0.001 40.00 54.17 16.00 0.002 20.00 0.003 20.00 55.74 16.00 0.002 28.00

74 0.001 32.05 0.384 18.02 0.015 20.97 0.021 19.99 6.045 12.37 0.002 26.04

75 0.001 27.23 0.768 17.57 0.634 18.85 2.499 18.37 44.94 5.728 0.045 26.19

76 0.001 29.94 49.72 18.68 0.152 21.79 1.388 21.16 11.21 0.006 0.800 28.29

77 0.001 42.57 0.004 23.83 0.006 27.57 0.032 27.37 7.870 3.507 0.002 34.38

78 0.001 35.69 61.84 21.71 0.024 26.71 0.634 28.91 61.48 21.27 0.013 33.35

79 0.001 36.14 3.701 23.55 0.284 25.93 0.829 25.21 69.10 22.91 0.175 35.18

80 0.001 50.79 71.98 23.88 2.960 30.76 5.771 29.60 28.89 0.930 5.071 39.35

81 0.001 44.92 73.69 25.84 8.363 41.70 14.90 40.87 73.83 25.84 0.009 40.30

82 0.001 72.40 114.3 38.94 0.082 77.85 0.164 77.84 114.3 38.95 0.677 61.24

83 0.001 79.04 126.6 44.24 2.227 62.97 6.866 60.69 125.6 40.63 0.008 69.52

84 0.001 70.51 10.41 45.57 0.560 48.96 1.573 47.63 126.1 44.21 0.223 68.02

85 0.001 81.09 130.6 45.39 0.170 62.79 1.183 59.96 130.7 40.90 0.005 71.32

86 0.001 120.2 0.010 72.09 0.003 83.96 0.019 88.36 23.92 0.161 0.005 105.7

87 0.001 123.8 0.008 75.90 0.002 89.84 0.024 83.09 5.944 0.091 0.004 111.8

88 0.001 192.7 378.8 117.9 58.80 165.0 151.1 157.1 342.3 104.0 0.075 180.3
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Table A.4: Speedup for all methods for loome2 with respect to MKL. All

the methods (including MKL) run with 4 threads.

ID CSR stencil genOSKI4 genOSKI5 Unfolding CSRbyNZ BestMTD BestSpeed

1 1.137 1.262 1.516 1.514 1.974 1.482 Unfolding 1.974

2 1.312 1.521 1.196 1.302 1.938 1.467 Unfolding 1.938

3 1.138 1.382 1.143 1.112 1.799 1.038 Unfolding 1.799

4 1.493 1.975 1.566 1.621 2.277 1.763 Unfolding 2.277

5 1.039 2.569 1.735 1.727 2.460 1.948 stencil 2.569

6 1.143 1.438 1.113 1.151 2.250 1.216 Unfolding 2.250

7 0.936 2.588 1.835 1.813 2.355 2.228 stencil 2.588

8 1.095 1.775 1.544 1.493 1.668 1.414 stencil 1.775

9 1.059 1.413 1.330 1.191 1.484 1.489 CSRbyNZ 1.489

10 1.116 1.481 1.154 1.037 1.063 1.078 stencil 1.481

11 1.072 1.387 1.068 1.057 1.954 1.326 Unfolding 1.954

12 1.056 1.634 1.502 1.236 1.660 1.752 CSRbyNZ 1.752

13 1.299 1.000 0.945 0.897 0.963 0.932 CSR 1.299

14 1.141 0.713 1.098 1.109 0.768 0.746 CSR 1.141

15 1.088 0.809 0.936 0.862 0.937 0.990 CSR 1.088

16 1.010 1.084 1.074 1.041 1.065 1.442 CSRbyNZ 1.442

17 1.074 0.823 0.920 0.817 0.975 1.070 CSR 1.074

18 1.044 0.714 0.629 0.569 0.583 0.933 CSR 1.044

19 1.087 0.796 0.917 0.665 0.625 0.921 CSR 1.087

20 0.974 0.731 0.831 0.640 0.857 1.106 CSRbyNZ 1.106

21 1.097 1.066 1.183 1.129 1.074 1.464 CSRbyNZ 1.464

22 1.051 1.358 1.142 0.588 0.630 0.968 stencil 1.358

23 1.088 0.945 0.963 0.744 0.608 0.908 CSR 1.088

24 1.045 0.602 0.934 0.679 0.571 0.937 CSR 1.045

25 0.952 1.024 1.006 0.918 1.129 1.275 CSRbyNZ 1.275

26 1.128 0.855 1.287 1.098 0.690 1.009 genOSKI4 1.287

27 1.060 1.227 1.061 1.291 0.677 1.048 genOSKI5 1.291

28 1.034 0.640 0.744 0.593 0.596 0.836 CSR 1.034

29 0.965 1.382 1.469 1.438 1.362 1.642 CSRbyNZ 1.642

30 1.032 1.227 0.964 0.987 0.756 1.057 stencil 1.227
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Table A.4 continued: Speedups with respect to MKL in loome2.

ID CSR stencil genOSKI4 genOSKI5 Unfolding CSRbyNZ BestMTD BestSpeed

31 1.370 1.183 1.577 1.297 1.383 1.673 CSRbyNZ 1.673

32 1.051 1.356 1.184 0.620 0.650 0.978 stencil 1.356

33 1.100 0.992 1.078 1.063 1.009 0.985 CSR 1.100

34 1.064 0.886 1.206 1.115 0.654 0.973 genOSKI4 1.206

35 1.145 1.511 1.563 1.521 2.353 1.525 Unfolding 2.353

36 1.019 0.580 1.040 0.983 0.582 0.826 genOSKI4 1.040

37 1.110 1.103 1.166 1.159 1.090 1.291 CSRbyNZ 1.291

38 1.097 0.968 1.019 0.830 0.590 0.904 CSR 1.097

39 1.031 1.155 1.030 1.026 0.630 0.926 stencil 1.155

40 1.017 1.006 0.961 0.823 0.649 0.858 CSR 1.017

41 1.040 0.689 0.638 0.637 0.826 1.628 CSRbyNZ 1.628

42 1.083 0.710 0.645 0.644 0.869 1.642 CSRbyNZ 1.642

43 1.048 1.210 0.828 0.982 0.605 1.046 stencil 1.210

44 1.170 1.425 1.529 1.466 1.309 1.873 CSRbyNZ 1.873

45 1.098 0.944 1.180 1.172 1.054 1.415 CSRbyNZ 1.415

46 1.100 1.514 1.037 1.071 1.893 1.209 Unfolding 1.893

47 0.996 1.172 0.814 0.874 0.671 0.990 stencil 1.172

48 1.067 0.652 1.091 0.798 0.587 0.951 genOSKI4 1.091

49 1.159 0.440 0.917 0.856 0.429 0.825 CSR 1.159

50 1.001 1.077 0.970 0.977 0.217 0.861 stencil 1.077

51 1.482 0.711 1.138 1.110 0.703 1.423 CSR 1.482

52 1.111 0.368 0.896 0.869 0.365 1.212 CSRbyNZ 1.212

53 1.052 1.255 1.331 1.038 0.202 1.039 genOSKI4 1.331

54 1.254 0.658 1.185 1.023 0.649 1.428 CSRbyNZ 1.428

55 1.245 0.627 1.121 1.075 2.925 1.563 Unfolding 2.925

56 1.082 1.346 1.214 1.207 0.185 0.996 stencil 1.346

57 1.071 0.460 0.813 0.617 0.251 1.075 CSRbyNZ 1.075

58 1.042 0.231 1.280 0.762 0.229 0.880 genOSKI4 1.280

59 1.125 0.492 0.562 0.558 1.195 1.137 Unfolding 1.195

60 1.049 1.762 1.303 1.372 1.368 1.059 stencil 1.762

61 1.056 0.537 1.162 0.929 0.388 1.027 genOSKI4 1.162

62 1.052 1.307 0.643 0.671 0.561 1.054 stencil 1.307
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Table A.4 continued: Speedups with respect to MKL in loome2.

ID CSR stencil genOSKI4 genOSKI5 Unfolding CSRbyNZ BestMTD BestSpeed

63 1.231 0.548 1.073 0.861 0.546 1.265 CSRbyNZ 1.265

64 1.056 0.609 1.122 1.038 0.637 1.014 genOSKI4 1.122

65 1.042 0.602 1.021 0.903 0.612 1.015 CSR 1.042

66 1.248 0.703 0.944 0.917 0.695 1.418 CSRbyNZ 1.418

67 1.009 1.630 1.321 1.349 0.550 1.092 stencil 1.630

68 1.008 1.388 1.352 1.289 0.478 1.023 stencil 1.388

69 1.015 1.390 1.353 1.315 0.382 1.025 stencil 1.390

70 1.071 0.448 0.806 0.639 0.482 1.044 CSR 1.071

71 1.078 0.462 0.977 0.753 0.993 1.072 CSR 1.078

72 1.019 1.634 1.141 1.209 0.718 1.043 stencil 1.634

73 1.085 0.703 0.809 0.715 0.690 1.149 CSRbyNZ 1.149

74 1.065 1.268 0.675 0.704 1.285 1.047 Unfolding 1.285

75 1.025 1.515 1.154 1.190 0.543 1.053 stencil 1.515

76 1.361 0.611 1.460 1.570 3.236 1.331 Unfolding 3.236

77 1.060 1.235 0.684 0.591 1.739 1.037 Unfolding 1.739

78 1.026 0.436 1.110 0.826 0.439 1.011 genOSKI4 1.110

79 1.014 1.249 1.254 1.270 0.400 0.994 genOSKI5 1.270

80 1.157 0.615 0.940 0.922 1.332 0.980 Unfolding 1.332

81 0.981 0.516 0.562 0.520 0.516 1.024 CSRbyNZ 1.024

82 1.030 0.628 0.467 0.411 0.629 0.926 CSR 1.030

83 1.042 0.590 0.382 0.417 0.599 1.081 CSRbyNZ 1.081

84 1.033 1.183 1.087 1.112 0.436 0.995 stencil 1.183

85 1.035 0.605 0.340 0.408 0.612 1.079 CSRbyNZ 1.079

86 1.045 1.262 0.797 0.480 2.106 1.022 Unfolding 2.106

87 1.022 1.268 0.880 0.599 2.902 1.028 Unfolding 2.902

88 1.033 0.304 0.205 0.203 0.336 0.744 CSR 1.033

Avg 1.090 1.036 1.055 0.974 1.008 1.162 1.453
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Table A.5: Speedup for all methods for loome3 with respect to MKL. All

the methods (including MKL) run with 4 threads.

ID CSR stencil genOSKI4 genOSKI5 Unfolding CSRbyNZ BestMTD BestSpeed

1 1.104 0.921 1.150 1.119 1.353 1.223 Unfolding 1.353

2 1.209 1.401 1.025 1.215 1.733 1.512 Unfolding 1.733

3 1.189 1.600 1.336 1.311 1.616 1.373 Unfolding 1.616

4 1.179 1.158 1.056 1.022 1.345 1.385 CSRbyNZ 1.385

5 1.416 1.837 1.503 1.445 1.809 1.712 Stencil 1.837

6 1.108 1.498 1.162 1.188 1.972 1.401 Unfolding 1.972

7 1.258 1.705 1.495 1.465 1.618 1.781 CSRbyNZ 1.781

8 1.223 0.981 0.995 0.793 1.026 1.035 CSR 1.223

9 1.097 1.082 1.068 0.969 1.131 1.480 CSRbyNZ 1.480

10 1.184 1.240 0.954 0.857 0.939 1.138 Stencil 1.240

11 1.028 1.467 1.149 1.134 1.543 1.544 CSRbyNZ 1.544

12 1.124 1.611 1.411 1.294 1.602 1.683 CSRbyNZ 1.683

13 1.351 0.680 0.720 0.680 0.646 0.733 CSR 1.351

14 1.185 0.525 1.060 0.871 0.551 0.815 CSR 1.185

15 1.265 0.571 0.813 0.708 0.687 0.999 CSR 1.265

16 1.403 1.103 0.979 0.976 1.060 1.396 CSR 1.403

17 1.257 0.658 0.695 0.622 0.689 0.856 CSR 1.257

18 1.109 0.551 0.528 0.478 0.549 0.938 CSR 1.109

19 1.131 0.623 0.809 0.609 0.554 0.983 CSR 1.131

20 1.150 0.637 0.727 0.544 0.712 1.098 CSR 1.150

21 1.254 1.197 1.134 1.107 1.149 1.665 CSRbyNZ 1.665

22 1.098 1.189 1.200 0.557 0.560 1.076 genOSKI4 1.200

23 1.191 0.811 0.884 0.670 0.552 0.940 CSR 1.191

24 1.141 0.507 0.817 0.619 0.464 0.984 CSR 1.141

25 0.966 0.963 0.867 0.767 0.999 1.319 CSRbyNZ 1.319

26 1.202 0.774 1.324 1.040 0.613 1.072 genOSKI4 1.324

27 1.116 1.199 1.048 1.355 0.667 1.129 genOSKI5 1.355

28 1.091 0.535 0.653 0.530 0.524 0.884 CSR 1.091

29 0.816 1.277 1.453 1.360 1.224 1.684 CSRbyNZ 1.684

30 1.100 1.163 0.825 0.907 0.638 1.119 Stencil 1.163
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Table A.5 continued: Speedups with respect to MKL in loome3.

ID CSR stencil genOSKI4 genOSKI5 Unfolding CSRbyNZ BestMTD BestSpeed

31 1.288 1.156 1.497 1.247 1.337 1.926 CSRbyNZ 1.926

32 1.114 1.129 1.214 0.494 0.557 1.064 genOSKI4 1.214

33 1.200 0.786 0.887 0.874 0.831 0.806 CSR 1.200

34 1.099 0.848 1.222 1.136 0.617 1.082 genOSKI4 1.222

35 1.085 1.522 1.659 1.559 2.500 1.715 Unfolding 2.500

36 1.149 0.556 1.082 1.012 0.554 0.883 CSR 1.149

37 1.057 0.915 1.017 0.995 0.911 1.128 CSRbyNZ 1.128

38 1.104 0.837 0.995 0.757 0.487 0.879 CSR 1.104

39 1.156 1.172 1.056 1.072 0.599 1.066 Stencil 1.172

40 1.151 0.944 0.965 0.794 0.496 0.957 CSR 1.151

41 1.156 0.816 1.220 1.130 0.669 2.120 CSRbyNZ 2.120

42 1.145 0.853 1.215 1.094 0.649 2.141 CSRbyNZ 2.141

43 1.048 1.144 0.791 0.949 0.437 1.168 CSRbyNZ 1.168

44 1.071 0.908 1.462 1.430 0.854 2.159 CSRbyNZ 2.159

45 1.006 0.703 1.170 1.143 0.684 1.453 CSRbyNZ 1.453

46 1.152 1.983 1.318 1.371 2.306 1.735 Unfolding 2.306

47 1.122 1.275 0.847 0.915 0.529 1.188 Stencil 1.275

48 1.190 0.374 1.164 0.654 0.311 1.086 CSR 1.190

49 1.281 0.384 0.873 0.661 0.370 0.702 CSR 1.281

50 1.076 0.975 0.992 0.977 0.143 0.890 CSR 1.076

51 1.556 0.859 1.574 1.479 0.848 1.431 genOSKI4 1.574

52 1.086 0.366 0.807 0.818 0.353 1.181 CSRbyNZ 1.181

53 0.940 1.241 1.558 1.092 0.202 1.031 genOSKI4 1.558

54 1.151 0.714 1.133 0.974 0.697 1.400 CSRbyNZ 1.400

55 1.179 0.696 1.199 1.097 2.794 1.556 Unfolding 2.794

56 1.069 1.889 1.742 1.699 0.278 1.083 Stencil 1.889

57 0.975 0.584 0.899 0.728 0.368 1.110 CSRbyNZ 1.110

58 0.967 0.314 1.220 0.844 0.312 0.910 genOSKI4 1.220

59 1.092 0.539 0.932 0.845 1.218 1.112 Unfolding 1.218

60 1.034 1.424 1.418 1.472 1.204 1.050 genOSKI5 1.472

61 0.996 0.574 1.126 0.953 0.414 1.005 genOSKI4 1.126

62 1.048 1.200 0.855 0.864 0.566 1.052 Stencil 1.200
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Table A.5 continued: Speedups with respect to MKL in loome3.

ID CSR stencil genOSKI4 genOSKI5 Unfolding CSRbyNZ BestMTD BestSpeed

63 1.196 0.557 1.271 0.989 0.557 1.269 genOSKI4 1.271

64 1.033 0.601 1.002 0.953 0.627 1.011 CSR 1.033

65 1.028 0.599 1.120 0.880 0.614 1.015 genOSKI4 1.120

66 1.256 0.761 1.024 1.038 0.738 1.599 CSRbyNZ 1.599

67 1.018 1.512 1.431 1.484 0.542 1.014 Stencil 1.512

68 1.013 1.345 1.409 1.391 0.478 1.020 genOSKI4 1.409

69 1.011 1.343 1.412 1.390 0.385 1.021 genOSKI4 1.412

70 1.046 0.437 0.968 0.613 0.470 1.070 CSRbyNZ 1.070

71 1.051 0.456 1.071 0.916 0.971 1.077 CSRbyNZ 1.077

72 1.021 1.503 1.352 1.400 0.704 1.007 Stencil 1.503

73 1.054 0.653 0.705 0.615 0.616 1.090 CSRbyNZ 1.090

74 1.045 1.182 0.598 0.612 1.237 1.031 Unfolding 1.237

75 1.022 1.445 1.436 1.346 0.539 1.012 Stencil 1.445

76 1.255 0.583 1.676 1.575 2.855 1.312 Unfolding 2.855

77 1.050 1.134 0.647 0.560 1.615 1.019 Unfolding 1.615

78 1.000 0.448 1.050 0.718 0.453 1.023 genOSKI4 1.050

79 1.011 1.219 1.330 1.398 0.399 0.987 genOSKI5 1.398

80 1.224 0.620 0.854 0.852 1.394 1.036 Unfolding 1.394

81 0.980 0.546 0.469 0.437 0.547 1.066 CSRbyNZ 1.066

82 1.057 0.573 0.505 0.428 0.573 0.971 CSR 1.057

83 1.103 0.621 0.307 0.343 0.631 1.147 CSRbyNZ 1.147

84 1.011 1.148 0.978 1.011 0.427 0.973 Stencil 1.148

85 1.063 0.611 0.225 0.306 0.621 1.156 CSRbyNZ 1.156

86 1.036 1.188 0.763 0.468 2.052 1.028 Unfolding 2.052

87 1.032 1.252 0.857 0.568 3.195 1.037 Unfolding 3.195

88 1.034 0.259 0.172 0.174 0.286 0.648 CSR 1.034

Avg 1.117 0.952 1.052 0.952 0.899 1.189 1.437
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Table A.6: Speedup for all methods for i2pc3 with respect to MKL. All

the methods (including MKL) run with 4 threads.

ID CSR stencil genOSKI4 genOSKI5 Unfolding CSRbyNZ BestMTD BestSpeed

1 1.227 0.926 1.307 1.399 1.723 1.410 Unfolding 1.723

2 1.353 1.623 1.108 1.294 1.705 1.463 Unfolding 1.705

3 1.277 1.080 1.069 1.020 1.748 0.957 Unfolding 1.748

4 1.501 1.714 1.143 1.149 2.181 1.411 Unfolding 2.181

5 1.148 1.993 1.358 1.384 2.197 1.624 Unfolding 2.197

6 1.307 1.081 1.045 0.971 1.883 1.073 Unfolding 1.883

7 1.051 2.279 1.350 1.344 2.458 1.585 Unfolding 2.458

8 1.213 1.587 1.153 1.034 1.788 1.119 Unfolding 1.788

9 1.079 1.307 1.024 1.011 1.587 1.058 Unfolding 1.587

10 1.110 1.235 0.880 0.870 1.446 0.991 Unfolding 1.446

11 1.184 1.030 0.946 1.070 1.546 1.038 Unfolding 1.546

12 1.147 1.744 1.221 1.230 1.718 1.292 stencil 1.744

13 1.422 1.126 0.797 0.944 1.172 0.781 CSR 1.422

14 1.211 1.073 0.949 0.965 1.078 0.916 CSR 1.211

15 1.208 0.907 0.833 0.888 1.044 0.956 CSR 1.208

16 1.048 1.394 1.014 0.993 1.322 1.399 CSRbyNZ 1.399

17 1.156 1.086 0.897 0.896 1.090 0.891 CSR 1.156

18 1.154 0.794 0.616 0.679 0.813 0.712 CSR 1.154

19 1.163 0.865 0.794 0.810 0.869 0.799 CSR 1.163

20 1.075 0.995 0.779 0.783 1.069 0.981 CSR 1.075

21 1.112 1.334 1.146 1.065 1.257 1.153 stencil 1.334

22 1.087 1.207 1.063 0.695 0.835 0.853 stencil 1.207

23 1.198 1.061 0.838 0.787 0.790 0.779 CSR 1.198

24 1.133 0.818 0.942 0.793 0.752 0.830 CSR 1.133

25 0.989 1.267 1.049 1.056 1.508 0.941 Unfolding 1.508

26 1.162 1.040 1.184 1.044 0.901 0.854 genOSKI4 1.184

27 1.148 1.087 0.869 1.206 0.899 0.934 genOSKI5 1.206

28 1.108 0.777 0.754 0.701 0.770 0.743 CSR 1.108

29 0.994 1.506 1.424 1.341 1.578 1.215 Unfolding 1.578

30 1.053 1.081 0.782 0.764 0.937 0.910 stencil 1.081
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Table A.6 continued: Speedups with respect to MKL in i2pc3.

ID CSR stencil genOSKI4 genOSKI5 Unfolding CSRbyNZ BestMTD BestSpeed

31 1.326 1.458 1.485 1.205 1.493 1.653 CSRbyNZ 1.653

32 1.099 1.104 1.066 0.743 0.790 0.889 stencil 1.104

33 1.134 1.276 0.950 0.968 1.295 1.107 Unfolding 1.295

34 1.085 0.933 1.143 1.030 0.773 0.845 genOSKI4 1.143

35 1.078 1.574 1.416 1.378 2.253 1.319 Unfolding 2.253

36 1.054 0.781 1.041 1.025 0.715 0.769 CSR 1.054

37 1.116 1.416 1.057 1.062 1.444 1.091 Unfolding 1.444

38 1.074 0.944 0.850 0.847 0.757 0.856 CSR 1.074

39 1.059 0.972 0.967 0.963 0.847 0.778 CSR 1.059

40 1.066 0.922 0.909 0.850 0.798 0.794 CSR 1.066

41 1.002 0.802 1.037 1.005 1.570 1.598 CSRbyNZ 1.598

42 1.052 0.852 1.057 1.037 1.501 1.647 CSRbyNZ 1.647

43 1.048 1.138 0.725 0.983 0.872 0.929 stencil 1.138

44 1.151 1.853 1.553 1.268 1.830 1.324 stencil 1.853

45 1.115 1.433 1.183 1.168 1.450 1.184 Unfolding 1.450

46 1.126 1.415 1.091 1.116 1.750 1.197 Unfolding 1.750

47 1.006 1.110 0.779 0.916 0.948 0.823 stencil 1.110

48 1.106 0.878 1.091 0.956 0.890 0.879 CSR 1.106

49 1.183 1.152 1.059 1.030 1.155 0.960 CSR 1.183

50 1.043 0.995 0.867 0.823 0.718 0.816 CSR 1.043

51 1.081 1.264 1.271 1.236 1.576 1.607 CSRbyNZ 1.607

52 1.037 1.089 0.983 0.971 1.104 0.954 Unfolding 1.104

53 0.989 1.053 1.188 0.926 0.816 0.968 genOSKI4 1.188

54 1.123 1.930 1.422 1.329 1.956 1.661 Unfolding 1.956

55 1.199 1.803 1.513 1.324 2.800 1.594 Unfolding 2.800

56 1.020 1.011 0.887 0.855 0.693 0.862 CSR 1.020

57 1.026 0.837 0.758 0.642 0.776 0.879 CSR 1.026

58 1.080 0.637 0.880 0.844 0.604 0.823 CSR 1.080

59 1.117 0.930 0.661 0.642 1.398 1.221 Unfolding 1.398

60 0.999 1.317 1.080 1.119 1.578 1.186 Unfolding 1.578

61 1.043 0.751 0.896 0.872 0.703 0.832 CSR 1.043

62 0.921 0.861 0.773 0.784 1.263 1.099 Unfolding 1.263
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Table A.6 continued: Speedups with respect to MKL in i2pc3.

ID CSR stencil genOSKI4 genOSKI5 Unfolding CSRbyNZ BestMTD BestSpeed

63 1.184 1.151 1.095 1.020 0.857 1.024 CSR 1.184

64 0.977 1.207 1.219 1.114 1.279 1.094 Unfolding 1.279

65 0.972 0.926 0.825 0.745 1.088 0.954 Unfolding 1.088

66 1.267 1.256 1.100 1.130 1.238 1.219 CSR 1.267

67 1.000 1.200 0.990 1.011 0.874 0.930 stencil 1.200

68 1.009 0.938 0.949 0.794 0.774 0.957 CSR 1.009

69 1.009 0.955 0.962 0.786 0.540 0.969 CSR 1.009

70 0.971 0.851 0.753 0.684 0.952 0.874 CSR 0.971

71 1.143 0.707 0.805 0.692 1.558 1.099 Unfolding 1.558

72 1.000 1.143 0.807 0.823 0.985 0.894 stencil 1.143

73 1.098 0.559 1.491 1.409 0.472 1.460 genOSKI4 1.491

74 1.065 1.486 1.100 1.093 1.611 1.256 Unfolding 1.611

75 0.996 0.968 0.925 0.921 0.854 0.887 CSR 0.996

76 1.584 1.014 1.378 1.365 3.886 1.310 Unfolding 3.886

77 1.099 1.493 1.194 1.180 1.886 1.353 Unfolding 1.886

78 0.840 0.298 1.005 0.841 0.278 0.915 genOSKI4 1.005

79 1.016 1.056 0.903 0.909 0.180 0.874 stencil 1.056

80 1.104 0.321 1.208 0.983 1.738 1.164 Unfolding 1.738

81 1.415 0.379 0.927 0.891 0.323 1.761 CSRbyNZ 1.761

82 0.910 0.446 0.787 0.857 0.462 1.043 CSRbyNZ 1.043

83 0.862 0.284 0.834 0.727 0.283 0.934 CSRbyNZ 0.934

84 0.722 1.130 0.983 1.049 0.128 0.876 stencil 1.130

85 0.907 0.336 0.783 0.772 0.338 1.014 CSRbyNZ 1.014

86 1.043 1.577 1.307 1.164 4.126 1.070 Unfolding 4.126

87 0.986 1.651 1.291 1.466 4.517 1.007 Unfolding 4.517

88 1.057 0.138 0.620 0.410 0.157 1.040 CSR 1.057

Avg 1.100 1.102 1.025 0.988 1.263 1.077 1.470
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Table A.7: Speedup for all methods for i2pc5 with respect to MKL. All

the methods (including MKL) run with 4 threads.

ID CSR stencil genOSKI4 genOSKI5 Unfolding CSRbyNZ BestMTD BestSpeed

1 1.146 0.796 1.193 1.142 1.689 1.267 Unfolding 1.689

2 1.285 1.373 1.128 1.088 1.410 1.131 Unfolding 1.410

3 1.227 0.860 1.016 0.996 1.584 0.849 Unfolding 1.584

4 1.420 1.713 1.021 1.022 1.831 1.190 Unfolding 1.831

5 1.052 1.923 1.174 1.129 1.927 1.412 Unfolding 1.927

6 1.216 0.900 0.946 0.897 1.667 0.941 Unfolding 1.667

7 0.968 2.150 1.206 1.067 2.114 1.436 stencil 2.150

8 1.137 1.343 0.921 0.746 1.537 0.943 Unfolding 1.537

9 1.026 1.202 1.026 0.851 1.494 1.003 Unfolding 1.494

10 1.069 1.153 0.811 0.784 1.258 0.860 Unfolding 1.258

11 1.159 1.152 0.820 1.002 1.651 0.911 Unfolding 1.651

12 1.073 1.427 1.100 1.078 1.545 1.104 Unfolding 1.545

13 1.352 1.100 0.643 0.728 1.122 0.667 CSR 1.352

14 1.115 1.086 0.956 0.827 1.086 0.908 CSR 1.115

15 1.229 0.826 0.776 0.804 1.140 0.879 CSR 1.229

16 1.041 1.233 0.922 0.897 1.223 0.944 stencil 1.233

17 1.061 0.877 0.763 0.732 0.944 0.779 CSR 1.061

18 1.134 0.717 0.566 0.643 0.745 0.646 CSR 1.134

19 1.076 0.832 0.714 0.685 0.746 0.717 CSR 1.076

20 1.043 0.888 0.675 0.678 0.889 0.894 CSR 1.043

21 1.012 1.110 1.016 0.980 1.141 1.004 Unfolding 1.141

22 1.055 1.081 0.943 0.597 0.735 0.734 stencil 1.081

23 1.141 0.908 0.749 0.719 0.689 0.725 CSR 1.141

24 1.115 0.764 0.894 0.655 0.718 0.668 CSR 1.115

25 0.973 1.150 0.943 0.956 1.269 0.808 Unfolding 1.269

26 1.118 0.916 1.008 0.920 0.764 0.732 CSR 1.118

27 1.071 0.957 0.774 1.098 0.846 0.867 genOSKI5 1.098

28 1.044 0.713 0.684 0.639 0.699 0.667 CSR 1.044

29 0.998 1.429 1.315 1.257 1.455 1.099 Unfolding 1.455

30 1.034 0.918 0.702 0.805 0.840 0.772 CSR 1.034
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Table A.7 continued: Speedups with respect to MKL in i2pc5.

ID CSR stencil genOSKI4 genOSKI5 Unfolding CSRbyNZ BestMTD BestSpeed

31 1.309 1.332 1.363 1.130 1.435 1.518 CSRbyNZ 1.518

32 1.052 0.957 0.959 0.649 0.689 0.836 CSR 1.052

33 1.098 1.205 0.890 0.930 1.271 0.967 Unfolding 1.271

34 1.105 0.866 1.058 0.878 0.799 0.785 CSR 1.105

35 1.071 1.479 1.344 1.283 2.050 1.240 Unfolding 2.050

36 1.043 0.717 0.981 0.936 0.644 0.716 CSR 1.043

37 1.114 1.342 1.038 0.935 1.352 1.063 Unfolding 1.352

38 1.111 0.919 0.776 0.780 0.712 0.768 CSR 1.111

39 1.059 0.860 0.896 0.859 0.780 0.705 CSR 1.059

40 1.040 0.790 0.831 0.757 0.748 0.742 CSR 1.040

41 1.007 0.728 0.973 0.960 1.362 1.357 Unfolding 1.362

42 1.008 0.763 0.983 0.942 1.361 1.439 CSRbyNZ 1.439

43 1.008 1.008 0.674 0.942 0.762 0.860 CSR 1.008

44 1.129 1.576 1.257 1.173 1.833 1.143 Unfolding 1.833

45 1.112 1.281 1.107 1.062 1.335 1.076 Unfolding 1.335

46 1.082 1.384 1.071 1.088 1.641 1.125 Unfolding 1.641

47 1.016 0.944 0.770 0.900 0.873 0.779 CSR 1.016

48 1.086 0.839 1.058 0.887 0.852 0.807 CSR 1.086

49 1.207 1.144 1.066 1.031 1.144 0.925 CSR 1.207

50 1.034 0.958 0.796 0.733 0.674 0.768 CSR 1.034

51 1.060 1.224 1.258 1.196 1.547 1.462 Unfolding 1.547

52 1.045 1.046 0.975 0.935 1.052 0.944 Unfolding 1.052

53 1.015 1.045 1.179 0.880 0.769 0.944 genOSKI4 1.179

54 1.118 1.844 1.349 1.327 1.909 1.559 Unfolding 1.909

55 1.158 1.650 1.406 1.275 2.583 1.458 Unfolding 2.583

56 1.026 0.979 0.880 0.802 0.664 0.821 CSR 1.026

57 1.042 0.780 0.732 0.613 0.741 0.847 CSR 1.042

58 1.077 0.608 0.839 0.760 0.576 0.794 CSR 1.077

59 1.042 0.915 0.667 0.628 1.365 1.211 Unfolding 1.365

60 0.958 1.261 1.055 1.094 1.485 1.087 Unfolding 1.485

61 1.037 0.729 0.889 0.843 0.676 0.801 CSR 1.037

62 0.922 0.779 0.735 0.747 1.143 1.034 Unfolding 1.143
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Table A.7 continued: Speedups with respect to MKL in i2pc5.

ID CSR stencil genOSKI4 genOSKI5 Unfolding CSRbyNZ BestMTD BestSpeed

63 1.183 1.115 1.116 0.993 0.956 1.010 CSR 1.183

64 0.964 1.092 1.154 1.093 0.922 1.083 genOSKI4 1.154

65 1.006 0.889 0.801 0.739 0.902 0.884 CSR 1.006

66 1.309 0.855 1.115 1.067 0.878 1.223 CSR 1.309

67 1.003 1.151 0.987 0.955 0.851 0.919 stencil 1.151

68 1.010 0.897 0.943 0.772 0.755 0.960 CSR 1.010

69 1.004 0.888 0.945 0.770 0.509 0.947 CSR 1.004

70 0.963 0.682 0.705 0.613 0.599 0.832 CSR 0.963

71 1.160 0.608 0.778 0.656 1.455 1.013 Unfolding 1.455

72 1.016 1.143 0.791 0.812 0.945 0.895 stencil 1.143

73 1.203 0.606 1.673 1.601 0.507 1.608 genOSKI4 1.673

74 1.082 1.455 1.127 1.142 1.662 1.249 Unfolding 1.662

75 1.012 0.874 0.912 0.880 0.504 0.865 CSR 1.012

76 1.668 0.625 1.406 1.392 3.884 1.295 Unfolding 3.884

77 1.009 1.461 1.175 1.117 1.819 1.294 Unfolding 1.819

78 0.853 0.270 1.026 0.831 0.228 0.891 genOSKI4 1.026

79 1.086 1.148 0.980 0.967 0.173 0.858 stencil 1.148

80 1.252 0.337 1.308 1.261 1.659 1.234 Unfolding 1.659

81 1.005 0.285 0.799 0.794 0.276 1.329 CSRbyNZ 1.329

82 0.967 0.443 0.862 0.830 0.440 1.102 CSRbyNZ 1.102

83 1.066 0.344 0.964 0.884 0.342 1.109 CSRbyNZ 1.109

84 1.051 1.688 1.102 1.368 0.181 1.132 stencil 1.688

85 0.996 0.352 0.759 0.762 0.351 1.119 CSRbyNZ 1.119

86 1.017 1.402 1.268 1.216 4.418 1.023 Unfolding 4.418

87 1.047 1.610 1.289 1.504 5.058 1.047 Unfolding 5.058

88 1.047 0.099 0.547 0.390 0.107 1.021 CSR 1.047

Avg 1.086 1.020 0.975 0.929 1.181 1.001 1.416
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Table A.8: Speedup of split-by-pattern vs split-by-count for CSR and

stencil. Split-by-pattern is faster for values larger than 1. Split-by-count

if faster for values smaller than 1.

ID loome2 loome3 i2pc3 i2pc5

CSRbyNZ Stencil CSRbyNZ Stencil CSRbyNZ Stencil CSRbyNZ Stencil

1 0.98 0.7 0.93 0.62 0.96 0.42 0.93 0.4

2 1.37 1 1.2 1.05 1.28 1.02 1.16 0.86

3 0.99 0.89 1.01 0.88 1.04 0.94 1.06 0.98

4 0.96 1.01 1.13 1 0.78 1.04 0.75 1.09

5 1.01 1.01 0.98 1.02 0.73 0.82 0.7 0.71

6 0.99 1.01 1 1.03 0.95 0.99 0.9 0.93

7 0.69 1.05 0.65 0.93 0.62 0.88 0.47 0.67

8 0.72 1.1 0.87 1.01 0.57 0.85 0.53 0.72

9 0.99 0.93 0.89 0.97 0.99 0.92 0.93 0.89

10 0.93 0.83 0.95 0.97 0.66 0.72 0.66 0.6

11 1.18 0.97 1.09 0.94 1.1 0.93 1.13 0.7

12 0.99 1.16 0.97 1.02 0.85 0.85 0.8 0.95

13 0.91 0.95 1.06 0.97 0.71 0.77 0.7 0.64

14 1.26 0.98 0.81 0.93 0.52 0.97 0.41 0.95

15 0.97 0.98 1.06 0.95 0.82 0.79 0.66 0.72

16 1.1 0.97 0.98 1.01 0.7 0.95 0.83 1

17 1.37 1.04 1.44 1.03 0.72 0.95 0.62 0.98

18 0.98 1.2 1.04 1.03 0.98 0.91 0.97 0.89

19 1.04 0.98 1.14 1 0.89 0.95 0.91 0.82

20 0.89 0.99 0.96 1.01 0.68 0.95 0.67 0.98

21 1.05 1 0.97 1.02 0.95 1.11 0.92 0.99

22 0.97 0.95 0.94 1.16 0.91 0.77 0.9 0.74

23 0.99 1.1 1.02 1.21 1.04 0.87 1.07 0.88

24 1.15 0.97 1.18 0.98 0.95 0.9 1 0.93

25 1.32 1 1.03 1.01 0.91 0.98 0.87 0.84

26 1.01 1.16 1 1.21 0.91 1.09 0.92 1.07

27 1.14 1.08 1.12 1.14 1.07 0.94 0.92 0.94

28 1.07 1.1 1.09 1.07 1.02 0.96 1.04 0.93
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Table A.8 continued: Speedup of split-by-pattern vs split-by-count for CSR and stencil.

ID loome2 loome3 i2pc3 i2pc5

CSRbyNZ Stencil CSRbyNZ Stencil CSRbyNZ Stencil CSRbyNZ Stencil

29 1.04 0.97 1.02 1.06 0.96 0.94 0.94 0.91

30 1.09 1.08 1.03 1.12 0.95 0.75 1 0.79

31 0.98 1.01 0.97 1.01 1 1.03 0.99 1

32 1.01 0.92 0.99 2.87 0.94 0.95 0.96 0.96

33 1.1 0.98 1.02 0.99 0.74 0.95 0.8 0.93

34 1.08 1.04 1.11 1.09 0.96 1 0.97 0.99

35 0.99 0.95 0.96 1.59 1 0.96 0.95 0.96

36 1.07 0.95 1.07 0.65 0.92 1.03 0.88 1

37 1.12 0.99 1.13 1.07 0.84 0.99 0.77 0.96

38 1.06 1.17 0.99 1.21 0.9 1 1.06 0.92

39 1.09 1.12 1.06 1.14 1.02 0.96 1 1.01

40 1.04 1.37 1.06 1.45 0.96 1.1 0.93 0.95

41 0.83 0.81 0.99 0.98 0.87 0.75 0.93 0.74

42 0.85 0.82 0.93 0.92 0.87 0.7 0.88 0.63

43 0.96 0.99 0.9 0.96 1.01 0.95 1.01 0.95

44 1 0.85 1.01 1.01 1.02 0.98 0.97 1.03

45 1.15 0.95 1.23 1.42 1.22 0.95 1.19 0.99

46 1.01 1.02 0.99 0.98 1.03 1.05 1.01 1

47 0.99 0.94 0.97 0.98 1.03 0.72 0.95 0.82

48 1.09 1.14 1.12 0.98 0.84 0.97 1.08 0.97

49 1.58 1.05 1.75 0.95 0.97 0.94 0.97 0.96

50 1 1.07 0.97 1.11 1.03 1.04 1.01 1.11

51 1.1 0.99 1.08 0.95 0.92 0.97 0.92 0.94

52 1.15 0.99 1.2 1.02 1 1.02 0.96 0.98

53 1 0.97 0.93 0.93 1 1 1.02 0.96

54 1.14 1.01 1.18 1.01 1.05 1.05 1.02 1.04

55 1.29 0.99 1.3 0.99 0.95 0.95 1 1.01

56 1.01 1.04 1.04 1.19 0.94 1.03 1.02 0.98

57 0.96 1.03 1.14 1 0.97 0.97 0.99 0.99

58 1.17 1 1.09 1 1.04 1 1.06 1.02

59 1.01 1 1.01 1 1 1.01 1 1.01
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Table A.8 continued: Speedup of split-by-pattern vs split-by-count for CSR and stencil.

ID loome2 loome3 i2pc3 i2pc5

CSRbyNZ Stencil CSRbyNZ Stencil CSRbyNZ Stencil CSRbyNZ Stencil

60 1 1.05 1.02 1 0.94 1.01 1 1.02

61 1.07 1.04 1.06 1.04 1.03 0.99 1.09 0.98

62 1.02 0.84 0.89 1.03 0.77 0.99 0.74 1.02

63 1.02 1 1 1 0.89 1.01 0.85 0.86

64 1.01 1 0.97 1 1.01 1.02 1.05 1.28

65 0.99 1 0.96 1.01 1.04 0.99 1.01 0.87

66 0.98 0.99 0.88 0.98 0.96 0.98 0.95 0.98

67 1.07 1.06 0.97 1.06 0.99 0.98 0.98 1

68 1 1.39 1 1.38 1 1.03 0.99 1.02

69 1 1.39 1 1.37 1.02 1.03 1 0.99

70 1.03 1 1.07 1 0.95 1.03 0.94 1.31

71 1.01 1 0.99 1 0.93 1.12 0.97 0.99

72 1.03 1.07 0.98 1.05 1 0.95 1.01 0.89

73 1.05 1 1.01 1 0.9 1.11 1.11 1.1

74 1.01 1.01 1 1.01 0.97 0.93 1.01 1

75 1.04 1.09 0.97 1.08 0.95 0.94 0.93 0.97

76 1.02 1.02 1.04 1.02 0.95 0.8 0.94 0.82

77 0.98 0.99 0.99 0.99 0.83 0.95 0.87 0.99

78 0.98 1 0.96 1 0.95 1 0.96 0.92

79 0.95 1.09 0.94 1.08 0.95 1.02 1 1.11

80 0.98 0.94 0.95 0.94 0.97 0.86 1.16 0.94

81 0.97 1 0.96 0.99 0.9 0.98 0.92 0.97

82 0.87 0.99 0.91 1 1.07 1.05 1.01 1

83 1 0.99 0.99 1 0.9 1.02 0.99 1.01

84 0.88 0.89 0.8 0.84 1.12 0.87 1.04 0.91

85 1 1 1 1 0.99 1 0.97 1.01

86 1 0.98 0.99 1 0.98 0.86 1.06 1.01

87 1 1 1 1 1.02 0.9 1.02 1.01

88 0.95 0.99 0.88 1 0.94 0.98 0.96 1
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Figure A.1: MFLOPs/sec for loome2 for all methods.

Figure A.2: MFLOPs/sec for loome3 for all methods.
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Figure A.3: MFLOPs/sec for i2pc3 for all methods.

Figure A.4: MFLOPs/sec for i2pc5 for all methods.
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