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ABSTRACT

Elastomeric composites have increasingly proved invaluable in commercial

technological applications due to their unique mechanical properties, espe-

cially their ability to undergo large reversible deformation in response to

a variety of stimuli (e.g., mechanical forces, electric and magnetic fields,

changes in temperature). Modern advances in organic materials science have

revealed that elastomeric composites hold also tremendous potential to en-

able new high-end technologies, especially as the next generation of sensors

and actuators featured by their low cost together with their biocompatibility,

and processability into arbitrary shapes. This potential calls for an in-depth

investigation of the macroscopic mechanical/physical behavior of elastomeric

composites directly in terms of their microscopic behavior with the objective

of creating the knowledge base needed to guide their bottom-up design.

The purpose of this thesis is to generate a mathematical framework to

describe, explain, and predict the macroscopic nonlinear elastic behavior of

filled elastomers, arguably the most prominent class of elastomeric compos-

ites, directly in terms of the behavior of their constituents i.e., the elas-

tomeric matrix and the filler particles and their microstructure i.e., the

content, size, shape, and spatial distribution of the filler particles. This will

be accomplished via a combination of novel iterative and variational homog-

enization techniques capable of accounting for interphasial phenomena and

finite deformations.

Exact and approximate analytical solutions for the fundamental nonlinear

elastic response of dilute suspensions of rigid spherical particles (either firmly

bonded or bonded through finite size interphases) in Gaussian rubber are first

generated. These results are in turn utilized to construct approximate so-
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lutions for the nonlinear elastic response of non-Gaussian elastomers filled

with a random distribution of rigid particles (again, either firmly bonded

or bonded through finite size interphases) at finite concentrations. Three-

dimensional finite element simulations are also carried out to gain further

insight into the proposed theoretical solutions. Inter alia, we make use of

these solutions to examine the effects of particle concentration, mono- and

poly-dispersity of the filler particle size, and the presence of finite size inter-

phases on the macroscopic response of filled elastomers. The solutions are

found able to explain and describe experimental results that to date have

been understood only in part. More generally, the solutions provide a robust

tool to efficiently guide the design of filled elastomers with desired macro-

scopic properties.

The homogenization techniques developed in this work are not limited

to nonlinear elasticity, but can be readily utilized to study multi-functional

properties as well. For demonstration purposes, we work out a novel ex-

act solution for the macroscopic dielectric response of filled elastomers with

interphasial space charges.
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CHAPTER 1

INTRODUCTION

Elastomeric composites have pervasively been used in commercial technolog-

ical applications due to their unique mechanical properties, especially their

ability to undergo large reversible deformations in response to a variety of

stimuli (e.g., mechanical forces, electric and magnetic fields, changes in tem-

perature) (see, e.g., Zhang et al., 2002; Bar-Cohen, 2004; Wallace et al.,

2008). Advances in organic materials science have revealed the tremendous

potential of elastomeric composites to enable new high-end technologies, es-

pecially as the next generation of sensors and actuators featured by their low

cost together with their biocompatibility, and processability into arbitrary

shapes (see, e.g., Wang et al., 2002; Ma, 2008). This potential calls for an

in-depth investigation of the macroscopic mechanical/physical behavior of

elastomeric composites directly in terms of their microscopic behavior with

the objective of creating the knowledge base needed to guide their bottom-up

design.

It is well known that adding filler particles — such as carbon black and

silica — to elastomers greatly improves the stiffness1 (see, e.g., Gent and

Park, 1984; Gent and Pulford, 1983; Leblanc, 2010). Moreover, the presence

of fillers has also been shown to play a crucial role in providing elastomers

with enhanced multifunctional properties (see, e.g., Zhang et al., 2002; Danas

et al., 2012) of this increasingly pervasive class of materials. The precise na-

ture of such a strong stiffening remains unresolved, but a number of dominant

microscopic mechanisms have been identified including the so-called “hydro-

dynamic” effect and the presence of interphases and occluded rubber (see,

1The addition of fillers, even in small amounts, is known to significantly influence other
mechanical properties including fracture, abrasion, and rheological properties
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e.g., Heinrich et al., 2002; Fukahori, 2007; Ramier, 2004; Leblanc, 2010; Qu

et al., 2011).

In this work we shall focus on investigating the “hydrodynamic” and “in-

terphasial” reinforcing effects within the context of nonlinear elastic defor-

mations. We view filled elastomers as particulate composites — comprising

a continuous elastomeric matrix reinforced by a statistically uniform distri-

bution of inclusions bonded through interphases (as schematically shown in

Fig. 1.1) — and study their macroscopic (or overall) elastic response, which,

roughly speaking, is expected to be some weighted average of the elastic

response of the elastomer, the interphases, and the comparatively rigid re-

sponse of the fillers.

The so-called hydrodynamic effect refers to the fact that the addition of

fillers to an elastomer results in a composite material whose macroscopic

(overall or homogenized) mechanical properties are, by construction, some

weighted average of the properties of the soft elastomer and the comparatively

rigid fillers. The interphasial effect refers to the fact that the “anchoring” of

the polymer chains of the elastomer onto the stiff filler particles forces the

chains into conformations that are very different from those in the bulk, hence

resulting in “interphases” (often referred to as bound rubber) of possibly

several tens of nanometers in thickness that are substantially stiffer than the

elastomer in the bulk. Here, it is relevant to remark that the reinforcement of

materials (not just elastomers) via the addition of inclusions bonded through

finite-size interphases is a subject that has received considerable attention

over the last three decades, but almost exclusively within the limited context

of linear elasticity (see, e.g., Walpole, 1978; Mikata and Taya, 1985; Qiu and

Weng, 1991; Herve and Zaoui, 1993; Duan et al., 2006).

Following the approach of Einstein (1906) and exploiting the mathematical

analogy between Stokes flow and small-strain linear elastostatics, Smallwood

(1944) generated a first rigorous result for the overall linear elastic response

of isotropic incompressible rubber reinforced by a dilute distribution of rigid

spherical particles. Yet within the restricted setting of small-strain linear

theory, significant efforts were thereafter devoted to account for non-spherical

particles and non-dilute distributions (see Guth 1945; see also Eshelby 1957;

Batchelor and Green 1972; Chen and Acrivos 1978; Willis 1977).

It was not until the early 1970’s that a formal framework for describing

the overall nonlinear elastic response of filled elastomers undergoing finite
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Figure 1.1: A schematic of the microstructure of filled elastomers under study
in this work. Isotropic distribution of rigid spherical particles firmly bonded
to the matrix through generally heterogeneous finite size interphases.

deformations was first made available by Hill (1972). Before then, however,

Mullins and Tobin (1965) had proposed an empirical approach based on

the notion of “strain-amplification” factor also within the context of finite

elasticity. Their idea was to describe the behavior of filled elastomers as

the behavior of the underlying matrix material evaluated at an amplified

measure of strain. As pursued by various authors (see, e.g., Govindjee and

Simo, 1991; Govindjee, 1997; Bergström and Boyce, 1999), different results

can be generated depending on the choice of strain measure that is amplified.

In spite of the fact that the framework of Hill (1972) has been available

for several decades, relatively little progress has been made in its appli-

cation to generate rigorous results. This is because the constitutive non-

convexity and nonlinear incompressibility constraint inherent of elastomers

render the relevant equations formidably complex to solve (see, e.g., Braides,

1985; Müller, 1987). Such a degree of complexity is perhaps best highlighted

by the fact that (upper or lower) bounds for the response of filled elastomers

are still nonexistent2. In terms of analytical estimates, progress has recently

been made via linear comparison methods (see Lopez-Pamies and Castañeda,

2006a, and references therein). Yet while these methods have desirable fea-

tures — such as the ability to incorporate information on particle concentra-

tion, shape, and spatial distribution (Lopez-Pamies and Castañeda, 2006b)

— and in addition have proved fairly accurate when compared with full-

2The only two rigorous bounds currently available in finite elasticity, the Voigt-type
upper bound of Ogden (1978) and the Reuss-type lower bound of Ponte Castañeda (1989),
become unbounded (plus and minus infinity, respectively) when the fillers are taken to be
rigid.
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field simulations (Moraleda et al., 2009; Michel et al., 2010), they are unable

to rigorously recover the overall incompressibility constraint typical of filled

elastomers beyond 2D problems (Lahellec et al., 2004; Lopez-Pamies et al.,

2008). In terms of computational estimates, a variety of techniques and re-

sults have been successfully worked out in the context of small-strain linear

elasticity (see, e.g., Gusev, 1997; Michel et al., 1999; Segurado and Llorca,

2002; Lusti et al., 2002; Galli et al., 2008). However, with the exception of

a few finite-element (FE) simulations Bergström and Boyce (1999), no 3D

full-field simulations of filled elastomers undergoing finite deformations have

been reported to date in the literature.

The main objective of this research — to generate exact and approximated

closed form solution for the overall responses of filled elastomers under ar-

bitrarily finite deformations — is accomplished in three successive steps.

In the first step, closed form solutions for dilute suspension of particles in

Neo-Hookean rubber are generated (see e.g., Lopez-Pamies et al., 2013b;

Goudarzi et al.). In the second step, the dilute solution is extended to

finite-concentration suspensions of particles in Neo-Hookean rubber via an

iterated dilute homogenization technique (see Lopez-Pamies et al., 2013a;

Lopez-Pamies, 2014). In the third step, a nonlinear comparison medium

technique is utilized to construct in turn an approximate solution for finite-

concentration suspensions of particles in non-Gaussian rubber (Lopez-Pamies

et al., 2013a; Goudarzi et al.).

Iterated dilute homogenization methods — also referred to as differential

schemes — are a class of iterative techniques that make use of results for the

overall properties of dilute composites in order to generate corresponding

results for composites with finite concentration of constituents. The basic

form of these techniques was introduced in the 1930’s by Bruggeman (1935)

to determine the linear dielectric constant and conductivity of a certain class

of two-phase composites. The idea was later generalized by various authors

to determine the linear mechanical/physical properties of multiphase com-

posites with an admittedly broad range of microstructures; see, e.g., Norris

(1985), Avellaneda (1987), Braides and Lukkassen (2000), and Chapter 10.7

in the monograph by Milton (2002). To be useful, these techniques require

knowledge of a dilute solution from which to start the iterative construction

process. It is because of this requirement that this approach has been utilized

by and large in the restricted context of linear problems where — as opposed
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to nonlinear problems — there is a wide variety of dilute solutions available.

Nevertheless, the central idea of these techniques is geometrical in nature and

can therefore be applied to any constitutively nonlinear problem of choice,

provided, again, the availability of a relevant dilute solution. In the context of

finite elasticity of interest in this chapter, Lopez-Pamies (2010a) has recently

put forward an iterated dilute homogenization technique for the special case

of two-phase composites. In this chapter, we utilize this technique together

with the dilute solution of Chapter 2 in order to construct a solution for the

nonlinear elastic response of Neo-Hookean rubber reinforced by an isotropic

distribution of polydisperse rigid particles at finite concentration.

Comparison medium methods are variational techniques that allow to gen-

erate approximations for the overall properties of composites in terms of the

properties of “simpler” comparison media. The idea behind these techniques

was formalized for linear problems by Hashin and Shtrikman (1962) and

later recognized by Willis (1983) to be apposite to deal with nonlinear prob-

lems as well. In a seminal contribution, Talbot and Willis (1985) provided

a fairly general framework for constructing approximations for the overall

nonlinear mechanical/physical properties of composites in terms of the over-

all properties of any comparison medium of choice, possibly nonlinear and

heterogeneous. To render useful approximations, however, this framework

requires the selection of an “optimal” comparison medium complex enough

to mimic the behavior of the actual nonlinear composite yet simple enough

that its overall properties can be computed. In the context of finite elasticity,

such a selection process has proved particularly challenging because of the

constitutive non-convexity and nonlinear incompressibility constraint typi-

cal of nonlinear elastic solids. Among the various attempts that have been

pursued (Ponte Castañeda, 1989; Ponte Castañeda and Tiberio, 2000), the

latest choice of a comparison medium that is a linear composite as prescribed

by Lopez-Pamies and Castañeda (2006a) has led to the more physically con-

sistent results thus far. Yet, a critical limitation of this approach is that it

cannot rigorously recover the overall incompressibility constraint typical of

filled elastomers beyond 2D problems (Lahellec et al., 2004; Lopez-Pamies

et al., 2008). In this chapter, we work out an extension of the framework

of Talbot and Willis (1985) that is free of the limitations of previous for-

mulations at the expense of employing a nonlinear composite as the com-

parison medium. With the filled Neo-Hookean rubber constructed from the
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above-described iterated dilute homogenization technique as the choice for

the comparison medium, we then employ this new formulation to generate an

explicit approximate solution for the nonlinear elastic response of isotropic

suspensions of rigid particles of polydisperse sizes and finite concentration in

non-Gaussian rubber.

The presentation of this document is organized as follows. In Chapter 2, a

fundamental solution is constructed — via a novel iterative homogenization

technique — for the nonlinear elastic response of dilute suspensions of rigid

inclusions in Gaussian rubber.

In Chapter 3, the dilute solution of Chapter 2 is employed within the

context of a new variational technique to construct in turn a solution for

the response of suspensions of rigid inclusions in non-Gaussian rubber at

finite concentrations. Via use of an iterated homogenization technique first a

solution for the response of suspensions of rigid inclusions in Gaussian rubber

is constructed. This solution later is used as a nonlinear comparison medium

in a variational technique called “nonlinear comparison medium method” to

generate approximate solutions for the response of isotropic suspension of

rigid inclusions in non-Gaussian rubber at finite concentrations.

Enriching the solutions of Chapter 3 to account for “interphasial” rein-

forcing effects as well as hydrodynamic effect, a fundamental solution for the

nonlinear response of isotropic dilute suspension of rigid spheres in Gaussian

rubber — where the particles are bonded to the Gaussian matrix through

dilute Gaussian interphases — is constructed in Chapter 4. Then, the vari-

ational machinery developed in Chapter 3 is extended for nonlinear multi-

phase systems to incorporate the dilute solution developed in Chapter 4, and

generate non-dilute version of the solution for non-Gaussian filled elastomers

accounting for hydrodynamic and interphasial effects.

Chapter 5 is devoted to devising a variational framework — based on the

idea of composite-sphere assemblages — which allows to generate efficient

numerical solutions for the response of filled elastomers under arbitrarily

large deformations.

In Chapter 6, a new exact solution to the linear dielectric response of filled

elastomers accounting for space charges is presented via use of the composite

assemblages idea.

Finally in last chapter, Concluding Remarks, some open fields of research

following the developed ideas in this document are portrayed.
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CHAPTER 2

THE NONLINEAR ELASTIC RESPONSE
OF SUSPENSIONS OF RIGID INCLUSIONS
IN RUBBER: AN EXACT RESULT FOR

DILUTE SUSPENSIONS

The objective of this chapter is to generate a rigorous analytical result for

the fundamental problem of the overall elastic response of rubber reinforced

by a dilute distribution of rigid particles under arbitrarily large 3D defor-

mations. The focus is on the basic case of ideal (Gaussian or, equivalently,

Neo-Hookean) rubber and isotropic distributions of particles. This is accom-

plished here by making use of a novel iterated homogenization technique that

allows to construct exact solutions for the homogenization problem of two-

phase nonlinear elastic composites with particulate microstructures. This

technique has been recently developed and utilized to generate solutions for

the related fundamental problem of elastomers containing a dilute distribu-

tion of cavities — as opposed to rigid inclusions — within the analysis of

cavitation instabilities (Lopez-Pamies et al., 2011a,b).

In addition to the analytical result, we also generate full 3D FE results

for the large-deformation response of a block of Neo-Hookean rubber that

contains a single rigid spherical inclusion of infinitesimal size located at its

center.

2.1 The problem

Consider a filled elastomer, made up of a continuous matrix containing a

random distribution of firmly bonded rigid particles, that occupies a domain

Ω with boundary ∂Ω in its undeformed stress-free configuration. The regions

occupied individually by the matrix and particles are collectively denoted by

Ωm and Ωp so that Ω = Ωm∪Ωp. It is assumed that the random distribution

is statistically uniform and that the characteristic length scale of the particles
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(e.g., their average diameter) is much smaller than the size of Ω.

Material points are identified by their initial position vector X in the unde-

formed configuration Ω, while the current position vector of the same point in

the deformed configuration Ω′ is given by x = χ(X). Motivated by physical

arguments, the mapping χ is required to be one-to-one on Ω and twice con-

tinuously differentiable, except possibly on the particles/matrix boundaries

where is only required to be continuous. The deformation gradient F at X

is defined by

F = Gradχ in Ω (2.1)

and satisfies the local material impenetrability constraint J
.
= detF > 0.

The matrix is taken to be a nonlinear elastic solid characterized by a qua-

siconvex stored-energy function W of F. For convenience, the rigid particles

are also described as nonlinear elastic solids with stored-energy function

Wp(F) =

{
0 if F = Q ∈ Orth+

+∞ otherwise
. (2.2)

Here, Orth+ stands for the set of all proper orthogonal second-order tensors.

At each material point X in the undeformed configuration, the first Piola-

Kirchhoff stress S is formally given in terms of the deformation gradient F

by

S =
∂W

∂F
(X,F), W (X,F) = (1− θ(X)) W (F) + θ(X) Wp(F), (2.3)

where the indicator function θ takes the value 1 if the position vectorX is in a

particle, and 0 otherwise, and serves therefore to describe the microstructure

(here, the size, shape, and spatial location of the particles) in the undeformed

configuration Ω.

Granted the hypotheses of separation of length scales and statistical uni-

formity of the microstructure together with the constitutive quasiconvexity of

W , the overall or macroscopic response of the filled elastomer can be defined

as the relation between the volume averages of the first Piola-Kirchoff stress

S and the deformation gradient F over Ω when the material is subjected to

the affine boundary condition

x = FX on ∂Ω, (2.4)
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where the second-order tensor F is a prescribed quantity (Hill, 1972). In

this case, it directly follows from the divergence theorem that the average

deformation gradient over Ω is given by |Ω|−1
∫
Ω
F(X) dX = F, and hence

the derivation of the macroscopic response reduces to finding the average

stress S
.
= |Ω|−1

∫
Ω
S(X) dX for a given F. The result reads formally as

S =
∂W

∂F
(F, c) (2.5)

with

W (F, c) = (1− c) min
F∈K

1

|Ωm|

∫
Ωm

W (F) dX. (2.6)

In this last expression, c
.
= |Ω|−1

∫
Ω
θ(X)dX is the initial volume fraction or

concentration of particles, W is the so-called effective stored-energy function,

which physically corresponds to the total elastic energy (per unit undeformed

volume) stored in the material, and K denotes the set of kinematically ad-

missible deformation gradient fields:

K = {F : ∃ x = χ(X)with F = Gradχ, J > 0 in Ω,

F = Q ∈ Orth+ in Ωp, x = FX on ∂Ω} . (2.7)

The foregoing formulation for the overall finite-deformation response of

filled elastomers is valid for any physically admissible value of concentration

of particles c. The interest here is in the asymptotic limit as c → 0+, when

the above-defined material reduces to a nonlinear elastic solid with stored-

energy functionW that contains a random distribution of rigid particles, with

shapes and spatial locations characterized by θ, at dilute concentration. As-

suming a polynomial asymptotic behavior1, the effective stored-energy func-

tion (2.6) in this limiting case takes the form

W (F, c) = W (F) + G
{
W ;F

}
c+O(c2), (2.8)

where G is a functional2 with respect to its first argument W and a function

with respect to its second argument F.

1For the problem of filled Neo-Hookean rubber considered in this chapter the asymptotic
behavior is indeed of the polynomial form (2.8).

2That is, G is an operator with respect to the stored-energy function W of the elas-
tomeric matrix.
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2.1.1 The case of dilute isotropic suspensions in Neo-Hookean
rubber

The main objective of this chapter is to determine the functional G in (2.8)

for the basic case when the distribution of particles is isotropic and the

elastomeric matrix is Neo-Hookean rubber with stored-energy function

W (F) =

{ µ

2
[I1 − 3] =

µ

2
[λ2

1 + λ2
2 + λ2

3 − 3] if J = λ1λ2λ3 = 1

+∞ otherwise
.

(2.9)

Here, it is recalled that the parameter µ denotes the initial shear modulus of

the Neo-Hookean matrix, I1 = F · F, and λ1, λ2, λ3 have been introduced to

denote the singular values of the deformation gradient F.

Owing to the assumed isotropy of the microstructure and the constitutive

isotropy and incompressibility of the matrix material (2.9) and rigid particles

(2.2), the resulting overall elastic response is isotropic and incompressible.

This implies that the effective stored-energy function W in this case depends

on the macroscopic deformation gradient F only through its singular values

λ1, λ2, λ3 and becomes unbounded for non-isochoric deformations when J
.
=

detF = λ1λ2λ3 ̸= 1. More explicitly, the result (2.8) specializes to

W =


µ

2

[
λ

2

1 + λ
2

2 + λ
2

3 − 3
]
+ µG(λ1, λ2, λ3) c+O(c2) if J = λ1λ2λ3 = 1

+∞ otherwise
,

(2.10)

where G(λ1, λ2, λ3) is a symmetric function.

In order to assist the presentation of the results, the unbounded branch of

the energy (2.10) is omitted in most of the sequel. For this purpose and with-

out loss of generality we restrict attention to isochoric pure stretch loadings

of the form

F = diag(λ1, λ2, λ3) with λ3 =
1

λ1λ2

(2.11)

and, with a slight abuse of notation, rewrite the effective stored-energy func-

tion (2.10) of the filled Neo-Hookean rubber as

W =
µ

2

[
λ

2

1 + λ
2

2 +
1

λ
2

1λ
2

2

− 3

]
+ µG(λ1, λ2) c (2.12)
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to first order in the concentration of particles c.

2.2 An exact solution via a novel iterated

homogenization method

In this section, we derive a precise form of the effective stored-energy func-

tion (2.12) for isotropic dilute suspensions of rigid particles in Neo-Hookean

rubber. This amounts to solving asymptotically the relevant minimization

problem (2.6) with (2.9) in the limit as c → 0+. Our strategy involves two

main steps. In the first step (Section 2.2.1), we make use of the new iter-

ated homogenization technique of Lopez-Pamies et al. (2011a) to work out

an exact result for the overall response of a Neo-Hookean solid containing a

particular class of isotropic distributions of rigid particles with finite concen-

tration c. The second step (Section 2.2.2) deals with the asymptotic analysis

of this result in the limit as the concentration of the particles is taken to

zero.

2.2.1 Iterated homogenization solution for finite
concentration of particles

By means of a combination of iterative processes (Idiart, 2008; Lopez-Pamies,

2010a; Lopez-Pamies et al., 2011a) have recently generated an exact solution

for the effective stored-energy function of a two-phase composite made up of

a nonlinear elastic matrix containing a specific — but fairly general — class

of distributions (i.e., a specific class of indicator functions θ) of nonlinear

elastic particles. For the special case of isotropic distributions of interest

in this chapter, their result for W (F, c) in the present notation is implicitly

given by the following first-order nonlinear partial differential equation (pde)

c
∂W

∂c
−W − 1

4π

∫
|ξ|=1

max
ω

[
ω · ∂W

∂F
ξ −W

(
F+ ω ⊗ ξ

)]
dξ = 0 (2.13)

subject to the initial condition

W (F, 1) = Wp(F). (2.14)
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The interested reader is referred to Section 3 of Lopez-Pamies et al. (2011a)

for the derivation and thorough discussion of the above result, but at this

stage it is appropriate to record a few of its properties:

• Constitutive behavior and concentration of the matrix and particles .

The result (2.13)–(2.14) is valid for any choice of (including compress-

ible and anisotropic) stored-energy functions W and Wp for the elas-

tomeric matrix and particles, provided that these satisfy usual phys-

ically based mathematical requirements. The result also holds appli-

cable for any value of concentration of particles in the physical range

c ∈ [0, 1].

• Interaction among particles . By construction, the underlying microstruc-

ture associated with the stored-energy function (2.13)–(2.14) corre-

sponds to an isotropic distribution of disconnected particles of polydis-

perse sizes that interact in such a manner that they deform uniformly3,

irrespectively of the applied macroscopic deformation F or the value of

particle concentration c. Such a special type of deformation is usually

associated with the softest possible response of stiff materials. Thus,

(2.13)–(2.14) is generally expected to bound from below the effective

stored-energy functions of nonlinear elastic solids reinforced by any

type of isotropic distribution of particles (whether (2.13)–(2.14) is a

rigorous lower bound remains yet to be proved or disproved).

• Connection with the classical result of Eshelby . A direct implication

of the fact that the particles deform uniformly is that in the limit

of small deformations and small particle concentration as F → I and

c → 0+, expressions (2.13)–(2.14) recover identically the classical result

of Eshelby for the overall response of a dilute distribution of linearly

elastic spherical particles embedded in a linearly elastic matrix. The

formulation (2.13)–(2.14) can thus be thought of as a direct extension of

the classical result of Eshelby to deal with finite deformations. Further

comments on this key aspect are deferred to the end of this section and

to Section 5.

3That is, the deformation gradient field F(X) — and hence the stress field S(X) —
within each particle is uniform and the same for all particles.
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Now, for a Neo-Hookean matrix characterized by (2.9) it is not difficult to

show that the maximizing vector ω in (2.13) specializes to

ω =
1

µ

∂W

∂F
ξ − Fξ +

1

J F
−T

ξ · F−T
ξ
F

−T
ξ −

∂W

∂F
ξ · F−T

ξ

µF
−T

ξ · F−T
ξ
F

−T
ξ (2.15)

and hence that the effective stored-energy function in this case can be con-

veniently written as

W (F, c) = 2µU(F, c) +
µ

2

[
F · F− 3

]
, (2.16)

where the function U is solution of the initial-value problem

c
∂U

∂c
− U −

∫
|ξ|=1

1

4π

∂U

∂F
ξ · ∂U

∂F
ξ −

(
∂U

∂F
ξ · F−T

ξ

)2

F
−T

ξ · F−T
ξ

dξ

+

∫
|ξ|=1

(1− J)

(
J − 1 + 4J

∂U

∂F
ξ · F−T

ξ

)
4J

2
F

−T
ξ · F−T

ξ
dξ = 0,

U(F, 1) =
1

2µ
Wp(F)−

1

4

[
F · F− 3

]
, (2.17)

and where it is reemphasized that (2.17) holds applicable for any choice of

Wp.

In order to account for the perfectly rigid behavior (2.2) within the context

of the formulation (2.13)–(2.14), it proves expedient not to work with (2.2)

directly but to consider instead the regularized and hence more general case

of elastic isotropic incompressible particles with stored-energy function

Wp(F) =


4(µp − µ)

5
H(F) +

µ

2
[F · F− 3] if J = 1

+∞ otherwise
. (2.18)

In this last expression, the parameter µp denotes the shear modulus of the

particles in their undeformed state and H is an objective and isotropic func-

tion of F, satisfying the conditions H(Q) = 0 for all Q ∈ Orth+ and

H(F) > 0 for F /∈ Orth+, to be specified subsequently. The perfectly rigid

behavior (2.2) can then be readily recovered as a special case of (2.18) by
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taking the limit of µp → +∞.

Given the incompressible stored-energy function (2.18) for the particles,

it follows that the effective stored-energy function (2.16) for the filled Neo-

Hookean rubber reduces to

W (F, c) =

{
2µU(F, c) +

µ

2

[
F · F− 3

]
if J = 1

+∞ otherwise
(2.19)

with U now being defined by equations

c
∂U

∂c
− U −

∫
|ξ|=1

1

4π

∂U∂Fξ · ∂U
∂F

ξ −

(
∂U

∂F
ξ · F−T

ξ

)2

F
−T

ξ · F−T
ξ

 dξ = 0,

U(F, 1) =
2(µp − µ)

5µ
H(F), (2.20)

subject to the constraint J = 1. To make further progress, it is helpful to

exploit the overall isotropy and incompressibility of the problem. Thus, after

restricting attention to isochoric pure stretch loadings of the form (2.11), car-

rying out the required integrals in (2.20), and with a little abuse of notation4,

the (finite branch of the) effective stored-energy function (2.19) for the filled

Neo-Hookean rubber can be compactly rewritten as

W (λ1, λ2, c) = 2µU(λ1, λ2, c) +
µ

2

[
λ

2

1 + λ
2

2 +
1

λ
2

1λ
2

2

− 3

]
(2.21)

where the function U is implicitly defined by the pde

c
∂U

∂c
−U +α1(λ1, λ2)

(
∂U

∂λ1

)2

+α2(λ1, λ2)

(
∂U

∂λ2

)2

+α3(λ1, λ2)
∂U

∂λ1

∂U

∂λ2

= 0

(2.22)

subject to the initial condition

U(λ1, λ2, 1) =
2(µp − µ)

5µ
H(λ1, λ2). (2.23)

4The fact that the same symbols W , U , and H are utilized to denote the corresponding
functions in terms of the stretches λ1 and λ2 should not lead to confusion.
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The coefficients α1, α2, α3 above are functions of their arguments given in

explicit form by expressions (A.1) in Appendix A. In view of the definition

(2.18), it is also appropriate to record here for later reference that the function

H : {(a, b) ∈ R2 : a, b > 0} → R in (2.23) must satisfy the following

properties:

H(1, 1) = 0,

H(λ1, λ2) > 0 ∀ λ1, λ2 ̸= 1,

H(λ1, λ2) = H(λ2, λ1) = H
(
λ1, (λ1λ2)

−1
)
= H

(
(λ1λ2)

−1, λ1

)
= H

(
λ2, (λ1λ2)

−1
)
= H

(
(λ1λ2)

−1, λ2

)
∀ λ1, λ2. (2.24)

The final step in this first part of the derivation is to solve the initial-

value problem (2.22)–(2.23) for the function U and then take the limit of

rigid particles µp → +∞. To this end, it is gainful to recognize two key as-

pects of equations (2.22)–(2.23). First, the particular form of the function H

in (2.23) is immaterial, provided that the choice satisfies conditions (2.24).

Second, as a result of the overall isotropy of the problem, the function U

defined by (2.22)–(2.23) is symmetric with respect to its first two arguments,

namely, U(λ1, λ2, c) = U(λ2, λ1, c). In the sequel, we exploit the flexibility in

the choice of H and the symmetry of U in order to construct a solution of

(2.22)–(2.23). The idea is to utilize a particular choice of the function H that

simplifies the calculations involved. And to make use of the symmetry of U

in order to rewrite the initial condition (2.23) in terms of the more conve-

nient deformation variables λ1, λ2, instead of in terms of the concentration of

particles c. As elaborated next, the proposed strategy requires the successive

analyses of axisymmetric (λ1 = λ2 = λ) and general loading conditions.

I) Axisymmetric loading conditions. We begin by analyzing the special case

of axisymmetric loading with

λ2 = λ1 = λ. (2.25)

By introducing the notation

UA(λ, c)
.
= U(λ, λ, c) (2.26)
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and recognizing the identities

∂U

∂λ1

(λ, λ, c) =
∂U

∂λ2

(λ, λ, c) =
1

2

∂UA

∂λ
(λ, c) (2.27)

due to the symmetry of U , it is straightforward to show (see relations (A.6)

and (A.7) in Appendix A) that the initial-value problem (2.22)–(2.23) reduces

to the simpler initial-value problem

c
∂UA

∂c
− UA

− λ
6

12(λ
6 − 1)2

1 + 2λ
6 − 3λ

6√
1− λ

6
ln


√

1− λ
6
+ 1

λ
3

(∂UA

∂λ

)2

= 0

(2.28)

with

UA(λ, 1) =
2(µp − µ)

5µ
H(λ, λ) (2.29)

for the function UA. In spite of the fact that the pde (2.28) is nonlinear, the

suitable choice

H(λ, λ) = 3

∫ λ

1

√
( z6 − 1)2

z3
√

1 + 2z6 − 3z6√
1−z6

ln
[
1+

√
1−z6

z3

] dz


2

(2.30)

makes it possible to solve (2.28)–(2.29) in closed form. The result reads as

follows:

UA(λ, c) =

3
2c(µp − µ)

2(1− c)µp + (3 + 2c)µ

∫ λ

1

√
( z6 − 1)2

z3
√

1 + 2z6 − 3z6√
1−z6

ln
[
1+

√
1−z6

z3

] dz


2

.

(2.31)

Here, we remark that the choice (2.30) for H is such that H(1, 1) = 0 and

H(λ, λ) > 0 if λ ̸= 1, as required by conditions (2.24). Given the quadratic

nonlinearity of the pde (2.28), it is also worth mentioning that equations
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(2.28)–(2.29) with (2.30) have two solutions, but that both are identical and

given by (2.31) in this case.

II) General loading conditions. Having determined the axisymmetric solu-

tion (2.31) for any value of particle concentration c ∈ [0, 1], the initial-value

problem (2.22)–(2.23) can now be rewritten as

c
∂U

∂c
−U +α1(λ1, λ2)

(
∂U

∂λ1

)2

+α2(λ1, λ2)

(
∂U

∂λ2

)2

+α3(λ1, λ2)
∂U

∂λ1

∂U

∂λ2

= 0

(2.32)

subject to the alternative deformation-based initial condition

U(λ, λ, c) =

3
2c(µp − µ)

2(1− c)µp + (3 + 2c)µ

∫ λ

1

√
( z6 − 1)2

z3
√
1 + 2z6 − 3z6√

1−z6
ln
[
1+

√
1−z6

z3

] dz


2

(2.33)

as opposed to the original concentration-based condition (2.23), where it is

recalled that the coefficients α1, α2, α3 in (2.32) are given in explicit form by

expressions (A.1) in Appendix A.

In view of the separable structure of the alternative initial condition (2.33),

it is not difficult to deduce from the governing pde (2.32) that the solution

for U is given by

U(λ1, λ2, c) =
2c(µp − µ)

2(1− c)µp + (3 + 2c)µ
H(λ1, λ2), (2.34)

where the function H is implicitly defined by the initial-value problem

H+α1(λ1, λ2)

(
∂H

∂λ1

)2

+α2(λ1, λ2)

(
∂H

∂λ2

)2

+α3(λ1, λ2)
∂H

∂λ1

∂H

∂λ2

= 0 (2.35)

with

H(λ, λ) = 3

∫ λ

1

√
( z6 − 1)2

z3
√

1 + 2z6 − 3z6√
1−z6

ln
[
1+

√
1−z6

z3

] dz


2

. (2.36)
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Figure 2.1: (a) Plot of the function H defined by equations (2.35)–(2.36) for a
large range of stretches λ1 and λ2. Part (b) shows the cross section of the function
along axisymmetric deformations with λ1 = λ2 = λ, that is, H(λ, λ), as given
explicitly by expression (2.36).

Rather interestingly, the first-order nonlinear pde (2.35) subject to (2.36) is

an Eikonal equation5. This class of equations has appeared pervasively in

a wide variety of problems concerning geometrical optics and other wave-

propagation phenomena (see, e.g., Born and Wolf, 1999). Unfortunately, the

specific type of Eikonal equation (2.35)–(2.36) does not appear to be solvable

in closed form, but it can be solved numerically by available techniques. Fig.

1 shows plots of such a solution over a large range of stretches λ1 and λ2.

In addition to the required properties (2.24), two further features of the

function H defined by (2.35)–(2.36) worth recording for later use are that in

the limit of small deformation as ε1
.
= λ1 − 1 → 0 and ε2

.
= λ2 − 1 → 0 it

takes the polynomial asymptotic form

H(λ1, λ2) =
5

4

[
ε 2
1 + ε 2

2 + (ε1 + ε2)
2
]

−5

2
(ε 3

1 + ε 3
2 )−

55

14
(ε 2

1 ε2 + ε1ε
2
2 ) +O(ε 4

1 ) +O(ε 4
2 ),(2.37)

5With the change of variables H = Ĥ2 and the notation α1 = −(M2
11 + M2

12)/4,
α2 = −(M2

22 +M2
12)/4, α3 = −M12(M11 +M22)/2, the Eikonal equation (2.35) takes the

more standard invariant form
∣∣∣M∇Ĥ

∣∣∣ = 1.
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while in the opposite limit of infinitely large deformations as λ1 → 0,+∞
and/or λ2 → 0,+∞ it reduces asymptotically to

H(λ1, λ2) =
3

4

[
λ

2

1 + λ
2

2 +
1

λ
2

1λ
2

2

]
(2.38)

to leading order, hence becoming unbounded. The proof of relations (2.24),

(2.37), and (2.38) together with relevant comments on the numerical compu-

tation of H are given in Appendix B.

At this stage, it is a trivial matter to take the limit of rigid particles µp →
+∞ in expression (2.34) to conclude that the effective stored-energy function

for Neo-Hookean rubber reinforced by the class of isotropic distributions of

rigid particles specified by the formulation (2.13)–(2.14) is given by

W (λ1, λ2, c) =
2µ c

1− c
H(λ1, λ2) +

µ

2

[
λ

2

1 + λ
2

2 +
1

λ
2

1λ
2

2

− 3

]
(2.39)

with H being defined by equations (2.35)–(2.36). Again, this result is valid6

for any value of concentration of particles in the range c ∈ [0, 1]. The analysis

of its asymptotic behavior in the limit as c → 0+ is the final step of the

derivation and the subject of the next subsection.

2.2.2 Asymptotic solution in the dilute limit of particles as
c → 0+

We are now in a position to readily take the limit c → 0+ in the result (2.39)

to finally establish that the overall elastic response of Neo-Hookean rubber

reinforced by a dilute isotropic distribution of rigid particles is characterized

by the effective stored-energy function

W (λ1, λ2, c) =
µ

2

[
λ

2

1 + λ
2

2 +
1

λ
2

1λ
2

2

− 3

]
+ 2µH(λ1, λ2) c (2.40)

6As indicated above, the result (2.39) is exact for a specific type of isotropic distribution
of rigid particles and expected to be a lower bound for the response of Neo-Hookean rubber
rigidly reinforced by any other type of isotropic distribution. This expectation is supported
by the results presented in the next chapter, where a variety of finite-concentration sus-
pensions of rigid particles in rubber are studied.
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to first order in the concentration of particles c. As derived in the foregoing

development, the function H is implicitly defined by the Eikonal pde (2.35)

subject to the initial condition (2.36). In general, again, these equations

must be solved numerically. For the special case of axisymmetric loading,

however, they admit a closed-form solution and expression (2.40) reduces to

W (λ, λ, c) =

µ

2

[
2λ

2
+

1

λ
4 − 3

]
+ 6µ

∫ λ

1

√
( z6 − 1)2

z3
√

1 + 2z6 − 3z6√
1−z6

ln
[
1+

√
1−z6

z3

] dz


2

c.

(2.41)

Comparing (2.12) with (2.40), it is seen that the asymptotic form of the

solution is indeed polynomial and that G(λ1, λ2) = 2H(λ1, λ2). The following

remarks are in order:

i. Owing to the properties (2.24) of the function H, the effective stored-

energy function (2.40) is such that

W (1, 1, c) = 0,

W (λ1, λ2, c) > 0 ∀ λ1, λ2 ̸= 1,

W (λ1, λ2, c) = W (λ2, λ1, c) = W
(
λ1, (λ1λ2)

−1, c
)

= W
(
(λ1λ2)

−1, λ1, c
)
= W

(
λ2, (λ1λ2)

−1, c
)

= W
(
(λ1λ2)

−1, λ2, c
)

∀ λ1, λ2,

W (λ1, λ2, c) > W (λ1, λ2, 0) ∀ λ1, λ2 ̸= 1, c > 0. (2.42)

The first three of these conditions are direct consequences of the fact

that the filled Neo-Hookean rubber is stress-free in the undeformed

configuration, isotropic, and incompressible. The last condition en-

tails physically that the addition of rigid particles consistently leads

to a stiffer material response irrespectively of the applied loading, in

agreement with experience.

ii. In the limit of small deformations as ε1 = λ1−1 → 0 and ε2 = λ2−1 →
0, based on the asymptotic behavior (2.37) of H, the effective stored-
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energy function (2.40) takes the explicit asymptotic form

W (λ1, λ2, c) =

µ
[
ε 2
1 + ε 2

2 + (ε1 + ε2)
2 − 2(ε 3

1 + ε 3
2 )− 3(ε 2

1 ε2 + ε1ε
2
2 )
]
+

5

2
µ

[
ε 2
1 + ε 2

2 + (ε1 + ε2)
2 − 2(ε 3

1 + ε 3
2 )−

110

35
(ε 2

1 ε2 + ε1ε
2
2 )

]
c

(2.43)

to order three in the deformation measures ε1 and ε2. As anticipated

in the description of the formulation (2.13)–(2.14), the leading order

of expression (2.43) agrees identically with the Einstein-Smallwood (or,

more generally, Eshelby) result for the overall elastic response of a dilute

distribution of rigid spherical particles embedded in an isotropic incom-

pressible linearly elastic matrix (cf. Eq. (12) in Smallwood (1944)).

iii. In terms of the principal invariants I1 = F ·F = λ
2

1 +λ
2

2 +λ
−2

1 λ
−2

2 and

I2 = F
−T ·F−T

= λ
−2

1 + λ
−2

2 + λ
2

1λ
2

2 , the asymptotic result (2.43) can

be rewritten as

W (λ1, λ2, c) =
µ

2
(I1 − 3) + 2µ

[
145

224
(I1 − 3)− 5

224
(I2 − 3)

]
c (2.44)

to order one in the deformation measures (I1 − 3) and (I2 − 3). This

expression illustrates explicitly that the overall response of the filled

Neo-Hookean rubber depends not only on the first invariant I1 but

also on the second invariant I2 (in spite of the fact that the underly-

ing Neo-Hookean matrix depends only on the first invariant). Given

that the associated coefficient 5/224 is significantly smaller than unity,

however, the dependence on I2 is weak. Rather remarkably, as dis-

cussed below and in Section 5, the dependence on I2 remains weak for

large deformations (of order (I2 − 3)2 and higher) and it completely

disappears in the limit of deformations that are infinitely large.

iv. In the limit when the deformation becomes unbounded as λ1 → 0,+∞
and/or λ2 → 0,+∞, the function H reduces to (2.38) and hence it

is straightforward to deduce that the effective stored-energy function
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(2.40) reduces in turn to the explicit form

W (λ1, λ2, c) =
µ

2

[
λ

2

1 + λ
2

2 +
1

λ
2

1λ
2

2

]
+

3µ

2

[
λ

2

1 + λ
2

2 +
1

λ
2

1λ
2

2

]
c

(2.45)

or, equivalently,

W (λ1, λ2, c) =
µ

2
I1 +

3µ

2
I1 c (2.46)

to leading order. That is, for large enough deformations, the over-

all energy of the filled Neo-Hookean rubber grows linearly in the first

invariant I1 and independently of I2.

v. Consistent with recent bifurcation analyses (Triantafyllidis et al., 2006;

Michel et al., 2010), the effective stored-energy function (2.40) is strongly

elliptic. In the present context of isotropic incompressible elasticity, it

is possible to write down explicit necessary and sufficient conditions for

strong ellipticity in the form of 9 scalar inequalities involving first and

second derivatives of (2.40) with respect to λ1 and λ2, as detailed in

Appendix ??. While difficult by analytical means, it is a simple matter

to verify numerically that all such 9 scalar inequalities are satisfied by

(2.40). Interestingly, despite being strongly elliptic, (2.40) is not poly-

convex. To see this, as also elaborated in Appendix ??, it suffices to

recognize that (2.44) is not convex in I2(= F
−T ·F−T

) to leading order

in the limit of small deformations, and hence that (2.40) is not convex

in F
−T

.

vi. By construction, the microstructure associated with the result (2.40)

corresponds to a dilute isotropic distribution of rigid particles that in-

teract in such a manner that the stress within each particle is uniform

and the same in all particles, irrespectively of the value of the applied

macroscopic stretches λ1 and λ2. For small enough deformations, such

a special stress field is in precise agreement with that of a dilute dis-

tribution of rigid spheres (Eshelby, 1957). This is the key reason why

the result (2.40) recovers the classical Einstein-Smallwood result in the

limit of small deformations. For finite deformations, on the other hand,

the intraparticle stress field in a dilute distribution of spherical parti-

cles does not remain uniform. Yet, the large-deformation response of

a dilute distribution of rigid spherical particles is expected to be very
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similar to that characterized by (2.40). This expectation is based on

the argument that the effect of particle interactions on the overall re-

sponse of dilute suspensions should be small (even at large deforma-

tions), and hence that different interactions associated with different

dilute isotropic distributions of particles should lead to similar overall

responses. This argument is supported by comparisons with the FE

simulations presented next.

2.3 FE solutions for a rigid spherical inclusion in a

block of rubber under large deformations

In the sequel, we work out a 3D FE solution for the overall large-deformation

response of a block of Neo-Hookean rubber that contains a single rigid spher-

ical inclusion of infinitesimal size at its center. The comparison between this

solution for an isolated spherical particle with the above-derived analyti-

cal solution for an isotropic distribution of particles shall shed light on the

importance of particle interactions in the overall elastic response of dilute

suspensions of rigid particles in rubber.

2.3.1 The FE model

For convenience and without loss of generality, we consider the block of Neo-

Hookean rubber to be a cube of side L in its undeformed stress-free config-

uration. Given that the radius of the spherical inclusion, a say, in the FE

model must be necessarily finite, we need to identify how small its concentra-

tion c = 4πa3/3L3 ought to be in order to accurately approximate an actual

infinitesimal particle with c → 0+. To this end, we carried out a parametric

study with decreasing values of c ranging from 10−6 to 10−11. For the kind of

deformations of interest in this chapter, the results indicate that concentra-

tions c ≤ 10−8 are sufficiently small to be representative of an infinitesimal

particle. Accordingly, in this chapter we set the particle concentration at

c =
125π

48
× 10−9 (2.47)
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corresponding to a spherical inclusion of radius a = 1 in a cube of side

L = 800.

Having identified the geometry of the block and of the particle, we now

turn to their discretization. We first note that there is no need to mesh

the particle in order to model exactly its rigid behavior, but that instead

it suffices to spatially fix the particle/matrix interface in its undeformed

configuration. We further note that the geometric and constitutive symmetry

of the problem allows to perform the calculations in just one octant of the

cube. A mesh generator code is utilized to construct the 3D geometry for such

an octant, as depicted in Fig. 2.2. Small elements are placed near the rigid

particle at uniform angular intervals of 3◦, while the radial length is gradually

increased toward the outer boundary. In all, the mesh consists of 18,900 brick

elements with 675 elements on a radial plane and 28 layers along the radial

direction. This discretization was selected after various mesh refinements

were tried to assess sufficient mesh convergence. In selecting an appropriate

type of finite element, we tested 8-node linear and 20-node quadratic hybrid

elements, where the pressure is treated as a further degree of freedom in

order to be able to handle the incompressibility of the Neo-Hookean rubber

exactly (in a numerical sense). Although both elements generated similar

results, a close inspection revealed that more consistent behaviors with the

known Einstein-Smallwood solution at very small loads were obtained with

the 20-node element model. We thus make use here of higher-order 20-node

elements for the analysis. Since the computations are carried out using the

FE package ABAQUS, we make use in particular of the C3D20H hybrid

elements available in this code (see Abaqus version 6.11 documentation).

2.3.2 Computation of the overall elastic response

As already discussed within the more general context of Section 2, the overall

elastic response of the above-defined reinforced block of Neo-Hookean rubber

amounts to computing the total elastic energy per unit undeformed volume

when the outer boundary of the block is subjected to the affine displace-

ment boundary condition (2.4). Similar to the analytical approach presented

above, here it also proves convenient to restrict attention — without loss of

generality — to isochoric pure stretch loadings of the form (2.11). In terms
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Figure 2.2: Finite element model — in the undeformed configuration — of a small
rigid spherical particle of radius a = 1 located at the center of a cubic block of
side L = 800. The outer boundary of the cube is subjected to the isochoric affine
stretches λ1, λ2, λ3 = (λ1λ2)

−1 aligned with the three principal axes of the cube.

of these stretch variables and based on the parametric study performed for

decreasing values of particle concentration c ∈ [10−6, 10−11], the effective

stored-energy function computed from the FE model turns out to be of the

expected asymptotic form

W
FE

(λ1, λ2, c) =
µ

2

[
λ

2

1 + λ
2

2 +
1

λ
2

1λ
2

2

− 3

]
+ 2µHFE(λ1, λ2) c+O(c2),

(2.48)

where it is worth remarking that this asymptotic behavior in the limit as

c → 0+ is of identical polynomial form as that of the analytical solution

(2.40). It is also important to emphasize that the correction term in (2.48)

is in the order of 10−9 (i.e., in the order of the particle concentration (2.47)),

and hence that the computation of W
FE

must be carefully carried out in

double precision in order to be able to accurately determine the correcting

function HFE.

A convenient manner to numerically implement the affine boundary con-

ditions (2.4) with (2.11) is to follow radial straining paths in principal-

logarithmic-strain space (lnλi). Specifically, we set

λ1 = λ and λ2 = λm (2.49)

(and hence λ3 = (λ1λ2)
−1 = λ−(1+m)), where λ is a positive load parameter

that takes the value of 1 in the undeformed configuration andm ∈ R. Any de-
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Figure 2.3: (a) A set of seven evenly distributed radial loading paths (2.49) in
principal-logarithmic-strain space lnλ1–lnλ2 for values of the parameters λ ≥ 1
and m ∈ [−0.5, 1]. (b) The corresponding correcting function (2.50) computed
from the FE model in terms of the applied stretches λ1 and λ2.

sired macroscopic deformation state (λ1, λ2, λ3 = (λ1λ2)
−1) can be accessed

by marching along (starting at λ = 1) radial paths (4.19) with appropriate

fixed values of m. Because of the overall isotropy and incompressibility of

the response it actually suffices to consider λ ≥ 1 and m ∈ [−0.5, 1], where

m = −0.5 and m = 1 correspond to axisymmetric tension (or, equivalently,

biaxial compression) and axisymmetric compression (or, equivalently, biaxial

tension), respectively. Figure 2.3 shows FE results for seven different loading

paths with λ ≥ 1 and values of m = −0.5,−025, 0, 0.25, 0.50, 0.75 and 1.0.

Results are shown for the radial loading paths in principal-logarithmic-strain

space in part (a), and for the correcting function

HFE(λ1, λ2) =
1

c

[
1

2µ
W

FE
(λ1, λ2, c)−

1

4

[
λ

2

1 + λ
2

2 +
1

λ
2

1λ
2

2

− 3

]]
(2.50)

in stretch space in part (b). The entire correcting function HFE can be

constructed by carrying out further computations with λ ≥ 1 and m ∈
[−0.5, 1], and by exploiting the inherent symmetries

HFE(λ1, λ2) = HFE(λ2, λ1) = HFE
(
λ1, (λ1λ2)

−1
)

= HFE
(
(λ1λ2)

−1, λ1

)
= HFE

(
λ2, (λ1λ2)

−1
)
= HFE

(
(λ1λ2)

−1, λ2

)
. (2.51)
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2.4 Results and discussion

Figures 2.5 and 2.4 present results for the overall response of Neo-Hookean

rubber reinforced by a dilute isotropic distribution of rigid particles, as char-

acterized by the analytical solution (2.40), and the FE simulations of the

preceding section for the overall response of a Neo-Hookean block of rubber

reinforced by a single rigid spherical particle. For clarity of presentation,

results are shown for the correcting functions H and HFE instead of the

stored-energy functions W and W
FE

themselves.

Figures 2.5(a) and 2.5(b) provide a full 3D comparison between the an-

alytical and FE solutions in λ1–λ2-space. To aid the visualization of the

quantitative differences, parts (c) through (f) of the figure also provide 2D

views of both solutions along various fixed deformation paths: parts (c) and

(d) display results for axisymmetric tension (λ1 = λ2 = λ ≤ 1) and com-

pression (λ1 = λ2 = λ ≥ 1), whereas parts (e) and (f) display results for

pure shear (λ1 = λ, λ2 = 1) and a further intermediate deformation path

(λ1 = λ, λ2 = λ
0.5
). In all these plots, the solid line corresponds to the

analytical solution, while the dashed line denotes the FE results.

An immediate observation from Fig. 2.5 is that the FE results are in good

qualitative and quantitative agreement with the analytical solution (2.40)

for all loading conditions. More specifically, the FE results are practically

identical to the analytical solution up to sufficiently large deformations af-

ter which they start to exhibit a consistently stiffer behavior. The largest

discrepancy between the two results occurs along axisymmetric compression

(shown in Fig. 2.5(d)), but even in this case the quantitative difference is

less than 7% at the maximum stretch of λ1 = λ2 = λ = 2.5 reached with the

FE model.

To further explore the connections between the analytical and FE solu-

tions, Fig. 2.4 provides plots for H and HFE as functions of the principal

invariants I1 = λ
2

1 +λ
2

2 +λ
−2

1 λ
−2

2 and I2 = λ
−2

1 +λ
−2

2 +λ
2

1λ
2

2 . Part (a) of the

figure shows H and HFE for fixed values of the second invariant I2 = 4 and 6

as functions of I1, while part (b) shows corresponding results for fixed values

of the first invariant I1 = 4, 6, 8, and 10 as functions of I2. Here, it is appro-

priate to recall that the constraint of incompressibility imposes a restriction

on the physically allowable values of I1 and I2. Thus, for fixed I2 = 4 and

6 the first invariant is restricted to take values in the ranges I1 ∈ [3.71, 4.52]
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Figure 2.4: Comparison of the analytical solution (2.40) for the overall response of
Neo-Hookean rubber reinforced by a dilute isotropic distribution of rigid particles
with the FE solution (2.48) for the overall response of a Neo-Hookean block of
rubber reinforced by a single rigid spherical particle. The results are shown for
the correcting functions H and HFE in terms of the principal invariants I1 =

λ
2
1 +λ

2
2 +λ

−2
1 λ

−2
2 and I2 = λ

−2
1 +λ

−2
2 +λ

2
1λ

2
2 . Part (a) shows results for various

fixed values of I2 as a function of I1, while part (b) shows results for various fixed
values of I1 as a function of I2.

and I1 ∈ [4.72, 9.34], respectively. For fixed I1 = 4, 6, 8, and 10, the cor-

responding allowable values of the second invariant are I2 ∈ [3.71, 4.52],

I2 ∈ [4.72, 9.34], I2 ∈ [5.53, 16.25], and I2 ∈ [6.22, 25.20]. These are the

ranges of values utilized in the figure.

Similar to Fig. 2.5, Fig. 2.4 shows that indeed the FE results are in

good agreement with the analytical solution, being slightly stiffer at large

deformations. More importantly, Fig. 2.4 serves to illustrate that both

solutions are approximately linear in the first invariant I1 and independent

of second invariant I2. That is, in addition to being similar quantitatively,

the analytical and FE solutions are essentially identical in their functional

character.

The agreement between the FE and analytical solutions revealed by the

above results is somewhat remarkable, given that they correspond to different

microstructures: while the FE results correspond to the overall response of a

block of rubber reinforced by a single rigid spherical particle, the analytical

solution corresponds to the overall response of rubber reinforced by a specific
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class of isotropic distribution of rigid particles.
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Figure 2.5: Comparison of the analytical solution (2.40) for the overall response of
Neo-Hookean rubber reinforced by a dilute isotropic distribution of rigid particles
with the FE solution (2.48). The results are shown for the correcting functions
H (part(a)) and HFE (part (b)) in terms of the stretches λ1 and λ2 in λ1–λ2–
space, as well as along various fixed deformation paths: (c) λ1 = λ2 = λ < 1, (d)

λ1 = λ2 = λ > 1, (e) λ1 = λ, λ2 = 1, and (f) λ1 = λ, λ2 = λ
0.5

.
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Again, while in the case of the FE result the particle is isolated and hence

does not interact with other particles, in the case of the analytical solution

the underlying particles do interact with each other in such a manner that

their stress is uniform. The close functional and quantitative agreement

between the two results thus suggests that the interaction among particles

does not play an important role in the overall nonlinear elastic response of

dilute suspensions of rigid particles in rubber, even at large deformations.

In turn, this suggests that different dilute isotropic distributions of particles

exhibiting different particle interactions lead to similar overall responses.

2.5 An approximate closed-form solution for dilute

suspensions

The evaluation of the effective stored-energy function (2.40) requires knowl-

edge of the function H, which ultimately amounts to solving numerically

the Eikonal pde (2.35) subject to the initial condition (2.36). In this sec-

tion, we propose an approximate closed-form solution for (2.35)–(2.36), very

close to the exact solution, which allows in turn to generate a closed-form

approximation for (2.40).

The approximation is based on the observation that the functionH is linear

in the invariant I1 and independent of I2 in the limiting regimes of small and

large deformations; see remarks iii and iv in Section 2.2.2. For intermediate

deformations, H does depend nonlinearly on I1 and on the second invariant

I2, but both these dependencies are exceptionally weak, as illustrated in

Fig. 2.4. Thus, we can readily generate an approximate solution that agrees

identically with the exact solution (2.37) of (2.35)–(2.36) in the limit of small

deformations — and hence linearizes properly — by simply taking

H(λ1, λ2) =
5

8

[
λ

2

1 + λ
2

2 +
1

λ
2

1λ
2

2

− 3

]
. (2.52)

In the limit of large deformations, the approximation (2.52) also agrees iden-

tically with the exact solution (2.38) of (2.35)–(2.36) but only in a functional

form, as their coefficients are different. Note in particular that the 5/8 coeffi-

cient in (2.52) is smaller that the 3/4 coefficient in (2.38), indicating that the
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Figure 2.6: Comparison between the function H defined by equations (2.35)–
(2.36) and its closed-form approximation (2.52). Part (a) shows the comparison
for a wide range of stretches λ1 and λ2, while part (b) shows the comparison for
the case of axisymmetric deformations with λ1 = λ2 = λ.

approximate solution (2.52) bounds from below the exact solution of (2.35)–

(2.36) for large enough deformations. For intermediate deformations, the

proposed closed-form approximation (2.52) is remarkably close to the exact

function H. This is shown by Fig. 2.6(a) in λ1–λ2-space and by Fig. 2.6(b)

for the special case of axisymmetric deformations with λ1 = λ2 = λ.

In view of the approximation (2.52) for H, it readily follows from (2.40)

that the resulting closed-form approximate solution for W is given by

W (λ1, λ2, c) =
µ

2

[
λ

2

1 + λ
2

2 +
1

λ
2

1λ
2

2

− 3

]
+

5µ

4

[
λ

2

1 + λ
2

2 +
1

λ
2

1λ
2

2

− 3

]
c

(2.53)

or, equivalently,

W (λ1, λ2, c) =
µ

2

[
I1 − 3

]
+

5µ

4

[
I1 − 3

]
c. (2.54)

Because of the properties of (2.52), the approximate solution (2.53) is iden-

tical to the exact solution (2.40) in the limit of small deformations — and

hence recovers the classical Einstein-Smallwood result — and quantitatively

very close to (2.40) for arbitrarily large deformations. In addition, the result

(2.53) is functionally very similar to (2.40) in that it is linear in I1, indepen-

33



dent of I2, and strongly elliptic (see Appendix C). The approximate solution

(2.53) provides then a mathematically simple, quantitatively accurate, and

functionally sound result — which can be utilized in lieu of (2.40) for all

practical purposes — for the overall elastic response of Neo-Hookean solids

reinforced by a dilute isotropic distribution of rigid particles under arbitrarily

large deformations.
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CHAPTER 3

THE NONLINEAR ELASTIC RESPONSE
OF SUSPENSIONS OF RIGID INCLUSIONS

IN RUBBER: AN EXPLICIT
APPROXIMATION FOR

FINITE-CONCENTRATION SUSPENSIONS

In the preceding chapter we determined an exact solution for the overall (or

macroscopic) nonlinear elastic response of Gaussian (or Neo-Hookean) rubber

reinforced by a dilute isotropic distribution of rigid particles. The objective

of this Chapter is to make use of this fundamental result to construct an ap-

proximate solution for the corresponding response of non-Gaussian rubber

reinforced by an isotropic distribution of rigid particles at finite concentra-

tion. Given that standard reinforcing fillers (e.g., carbon black and silica)

typically agglomerate into “particles” of many different sizes (see, e.g., Chap-

ter 4 in Leblanc, 2010, and references therein), the focus is in particular on

isotropic distributions of particles of polydisperse sizes. This is accomplished

here with the help of two different techniques in two successive steps. In the

first step of the derivation, the dilute solution ofLopez-Pamies et al. (2013b)

elaborated in Chapter 2 is extended to finite-concentration suspensions of

particles in Neo-Hookean rubber via an iterated dilute homogenization tech-

nique. In the second step, a nonlinear comparison medium technique is

utilized to construct in turn an approximate solution for finite-concentration

suspensions of particles in non-Gaussian rubber.

For purposes of gaining further insight and of assessing the accuracy of

the proposed analytical approximation, in this chapter we also generate full

3D FE (finite-element) results for the large-deformation response of Neo-

Hookean and non-Gaussian rubber reinforced by isotropic distributions of

rigid spherical particles. Specifically, we consider the cases of infinite periodic

media where the repeated unit cells contain a large number of monodisperse

and polydisperse spherical particles that are randomly distributed as dictated

by a sequential adsorption algorithm. Full 3D computations of this sort
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have been previously considered in the context of infinitesimal elasticity by a

number of authors (see, e.g. Gusev, 1997; Michel et al., 1999; Segurado and

Llorca, 2002; Galli et al., 2008), but the finite elasticity simulations performed

in this chapter appear to be the first of their kind in the literature.

3.1 The problem

The general problem to be addressed is that of determining the overall (or

macroscopic) elastic response of an elastomer reinforced by a random dis-

tribution of rigid particles firmly bonded across interfaces that is subjected

to arbitrarily large deformations. The spatial distribution of the particles is

taken to be statistically uniform and their sizes to be much smaller than the

macroscopic size. The constitutive behavior of the elastomer is characterized

by a quasi-convex stored-energy function W of the deformation gradient F.

The rigid particles are also described as nonlinear elastic solids with stored-

energy function

Wp(F) =

{
0 if F = Q ∈ Orth+

+∞ otherwise
, (3.1)

where Orth+ stands for the set of all proper orthogonal second-order ten-

sors. The Lagrangian pointwise constitutive relation for the material is thus

formally given by

S =
∂W

∂F
(X,F), W (X,F) = (1− θ(X)) W (F) + θ(X) Wp(F), (3.2)

where S denotes the first Piola-Kirchhoff stress tensor and θ is the indicator

function of the spatial regions occupied collectively by the particles, taking

the value of 1 if the position vector X lies in a particle and zero otherwise.

The filled elastomer is considered to occupy a domain Ω, with boundary

∂Ω, in its undeformed stress-free configuration and, for convenience, units

of length are chosen so that Ω has unit volume. The regions occupied by

the elastomer and particles are respectively denoted by Ωm and Ωp so that

Ω = Ωm ∪Ωp. The macroscopic response of the material can then be defined

as the relation between the averages of the first Piola-Kirchhoff stress S and

the deformation gradient F over the volume Ω under the affine displacement
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boundary condition x = FX on ∂Ω, where the second-order tensor F is a

prescribed quantity (Hill, 1972). In this case, it follows from the divergence

theorem that
∫
Ω
F(X) dX = F, and hence the derivation of the macroscopic

response reduces to finding the average stress S
.
=
∫
Ω
S(X) dX for a given F.

The result reads formally as

S =
∂W

∂F
(F, c) (3.3)

with

W (F, c) = (1− c) min
F∈K

1

|Ωm|

∫
Ωm

W (F) dX. (3.4)

In these last expressions, W is the so-called effective stored-energy function

(which physically corresponds to the total elastic energy per unit undeformed

volume stored in the material), c
.
=
∫
Ω
θ(X)dX is the initial volume fraction

or concentration of particles, and K denotes a suitable set of kinematically

admissible deformation gradient fields with prescribed volume average F.

3.1.1 The case of isotropic suspensions in non-Gaussian
rubber

The main objective of this chapter is to determine the effective stored-energy

function (3.4) for the practically relevant case when the particles are polydis-

perse in size and isotropically distributed in space, and the elastomeric matrix

is isotropic and incompressible. The focus is on elastomers characterized by

I1-based stored-energy functions

W (F) =

{
Ψ(I1) if J

.
= λ1λ2λ3 = 1

+∞ otherwise
, (3.5)

where I1 = F · F = λ2
1 + λ2

2 + λ2
3, λ1, λ2, λ3 have been introduced to denote

the singular values of the deformation gradient F, and Ψ is any non-negative

function of choice satisfying the linearization conditions

Ψ(3) = 0 and
dΨ

dI1
(3) =

µ

2
, (3.6)
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with µ denoting the initial shear modulus of the elastomeric matrix, and the

physically-based strong ellipticity conditions (Zee and Sternberg, 1983)

dΨ

dI1
(I1) > 0 and

dΨ

dI1
(I1) + 2[I1 − λ2

k − 2λ−1
k ]

d2Ψ

dI21
(I1) > 0 (k = 1, 2, 3) ∀ I1 ≥ 3. (3.7)

Stored-energy functions of the functional form (3.5) with (3.6)–(3.7) are gen-

eralizations of the classical Neo-Hookean energy Ψ(I1) = µ/2 [I1 − 3] that

have been shown to describe reasonably well the response of a wide vari-

ety of elastomers over large ranges of deformations (see, e.g. Arruda and

Boyce, 1993; Gent, 1996; Lopez-Pamies, 2010b). These types of constitu-

tive models have the further merit that they are derivable from microscopic

considerations based on realistic non-Gaussian statistical distributions of the

underlying polymeric chains (see, e.g. Beatty, 2003).

Owing to the assumed isotropy of the microstructure and the constitutive

isotropy and incompressibility of the matrix material (3.5) and rigid particles

(3.1), the resulting overall elastic response is isotropic and incompressible.

This implies that the effective stored-energy function W in this case depends

on the macroscopic deformation gradient F only through its singular values

λ1, λ2, λ3 and becomes unbounded for non-isochoric deformations when J
.
=

detF = λ1λ2λ3 ̸= 1. Accordingly, the result (3.4) can be simply written

as a symmetric function of λ1, λ2, λ3 subject to the constraint λ1λ2λ3 = 1.

Alternatively, in this chapter we shall find it more convenient to write (3.4)

as a function solely of the two principal invariants I1 = F ·F = λ
2

1 +λ
2

2 +λ
2

3

and I2 = F
−T · F−T

= λ
2

1λ
2

2 + λ
2

1λ
2

3 + λ
2

2λ
2

3 in the form

W (F, c) =

{
Ψ(I1, I2, c) if J = λ1λ2λ3 = 1

+∞ otherwise
. (3.8)

As outlined above, our strategy to generate a solution for (3.8) involves

two main steps and makes use of two different techniques. In the first step,

presented in Section 3.2, we work out a solution for the special case of filled

Neo-Hookean rubber by means of an iterated dilute homogenization tech-

nique. This Neo-Hookean solution is then utilized in the second step, pre-

sented in Section 3.3, to work out in turn a solution for filled non-Gaussian
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rubber via a nonlinear comparison medium method. In order to assist the

presentation of the results, the unbounded branch of the energies (3.5) and

(3.8) is omitted in most of the remainder of the analysis.

3.2 A solution for filled Neo-Hookean rubber via

iterated dilute homogenization

In this section, we construct a solution for the effective stored-energy function

(3.8) for the special case when the elastomeric matrix is Neo-Hookean rubber.

This amounts to solving the relevant minimization problem (3.4) with (3.5)

and

Ψ(I1) =
µ

2
[I1 − 3]. (3.9)

To this end, we make use of the iterated dilute homogenization procedure

of Lopez-Pamies (2010a) together with the result derived in Chapter 2 as

the required dilute solution from which we start the iterative construction

process. For clarity of exposition, we first present the iterated dilute homog-

enization technique in its general form (Section 3.2.1) and then work out its

application to filled Neo-Hookean rubber (Section 3.2.2).

3.2.1 An iterated dilute homogenization method in finite
elasticity

Following Lopez-Pamies (2010a), we begin by considering that the unit-

volume domain Ω is occupied by matrix material 0, a homogeneous elastomer

with stored-energy function W (possibly compressible and anisotropic at this

stage). We then embed a dilute distribution of rigid particles (of possibly

any shape and orientation) with infinitesimal concentration ϕ1 in material 0

in such a way that the total volume of the composite remains unaltered at

|Ω| = 1; that is, we remove a total volume ϕ1 of material 0 and replace it

with rigid particles. Assuming a polynomial asymptotic behavior in ϕ1, the

resulting reinforced material has an effective stored-energy function W 1 of

the form

W 1(F, ϕ1) = W (F) + G
{
W (F);F

}
ϕ1 +O

(
ϕ2
1

)
, (3.10)
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where G is a functional with respect to its first argument W and a function

with respect to its second argument F.

Considering next W 1 as the stored-energy function of a “homogeneous”

matrix material 1, we repeat the same process of removal and replacing

while keeping the volume fixed at |Ω| = 1. This second iteration requires

utilizing rigid particles that are much larger in size than those used in the

first iteration, since the matrix material 1 with stored-energy function (3.10)

is being considered as homogeneous. Specifically, we remove an infinitesimal

volume ϕ2 of matrix material 1 and replace it with rigid particles. The

composite has now an effective stored-energy function

W 2(F, c2) = W 1(F, ϕ1) + G
{
W 1(F, ϕ1);F

}
ϕ2, (3.11)

where the order of the asymptotic correction term has been omitted for no-

tational simplicity. We remark that the functional G in (3.11) is the same as

in (3.10) because we are considering exactly the same dilute distribution as

in (3.10). More elaborate construction processes are possible (corresponding,

for instance, to using different particle shapes and orientations at each iter-

ation), but such a degree of generality is not needed for our purposes here.

We further remark that the total concentration of rigid particles at this stage

is given by c2 = ϕ2 + ϕ1(1 − ϕ2) = 1 −
∏2

j=1(1 − ϕj), and hence that the

increment in total concentration of rigid particles in this second iteration is

given by c2 − ϕ1 = ϕ2(1− ϕ1).

It is apparent now that repeating the same above process i+1 times, where

i is an arbitrarily large integer, generates a particle-reinforced nonlinear elas-

tic solid with effective stored-energy function

W i+1(F, ci+1) = W i(F, ci) + G
{
W i(F, ci);F

}
ϕi+1, (3.12)

which contains a total concentration of rigid particles given by

ci+1 = 1−
i+1∏
j=1

(1− ϕj) . (3.13)

For unbounded i the right-hand side of expression (3.13) is, roughly speaking,

the sum of infinitely many concentrations of infinitesimal value, which can

amount to a total concentration ci+1 of finite value. The increment in total
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concentration of rigid particles in this iteration (i.e., in passing from i to

i+ 1) reads as

ci+1 − ci =
i∏

j=1

(1− ϕj)−
i+1∏
j=1

(1− ϕj) = ϕi+1(1− ci), (3.14)

from which it is a trivial matter to establish the following identity

ϕi+1 =
ci+1 − ci
1− ci

. (3.15)

Substituting expression (3.15) in (3.12) renders

(1− ci)
W i+1(F, ci+1)−W i(F, ci)

ci+1 − ci
− G

{
W i(F, ci);F

}
= 0. (3.16)

This difference equation can be finally recast — upon using the facts that

the increment ci+1 − ci is infinitesimally small and that i is arbitrarily large

— as the following initial value problem

(1− c)
∂W

∂c
(F, c)− G

{
W (F, c);F

}
= 0, W (F, 0) = W (F). (3.17)

The differential equation (3.17)1, subject to the initial condition (3.17)2,

provides an implicit framework for constructing solutions for the effective

stored-energy function W of elastomers reinforced by finite concentrations

c of rigid particles directly in terms of corresponding solutions — as char-

acterized by the functional G — when the particles are present in dilute

concentration. It is worthwhile to emphasize that the formulation (3.17) is

applicable to any choice of the stored-energy functionW (including compress-

ible and anisotropic) describing the behavior of the underlying elastomeric

matrix. By construction, the results generated from (3.17) correspond to

polydisperse microstructures where the particles have infinitely many diverse

sizes. Again, this feature is of practical relevance here because standard rein-

forcing fillers (e.g., carbon black and silica) typically agglomerate, resulting

effectively in polydisperse microstructures with “particles” of many different

sizes. By the same token, the results generated from (3.17) are realizable in

the sense that they are exact for a given class of microstructures. This implies

that the generated effective stored-energy functions W are theoretically and
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physically sound. They are then guaranteed, for instance, to be objective in

F, to linearize properly, and to comply with any macroscopic constraints im-

posed by microscopic constraints, such as the strongly nonlinear constraint

of incompressibility. To be useful, however, the formulation (3.17) requires

having knowledge of the functional G describing the relevant dilute response

of the filled elastomer of interest, which is in general a notable challenge.

3.2.2 Application to filled Neo-Hookean rubber

In Chapter 2, with help of the realizable homogenization theory developed

in (Lopez-Pamies et al., 2011a), we derived a solution for the overall nonlin-

ear elastic response of Neo-Hookean rubber reinforced by a dilute isotropic

distribution of rigid particles. Below, we make direct use of this result in

the framework (3.17) to construct in turn a corresponding solution for Neo-

Hookean rubber reinforced by an isotropic distribution of rigid particles with

polydisperse sizes at finite concentration.

The exact form of the solution derived in Chapter 2 is given implicitly

in terms of an Eikonal partial differential equation in two variables which

ultimately needs to be solved numerically (see equations (2.40) and (2.35)–

(2.36)). To make analytical progress, we do not utilize here the exact form of

the solution but instead invoke its closed-form approximation, as devised in

Section 2.5. In terms of the notation introduced in (3.8), (3.9), and (3.10),

this approximate dilute solution takes the form

Ψ(I1, I2, c) = Ψ(I1) + G
{
Ψ(I1); I1, I2

}
c, (3.18)

where c is the infinitesimal concentration of particles, Ψ(I1) = µ/2[ I1 − 3],

and the functional G is given explicitly by

G
{
Ψ(I1); I1, I2

}
=

5

2
Ψ(I1). (3.19)

Substitution of (3.19) in the general formulation (3.17) leads to the initial-

value problem

(1−c)
∂Ψ

∂c
(I1, I2, c)−

5

2
Ψ(I1, I2, c) = 0, Ψ(I1, I2, 0) = Ψ(I1) =

µ

2

[
I1 − 3

]
,

(3.20)
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which defines the effective stored-energy function Ψ of Neo-Hookean rubber

filled with an isotropic distribution of rigid particles of polydisperse sizes

and finite concentration c. Remarkably, this first-order partial differential

equation admits the explicit solution

Ψ(I1, I2, c) =
µ

2(1− c)5/2
[
I1 − 3

]
. (3.21)

Thorough comments on the theoretical and practical merits of this result are

deferred to Section 3.3.2, where the more general case of filled non-Gaussian

rubber is addressed. At this stage it is important to emphasize, however, that

the effective stored-energy function (3.21) is not in general an exact realizable

result. This is because use has been made of the approximate functional

(3.19) — and not the exact functional — in the formulation (3.17) in order

to favor analytical tractability. Nevertheless, in view of the high functional

and quantitative accuracy of the approximation (3.19) for the dilute response

(see Section 2.5), the stored-energy function (3.21) is expected to be very

close to an exact realizable result1.

3.3 A solution for filled non-Gaussian rubber via a

nonlinear comparison medium method

The general case of isotropic suspensions of rigid particles in non-Gaussian

rubber could be addressed by means of the same iterated dilute homoge-

nization technique utilized in the foregoing section for Neo-Hookean rubber.

That route would require explicit knowledge of the appropriate functional G
in (3.17), which in principle could be computed by means of the same proce-

dure followed in Chapter 2 but now specialized to energies of the form (3.5)

as opposed to just the Neo-Hookean energy (3.9). While plausible, prelimi-

nary calculations indicate that this approach is not likely to provide explicit

results and hence we do not pursue it here.

In the sequel, stimulated by the works of Willis (1994), Talbot and Willis

(1994) and deBotton and Shmuel (2010), we pursue instead a nonlinear com-

1In this regard, it is interesting to recall that the analogous solution Ψ =
µ

2(1− c)2
[
I1 − 2

]
for the corresponding 2D problem is an exact realizable result (Lopez-

Pamies, 2010a).
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parison medium approach. Roughly speaking, the idea is to make use of

the formalism of Talbot and Willis (1985) to devise a variational framework

that allows to construct an explicit approximate solution for the effective

stored-energy function (3.8) for filled non-Gaussian rubber directly in terms

of the “simpler” effective stored-energy function (3.21) for filled Neo-Hookean

rubber. We begin in Section 3.3.1 by presenting the comparison medium

framework in its general form and then work out its application to filled

non-Gaussian rubber in Section 3.3.2.

3.3.1 A nonlinear comparison medium method in finite
elasticity

In order to account for the perfectly rigid behavior (3.1) of the particles in

the analysis that follows, it is expedient not to work with (3.1) directly but

to consider instead the regularized case of compressible non-rigid particles

with stored-energy function

Wp(F) = fp(F, J) =
µp

2
[F · F− 3] + µp

[
1

2
(J − 1)2 − (J − 1)

]
, (3.22)

where the material parameter µp denotes the initial shear modulus of the par-

ticles and the notation Wp(F) = fp(F, J) has been introduced for subsequent

use; the special case of rigid behavior (3.1) can then be readily recovered from

(3.22) by taking the limit µp → +∞. Also for subsequent use, the stored-

energy function for the elastomeric matrix material is rewritten here in the

form

W (F) = fm(F, J). (3.23)

Consistent with the notation introduced in (3.22) and (3.23), we henceforth

rewrite the pointwise energy (3.2) for the filled elastomer as

W (X,F) = f(X,F, J) = (1− θ(X))fm(F, J) + θ(X)fp(F, J). (3.24)

Now, borrowing ideas from Talbot and Willis (1985), it proves fruitful to

introduce a comparison medium with pointwise energy

W0(X,F) = f0(X,F, J), (3.25)
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where f0 is at this stage an arbitrary function, and to define the Legendre

transformation2

(f − f0)
∗(X,P, Q)

.
= sup

F,J
[P · F+QJ − f(X,F, J) + f0(X,F, J)] . (3.26)

Note that while the function (f − f0) may not be convex in F and J , the

function (f − f0)
∗ is convex in P and Q by definition.

A direct consequence from (3.26) is that, for any P, Q, F, and J ,

W (X,F) = f(X,F, J) ≥ f0(X,F, J)+P·F+QJ−(f−f0)
∗(X,P, Q), (3.27)

and hence that

W (F, c) ≥ min
F∈K

∫
Ω

[f0(X,F, J) +P · F+QJ ] dX−
∫
Ω

(f − f0)
∗(X,P, Q)dX,

(3.28)

the minimum being evaluated over a suitable set K of kinematically admissi-

ble deformation gradient fields with prescribed volume average F as for (3.4).

The further inequality

W (F, c) ≥ min
F∈K

∫
Ω

f0(X,F, J)dX+min
F∈K

∫
Ω

P · FdX

+min
F∈K

∫
Ω

QJdX−
∫
Ω

(f − f0)
∗(X,P, Q)dX (3.29)

follows from a well-known property of the minimum of sums. The first term

in (3.29) is nothing more than the effective stored-energy function of the

comparison medium with local energy (3.25). We denote it by

W 0(F)
.
= min

F∈K

∫
Ω

W0(X,F)dX. (3.30)

The second and third terms in (3.29) are bounded from below only so long

as P is divergence-free and Q is a constant (and hence also divergence-free).

For simplicity, we choose both these fields to be constant and denote them

2It is possible to invoke Legendre transformations that are more general and efficient
than (3.26) (see, e.g., Chapter 6 in Dacorogna, 2007), but the choice (3.26) proves general
enough for the isotropic material systems of interest in this chapter.
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by P = P and Q = Q. This gives

W (F, c) ≥ W 0(F) +P · F+QJ −
∫
Ω

(f − f0)
∗(X,P, Q)dX. (3.31)

Relation (3.31) provides a lower bound for the effective stored-energy func-

tion W for the filled elastomer with local energy (3.24) in terms of the effec-

tive stored-energy function W 0 for a comparison medium with local energy

(3.25). It is valid for any choice of constants P and Q, and any choice of the

function f0 describing the local constitutive behavior and microstructure of

the comparison medium. Optimization of (3.31) with respect to P and Q

leads to

W (F, c) ≥ W 0(F) + sup
P,Q

[
P · F+QJ −

∫
Ω

(f − f0)
∗(X,P, Q)dX

]
= W 0(F) +

(∫
Ω

(f − f0)
∗dX

)∗

(F, J). (3.32)

Optimizing this result in turn with respect to f0 leads formally to

W (F, c) ≥ sup
f0

{
W 0(F) +

(∫
Ω

(f − f0)
∗dX

)∗

(F, J)

}
. (3.33)

A partially optimized explicit formulation. The computation of the “opti-

mal” bound (3.33) involves two technical difficulties. First, the polar function

(f−f0)
∗ may have corners, and hence the computation of the Legendre trans-

form of its average in (3.33) may require the use of subgradients as opposed

to standard differentiation; see, e.g., Willis (1991) for similar difficulties in

the classical context of convex energies. Second, the supremum operation in

(3.33) involves optimization with respect to the local constitutive behavior of

the comparison medium as well as with respect to its microstructure, which

may require the computation of complicated integrals in the second term of

(3.33). A detailed analysis of these two issues is a substantial task more ap-

propriate for presentation elsewhere. In this chapter, we shall be content with

employing a partially optimized version of the result (3.31) — and not the

fully optimized bound (3.33) — which avoids the above-mentioned technical

difficulties altogether.

A natural prescription to avoid the computation of subgradients in the

above development is to set P = 0 and Q = 0. Then, after recognizing from
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(3.26) that

(f − f0)
∗(X,0, 0) = sup

A, a
[−f(X,A, a) + f0(X,A, a)]

= −min
A, a

[f(X,A, a)− f0(X,A, a)] , (3.34)

it follows from (3.31) that

W (F, c) ≥ W 0(F) +

∫
Ω

min
A, a

[f(X,A, a)− f0(X,A, a)] dX. (3.35)

To avoid the computation of complicated integrals in the second term of

(3.35), it is reasonable to restrict attention to a comparison medium in the

form of a filled elastomer with the same microstructure as the actual filled

elastomer, namely,

W0(X,F) = f0(X,F, J) = (1− θ(X))f0m(F, J) + θ(X)f0p(F, J), (3.36)

where the indicator function θ is the same as in (3.24). Since the interest

here is in elastomers reinforced by rigid particles, it suffices in fact to re-

strict attention to a comparison filled elastomer of the form (3.36) in which

the particles are also rigid. Without loss of generality, this can be easily

accomplished by setting

f0p(F, J) = fp(F, J) =
µp

2
[F · F− 3] + µp

[
1

2
(J − 1)2 − (J − 1)

]
. (3.37)

Substituting (3.24) and (3.36) with (3.37) in (3.35) and then taking the limit

of rigid particles µp → +∞ renders3, with a slight change in notation,

W (F, c) ≥ W 0(F, c) + (1− c)min
A,a

[fm(A, a)− f0m(A, a)] . (3.38)

This lower bound is non-trivial only so long as fm grows faster than the

choice of stored-energy function f0m for the comparison matrix material in

the limit as ||F||, |J | → +∞. For the opposite case4 when f0m grows faster

3An alternative direct derivation of the formula (3.38) follows mutatis mutandis from a
derivation of Willis (see, e.g., equation (3.3) in Willis, 1991; equation (8.17) in Willis, 2002;
see also deBotton and Shmuel, 2010) of Ponte Castañeda’s bound (1991) in the context of
convex energies: W = min

F∈K

∫
Ω
[W0 + (W −W0)] dX ≥ W 0 +

∫
Ω
min(W −W0)dX.

4For the isotropic matrix materials of interest in this chapter, mixed cases in which
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than fm as ||F||, |J | → +∞, the symmetry of (3.38) in the pairs (W, fm) and

(W 0, f0m) implies the following non-trivial upper bound

W (F, c) ≤ W 0(F, c) + (1− c)max
A,a

[fm(A, a)− f0m(A, a)] . (3.39)

At this stage, it is a simple matter to combine the inequalities (3.38) and

(3.39) to finally establish the main result of this section:

W (F, c) =



W 0(F, c) + (1− c)min
A,a

[fm(A, a)− f0m(A, a)]

if fm − f0m > −∞

W 0(F, c) + (1− c)max
A,a

[fm(A, a)− f0m(A, a)]

if fm − f0m < ∞

,

(3.40)

where the equality has been used in the sense of a variational approxima-

tion. Expression (3.40) provides an explicit framework for constructing

approximate solutions for the effective stored-energy function W of elas-

tomers with (possibly compressible and anisotropic) stored-energy function

W (F) = fm(F, J) reinforced by a finite concentration c of rigid particles

directly in terms of the effective stored-energy function W 0 of different elas-

tomers with stored-energy function W0(F) = f0m(F, J) reinforced by exactly

the same distribution of rigid particles (i.e., exactly the same indicator func-

tion θ). The framework is valid for any choice of the function f0m , which

prompts the following optimization

W (F, c) =



sup
f0m

{
W 0(F, c) + (1− c)min

A,a
[fm(A, a)− f0m(A, a)]

}
if fm − f0m > −∞

inf
f0m

{
W 0(F, c) + (1− c)max

A,a
[fm(A, a)− f0m(A, a)]

}
if fm − f0m < ∞

.

(3.41)

The usefulness of the formulation (3.41) — or more generally (3.40) — hinges

upon having knowledge of the effective stored-energy function W 0 for the

f0m grows faster (slower) in F but slower (faster) in J than fm need not be considered.
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comparison filled elastomer. While there have been no prior results available

for such classes of materials (other than a few strictly in 2D), we now have

at our disposal the results for filled Neo-Hookean rubber worked out in the

preceding section.

3.3.2 Application to filled non-Gaussian rubber

Below, we make use of the filled Neo-Hookean rubber considered in Section

3.2.2 as the choice for the comparison medium in the formulation (3.41) in

order to construct an approximate solution for the effective stored-energy

function (3.8) for filled non-Gaussian rubber. To this end, we set

fm(F, J) = Ψ(I1) +
µ+ µ′

2
(J − 1)2 − µ(J − 1); and

f0m(F, J) =
µ0

2
[I1 − 3] +

µ0 + µ′

2
(J − 1)2 − µ0(J − 1), (3.42)

where µ′ and µ0 are positive material parameters, and note that in the limit

as µ′ → +∞ these regularized compressible energies reduce identically to the

incompressible non-Gaussian and Neo-Hookean stored-energy functions

fm(F, J) =

{
Ψ(I1) if J = 1

+∞ otherwise
and f0m(F, J) =

{ µ0

2
[I1 − 3] if J = 1

+∞ otherwise

(3.43)

of interest here.

Upon substitution of (3.42) in the general formulation (3.41), it is straight-
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forward to show that

W (F, c) =



max
µ0

{
W 0(F, c) + (1− c)min

I1

[
Ψ(I1)−

µ0

2
[I1 − 3]

]}
if Ψ(I1)− I1 > −∞

min
µ0

{
W 0(F, c) + (1− c)max

I1

[
Ψ(I1)−

µ0

2
[I1 − 3]

]}
if Ψ(I1)− I1 < ∞

if J = 1

+∞ otherwise

(3.44)

in the limit as µ′ → +∞, where the macroscopic incompressibility constraint

J = 1 in (3.44) ensuing from the microscopic incompressibility constraint

J = 1 in (3.43) and the rigid behavior (3.1) of the particles is the expected

exact constraint. The result (3.44) is applicable to any distribution of rigid

particles (i.e., any indicator function θ). By restricting attention to the

isotropic distributions of rigid particles of polydisperse sizes of interest here

and invoking the notation introduced in (3.8) together with the result (3.21)

for filled Neo-Hookean rubber, the finite branch of the energy (3.44) special-

izes to

Ψ(I1, I2, c) =

max
µ0

{
µ0

2(1− c)5/2
[
I1 − 3

]
+ (1− c)min

I1

[
Ψ(I1)−

µ0

2
[I1 − 3]

]}
if Ψ(I1)− I1 > −∞

min
µ0

{
µ0

2(1− c)5/2
[
I1 − 3

]
+ (1− c)max

I1

[
Ψ(I1)−

µ0

2
[I1 − 3]

]}
if Ψ(I1)− I1 < ∞

. (3.45)

In view of the property (3.7)1 of the function Ψ, it is not difficult to deduce

that the max-min and the min-max problems in (3.45) are solved by exactly
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the same stationarity conditions5

∂Ψ

∂I1

(I1) =
µ0

2
and I1 =

I1 − 3

(1− c)7/2
+ 3 (3.46)

irrespectively of the growth conditions of Ψ, and hence that the energy (3.45)

can be compactly written as

Ψ(I1, I2, c) = (1− c)Ψ

(
I1 − 3

(1− c)7/2
+ 3

)
. (3.47)

The simple explicit effective stored-energy function (3.47) constitutes the

main result of this chapter. It characterizes the overall nonlinear elastic

response of non-Gaussian rubber with stored-energy function Ψ(I1) filled

with an isotropic distribution of rigid particles of polydisperse sizes and finite

concentration c. The following theoretical and practical remarks are in order:

i. Owing to the properties (3.6) and (3.7)1 of the function Ψ, the effective

stored-energy function (3.47) is such that

Ψ(3, 3, c) = 0,

Ψ(I1, I2, c) > 0 ∀ I1, I2 > 3,

Ψ(I1, I2, c2) > Ψ(I1, I2, c1) ∀ I1, I2 > 3, c2 > c1 ≥ 0. (3.48)

The first two of these conditions are direct consequences of the fact

that the filled non-Gaussian rubber is stress-free in the undeformed

configuration, isotropic, and incompressible. The last condition en-

tails physically that the addition of rigid particles consistently leads

to a stiffer material response irrespectively of the applied loading, in

agreement with experience.

ii. Remarkably, the effective stored-energy function (3.47) is independent

of the second principal invariant I2 = F
−T · F−T

. The origin of this

independence can be traced back to the first step of the derivation,

when the weak but existent dependence on I2 of the dilute response of

filled Neo-Hookean rubber (see Sections 3.2.2 and 2.4) was neglected

in order to favor analytical tractability. Neither the iterated dilute

5It is of practical relevance to note here that the optimal values of the variables µ0 and
I1 dictated by (3.46) are physically consistent in the sense that µ0 ≥ 0 and I1 ≥ 3.
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homogenization procedure to account for finite concentration of parti-

cles (Section 3.2.1), nor the comparison medium procedure to account

for non-Gaussian behavior (Section 3.3.1) introduced dependence on I2

thereafter. This suggests — given the different nature and generality

of these two procedures — that the response of any filled I1-based non-

Gaussian elastomer is in all likelihood practically insensitive to I2. The

FE simulations presented in the next section provide further support

that this is indeed the case.

iii. For the common case when the stored-energy function Ψ for the un-

derlying non-Gaussian matrix material is convex in I1,

dΨ

dI1
(I1) > 0 and

d2Ψ

dI21
(I1) ≥ 0, (3.49)

it is a simple matter to deduce that

∂Ψ

∂I1
(I1, I2, c) > 0,

∂Ψ

∂I1
(I1, I2, c) + 2

[
I1 − λ

2

k − 2λ
−1

k

] ∂2Ψ

∂I
2

1

(I1, I2, c) > 0 (k = 1, 2, 3),

∀ I1, I2 ≥ 3, c ≥ 0, (3.50)

and hence that the effective stored-energy function (3.47) is strongly

elliptic (see, e.g., Section 4 in Zee and Sternberg, 1983). This stability

property is consistent with recent 2D bifurcation analyses (Triantafyl-

lidis et al., 2006; Michel et al., 2010) which have shown that isotropic

filled elastomers that are microscopically (i.e., pointwise) convex in I1

are macroscopically strongly elliptic. For the case when Ψ is merely

strongly elliptic (i.e., it satisfies the weaker conditions (3.7)) but not

convex in I1, the effective stored-energy function (3.47) can still be

shown to be strongly elliptic for small enough deformations, but it may

lose strong ellipticity at sufficiently large values of I1 > 3.

iv. In the limit of small deformations (I1, I2 → 3), the stored-energy func-

tion (3.47) reduces asymptotically to

Ψ(I1, I2, c) = µ
[
ε 2
1 + ε 2

2 + ε 2
3

]
with ε1 + ε2 + ε3 = 0 (3.51)
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to leading order in the deformation measures εk = λk − 1 (k = 1, 2, 3),

where it is recalled that λk denote the singular values of the macroscopic

deformation gradient F and

µ =
µ

(1− c)5/2
(3.52)

stands for the initial effective shear modulus of the filled rubber. Ex-

pression (3.52) agrees identically with the exact Brinkman-Roscoe re-

sult (cf. equation (12) in Roscoe, 1973) for the effective shear modulus

of an isotropic incompressible linearly elastic solid reinforced by an

isotropic distribution of rigid spherical particles of infinitely many di-

verse sizes. In the further limit of small concentration of particles as

c → 0, the effective shear modulus (3.52) reduces to

µ = µ+
5

2
µ c+O(c2), (3.53)

which agrees in turn with the classical Einstein-Smallwood result (cf.

equation (12) in Smallwood, 1944) for the effective shear modulus of

an isotropic incompressible linearly elastic solid reinforced by a dilute

distribution of rigid spherical particles.

v. The connection with the effective shear modulus (3.52) for isotropic dis-

tributions of spherical particles is not restricted to small deformations.

Indeed, for the special case when the elastomeric matrix is Neo-Hookean

rubber, Ψ = µ/2[I1 − 3] and the effective stored-energy function (3.47)

reduces to

Ψ(I1, I2, c) =
µ

2(1− c)5/2
[
I1 − 3

]
, (3.54)

which is seen to have the same functional form as the Neo-Hookean ma-

trix material, with the effective shear modulus given by (3.52). While

the effective stored-energy function (3.54) is not an exact realizable

result for Neo-Hookean rubber filled with an isotropic distribution of

rigid spherical particles of polydisperse sizes, owing to its iterative con-

struction process (see Section 3.2.1), it is expected to provide a very

accurate approximation for this class of material systems. By the same

token, the approximate effective stored-energy function (3.47) is ex-

pected to describe very accurately the response of any non-Gaussian
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rubber filled with an isotropic distribution of rigid spherical particles of

polydisperse sizes in the small and moderate deformation regimes. For

large deformations, the result (3.47) is likely to be relatively less accu-

rate for this class of material systems, as its variational construction

process (see Section 3.3.1) entails that it corresponds to some sort of

lower (upper) bound when the underlying matrix material has stronger

(weaker) growth conditions than Neo-Hookean rubber. These expecta-

tions are supported by comparisons with the FE simulations presented

in the next section.

vi. Rather interestingly, the result (3.47) indicates that the nonlinear elas-

tic response of filled non-Gaussian rubber corresponds in essence to the

response of the underlying non-Gaussian rubber — as characterized by

its stored-energy function Ψ — evaluated at the “amplified” measure

of strain

I
Amp

1 =
I1 − 3

(1− c)7/2
+ 3. (3.55)

The idea of modeling the behavior of filled elastomers as the behavior

of the underlying matrix material evaluated at some amplified mea-

sure of strain was originally proposed by Mullins and Tobin (1965) on

heuristic grounds. The homogenization result (3.47) derived in this

chapter suggests that this empirical idea is roughly correct, at least for

filled I1-based non-Gaussian rubber, and that the strain measure that

is amplified is the first principal invariant I1.

3.4 FE simulations of suspensions of rigid spherical

particles in rubber under large deformations

In order to compare the above theoretical results with a separate solution, in

this section we work out full 3D finite-element (FE) simulations of the large-

deformation response of Neo-Hookean and non-Gaussian rubber reinforced

by random isotropic distributions of rigid spherical particles. To simulate the

randomness and isotropy of the microstructure, we consider infinite periodic

media made up of the repetition of cubic unit cells of unit volume L3 = 1

containing a random distribution of a large number of particles. With the aim

of gaining insight into the effect of the size dispersion of the filler particles,
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we examine distributions with particles of the same (monodisperse) and of

different (polydisperse) sizes.

3.4.1 Monodisperse microstructures

(a) (b) (c)

1L  

1L  

1L  

Figure 3.1: Representative unit cells of unit volume L3 = 1 containing N = 30
randomly distributed spherical particles of monodisperse sizes with three different
concentrations: (a) c = 0.05, (b) c = 0.15 and (c) c = 0.25.

The monodisperse microstructures are constructed by means of a random

sequential adsorption algorithm (see, e.g., Chapter 3 in Torquato, 2002, and

references therein) in which the sequential addition of particles is constrained

so that the distance between the particles with other particles and with

the boundaries of the cubic unit cell take a minimum value that guaranties

adequate spatial discretization (see, e.g., Segurado and Llorca, 2002; Fritzen

et al., 2012), namely:

• The center-to-center distance between a new particle i in the sequential

algorithm and any previously accepted particle j = 1, 2, ..., i− 1 has to

exceed the minimum value s1 = 2Rm(1+ d1), where the offset distance

d1 is fixed here at d1 = 0.02. This condition can be compactly written

in the form

||Xi −Xj − h|| ≥ s1, (3.56)

where Xi (Xj) denotes the location of the center of particle i (j) and

h is a vector with entries 0, L, or −L for each of its three Cartesian

components with respect to the principal axes of the cubic unit cell6.

6Note that condition (3.56) accounts for the fact that the excess of particles exceeding
the spatial domain of the unit cell are appropriately relocated within the unit cell as
dictated by the periodicity of the microstructure (see Fig. 3.1).
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• The particles should be sufficiently distant from the boundaries of the

unit cell as enforced by the inequalities

|X i
k−Rm| ≥ s2 and |X i

k+Rm−L| ≥ s2 (k = 1, 2, 3), (3.57)

where s2 = d2 Rm with d2 being fixed here at d2 = 0.05.

In the above expressions,

Rm = L

(
3 c

4πN

)1/3

(3.58)

stands for the radius of the particles, where N has been introduced to denote

the number of particles in the unit cell. For the material systems of interest

in this chapter, a parametric study varying the number of particles in the

range N ∈ [5, 35] indicates that N = 30 is a sufficiently large number to ap-

proximate overall isotropy; more specific comments on the degree of isotropy

resulting by the use of N = 30 are deferred to Section 3.4.4. Figure 3.1

shows representative unit cells generated by the above-described algorithm

for N = 30 with three different particle concentrations: (a) c = 0.05, (b)

c = 0.15, and (c) c = 0.25.

3.4.2 Polydisperse microstructures

(a) (b) (c)

1L  

1L  

1L  

Figure 3.2: Representative unit cells of unit volume L3 = 1 containing N = 36
randomly distributed spherical particles of three different sizes with three different
concentrations: (a) c ≃ 0.05, (b) c ≃ 0.15 and (c) c ≃ 0.25.

The polydisperse microstructures are constructed by means of a similar

constrained adsorption algorithm. The focus is on polydisperse microstruc-
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tures with three different families of particle sizes. While there is no distinct

rule for the creation of such microstructures and the possibilities are many,

we consider for definiteness the following procedure:

• Three different families of particles with radii R
(I)
p and concentrations

c(I) (I = 1, 2, 3) are utilized such that

{
R(1)

p , R(2)
p , R(3)

p

}
=

{
Rp,

7

9
Rp,

4

9
Rp

}
with Rp = L

(
3 c(1)

4πNp

)1/3

,

(3.59)

and

{
c(1), c(2), c(3)

}
= {0.5 c, 0.25 c, 0.25 c} with c(1)+ c(2)+ c(3) = c,

(3.60)

where Np stands for the number of particles with the largest radius

R
(1)
p = Rp in the unit cell.

• The microstructures are generated sequentially by first adding parti-

cles with the largest radius R
(1)
p until the concentration reaches the

value c(1) = 0.5c, subsequently adding particles with radius R
(2)
p until

c(1) + c(2) ≃ 0.75c, and finally adding particles with the smallest radius

R
(3)
p until c(1) + c(2) + c(3) ≃ c. In following this construction process,

we note that a target concentration c can only be achieved approx-

imately (up to a small error that depends on the various choices of

the parameters). To guarantee adequate spatial discretization, similar

to conditions (3.56)–(3.57), the randomly generated placements of the

centers of the particles are enforced to satisfy the following constraints

||Xi −Xj − h|| ≥ s1, s1 =
(
R(mi)

p +R(mj)
p

)
(1 + d1), (3.61)

|X i
k −R(mi)

p | ≥ s2, |X i
k +R(mi)

p − 1| ≥ s2, s2 = d2 R
(mi)
p (k = 1, 2, 3),

(3.62)

for i, j = 1, 2, ..., N with N again denoting the total number of particles

in the unit cell. Here, the offset parameters are set at d1 = 0.02 and

d2 = 0.05 as in the monodisperse case, and the superscript mi = 1, 2, 3

has been introduced to denote the size of the sphere that should be

added at step i in the sequential construction process, namely, mi = 1

if c(mi) ≤ c(1), mi = 2 if c(1) < c(mi) ≤ c(1) + c(2), and mi = 3 if
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c(1) + c(2) < c(mi).

Guided by a parametric study, in this chapter we utilize Np = 10 which

results into unit cells containing a total of N = 36 particles. As discussed

in Section 3.4.4, such unit cells are sufficiently large to be representative of

isotropic microstructures. Figure 3.2 displays sample unit cells generated

by the above-described algorithm for N = 36 with three different particle

concentrations: (a) c ≃ 0.05, (b) c ≃ 0.15 and (c) c ≃ 0.25.

3.4.3 Meshing, material properties, and computation of the
overall nonlinear elastic response

Having identified the monodisperse and polydisperse microstructures of inter-

est, we now turn to their discretization. We make use of the mesh generator

code Netgen (Schöberl, 1997), which has the capability to create periodic

meshes as required here. Ten-node tetrahedral hybrid elements are utilized

in order to handle exactly (in a numerical sense) the incompressible behavior

of the elastomeric matrix and of the rigid particles. Since the computations

are carried out using the FE package ABAQUS, we make use in particular of

the C3D10H hybrid elements available in this code (see Abaqus version 6.11

documentation). Figure 3.3 shows three meshes of increasing refinement for

a distribution of monodisperse particles with concentration c = 0.25. Mesh

sensitivity studies reveal that meshes with approximately 75, 000 elements

(such as the fine mesh shown in Fig. 3.3(b)) produce sufficiently accurate

results.

Within the present formulation, the behavior of the matrix phase can be

modeled exactly by any incompressible stored-energy function (3.5) of choice.

On the other hand, the perfectly rigid behavior (3.1) of the particles can

only be modeled approximately by means of a very (but not infinitely) stiff

material. Here, for definiteness, we model the particles as incompressible

Neo-Hookean solids with stored-energy function

W FE
p (F) =


µFE
p

2
[I1 − 3] if J = 1

+∞ otherwise
, (3.63)

where the parameter µFE
p is set to be three orders of magnitude larger than
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Figure 3.3: Three representative meshes in the undeformed configuration for a
distribution of monodisperse particles with concentration c = 0.25: (a) coarse
mesh with 34629, (b) fine mesh with 69556, and (c) very fine mesh with 170203
elements.

the initial shear modulus of the underlying matrix material, i.e., µFE
p =

103 × µ.

By virtue of their periodicity, the overall nonlinear elastic response of any

of the above-defined classes of filled elastomers amounts to subjecting their

defining cubic unit cells to the periodic boundary conditions

uk(L,X2, X3)− uk(0, X2, X3) = (F k1 − δk1)L,

uk(X1, L,X3)− uk(X1, 0, X3) = (F k2 − δk2)L,

uk(X1, X2, L)− uk(X1, X2, 0) = (F k3 − δk3)L (3.64)

(k = 1, 2, 3), and computing the resulting total elastic energy W , from which

the macroscopic first Piola-Kirchhoff stress S can then be determined; alter-

natively, S can be computed directly by averaging the resulting local stresses

S(X) over the undeformed unit cell. In expression (4.67), the components

uk and Xk (k = 1, 2, 3) refer to a Cartesian frame of reference with origin

placed at a corner of the cubic unit cell whose axes {ek} are aligned with the

principal axes of the cubic unit cell (see Fig. 3.3), δkl denotes the Kronecker

delta, and F is the prescribed average deformation gradient. As a practical

remark, we note that the periodic boundary conditions (4.67) can be expe-

diently implemented in ABAQUS by using the “Equation” option to couple

the nodes of opposite sides of the cubic unit cells.
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3.4.4 Assessment of the simulated microstructures

Because of the finite number of particles — N = 30 for the monodisperse

and N = 36 for the polydisperse microstructures — included per unit cell,

the microstructures simulated here are (not exactly but) only approximately

isotropic. In order to assess their isotropy, we have constructed and com-

pared three different realizations for each concentration of particles that is

simulated. For all matrix materials, loading conditions, and particle con-

centrations considered, the maximum difference in the total elastic energy

between any two corresponding realizations has been computed to be less

than 0.5%.

Further, for each realization, we have examined the co-axiallity between

the average Cauchy stress tensor T
.
= SF

T
and the average left Green-

Cauchy strain tensor B
.
= FF

T
under three types of loading conditions: (i)

axisymmetric tension where F = λ e1⊗e1+λ
−1/2

(e2⊗e2+e3⊗e3) with λ ≥ 1,

(ii) axisymmetric compression where F = λ e1⊗e1+λ
−1/2

(e2⊗e2+e3⊗e3)

with λ ≤ 1, and (iii) simple shear where F = I+γ e1⊗e2 with γ ≥ 0. For all

matrix materials, loading conditions, and particle concentrations considered,

the maximum difference between any two corresponding principal axes of T

and B has been computed to be less than 0.05 radians.

The above two sets of checks indicate that the monodisperse (polydisperse)

microstructures with N = 30 (N = 36) particles per unit cell utilized in this

chapter are indeed good approximations of isotropic distributions of spherical

particles.

In the comparisons with the analytical solution (3.47) that follow in the

next section, all presented FE results correspond to the average of three real-

izations. Moreover, all FE results are computed by following an incremental

loading path, at each step of which the incremental equilibrium equations

are solved directly in ABAQUS. We utilize the default dual convergence

criterion in this code (Abaqus version 6.11 documentation), namely, the per-

missible ratio of the largest solution correction to the largest corresponding

incremental solution is set at |∆u|/|umax| = 10−2, while the permissible ra-

tio of the largest residual to the corresponding average force norm is set at

Rtol = 5 × 10−3. Whenever one of these criteria is not satisfied the com-

putations are stopped. This typically happens whenever the elements in

between two particles become exceedingly distorted because of the locally
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Figure 3.4: (a) Contour plots of the maximum principal logarithmic strain for
a monodisperse realization with c = 0.25 and Neo-Hookean matrix subjected to
an overall simple shear strain of γ = 0.64; the undeformed configuration is also
depicted for comparison purposes. Part (b) shows an inside view of three pairs of
particles in between which the matrix material is highly deformed.

large deformations involved.

Figure 3.4 presents an example of large local deformations in between parti-

cles for the case of a monodisperse realization with c = 0.25 and Neo-Hookean

matrix under simple shear. Part (a) shows contour plots of the maximum

principal logarithmic strain at an overall shear strain level of γ = 0.64; the

initial undeformed geometry is also depicted for comparison purposes. The

deformation contours are seen to be highly heterogeneous with principal loga-

rithmic strains as large as 2.77 within regions between particles. In part (b),

an inside view is shown of three regions of strong particle interaction and

high local strains that lead to significant mesh distortion and therefore prob-

lems with the numerical convergence of the FE calculations. In principle,

re-meshing of these regions should allow to reach further overall deforma-

tions (see, e.g., Moraleda et al., 2009, for the analogous problem), but this is

beyond the scope of this chapter and hence not pursued here.

3.5 Sample results and discussion

A range of specific results are presented next for the overall nonlinear elastic

response of filled rubber as described by the analytical approximation (3.47)

and the FE simulations of Section 3.4. Results for the linear elastic response

in the small-deformation regime are presented first followed by results for
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the large-deformation response of filled Neo-Hookean rubber under various

loading conditions. The third set of results pertains to the response of a

filled rubber wherein the underlying elastomeric matrix is characterized by

the non-Gaussian stored-energy function (Lopez-Pamies, 2010b)

Ψ(I1) =
31−α1

2α1

µ1 [I
α1
1 − 3α1 ] +

31−α2

2α2

µ2 [I
α2
1 − 3α2 ] (3.65)

with µ1 = 0.032 MPa, µ2 = 0.3 MPa, α1 = 3.837, α2 = 0.559, corresponding

to a model that has been shown to accurately describe the nonlinear elastic

response of typical silicone rubber over large ranges of deformations (see

Section 2.3 in Lopez-Pamies, 2010b).

The selection of results presented here aims at providing further insight

into the constructed analytical solution (3.47) and at assessing its accuracy

for a wide range of particle concentrations, elastomeric matrix materials, and

loading conditions. The results also aim at shedding light on the effect of

the size dispersion of fillers in the overall nonlinear elastic response of filled

elastomers.

3.5.1 Linear elastic results

In the limit of small deformations (see remark iv in Section 3.3.2), the an-

alytical approximation (3.47) reduces to the exact effective stored-energy

function (3.51) with (3.52) for an isotropic incompressible linearly elastic

solid reinforced by an isotropic distribution of rigid spherical particles of in-

finitely many diverse sizes. Figure 3.5 presents plots for the initial effective

shear modulus (3.52), normalized by the initial shear modulus µ of the un-

derlying elastomeric matrix, as a function of the concentration of particles c.

Results are also presented for the FE simulations of Section 3.4 for isotropic

distributions of spherical particles with the same size (monodisperse) and

with three different sizes (polydisperse). To gain further insight, the corre-

sponding Hashin-Shtrikman lower bound for the effective shear modulus of

rigidly reinforced, isotropic, incompressible, linearly elastic materials (Hashin

and Shtrikman, 1961) is included in the figure. As expected, all four results

stiffen monotonically with increasing values of c. Although exact for infinitely

polydisperse particles, the analytical response is seen to be in good agree-

ment with the FE results for polydisperse particles with only three families
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Figure 3.5: The normalized initial effective shear modulus µ/µ of isotropic in-
compressible elastomers filled with random isotropic distributions of rigid parti-
cles. Plots are shown for: (i) the analytical result (3.52), (ii) FE simulations for
distributions of spherical particles with the same (monodisperse) and with three
different (polydisperse) sizes, and (iii) the corresponding Hashin-Shtrikman lower
bound µ/µ = (2 + 3c)/(2− 2c), as functions of the concentration of particles c.

of particle sizes for the entire range of concentrations considered c ∈ [0, 0.4].

More remarkably, the analytical solution exhibits good agreement with the

FE results for monodisperse particles up to the relatively high concentra-

tion of c = 0.3. These favorable comparisons are consistent with earlier 2D

results (Moraleda et al., 2009; Lopez-Pamies, 2010a) suggesting that polydis-

persity does not play a role in the response of particle-reinforced materials

for particle concentrations sufficiently below the percolation limit. A fur-

ther relevant observation from Fig. 3.5 is that all three particulate results

(analytical, FE monodisperse, FE polydisperse) are very close to the Hashin-

Shtrikman lower bound up to a concentration of particles of about c = 0.1,

after which they become significantly stiffer.

3.5.2 Results for filled Neo-Hookean rubber

For the case when the underlying matrix material is Neo-Hookean rubber

(see remark v in Section 3.3.2), the analytical approximation (3.47) takes the

form (3.54). Figure 3.6 presents results for the large-deformation response

of filled Neo-Hookean rubber, as characterized by the effective stored-energy
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function (3.54), for three values of particle concentration c = 0.05, 0.15, and

0.25 under: (a) uniaxial compression, (b) uniaxial tension, (c) pure shear,

and (d) simple shear. The constitutive stress-deformation relations for these

loading conditions read explicitly as

• Uniaxial loading (λ1 = λ, λ2 = λ3 = λ
−1/2

with t2 = t3 = 0):

Sun = λ
−1
t1 =

dΨ

dλ
=

µ

(1− c)5/2

[
λ− λ

−2
]

(3.66)

• Pure shear (λ1 = λ, λ2 = λ
−1
, λ3 = 1 with t2 = 0):

Sps = λ
−1
t1 =

dΨ

dλ
=

µ

(1− c)5/2

[
λ− λ

−3
]

(3.67)

• Simple shear (λ1 = (γ +
√
γ 2 + 4)/2, λ2 = λ

−1

1 , λ3 = 1):

Sss =
dΨ

dγ
=

µ

(1− c)5/2
γ (3.68)

where Sun, Sps, Sss denote first Piola-Kirchhoff stress measures, while t1, t2,

t3 have been introduced to denote the macroscopic principal Cauchy stresses.

Figure 3.6 includes corresponding FE results for isotropic distributions of

rigid spherical particles. No distinction is made here of whether the parti-

cles are of the same or of different sizes since, somewhat remarkably, both

classes of microstructures exhibit essentially the same large-deformation re-

sponse. This is consistent with the linear elastic results of Fig. 3.5, where

the monodisperse and polydisperse FE simulations render practically identi-

cal effective shear moduli for concentrations below c = 0.3.

As anticipated by remark i in Section 3.3.2, Fig. 3.6 shows that the overall

stiffness of filled Neo-Hookean rubber increases monotonically with increas-

ing concentration of particles for all loading conditions. Another immediate

observation is that the analytical and FE results are in good qualitative and

quantitative agreement, with the FE results exhibiting a slightly stiffer be-

havior at large deformations. This trend appears to be independent of the

concentration of particles.
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Figure 3.6: Macroscopic response of filled Neo-Hookean rubber with various values
of concentration of particles c under: (a) uniaxial compressive, (b) uniaxial tensile,
(c) pure shear, and (d) simple shear loading conditions. Plots are shown for the
analytical stress-deformation results (3.66), (3.67), (3.68), and corresponding FE
simulations for isotropic distributions of spherical particles.
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Figure 3.7: Comparison of the analytical stored-energy function (3.54) for filled
Neo-Hookean rubber with corresponding FE simulations for isotropic distributions
of spherical particles. The results are shown in terms of the principal invariants
I1 and I2 for two values of concentration of particles. Part (a) shows results for
fixed values of I2 as functions of I1, while part (b) shows results for fixed values
of I1 as functions of I2.

To further probe the connections between the analytical approximation

and the FE simulations, Fig. 3.7 compares their elastic energies Ψ/µ, nor-

malized by the initial shear modulus µ of the underlying Neo-Hookean ma-

trix, as functions of the principal invariants I1 and I2. Part (a) of the figure

shows Ψ/µ for fixed values of the second invariant I2 = 3.90 for c = 0.15 and

I2 = 4.70 for c = 0.05 as functions of I1, while part (b) shows results for fixed

values of the first invariant I1 = 3.65, 3.97 for c = 0.15 and I1 = 4.82, 5.13 for

c = 0.05 as functions of I2. It is recalled that the constraint of incompress-

ibility J = 1 imposes a restriction on the physically allowable values of I1

and I2. Thus, for fixed I2 = 3.90 and 4.70 the first invariant is restricted to

take values in the ranges I1 ∈ [3.65, 4.34] and I1 ∈ [4.10, 5.96], respectively.

For fixed I1 = 3.65, 3.97, 4.82, and 5.13, the corresponding allowable values

of the second invariant are I2 ∈ [3.49, 3.91], I2 ∈ [3.69, 4.46], I2 ∈ [4.16, 6.23],

and I2 ∈ [4.31, 6.98]. These are the ranges of values utilized in the figure.

The main observation from Fig. 3.7 is that the FE results are approxi-

mately linear in the first invariant I1 and independent of the second invariant

I2. This behavior is in accordance with that of the analytical approximation,

corroborating that both results are very much identical in their functional

form. The fact that the macroscopic behavior of filled Neo-Hookean rubber
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is functionally the same — i.e., linear in I1 and independent of I2 — as

that of its underlying Neo-Hookean matrix is of note. Indeed, the functional

character of the average behavior of nonlinear material systems is in general

substantially different from that of its constituents, but that is not the case

here.

3.5.3 Results for a filled silicone rubber

Finally, Fig. 3.8 presents various results for the large-deformation response

of a filled non-Gaussian rubber, wherein the underlying matrix material is

a typical silicone rubber characterized here by the stored-energy function

(3.65) with material parameters µ1 = 0.032 MPa, µ2 = 0.3 MPa, α1 = 3.837,

α2 = 0.559. The analytical approximation (3.47) specializes in this case to

Ψ(I1, I2, c) = (1− c)
2∑

r=1

31−αr

2αr

µr

[(
I1 − 3

(1− c)7/2
+ 3

)αr

− 3αr

]
. (3.69)

Parts (a), (b), and (c) of the figure show stress-deformation results for uni-

axial compression, uniaxial tension, and simple shear for particle concentra-

tions c = 0.05, 0.15, and 0.25. The constitutive stress-deformation relations

for these loading conditions are given explicitly by

• Uniaxial loading (λ1 = λ, λ2 = λ3 = λ
−1/2

with t2 = t3 = 0):

Sun = λ
−1
t1 =

dΨ

dλ
=

λ− λ
−2

(1− c)5/2

2∑
r=1

31−αrµr

[
λ

2
+ 2λ

−1 − 3

(1− c)7/2
+ 3

]αr−1

(3.70)

• Simple shear (λ1 = (γ +
√
γ 2 + 4)/2, λ2 = λ

−1

1 , λ3 = 1):

Sss =
dΨ

dγ
=

γ

(1− c)5/2

2∑
r=1

31−αrµr

[
γ 2

(1− c)7/2
+ 3

]αr−1

(3.71)

where, again, Sun, Sss denote first Piola-Kirchhoff stress measures and t1,

t2, t3 stand for the macroscopic principal Cauchy stresses. Part (d) displays

results for the effective stored-energy function (3.69) for fixed values of the

first principal invariant I1 = 3.76 for c = 0.15 and I1 = 4.75 for c = 0.05,
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Figure 3.8: Macroscopic response of filled silicone rubber with various values of
concentration of particles c under: (a) uniaxial compressive, (b) uniaxial tensile,
and (c) simple shear loading conditions. Plots are shown for the analytical stress-
deformation results (3.70), (3.71), and corresponding FE simulations for isotropic
distributions of spherical particles. Part (d) of the figure shows comparisons be-
tween the analytical stored-energy function (3.69) and corresponding FE results
for two fixed values of the first principal invariant I1 and c, in terms of the second
invariant I2.

in terms of the second invariant I2. All four parts of the figure include

corresponding FE results for isotropic distributions of spherical particles.

Akin to the preceding Neo-Hookean case, we make no distinction here of

whether the particles are of the same or of different sizes since, again, the

simulated monodisperse and polydisperse microstructures turn out to exhibit

practically the same response for particle concentrations below c = 0.3.
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In addition to the monotonic stiffening of the response for increasing val-

ues of particle concentration, it is immediate from parts (a) through (c) of

Fig. 3.8 that the analytical and FE results are in fairly good qualitative and

quantitative agreement for all loading conditions, especially for small and

moderate deformations. For large enough deformations at which the limiting

chain extensibility of the silicone rubber comes into effect, the analytical re-

sults are consistently softer — as expected from their variational construction

process (see remark v in Section 3.3.2) — than their FE counterparts. Part

(d) of the figure shows that the FE results for filled silicone rubber, much

like those for filled Neo-Hookean rubber, are approximately independent of

the second macroscopic invariant I2, in functional accord with the analytical

approximation (3.69).

The above three sets of sample results indicate that the analytical ap-

proximation (3.47) provides a mathematically simple, functionally sound,

and quantitatively fairly accurate result for the overall nonlinear elastic re-

sponse of non-Gaussian elastomers reinforced by isotropic distributions of

rigid spherical particles of polydisperse sizes. The results have also served

to reveal that size dispersion of the underlying reinforcing particles is incon-

sequential, in that it does not affect the overall response of the material,

for particle concentrations up to the relatively high value of about c = 0.3.

Accordingly, the analytical approximation (3.47) can additionally be utilized

to describe the response of non-Gaussian elastomers filled with isotropic dis-

tributions of spherical particles of the same size with small-to-moderate con-

centrations.
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CHAPTER 4

FILLED ELASTOMERS: A THEORY OF
FILLER REINFORCEMENT BASED ON
HYDRODYNAMIC AND INTERPHASIAL

EFFECTS

The object of this chapter is to build upon the work of Lopez-Pamies et al.

(2013a) to develop a microscopic theory of filler reinforcement, accounting di-

rectly for both the hydrodynamic and the interphasial reinforcement effects,

with the capability to describe, explain, and predict the nonlinear elastic re-

sponse of filled elastomers under arbitrarily large deformations. Specifically,

the focus is on the industrially prominent case of isotropic incompressible

elastomers filled with a random and isotropic distribution of rigid particles

of polydisperse sizes. Paralleling the work of Lopez-Pamies et al. (2013b,a),

this is accomplished here by way of a twofold strategy. Roughly speaking, a

solution is first constructed for the homogenized nonlinear elastic response of

Gaussian elastomers filled with a dilute isotropic distribution of rigid parti-

cles and interphases. By means of a combination of iterative and variational

techniques, this fundamental dilute result is then utilized to generate in turn

a solution for the homogenized nonlinear elastic response of non-Gaussian

elastomers filled with an isotropic distribution of rigid particles and inter-

phases at finite concentrations.

In this chapter, for purposes of gaining further insight and of assessing the

accuracy of the proposed theory, full 3D FE (finite-element) results are also

generated for the large-deformation response of Gaussian and non-Gaussian

elastomers reinforced by isotropic distributions of rigid spherical particles

bonded through interphases of constant thickness. While this numerical

approach for such a practically relevant problem seems simple enough, its

presentation in the literature is not known to the authors.
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4.1 The problem

4.1.1 Microscopic description of filled elastomers

A filled elastomer is taken here to consist of a random distribution of rigid

particles bonded to an elastomeric matrix through interphases of finite sizes;

Fig. 4.1 shows a schematic illustration of this microscopic view. The domain

occupied by the entire composite in its ground state is denoted by Ω and its

boundary by ∂Ω. Similarly, Ωm, Ωp, and Ωi denote the domains occupied

collectively by the matrix, the particles, and the interphases so that Ω =

Ωm∪Ωp∪Ωi and their respective initial volume fractions (or concentrations)

are given by cm
.
= |Ωm|/|Ω|, cp

.
= |Ωp|/|Ω|, and ci

.
= |Ωi|/|Ω|. We assume

that the distribution of the particles is statistically uniform (i.e., translation

invariant) and that their sizes and those of their surrounding interphases are

much smaller that the size of Ω.

rigid particles

elastomeric 

matrix

interphases

Figure 4.1: Schematic microscopic view of a filled elastomer.

Upon the application of mechanical loads, the initial position vector X

of a material point in Ω moves to a new position specified by x = χ(X),

where χ is a one-to-one mapping from Ω to the deformed configuration Ω′.

We assume that χ is twice continuously differentiable, expect possibly on

the matrix/interphase and interphase/particles boundaries, where is only

required to be continuous. The associated deformation gradient is denoted

by

F = Gradχ (4.1)

and its determinant by J = detF. The elastomeric matrix is considered to

be a homogeneous nonlinear elastic solid with stored-energy function Wm =
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Wm(F). Similarly, the rigid particles are homogeneous nonlinear elastic solids

characterized by the stored-energy function

Wp(F) =

{
0 if F = Q ∈ Orth+

+∞ otherwise
, (4.2)

where Orth+ stands for the set of all proper orthogonal second-order tensors.

The interphases are taken to be nonlinear elastic solids as well, but need not

be homogeneous. We write their stored-energy function as Wi = Wi(X,F).

Given the above local constitutive descriptions, it follows that at each ma-

terial point X in the undeformed configuration Ω, the first Piola-Kirchhoff

stress tensor S is given in terms of F simply by

S =
∂W

∂F
(X,F), (4.3)

where

W (X,F) = [1− θp(X)− θi(X)] Wm(F) + θp(X)Wp(F) + θi(X)Wi(X,F)

(4.4)

with θp and θi denoting the characteristic functions of the spatial regions

occupied by the particles and interphases: θp(X)=1 if X ∈ Ωp and zero

otherwise, and, likewise, θi(X)=1 if X ∈ Ωi and zero otherwise.

4.1.2 The macroscopic response

In view of the assumed separation of length scales and statistical uniformity

of the microstructure, the above-defined filled elastomer behaves macroscop-

ically as a “homogenous” material. Its macroscopic or overall response is de-

fined as the relation between the volume average of the first Piola-Kirchhoff

stress S and the volume average of the deformation gradient F over the unde-

formed configuration Ω when the composite is subjected to affine boundary

conditions (Hill, 1972). Consistent with our choice of F as the independent

variable of the problem, we consider boundary conditions that are affine in

the deformation, namely,

x = FX on ∂Ω, (4.5)
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where the second-order tensor F stands for a prescribed quantity. Granted

the boundary data (4.5), the divergence theorem warrants that the average of

deformation gradient over the undeformed configuration |Ω|−1
∫
Ω
F(X)dX =

F and hence the derivation of the macroscopic response reduces to finding

the average stress S
.
= |Ω|−1

∫
Ω
S(X)dX for a given F. The result can be

conveniently written in a variational form as (Ogden, 1978)

S =
∂W

∂F
(F, cp, ci), (4.6)

where

W (F, cp, ci) = min
F∈K

1

|Ω|

∫
Ω

W (X,F) dX, (4.7)

the effective stored-energy function, corresponds physically to the total elastic

energy per unit undeformed volume stored in the filled elastomer. In these

expressions, the concentrations cp and ci are utilized as explicit variables

for later convenience and K denotes a sufficiently large set of kinematically

admissible deformation gradient fields with prescribed volume average F.

4.1.3 Filled elastomers with overall isotropic incompressible
behavior: the basic case of spherical filler particles and
constant-thickness Gaussian interphases

The foregoing formulation is valid for arbitrary stored-energy functions for

the elastomeric matrix, Wm(F), and interphases, Wi(X,F), as well as for

general classes of microstructures as characterized by θp(X) and θi(X). The

focus of this chapter is on the prominent case of elastomeric matrices that

are constitutively isotropic and incompressible and microstructures that are

isotropic. Within this class of materials, we further restrict attention to

those wherein the particles are spherical and the interphases are of constant

thickness and made up of a Gaussian elastomer1. Specifically, we consider

1As elaborated further below, these geometric and constitutive idealizations prove suf-
ficiently general for most filled elastomers wherein the interphases are typically stiffer than
the matrix.
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I1-based stored-energy functions of the form

Wm =

{
Ψm(I1) if J = λ1λ2λ3 = 1

+∞ otherwise
and

Wi =

{ µi

2
[I1 − 3] if J = λ1λ2λ3 = 1

+∞ otherwise

(4.8)

for the elastomeric matrix and interphases. In these expressions, λ1, λ2, λ3

stand for the singular values of the deformation gradient tensor F, I1 = F ·F,
µi > 0 denotes the initial shear modulus of the interphases, and Ψm is any

non-negative function of choice satisfying the linearization conditions2

Ψm(3) = 0, Ψ′
m(3) =

µm

2
, (4.9)

where µm denotes the initial shear modulus of the elastomeric matrix, and

the strong ellipticity conditions (Zee and Sternberg, 1983)

Ψ′
m(I1) > 0, Ψ′

m(I1)+2[I1−λ2
α−2λ−1

α ]Ψ′′
m(I1) > 0 (α = 1, 2, 3) ∀ I1 ≥ 3.

(4.10)

Stored-energy functions of the form (4.8)1 with (4.9)-(4.10) are generalization

of the classical Gaussian or Neo-Hookean energy Ψm(I1) = µm/2 [I1 − 3]

that have been shown to describe reasonably well the response of a wide

variety of elastomers over large ranges of deformations (see, e.g., Arruda

and Boyce, 1993; Gent, 1996; Lopez-Pamies, 2010b). A further merit of

these types of constitutive models is that they are derivable from microscopic

considerations (see, e.g., Beatty, 2003).

Owing to assumed constitutive isotropy and incompressibility of the ma-

trix material (4.8)1, interphases (4.8)2, and rigid particles (4.2), and the

assumed isotropy of the microstructure, the resulting overall elastic response

is isotropic and incompressible. This implies that the effective stored-energy

function W in this case depends on the macroscopic deformation gradient

F only through its singular values λ1, λ2, λ3 and becomes unbounded for

non-isochoric deformations when J = detF = λ1λ2λ3 ̸= 1. Accordingly,

the result (4.7) can be simply written as a symmetric function of λ1, λ2, λ3

2Throughout this Chapter, the notation Ψ′
m(I1)

.
= dΨm(I1)/dI1 and Ψ′′

m(I1)
.
=

d2Ψm(I1)/dI
2
1 is used for convenience.
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subject to the constraint λ1λ2λ3 = 1. Alternatively, in this chapter we shall

find it more convenient to write the effective stored-energy function (4.7) as

a function of the two principal invariants I1 = F · F = λ
2

1 + λ
2

2 + λ
2

3 and

I2 = F
−T · F−T

= λ
2

1λ
2

2 + λ
2

1λ
2

3 + λ
2

2λ
2

3 in the form

W (F, cp, ci) =

{
Ψ(I1, I2, cp, ci) if J = 1

+∞ otherwise
. (4.11)

The object of this chapter reduces hence to generating a solution for the

finite branch Ψ of the effective stored-energy function (4.11). Paralleling

previous work on filled elastomers without interphases (Lopez-Pamies et al.,

2013b,a), our strategy to generate such a solution involves two main steps.

In the first step, presented in Section 4.2, we work out a solution for the

fundamental limiting case of Gaussian (or Neo-Hookean) elastomers filled

with a dilute concentration of particles and interphases. This dilute solution

for Gaussian elastomers is then utilized in a second step, presented in Section

4.3, to work out in turn a solution for non-Gaussian elastomers filled with

a finite concentration of particles and interphases. In order to assist the

presentation of the results, the unbounded branch of the energies (4.8) and

(4.11) is omitted in most of the remainder of the analysis.

4.2 Dilute concentration of particles and interphases in

Gaussian elastomers

In this section, we derive an asymptotic solution for the effective stored-

energy function Ψ, as defined by (4.11) with (4.7), of filled elastomers in

the limit when the filler particles and surrounding interphases are present

in dilute concentrations, as cp → 0+ and ci → 0+, and the behavior of the

matrix is characterized by the Gaussian stored-energy function

Ψm(I1) =
µm

2
[ I1 − 3], (4.12)

where, again, µm stands for the shear modulus of the elastomeric matrix;

recall that the interphase is also comprised of a Gaussian elastomer but with

different shear modulus µi.

Assuming that the particles are “well separated” and thus do not interact
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elastomeric 

matrix

interphase

r

r + t

x FX

Figure 4.2: Schematic of the single-particle problem: a rigid spherical particle
of radius r is bonded through an interphase of thickness t to a matrix of infinite
extent that is subjected to the affine boundary condition x = FX. The matrix
and interphase are both Gaussian elastomers with shear moduli µm and µi.

with one another in the limit as cp → 0+ and ci → 0+, the effective stored-

energy function Ψ for a dilute suspension of particles is expected to agree

identically with the total elastic energy per unit undeformed volume of an

infinitely large matrix containing just a single spherical particle. This single-

particle problem, schematically depicted in Fig. 4.2, is now taken up. In the

calculations that follow, we shall denote the radius of the particle by r and

the initial thickness of the interphase by t.

4.2.1 The exact solution in the small-deformation limit

It is instructive to begin by examining the small deformation limit as the

applied macroscopic deformation F → I with detF = 1. In this limit, the

elasticity problem (4.7) for the case of the single spherical particle admits an

exact closed-form solution; for clarity of presentation, the relevant calcula-

tions are provided in Appendix D. The result for the finite branch Ψ of the

effective stored-energy function reads as

Ψ(I1, I2, cp, ci) = µm trε 2 +
5µm

2
cp trε

2

+
5(µi − µm) (q1µi + q4µm)µm

2(q1µ2
i + q2 µiµm + q3µ2

m)
ci trε

2

= µdil trε 2 (4.13)
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to leading order in the deformation measure ε
.
= (F+ F

T − 2I)/2 and O(1)

in cp and ci, where the coefficient

µdil .
= µm +

5µm

2
cp +

5(µi − µm) (q1µi + q4µm)µm

2(q1µ2
i + q2 µiµm + q3µ2

m)
ci (4.14)

has been introduced for later reference and

q1 = 38k10 + 225k7 − 336k5 + 200k3 + 48,

q2 = 89k10 + 75k7 − 168k5 + 100k3 − 96,

q3 = 48k10 − 300k7 + 504k5 − 300k3 + 48,

q4 =
4(k − 1)3 (2k3 + 3) (4k6 + 16k5 + 40k4 + 55k3 + 40k2 + 16k + 4)

k2 + k + 1
(4.15)

with

k = 1 +
t

r
=

(
1 +

ci
cp

)1/3

. (4.16)

Expression (4.14) corresponds to the effective shear modulus of an isotropic

incompressible elastomer, with shear modulus µm, filled with a dilute dis-

tribution of rigid spherical particles that are bonded through isotropic in-

compressible interphases with shear modulus µi and thickness t. Three key

points are worth remarking:

• The dependence of the effective shear modulus (4.14) on t enters through

the interphase-thickness-to-particle-radius ratio t/r, or equivalently,

through the ratio of concentration of interphases to concentration of

particles ci/cp. A corollary of such a dimensionless dependence is that

the result (4.14) applies not only to microstructures with monodis-

perse particles, but also to microstructures with polydisperse particles

provided that all particles and surrounding interphases have the same

interphase-thickness-to-particle-radius ratio t/r.

• The result (4.14) constitutes a generalization of the classical result of

Einstein-Smallwood (Smallwood, 1944) for the effective shear modulus

of a dilute suspension of rigid spherical particles in rubber with per-

fect bonding (i.e., without interphases) between the particles and the

rubber. Indeed, in the absence of interphases when ci = 0, the effec-
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tive shear modulus (4.14) reduces identically to the well-known formula

µdil = µm + 5/2µm cp. The choices µi = µm and µi = +∞ also recover

this classical result; in the latter, µdil = µm +5/2µm (cp + ci) since the

total concentration of particles is cp + ci in that limiting case.

• A further salient feature of the solution (4.13)–(4.16) is that the stress

fields inside the particles are not uniform; see Appendix A for details.

Uniform intra-particle (stress and strain) fields are the hallmark of

the classical solution of Einstein-Smallwood, and, more generally, that

of Eshelby (1957), where no interphases are accounted for. The so-

lution (4.13)–(4.16) reveals that the presence of interphases, however

small, disrupts the uniformity of the fields inside the particles. The the-

oretical and practical implications of this feature are far reaching since

many homogenization techniques (e.g., the Mori-Tanaka approxima-

tion and most techniques based on Hashin-Shtrikman-type variational

principles) make critical use of the very fact that the fields in at least

one of the underlying constituents are uniform. The employment of

such techniques to study the behavior of particulate composites with

interphases might hence lead to inaccurate results.

4.2.2 An approximate closed-form solution for arbitrarily
large deformations

For arbitrarily large applied deformations F, the single-particle problem does

not appear to admit an exact analytical solution. In the following two sub-

sections, guided by earlier results for dilute suspensions of rigid particles

without interphases (Lopez-Pamies et al., 2013b), we first construct a FE

(finite-element) solution for the effective stored-energy function Ψ from which

we are then able to devise a closed-form approximation for it.

Finite element solution

By virtue of the invariance of the equations of elastostatics under the trans-

formation (X,x) → (βX, βx), it is indifferent to consider the problem of an

infinitely large elastomeric matrix containing a finite-size particle or that of a

finite-size block of elastomer that contains a particle of infinitesimal size. In
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Figure 4.3: A representative finite element model — in the undeformed configura-
tion — of a small rigid spherical particle of radius r bonded to the matrix through
an interphase of thickness t = 1 − r located at the center of a cubic block of side
L = 800. The boundary of the cube is subjected to the stretches λ1, λ2, and
λ3 = (λ1λ2)

−1 aligned with the three principal axes of the cube.

constructing a FE solution, we are compelled to consider the latter. Without

loss of generality, we take the elastomer block to be a cube of side L. In this

context, given that the radius r of the particle and the thickness t of its sur-

rounding interphase must be necessarily finite, we need to identify how small

their concentrations cp = 4πr3/3L3 and ci = 4π[(r + t)3 − r3]/3L3 ought to

be in order to accurately approximate an infinitesimally small particle and

infinitesimally small interphase. To this end, we carried out a parametric

study with decreasing concentrations of the particle cp and interphase ci.

The results indicate that for combined values cp+ ci ≤ 10−8, the particle and

interphase behave effectively as infinitesimally small. Based on this analysis,

all the calculations that follow are such that

cp + ci =
125π

48
× 10−9, (4.17)

corresponding to a combined particle-interphase length of r+ t = 1 in a cube

of side L = 800.

The geometric and constitutive symmetries of the problem allow to perform

the calculations in just one octant of the cube. A mesh generator code is

utilized to construct the 3D geometry for such an octant. The particle needs

not be meshed, instead, the nodes at the particle/interphase boundary are

fixed in the undeformed configuration in order to model the rigid behavior of
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the particle. For illustration purposes, Fig. 4.3 shows the mesh utilized for

the case with r = 5/6 and t = 0.2r = 1/6, which correspond to cp ≈ 4.73×
10−9 and ci ≈ 3.45×10−9. Small elements are placed near the rigid particle at

uniform angular intervals of 3◦, while the radial length is gradually increased

toward the outer boundary. In all, the mesh consists of 18,900 brick elements

with 675 elements on a radial plane and 28 layers along the radial direction.

The interphase is comprised of 8 layers of elements in the radial direction.

This discretization was selected after various mesh refinements were tried

to assess sufficient mesh convergence. In selecting an appropriate type of

element, we tested 8-node linear and 20-node quadratic hybrid elements,

where the pressure is treated as a further degree of freedom in order to be

able to handle the incompressibility of the Gaussian matrix and interphase

exactly (in a numerical sense). The 20-node quadratic elements with linearly

varying pressure proved to have a faster convergence and thus were selected.

Given the overall isotropy and incompressibility of the problem, it suffices

to restrict attention to affine boundary conditions (4.5) with deformation

gradients of the diagonal form

F = diag

(
λ1, λ2, λ3 =

1

λ1λ2

)
. (4.18)

We find it convenient to implement this type of loading conditions by follow-

ing radial straining paths in principal-logarithmic-strain space. Specifically,

we set

λ1 = λ and λ2 = λa (4.19)

(and hence λ3 = (λ1λ2)
−1 = λ−(1+a)), where λ is a positive load parameter

that takes the value of 1 in the undeformed configuration and a ∈ R. Any de-

sired macroscopic deformation state (λ1, λ2, λ3 = (λ1λ2)
−1) can be accessed

by marching along (starting at λ = 1) radial paths (4.19) with appropriate

fixed values of a.

Under boundary conditions (4.5) with (4.18), the total elastic energy per

unit undeformed volume computed from the FE model, denoted here by
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Ψ
FE

, turns out to be of the expected asymptotic form

Ψ
FE

(λ1, λ2, cp, ci) =
µm

2

[
λ

2

1 + λ
2

2 +
1

λ
2

1λ
2

2

− 3

]
+µmH(λ1, λ2) cp + µmG(λ1, λ2) ci (4.20)

to O(1) in cp and ci. In this expression, H and G are functions of the applied

stretches λ1 and λ2 such that

H(λ1, λ2) = H(λ2, λ1) = H(λ1, (λ1λ2)
−1) = H((λ1λ2)

−1, λ1)

= H(λ2, (λ1λ2)
−1) = H((λ1λ2)

−1, λ2),

G(λ1, λ2) = G(λ2, λ1) = G(λ1, (λ1λ2)
−1) = G((λ1λ2)

−1, λ1)

= G(λ2, (λ1λ2)
−1) = G((λ1λ2)

−1, λ2), (4.21)

as a result of the overall isotropy and incompressibility; in addition to the

applied stretches, the function G depends also on the ratio µi/µm between

the shear moduli of the Gaussian interphase and the matrix, as well as on

the ratio t/r between the thickness of the interphase and the radius of the

particle, but such a dependence is not stated explicitly here for notational

simplicity. Now, in order to extract the correcting functions H and G from

the computed values of Ψ
FE

, an expedient strategy is first to compute Ψ
FE

in the absence of the interphase when ci = 0 so that

H(λ1, λ2) =
1

cp

{
1

µm

Ψ
FE

(λ1, λ2, cp, 0)−
1

2

[
λ

2

1 + λ
2

2 +
1

λ
2

1λ
2

2

− 3

]}
.

(4.22)

Having determined H from (4.22), the function G can then be readily ex-

tracted from the computed values of Ψ
FE

for the case when the interphase

is accounted for, namely,

G(λ1, λ2) =

1

ci

{
1

µm

Ψ
FE

(λ1, λ2, cp, ci)−
1

2

[
λ

2

1 + λ
2

2 +
1

λ
2

1λ
2

2

− 3

]
−H(λ1, λ2) cp

}
.

(4.23)

Here, it is important to emphasize that the correction terms in (4.20) are in
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the order of 10−9 or smaller, as dictated by the combined concentration of

particle and interphase (4.17), and hence that the computation of Ψ
FE

must

be carefully carried out in double precision in order to be able to accurately

determine the correcting functions H and G from (4.22) and (4.23). It is also

important to emphasize that in the computation of the functions H and G,

by virtue of their symmetries (4.21), it suffices to restrict attention to radial

loadings (4.19) with λ ≥ 1 and a ∈ [−0.5, 1].

Results and discussion

Figure 4.4 shows the FE solution for the correcting function H. Part (a)

of the figure shows the full 3D view of the function over a large range of

stretches λ1 and λ2, while part (b) shows its 2D view along the axisymmetric

shear loading with λ1 = λ2 = λ.
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Figure 4.4: (a) Full 3D view of the FE solution for the correcting function H,
defined in (4.20), over a large range of applied macroscopic stretches λ1 and λ2.
(b) 2D view along the axisymmetric shear loading with λ1 = λ2 = λ.

Similarly, Fig. 4.5 shows the FE solution for the correcting function G.

Part (a) of the figure shows the full 3D view of the function over a large

range of stretches λ1 and λ2, while part (b) shows its 2D view along the

axisymmetric shear loading with λ1 = λ2 = λ. As opposed to H, the function

G does depend on the ratio µi/µm between the shear moduli of the interphase

and the matrix, as well as on the ratio t/r between the thickness of the
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Figure 4.5: (a) Full 3D view of the FE solution for the correcting function G,
defined in (4.20), over a large range of applied macroscopic stretches λ1 and λ2.
(b) 2D view along the axisymmetric shear loading with λ1 = λ2 = λ. The results
correspond to an interphase that is five times stiffer than the matrix, µi/µm = 5,
whose thickness is one tenth the particle radius, t/r = 0.1.
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Figure 4.6: FE solutions for the correcting function G along the axisymmetric
shear loading with λ1 = λ2 = λ. Part (a) shows results for various ratios µi/µm

between the interphase and matrix shear moduli at fixed t/r = 0.1, while part (b)
shows results for various ratios t/r between the interphase thickness and particle
radius at fixed µi/µm = 5.

interphase and the radius of the particle. The results displayed in Fig. 4.5

correspond to the values µi/µm = 10 and t/r = 0.1.

The dependence of G on µi/µm and t/r is illustrated in Fig. 4.6. For pur-

poses of visualization, the results are presented only for the case of axisym-
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metric shear loading when λ1 = λ2 = λ. Specifically, Fig. 4.6(a) displays the

function G for µi/µm = 2, 5, 10, 20,+∞ and t/r = 0.1. On the other hand,

Fig. 4.6(b) displays G for t/r = 0.05, 0.1, 0.2 and µi/µm = 5. An immediate

observation from these plots is that G is a monotonically increasing function

of the interphase stiffness µi/µm, but a decreasing function of its thickness

t/r. With respect to the dependence on the interphase stiffness, it is worth

remarking that G saturates quickly with increasing values of µi/µm. There

is indeed little difference between the result for µi/µm = 10 and that for

µi/µm = +∞. It is also worth remarking that G = H for µi/µm = +∞, as

expected, since in this limiting case there is actually no interphase but instead

a rigid spherical particle of radius r + t perfectly bonded to the matrix.

For further scrutiny of the correcting functions H and G, Fig. 4.7 shows

results for H and G in terms of the first and second principal invariants

of the applied macroscopic loading: I1 = F · F = λ
2

1 + λ
2

2 + λ
−2

1 λ
−2

2 and

I2 = F
−T · F−T

= λ
−2

1 + λ
−2

2 + λ
2

1λ
2

2 . Parts (a) and (c) show H and G

as functions of I1 for the two fixed values I2 = 4, 6. Parts (b) and (d), on

the other hand, show H and G as functions of I2 for the four fixed values

I1 = 4, 7, 10, 13. The results for G correspond to the case of an interphase

with µi/µm = 5 and t/r = 0.1. In the context of these plots, it is appropriate

to recall that the constraint of incompressibility imposes a restriction on the

physically allowable values of I1 and I2. Thus, for fixed I2 = 4, 6, the first

invariant is restricted to take values in the ranges I1 ∈ [3.71, 4.52] and I1 ∈
[4.72, 9.34], respectively. For fixed I1 = 4, 7, 10, 13, the allowable values of the

second principal invariant are such that I2 ∈ [3.71, 4.52], I2 ∈ [5.14, 12.54],

I2 ∈ [6.22, 25.20], and I2 ∈ [7.13, 42.40], respectively. These are the ranges

of values utilized in the figure. The dominant observation from Fig. 4.7 is

that both correcting functions H and G are approximately linear in I1 and

independent of I2; while the results for G in this figure correspond to the

particular case of interphase stiffness µi/µm = 5 and thickness t/r = 0.1,

the approximately linear dependence on I1 and independence from I2 of this

function has been checked (through a parametric study) to be insensitive to

the choice of values for µi/µm and t/r. The fact that these macroscopic or

average correcting functions are, in essence, functionally identical — namely,

linear in I1 and independent of I2 — to the local stored-energy functions

for the underlying Gaussian matrix and interphase is admittedly remarkable.

Indeed, the functional character of the average behavior of nonlinear material
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Figure 4.7: FE solutions for the correcting functions H and G plotted in terms of

the principal invariants I1 = λ
2
1 +λ

2
2 +λ

−2
1 λ

−2
2 and I2 = λ

−2
1 +λ

−2
2 +λ

2
1λ

2
2 . Parts

(a) and (c) show H and G as functions of I1 for different fixed values of I2, whereas
parts (b) and (d) show corresponding plots as functions of I2 for different fixed
values of I1. The results shown for the function G in (c) and (d) correspond to an
interphase that is five times stiffer than the matrix, µi/µm = 5, whose thickness
is one tenth the particle radius, t/r = 0.1.

systems is in general substantially different from that of its constituents, but

that is not the case here. This is a most distinctive trait that we exploit next

to generate a simple yet accurate closed-form approximation.

85



The proposed approximate closed-form solution

In view of the analytical asymptotic solution (4.13) in the small-deformation

limit together with the foregoing numerical observations for finite deforma-

tions, we propose the following closed-form approximations

H(λ1, λ2) =
5

4

[
λ

2

1 + λ
2

2 +
1

λ
2

1λ
2

2

− 3

]
, (4.24)

G(λ1, λ2) =
5(µi − µm) (q1µi + q4µm)

4(q1µ2
i + q2 µiµm + q3µ2)

[
λ

2

1 + λ
2

2 +
1

λ
2

1λ
2

2

− 3

]
(4.25)

for the correcting functions H and G. By construction, the approximations

(4.24)–(4.25) have the merit to be exact in the limit of small deformations,

as λ1, λ2 → 1. For arbitrarily large deformations, although not exact, the

approximations (4.24)–(4.25) are practically identical to the exact solution in

a functional sense: they are linear in I1(= λ
2

1+λ
2

2+λ
−2

1 λ
−2

2 ) and independent

of I2(= λ
−2

1 +λ
−2

2 +λ
2

1λ
2

2 ). In addition, as illustrated by Figs. 4.8 and 4.9, the

simple closed-form expressions (4.24)–(4.25) are remarkably accurate when

compared with the corresponding FE solutions. Specifically, Fig. 4.8 shows

comparisons between the proposed approximation (4.24) for the function H

and its FE solution. Similarly, Fig. 4.9 shows comparisons between the

proposed approximation (4.25) for G and its FE solution. Parts (a) and (b)

of Fig. 4.9 correspond to the case of an interphase that is five times stiffer

than the matrix, µi/µm = 5, whose thickness is one tenth the particle radius,

t/r = 0.1, while parts (c) and (d) illustrate comparisons for various values of

the ratios µi/µm and t/r.

Making use of the approximations (4.24)–(4.25) for H and G, it follows

trivially that the resulting closed-form approximate solution for the effective

stored-energy function Ψ of a Gaussian elastomer with shear modulus µm,

filled with a dilute distribution of rigid spherical particles that are bonded

through interphases of constant thickness t, made up of a different Gaussian
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Figure 4.8: Comparison between the correcting function H computed from the
FE simulations and its closed-form approximations (4.24). Part (a) shows the
comparison for a wide range of stretches λ1 and λ2, while part (b) shows the
comparison for the case of axisymmetric deformations with λ1 = λ2 = λ.

elastomer with shear modulus µi, is given by

Ψ(I1, I2, cp, ci) =
µm

2

[
I1 − 3

]
+

5µm

4

[
I1 − 3

]
cp +

5(µi − µm) (q1µi + q4µm)µm

4(q1µ2
i + q2 µiµm + q3µ2

m)

[
I1 − 3

]
ci

=
µ dil

2

[
I1 − 3

]
(4.26)

to O(1) in the concentration of particles cp and interphases ci. Here, it is re-

called that the coefficients q1, q2, q3, q4 are given in terms of the concentration

ratio ci/cp by expressions (4.15), whereas the effective shear modulus µdil is

given by expression (4.14). Because of the above-discussed properties of the

functions (4.24)–(4.25), the approximate solution (4.26) is identical to the

exact solution (4.13) in the limit of small deformations and, while not exact,

qualitatively and quantitatively very close to the FE solution for arbitrarily

large deformations. We conclude by remarking that the dependence of the

effective stored-energy function (4.26) on t enters via the effective shear mod-

ulus µ dil through the dimensionless interphase-thickness-to-particle-radius

ratio t/r = (1 + ci/cp)
1/3 − 1. This implies that the result (4.26) applies

not only to microstructures with monodisperse particles, but also to mi-

crostructures with polydisperse particles wherein all particles and surround-
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Figure 4.9: Comparison between the correcting function G computed from the FE
simulations and its closed-form approximation (4.25). Parts (a) and (b) show the
comparison for a wide range of stretches λ1 and λ2 for µi/µm = 5 and t/r = 0.1.
Part (c) shows results for various ratios µi/µm between the interphase and the
matrix shear moduli at fixed t/r = 0.1, while part (d) shows results for various
ratios t/r between the interphase thickness and particle radius at fixed µi/µm = 5
along axisymmetric deformations with λ1 = λ2 = λ.

ing interphases have the same interphase-thickness-to-particle-radius ratio

t/r = (1 + ci/cp)
1/3 − 1.
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4.3 Finite concentration of particles and interphases in

non-Gaussian elastomers

In this section, we construct a solution for the effective stored-energy function

Ψ, as defined by (4.11) with (4.7), of non-Gaussian elastomers filled with an

isotropic distribution of rigid spherical particles of polydisperse sizes and

finite concentration cp that are bonded through constant-thickness Gaussian

interphases of finite concentration ci. This is accomplished by making use

of two different techniques in two successive steps. First, as elaborated in

Section 4.3.1, the fundamental dilute solution (4.26) is utilized within the

context of an iterated homogenization method in finite elasticity (Lopez-

Pamies, 2010a, 2014) to generate a finite-concentration solution for filled

Gaussian elastomers. In Section 4.3.2, this finite-concentration result is then

employed within the context of a variational nonlinear comparison medium

method (Lopez-Pamies et al., 2013a) to generate in turn a corresponding

solution for the more general case when the underlying elastomeric matrix

is non-Gaussian, as characterized by any I1-based stored-energy function

Ψm(I1) of choice.

4.3.1 Filled elastomers with Gaussian matrix

Iteration 0 Iteration 1 Iteration 2 Ad infinitum

...

...

m

W
i

W
p

W
m

W

  0 )( ) 0 00 (
p i

φ φ   (1) (1)
p p i i

c cφ φ

Figure 4.10: Schematic of the iterative dilute construction process of an elastomer
(characterized by a stored-energy function Wm) filled with particles (characterized
by a stored-energy function Wp) at finite concentration cp bonded through in-
terphases (characterized by a stored-energy function Wi) at finite concentration
ci.

Iterated dilute homogenization methods are a class of iterative techniques

that make use of results for the overall properties of dilute composites in order
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to generate corresponding results for composites with finite concentration of

constituents. Within the non-convex realm of finite elasticity, extending

the formulation of Lopez-Pamies (2010a) for two-phase composites, Lopez-

Pamies (2014) has put forward an iterated dilute homogenization technique

applicable to composite materials with any number of phases. For the generic

three-phase problem outlined in Sections 4.1.1 and 4.1.2, assuming that the

effective stored-energy function (4.7) is of the asymptotic form

W (F, cp, ci) = Wm(F) +H
{
Wm,Wp,Wi;F

}
cp + G

{
Wm,Wp,Wi;F

}
ci

(4.27)

to O(1) in the concentration of particles cp and interphases ci, the formulation

states that the effective stored-energy function (4.7) of elastomers filled with

particles bonded through interphases is given implicitly by the differential

equation

(1− ϕp − ϕi)
∂W

∂τ
=

[
(1− ϕi)

dϕp

dτ
+ ϕp

dϕi

dτ

]
H
{
W,Wp,Wi;F

}
+[

(1− ϕp)
dϕi

dτ
+ ϕi

dϕp

dτ

]
G
{
W,Wp,Wi;F

}
(4.28)

subject to the initial condition

W (F, cp, ci) |τ=0 = Wm(F). (4.29)

The functionals H and G in (4.28) are the same as in the asymptotic re-

sult (4.27), τ is a time-like variable taking values from 0 and 1, the range

over which the differential equation (4.28) must be integrated, and ϕp(τ) and

ϕi(τ) are non-negative, non-decreasing functions of choice that must satisfy

the properties ϕp(τ) + ϕi(τ) ≤ 1, ϕp(0) = ϕi(0) = 0, ϕp(1) = cp, ϕi(1) = ci.

More specifically, the functions ϕp(τ) and ϕi(τ) characterize the manner in

which the composite is constructed and thus contain microstructural infor-

mation; see Fig. 4.10 for a schematic depiction of the iterative construction

process. The interested reader is referred to Section 3.1 of Lopez-Pamies

(2014) for the derivation and full description of the above results. Here, it

suffices to remark that knowledge of an exact (approximate) dilute solution

(4.27) allows to compute exact (approximate) non-dilute solutions via the

initial-value problem (4.28)–(4.29). And that, by construction, such non-
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dilute solutions correspond to polydisperse microstructures with particles of

infinitely many sizes. This feature is of practical relevance here because stan-

dard reinforcing fillers (e.g., carbon black and silica) typically agglomerate,

resulting effectively in polydisperse microstructures with “particles” of many

different sizes.

When specialized to the class of isotropic incompressible filled elastomers

described in Section 4.1.3, assuming that the matrix is Gaussian and employ-

ing the analytical approximation (4.26) as (the finite-branch of) the dilute

solution (4.27), the formulation (4.28)–(4.29) generates the following result:

Ψ(I1, I2, cp, ci) =
µ

2
[I1 − 3] (4.30)

with the coefficient µ being defined implicitly by the first-order nonlinear ode

(1− ϕp − ϕi)
dµ

dτ
=

[
(1− ϕi)

dϕp

dτ
+ ϕp

dϕi

dτ

]
5µ

2

+

[
(1− ϕp)

dϕi

dτ
+ ϕi

dϕp

dτ

]
5µ(µi − µ) (q̂1µi + q̂4µ)

2(q̂1µ2
i + q̂2 µiµ+ q̂3µ

2)
, (4.31)

again, to be integrated from τ = 0 to τ = 1, subject to the initial condition

µ|τ=0 = µm, (4.32)

where

q̂1 = 38k̂10 + 225k̂7 − 336k̂5 + 200k̂3 + 48,

q̂2 = 89k̂10 + 75k̂7 − 168k̂5 + 100k̂3 − 96,

q̂3 = 48k̂10 − 300k̂7 + 504k̂5 − 300k̂3 + 48,

q̂4 =
4(k̂ − 1)3(2k̂3 + 3)(4k̂6 + 16k̂5 + 40k̂4 + 55k̂3 + 40k̂2 + 16k̂ + 4)

k̂2 + k̂ + 1
(4.33)

with

k̂ =

1 +
(1− ϕp)

dϕi

dτ
+ ϕi

dϕp

dτ

(1− ϕi)
dϕp

dτ
+ ϕp

dϕi

dτ


1/3

. (4.34)

Expression (4.30) with (4.31)–(4.34) corresponds to the effective stored-energy

91



function of a Gaussian elastomer, with shear modulus µm, filled with an

isotropic distribution of polydisperse rigid spherical particles at finite concen-

tration cp that are bonded through constant-thickness Gaussian interphases,

with shear modulus µi and finite concentration ci. Thorough comments on

the theoretical and practical merits of this result are deferred to Section 4.3.2

4.2, where the more general case of filled elastomers with non-Gaussian ma-

trix is addressed. At this stage it is important to emphasize, however, that

in addition to its explicit dependence on the concentration of particles cp

and interphases ci, the result (4.30) depends on the microstructure through

the functions ϕp and ϕi, which, again, characterize the way in which the

composite is constructed.

Microstructures with constant interphase-thickness-to-particle-radius ratio.

In this chapter, for relative simplicity, we shall consider microstructures

wherein all filler particles, irrespectively of their size, are surrounded by in-

terphases with the same interphase-thickness-to-particle-radius ratio. This

amounts to choosing

ϕp = cp τ and ϕi = ci τ, (4.35)

in which case q̂1 = q1, q̂2 = q2, q̂3 = q3, q̂4 = q4, k̂ = k, and the initial-value

problem (4.31)–(4.32) for the coefficient µ reduces to

[1− (cp + ci)τ ]
dµ

dτ
=

5cp
2
µ+

5ci(µi − µ) (q1µi + q4µ)

2(q1µ2
i + q2 µiµ+ q3µ

2)
µ with µ|τ=0 = µm,

(4.36)

where, again, q1, q2, q3, q4, and k are given explicitly in terms of the concen-

tration ratio ci/cp by expressions (4.15) and (4.16). Upon integration from

τ = 0 to τ = 1, the ode (4.36)1 takes the form∫ µ

µm

dz

5cp
2
z +

5ci(µi − z) (q1µi + q4z)

2(q1µ2
i + q2 µiz + q3z2)

z

= − ln [1− cp − ci]

cp + ci
. (4.37)

Further, upon recognizing that the integral in (4.37) can be carried out ex-

plicitly together with some algebraic manipulation, this last equation can be
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rewritten as

F1{µ, µm}
.
=
[
tanh−1 (Γ(µ))− tanh−1 (Γ(µm))

]
×

ci [q
2
4 − q4(q1 + 2q2 + q3) + q1q3] + cp[q3(2q1 + q2)− q4(q2 + 2q3)]√

c2i (q1 + q4)2 + 2cicp[q4(2q1 + q2)− q1(q2 + 2q3)] + c2p (q
2
2 − 4q1q3)

−1

2
(q3 + q4) ln

[
ci(µ− µi)(µiq1 + q4µ)− cp (µ

2
i q1 + µiq2µ+ q3µ

2)

ci(µm − µi)(µiq1 + q4µm)− cp (µ2
i q1 + µiq2µm + q3µ2

m)

]
+

(
q4 −

cp
ci
q3

)
ln

[
(1− ci − cp)

5/2 µ

µm

]
= 0, (4.38)

where

Γ(x) =

ci(q4 − q1) + cpq2 + 2(cpq3 − ciq4)
x

µi√
c2i (q1 + q4)2 + 2cicp[q4(2q1 + q2)− q1(q2 + 2q3)] + c2p (q

2
2 − 4q1q3)

(4.39)

and the function F1 has been introduced for later reference. In general, as

discussed in more detail below, equation (4.38) does not admit an explicit

solution for the coefficient µ. For given values of µm, µi, cp, and ci it is,

however, straightforward to generate a numerical solution for it.

4.3.2 Filled elastomers with non-Gaussian matrix

Comparison medium methods are variational techniques that allow to gen-

erate approximations for the overall properties of composites in terms of the

properties of “simpler” comparison media. Generalizing ideas from the works

of Talbot and Willis (1985), Ponte Castañeda (1991), Willis (1994), deBotton

and Shmuel (2010) and Lopez-Pamies et al. (2013a) have introduced a non-

linear comparison medium approach that is capable to deal with the general

types of non-convex behaviors inherent to finite elasticity. For the problem

of filled elastomers formulated in Sections 4.1.1 and 4.1.2, the method pro-

vides the following variational approximation for the effective stored-energy

function (4.7):
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W (F, cp, ci) =

max
W0

{
min
F∈K

1
|Ω|

∫
Ω
W0(X,F)dX+ 1

|Ω|

∫
Ω
min
A,a

[f(X,A, a)− f0(X,A, a)]dX

}
if f − f0 > −∞

min
W0

{
min
F∈K

1
|Ω|

∫
Ω
W0(X,F)dX+ 1

|Ω|

∫
Ω
max
A,a

[f(X,A, a)− f0(X,A, a)]dX

}
if f − f0 < +∞,

(4.40)

In this expression, W0 stands for the local stored-energy function of any

comparison medium of choice, possibly heterogeneous, while the functions

f and f0 are defined such that f(X,F, J) = W (X,F) and f0(X,F, J) =

W0(X,F) when J = detF. The interested reader is referred to Section

4.1 of Lopez-Pamies et al. (2013a) for the derivation and full description of

the above result. Here, it suffices to remark that knowledge of the overall

nonlinear elastic response of a medium with local energyW0, as characterized

by its effective stored-energy function minF∈K |Ω|−1
∫
Ω
W0(X,F)dX, allows

to compute a solution (approximate in general, but possibly exact in some

cases) for the effective stored-energy function W of the filled elastomer of

interest via the variational relation (4.40).

When specialized to the class of isotropic incompressible filled elastomers

described in Section 4.1.3, by taking the comparison medium to be a filled

Gaussian elastomer with the same microstructure and the same constitutive

behaviors for the underlying rigid particles and Gaussian interphases as the

actual filled elastomer of interest,

W0(X,F) ={
[1− θp(X)− θi(X)]

µ0

2
[I1 − 3] + θp(X)Ψp(I1) + θi(X)

µi

2
[I1 − 3] if J = 1

+∞ otherwise

(4.41)

with

Ψp(I1) =

{
0 if I1 = 3

+∞ otherwise
, (4.42)
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and employing the approximation (4.30) as (the finite-branch of) the effective

stored-energy function of such a comparison medium, the formulation (4.40)

generates the following result:

Ψ(I1, I2, cp, ci) =

max
µ0

{
µ0

2

[
I1 − 3

]
+ (1− cp − ci)min

I1

[
Ψm(I1)−

µ0

2
[I1 − 3]

]}
if Ψm(I1)− I1 > −∞

min
µ0

{
µ0

2

[
I1 − 3

]
+ (1− cp − ci)max

I1

[
Ψm(I1)−

µ0

2
[I1 − 3]

]}
if Ψm(I1)− I1 < +∞,

(4.43)

where the coefficient µ0 is defined implicitly by the nonlinear algebraic equa-

tion F1{µ0, µ0} = 0, cf. equation (4.38). In view of the monotonicity (4.9)1

of the function Ψm, the max-min and min-max problems in (4.43) are solved

by exactly the same stationary conditions

Ψ′
m(I1) =

µ0

2
and

dµ0

dµ0

[
I1 − 3

]
− (1− cp − ci) [I1 − 3] = 0, (4.44)

irrespectively of the growth conditions of Ψm. Making use of these relations,

the effective stored-energy function (4.43) can be written more explicitly as

Ψ(I1, I2, cp, ci) = (1− cp− ci)Ψm (I1)+
µ0

2

[
I1 − 3

]
− (1− cp− ci)

µ0

2
[I1 − 3]

(4.45)

with

I1 =

cpµ0 +
(µi − µ0) (q1µi + q4µ0)

q1µ2
i + q2 µiµ0 + q3µ

2
0

ciµ0

cpµ0 +
(µi − µ0) (q1µi + q4µ0)

q1µ2
i + q2 µiµ0 + q3µ2

0

ciµ0


[
I1 − 3

]
1− cp − ci

+ 3 (4.46)

and the variables µ0, µ0 being defined implicitly by the system of two coupled

nonlinear algebraic equations

F1{µ0, µ0} = 0, F2{µ0, µ0}
.
= Ψ′

m (I1)−
µ0

2
= 0, (4.47)

where it is recalled that the coefficients q1, q2, q3, q4 are given explicitly in
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terms of the concentration ratio ci/cp by expressions (4.15) and the function

F1 is defined by expression (4.38).

The effective stored-energy function (4.45) with (4.46)–(4.47) constitutes

the main result of this chapter. It characterizes the overall nonlinear elastic

response of a non-Gaussian elastomer, with stored-energy function Ψm, filled

with an isotropic distribution of rigid spherical particles, of polydisperse sizes

and finite concentration cp, that are bonded to the elastomer through Gaus-

sian interphases with shear modulus µi, finite concentration ci, and constant

thickness-to-particle-radius ratio (1+ ci/cp)
1/3− 1. The following theoretical

and practical remarks are in order:

i. In terms of the macroscopic first Piola-Kirchhoff stress tensor S and

macroscopic deformation gradient tensor F, the constitutive response

implied by the effective stored-energy function (4.45) is given by

S = 2
∂Ψ

∂I1
F− pF

−T

= µ0F− pF
−T

(4.48)

where p stands for the arbitrary hydrostatic pressure associated with

the incompressibility constraint detF = 1 and, again, the coefficient µ0

is defined implicitly by the system of two coupled nonlinear algebraic

equations (4.47), which ultimately depend on the concentration of the

particles cp, the concentration of the interphases ci, the stored-energy

function of the matrix Ψm, the stiffness of the interphases µi, and the

applied loading via the first principal invariant I1 = F · F.

ii. The effective stored-energy function (4.45) is independent of the second

principal invariant I2 = F
−T · F−T

. The origin of this independence

can be traced back to the choice of approximation (4.26) for the di-

lute response of filled Gaussian elastomers, which neglects the weak

but existent dependence on I2 of the exact solution in order to favor

analytical tractability (see Section 4.2.2). Neither the iterated dilute

homogenization procedure to account for finite concentrations of parti-

cles and interphases (Section 4.3.1), nor the comparison medium proce-

dure to account for non-Gaussian behavior (Section 4.3.2) introduced

dependence on I2 thereafter. This suggests that the response of any
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filled I1-based non-Gaussian elastomer is by and large independent of

I2. The FE simulations presented below provide further support that

this is indeed the case.

iii. For stored-energy functions Ψm that are convex in I1,

Ψ′
m(I1) > 0 and Ψ′′

m(I1) ≥ 0, (4.49)

it follows that

∂Ψ

∂I1
(I1, I2, cp, ci) > 0,

∂Ψ

∂I1
(I1, I2, cp, ci) + 2

[
I1 − λ

2

α − 2λ
−1

α

] ∂2Ψ

∂I
2

1

(I1, I2, cp, ci) > 0

(α = 1, 2, 3), ∀ I1, I2 ≥ 3, (4.50)

and hence that the effective stored-energy function (4.45) is strongly

elliptic. For the case when Ψm is merely strongly elliptic (i.e., it satisfies

the weaker conditions (4.10)) but not convex in I1, the effective stored-

energy function (4.45) can still be shown to be strongly elliptic for small

enough deformations, but it may lose strong ellipticity at sufficiently

large values of deformation.

iv. In the limit of small deformations (I1, I2 → 3), µ0 = 2Ψ′
m(3) = µm

to leading order in I1 and the stored-energy function (4.45) reduces

asymptotically to

Ψ(I1, I2, cp, ci) = µ trε2 (4.51)

to leading order in the deformation measure ε = (F+F
T −2I)/2, where

the effective shear modulus µ = µ0 in (5.29) is defined implicitly by the

remaining equation

F1{µ, µm} = 0. (4.52)

In general, equation (4.52) does not admit an explicit solution and thus

µ must be evaluated numerically. In this regard, it is useful to deduce
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that µ is strictly positive, bounded from below by

µ ≥


µm +

5[(3cp − 2ci)µm + 2(cp + ci)µi]µm

2[3(1− cp) + 2ci]µm + 4(1− cp − ci)µi

if µi ≥ µm

µm +
(2µm + 3µi)[5cpµi + 2ci(µi − µm)]

2[5(1− cp)− 2ci]µi + 4ciµm

if µi < µm

,

(4.53)

and from above by

µ ≤ µm

(1− cp − ci)5/2
(4.54)

for any choice of shear moduli µm, µi > 0 and any choice of concen-

trations cp, ci ≥ 0 with cp + ci ≤ 1. Further, in the dilute limit as

cp, ci → 0+,

µ = µ dil = µm +
5µm

2
cp +

5(µi − µm) (q1µi + q4µm)µm

2(q1µ2
i + q2 µiµm + q3µ2

m)
ci (4.55)

to O(1) in the concentration of particles cp and interphases ci.

The result (4.52) for µ constitutes a generalization of the classical re-

sult of Brinkman-Roscoe (Roscoe, 1973) for the effective shear modulus

of a suspension of polydisperse rigid spherical particles in rubber with

perfect bonding (i.e., without interphases) between the particles and

the rubber. Indeed, in the absence of interphases when ci = 0, equa-

tion (4.52) can be solved explicitly to render identically the well-known

formula

µ =
µm

(1− cp)5/2
. (4.56)

v. The connection with the effective shear modulus µ for isotropic distri-

butions of polydisperse rigid spherical particles bonded through inter-

phases as defined by equation (4.52) is not restricted to small deforma-

tions. Indeed, for the special case when the underlying matrix material

is a Gaussian elastomer, Ψm = µm/2[I1−3], µ0 = µm, and the effective

stored-energy function (4.45) reduces to

Ψ(I1, I2, cp, ci) =
µ

2

[
I1 − 3

]
, (4.57)

which is seen to have the same functional form as the Gaussian ma-

trix material, with the effective shear modulus µ defined by (4.52).

98



While exact and realizable in the limit of small deformations, for ar-

bitrarily large deformations the effective stored-energy function (4.57)

is not an exact realizable result for Gaussian elastomers filled with an

isotropic distribution of rigid spherical particles of polydisperse sizes

bonded through Gaussian interphases. Owing to its iterative construc-

tion process (see Section 4.3.1), however, it is expected to provide a

very accurate approximation for this class of material systems. By the

same token, the approximate effective stored-energy function (4.45) is

also expected to describe very accurately the response of any such type

of filled elastomer when the underlying matrix is a non-Gaussian elas-

tomer, especially in the small and moderate deformation regimes. For

large deformations, the result (4.45) is likely to be relatively less accu-

rate for this class of material systems, as its variational construction

process (see Section 4.3.2) entails that it corresponds to some sort of

lower (upper) bound when the underlying matrix material has stronger

(weaker) growth conditions than a Gaussian elastomer. These expecta-

tions are supported by comparisons with the FE simulations presented

in Section 4.5.

vi. In the absence of interphases when ci = 0, equations (4.47) admit the

explicit solution µ0 = µ0/(1−cp)
5/2, µ0 = 2Ψ′

m

(
[I1 − 3]/(1− cp)

7/2 + 3
)
,

and the effective stored-energy function (4.45) reduces to the result

of Lopez-Pamies et al. (2013a) for the effective stored-energy function

of a suspension of polydisperse rigid spherical particles in rubber with

perfect bonding between the particles and the rubber, namely,

Ψ(I1, I2, cp, 0) = (1− cp)Ψm

(
I1 − 3

(1− cp)7/2
+ 3

)
. (4.58)

vii. In the limit of rigid interphases when µi = +∞, equations (4.47)

similarly admit the explicit solution µ0 = µ0/(1 − cp − ci)
5/2, µ0 =

2Ψ′
m

(
[I1 − 3]/(1− cp − ci)

7/2 + 3
)
, and the effective stored-energy func-

tion (4.45) reduces to

Ψ(I1, I2, cp, ci) = (1− cp − ci)Ψm

(
I1 − 3

(1− cp − ci)7/2
+ 3

)
. (4.59)

This result also agrees with the effective stored-energy function of Lopez-
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Pamies et al. (2013a) for a suspension of polydisperse rigid spherical

particles in rubber with perfect bonding between the particles and the

rubber, since in this limiting case there are actually no interphases but

instead a distribution of rigid particles with total concentration cp+ ci.

4.4 FE simulations of filled elastomers undergoing

large deformations

With the aim of gaining further insight, in Section 4.5 we confront the

above-developed theoretical results to full 3D FE simulations of the large-

deformation response of Gaussian and non-Gaussian elastomers filled by

random isotropic distributions of rigid spherical particles that are bonded

through constant-thickness interphases. In particular, following common

practice (see, e.g., Gusev, 1997; Michel et al., 1999), we consider infinite

periodic media made up of the repetition of unit cells that contain a random

distribution of a large but finite number of particles, as dictated by a sequen-

tial adsorption algorithm. In order to probe the effect that particle polydis-

persity plays on the overall response of filled elastomers with interphases3, we

consider distributions with both, particles of the same (monodisperse) size

and particles of different (polydisperse) sizes. The details of the simulations

are as follows.

4.4.1 Monodisperse microstructures

The monodisperse microstructures are constructed using a random sequen-

tial adsorption algorithm in which the sequential addition of spherical parti-

cles, of the same radius r with surrounding interphases of the same constant

thickness t, is constrained so that the distance between a given interphase

with other interphases and with the boundaries of the unit cell — chosen

here to be a cube of unit side L = 1 — take a minimum value that allows

for an adequate spatial discretization (see, e.g., Segurado and Llorca, 2002;

Lopez-Pamies et al., 2013a), namely:

3In the absence of interphases, Lopez-Pamies et al. (2013a) have shown that the effect
of polydispersity, rather remarkably, is negligible up to relative large concentrations of
particles in the order of cp = 0.3.
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(a) (b) (c)

1L =

1L =

1L =

Figure 4.11: Representative unit cells containing a random distribution of N = 30
monodisperse spherical particles of radius r at concentration cp = 0.15 that are
surrounded by interphases of three different constant thicknesses t: (a) t = 0.05 r,
(b) t = 0.1 r, and (c) t = 0.2 r.

• The center-to-center distance between a new particle i and any previ-

ously accepted one j = 1, 2, ..., i− 1 has to exceed the minimum value

s1 = 2(r + t)(1 + d1), where the offset distance d1 is fixed here at

d1 ≥ 0.03. The condition to be checked at each step of the algorithm

takes then the form

||Xi −Xj − h|| ≥ s1 (4.60)

where Xi(Xj) denotes the location of the center of particle i(j) and

h is a vector with entries 0, L, or −L for each of its three Cartesian

components with respect to the principal axes of the cubic unit cell.

• The outermost surface of any interphase should be sufficiently distant

from the boundaries of the unit cell as enforced by the inequalities

|X i
α − r − t| ≥ s2 and |X i

α + r + t− L| ≥ s2 (α = 1, 2, 3), (4.61)

where s2 = d2(r + t) with d2 being fixed here at 0.05.

For this class of monodisperse microstructures, we note that the radius r of

the particles and the thickness t of the surrounding interphases are related

to the total number of particles N , particle concentration cp, and interphase

concentration ci via

r = L

(
3cp
4πN

)1/3

and
t

r
=

(
1 +

ci
cp

)1/3

− 1. (4.62)
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Previous results based on this approach — for linear (Segurado and Llorca,

2002) as well as for nonlinear (Lopez-Pamies et al., 2013a) problems — have

indicated that N = 30 particles is, in general, sufficient to approximate

isotropic symmetry. Figure 4.11 depicts representative examples of such unit

cells with N = 30 particles at concentration cp = 0.15 for three different

interphase thicknesses t: (a) t = 0.05 r, (b) t = 0.1 r, and (c) t = 0.2 r.

4.4.2 Polydisperse microstructures

(a) (b) (c)

1L =

1L =

1L =

Figure 4.12: Representative unit cells containing a random distribution of N = 80
spherical particles of three different radii at concentration cp = 0.15 that are sur-
rounded by interphases with three different constant thickness-to-particle-radius
ratios: (a) t/r = 0.05, (b) t/r = 0.1, and (c) t/r = 0.2.

The polydisperse microstructures are constructed by means of a similar

constrained adsorption algorithm. The focus is on polydisperse microstruc-

tures with three different families of particle sizes such that — consistent

with the assumptions made in the derivation of the theoretical results of

Section 4.3 — the interphase-thickness-to-particle-radius ratio is the same

for all particles. While there is no distinct rule for the creation of such mi-

crostructures and the possibilities are many, we consider for definiteness the

following procedure:

• Three different families of spherical particles with radii r(I) and respec-

tive concentrations c
(I)
p (I = 1, 2, 3), surrounded by interphases with

thicknesses t(I) and respective concentrations c
(I)
i (I = 1, 2, 3), are uti-
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lized such that

{
r(1), r(2), r(3)

}
=

{
r,
7

9
r,
4

9
r

}
with r = L

(
3 c

(1)
p

4πN (1)

)1/3

, (4.63)

{
c(1)p , c(2)p , c(3)p

}
= {0.5 cp, 0.25 cp, 0.25 cp} with c(1)p + c(2)p + c(3)p = cp,

(4.64){
t(1)

r(1)
,
t(2)

r(2)
,
t(3)

r(3)

}
=

{
t

r
,
t

r
,
t

r

}
with

t

r
=

(
1 +

c
(1)
i

c
(1)
p

)1/3

−1, (4.65)

where N (1) is the number of particles with the largest radius and thick-

est surrounding interphase, r(1) = r and t(1) = t, in the unit cell.

• The microstructures are generated sequentially by first adding the par-

ticles with the largest radius r(1) = r and desired thickness t(1) = t,

until the particle concentration reaches the value c
(1)
p = 0.5cp, subse-

quently adding particles with radius r(2) and surrounding interphases

of thickness t(2) = r(2)t/r until c
(1)
p + c

(2)
p ≈ 0.75cp, and finally adding

particles with the smallest radius r(3) and smallest interphase thickness

t(3) = r(3)t/r until c
(1)
p + c

(2)
p + c

(3)
p ≈ cp. In following this construction

process, we note that a target concentration cp (similarly for a target

concentration ci if preferred over a target ratio t/r) can only be achieved

approximately up to a small error that depends on the various choices

of the parameters. To guarantee adequate spatial discretization, the

randomly generated placements of the centers of the particles are en-

forced to satisfy constraints analogous to those enforced for the case of

monodisperse microstructures, cf. inequalities (4.60) and (4.61).

In this chapter we utilize N (1) = 10 which results into unit cells containing

a total of N = 80 particles that prove to be sufficiently isotropic for our

purposes. Figure 4.12 depicts representative examples of such unit cells with

N = 80 particles of three different radii at concentration cp = 0.15 for three

different interphase-thickness-to-particle-radius ratios: (a) t/r = 0.05, (b)

t/r = 0.1, and (c) t/r = 0.2.
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4.4.3 Spatial discretization, particle material behavior, and
computation of the overall response

The discretizations of the microstructures are carried out by means of the

mesh generator code Netgen (Schöberl, 1997). Hybrid isoparametric 10-node

quadratic tetrahedral elements with linearly varying pressure proved to de-

liver accurate results, and thus were selected to carry out the calculations.

Figure 4.13 displays three representative meshes of increasing refinement for

a monodisperse microstructure with concentrations of particles cp = 0.15 and

interphases ci = 0.1. Mesh sensitivity analyses revealed that meshes contain-

ing about 150,000 elements, such as the one shown in Fig. 4.13(c), are refined

enough to deliver accurate results for all the cases considered here.

(a) (b) (c)

Figure 4.13: Three representative meshes in the undeformed configuration for a
distribution of monodisperse particles with concentration cp = 0.15 and interphase
concentration ci = 0.1: (a) coarse mesh with about 50, 000 elements, (b) fine mesh
with about 100, 000 elements, and (c) very fine mesh with about 150, 000 elements.

Within the utilized formulation, the perfectly rigid behavior (4.2) of the

particles can only be modeled approximately by means of a very (but not

infinitely) stiff material. Here, for definiteness, we model the particles as a

Gaussian elastomer with stored-energy function

W FE
p (F) =


µFE
p

2
[I1 − 3] if J = 1

+∞ otherwise
, (4.66)

where the parameter µFE
p is set to be four orders of magnitude larger than

the shear modulus of the underlying matrix material, i.e., µFE
p = 104 × µm.

By virtue of their periodicity, the computation of the effective stored-

energy function (4.7) for any of the above-defined classes of filled elastomers
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amounts to subjecting their defining cubic unit cells to the periodic boundary

conditions

uα(0, X2, X3)− uα(L,X2, X3) = (F α1 − δα1)L,

uα(X1, 0, X3)− uα(X1, L,X3) = (F α2 − δα2)L,

uα(X1, X2, 0)− uα(X1, X2, L) = (F α3 − δα3)L (4.67)

(α = 1, 2, 3) in terms of the displacement field u = x − X, and computing

the resulting total elastic energy per unit undeformed volume of the unit

cell. In expression (4.67), the components uα and Xα (α = 1, 2, 3) refer to a

Cartesian frame of reference with origin placed at a corner of the cubic unit

cell whose axes {eα} are aligned with the principal axes of the cubic unit cell

(see Fig. 4.13), and δαβ denotes the Kronecker delta.

4.4.4 Assessment of the simulations

Because of the finite number of particles — N = 30 for the monodisperse

and N = 80 for the polydisperse microstructures — included per unit cell,

the microstructures simulated here are (not exactly but) only approximately

isotropic. In order to assess the isotropy of each realization that is con-

structed, we examine the co-axiallity between the average Cauchy stress ten-

sor T
.
= SF

T
and the average left Green-Cauchy strain tensor B

.
= FF

T

under three types of loading conditions: (i) axisymmetric tension where

F = λ e1 ⊗ e1 + λ
−1/2

(e2 ⊗ e2 + e3 ⊗ e3) with λ ≥ 1, (ii) axisymmetric

compression where F = λ e1 ⊗ e1 + λ
−1/2

(e2 ⊗ e2 + e3 ⊗ e3) with λ ≤ 1, and

(iii) simple shear where F = I+ γ e1 ⊗ e2 with γ ≥ 0. Only microstructures

for which the maximum difference between any two corresponding principal

axes of T and B is less than 0.05 radians for all three loadings are admitted

as approximately isotropic.

All FE results to be presented in the next section correspond to the av-

erage of three different realizations, all of which are approximately isotropic

in the sense described in the preceding paragraph. The computations are

carried out in the commercial code ABAQUS by following an incremental

loading path. We utilize the default dual convergence criterion in this code

(see Abaqus version 6.11 documentation), namely, the permissible ratio of
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the largest solution correction to the largest corresponding incremental solu-

tion is set at |∆u|/|umax| = 10−2, while the permissible ratio of the largest

residual to the corresponding average force norm is set at Rtol = 5 × 10−3.

Whenever one of these criteria is not satisfied the computations are stopped.

This typically happens whenever the elements in between two adjacent inter-

phases become exceedingly distorted because of the locally large deformations

involved.
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Figure 4.14: Contour plots of the maximum principal logarithmic strain for a
monodisperse realization with cp = 0.15, ci = 0.05, Gaussian elastomeric matrix
with shear modulus µm = 1 MPa, and µi = 5 MPa subjected to a macroscopic
simple shear strain of γ = 0.91; the undeformed configuration is also depicted
for comparison purposes. Part (b) shows an inside view of three pairs of parti-
cles/interphases in between which the matrix material is highly deformed.

Figure 4.14 presents an example of large local deformations in between in-

terphases for the case of a monodisperse realization with cp = 0.15, ci = 0.05,

Gaussian elastomeric matrix with shear modulus µm = 1 MPa, and µi = 5

MPa under simple shear. Part (a) shows contour plots of the maximum

principal logarithmic strain at an overall shear strain level of γ = 0.91; the

initial undeformed geometry is also depicted for comparison purposes. The

deformation contours are seen to be highly heterogeneous with principal log-

arithmic strains as large as 1.66 within regions between interphases. In part

(b), an inside view is shown of three regions of strong particle/interphase

interaction and high local strains that lead to significant mesh distortion and

therefore problems with the numerical convergence of the FE calculations.

In principle, re-meshing of these regions should allow to reach further overall

deformations, but this is not pursued here.
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4.5 Sample results and comparisons with FE

simulations

Sample results are now presented that provide quantitative insight into the

proposed theoretical result (4.45) and that, at the same time, serve to reveal

the importance of the various microscopic quantities (the concentration of

the particles cp, the concentration of the interphases ci, the nonlinear elas-

tic behavior of the matrix Ψm, and the stiffness of the interphases µi) on

the macroscopic response of filled elastomers. We begin in Section 4.5.1 by

presenting results for the linear elastic response of filled elastomers in the

small-deformation regime. These are followed in Section 4.5.2 by results

for the large-deformation response of filled Gaussian elastomers. Finally, in

Section 4.5.3 we present results for a filled elastomer wherein the matrix is

characterized by the non-Gaussian stored-energy function

Ψm(I1) =
31−α1

2α1

µ1 [I
α1
1 − 3α1 ] +

31−α2

2α2

µ2 [I
α2
1 − 3α2 ] (4.68)

with µ1 = 0.032 MPa, µ2 = 0.3 MPa, α1 = 3.837, α2 = 0.559, correspond-

ing to a model that describes accurately the nonlinear elastic response of a

standard silicone rubber over large ranges of deformations (Lopez-Pamies,

2010b).

4.5.1 Linear elastic results

In the limit of small deformations (see remark (i) in Section 4.3.2), the effec-

tive stored-energy function (4.45) reduces to (5.29) and hence is completely

characterized by the effective shear modulus µ defined by equation (4.52).

Figure 4.15 shows results for the normalized effective shear modulus µ/µm

for various values of the interphase-thickness-to-particle-radius ratio4 t/r and

interphase stiffness µi/µm, all as functions of the concentration of particles

cp. Results are also presented for the FE simulations described in Section

4.4 for monodisperse (Figs. 4.15(a) and (c)) and polydisperse (Figs. 4.15(b)

and (d)) microstructures.

As expected, an immediate observation from Fig. 4.15 is that the addition

4Throughout this section, we shall favor writing the content of interphases in terms of
the ratio t/r = (1 + ci/cp)

1/3 − 1, instead of directly in terms of their concentration ci.
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Figure 4.15: The normalized effective shear modulus µ/µm of an isotropic incom-
pressible elastomer, with shear modulus µm, filled with an isotropic distribution of
rigid spherical particles bonded through isotropic incompressible interphases with
various shear moduli µi/µm and constant thickness-to-particle-radius ratios t/r.
Results are shown for the theoretical result (4.52) compared to FE simulations
for distributions of (a, c) monodisperse and (b, d) polydisperse particles, all as
functions of the concentration of particles cp.

of rigid particles increases significantly the overall stiffness of elastomers.

Remarkably, the presence of interphases (with µi > µm) is seen to also have

a comparable stiffening effect. We note that the stiffening granted by the

interphases is highly more sensitive to the value of their thickness t/r than

to the value of their stiffness µi/µm. Indeed, Figs. 4.15(c) and (d) show that

interphases that are just 5 times stiffer than the matrix (µi/µm = 5) already

grant an increase in overall stiffness that is similar to that granted by rigid
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interphases (µi = +∞). On the other hand, Figs. 4.15(a) and (b) show

that moderate increases in the thickness of the interphases from t/r = 0.05,

to t/r = 0.1, to t/r = 0.2, consistently lead to larger enhancements of the

overall stiffness. The practical implications of these results are far reaching as

they suggest that when dealing with conventional filled elastomers — where

interphases are typically in the order of 10 times stiffer than the matrix

material (see, e.g., Qu et al., 2011) — their macroscopic response is by and

large unaffected by the constitutive complexity of the underlying interphases

(in terms of heterogeneity, anisotropy, and non-linearity) and de facto simply

dependent on their average stiffness and size.

While the effective shear modulus µ defined by equation (4.52) is exact for

infinitely polydisperse particles, Figs. 4.15(b) and (d) show it to be in good

agreement with the FE results for microstructures with only three families

of particle sizes for the entire range of particle concentrations and interphase

thicknesses considered, cp ∈ [0, 0.25] and t/r ∈ [0, 0.2]. More remarkably,

Figs. 4.15(b) and (d) show the theoretical effective shear modulus to also

be in good agreement with the FE results for monodisperse particles up

to the relatively high particle concentration cp = 0.2 with relatively large

interphase thickness t/r = 0.2. Consistent with earlier results for suspensions

of particles in rubber without interphases (Lopez-Pamies et al., 2013a), these

favorable comparisons suggest that polydispersity does not play a role in

the response of filled elastomers for particle concentrations and interphase

thicknesses sufficiently below the percolation limit.

4.5.2 Results for filled Gaussian elastomers

Figure 4.16 presents results for the large-deformation response of a filled

Gaussian elastomer with particle concentration cp = 0.15 under: (a) uniaxial

compression, (b) uniaxial tension, (c) pure shear, and (d) simple shear. The

constitutive stress-deformation relations for these loading conditions read as

(see remark (ii) in Section 4.3.2)

• Uniaxial loading (λ1 = λ, λ2 = λ3 = λ
−1/2

with τ 2 = τ 3 = 0):

Sun = λ
−1
τ 1 =

dΨ

dλ
= µ

[
λ− λ

−2
]

(4.69)
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• Pure shear (λ1 = λ, λ2 = λ
−1
, λ3 = 1 with τ 2 = 0):

Sps = λ
−1
τ 1 =

dΨ

dλ
= µ

[
λ− λ

−3
]

(4.70)
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Figure 4.16: Macroscopic response of a filled Gaussian elastomer with particle
concentration cp = 0.15 under: (a) uniaxial compressive, (b) uniaxial tensile,
(c) pure shear, and (d) simple shear loading conditions, as characterized by the
proposed theory, cf. expressions (4.69), (4.70), (4.71). Results are shown for three
different types of interphases: (i) no interphases t/r = 0, (ii) interphases with
moderate shear modulus µi/µm = 5 and moderate thickness t/r = 0.1, and (iii)
rigid interphases µi = +∞ with relatively large thickness t/r = 0.2. The dashed
lines in the plots correspond to results from the FE simulations, while the dotted
lines correspond to the response of the unfilled Gaussian elastomer.
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• Simple shear (λ1 = (γ +
√
γ 2 + 4)/2, λ2 = λ

−1

1 , λ3 = 1):

Sss =
dΨ

dγ
= µ γ (4.71)

where Sun, Sps, Sss denote first Piola-Kirchhoff stress measures, τ 1, τ 2, τ 3

have been introduced to denote the macroscopic principal Cauchy stresses,

and, again, the effective shear modulus µ is implicitly defined by equation

(4.52). Three different types of interphases are considered: (i) no interphases

t/r = 0, (ii) interphases with moderate shear modulus µi/µm = 5 and mod-

erate thickness t/r = 0.1, and (iii) rigid interphases µi = +∞ with relatively

large thickness t/r = 0.2. Corresponding FE results are included in the fig-

ure for comparison purposes. No distinction is made of whether the particles

are monodisperse or polydisperse since, somewhat remarkably, both classes

of simulated microstructures exhibit essentially the same large-deformation

response. This is consistent with the linear elastic results of Fig. 4.15, where

the monodisperse and polydisperse FE simulations render practically iden-

tical effective shear moduli for particle concentrations below cp = 0.2 with

interphase-thickness-to-particle-radius ratios below t/r = 0.2.

It is plain from Fig. 4.16 that the overall large-deformation response of the

Gaussian elastomer is stiffened significantly by the addition of rigid particles

for all loading conditions. The figure also makes it plain that the presence

of interphases (with µi > µm) produces levels of stiffness enhancement that

are comparable to those produced by the particles themselves. As it was

the case for small deformations, the increase in stiffness generated by the

interphases is more dependent on their thickness t/r than on their stiffness

µi/µm. Another important observation from Fig. 4.16 is that the theoretical

predictions and FE results are in good qualitative and quantitative agreement

for all loading conditions.

To further probe the connections between the proposed theory and the FE

simulations, Fig. 4.17 compares their elastic energies Ψ/µm, normalized by

the initial shear modulus µm of the underlying Gaussian matrix, as functions

of the principal invariants I1 and I2. Part (a) of the figure shows Ψ/µm for

fixed values of the second invariant I2 = 3.32 for cp = 0.15 and I2 = 4.40

for cp = 0.05 as functions of I1, while part (b) shows results for fixed values

of the first invariant I1 = 3.40, 3.82 for cp = 0.15 and I1 = 4.80, 5.13 for
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cp = 0.05 as functions of I2.

The main observation from Fig. 4.17 is that the FE results are approxi-

mately linear in the first invariant I1 and independent of the second invariant

I2. This behavior is in accordance with that of the theory, corroborating that

both results are very much identical in their functional form. The fact that

the macroscopic behavior of filled Gaussian elastomers is functionally the

same — i.e., linear in I1 and independent of I2 — as that of its underlying

Gaussian matrix is of note. Indeed, as already mentioned in the discussion of

Fig. 4.7, the functional character of the average behavior of nonlinear mate-

rial systems is in general substantially different from that of its constituents,

but that is not the case here.
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Figure 4.17: Comparison of the effective stored-energy function (4.57) for a filled
Gaussian elastomer with corresponding FE simulations. The results are shown
in terms of the principal invariants I1 and I2 for interphase-thickness-to-particle-
radius ratio t/r = 0.1, interphase shear modulus µi/µm = 5, and two values of
concentration of particles, cp = 0.05 and 0.15. Part (a) shows results for fixed
values of I2 as functions of I1, while part (b) shows results for fixed values of I1
as functions of I2.

4.5.3 Results for a filled silicone elastomer

Finally, Fig. 4.18 shows results for the large-deformation response of a filled

non-Gaussian elastomer wherein the underlying matrix material is a typical

silicone rubber characterized here by the stored-energy function (4.68) with
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µ1 = 0.032 MPa, µ2 = 0.3 MPa, α1 = 3.837, α2 = 0.559, and thus initial

shear modulus µm = µ1 + µ2 = 0.332 MPa. In this case, the proposed
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Figure 4.18: Macroscopic response of a filled silicone elastomer under: (a) uniaxial
compressive, (b) uniaxial tensile, and (c) simple shear loading conditions. Plots
are shown for the theoretical stress-deformation results (4.74), (4.75) with (4.72),
and corresponding FE simulations for particle concentration cp = 0.15 and three
different types of interphases: (i) no interphases t/r = 0, (ii) interphases with
moderate shear modulus µi/µm = 5 and moderate thickness t/r = 0.1, and (iii)
rigid interphases µi = +∞ with relatively large thickness t/r = 0.2. Part (d) of
the figure shows comparisons between the effective stored-energy function (4.72)
and corresponding FE results for t/r = 0.1, µi/µm = 5, cp = 0.05, 0.15 and two
fixed values of the first principal invariant I1, in terms of the second invariant I2.
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theoretical effective stored-energy function (4.45) specializes to

Ψ(I1, I2, cp, ci) = (1− cp − ci)

[
31−α1

2α1

µ1 [Iα1
1 − 3α1 ] +

31−α2

2α2

µ2 [Iα2
1 − 3α2 ]

]
+
µ0

2
[I1 − 3]− (1− cp − ci)

µ0

2
[I1 − 3] , (4.72)

where I1 is explicitly given by expression (4.46) in terms of cp, ci, I1, and the

variables µ0, µ0, which are defined implicitly by the system of two coupled

nonlinear algebraic equations

F1{µ0, µ0} = 0, F2{µ0, µ0} =
31−α1

2
µ1Iα1−1

1 +
31−α2

2
µ2Iα2−1

1 − µ0

2
= 0;

(4.73)

recall that the function F1 is defined by expression (4.38).

Parts (a), (b), and (c) of Fig. 4.18 show stress-deformation results for

uniaxial compression, uniaxial tension, and simple shear for particle concen-

tration cp = 0.15 and three different types of interphases: (i) no interphases

t/r = 0, (ii) interphases with moderate shear modulus µi/µm = 5 and mod-

erate thickness t/r = 0.1, and (iii) rigid interphases µi = +∞ with relatively

large thickness t/r = 0.2. The constitutive stress-deformation relations for

the specified loadings are given by

• Uniaxial loading (λ1 = λ, λ2 = λ3 = λ
−1/2

with τ 2 = τ 3 = 0):

Sun = λ
−1
τ 1 =

dΨ

dλ
= µ0

[
λ− λ

−2
]

(4.74)

• Simple shear (λ1 = (γ +
√
γ 2 + 4)/2, λ2 = λ

−1

1 , λ3 = 1):

Sss =
dΨ

dγ
= µ0 γ (4.75)

where, as above, Sun, Sss denote first Piola-Kirchhoff stress measures, τ 1,

τ 2, τ 3 stand for the macroscopic principal Cauchy stresses, and, again, the

coefficient µ0 is defined implicitly by the system of equations (4.73). Part

(d) of Fig. 4.18 displays results for the effective stored-energy function (4.72)

for fixed values of the first principal invariant I1 = 3.42 for cp = 0.15 and

I1 = 4.62 for cp = 0.05, both for interphases with t/r = 0.1 and µi/µm = 5,

in terms of the second invariant I2. All four parts of Fig. 4.18 include
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corresponding FE results. Akin to the preceding Gaussian case, we make

no distinction here of whether the particles are of the same or of different

sizes since, again, the simulated monodisperse and polydisperse microstruc-

tures turn out to exhibit practically the same response for particle concentra-

tions below cp = 0.2 with interphase-thickness-to-particle-radius ratios below

t/r = 0.2.

Similar to the foregoing, Figs. 4.18(a) through (c) illustrate that both the

addition of particles as well as the presence of interphases have a profound

stiffening effect for all deformations. They also show that the theoretical and

FE results are in fairly good qualitative and quantitative agreement for all

loading conditions, especially for small and moderate deformations. For large

enough deformations at which the limiting chain extensibility of the silicone

elastomer comes into effect, the analytical results are consistently softer —

as expected from their variational construction process (see remark (ii) in

Section 4.3.2) — than their FE counterparts. Fig. 4.18(d) shows that the FE

results for the filled silicone elastomer, much like those for the filled Guas-

sian elastomer, are approximately independent of the second macroscopic

invariant I2, in functional accord with the proposed theory.

4.6 Comparisons with experimental data and final

comments

In the sequel, we deploy the theoretical result (4.45) to scrutinize a series of

representative experimental data available in the literature. The objective

is to illustrate the use of the proposed theory and to showcase its ability

not only to describe the macroscopic response of real filled elastomers but

also, and more critically, to unveil how the various microscopic quantities

individually contribute to such a macroscopic response.

We begin by considering the experimental data of Mullins and Mullins and

Tobin (1965), Omnès et al. (2008) and Smallwood (1944) for the macroscopic

response in the small-deformation regime of polyisoprene rubber reinforced

with a random and isotropic distribution of carbon black particles. Specifi-

cally, Fig. 4.19(a) shows the effective initial shear modulus µ, normalized by

the shear modulus of the underlying polyisoprene matrix µm, as a function

of the concentration of carbon black cp. The discrete symbols (empty circles,
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Figure 4.19: Comparisons of the proposed theory with experimental data. Part
(a) shows the experimental results of Mullins and Tobin (1965), Omnès et al. (2008)
and Smallwood (1944) for the effective initial shear modulus µ of polyisoprene
rubber filled with carbon black particles, normalized by the initial shear modulus
of the corresponding rubber µm, as a function of the concentration of carbon black
cp. Part (b) shows the experimental results of Ramier (2004) for the uniaxial tensile
stress-stretch response of SBR rubber filled with silica particles, at concentration
cp = 0.15, with two different types of chemical treatments, labeled as AC75 and
AR8. In both parts of the figure, the discrete symbols (empty circles, triangles,
and solid circles) correspond to the experimental measurements, while the solid
lines correspond to the theoretical predictions.

triangles, and solid circles) correspond to the experimental data, while the

solid lines stand for the theoretical predictions.

The results of Mullins and Tobin (1965) correspond to specimens with

a well-dispersed distribution of roughly spherical aggregates of carbon black

that had a relatively large average radius of about 200 nm. By way of swelling

experiments, these authors were able to conclude that the elastic properties of

the polyisoprene rubber were essentially unmodified by the presence of fillers,

but provided no insight into the amount or type of bound rubber surrounding

them. Given this partial information, at the level of the theoretical result

(4.45), it is reasonable to assume that the shear modulus of the polyisoprene

rubber matrix is identical to that of the polyisoprene rubber when synthesized

in the absence of carbon black, namely, µm = 0.44 MPa. And that the content

of interphases is comparatively negligible to that of the relatively large fillers

so that ci = 0, or equivalently, t/r = 0. Figure 4.19(a) shows that the

theoretical predictions based on these inputs are in fairly good agreement
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with the experimental measurements of Mullins and Tobin (1965), save for

the filled elastomer with the largest particle concentration cp = 0.2.

The specimens studied by Omnès et al. (2008) were also comprised of a

well-dispersed distribution of roughly spherical carbon black aggregates but

of much smaller size, in the order of 30 nm in average radius. As opposed

to Mullins and Tobin (1965), Omnès et al. (2008) did find that the elas-

tic properties of the polyisoprene rubber were somewhat modified by the

presence of carbon black. Unfortunately, no concrete measurements of this

change were reported nor details about the amount or type of bound rubber

surrounding the fillers provided. In view of this partial information, at the

level of the theoretical result (4.45), we assume, as a first-order approxima-

tion, that the shear modulus of the polyisoprene rubber matrix is identical

to that of the polyisoprene rubber when synthesized in the absence of car-

bon black, which in this case was reported as µm = 0.53 MPa. Also, based

on the recent experiments of Qu et al. (2011), we take the shear modulus

of the interphases to be 10 times stiffer than that of the matrix, namely,

µi = 10 × µm = 5.3 MPa. Making use of these values, the thickness of

the interphases is selected by fitting the experimentally measured values of

the effective shear modulus. As shown in Fig. 4.19(a), it is found that an

interphase-thickness-to-particle-radius ratio of t/r = 0.37 — corresponding

to interphase thicknesses in the order of t = 0.37 × 30 nm = 11.1 nm —

renders good agreement with the data of Omnès et al. (2008).

Regarding the classical data reported by Smallwood (1944) for carbon

black filled rubber, no microscopic information is known other than the con-

centration of particles cp. Assuming that the elastic properties of the rubber

making up the matrix are unaffected by the presence of carbon black, and

that the shear modulus of the interphases is 10 times stiffer than that of the

matrix, the theoretical result (4.45) can be seen to describe fairly accurately

the measurements of Smallwood (1944) by choosing an interphase-thickness-

to-particle-radius ratio of t/r = 0.2.

We now turn to examine the experimental data of Ramier (2004) for the

large-deformation response under uniaxial tension of SBR rubber filled with

a random and isotropic distribution of silica particles. Figure 4.19(b) shows

the measured uniaxial (first Piola-Kirchhoff) stress Sun as a function of the

applied stretch λ for two specimens with the same concentration of silica par-

ticles, cp = 0.15, which have undergone two different chemical treatments,
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labeled as AC75 and AR8. To aid the discussion, Fig. 4.19(b) also shows

the uniaxial stress-stretch response for the unfilled SBR rubber. Akin to

Fig. 4.19(a), the discrete symbols (empty circles, triangles, and solid cir-

cles) correspond to the experimental data, while the solid lines stand for the

theoretical predictions.

Irrespectively of the chemical treatment of the particles, the results of Ramier

(2004) correspond to specimens with a well-dispersed distribution of roughly

spherical aggregates of silica that had an average radius of about 40 nm. It is

unclear to what extent the presence of silica with either treatment, AC75 or

AR8, affected the elastic properties of the SBR rubber. On the other hand,

the AC75 treatment was expected, by design, to promote the formation of

thicker and stiffer interphases than the AR8 treatment. The much stiffer re-

sponse exhibited by the specimen with the AC75-treated silica is consistent

with this expectation.

In computing the theoretical predictions for the data of Ramier (2004),

given the above-outlined partial information, we assume that the SBR rubber

is, to a first approximation, unaffected by the presence of silica. Moreover,

we take the SBR rubber to be characterized by the Lopez-Pamies (2010b)

stored-energy function

Ψm(I1) =
31−α1

2α1

µ1 [I
α1
1 − 3α1 ] +

31−α2

2α2

µ2 [I
α2
1 − 3α2 ] (4.76)

with material parameters µ1 = 0.3734 MPa, µ2 = 0.0425 MPa, α1 = 0.3841,

α2 = 1.7767. Fig. 19(b) shows that this model describes accurately the

experimentally measured response of the SBR rubber, at least for uniaxial

tension. We shall further assume, again, based on the recent experiments

due to Qu et al. (2011), that the interphases in the specimen with AR8-

treated silica are 10 times stiffer than the matrix, µi = 10 × µm = 10 ×
(µ1 + µ2) = 4.16 MPa, whereas the interphases in the specimen with AC75-

treated silica are 50 stiffer, µi = 50 × µm = 50 × (µ1 + µ2) = 20.80 MPa.

Since there is no experimental evidence available regarding the sizes of the

interphases, we select them here by fitting the theory to the experimental

stress-stretch responses. As shown by Fig. 19(b), an interphase-thickness-to-

particle-radius ratio of t/r = 0.1 — corresponding to interphase thicknesses

in the order of t = 0.1 × 30 nm = 3 nm — leads to a good agreement with

the AR8 data. On the other hand, an interphase-thickness-to-particle-radius
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ratio of t/r = 0.4 — corresponding to interphase thicknesses in the order of

t = 0.4× 30 nm = 12 nm — renders good agreement with the AC75 data.

In summary, the above comparisons with experiments indicate that the

proposed theory is able to describe and explain the macroscopic response

of filled elastomers at finite deformations. In particular, the comparisons

indicate that the reinforcement granted by interphases is comparable to that

granted by the fillers themselves. These results make it plain that knowledge

of the geometry and constitutive properties of the underlying interphases —

and not just the fillers — in elastomers is of the essence to be able to predict,

and thus also to design from the bottom up, the macroscopic behavior of

filled elastomers.
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CHAPTER 5

NUMERICAL MODELING OF THE
NONLINEAR ELASTIC RESPONSE OF

FILLED ELASTOMERS VIA
COMPOSITE-SPHERE ASSEMBLAGES

The previous Three chapters have dealt with the development of analytical

results to model filled elastomers. In this chapter, we put forward an ef-

fective numerical method to generate approximate solutions for the overall

nonlinear elastic response of filled elastomers subjected to arbitrarily large

deformations. The basic idea corresponds essentially to a generalization of

the “composite-sphere-assemblage” approach of Hashin (1962) to the non-

convex realm of finite elasticity1. More specifically, as elaborated below the

strategy is first to idealize the random microstructure of filled elastomers

as an assemblage of homothetic composite spheres, And then to generate a

variational statically admissible solution for the overall nonlinear elastic re-

sponse of these material systems directly in terms of the response of a single

composite sphere subjected to affine stress boundary conditions. While the

elastostatics problem of a composite sphere subjected to affine stresses cannot

be solved by analytical means; it is a simple matter to perform the relevant

calculations numerically with finite elements. Sample applications to vari-

ous elastomeric materials, concentrations of particles, and loading conditions

together with comparisons with corresponding 3D full-field simulations are

also provided in this chapter to assess accuracy and numerical efficiency of

the method.

1An extension of this approach to nonlinear, though convex, problems appears to have
been first carried out by Barrett and Talbot (1995) in the context of two-phase dielectrics.

120



5.1 The problem

Consider a filled elastomer comprising a continuous matrix reinforced by a

random distribution of firmly bonded particles that occupies a domain Ω,

with boundary ∂Ω, in its undeformed stress-free configuration. The matrix

is labeled as phase r = 1, while the particles are collectively identified as

phase r = 2. The domains occupied by each individual phase are denoted

by Ω(r) so that Ω = Ω(1) ∪ Ω(2). It is assumed that the characteristic size

of the particles is much smaller than the size of Ω, and that their spatial

distribution is statistically uniform.

Material points in the solid are identified by their initial position vector

X in Ω. Upon deformation the position vector of a point in the deformed

configuration Ω′ is specified by x = χ(X), where χ is a continuous and one-

to-one mapping from Ω to Ω′. The pointwise deformation gradient tensor is

denoted by F = Gradχ.

Both the matrix (r = 1) and the particles (r = 2) are taken to be nonlin-

ear elastic solids characterized by non-negative, objective, and quasiconvex

stored-energy functions W (r) of the deformation gradient F, which linearize

properly in the limit of small deformations as F → I. At each material point

X in the undeformed configuration, the first Piola-Kirchhoff stress S is thus

related to F via

S =
∂W

∂F
(X,F), W (X,F) = (1− θ(X)) W (1)(F) + θ(X) W (2)(F), (5.1)

where the indicator function θ is equal to 1 if the position vector X is inside

a particle and zero otherwise. The volume average of θ over Ω corresponds

to the initial volume fraction or concentration of particles, which we denote

by

c
.
=

|Ω(2)|
|Ω|

=
1

|Ω|

∫
Ω

θ(X) dX. (5.2)

Granted the hypotheses of separation of length scales and statistical uni-

formity of the microstructure together with the constitutive quasiconvexity of

W , the overall or macroscopic constitutive response for the above-described

reinforced solid is defined as the relation between the volume averages of the

first Piola-Kirchhoff stress S
.
= |Ω|−1

∫
Ω
S(X) dX and the deformation gradi-

ent F
.
= |Ω|−1

∫
Ω
F(X) dX when the material is subjected to affine boundary
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conditions (Hill, 1972). In the case of affine deformations

x = FX on ∂Ω (5.3)

and the derivation of the overall response reduces to finding S for a given F.

For affine stresses, on the other hand,

SN = SN on ∂Ω (5.4)

with N denoting the outward normal to the boundary, and the derivation

reduces to finding F for a given S. In either case, the result can be expediently

written as (Ogden, 1978)

S =
∂W

∂F
(F, c), (5.5)

where the scalar-valued function

W (F, c)
.
= min

F∈K

1

|Ω|

∫
Ω

W (X,F) dX (5.6)

corresponds physically to the total elastic energy per unit undeformed volume

stored in the material; in this last expression, K denotes a sufficiently large

set of kinematically admissible deformation gradient fields with prescribed

volume average F. An analogous description in terms of a complementary

energy is possible, but that route requires the use of multi-valued functions

which complicate unnecessarily the analysis (see, e.g.,Lee and Shield, 1980,

Khisaeva and Ostoja-Starzewski, 2006; Chapter 5.4 in Ogden, 1997).

The foregoing formulation for the overall finite-deformation response of

filled elastomers is valid for any distribution of the underlying reinforcing

particles. In the sequel, the focus shall be on the physically relevant case of

isotropic distributions, but the case of anisotropic distributions is also briefly

discussed.
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5.2 Approximate solution for isotropic distributions of

particles

5.2.1 Idealization of the microstructure as a composite-sphere
assemblage

(a) (b)
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Figure 5.1: (a) Electron micrograph of a styrene-butadiene rubber filled with
an isotropic distribution of silica particles (Ramier, 2004) and (b) its ideal-
ization as a CSA (composite-sphere assemblage) in the undeformed configu-
ration. All the composite spheres in the assemblage are homothetic in that
they have the same ratio of inner-to-outer radius Ri/Ro = c1/3.

Figure 5.1(a) shows an electron micrograph of a synthetic rubber filled

with an isotropic distribution of silica particles (Ramier, 2004). As is the

case with other standard reinforcing fillers, the silica particles are seen to

agglomerate into “particles” of roughly spherical shape and many different

(i.e., polydisperse) sizes (Leblanc, 2010). Based on this observation, our

first step to construct a solution for the overall nonlinear elastic response of

isotropic filled elastomers — as characterized by the effective stored-energy

function (5.6) — is to idealize their microstructures as a CSA (composite-

sphere assemblage). Figure 5.1(b) depicts schematically the polydisperse

nature of the CSA, and the fact that the concentration of particle in each

composite sphere is equal to the concentration of particles c in the entire

assemblage, since all the composite spheres have identical ratios of inner-to-

outer radius; the interested reader is referred to Chapter 7 inMilton (2002)

for further properties of CSAs.

The exact computation of the overall nonlinear elastic response of a CSA

is as difficult as that of any real microstructure. Unlike real microstructures,

however, CSAs allow for the construction of variational approximations for

their effective stored-energy function (5.6) based on non-uniform admissible
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trial fields, hence providing the means to account for higher microstructural

information beyond merely the concentration of particles.

5.2.2 Variational approximation for the response of a CSA

Having idealized the microstructures of isotropic filled elastomers as a CSA,

we now turn to constructing a variational statically admissible2 approxi-

mation for their effective stored-energy function W under arbitrarily large

deformations. We begin by introducing the Legendre transformation

W ∗(X,P) = sup
F

{P · F−W (X,F)} . (5.7)

A direct consequence of this definition is that, for any P and F,

W (X,F) ≥ P · F−W ∗(X,P) (5.8)

and hence that

W (F, c) ≥ min
F∈K(F)

1

|Ω|

∫
Ω

P · FdX− 1

|Ω|

∫
Ω

W ∗(X,P)dX. (5.9)

For the inequality (5.9) not to be trivial, the field P needs to be selected

divergence-free, in which case it follows from Hill’s lemma that

W (F, c) ≥ P · F− 1

|Ω|

∫
Ω

W ∗(X,P)dX, (5.10)

where the notation

P
.
=

1

|Ω|

∫
Ω

P(X) dX (5.11)

has been introduced for convenience. In view of the definition (5.7), the

inequality (5.10) can be written more explicitly as

W (F, c) ≥ 1

|Ω|

∫
Ω

W (X,FS)dX+P · F− 1

|Ω|

∫
Ω

P · FSdX, (5.12)

2The analogous kinematically admissible approximation is discussed in Appendix I.
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with the second-order tensor FS being implicitly defined in terms of P as

the solution to the algebraic equation

P− ∂W

∂F
(X,FS) = 0 (5.13)

that maximizes the right-hand side of (5.7); note that FS does not necessarily

correspond to the gradient of a deformation field.

The inequality (5.12) is valid for any choice of microstructure (i.e., any

indicator function θ) and any choice of divergence-free field P. At this point,

we exploit the fact that the microstructure under study here is a CSA and

consider divergence-free fields P that satisfy the affine condition

PN = PN (5.14)

on the surface of each composite sphere in the assemblage. By virtue of

the invariance of the equations of elastostatics under the transformation

(X,x) → (kX, kx), relation (5.12) can then be rewritten as

W (F, c) ≥ 1

|B|

∫
B
W (X,FS)dX+P · F− 1

|B|

∫
B
P · FSdX, (5.15)

where now the volume integrals are not over the entire domain Ω of the CSA,

but only over the domain B of a single composite sphere. While the second-

order tensor FS does not correspond to the gradient of a deformation field

over Ω in general, the field P can be selected so that FS does correspond to

the gradient of a deformation field over each composite sphere. In that case,

by invoking once again Hill’s lemma, the inequality (5.15) admits the further

simplification

W (F, c) ≥ 1

|B|

∫
B
W (X,FS)dX+P · F−P ·

[
1

|B|

∫
B
FS dX

]
. (5.16)

Now, the right-hand side of inequality (5.16) can be maximized when the

constant tensor P is chosen such that

1

|B|

∫
B
FS(X)dX = F, (5.17)
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in which case it reduces finally to

W (F, c) ≥ 1

|B|

∫
B
W (X,FS)dX

.
= W

S
(F, c). (5.18)

In this last expression, again, B stands for the domain occupied by a single

composite sphere with particle concentration c in the undeformed configura-

tion (see Fig. 5.2(b)), FS is the deformation gradient tensor defined by the

boundary-value problem

Div

[
∂W

∂F
(X,FS)

]
= 0 in B and

[
∂W

∂F
(X,FS)

]
N = PN on ∂B,

(5.19)

and the constant tensor P is implicitly related to the macroscopic deforma-

tion gradient F via

P =
1

|B|

∫
B

∂W

∂F
(X,FS)dX =

∂W
S

∂F
(F, c), (5.20)

the last equality in (5.20) stemming from the divergence theorem.

The macroscopic deformation gradient F and effective stored-energy func-

tion W
S
defined by relations (5.17) and (5.18) with (5.19)–(5.20) constitute

the main result of this chapter. They characterize — in the form of a varia-

tional approximation — the overall nonlinear elastic response of an elastomer,

with arbitrary stored-energy function W (1), filled with an isotropic distribu-

tion of particles, with arbitrary stored-energy function W (2), of polydisperse

sizes and finite concentration c. The following theoretical and practical re-

marks are in order:

i. It is plain that the divergence-free field P devised above is nothing more

than a statically admissible stress field S(X) = P(X) with prescribed

volume average S = P over the entire domain Ω of the CSA. Thus, akin

to the classical result in linear elasticity Hashin (1962),W
S
corresponds

physically to the total elastic energy per unit undeformed volume of a

CSA associated with a statically admissible stress field. It is empha-

sized that the derivation of such a solution, depicted schematically in

Fig. 5.2, without having had to invoke the cumbersome principle of

minimum complementary energy in finite elasticity was made possible

by the use of the Legendre transformation (5.7); see Willis (1989) for
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relevant comments on this approach.
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Figure 5.2: Schematic illustrating that the overall response of a CSA sub-
jected to affine stress boundary conditions can be variationally approximated
by the overall response of a corresponding single composite sphere subjected
to the same affine stress boundary conditions. Specifically, the approxima-
tion is such that the total elastic energy W of the CSA is bounded from

below by the total elastic energy W
S
of the single composite sphere.

ii. The computation of the overall nonlinear elastic response of filled elas-

tomers, as determined by the above CSA variational approximation,

amounts to solving the boundary-value problem (5.19) for the defor-

mation gradient field FS over a single composite sphere B. And then

carrying out the volume integrals (5.17) and (5.18) to finally compute

the macroscopic deformation gradient F and effective stored-energy

function W
S
in terms of the applied macroscopic stress S(= P). In

general, it is not possible to solve equations (5.19) by analytical means,

but it is straightforward to solve them numerically. In the next section,

we present an effective FE (finite-element) approach to carry out the

calculations.

iii. By construction, the effective stored-energy function W
S
is an exact

result (i.e., the equality holds in (5.18)) in the dilute limit of particles

as c → 0+. As the concentration of particles increases, W
S
is expected

to progressively deviate from W providing increasingly softer approxi-

mations for the overall response of filled elastomers. This expectation is

supported by comparisons with the 3D full-field simulations presented

further below in the applications section.

iv. Owing to the proper linearization of the energies W (1) and W (2) of the

matrix and particles, the effective stored-energy function W
S
linearizes
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properly in the limit of small applied stresses as S → 0 reducing to

W
S
(F, c) =

1

2
ε · LS

ε+O(ε 3), (5.21)

where ε = (F + F
T − 2I)/2 and LS

= LS
(c) stands for the effective

modulus tensor of the filled elastomer in its ground state.

v. For the prominent case when the underlying matrix and particles are

constitutively isotropic, it follows that the exact effective stored-energy

function W is macroscopically isotropic, W (QFQ
′
, c) = W (F, c) for

all proper orthogonal second-order tensors Q and Q
′
. In this case, it is

not difficult to show that the approximate effective stored-energy func-

tion W
S
has the merit to be functionally exact in that it is identically

isotropic; i.e., W
S
(QFQ

′
, c) = W

S
(F, c) ∀ Q,Q

′ ∈ Orth+.

vi. When the underlying matrix and particles are incompressible, the ex-

act macroscopic constraint of incompressibility ensuing from the mi-

croscopic constraint C(X,F) = detF − 1 = 0 ∀X ∈ Ω is given by

C(F, c) = detF − 1 = 0 so that W (F, c) = +∞ if detF ̸= 1. Owing

to the lack of separation of length scales between the particle and the

surrounding matrix material in the boundary-value problem3 (5.19),

the resulting approximate macroscopic deformation gradient (5.17) is

not necessarily such that detF = 1 (even though detFS = 1 for all

X ∈ B). Nevertheless, in the broad range of cases that we have ex-

amined numerically, the determinant of the resulting F exhibits little

deviation from 1.

5.3 FE solutions for the auxiliary problem of a single

composite sphere under affine stresses

In the sequel, we present a FE procedure to construct numerical solutions for

the boundary-value problem (5.19) and average quantities (5.17) and (5.18),

from which we can then determine the overall response of filled elastomers

3In other words, the composite sphere is a composite structure and not a composite
material.
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under general loading conditions. While the above-presented variational ap-

proximation applies more generally, for conciseness, attention is restricted

here to the physically prominent case of matrix and particles that are consti-

tutively isotropic. We begin in Section 5.3.1 by describing the construction of

the FE model utilized to carry out the relevant calculations. The description

of the numerical method of solution of W
S
and F for a given S is discussed

in Section 5.3.2.

5.3.1 The FE model

(a) (b) (c)

Figure 5.3: Three representative meshes in the undeformed configuration for
a composite sphere with particle concentration c = 0.15: (a) coarse mesh
with 28, 400 elements, (b) fine mesh with 102, 600 elements, and (c) very fine
mesh with 260, 800 elements.

Without loss of generality, we consider the domains occupied by the matrix

(r = 1) and particle (r = 2) in the composite sphere to be such that

B(1) = {X : c1/3 ≤ |X| ≤ 1} and B(2) = {X : |X| ≤ c1/3}, (5.22)

respectively. That is, the center of the composite sphere is placed at the

origin of the laboratory Cartesian axes {ei}, and units of length are chosen

so that the outer radius Ro = 1 while the particle radius is set at Ri = c1/3

in terms of the concentration of particles. The geometric and constitutive

symmetries of the problem allow to perform the calculations in just one oc-

tant of the composite sphere. The 3D discretization of such a subdomain is

performed with help of a mesh generator code in such a way that radial sym-

metry is preserved. Eight-node hybrid brick elements — where the pressure

is treated as a further degree of freedom in order to be able to handle com-
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pressible as well as incompressible constitutive behaviors — are utilized for

the analysis. Since the computations are carried out using the FE package

ABAQUS, we make use in particular of the C3D8H hybrid elements available

in this code (Abaqus version 6.11 documentation). Figure 5.3 shows three

representative meshes of increasing refinement. Mesh sensitivity studies re-

veal that meshes with approximately 100, 000 elements (such as the fine mesh

shown in Fig. 5.3(b)) produce sufficiently accurate results, irrespectively of

the concentration of particle c.

5.3.2 Computation of the overall response

By virtue of the geometric and constitutive isotropy of the problem, the

resulting overall elastic response of the composite sphere is isotropic. This

implies that the effective stored-energy function W
S
in this case depends

on the macroscopic deformation gradient F only through its singular values

λ1, λ2, λ3. More explicitly,

W
S
(F, c) = Ψ

S
(λ1, λ2, λ3, c), (5.23)

where Ψ
S
(λ1, λ2, λ3, c) is a symmetric function with respect to its first three

arguments.

A further direct implication of the overall isotropy of the problem is that

it suffices to consider affine stress boundary conditions of the diagonal form

SN = SN on ∂B with S = diag(s1, s2, s3), (5.24)

since si = ∂Ψ
S
(λ1, λ2, λ3, c)/∂λi (i = 1, 2, 3) in this case. A convenient way to

implement these boundary conditions is to follow radial paths in (s1, s2, s3)–

stress space. Specifically, we set

s1 = s cosΘ sinΦ, s2 = s sinΘ sinΦ, s3 = s cosΦ, (5.25)

where s is the monotonically increasing load parameter of the process, which

takes the value of 0 in the undeformed stress-free configuration, and Θ ∈
[0, 2π] and Φ ∈ [0, π] are the load path angles. Any desired macroscopic

stress state S = diag(s1, s2, s3) can be accessed by marching along (starting
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at s = 0) radial paths (5.25) with appropriate fixed values of the angles Θ

and Φ.
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Figure 5.4: Contour plots of the maximum principal logarithmic strain for a
composite sphere with c = 0.15, Neo-Hookean matrix, and 104–times stiffer Neo-
Hookean particle subjected to affine uniaxial stress (5.24) with S = diag(s1 >
0, 0, 0); the undeformed configuration is also depicted for comparison purposes.
The overall stretch in the direction of applied stress is λ1 = 3.5.

For a given radial path (5.25), the FE calculations are carried out by

gradually increasing the load parameter s from 0 to the desired final value;

for the classes of materials to be studied here, the typical step size in the

gradual increase of s is ∆s = 10−2. At each step in such a loading path, the

incremental equilibrium equations are solved directly in ABAQUS and the

integrals (5.17) and (5.18) defining the macroscopic deformation gradient F

and effective stored-energy function W
S
computed. It is emphasized that the

computational cost of these calculations is low and that very large overall

deformations can be achieved. For illustrative purposes, Fig. 5.4 shows

the deformed mesh of a composite sphere for the case of c = 0.15, Neo-

Hookean matrix, and 104–times stiffer Neo-Hookean particle under affine

uniaxial stress (5.24) with S = diag(s1 > 0, 0, 0). The overall stretch in the

direction of applied stress is λ1 = 3.5. Locally, the deformation is of course

even larger (in the matrix) as the contour plots of the maximum principal

logarithmic stretch show in the figure.

5.4 Sample applications and discussion

In this section we present a compendium of results for the overall nonlinear

elastic response of filled elastomers, as characterized by the CSA formulation

described above. Motivated by the properties of typical filled elastomers,
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attention is restricted to isotropic incompressible matrix materials and (ap-

proximately) rigid filler particles. Results for the linear elastic response in the

small-deformation regime are presented first followed by results for the large-

deformation response of filled Gaussian (Neo-Hookean) rubber with matrix

stored-energy function

W (1)(F) =

{ µ

2
[F · F− 3] if detF = 1

+∞ otherwise
. (5.26)

The third set of results pertains to the response of a filled rubber wherein the

underlying elastomeric matrix is characterized by the non-Gaussian stored-

energy function

W (1)(F) =


2∑

i=1

31−αi

2αi

µi [(F · F)αi − 3αi ] if detF = 1

+∞ otherwise

, (5.27)

with µ1 = 0.032 MPa, µ2 = 0.3 MPa, α1 = 3.837, α2 = 0.559, corresponding

to a model that has been shown to accurately describe the nonlinear elas-

tic response of typical silicone rubber over large ranges of deformations (see

Section 2.3 in Lopez-Pamies, 2010b). In all the calculations, the compara-

tively rigid particles are modeled as incompressible Neo-Hookean solids with

stored-energy function

W (2)(F) =

{ µp

2
[F · F− 3] if detF = 1

+∞ otherwise
, (5.28)

where the parameter µp is set to be four orders of magnitude larger4 than the

initial shear modulus of the underlying matrix material, namely, µp = 104×µ

for the case of filled Neo-Hookean rubber and µp = 104 × (µ1 + µ2) for the

case of filled silicone rubber.

The selection of results presented here aims at providing further insight

into the proposed CSA approach and at assessing its accuracy and numerical

efficiency for a broad range of elastomeric matrix materials, particle concen-

trations, and loading conditions. To aid in this process, the CSA results are

confronted with the recent 3D full-field simulations of Lopez-Pamies et al.

4The initial shear moduli of standard reinforcing fillers (e.g., silica) are typically four
orders of magnitude larger than those of standard elastomers (e.g., silicone).

132



(2013a). These are finite-element simulations of the large-deformation re-

sponse of elastomers reinforced by random isotropic distributions of rigid

spherical particles with the same (monodisperse) and with different (poly-

disperse) sizes. For the values of particle concentration considered here,

the dispersion in the size of the particles turns out not to have an effect

on the overall response of the simulations (see Section 6 in Lopez-Pamies

et al., 2013a). Accordingly, no distinction is made henceforth of whether the

presented full-field FE simulations are for monodisperse or for polydisperse

microstructures.

5.4.1 Linear elastic results

In the limit of small deformations (see remark iv in Section 5.2.2), for the

case of isotropic incompressible matrix materials and rigid particles, the CSA

stored-energy function (5.18) reduces to

W
S
(F, c) = µS

[
ε 2
1 + ε 2

2 + ε 2
3

]
with ε1 + ε2 + ε3 = 0 (5.29)

to leading order in the deformation measures εi = λi − 1 (i = 1, 2, 3), where

it is recalled that λi denote the singular values of the macroscopic defor-

mation gradient F and µS stands for the initial effective shear modulus of

the filled rubber. Figure 5.5 presents plots for µS, normalized by the initial

shear modulus µ of the underlying elastomeric matrix, as a function of the

concentration of particles c. Results are also presented for the corresponding

full-field FE simulations for isotropic distribution of rigid spherical particles,

as well as for the Hashin-Shtrikman and Reuss lower bounds for the effective

shear modulus of rigidly reinforced, isotropic, incompressible, linearly elastic

materials.

Two plain observations from Fig. 5.5 are that the CSA result stiffens

monotonically with increasing values of c, as expected on physical grounds,

and that it is in good quantitative agreement with the full-field FE simula-

tions for concentrations up to about c = 0.05, remaining softer thereafter.

This latter behavior is consistent with the fact the CSA result is exact in

the dilute limit of particles as c → 0+, but a lower bound for finite values

of c (see remark iii in Section 5.2.2). More specifically, the CSA result is

seen to be consistently stiffer than the Reuss bound, but softer than the
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Figure 5.5: The normalized initial effective shear modulus µ/µ of isotropic incom-
pressible elastomers filled with random isotropic distributions of rigid particles.
Plots are shown for: (i) the CSA approximation µS , (ii) full-field FE simulations,
(iii) the Hashin-Shtrikman lower bound µHS/µ = (2 + 3c)/(2− 2c), and (iv) the
Reuss lower bound µR/µ = 1/(1− c), as functions of the concentration of particles
c.

corresponding Hashin-Shtrikman bound beyond c = 0.05.

5.4.2 Results for filled Neo-Hookean rubber

Having examined the small-deformation regime, we now turn to consider

the response of filled elastomers under arbitrarily large deformations. We

begin by considering the basic case of filled Neo-Hookean rubber. Figure 5.6

shows results for the effective stored-energy function of Neo-Hookean rubber

reinforced by an isotropic distribution of rigid particles of concentration c =

0.15. Part (a) displays the entire energy function in terms of the macroscopic

principal stretches λ1 and λ2, whereas part (b) displays the cross section of

the energy along the axisymmetric deformation plane with λ1 = λ2 = λ.

Results are shown for the CSA approximate energy W
S
in both parts of

the figure, and for the corresponding full-field FE simulations for isotropic

distributions of spherical particles in part (b).

A key point to emphasize from Fig. 5.6 is that the construction of the

entire CSA effective stored-energy function W
S
over large ranges of macro-

scopic deformations F—which, again, serves to characterize the macroscopic

constitutive response of the filled elastomer under general loading conditions
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Figure 5.6: Macroscopic response of Neo-Hookean rubber filled with an isotropic
distribution of rigid particles of concentration c = 0.15. Part (a) displays the en-
tire effective stored-energy function in terms of the macroscopic principal stretches
λ1 and λ2, whereas part (b) shows the energy along axisymmetric loading condi-

tions with λ1 = λ, λ2 = λ
−1/2

. Results are shown for the CSA approximation

W
S
in both parts, and for corresponding full-field FE simulations for isotropic

distributions of spherical particles in part (b).

via (5.20) — is straightforward and computationally inexpensive. Another

key point is that the CSA approximation is in good agreement with the full-

field FE simulations in the large-deformation regime, even at the relatively

high value of particle concentration c = 0.15.

To gain more precise insight into the accuracy and range of validity of

the CSA approximation, Fig. 5.7 presents results for the large-deformation

response of filled Neo-Hookean rubber for particle concentrations of c = 0.05

and 0.15 under: (a) uniaxial compression, (b) uniaxial tension, (c) pure shear,

and (d) simple shear. The constitutive stress-deformation relations for these

loading conditions in terms of the effective stored-energy function W
S
read

explicitly as

• Uniaxial loading (λ1 = λ, λ2 = λ3 = λ
−1/2

with s2 = s3 = 0):

Sun =
dW

S

dλ
(5.30)
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• Pure shear (λ1 = λ, λ2 = λ
−1
, λ3 = 1 with s2 = 0):

Sps =
dW

S

dλ
(5.31)

• Simple shear (λ1 = (γ +
√
γ 2 + 4)/2, λ2 = λ

−1

1 , λ3 = 1):

Sss =
dW

S

dγ
(5.32)

where Sun, Sps, Sss denote first Piola-Kirchhoff stress measures. The corre-

sponding full-field FE results for isotropic distributions of spherical particles

are also plotted in the figure.

In addition to the monotonic stiffening of the response for increasing values

of particle concentration, it is immediate from Fig. 5.7 that the CSA and

FE results are in fairly good qualitative and quantitative agreement for all

loading conditions. As expected from the variational construction of the CSA

formulation (see remark iii in Section 5.2.2), the agreement is better for the

case of the smaller concentration c = 0.05, but remains remarkably good

for the relatively high concentration c = 0.15, with a maximum difference

of about 15% occurring along uniaxial compression. Fig. 5.7 also serves to

illustrate the fact that the CSA approach allows to reach much larger overall

deformations than those achieved with full-field simulations.

5.4.3 Results for a filled silicone rubber

Figure 5.8 presents various results for the large-deformation response of a

filled non-Gaussian rubber, wherein the underlying matrix material is a typ-

ical silicone rubber characterized here by the stored-energy function (5.27)

with material parameters µ1 = 0.032 MPa, µ2 = 0.3 MPa, α1 = 3.837,

α2 = 0.559. Parts (a), (b), (c), and (d) of the figure show the macroscopic

stress-deformation relation for uniaxial compression, uniaxial tension, pure

shear, and simple shear for particle concentrations c = 0.05 and 0.15. Results

are shown for the CSA approximation and for the corresponding full-field FE

simulations.

Akin to all previous results, the overall constitutive response of the filled
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elastomer is seen to stiffen for increasing values of particle concentration.

Similar to the Neo-Hookean case, here the CSA results also exhibit good

qualitative and quantitative agreement with the full-field FE simulations for

all loading conditions. The largest discrepancy occurs, again, along uniaxial

compressive loading for the largest concentration of particles c = 0.15.

In short, the above three sets of sample results indicate that the pro-

posed CSA formulation provides a numerically efficient, functionally sound,

and quantitatively fairly accurate approach to compute the overall nonlinear

elastic response of isotropic filled elastomers, with small-to-moderate concen-

tration of particles, under arbitrarily large deformations.
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Figure 5.7: Macroscopic response of filled Neo-Hookean rubber with various val-
ues of concentration of particles c under: (a) uniaxial compressive, (b) uniaxial
tensile, (c) pure shear, and (d) simple shear loading conditions. Plots are shown for
the CSA approximation and corresponding full-field FE simulations for isotropic
distributions of spherical particles.
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Figure 5.8: Macroscopic response of filled silicone rubber with various values of
concentration of particles c under: (a) uniaxial compressive, (b) uniaxial tensile, (c)
pure shear, and (d) simple shear loading conditions. Plots are shown for the CSA
approximation and corresponding full-field simulations for isotropic distributions
of spherical particles.
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CHAPTER 6

HOMOGENIZATION OF DIELECTRIC
ELASTOMER COMPOSITES WITH

INTERPHASIAL CHARGES

In recent years, plenty of experiments (see, e.g., Huang et al., 2004; Nelson

and John, 2004; Roy et al., 2005; Huang et al., 2005) have shown that the

macroscopic (i.e., homogenized) permittivity of polymers filled with nanopar-

ticles can be drastically different — higher or lower — from that of the

same polymers unfilled or filled with microparticles. Motivated by prior

work on suspensions of particles in electrolytic solutions by Chew and Sen

(1982), and Lewis (2004), in this chapter we show theoretically how such

“anomalous” behavior can be described and explained by the presence of

interphasial charges. More generally, we show that the manipulation of in-

terphasial charges (possibly via particle surface treatments or coatings) pro-

vides a promising path forward for the design of materials with exceptional

dielectric properties.

The basic idea rests on a generalization of the “coated-sphere-assemblage”

approach pioneered by Hashin (1962) to the realm of particulate composites

with interphases that contain space charges, or, in homogenization parlance,

source terms that oscillate at the microscale1. Specifically, the first step is

to idealize2 the random microstructure of filled polymers as assemblages of

homothetic multicoated spheres made up of a core (the particle), an inner

shell (the interphase), and an outer shell (the matrix), all with different

1In this regard, it is important to emphasize that the vast majority of homogenization
techniques and results currently available (Milton, 2002) make critical use of the assump-
tion that source terms (such as, for instance, space charges, body forces, and heat sources)
oscillate only at the macroscale.

2For definiteness, we restrict attention here to the case of isotropic microstructures
and isotropic constitutive properties. However, the arguments apply more generally to
particulate composites with anisotropic microstructures and anisotropic constitutive prop-
erties (Goudarzi and Lopez-Pamies, 2013).

140



isotropic permittivities εpI, εiI, and εmI, respectively. Further, the inner

shell is taken to contain a distribution of space charges Q(X) — heterogenous

but with equal amount of positive and negative charges — per unit volume

of the material; see Fig. 6.1 for a schematic depiction. Having idealized

the microstructure of filled polymers as such assemblages, their macroscopic

permittivity can then be determined exactly and in closed-form by making

use of a neutral-inclusion strategy.

(a) (b)
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Figure 6.1: (a) Electron micrograph of a PDMS elastomer filled with titania
nanoparticles and (b) its idealization as an assemblage of multicoated spheres with
interphasial charges. All the multicoated spheres in the assemblage are homothetic
in that they are scale-up or scale-down replicas of each other.

6.1 The dielectric response of an assemblage of

multicoated spheres with interphasial charges

Consider a homogeneous material with unknown isotropic permittivity ε∗ I

that occupies a domain Ω and is subjected to the electric potential

φ(X) = −E ·X (6.1)

on its boundary ∂Ω, where E is a prescribed constant vector. We seek to

find the permittivity ε∗ such that when a multicoated sphere made up of a

core (the particle) with permittivity εp I, an inner shell (the interphase) with

permittivity εi I that contains a distribution of charges Q(X), and an outer

shell (the matrix) with permittivity εm I is inserted in Ω, the electric field

remains unaltered (E(X) = E) outside the multicoated sphere. Since the

multicoated sphere acts as a neutral inclusion in such a medium, the sought-

after permittivity ε∗ corresponds precisely to the macroscopic permittivity
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of a fully dense assemblage of homothetic multicoated spheres that fills the

entire domain Ω (see, e.g., the seminal work of Hashin and Shtrikman (1962),

Chapter 7 in Milton (2002) and references therein).

p
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i
R

m
R

*

i

m

p

( )Q X

E X

Figure 6.2: Schematic of a multicoated sphere with interphasial charges embed-
ded in the homogeneous material with permittivity ε∗I under the affine boundary
condition φ(X) = −E · X on ∂Ω. The multicoated sphere acts as a neutral in-
clusion in that it does not alter the uniform electric field E(X) = E outside of
it.

For convenience, we choose the origin of the laboratory axes to coincide

with the center of the multicoated sphere and write its heterogeneous per-

mittivity in the compact form

ε(X)I = [θp(X)εp + θi(X)εi + θm(X)εm] I, (6.2)

where θp(X) = 1 if |X| ≤ Rp and zero otherwise, θi(X) = 1 if Rp ≤ |X| ≤ Ri

and zero otherwise, θm(X) = 1 if Ri ≤ |X| ≤ Rm and zero otherwise. Here,

Rp, Ri, and Rm stand, respectively, for the radii of the core, the inner shell,

and the outer shell; see Fig. 6.2. Similarly, the charge density is conveniently

written as

Q(X) = θi(X)Qi(X). (6.3)

In the sequel, for definiteness, we restrict attention to charge densities of the

form

Qi(X) = qi
E ·X
Rp |X|

, (6.4)
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where, again, Rp denotes the radius of the filler particle and qi is any constant

of choice (of units F/m) that physically can be viewed as a measure of charge

content. The functional form of (6.4) is consistent with the interphasial

charge distributions found in suspensions of dielectric spherical particles in

electrolytic solutions under an external uniform electric field (Chew and Sen,

1982). It is also consistent with the charge distributions that develop on

the surface of conducting spherical particles under the same boundary con-

ditions (Owen, 2003). While sufficiently general for our purposes, the charge

distribution (6.4) has the further merit to be simple enough to lead to fully

explicit results.

The next step is to solve Gauss equations

Div [−ε(X)Gradφ] = Q(X) for X ∈ Ω/Γ (6.5)

and

[[−ε(X)Gradφ]] ·N = 0 for X ∈ Γ. (6.6)

Here, N = X/|X| and Γ = {Γp,Γi,Γm} has been introduced to denote the

set of surfaces of material discontinuity Γp = {X : |X| = Rp}, Γi = {X :

|X| = Ri}, and Γm = {X : |X| = Rm}. Making use of spherical coordinates,

we look for solutions of the form

φ(X) =



apR cosΦ for R ≤ Rp

[
aiR +

bi
R2

− qi|E|
4Rpεi

R2

]
cosΦ for Rp ≤ R ≤ Ri

[
amR +

bm
R2

]
cosΦ for Ri ≤ R ≤ Rm

−|E|R cosΦ for R ≥ Rm

, (6.7)

where R = |X| and Φ denotes the angle between the applied electric field E

and the position vector X. It is straightforward to verify that the electric

potential (6.7) satisfies identically the Poisson’s equation (6.5). The jump
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conditions (6.6) entail that

εpap = εi

[
ai − 2

bi
R3

p

− qi|E|
2εi

]
,

εi

[
ai − 2

bi
R3

i

− qi|E|
2Rpεi

Ri

]
= εm

[
am − 2

bm
R3

i

]
,

εm

[
am − 2

bm
R3

m

]
= −ε∗|E|, (6.8)

while the continuity of the electric potential entails further that

apRp = aiRp +
bi
R2

p

− qi|E|
4εi

Rp,

aiRi +
bi
R2

i

− qi|E|
4Rpεi

R2
i = amRi +

bm
R2

i

,

amRm +
bm
R2

m

= −|E|Rm. (6.9)

Relations (6.8)–(6.9) constitute a system of six linear algebraic equations for

the six unknowns ap, ai, bi, am, bm, ε∗, and thus admit a unique solution.

After introducing the notation

cp =
R3

p

R3
m

and ci =
R3

i −R3
p

R3
m

(6.10)

for the volume fractions of the particle cp and the interphase ci, the solution

for the permittivity ε∗ can be written explicitly as

ε∗ = εm + 3εm(ci + cp) [ci(εi − εm)(2εi + εp) + 3cpεi(εp − εm)] /A

+ 3εmcp(ci + cp)×[(
ci
cp

+ 1

)4/3

(2εi + εp) + 4

(
ci
cp

+ 1

)1/3

(εi − εp) + 3(εp − εi)

]
qi/4A

(6.11)

where

A = εp[εi(1− ci − cp)(ci + 3cp) + ciεm(ci + cp + 2)]

+ εi[εm(ci + cp + 2)(2ci + 3cp)− 2ciεi(ci + cp − 1)]. (6.12)
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The exact closed-form solution (6.11) characterizes the macroscopic permit-

tivity of a matrix material with permittivity εm, filled with polydisperse

spherical particles with permittivity εp and volume fraction cp, that are

bonded to the matrix through finite-size interphases with permittivity εi and

volume fraction ci containing space charges of the form (6.4). The following

theoretical and practical remarks are in order:

i. In the absence of interphases altogether when ci = 0 and qi = 0, the

macroscopic permittivity (6.11) reduces to the Maxwell-Garnett for-

mula:

ε∗ = εm +
3cpεm(εp − εm)

2εm + εp + cp(εm − εp)
. (6.13)

When εm ≥ εp (εm ≤ εp), this result also agrees with the Hashin-

Shtrikman (Hashin and Shtrikman, 1962) lower (upper) bound for two-

phase dielectrics with arbitrary (not necessarily particulate) isotropic

microstructures. While the result (6.13) is unable to describe the per-

mittivities of nanoparticulate composites observed in experiments, it

does describe reasonably well the macroscopic permittivity of dielectrics

filled with supranano-sized spherical particles over large ranges of vol-

ume fractions of particles (Hale, 1976).

ii. In the absence of charges when qi = 0, the macroscopic permittivity

(6.11) reduces to the result of Milton (1981):

ε∗ = εm +
3(cp + ci)εm

1− cp − ci +
3εm

εi − εm +
3cpεi

ci +
3(cp + ci)εi
εp − εi

(6.14)

for an assemblage of homothetic doubly coated spheres. While ex-

pression (6.14) accounts for finite-size interphases with homogeneous

permittivity εi, possibly higher or lower from that of the matrix and

particles, it is unable by itself to explain many of the unusually high

and low permittivities of nanoparticulate composites observed in ex-

periments. To see this, it suffices to recognize that the result (6.14) is
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bounded from above by

ε∗ ≤ εm +
3(cp + ci)

1− cp − ci
εm, (6.15)

and from below by

ε∗ ≥ εm − 3(cp + ci)

2 + cp + ci
εm. (6.16)

Thus, even in the limiting cases when εi/ε0 = +∞ or εi/ε0 = 1 (with

ε0 ≈ 8.85 × 10−12 F/m denoting the permittivity of vacuum), the en-

hancement or reduction in the macroscopic permittivity (6.14) is —

away from percolation — only of order O(εm).

iii. The macroscopic permittivity (6.11) is linear in qi, a measure of the

amount of charges in the interphases. Accordingly, given that the co-

efficient multiplying qi is positive, large positive values of qi can lead

to a great enhancement of the macroscopic permittivity, whereas large

negative values of qi can lead to a great reduction (possibly rendering

negative permittivities). Physically, these two behaviors can be un-

derstood as follows. Positive values of qi imply that the interphasial

charges form an overall dipole that is aligned in the same direction with

the applied electric field E and thus enhances the macroscopic permit-

tivity. On the other hand, negative values of qi imply that the charges

form an overall dipole that is in the opposite direction to E and thus

reduces the macroscopic permittivity. In short, the result (6.11) re-

veals that the presence of interphasial charges can indeed describe and

explain both, the enhanced as well as the reduced, dielectric response

exhibited by emerging polymer nanoparticulate composites. More gen-

erally, it reveals that judicious manipulation of interphasial charges —

by means, for instance, of particle surface treatments or coatings —

provides a promising path forward for the design of materials with ex-

ceptional dielectric properties (and, by the same token (Huang et al.,

2004), exceptional electromechanical properties).
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6.2 Illustrative results and comparisons with

experiments

To gain further physical insight into the properties of the formula (6.11), we

now present some illustrative results within the context of comparisons with

two representative sets of experiments, one exhibiting enhancement and one

exhibiting reduction of the dielectric response.

Figure 6.3 shows results for the relative permittivity ε∗/ε0 of a nanocom-

posite material made up of a P(VDF-TrFE-CTFE) matrix filled with PANI

(polyaniline) particles, for a range of small volume fractions of particles cp.

P(VDF-TrFE-CTFE) is a dielectric polymer with permittivity approximately

given by εm/ε0 = 52. On the other hand, PANI is a conductive polymer.

The permittivity of PANI particles is therefore modeled here as unbounded,

εp/ε0 = +∞.

There are four sets of data displayed in Fig. 6.3. The solid line corresponds

to the full theoretical result (6.11) for the basic case when the permittiv-

ity of the interphases is equal to that of the P(VDF-TrFE-CTFE) matrix,

εi/ε0 = εm/ε0 = 52, the thicknesses of the interphases are one-third the size

of the radius of the particles that they surround, ti/Rp
.
= (Ri − Rp)/Rp =

(ci/cp + 1)1/3 − 1 = 1/3, and the charge-content parameter is qi/ε0 = 5200,

two orders of magnitude larger than the matrix permittivity. The triangles

correspond to the experiments (measured at room temperature and 1000

Hz) of Huang et al. (2004). The dash line corresponds to the Milton for-

mula (6.14), which, again, accounts for a finite-size interphase between the

particles and the matrix but not for interphasial charges. In particular, the

result displayed in the figure corresponds to interphases of infinite permit-

tivity, εi/ε0 = +∞, whose thicknesses are one-third the size of the particles

that they surround, ti/Rp = 1/3. Finally, the dotted line corresponds to the

Maxwell-Garnett formula (6.13), which does not account for any interphasial

phenomena whatsoever.

The main observation from Fig. 6.3 is that the theoretical result (6.11)

is able to describe the drastic enhancement exhibited by the experimental

data when evaluated at physically sound values of the size of the interphases

(ti/Rp = 1/3) and their charge content (qi/ε0 = 5200). Another key obser-

vation is that interphases with (infinitely) high permittivity but that do not

contain space charges can generate a substantial enhancement of the macro-
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Figure 6.3: Relative permittivity ε∗/ε0 of a nanocomposite made up of a P(VDF-
TrFE-CTFE) matrix (εm/ε0 = 52) filled with PANI particles (εp/ε0 = +∞), as
a function of the volume fraction of particles cp. The data shown correspond
to the theoretical result (6.11) accounting for interphasial charges (solid line),
the experiments of Huang et al. (2004) (triangles), the result (6.14) of Milton
accounting for interphases with much higher permittivity than that of the matrix
(dashed line), and the Maxwell-Garnett formula (dotted line).

scopic dielectric response but not in any way as substantial as that generated

by interphases that do contain charges. From the glaring disagreement of the

Maxwell-Garnett formula with the other three results, Fig. 6.3 also makes

it plain that interphasial phenomena, as expected, dominate the dielectric

response of nanocomposites.

Figure 6.4 shows results for the relative permittivity ε∗/ε0 of a PDMS

(polydimethylsiloxane) elastomer filled with polycrystalline anatase titania

particles, for a range of small volume fractions of particles cp. PDMS is a

dielectric elastomer with permittivity approximately given by εm/ε0 = 3.5.

The permittivity of the polycrystalline anatase titania utilized here is much

higher, εp/ε0 = 100.

The triangles and circles in Fig. 6.4 correspond to new3 experimental data

(obtained at room temperature and at 1000 Hz). In particular, the trian-

gles correspond to nanocomposites wherein the titania particles are spheres

of radius Rp = 10 nm; Fig. 6.1 shows a representative electron micrograph

3Full experimental details together with a comprehensive set of electromechanical mea-
surements will be reported elsewhere.
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of one of the samples with particle volume fraction cp = 0.01. The circles,

on the other hand, correspond to microcomposites wherein the titania par-

ticles are only roughly spherical in shape (since they were synthesized in the

form of a fine powder) and about 1 µm in average radius. Moreover, the

solid line in Fig. 6.4 corresponds to the theoretical result (6.11) for the case

when the permittivity of the interphases is equal to that of the PDMS ma-

trix, εi/ε0 = εm/ε0 = 3.5, the interphase-thickness-to-particle-radius ratio

is ti/Rp = 0.35, and the charge-content parameter is qi/ε0 = −350. The

dashed line pertains to the Milton formula (6.14) for the case of interphases

with the limiting permittivity of vacuum, εi/ε0 = 1, whose ratio of thick-

ness to particle radius is ti/Rp = 0.35. The dotted line stands again for the

Maxwell-Garnett formula (6.13).
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Figure 6.4: Relative permittivity ε∗/ε0 of a PDMS elastomer (εm/ε0 = 3.5)
filled with polycrystalline anatase titania particles, as a function of the vol-
ume fraction of particles cp (εp/ε0 = 100). The data shown correspond to
the theoretical result (6.11) accounting for interphasial charges (solid line),
experiments wherein the particles are 10 nm (triangles) and 1 µm (circles) in
radius, the result (6.14) of Milton accounting for interphases with much lower
permittivity than that of the matrix (dashed line), and the Maxwell-Garnett
formula (dotted line).

It is plain from Fig. 6.4 that the Maxwell-Garnett formula correlates well

with the experimental results for the microcomposite but not with those for

the nanocomposite, which, consistent with earlier observationsNelson and

John (2004), are seen to exhibit a reduction in permittivity with the addi-
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tion of titania particles (in spite of the fact that titania has a much higher

permittivity than PDMS). The Milton result accounting for interphases of

physically plausible size (3.5 nm in thickness, since ti = 0.35×Rp = 3.5 nm)

with much lower permittivity (that of vacuum in fact, εi/ε0 = 1) than that

of the matrix is seen to lead to slightly lower permittivities with the addition

of particles, but not in any way as low as those experimentally displayed

by the nanocomposite. By contrast, the theoretical result (6.11) accounting

for interphases with the same physically plausible size (3.5 nm in thickness)

that contain a small content of charges (qi/ε0 = −350) is able to describe

the drastic reduction in dielectric response exhibited by the nanocomposite.
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CHAPTER 7

CONCLUDING REMARKS

Theoretical and Numerical frameworks has been developed to explain and

predict the macroscopic behavior of filled elastomers. The theory provides

mathematically sound and quantitatively accurate analytical and approxi-

mate solutions to characterize the behavior of non-Gaussian elastomers con-

taining isotropic distribution of rigid spherical particles bounded to the elas-

tomeric matrix through finite size elastomeric interphases. Comparisons with

results of numerical simulations as well as experimental results prove the su-

perb ability of the framework in characterizing the behavior of these very

important class of composite materials.

7.1 Theoretical framework to account for reinforcing

mechanism in filled elastomers

Accounting for the hydrodynamic effect as well as interphasial effects — the

major contributors to the overall behavior of filled elastomers — the frame-

work provides a new base for describing the macroscopic behavior of filled

elastomers which is of practical interest in design of these materials for ad-

vanced applications. Exact and approximate fundamental dilute solutions

have been provided throughout this document for the effective behavior of

Neo-Hookean matrices containing isotropic distribution of rigid spherical par-

ticles firmly bonded to the matrix through interphases. Existence of these

fundamental solutions are seminal to tackle the general problem of filler re-

inforcing mechanisms in filled elastomers through developing a powerful the-

oretical machinery that can intake any fundamental dilute solution — of the
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type derived in this work — and generate solutions for the general problem.

It is noteworthy remarking that in addition to the hydrodynamic and in-

terphasial reinforcement effects, the presence of occluded rubber may also

provide additional reinforcement. Occluded rubber refers to the regions of

elastomer that are entrapped by the agglomeration of filler particles. To a

first approximation, because of its shielding from the rest of the elastomer,

its constitutive behavior can be idealized as rigid. In this case, the presence

of occluded rubber can be accounted for by the proposed theory by simply

reinterpreting cp as the combined total concentration of fillers and occluded

rubber.

The developed framework for non-Convex homogenization, in this work,

in its essence, is not limited to the mechanical problems and can be utilized

to characterize multi-functional behavior of filled elastomers under coupled

fields (e.g., electro/magneto-mechanical behavior) (see, e.g., Lopez-Pamies,

2014). As another problem of interest that can be further perused one can

mention particulate composites with interphases which are softer than the

matrix (as oppose to what we have considered throughout this work). The

existence of soft interphases may allow for debonding and instabilities under

some loading conditions.

7.2 Composite-ellipsoid assemblage: A framework for

filled elastomers with anisotropic microstructures

Incorporation of composite assemblages in the realm of nonlinear elasticity

has been detailed in this document. What has been done so far, is only a

debut, and further development is needed. There are possibilities to increase

the accuracy of the method by incorporating more sophisticated boundary

conditions.

In general, the variational method proposed in Chapter 5 and Goudarzi and

Lopez-Pamies (2013) constitutes a powerful platform from which to account

for more levels of complexity to model soft solids with anisotropic partic-

ulate microstructures. Recent experimental studies have revealed (see, e.g,

Chapter 6 in Carpi et al., 2008; Danas et al., 2012) that anisotropic distribu-

tions of fillers, such as for instance the chain-like distributions shown in Fig.

7.1(a), may serve to enhance certain multifunctional properties of filled elas-
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(a)

elastomeric 
matrix

iron
particles

(b)

elastomer particle

interphase

(bound rubber)

Figure 7.1: (a) Electron micrograph of a magnetorheological elastomer with iron
particles distributed anisotropically in chain-like structures (Danas et al., 2012)
and (b) its idealization as an ellipsoidal assemblage of possibly non-spherical par-
ticles (CEA). All the composite ellipsoids in the assemblage are homothetic in that
they are scaled-up or scaled-down versions of each other. Part (b) also illustrates
schematically the straightforward incorporation of bound rubber into the CEA
idealization.

tomers, including their electro/magnetostriction capabilities. These — and

even more complex — microstructures can be idealized as assemblages of

composite ellipsoids, wherein the filler particle can be chosen of any required

anisotropic shape (not necessarily ellipsoidal). Figure 7.1(b) depicts schemat-

ically the case of a composite-ellipsoid assemblage (CEA) of non-spherical

particles; all the ellipsoids in the assemblage are scaled-up or scaled-down

versions of each other (see, e.g., Chapter 7 in Milton, 2002; Bornert et al.,

1996).

It is a simple matter to show that the formulation presented in Section

5.2.2 for CSAs is actually applicable more generally to CEAs — with the

domain B then denoting the single composite ellipsoid of interest. The vari-

ational framework (5.17)–(5.20) provides thus a numerically efficient means

to bottom-up model the overall nonlinear elastic response of elastomers filled

with general classes of anisotropic distributions of particles of anisotropic

shapes under arbitrarily large deformations.

7.3 Accounting for space charges in homogenization of

dielectric elastomer composites

Accounting for space charges via composite assemblages idea is among the

first of its kind dealing with source terms oscillating at microscale. Based

on the theoretical solutions provided in Chapter 6, a design guideline for
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synthesizing composite metamaterials with dielectric constants far beyond

their constituent phases has been proposed.

Interpretation of the existing experimental results for dielectric constant

of nanocomposites (as in Lopez-Pamies et al., 2014; Racherla et al., 2010) by

considering existence of interphasial charges is a conjecture to be investigated

further experimentally, since the amount of the interphasial charges assumed

in order to fit the experimental results are orders of magnitude larger than the

amount of charges migrating to the surface of metallic particles in presence

of an electric potential.
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APPENDIX A

THE COEFFICIENTS α1, α2, α3

The coefficients α1, α2, α3 in the pdes (2.22), (2.32), and (2.35) are given by
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and the functions EF and EE stand for, respectively, the elliptic integrals of

first and second kind, as defined by

EF [φ; t] =

∫ φ

0

[
1− t sin2 θ

]−1/2
dθ and EE [φ; t] =

∫ φ

0

[
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(A.4)

By direct inspection we remark that
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and
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We further remark that

−1

3
≤ α1(λ1, λ2) ≤ 0, −1

3
≤ α2(λ1, λ2) ≤ 0,

0 ≤ α3(λ1, λ2) ≤
1

6
∀ λ1, λ2 > 0. (A.8)
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APPENDIX B

THE FUNCTION H

In this appendix, we sketch out the main properties of the function H :

{(a, b) ∈ R2 : a, b > 0} → R defined by the Eikonal initial-value problem

(2.35)–(2.36) and provide details on its numerical computation. We begin

by recognizing from relations (A.5)–(A.7) that equations (2.35)–(2.36) admit

solutions such that

H(λ1, λ2) = H(λ2, λ1) = H
(
λ1, (λ1λ2)

−1
)
= H

(
(λ1λ2)

−1, λ1

)
= H

(
λ2, (λ1λ2)

−1
)
= H

(
(λ1λ2)

−1, λ2

)
∀ λ1, λ2. (B.1)

as required by the last of the conditions (2.24). A direct implication (see, e.g.,

Chapter 4 in the monograph by Ogden, 1997) of the symmetry properties

(B.1) is that H may be written in the polynomial form

H(λ1, λ2) =
∞∑

p,q=0

kpq(λ1 − 1)p(λ2 − 1)q, (B.2)

where it is emphasized that the coefficients kpq are not entirely independent

but constrained by conditions (B.1). Substituting the representation (B.2)

in (2.35)–(2.36) and taking the limit of small deformations as λ1 → 1 and

λ2 → 1 leads to a hierarchy of systems of algebraic equations for the unknown

coefficients kpq. These systems are linear and hence have a unique solution,

however, they do not appear to admit a simple recurrence solution and must

therefore be solved successively one at a time. For the first four sets of
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equations, the solutions read as

k00 = 0, k10 = k01 = 0, k20 = k02 = k11 =
5

2
,

k30 = k03 = −5

2
, k21 = k12 = −55

14
. (B.3)

According to the result (B.2) with (B.3), the point λ1 = λ2 = 1 corresponds

to a local minimum of H at which H(1, 1) = 0. Now, from the pde (2.35) it

is easy to deduce that the value of the function H evaluated at any critical

point (i.e., any point λ1, λ2 at which ∂H/∂λ1 = ∂H/∂λ2 = 0) must be

necessarily zero. These two results entail then that the point λ1 = λ2 = 1 is

the only critical point of the function H defined by (2.35)–(2.36), that this

point corresponds to its global minimum, and hence that

H(1, 1) = 0 and H(λ1, λ2) > 0 ∀ λ1, λ2 ̸= 1, (B.4)

as required by the first two conditions (2.24).

It also follows from (B.2) with (B.3) that in the limit of small deformations

as λ1 → 1 and λ2 → 1, the function H is indeed given explicitly by relation

(2.37) in the main body of the text. In the opposite limit of infinitely large

deformations as λ1 → +∞, it is not difficult to recognize that equations

(2.35)–(2.36) admit the explicit asymptotic solution
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3

4
λ

2

1 − 9

16

[
ln 4 + 2 lnλ2 + 4 lnλ1
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λ
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From the symmetry condition H(λ1, λ2) = H(λ2, λ1) it follows that
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3

4
λ

2

2 − 9

16

[
ln 4 + 2 lnλ1 + 4 lnλ2

]
λ

−1

2 +O(λ
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for λ2 → +∞. Moreover, the asymptotic solution of equations (2.35)–(2.36)

for the case when λ1 → 0 is given by

H(λ1, λ2) =
3

4
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λ
2

1λ
2

2

+
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4
λ

2

2 +O
(
λ1 lnλ1
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, (B.7)
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and from the symmetry H(λ1, λ2) = H(λ2, λ1) we also then have that

H(λ1, λ2) =
3

4

1

λ
2

1λ
2

2

+
3

4
λ

2

1 +O
(
λ2 lnλ2

)
(B.8)

for infinitely large deformations with λ2 → 0. Combining results (B.5)–

(B.8) it readily follows that in the limit of infinitely large deformations (as

λ1 → 0,+∞ and/or λ2 → 0,+∞) the function H defined by equations

(2.35)–(2.36) is given explicitly, to leading order, by relation (2.38) in the

main body of the text.

The numerical solution of the initial-value problem (2.35)–(2.36) for H can

be generated in a number of different ways using finite differences. We found

it more efficient to consider the problem in the alternative set of variables

L1 = λ
2

1λ2 and L2 = λ1/λ2, instead of in terms of the principal stretches λ1

and λ2 directly. The advantage of these variables is twofold: i) the finite-

difference discretization can be performed on a simple Cartesian grid with

unilateral boundaries L1 ≥ 1 and L2 ≥ 1, and ii) the initial condition (2.36)

in L1–L2-space is given at the constant value of L2 = 1. The commercial

package Wolfram Mathematica 8.0 was utilized to discretize and solve the

equations. In spite of the quadratic nonlinearity of the pde (2.35), we note

that the initial-value problem (2.35)–(2.36) admits only one solution that is

consistent with the required conditions (B.1) and (B.4).
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APPENDIX C

CONDITIONS FOR STRONG
ELLIPTICITY AND POLYCONVEXITY OF

W

Explicit necessary and sufficient conditions for an isotropic incompressible

stored-energy function to be strongly elliptic have been provided by Zee and

Sternberg (1983). When the stored-energy function is written in the form

W = W (λ1, λ2) with λ3 = λ
−1

1 λ
−1

2 , as done in Chapter 1, the conditions read

as

βi > 0 (i = 1, 2, 3),

wi + 2λiβi > 0 (i = 1, 2, 3; no summation),[
λ

−1

2

√
w2 + 2λ2β2 + λ
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√
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(C.1)

Here,

β1 = β
(
λ2, (λ1λ2)

−1
)
, β2 = β

(
(λ1λ2)

−1, λ1

)
, β3 = β

(
λ1, λ2

)
, (C.2)

w1 = w
(
λ2, (λ1λ2)

−1
)
, w2 = w

(
(λ1λ2)

−1, λ1

)
, w3 = w

(
λ1, λ2

)
, (C.3)

with

β(x, y) =


1

8
W 11 (z, z

−2) if x = y = z

−1

2
y (x 2 − y 2)

−1
W 1 (y, (xy)

−1) otherwise
, (C.4)
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w(x, y) =


1

4
z−2W 11 (z, z

−2) if x = y = z

y−1 (x 2 − y 2)
−1

W 1 (y, (xy)
−1)

+
1

2
x−2W 11 (y, (xy)

−1) otherwise

, (C.5)

and

W 1(λ1, λ2) =
∂W

∂λ1

(λ1, λ2), W 11(λ1, λ2) =
∂2W

∂λ1∂λ1

(λ1, λ2). (C.6)

To show that the solution (2.40) for the overall nonlinear elastic response

of dilute suspensions of rigid particles in rubber is strongly elliptic, it suffices

to show that the function H is strongly elliptic. This follows from the facts

that the Neo-Hookean term µ/2
[
λ

2

1 + λ
2

2 + λ
−2

1 λ
−2

2 − 3
]
in (2.40) is strongly

elliptic and that the sum of strongly elliptic functions is strongly elliptic.

Now, by making use of the explicit asymptotic expressions (2.37) and (2.38),

it is straightforward to show analytically that H satisfies all nine conditions

(C.1) for small and large deformations. For arbitrary deformations, it is also

straightforward to show — albeit by numerical means — that H satisfies

conditions (C.1), and hence that the effective stored-energy function (2.40)

is strongly elliptic. By the same token, we note that the approximate solution

(2.53) for W is strongly elliptic, since the underlying approximation (2.52)

for H is strongly elliptic.

An incompressible stored-energy function W = W (λ1, λ2) is said to be

polyconvex if it can be written in the form

W = W
(
F,F

−T
)

(C.7)

with W(·, ·) convex. The constitutive restriction (C.7) of polyconvexity is

a stronger constitutive restriction than that of strong ellipticity (C.1) — in

fact, polyconvexity implies strongly ellipticity — that was introduced by Ball

(1977) to prove existence theorems in finite elasticity. Unlike strong ellip-

ticity (see Geymonat et al., 1993), however, polyconvexity has not yet been

given a strict physical interpretation and therefore its enforcement, although

mathematically desirable, is still physically arguable.

For the case under study here, it is a trivial matter to deduce from its

explicit asymptotic form (2.44) — after recognizing that I1 = F · F and

I2 = F
−T · F−T

— that the effective stored-energy function (2.40) is not
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convex in F
−T

and hence not polyconvex.

163



APPENDIX D

SOLUTION FOR THE SINGLE-PARTICLE
PROBLEM IN THE

SMALL-DEFORMATION LIMIT

In this appendix, we work out the elasticity solution for the single-particle

problem formulated in Section 4.2 from which the effective shear modulus

(4.14) is determined.

We find it convenient to begin by considering the boundary-value problem

of an isotropic incompressible multicoated sphere occupying the domain Ω =

{X : |X| ≤ rm}, made up of a core (the particle) with initial shear modulus

µp, an inner shell (the interphase) with initial shear modulus µi, and an

outer shell (the matrix) with initial shear modulus µm, that is subjected to

the affine simple shear deformation x = FX with F = I + γe1 ⊗ e2 on its

boundary ∂Ω = {X : |X| = rm}. The heterogeneous shear modulus of such

a sphere can be written in the compact form

µ(X) = [1− θp(X)− θi(X)]µm + θp(X)µp + θi(X)µi, (D.1)

where θp(X) = 1 if |X| ≤ r and zero otherwise, θi(X) = 1 if r ≤ |X| ≤ r + t

and zero otherwise. Here, r and t stand, respectively, for the initial radius

of the core and the thickness of the inner shell. In the limit as the applied

amount of shear γ → 0, the equilibrium displacement field u = x −X that

minimizes the total elastic energy Ψ (per unit undeformed volume) of the
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sphere takes the form u = u1(X)e1 + u2(X)e2 + u3(X)e3 with

u1(X) = γ

[
B(1) +B(2) r5

|X|5
+B(3) |X|2

r2

]
X2

− γ

[
5B(2) r5

|X|5
+

4

5
B(3) |X|2

r2
− 3B(4) r3

|X|3

]
X2

1X2

|X|2
,

u2(X) = γ

[
B(1) +B(2) r5

|X|5
+B(3) |X|2

r2

]
X1

− γ

[
5B(2) r5

|X|5
+

4

5
B(3) |X|2

r2
− 3B(4) r3

|X|3

]
X1X

2
2

|X|2
,

u3(X) = −γ

[
5B(2) r5

|X|5
+

4

5
B(3) |X|2

r2
− 3B(4) r3

|X|3

]
X1X2X3

|X|2
,

(D.2)

and

B(I) = [1− θp(X)− θi(X)]B(I)
m + θp(X)B(I)

p + θi(X)B
(I)
i (I = 1, 2, 3, 4),

(D.3)

to O(1) in γ (see, e.g., Chapter XI in Love, 1906). By the same token, the

corresponding traction field takes the form t = t1(X)e1+t2(X)e2+t3(X)e3

with

t1(X) = 2µ(X)γ

[
B(1) − 4B(2) r5

|X|5
+

8

5
B(3) |X|2

r2
+

3

2
B(4) r3

|X|3

]
X2

|X|

+ 2µ(X)γ

[
20B(2) r5

|X|5
− 19

5
B(3) |X|2

r2
− 12B(4) r3

|X|3

]
X2

1X2

|X|3
,

t2(X) = 2µ(X)γ

[
B(1) − 4B(2) r5

|X|5
+

8

5
B(3) |X|2

r2
+

3

2
B(4) r3

|X|3

]
X1

|X|

+ 2µ(X)γ

[
20B(2) r5

|X|5
− 19

5
B(3) |X|2

r2
− 12B(4) r3

|X|3

]
X1X

2
2

|X|3
,

t3(X) = 2µ(X)γ

[
20B(2) r5

|X|5
− 19

5
B(3) |X|2

r2
− 12B(4) r3

|X|3

]
X1X2X3

|X|3
.

(D.4)

In these expressions, B
(I)
m , B

(I)
p , and B

(I)
i (I = 1, 2, 3, 4) are constants to

be determined from the boundary conditions applied at ∂Ω = {X : |X| =
rm} and from the continuity of the displacement and traction fields at the

surfaces of material discontinuity Γp = {X : |X| = r} and Γi = {X : |X| =
r + t}. Upon recognizing that B

(2)
p = B

(4)
p = 0, these conditions lead to a
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system of 10 linear algebraic — and thus readily solvable — equations for

the 10 unknowns B
(1)
p , B

(3)
p , B

(1)
i , B

(2)
i , B

(3)
i , B

(4)
i , B

(1)
m , B

(2)
m , B

(3)
m , B

(4)
m . The

explicit expressions for these constants, in terms of the shear moduli µp, µi,

µm, and the lengths r, t, rm, are fairly cumbersome and thus not reported

here. Having determined the equilibrium displacement field u over the entire

sphere, its total elastic energy (per unit undeformed volume) is simply given

by

Ψ =
1

2|Ω|

∫
∂Ω

t · u dS =

[
B(1)

m +
42 r2m
50 r2

B(3)
m − 45 r3

50 r3m
B(4)

m

]
µm γ2. (D.5)

Now, in the limit when the radius of the sphere is taken to be infinitely

large and the core is taken to be rigid, as rm → +∞ and µp → +∞, the

total elastic energy (D.5) reduces to the effective stored-energy function for

the single-particle problem formulated in Section 4.2, in the limit of small

deformations and for the specific case of simple shear loading, namely,

Ψ = µdil trε 2 =
µ dil

2
γ2. (D.6)

The solution (4.14) for µ dil provided in the main body of the text follows

by comparing (D.5) with (D.6). As also remarked in the main body of the

text, the product µpB
(3)
p does not vanish in this limit and thus the stress

field within the particle — contrary to the classical solution (Eshelby, 1957)

without an interphase — is not uniform.
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APPENDIX E

A KINEMATICALLY ADMISSIBLE
APPROXIMATION FOR THE RESPONSE

OF A CSA

Following a parallel reasoning to that presented in Section 5.3.2, it is not

difficult to deduce that

W (F, c) ≤ 1

|B|

∫
B
W (X,FK) dX

.
= W

K
(F, c), (E.1)

where the deformation gradient field FK is defined implicitly by the boundary-

value problem

Div

[
∂W

∂F
(X,FK)

]
= 0 in B and x = FX on ∂B. (E.2)

The effective stored-energy function W
K

corresponds physically to the to-

tal elastic energy per unit undeformed volume of a CSA associated with a

kinematically admissible field — one in which every composite sphere sat-

isfies the equilibrium equations in its interior and is subjected to the affine

deformation x = FX on its boundary.

Much like W
S
, the effective stored-energy function W

K
is by construc-

tion an exact result (i.e., the equality holds in (E.1)) in the dilute limit of

particles as c → 0+. As c increases, W
K

is expected to deviate from W

providing increasingly stiffer approximations for the overall response of filled

elastomers. For the case of interest here when the particles are much stiffer

than the elastomeric matrix, this deviation is exceedingly drastic leading to

overly stiff approximations. Figure E.1 illustrates this behavior for the case

of filled Neo-Hookean rubber. Part (a) displays results for the normalized

initial effective shear modulus µ/µ in the small deformation regime as a func-

tion of particle concentration c, while part (b) shows results for the stress-
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deformation relation for c = 0.15 under uniaxial tensile loading conditions.
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Figure E.1: Comparisons between the kinematically admissible approximation
(E.1)–(E.2), denoted as CSA-F, and the statically admissible approximation
(5.17)–(5.20), denoted as CSA-S, for the overall response of filled Neo-Hookean
rubber. Part (a) shows results for the normalized initial shear modulus µ/µ as a
function of particle concentration c, while part (b) shows stress-deformation results
for c = 0.15 under uniaxial tension.
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Fritzen, F., Forest, S., Böhlke, T., Kondo, D., Kanit, T., 2012. Computa-
tional homogenization of elasto-plastic porous metals. International Jour-
nal of Plasticity 29, 102–119.

Fukahori, Y., 2007. Generalized concept of the reinforcement of elastomers.
part 1: Carbon black reinforcement of rubbers. Rubber chemistry and
technology 80, 701–725.

Galli, M., Botsis, J., Janczak-Rusch, J., 2008. An elastoplastic three-
dimensional homogenization model for particle reinforced composites.
Computational Materials Science 41, 312–321.

Gent, A.N., 1996. A new constitutive relation for rubber. Rubber chemistry
and technology 69, 59–61.

Gent, A.N., Park, B., 1984. Failure processes in elastomers at or near a rigid
spherical inclusion. Journal of Materials Science 19, 1947–1956.

Gent, A.N., Pulford, C.T.R., 1983. Mechanisms of rubber abrasion. Journal
of Applied Polymer Science 28, 943–960.

Geymonat, G., Mller, S., Triantafyllidis, N., 1993. Homogenization of non-
linearly elastic materials, microscopic bifurcation and macroscopic loss of
rank-one convexity. Archive for Rational Mechanics and Analysis 122,
231–290.

Goudarzi, T., Lopez-Pamies, O., 2013. Numerical modeling of the nonlin-
ear elastic response of filled elastomers via composite-sphere assemblages.
Journal of Applied Mechanics 80, 050906.

Goudarzi, T., Spring, D., Paulino, G., Lopez-Pamies, O., . Filled elastomers:
A theory of filler reinforcement based on hydrodynamic and interphasial
effects, submitted.

Govindjee, S., 1997. An evaluation of strain amplification concepts via monte
carlo simulations of an ideal composite. Rubber chemistry and technology
70, 25.

Govindjee, S., Simo, J., 1991. A micro-mechanically based continuum dam-
age model for carbon black-filled rubbers incorporating mullins’ effect.
Journal of the Mechanics and Physics of Solids 39, 87–112.

Gusev, A.A., 1997. Representative volume element size for elastic composites:
A numerical study. Journal of the Mechanics and Physics of Solids 45,
1449–1459.

171



Guth, E., 1945. Theory of filler reinforcement. Journal of Applied Physics
16, 20.

Hale, D.K., 1976. The physical properties of composite materials. Journal
of Materials Science 11, 2105–2141.

Hashin, Z., 1962. The elastic moduli of heterogeneous materials. Journal of
Applied Mechanics 29, 143–150.

Hashin, Z., Shtrikman, S., 1961. Note on a variational approach to the theory
of composite elastic materials. Journal of the Franklin Institute 271, 336–
341.

Hashin, Z., Shtrikman, S., 1962. A variational approach to the theory of
the effective magnetic permeability of multiphase materials. Journal of
Applied Physics 33, 3125–3131.
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