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Abstract

The Robot Operating System (ROS) is a widely used open-source framework

for robot software development. Its increasing popularity, along with its

renowned features, such as its dynamic and distributed nature, call for a

safety and security protection mechanism which is not supplied as part of the

framework. This thesis presents ROSRV, a runtime verification framework for

ROS. ROSRV aims to address vulnerabilities in ROS in order to build more

reliable robots by enforcing security policies and monitoring safety properties.

It integrates with ROS seamlessly; in other words, it does not require any

change to the ROS source code or the robot software.

ROSRV has three major components: (1) a tool that provides an expressive

formal specification language to define safety properties, and automatically

generates monitors out of them, (2) a proxy node that manages these mon-

itors which transparently intercept and observe messages exchanged by the

computational units of ROS to ensure the system behaves as desired, and

(3) an access control policy administered by the proxy node to restrict the

impact of individual units on the overall system.

ROSRV has been tested on a commercial robot running ROS and the eval-

uations showed promising results.
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Chapter 1

Introduction

It is the 21st century and robots are becoming more ubiquitous. It goes

without saying that they are here to stay due to their capabilities to either

replace humans in dangerous duties or to assist them overcome difficult tasks.

Current research on robotics is not only on advancing the prevailing human-

robot interaction, but it also strives to expedite the ordinariness of fully

autonomous robots. By all means, in order for them to be employable, let

alone helpful, we need them to operate safely and securely. This creates the

need for software that can automatically ensure safe and secure operation of

robots.

The focus of this thesis is the ROSRV framework, which is developed to

provide Runtime Verification for the Robot Operating System (ROS). ROS

owes its increasing popularity to its being an open-source framework support-

ing many standard operating system services and robot-specific libraries [23].

Its wide adoption calls for a protection mechanism as its current lack of such

a feature may pose an important threat against safe and secure operation of

robots. Moreover, ROS runs on a heterogeneous computer cluster, and its

dynamic and distributed properties make it infeasible to verify the system

statically, needless to mention the highly interactive nature of autonomous

robots for that matter. Therefore, our approach is to attack this problem

with runtime verification. We believe, even without an explicit threat, the

fact that the ROS environment is dynamic and versatile with changing pa-

rameters and newly joined nodes, justifies that the system benefits from

monitoring.

In the rest of this chapter, we will first briefly describe how ROS might be

prone to attacks and how monitoring may enhance applications (1.1), then

we will talk about our proposed solution and list our contributions (1.2), and

lastly we will give an outline of the rest of the thesis (1.3).
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1.1 Problem Description

In the general sense, the Robot Operating System (ROS) [19] is an open-

source framework for developing robot software. ROS operates on top of

a heterogeneous distributed cluster of host operating systems and provides

a communication layer between nodes which constitute the computational

parts of the robot. At runtime, ROS nodes (i.e. processes) are connected on

a peer-to-peer topology. This particular setup demands a centralized “name

service” (referred to as the ROSMaster in the rest of the thesis) in order for

nodes to find each other and start communicating on channels called topics.

After this brief introduction to the overall system, we believe it is important

to bring up a few design decisions that play an important role in what ROS

does and does not provide.

The primary goal of ROS is to support code reuse across frameworks and

applications to help facilitate robotics research [23]. The idea of making

it a distributed framework of nodes also increases the feasibility and flexi-

bility of designing individual executables which become loosely-coupled at

runtime. However, with the addition of the fact that safety is almost al-

ways application-specific into the equation, this greater power brings about

greater difficulties in terms of providing a comprehensive methodology as

part of ROS to satisfy everybody’s safety needs. Since the aim of communi-

cation in the system is solely defined by the application, it is more favorable

to grant application developers the privilege of specifying safety properties

with an easy-to-use and expressive method, rather than to include vague

means of safety support as part of the framework which may add undesired

complexity.

Another crucial design aspect is the importance of names in ROS. From

registering nodes to looking up parameters, everything is associated with a

name and has to comply with the naming conventions. There are conse-

quences of giving names the top priority when it comes to identification. For

example, when a second node with the same name is introduced to the sys-

tem, the first node is automatically shut down [10]. This situation makes

ROS vulnerable in the case of an attack, as an attacker can easily fake a

node and misdirect a robot by publishing bogus messages on important top-

ics. Security issues in ROS is not only limited to taking advantage of this

particular design decision. Currently, ROS does not offer any protection
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mechanism against preventing nodes from freely querying the ROSMaster

about system state and sending shutdown commands to kill arbitrary nodes.

These are important problems in need of addressing to build more reliable

robots.

1.2 Contributions

We developed a runtime verification framework called ROSRV, to improve

safety and security of robots developed using ROS. ROSRV integrates with

ROS seamlessly in the sense that it does not require any changes to the ROS

source code or application code (executed by nodes) itself. Our intention

was to (1) address possible safety needs of applications and (2) make up

for existing security vulnerabilities in ROS. We approached the first prob-

lem by integrating monitoring into the system. This is achieved by placing

user-defined monitors as men-in-the-middle in communication channels (i.e.

topics) and managing them with the help of a proxy node, called RVMaster,

located on top of the ROSMaster. The core functionality of monitors is to

intercept, observe and optionally modify or drop messages circulating in the

system among nodes. We designed our monitors to act like ordinary pub-

lishers and subscribers so that the system does not become aware of being

monitored. The second problem is avoided by supervising nodes’ communica-

tions with the ROSMaster. We implemented an access control policy exerted

by the RVMaster that dictates which nodes are allowed to send requests and

commands to the ROSMaster for execution.

Since our goal is to cater to a variety of applications, our framework had

to be easy-to-use and expressive, meaning that users were not to be con-

cerned with the internals of how monitoring works. Therefore, we developed

a specification language in compliance with the Monitoring-Oriented Pro-

gramming paradigm [6], for users to easily specify safety properties. From

these specifications, monitors are automatically generated and incorporated

into the framework and user-defined actions are executed upon violation or

validation of safety properties at runtime according to system behavior.

We tested our framework on LandShark1, an unmanned ground vehicle

(UGV) running ROS, and demonstrated how ROSRV improved the safety

1The LandShark UGV is a product of Black-i Robotics (www.blackirobotics.com).

3

www.blackirobotics.com


and security of LandShark by monitoring the system against specified safety

properties and enforcing access control. Our experiments with various moni-

tors showed that our specification language is capable of expressing different

kinds of safety requirements, and our framework is successful in delivering

user demands.

We also performed performance evaluations based on simple test cases.

These tests revealed that no matter how long the execution time, the number

of messages not received by the subscriber due to monitoring delay, does not

exceed a few.

Our main contributions can be summarized as follows:

1. We developed a simple and expressive specification language and a tool

called ROSMOP for users to define safety properties without being

obliged to know the internals of the ROS communication system for

monitoring needs.

2. We implemented ROSRV, a runtime verification framework for ROS,

that manages monitors automatically generated by ROSMOP out of

specifications, to check dynamic behavior during system execution with-

out the system being aware.

3. We integrated an access control mechanism into our framework to re-

strict the communication of nodes with the ROSMaster in order to

prevent possibly malicious commands to be executed arbitrarily.

1.3 Outline of Thesis

The rest of this thesis is organized as follows:

Chapter 2 introduces the Robot Operating System concepts (2.1) and

Monitoring-Oriented Programming (2.2) in more detail. Chapter 3 discusses

several concerns in general to present our motivation, with a focus on possi-

ble shortcomings of ROS on our case study robot LandShark to illustrate the

existence of the problem. In Chapter 4, we present our framework ROSRV,

by focusing on three major components: RVMaster (4.1) is the proxy node

which sits on top of the ROSMaster; it is in charge of regulating monitors

(4.2) and administering system accessibility (4.3). In Chapter 5, we present
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our evaluation metrics and results. Lastly, we conclude our work and talk

about possible future directions in Chapter 6.
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Chapter 2

Background

In this chapter, we talk about the ROS communication concepts and intro-

duce Monitoring-Oriented Programming.

2.1 The Robot Operating System (ROS)

The Robot Operating System (ROS [19]) is an open-source meta-operating

system for robot software development. Although it is not an operating

system in the traditional sense of process management and scheduling, it

provides certain services that an operating system would [23], such as hard-

ware abstraction, low-level device control, various filesystem functionalities,

message-passing between processes, etc. Since ROS’s main goal is to fa-

cilitate code reuse in robotics research and development (including across

platforms), it also provides tools and libraries to make the code distribution

and execution as easy as possible. The framework is already implemented in

at least 3 languages to aid this cause, with a few other languages in currently

experimental stage. This thesis focuses on the C++ implementation.

ROS communication is based on a peer-to-peer (potentially distributed)

network of processes. Due to these peers becoming loosely-coupled at run-

time, this communication infrastructure is called a “graph.” There are a few

different styles of communication supported by ROS for processes to connect.

These are mainly synchronous RPC-style communication over services, asyn-

chronous streaming of data over topics, and storage of data on a Parameter

Server.

The following basic concepts make up the ROS Computation Graph [20]

by contributing to data exchange in the framework in one way or another.

Nodes Nodes are the previously referred processes that perform computa-

tion and help control the robot collectively. Since ROS is designed to be
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modular, usually a robot control system consists of many nodes, each

of which has a distinct task in terms of computation in order to help

lead the robot. ROS nodes are written by using ROS client libraries

available for different implementation languages.

Master The ROSMaster (as referred to in this thesis for clarity) is respon-

sible for providing name registration and lookup. The rest of the com-

ponents constituting the Computation Graph benefit from and depend

on the services the ROSMaster provides to find each other and com-

municate.

Parameter Server The Parameter Server can be considered as a shared

dictionary that nodes use to store and retrieve data. It is currently

implemented as part of the ROSMaster.

Messages Inter-node communication happens by means of messages. A

message resembles a C struct in the sense that it is a data structure

containing typed fields of either primitive types (e.g. integer, floating

point, boolean, etc.), arrays of primitive types, or nested structures.

Topics The most common case of inter-node communication in ROS is based

on publish/subscribe semantics. In this transport system, a node sends

out a message by publishing it to a particular topic, and a node that

is interested in a certain sort of data subscribes to the proper topic. In

this sense, a topic is simply a name for identifying the content of the

message. In ROS, multiple concurrent publishers and subscribers are

allowed for a single topic, as well as, a single node publishing and/or

subscribing to multiple topics. It is important to note that in this sys-

tem, publishers and subscribers are not required to know of each others’

existence in advance. This design serves the purpose of decoupling the

production and consumption of information.

Services Services are used for request/reply interactions where many-to-

many publish/subscribe semantics falls short. For this type of transport

system, a pair of message structures -one for the request and one for

the reply- is needed. This type of communication is usually similar to

a remote procedure call, where a node offers a service associated with
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Figure 2.1: ROS Communication Architecture

a name, and another uses the service by sending the request message

and awaiting the reply.

Bags Bags are helpful in saving and replaying ROS messages. They espe-

cially come in handy for storage and analysis of data, such as messages

emitted by a sensor on the robot, which might be crucial in developing

and testing algorithms.

Figure 2.1 illustrates an overview of the ROS communication architecture.

ROS nodes run XMLRPC servers managed by the ROS client library, and

each node is assigned a URI, which corresponds to the host:port of the XML-

RPC server they are running. ROS nodes use XMLRPC connections for two

purposes. First, they need to report their registration information to the

ROSMaster. This XMLRPC call includes the node’s URI, the name of the

topic of interest, the data type (i.e. message name) for the topic, and a pa-

rameter for the ROSMaster to be able to make callbacks to the node in case

new publishers/subscribers join the system wanting to connect on the same

topic or when a node’s registration information has changed. ROS client

libraries also support commands that query/update the system parameters

and the runtime state by communicating with the ROSMaster, such as ask-

ing for published/subscribed topics of a node, killing a node, getting a list of

all the published topics and their types, etc. The second use of XMLRPC by

nodes is for peer-to-peer connection negotiation and configuration. However,
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this type of communication is not used to transport topic or service data.

As the figure indicates, nodes connect to other nodes directly. The role of

the ROSMaster in inter-node communication is to only provide the lookup

service for subscribers to find available publishers on particular topics via

callbacks. The use of callbacks and the important role given to names ease

the decoupling of the two sides. Publishers may generate messages on topics

without actually knowing if there are any subscribers listening. And sub-

scribers may show interest in listening to topics without a publisher being

present. Eventually for a connection to be established and messages to be

routed, the essential thing is that the topic and the declared type (i.e. mes-

sage) should be matching, which both come down to names. This allows

the two parties (i.e. publishers and subscribers) being started, killed, and

restarted in any order without causing any errors.

The following is a likely scenario that explains the initiation of message

exchange between nodes [24]:

1. Subscriber starts and registers with the ROSMaster with the informa-

tion on which topic it wants to subscribe to (via XMLRPC )

2. Publisher starts and registers with the ROSMaster with the information

on which topic it wants to publish to (via XMLRPC )

3. The ROSMaster informs Subscriber that a new Publisher has joined

via a callback and passes on Publisher’s URI (via XMLRPC )

4. Subscriber contacts Publisher to request a topic connection and nego-

tiate the transport protocol (via XMLRPC )

5. Publisher sends Subscriber the settings for the selected transport pro-

tocol (via XMLRPC )

6. Subscriber initiates the connection with Publisher using the selected

transport protocol (via TCPROS, etc.)

For transport protocol negotiation in the 4th step, Subscriber sends Pub-

lisher a list of supported protocols. Publisher then selects an appropriate

protocol from that list in the 5th step, and returns the necessary information

back to Subscriber so it can establish a separate connection for message trans-

fer. The most general protocol used in ROS for topic transport is TCPROS,
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which uses stateful, persistent TCP/IP socket connections. UDPROS is an-

other transport protocol supported by ROS.

2.2 Monitoring-Oriented Programming

(MOP)

Monitoring-Oriented Programming (MOP) [6] is a generic monitoring frame-

work which aims to reduce the gap between formal specification and imple-

mentation by comparing the latter’s accuracy against the former at runtime.

MOP’s main goal is to support and encourage building reliable software.

MOP tools provide automatic synthesis of monitors out of user-specified

properties defined using logical formalisms, and their integration into the

original system. These integrated monitors observe the system’s dynamic be-

havior during execution, and trigger user-defined handling actions upon val-

idation or violation of a property. MOP can be classified as (1) a lightweight

formal method, (2) an extension to programming languages with logics, and

(3) a discipline allowing one to improve safety, reliability and dependability

of a system by monitoring its requirements against its implementation at

runtime. It is important to note that despite being firmly based on logical

formalisms and mathematical techniques, MOP is not an attempt on pro-

gram verification. The philosophy behind MOP is to exactly not verify an

implementation against its specification before operation, but to not let it go

wrong at runtime.

MOP instances are named after the programming language or platform

they are developed for. So far there are three MOP instances which are

JavaMOP [5], BusMOP [2], and ROSMOP [8], the last being the focus of

this thesis. All MOP instances share the following five orthogonal attributes

of the MOP framework [16]: programming language, logic, scope, running

mode and handlers. The programming language decides the language of the

applications that are to be monitored. In the case of ROSMOP, this corre-

sponds to C++, as we deal with the C++-implementation of ROS. The logic

refers to the formalism used to specify the property. MOP offers a selection

of logics so that users can choose the most appropriate one for their applica-

tions, or omit it altogether if that is the best fit. ROSMOP currently supports

FSM and CFG logics. The scope specifies where to check the property. Its
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variety may change from instance to instance. The running mode denotes

where/when the monitoring code runs. ROSMOP monitors are integrated

into the ROSRV framework and they are run online, i.e. simultaneously with

the other publishers and subscribers of the topic of interest. The handlers

specify what actions to be taken upon violation or validation of properties.

Even if users choose not to define properties via formalisms for various rea-

sons, MOP still provides means for writing custom monitoring codes and

their execution. The rest of this chapter focuses on the MOP framework in

general; more information on ROSMOP can be found in Chapter 4.2.1.

Every MOP instance extends the MOP framework in four dimensions: (1)

a specification language based on the problem domain which prescribes how

to define events, (2) a target language for generated monitors, (3) supported

logic formalisms, and (4) the handlers allowed in the specification. The MOP

framework provides a base for its instances to build upon. One of these build-

ing blocks is the generic MOP syntax which each MOP instance specializes

in a form that conforms to the problem domain by defining syntactic cate-

gories (non-terminals). Figure 2.2 shows the shared MOP syntax [7] which

uses Extended Backus-Naur Form (EBNF) [1]. According to the grammar,

non-terminals are surrounded by “〈” and “〉”. Braces (“{” and “}”) indicate

the portion enclosed may appear zero or more times. Brackets (“[” and “]”)

indicate the portion enclosed is optional.

Here, we will explain the common syntax constructs in MOP:

〈Specification〉 It describes the generic MOP specification syntax, which is

the base for its MOP instance- and logic-specific counterpart.

〈Event〉 Its declaration serves two purposes. First, it makes it possible to

refer to in the 〈Property〉, and second, it may have arbitrary code

(〈Instance Action〉) declared along that is run whenever the event is

observed. The associated code helps modify the program or the monitor

state.

〈Property〉 MOP specifications may contain zero or more properties. As the

syntax of 〈Property〉 suggests, it consists of a named formalism (〈Logic

Name〉) and a property specification using the named formalism (〈Logic

Syntax〉). If the specification does not have a property declared, then

it is called raw. If the user does not find the available logic plugins
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expressive or efficient enough, (s)he may opt for a raw specification

and embed custom monitoring code inside the 〈Instance Action〉.

〈Property Handler〉 Handlers include arbitrary code from the instance

source language to be invoked when a certain logic state or category is

reached.

The following constructs may differ for each MOP instance:

〈Instance Modifier〉 These are specific to the language each MOP instance

supports. Syntactically, they can be any valid identifier the language of

the instance allows. They change the behavior of the monitoring code.

〈Instance Parameters〉 If present, they make a specification parametric,

using the MOP instance language. However, parametricity typically

depends on the language and not all MOP instances are parametric,

therefore this non-terminal may be empty.

〈Instance Declaration〉 This is another portion that is specific to the lan-

guage supported in the particular MOP instance. Instance declarations

correspond to the declarations of monitor-local variables.

〈Instance Event Definition〉 These define the conditions under which an

event is triggered. They are again specific to the MOP instance lan-

guage.

〈Instance Action〉 Actions are arbitrary code associated with events and

they are executed when the events they are attached to are observed.

An action may modify the running program or a monitor state. The

syntax of the allowed statements depend on the particular MOP in-

stance. These statements usually differ in variables and functions they

refer to compared to the ones used in handlers. This is the reason why

there are separate non-terminals for actions and handlers.

〈Instance Handler〉 These are arbitrary code that are executed when a

property handler is triggered.

The rest of the constructs are logic plugin-specific:

〈Logic Name〉 It is an identifier that declares the logic of the property.
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〈Logic Syntax〉 It refers to the syntax of the actual property definition for

each plugin.

〈Logic State〉 They refer to monitor stages or categories a handler may

be written for. They are declared as constants and their definition is

property-specific.

Another building block that the MOP framework provides for its instances

is the logic plugins. Every logic plugin is an implementation and encapsula-

tion of a monitor synthesis algorithm for a particular specification formalism.

A set of events and a formula or pattern based on the formalism are fed to the

logic plugin in order to get an output of an abstract monitor which checks a

trace of events against the given formula. More information on various MOP

logic plugins can be found in [16].
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Chapter 3

Motivation and Case Study

Robots now are employed in so many areas. Examples include military

robots, medical robots, and home security robots. Despite such diverse ap-

plication domains, the need for their security and safety is a subject agreed

upon by all researchers from all kinds of fields, and of course end users, too.

To go over a few of the concerns, let us first emphasize that even a minute

mistake in the mechanics of the robot or the software that operates it, means

a huge risk against lives that conduct the robot, get serviced by the robot or

simply anyone within its range. Take, for example, the instance of the semi-

autonomous robotic cannon that was deployed by the South African army

in October 2007 during a shooting exercise [17]. Due to a probable software

glitch, the computerized gun went out of control and started shooting. This

overlooked error ended up taking 9 lives and injuring 11 others. Another case

where precision and submissiveness have utmost importance is the field of

medicine. Nowadays, robotic arms are trusted to perform vital surgical tasks

on patients. Even though engineers try their best to meet the functionality

and reliability requirements, the variety of purposes and the complexity it

brings in terms of choice of sensors and actuation capabilities, may lead to

unfortunate yet critical oversight during their composition. Our motivation is

that when the possibility of errors is undeniable, there should be another level

of safety which oversees the system in action and interferes with it in order

to prevent dire consequences. We believe this can be achieved by monitoring

the system at runtime. There is one such work focused on medical robotics

which agrees that runtime monitoring is indeed a viable solution [14].

To name another concern, hacking is a serious attack that should be looked

out for [18]. All the favorable features of a robot that make people want to

use it in the first place, such as its strength or surveillance, could be turned

against them if the robot is prone to hacking. Consider home security robots

equipped with surveillance devices. If the control of these robots and/or
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devices is taken over by unauthorized parties, the very assistant of yours

that you trust for your protection, could easily become a threat to your

privacy. In the case of military robots, hijacked sensors or controllers may

cause even more disastrous situations. Therefore, it is important to supply

the system with an adequate security protection mechanism.

We tested our framework’s monitoring and access control capabilities on

a robot called LandShark. The LandShark UGV has an onboard Linux box

running ROS. Furthermore, it is equipped with various devices, such as a

GPS sensor, a radar, cameras, motor and turret controllers, and a paintball

gun. Each device has a driver and a corresponding ROS node which pub-

lishes sensor data and/or subscribes to topics to receive ROS messages that

command the operation of the robot. An operator control unit (OCU) node

listens to messages from the robot and sends it user commands.

Here, we will talk about two of the monitors we developed for LandShark.

Figure 3.1: LandShark not allowed in the green zone
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The figures included are screenshots taken from the Webots1 simulator show-

ing a replica of the robot.

Figure 3.1 shows a green area where the robot is not allowed to enter. Upon

reaching the border of this unsafe zone, even though the operator commands

the robot to move forward by pressing the associated button on the OCU,

these messages are dropped by the monitor to prevent the command from

being conveyed. For clarity, the user-specified monitor can also print out a

message indicating that this move is prohibited.

Figure 3.2: LandShark shooting itself

Figure 3.2 shows the scenario where LandShark shoots itself because it

does not have a mechanism that checks whether the gun is pointing at itself

or not. This problem may seem trivial as one might suggest to implement an

easy check as part of the gun turret driver software. However, our focus is not

figuring out missing elements or criticize the lack thereof. We still think that

safety-critical robots may greatly benefit from monitoring, especially when

there are examples of even thoroughly tested systems sometimes failing at

runtime. For this example, the monitor again drops the messages coming

from the OCU that were to be received by the driver and interpreted as the

trigger command, if the gun happens to be aimed at the robot.

1Webots is a development environment used to model, program and simulate mobile
robots (www.cyberbotics.com).
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In addition to monitors, we also tested our access control policy on Land-

Shark. Although safety concerns can be addressed by monitors, there is still

a security deficiency in ROS. As nodes can be replaced rather easily, it is

possible for attackers to fake a driver node or the OCU and misdirect the

robot. Our solution for avoiding malicious conduct is supplying a configura-

tion file in which the user specifies trusted IP addresses that correspond to

various devices controlling the robot. In our attempts to replace the OCU of

LandShark, we successfully failed and demonstrated our access control policy

works as expected.

18



Chapter 4

ROSRV

ROSRV [9] is designed to address the safety and security issues in ROS-based

robot applications. Figure 4.1 shows an overview of the ROSRV communi-

cation architecture [13]. As depicted, the main difference between ROS and

ROSRV architectures is the RVMaster proxy node which manages the inser-

tion of monitors in the middle of communication channels in a transparent

way. This additional layer on the original system protects both the ROS-

Master from a security perspective, and the safety of the application from

a functional point of view. With the inclusion of this extra layer, all node

requests that were meant to be received and handled by the ROSMaster

are intercepted by the RVMaster, and all messages on desired topics can be

monitored. Thus, the intended safety and security policies are enforced.

An important feature of the framework is that it does not require any

Figure 4.1: ROSRV Communication Architecture
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change to the ROS source code or the application code. The only requirement

for ROSRV to work with ROS is to configure the ROS MASTER URI environ-

ment variable. This variable corresponds to the host:port of the XMLRPC

server the ROSMaster runs. All other nodes communicate with the ROSMas-

ter using the default port that it binds to. By binding the RVMaster to the

standard port that the ROSMaster binds to by default, all XMLRPC calls

meant for the ROSMaster are directed to the RVMaster. In the meanwhile,

ROS MASTER URI is configured so that the ROSMaster listens at a hidden

port that is only visible to the RVMaster. This is implemented by installing

a firewall that blocks access to the new ROSMaster port. With the help of

this configuration, the rest of the system remains the same; nodes continue

to communicate with the “Master” in the same way, i.e. by sending XML-

RPC requests to the default port. Moreover, since the RVMaster becomes

the proxy for the ROSMaster, by manipulating URIs, it can insert monitors

in between ordinary publishers and subscribers without them being aware.

Figure 4.2 shows the components of ROSRV. Two of them, monitor spec-

ifications and access control policy, are inputs supplied by the user. Moni-

tor specifications are written using an expressive formal language to define

safety properties. These specifications are parsed by the ROSMOP tool and

automatically converted into monitors that the RVMaster integrates into the

system and orchestrates at runtime. An access control policy configuration

Figure 4.2: System Overview
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provided by the user is enforced by the RVMaster to ensure that nodes may

inquire about or alter the state of the robot as long as they are allowed to

do so and their declared authenticity is not breached.

In the rest of this chapter, we will talk about the individual components

of ROSRV in more detail.

4.1 RVMaster

The main component of ROSRV is the node RVMaster. It is the main com-

ponent because, other than its most important role of being in control of

enforcing security policies and monitoring safety properties, it is the reason

why ROSRV can be defined as transparent. First of all, its only requirement

being the reassignment of ports is what makes ROSRV’s integration with

ROS seamless. Secondly, its smart algorithm for managing monitors, includ-

ing their activation/deactivation and placement in between other nodes, is

the basis for why monitors are not detected in the system as extraordinary

processes, but perceived as every other node publishing/subscribing to topics.

Despite its crucial role, the logic behind it is actually rather simple. Al-

though it acts like the “Master”, in reality, it does not take over what the

ROSMaster does in terms of bookkeeping. At the implementation level, the

RVMaster wraps the Master API [12] that ROS client libraries call for node

registration/unregistration or to retrieve system state information. Upon

receiving XMLRPC calls from nodes, it checks these requests against the

user-provided access control policy configuration to see whether that partic-

ular node should be granted what it asks for. If it is the case that it does

not violate the specified security policy, the RVMaster makes a call to the

ROSMaster itself with the same parameters. This way, the security of the

robot is protected by not letting the ROSMaster execute each and every

(possibly malicious) command coming from arbitrary nodes. Furthermore,

by only wrapping the API, the RVMaster remains comparatively lightweight

as it does not implement all the name service features the ROSMaster is

responsible for. The specifics of access control policy configuration in terms

of node identification and types of requests is discussed in Chapter 4.3.

System monitoring is a bit trickier than administering XMLRPC calls for

access control. The role of the RVMaster here is to keep track of all the
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communication requests by nodes so that monitors can be injected when

necessary to those peer-to-peer communication channels of interest as men-

in-the-middle. Once ROSMOP automatically generates the ROS-appropriate

monitoring code (further discussed in Chapter 4.2.1) out of user-defined spec-

ifications, it is the RVMaster’s job to manage them, from their initializations

to their activation statuses at runtime. Although monitors act like ordinary

nodes, their creation is not handled by ROS client libraries. The RVMaster

implements the XMLRPC API in order to have full control over monitors. In

the usual case, when nodes are written using the ROS client libraries, their

interaction with the ROSMaster and the initiation of topic transports with

other nodes are handled by those libraries. This means in most cases, users

are not expected to code using the XMLRPC API for their nodes to connect

to others. The ROS client libraries conveniently hide the details of this type

of communication from users, and handle it for them. Monitors, on the other

hand, are created directly from inside the RVMaster, and their communica-

tion with the rest of the system is managed through explicit XMLRPC calls.

This makes it easier for the RVMaster to deal with callbacks when it needs to

insert monitors and yet does not want to let other nodes know about them.

The following is how monitoring works in the system (for a better under-

standing, please read about the ROS inter-node communication in Chap-

ter 2.1): All monitors are compiled with the RVMaster before it is started.

When the RVMaster starts -the ROSMaster starts automatically at this

point- it initializes all available monitor nodes in the system and registers

them as subscribers to topics. However, this does not mean that they are

active; the user is given the option to activate or deactivate any monitors at

any given time during execution. This design prevents the overhead caused

by monitoring from affecting the performance when it is not desired. We will

assume that we have one monitor on one topic and it is activated from this

point forward. If at this point, there are no other nodes interested in the

topic, it simply does not do anything; as an ordinary subscriber would do, it

waits for a callback that will inform it of newly joined publishers. When a

publisher registers on the same topic, the monitor receives its URI in order

to initiate a topic transport negotiation. After the connection is established

between the two, all messages from the publisher are received by the monitor.

If the first registered node after the system start and monitor registra-

tion, is instead a subscriber, the RVMaster tells the ROSMaster to register
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the subscriber, but it makes a note that when a publisher becomes avail-

able on that topic, the callback the subscriber receives about this situation

will include the monitor’s URI instead of the actual publisher’s. This way,

the monitor will receive all messages coming from the publisher, and after

observation and potential modification, it will send them to the subscriber

pretending like it is the original publisher. Note that, monitors do not create

and send messages themselves naturally. They only relay messages coming

from publishers. That is why when the first node available is a subscriber, a

connection between the subscriber and the monitor is not established right

away, and rather postponed until after a publisher registers.

Since the RVMaster has all the URI information it needs and it inter-

cepts all XMLRPC requests received from nodes, when nodes want to query

the system state about available publishers/subscribers, the RVMaster can

successfully hide the presence of monitors. In addition, monitor activa-

tion/deactivation at runtime is again simply handled by callbacks. Alerting

publishers/subscribers that the connection information of their correspon-

dents has changed easily does the job when a monitor becomes active and

needs to intercept messages, for example. This situation being common in

ROS -as nodes may be replaced when a second node with the same name is

introduced, this has to happen anyway- is the beauty of it.

The RVMaster also supports additional XMLRPC calls for users to be able

to query the state of monitors, especially for debugging purposes. The two

options it provides are (1) to list the available monitors and their activation

statuses, and (2) to give more comprehensive information about the runtime

verification state. This includes, the ports the RVMaster and the ROSMaster

bind to, and a list of all the monitors with their node names, the topics they

monitor, the ports of their XMLRPC server, and lastly their (usually) TCP

ports that they use to connect to other nodes.

On a note about our earlier design approach of monitors, they were first

considered as merely interceptors in between publishers and subscribers on

topics which were only concerned about messages sent and received on that

particular topic. However, later on we realized that this approach falls short

when users want to publish a message from inside the monitor on another

topic based on the information carried by the received message. For example,

one may want to monitor messages containing the information of a robot’s

position and when the robot moves out of a restricted area, an alarm message
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on a different topic needs to be sent. For this purpose, we had to change

both our design and implementation. Our current method handles this issue

by keeping a pointer map of topics shared among monitors, to be able to

publish to any of them at any time as needed. This requirement also enabled

us to implement better monitors which act more like ordinary ROS nodes.

Next, we will focus on the user side of monitoring, as we will explain how

specifications are converted into monitors that the RVMaster can handle.

4.2 Monitoring Safety Properties

The RVMaster manages monitors at runtime in order to protect the appli-

cation functionally, but it does not generate them itself. ROSMOP is the

tool that takes monitor specifications and generates C++ code that the RV-

Master can work with. In other words, they can be initialized, activated and

deactivated by the RVMaster, but if the user specifies a certain action to be

taken or requires a computation based on contents of messages intercepted,

this is incorporated into the monitor by the help of ROSMOP.

In this section, we will first take a look at ROSMOP in detail and explain

how user-defined specifications in MOP syntax are converted into C++ mon-

itoring code and correspond to callbacks in which messages are received and

sent. Then, one of the monitor specifications will be explained in detail to

demonstrate how easy it is to construct a monitor from user’s perspective.

4.2.1 ROSMOP

ROSMOP [8] is an MOP instance specifically designed to integrate moni-

tors into the ROS framework. Its current implementation is devised to work

within ROSRV, as its generated monitoring library is particular in its design

to be used by the RVMaster. ROSMOP can take multiple specifications as

input at a time, and carefully handles their complexity to make sure there

is only one callback generated per topic in the end. This is because ROS

allows only one callback registration per topic. However, with ROSMOP

keeping the metadata when merging all monitoring code under one callback,

the RVMaster can still support multiple monitors defined on a single topic.

In some cases, the user is warned before the library generation is attempted

if there are any possible complications foreseen due to contradictory defini-
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〈ROSMOP Specification〉 ::= 〈Id〉 “(” 〈C++ Parameters〉 “)”“{”
[〈C++ Declarations〉]
〈Event〉+
{〈Property〉
{〈Property Handler〉}}

“}”

〈Event〉 ::= “event” 〈Id〉 “(” 〈C++ Parameters〉 “)”
〈ROS-related Parameters〉
“{” 〈Extended C++ Statements〉 “}”

〈ROS-related Parameters〉 ::= topic message “'{”parameter-message access pattern“'}”

〈Property〉 ::= 〈Logic Name〉 “ : ” 〈Logic Syntax〉
〈Property Handler〉 ::= “@” 〈Logic State〉 “{” 〈C++ Statements〉 “}”

Figure 4.3: ROSMOP Syntax

tions, such as the same global variable declaration in multiple specifications.

After successful generation of the monitoring library, it is placed correctly

in ROSRV so the RVMaster works smoothly at runtime. The RVMaster

is factored in such a way that the monitoring code is separate from the

other components. The monitoring library and the RVMaster communicate

through a predefined API, so that even when new monitors are generated by

ROSMOP, the RVMaster codebase still remains unchanged. Therefore, all in

all, the only thing users need to do to monitor their ROS setup, is to supply

the specifications and push the button to watch it in action.

ROSMOP specification files end with the extension “.rv”. In one file,

there may be multiple specifications defined. Figure 4.3 shows the instan-

tiated ROSMOP syntax. According to this syntax, each named ROSMOP

specification consists of optional global variable declarations, one or more

events, and zero or more properties.

Global variables declared may facilitate interaction between events. For

example, one might need to monitor one topic in order to get certain infor-

mation about the robot, and according to that information, (s)he may need

to interact with messages on another intercepted topic. This can be done

by allocating a global variable. Also, in the case of multiple specifications

parsed at once, these global variables get merged into one place. So, they

can actually be helpful in getting monitors to collaborate as well, in addition

to only across events in a single monitor.

As every other registration XMLRPC call is handled, monitors, too, need
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to provide topics and their corresponding message types. This is incorpo-

rated into the event signature in ROSMOP. Moreover, ROSMOP supports

parametric events in order to access the specified message’s fields. To bind

to those fields, parameters need to be matched in the provided pattern to

the appropriate fields. This way, the user may observe and optionally modify

the message content through declared references.

Extended C++ statements constitute the event action. Event action is

where users may define what monitors will do after observing message con-

tent. If the intended action is to log the messages, for example, they can do

so by writing C++ code in the event action, and the monitor will do just

that with the message before it relays it to subscribers. Therefore, event

actions are where users may dictate monitors to do extra computations or

change the monitor status. The reason these C++ statements are referred to

as extended, is because we incorporated two additional keywords into the lan-

guage, which are PUBLISH and MESSAGE. PUBLISH keyword helps users

when they want to publish to another topic from inside the event action of

the current topic. By using this keyword, users can make monitors publish

to any other available topics which may or may not be intercepted by that

monitor through its events. In some cases, we saw that all the fields of a

message need to be accessed and stored in a global variable for its use in

another event. Instead of doing so by writing out all the necessary parame-

ters and matching them in the message pattern section, MESSAGE keyword

does that automatically for you.

ROSMOP currently supports two logic plugins: FSM [4] and CFG [3]. The

FSM plugin encapsulates the monitoring algorithm where the current state

of a deterministic finite state machine is represented by an integer. With the

observation of each event, the value of the current state and the received event

together determine the next state of the finite state machine. The CFG plugin

allows users to create monitors out of context free grammar descriptions. It

uses a modified version of the standard table driven GLR parsing algorithm.

The synthesized monitors are based on push-down automata. Logic plugins

support either predefined states or uses of aliases to describe states. One

can match these states by using “@ 〈Logic State〉” to attach arbitrary C++

statements to define actions in property handlers which are executed upon

validation or violation of the property.

As mentioned, when there are multiple specifications as input, and multi-
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ple events on one topic, those event actions get merged to output only one

callback per topic. ROSMOP names monitors after their specification IDs.

So users are encouraged to think that each single specification corresponds

to one monitor. Even though, the event actions are merged to output a

single callback to comply with ROS standards, the information about which

event belongs to which specification (hence, which monitor) is kept during

the transformation. Therefore, at runtime, the RVMaster can still manage

the execution of designated event actions even when a certain monitor is not

active but the other is, which both have an action declared on the same topic.

Next, an example monitor specification will be explained in order to make

more sense of the ROSMOP language syntax in terms of applicability.

4.2.2 Monitor Specifications

After going over the language syntax, here we will analyze the safe triggering

monitor specification that was mentioned in Chapter 3.

	 safeTrigger() {
	      bool isSafeTrigger = false;
	      event checkPosition(string N, double P)
	             /landshark/joint_states sensor_msgs/JointState
	            ‘{name[1]:N, position[1]:P}’  { 
	      if (N=="turret_tilt"){if (P > -0.45){ //check gun position
	                         isSafeTrigger = true;
	                   }else{
	                         isSafeTrigger = false;
	      }     }    }
	      event safeTrigger() /landshark_control/trigger
                 landshark_msgs/PaintballTrigger ‘{}’  {
	              if(!isSafeTrigger) return; //drop trigger message
	      }
	 }

Figure 4.4: Safe Trigger Specification

As explained in the previous section, safety properties imposed as mon-

itors at runtime are defined by means of specifications basically consisting

of events, actions, and properties (omitted in raw specifications). Figure 4.4

shows an example of a specification to illustrate the idea. This specification

is raw ; it does not have an explicit property declared. Instead, user-defined

27



custom monitoring code is embedded into event actions which can be any

C++ code.

The safety condition we want to monitor here requires that the robot can

only fire in certain safe poses. If the gun happens to be directed at the robot,

it results in the message being dropped by the monitor in order to prevent

triggering. There are two events, checkPosition and safeTrigger, which

listen to messages on two different topics. On each topic, there can only be

a certain type of message sent and received, which is also provided in the

event signature.

In this specification, the checkPosition event checks whether the gun

is at a safe position to trigger. This means that it should not be pointing

at the robot. This condition corresponds to its angle being greater than

45 degrees. For this purpose, the safeTrigger monitor listens to the topic

/landshark/joint states with the message type sensor msgs/JointState.

Message fields can be accessed by providing necessary parameters as done

here; there are two arrays in sensor msgs/JointState, name and position,

which are bound to variables N and P, respectively. These parameters are used

in the action code of the event to check the validity of the safety condition

by observing the message content.

By the help of event handlers and parameters, monitors can not only ob-

serve the message content, but also decide to either modify the message value

or drop it altogether, or trigger some other action for that matter. For ex-

ample, in checkPosition, the global variable isSafeTrigger is set to true

if and only if the gun is at an angle larger than 45 degrees. At the same time,

this variable is checked in the safeTrigger event to determine whether the

gun is allowed to trigger or not by either relaying the message as is, or not

sending it at all.

4.3 Enforcing Security Policies

Although ROSRV has always been considered as a monitoring framework

from day one, due to its requirement of overseeing all communication be-

tween nodes and the ROSMaster, and as a result wrapping the Master API,

it turned out to be an ideal place to incorporate access control as well. Access

control is meant to rightfully qualify nodes in the system to be allowed to
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carry certain actions. All actions a node may attempt are bounded by the

supported XMLRPC API, and ROS, by default, grants all nodes full access.

However, this situation leaves ROS vulnerable in the face of an attack, as it

makes it very easy for attackers to seize the control of a robot. With our so-

lution, we give the users the privilege to restrict arbitrary nodes’ capabilities

to protect their robot from being exposed.

The access control policies are provided as input in a configuration file to

the RVMaster for their enforcement at runtime. Upon receiving node re-

quests, the RVMaster checks them for compliance to security configurations,

and if it finds them appropriate, it sends them to the ROSMaster for issuing.

For example, a node registering for publishing to a certain topic may or may

not be allowed in the provided configuration, and if the RVMaster decides

that it is not by checking the node identity and the topic name in the request,

it rejects the registration by not passing the request on to the ROSMaster.

Nodes are identified by their IP addresses in the configuration file, instead

of their node names, to prevent attackers from faking a node. From the RV-

Master’s point of view, the identity check of a node is done by extracting the

IP address of the node from its XMLRPC request. However, since normally

the xmlrpcpp [11] library provided in ROS does not expose the IP address

information in RPC invocations, we extended this library and included it as

part of ROSRV. The use of IP addresses implies access granularity at host

level. In order to enhance user experience, we support definitions of IP aliases

and groups so that users do not need to repeatedly deal with IP addresses in

the access control configuration.

Currently, there are four main policy categories available for use. These

are [Nodes], [Subscribers], [Publishers], and [Commands]. Under each

category, the access policies are written as a key followed by an assignment

symbol and a list of values. The following shows what each key and value

list pair corresponds to:

[Nodes]: key = node name, value = machine identity allowed to create the

specified nodes

[Subscribers]: key = topic name, value = node identity allowed to sub-

scribe to the topic

[Publishers]: key = topic name, value = node identity allowed to publish
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to the topic

[Commands]: key = command name, value = node identity allowed to per-

form the command

Next, we will look at an example access control configuration written for

our case study robot LandShark.

4.3.1 Access Control Policy Configuration

[Groups]
localhost = 127.0.0.1 
certikos = ip1 ip2 ip3 ip4 
ocu = ip5 ip6 ip7 ip8
[Nodes]
default=localhost
/landshark_radar=certikos

[Publishers]
default=localhost certikos
/landshark_control/trigger= ocu

[Subscribers]
default = localhost certikos 
/landshark/gps = ocu

[Commands]
# Commands: full access
getSystemState = localhost certikos ocu
# Commands: limited access
lookupNode = localhost certikos
# Commands: local access only
shutdown = localhost

Figure 4.5: Access Control Policy Configuration

Figure 4.5 shows a snippet of the LandShark access control policy config-

uration. The [Group] section defines three groups over 9 IP addresses and

gives them aliases. This indicates, for example, that accesses granted to the

OCU are only valid as long as they come from these specified IP addresses.

In the [Nodes] section, default = localhost means that by default the

machine localhost is allowed to create a node with any name. Names can

also be precise, as in /landshark radar = certikos, which means that the

alias certikos is allowed to create a node with the name /landshark radar.

In the [Publishers] section, only nodes running on machine ocu can

publish to topic /landshark control/trigger. There are two ways an at-

tacker is blocked with the combination of sections supported in the configu-

ration. For example, even when an attacker can query the system state to

get node names in order to impersonate them by replacing them, in this case

knowing the name of a node would not help the attacker as topic publish-

ers and subscribers are explicitly specified by their IP addresses. So even

if the attacker finds out about the name of the node publishing to topic

/landshark control/trigger and creates a node with the same name, as

long as it does not have one of the IP addresses the alias ocu covers, it can-

not register to this topic as a publisher. The second way it may be blocked

is that under [Nodes] section, ocu alias may protect the node names it al-

locates for its purposes. Therefore, even if the attacker can figure out the
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names of nodes publishing to topics it wants to pose as, it would not be able

to create nodes with those names.

In [Commands], getSystemState = localhost certikos ocu means that

nodes running on machines localhost, certikos, or ocu are allowed to send

getSystemState requests to the ROSMaster, and shutdown = localhost

means that only nodes on localhost are allowed to shutdown other nodes.
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Chapter 5

Evaluation

We have evaluated our framework according to the following research ques-

tions.

RQ1 - Is the specification language expressive?

Throughout the development of this project, we have had the chance to col-

laborate with other teams who were working with ROS on the same robot,

LandShark. Since we were looking for ideas to test our framework’s capa-

bilities, in particular, our specification language since it is the first step in

defining monitors, it was very convenient for us to work with researchers

who were not involved in the design process of ROSRV. It was especially a

good match when we found out that one of the teams was also dealing with

safety concerns, such as obstacle avoidance. We took this suggestion as an

opportunity to test what ROSRV offered and what needed improvement.

We took four scenarios into consideration for evaluation that one might ask

from a monitoring framework. The first application we tried was logging, as

ROSRV monitors already intercept all messages on a given topic and observe

their contents. This is trivial to express with the specification language;

one can simply access message fields of interest by specifying parameters (as

explained in Chapter 4.2.2), and if desired, log them by writing C++ code

and including it in the event action.

The second scenario we were interested in was safe triggering, because this is

also a valuable monitor for real-life applications, such as military robots. By

using a simple concept like global variables, it was easily possible to specify

this safety property which needed two different topics to be monitored.

The third condition was to keep LandShark in a safe zone and not let it move

out of the restricted area. This was also quite possible with our specification

language. We needed to monitor the messages which carried odometry, GPS
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and velocity information. By accessing the message fields, we were able to

check whether the robot’s GPS data indicated that it was inside of the safe

zone or not. If the GPS and odometry monitors detected that the robot

passed beyond the border of the designated area, by setting a global flag, the

velocity monitor was alerted to drop the message to prevent the robot from

moving forward. This was a convenient scheme to demonstrate monitors’

capability of taking a collaborative action based on information coming from

more than one sensor.

As mentioned, the last one we tested was obstacle avoidance. This one was

the most complex among others. It required checking certain conditions pe-

riodically, and with precise timing. It was about recalculating a radius of

distance based on how fast the robot was moving at a certain time and stop-

ping the robot instantly at that distance if an obstacle was perceived. It was

actually while we were defining this property that we decided to add the two

keywords PUBLISH and MESSAGE to ROSMOP. MESSAGE keyword was

useful in copying all the values of a message’s fields to a global variable with

the same type, without explicitly accessing all the fields. PUBLISH keyword

was used in this case to send an alarm message on a different topic whenever

an obstacle was encountered. All in all, on top of proving that our specifica-

tion language was capable of expressing intricate properties, this also showed

that with challenging examples and user requests, the design can be further

improved.

RQ2 - What is the overall performance?

To assess the overall performance of ROSRV, we conducted several simple

performance tests. For this purpose, we implemented two nodes, one a sim-

ple publisher and the other a simple subscriber [21], in order to test the

overhead of introducing monitors to the system. The only purpose of this

insignificant setup was to measure the average number of messages delivered

to the subscriber with and without the presence of monitors to see how the

system performs in both cases in a certain amount of time. Therefore, we

did not include any time-consuming computations as part of the execution

cycles of the nodes.

In our first experiment, we ran the two nodes which connect to each other
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on a single topic for 10 seconds under 3 conditions. The first condition

was to run them using the ROSMaster alone by initiating it with the ROS-

provided command roscore. In this case, the number of messages sent by

the publisher was 97, and the number of messages received by the subscriber

was 93. The second condition was to run the same nodes with ROSRV by

calling rvcore, but without activating the monitor listening to the topic.

This time, the number of messages sent by the publisher was 95, and the

number of messages received by the subscriber was 90. The third condition

was to activate the monitor, and the numbers we got for messages sent and

received were 94 and 89, respectively. In our experiments, we have seen

that the first few messages originated by the publisher were not received

by the subscriber at all cases; whether the system was run with or without

ROSRV did not matter.

For our second experiment, we used the exact same setup, but this time we

ran the nodes for 10 minutes. The numbers we got out of this experiment

were the following:

First condition (roscore) Messages sent: 5996, Messages received: 5992

Second condition (rvcore -no monitor) Messages sent: 5995, Messages

received: 5990

Third condition (rvcore -monitor) Messages sent: 5992, Messages re-

ceived: 5987

As can be seen, the length of the execution time does not have an impact

on the overhead the monitors impose, as the results are very similar to when

the execution time was only 10 seconds.

For our third experiment, we modified these two nodes to be both publishers

and subscribers. In this setup, node1 was publishing to topic1 and sub-

scribing to topic2, and node2 was publishing to topic2 and subscribing to

topic1. This way, individual nodes had extra instructions to execute. Fur-

thermore, we had the chance to measure the impact of running more than

one monitor. The conditions we ran the experiment under were the same

and here are the results we obtained:

Execution time: 10 seconds

First condition topic1: Messages sent: 97, Messages received: 92;
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topic2: Messages sent: 96, Messages received: 94

Second condition topic1: Messages sent: 96, Messages received: 91;

topic2: Messages sent: 95, Messages received: 91

Third condition topic1: Messages sent: 95, Messages received: 90;

topic2: Messages sent: 94, Messages received: 89

Execution time: 10 minutes

First condition topic1: Messages sent: 5996, Messages received: 5992;

topic2: Messages sent: 5996, Messages received: 5991

Second condition topic1: Messages sent: 5996, Messages received: 5990;

topic2: Messages sent: 5995, Messages received: 5991

Third condition topic1: Messages sent: 5993, Messages received: 5989;

topic2: Messages sent: 5994, Messages received: 5990

In the last experiment we conducted, to see what adding more overhead does

to the performance, we used the PUBLISH keyword inside the event action

to force the monitor to publish to a different topic. What adding PUBLISH

to the monitor does is that instead of only sending intercepted messages to

the subscriber, the monitor is now responsible for sending an extra message

for each one it intercepts. We ran the simple publisher-subscriber setup for

this experiment on only a single topic for 1 minute under again the same

conditions. The following are the numbers we collected:

First condition Messages sent: 594, Messages received: 590

Second condition Messages sent: 596, Messages received: 590

Third condition Messages sent: 595, Messages received: 590

These results show that, even when monitors are busy with extra compu-

tations that users desire them to deal with, the monitoring overhead is still

negligible.

Aside from these simple cases which may not be too convincing by them-

selves, we also tested our framework on the actual LandShark robot. The

complexity of the robot is undoubtedly beyond comparison to these simple

setups. At runtime, it creates more than 10 nodes corresponding to devices
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and sensors on the robot, and communicates on at least 20 topics for its op-

eration. During our experiment, we activated two monitors covering 5 of the

topics, and the overhead we measured was not more than a few milliseconds.

This demonstrates that ROSRV’s applicability is definitely substantial and

the overhead it incurs is tolerable.

On a related note about performance, the current implementation of ROSRV is

centralized. This means that all the monitor nodes live in the same multi-

threaded process. Although in our evaluation with simple tests and the

overall performance we achieved with the LandShark robot, we have found

the message delay caused by monitoring acceptable, the centralized design

may face scalability issues when a more complex robot is in question. In the

future, a decentralized mechanism, such as using a multimaster [22], may

be considered to improve scalability. This approach would also enhance the

fault tolerance of the system, as the current centralized master design is a

single point of failure.

RQ3 - Is the access control effective in restricting nodes?

To assess the capability of our access control implementation, we arranged a

multi-machine setup, where only one of the machines ran the RVMaster and

the other connected to that one by assigning the correct host:port value to

the environment variable ROS MASTER URI after establishing ssh connections

between the two machines. With this setup, and a given access control policy

that restricts publishing to topic1 to only nodes created on the same machine

with the RVMaster, we tried to register a publisher from the second machine.

Upon receiving the XMLRPC request and checking it against the policy

configuration, the RVMaster successfully printed out a message indicating

that this request cannot be carried out. Moreover, we also tested this feature

on LandShark, by trying to kill arbitrary nodes running on the robot from

an external source. As shown in Figure 4.5, the execution of shutdown

command is performed only when the request comes from one of the nodes

of the robot itself. Therefore, our attempt to kill any of the robot’s nodes

failed as expected due to this restriction.

Although our access control is effective in allowing and disallowing nodes’

communication with the ROSMaster the way the user configures, the main
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limitation of our implementation is the dependence on IP addresses and

network routing to ensure security. Our design currently naively trusts IP

addresses. Therefore, it is not protected against possible attackers who can

impersonate trustful sources by spoofing IP addresses or run processes on

the same (virtual) machines as trusted nodes. One way to defend against

such attacks would be to run the RVMaster on a separate (virtual) machine

than where (possibly distrustful) nodes are run. Another, and maybe a com-

plementary way, would be to configure the machines to communicate with

each other using additional security schemes, such as encrypted tunnels. We

have looked into IPsec [15] for this purpose, and confirmed that ROSRV can

work with it and benefit from it. However, we have not yet developed an

automation of such a configuration to provide this level of security in a more

user-friendly way.
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Chapter 6

Conclusion

The undeniable and ubiquitous presence of robots will always mean that

there might be occasional disasters waiting around the corner. To minimize

the damage and possible disasters themselves, we need to make sure that

robots operate safely and securely. This thesis presents ROSRV, a runtime

verification framework for the Robot Operating System (ROS). Favorable

features of ROS make it one of the most popular robot software development

frameworks, however, it does not offer a safety and security mechanism for

robotic applications to depend on for a more reliable operation. ROSRV aims

to address the vulnerabilities of ROS by monitoring safety properties and

enforcing security policies, with a seamless integration in doing so.

As part of ROSRV, we developed ROSMOP for automatically generat-

ing monitors out of user-defined formal specifications, and a proxy node,

called RVMaster, that injects them into the system transparently at run-

time. The RVMaster also supervises communication of nodes with the ROS-

Master through access control, in order to avoid possible malicious activity

misdirecting the robot.

Our evaluations show that the formal specification language developed for

users to define safety properties is expressive, the overhead introduced by

monitoring is acceptable, and the implemented access control prevents the

operation of the robot from being intruded.

Future Work Currently the runtime verified system is not formally ver-

ified. First of all, this would require a formal model of ROS itself. Then

the next step would be to guarantee that ROSRV indeed complies with this

model. Internally, this requires the proof that generated monitors and glue

code satisfy the desired system properties at runtime, and that the RVMaster

invokes the monitors at correct times. Additionally, tools should be devel-

oped to prove that the automatically generated monitors do actually monitor

the safety properties defined in specifications.

38



References

[1] ISO/IEC 14977:1996 Information Technology - Syntactic Metalanguage
- Extended BNF, 1996.

[2] BusMOP — Formal Systems Laboratory. http://fsl.cs.illinois.

edu/index.php/Special:BusMOP, 2008. [Online; accessed 9-November-
2014].

[3] CFG Plugin4 Input Syntax — Formal Systems Laboratory. http:

//fsl.cs.illinois.edu/index.php/CFG_Plugin4_Input_Syntax,
2014. [Online; accessed 7-December-2014].

[4] FSM Plugin4 Input Syntax — Formal Systems Laboratory. http:

//fsl.cs.illinois.edu/index.php/FSM_Plugin4_Input_Syntax,
2014. [Online; accessed 7-December-2014].

[5] JavaMOP4 — Formal Systems Laboratory. http://fsl.cs.illinois.
edu/index.php/JavaMOP4, 2014. [Online; accessed 9-November-2014].

[6] Monitoring-Oriented Programming — Formal Systems Laboratory.
http://fsl.cs.illinois.edu/index.php/Monitoring-Oriented_

Programming, 2014. [Online; accessed 9-November-2014].

[7] MOP4 Syntax — Formal Systems Laboratory. http://fsl.cs.

illinois.edu/index.php/MOP4_Syntax, 2014. [Online; accessed 4-
December-2014].

[8] ROSMOP — Formal Systems Laboratory. http://fsl.cs.illinois.

edu/index.php/ROSMOP, 2014. [Online; accessed 21-November-2014].

[9] ROSRV — Formal Systems Laboratory. http://fsl.cs.illinois.

edu/index.php/ROSRV, 2014. [Online; accessed 21-November-2014].

[10] Ben Axelrod. roscpp/Overview/Initialization and Shutdown —
ROS.org. http://wiki.ros.org/roscpp/Overview/Initialization%
20and%20Shutdown, 2014. [Online; accessed 9-November-2014].

[11] Ken Conley. xmlrpcpp — ROS.org. http://wiki.ros.org/xmlrpcpp,
2011. [Online; accessed 6-December-2014].

39

http://fsl.cs.illinois.edu/index.php/Special:BusMOP
http://fsl.cs.illinois.edu/index.php/Special:BusMOP
http://fsl.cs.illinois.edu/index.php/CFG_Plugin4_Input_Syntax
http://fsl.cs.illinois.edu/index.php/CFG_Plugin4_Input_Syntax
http://fsl.cs.illinois.edu/index.php/FSM_Plugin4_Input_Syntax
http://fsl.cs.illinois.edu/index.php/FSM_Plugin4_Input_Syntax
http://fsl.cs.illinois.edu/index.php/JavaMOP4
http://fsl.cs.illinois.edu/index.php/JavaMOP4
http://fsl.cs.illinois.edu/index.php/Monitoring-Oriented_Programming
http://fsl.cs.illinois.edu/index.php/Monitoring-Oriented_Programming
http://fsl.cs.illinois.edu/index.php/MOP4_Syntax
http://fsl.cs.illinois.edu/index.php/MOP4_Syntax
http://fsl.cs.illinois.edu/index.php/ROSMOP
http://fsl.cs.illinois.edu/index.php/ROSMOP
http://fsl.cs.illinois.edu/index.php/ROSRV
http://fsl.cs.illinois.edu/index.php/ROSRV
http://wiki.ros.org/roscpp/Overview/Initialization%20and%20Shutdown
http://wiki.ros.org/roscpp/Overview/Initialization%20and%20Shutdown
http://wiki.ros.org/xmlrpcpp


[12] Alexander Gutenkunst. ROS/Master API — ROS.org. http://wiki.

ros.org/ROS/Master_API, 2014. [Online; accessed 5-December-2014].

[13] Jeff Huang, Cansu Erdogan, Yi Zhang, Brandon Moore, Qingzhou Luo,
Aravind Sundaresan, and Grigore Roşu. ROSRV: Runtime Verifica-
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