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ABSTRACT

For systems with limited capacity for storage, processing and transmission

of data, the choice of sampling policy is critical. Although most systems

determine their sampling instants in advance, for example periodically, this

results in unnecessary use of samples if little changes occur between sampling

times. Instead, to optimize the utilization of the samples, the decision to take

a sample can be adaptively made based on the importance of the change in

the state of the system. This calls for development of event-triggered sam-

pling policies. In this thesis, we study the optimal event-triggered sampling

policies under a constraint on the frequency of sampling. We first investigate

the optimal sampling policies to minimize the estimation error over the infi-

nite horizon. The optimal policies are provided for multidimensional Wiener

processes and scalar linear diffusion processes. Then, we address an infinite

horizon control problem with a stochastic process driven by a bang-bang

controller. We obtain the optimal times to switch the control signal that

determines the drift rate of the process. For the cases handled in this thesis,

the results suggest the optimality of the simplest event-triggered sampling

policy with constant thresholds over the infinite horizon.
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CHAPTER 1

INTRODUCTION

Finite capacity for storage, processing and transmission of data renders sam-

pling necessary for most systems. For dynamic systems, the sampling instants

are determined by their sampling policies; and these policies can be consid-

ered in two categories, namely, time-triggered and event-triggered sampling

policies.

In time-triggered sampling policies, sampling times are determined in ad-

vance as certain time instants. Since the policy is independent of how the

process evolves over time, it can be calculated offline by a central unit as an

open-loop sampling rule.

Periodic sampling, which separates the successive sampling instants by an

equal amount of time, is the most commonly used time-triggered sampling

method. Both the analysis and the design of periodically sampled systems are

relatively simpler and well developed in control theory [1]. For example, for

periodically sampled linear time invariant (LTI) systems, the characteristic

equation of the systems can be written as a constant coefficient linear differ-

ence equation, and stability, controllability and observability of the systems

can be checked easily.

Time-triggered sampling policies, however, lack the ability to take sam-

ples adaptively. For example, when a system is being sampled with a time-

triggered sampling policy, little or no change might possibly occur between

two consecutive samples and the new information obtained by the new sam-

ple might be inconsequential. Conversely, if the state of a control system

deviates greatly from its estimate between two samples, the estimate and

the control action need to be updated; however, this update cannot be per-

formed in a timely fashion if the next sampling time is not close.

To improve the utilization of the samples, sampling policies can be aug-

mented with the capacity to use the online information about the state of

the system. Such sampling policies are referred as event-triggered through-
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out this thesis; however, they exist in the literature with various names,

such as event-based sampling [2], state-dependent sampling [3], event-driven

sampling [4], and Lebesgue sampling [5], [6].

Basically, event-triggered sampling policies define, for each time instant,

a set consisting of the points in the state space for which the deviation

from the estimate is regarded as unimportant. A new sample is taken at

an instant only if the state leaves this set of unimportant events specified

for that instant. The simplest event-triggered sampling policy is obtained

if the sets of unimportant events are defined only based on the amount of

deviation from the estimate, irrespective of time. For scalar valued processes,

this corresponds to marking equally spaced level values for the state of the

process and taking a sample whenever the state leaves one level and arrives

at a neighboring one. Not using time information, such a sampling policy

does not require synchronization. Consequently, this type of event-triggered

policies is practical for many systems including multi-rate systems which

encompass several subsystems operating at different frequencies [7].

Since event-triggered sampling policies call for an action only when it be-

comes necessary, they improve the usage of communication and computation

resources [7] and play a critical role in optimization of sampling schemes.

1.1 Literature Review on Optimization of Sampling

Schemes

Distributed systems may have their sensors, actuators, and controllers in

different locations, and a communication network can be used for the transfer

of information between these constituents of the systems [8]. However, usage

of communication networks imposes practical limitations on the amount of

information that can be transferred. For example, frequent attempts to use

the communication links create congestion in the network, which leads to

increased delays and increased rate of data dropout in the network. The

network reliability degrades, and the effective data rate provided for the

systems using the network diminishes.

Depending on the dynamics of the system, if the data dropout rate ex-

ceeds a critical value, the estimation error might grow unboundedly large for

all possible estimators [9], [10]. Similarly, below a certain data rate, there
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may not exist any control scheme capable of stabilizing an unstable system

[11]–[14]. Therefore, it is crucial to optimize the sampling scheme and the

utilization of communication resources in networked control systems.

To improve the estimation and the control performance, the exact times

for the information transmissions can be calculated by a central node. Since

this calculation is made in advance, the scheduling scheme is prescribed as

an open-loop time-triggered policy. The calculation of the scheduling policy

is carried out based on the a priori knowledge of noise statistics and the

dynamics of the processes. For example, for linear time-invariant stochastic

diffusion processes with sampling constraints, periodic sampling is calculated

to be the optimal open-loop policy to minimize the aggregated estimation

error over a finite horizon [15], [16].

Optimization of open-loop sampling policies in control problems is also

prevalent in the literature. A continuous time linear quadratic Gaussian

(LQG) control problem with a limited number of samples is formulated in

[17]. Only open-loop policies are considered and the possible sampling times

are constrained to a finite set of fixed time instants. For this problem, the

optimal control and the optimal timing of the measurements are suggested

to be separable, which heavily depends on the fact that the policies are

open-loop. Likewise, stated in [18] is a general finite horizon discrete time

problem that can incorporate measurement costs or constraints. An optimal

policy is suggested to be computable offline for the special LQG case. A

similar control problem with an unknown initial state and a limited number

of samples is handled in [19]. In this problem, even though the observations

are noisy, the process is assumed to be deterministic.

If there are multiple alternatives for a measurement at each time, selection

of measurements can also be optimized. For example, the optimal sequence

of measurement vector selection is calculated offline in [20] to estimate a

function of the state of a linear system at a desired time. Whereas only

deterministic policies are considered in [20], a stochastic selection algorithm

is sought in [21]. Upper and lower bounds on the expected covariance of the

estimate are provided in [21], and an optimal probability distribution for the

selection algorithm is obtained by minimizing the upper bound value. The

solution for the network with the star structure in [21] is also extended in [22]

to a multi-hop wireless sensor network, which has a tree structure. While the

problems in [20]–[22] concern only estimation, an optimal control problem is
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formulated in [23] for an LQG process. An optimal measurement selection

algorithm is obtained for both finite and infinite horizons.

To optimize the use of sampling or communication quota in a distributed

system, event-triggered policies can also be used. This, however, requires on-

line information about the evolution of the processes. Since this information

cannot be transferred from every node to a central node continuously, the

sampling instants need to be determined in a decentralized manner. In other

words, every node in the network needs to decide when to take a sample on

its own.

Event-triggered sampling appears, for example, in a discrete time problem

with an estimator and a remote sensor in [24] and [25]. Jointly optimal esti-

mation and scheduling policies are investigated for a sensor which can trans-

mit only a limited number of its samples over a finite horizon. The optimal

policies are obtained via dynamic programming for independent identically

distributed and Gauss-Markov processes. The results are extended to vector

processes in [26].

A similar problem is handled in [27] with an energy harvesting sensor. The

number of samples that the sensor can transmit to the estimator is not fixed,

but it depends on the amount of energy the sensor has collected, which

is another random process. Majorization theory, in addition to dynamic

programming, is employed to show the optimality of the policies suggested

for a special class of processes.

While the problems in [24]–[27] are all in discrete time, an equivalent prob-

lem in continuous time is studied in [16]. To find the optimal sampling rule

for a scalar Wiener process over finite horizon, the original problem is con-

verted to an optimal multiple stopping problem, and the solution is obtained

iteratively. A numerical solution procedure is also suggested for scalar linear

stochastic processes with drift terms. An extension is presented in [28] for

the vector case with noisy observations along with a suboptimal policy.

Instead of placing hard constraint on the transmission of samples, it is also

possible to associate some cost for each transmission. For example, in [29],

an aggregated cost of estimation error and number of transmissions is used

over finite horizon. The jointly optimal estimation and sampling policies are

given for scalar first-order LTI processes.

Even though scheduling the transmissions between a single sensor and

an estimator is extensively studied, analysis of event-triggered scheduling for
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networks with several nodes appears in few works in the literature. For exam-

ple, a special network architecture with event-triggered sampling is suggested

in [30] to reduce the communication load. In this network, every node holds

the estimate of all other nodes, and broadcasts its value only if its state

deviates from its own estimate by a predetermined amount. In [31], each

node of this architecture is defined as an LTI system and the communication

network is assumed to have a constant delay. An optimal sampling policy

is obtained which minimizes an infinite horizon average cost on estimation

error and communication rate. Although probabilistic transmission strate-

gies are also considered, the optimal policy is shown to be deterministic.

A computationally feasible suboptimal sampling policy is also suggested in

[32]. The stability of a similar design with data dropouts is analyzed in [33].

Stabilization of distributed networks over ad-hoc networks is shown to be

possible even if the synchronization of the communication network is poor.

Event-triggered sampling can be integrated into several control schemes,

such as proportional-integral-derivative (PID) control [34], impulse control

[5], and on-off control [35]. However, when an event-triggered sampling policy

is used in a closed-loop control system, the controller can intentionally drive

the state out of its desired path to trigger a new sample and obtain a new

estimate of the state. This phenomenon is called the dual effect [36]–[38],

and renders the analysis of optimal solutions infeasible for most cases.

An event-triggered finite horizon control problem is formulated in [39] in

continuous time. For a scalar system with simple dynamics, jointly optimal

event-triggered sampling and control policies are investigated. Even though

the control functions are constrained to be constant between sampling in-

stants, obtaining an analytic solution for even only a few samples becomes

infeasible.

An infinite horizon control problem with average cost is presented in [40].

Given a finite set of triggering levels for the state and a finite set of control

values, existence of an optimal mapping from the triggering levels to the

control values is shown. For this, the running cost is aggregated between

sampling times and the problem is converted to a finite state Markov chain,

similar to [41]. An iterative algorithm converging to the optimal policy is

also provided in [40].

Despite the presence of similar problems with a finite horizon, optimal

sampling policies have not been studied over the infinite horizon with hard
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constraints on the sampling. This problem constitutes the theme of this

thesis.

1.2 Overview of Chapters

In Chapter 2, optimal sampling of multidimensional Wiener processes is stud-

ied. The aggregated estimation error is minimized subject to a hard con-

straint on the number of samples. Optimal event-triggered sampling policy

is obtained for both finite and infinite horizons. Some simulation results are

also provided to support the optimality of the policy suggested.

Optimal scheduling of samples over the infinite horizon is investigated for

scalar linear diffusion processes in Chapter 3. By aggregating the cost on

estimation error between sampling times, the original problem is converted

to an optimal stopping problem. For scalar Wiener processes, the optimal

solution is recalculated in this way and shown to be the same as the solution

in Chapter 2. By using dynamic programming, the optimal policy for the

processes with drift terms is also obtained.

In Chapter 4, an optimal switching problem is introduced. Optimal times

to switch the control from one of two values to the other are examined for

a bang-bang controller steering a scalar Wiener process. Average deviation

from a reference level is minimized subject to a hard constraint on the average

frequency of switching.

In Chapter 5, the results are discussed, possible directions for future re-

search are provided, and the thesis is concluded.
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CHAPTER 2

OPTIMAL SAMPLING OF
MULTIDIMENSIONAL WIENER

PROCESSES

The Wiener process is fundamental to the study of stochastic calculus and

stochastic control [42]. In this chapter, we investigate the optimal event-

triggered sampling policy for multidimensional Wiener processes.

Let w1(t), w2(t), · · · , wm(t) denote independent standard Wiener processes.

Introduce the multidimensional Wiener process

yt =


y1(t)

...

ym(t)


with

dyt =
m∑
i=1

eidwi,

where ei is a column vector in Rm with 1 in the ith entry and 0 in the others.

Let δt denote an event-triggered sampling rule:

δt =

{
1 if yt is sampled at time t

0 otherwise,

and let ŷt denote the estimate of yt based on the samples obtained up to time

t. In the following sections, we search for an optimal sampling policy, first

in the finite horizon, and then over the infinite horizon.

2.1 Sampling over Finite Horizon

In this section, we want to find an optimal event-triggered sampling policy

which minimizes

E
[∫ T

0

‖yt − ŷt‖22dt
]

(2.1a)
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over causal sampling policies with a constraint on the number of samples:∑
t∈(0,T ]

δt = N. (2.1b)

A discrete time version of this problem has already been studied in [27].

Being a Wiener process, the process yt is neat [27], i.e., it has independent

and zero-mean increments, and increments of small size are more likely than

those with larger size. The cost function is quadratic in the estimation error

as well; therefore, the assumptions in [27] hold. Although the results therein

are derived for discrete time processes, they suggest that the jointly optimal

estimator-scheduler pair could be given as

ŷt = ytlast , (2.2a)

δt =

{
1 if ‖yt − ŷt‖22 ≥ ∆(t, rt)

0 otherwise,
(2.2b)

where rt is the number of remaining samples to be used in [t, T ], ∆ is a

function which is referred as the (thresholding) envelope, and

tlast = max {s ≤ t | δs = 1} .

As a typical event-triggered sampling policy, a new sample is taken whenever

the estimation error reaches the thresholding envelope.

To find the optimal sampling policy for the problem (2.1), we extend the

results obtained in [16] to multidimensional processes. With the estimator

in (2.2a), if we define the estimation error as

xt =


x1(t)

...

xm(t)

 := yt − ŷt,

xi = 0 at sampling instants and dxi = dwi between sampling instants for all

i = 1, 2, · · · ,m.
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When the process yt is not sampled,

E
[∫ T

0

‖yt − ŷt‖22dt
]

= E
[∫ T

0

‖xt‖22dt
]

= E

[∫ T

0

m∑
i=1

x2i (t)dt

]

= m
T 2

2
.

Using this as the base condition, we will show by iteration that the minimum

value for (2.1a) subject to (2.1b) is proportional to T 2, and its factor depends

on the number of samples N .

Assume that the minimum error that can be obtained taking only (n− 1)

samples over an interval is proportional to the square of the length of the

interval, i.e.,

inf
δn−1

E
[∫ t2

t1

‖xt‖22 dt
]

=
θn−1

2
(t2 − t1)2, (2.3)

where t1 is a moment at which xt1 = 0, δn−1 is the set of causal sampling rules

that allow only (n− 1) samples in the interval (t1, t2], and θn−1 is a positive

constant. With this assumption, sampling policies taking n samples can be

associated with those taking (n−1) samples through a dynamic programming

argument. If δn∗ is the optimal sampling policy with n samples and τ ∗ is the

optimal time to take the first sample, δn∗ must coincide with δ(n−1)∗ after τ ∗

and the expected cost incurred from τ ∗ to T must be θn−1

2
(T−τ ∗)2. Hence, the

optimal time τ ∗ to take the first of n samples can be obtained by minimizing

J(τ) = E
[∫ τ

0

‖xt‖22dt+
θn−1

2
(T − τ)2

]
= E

[∫ τ

0

m∑
i=1

x2i (t)dt+
θn−1

2
(T − τ)2

]
. (2.4)

To eliminate the integral term in (2.4), using the Itô rule [43], we note that

d

(
(T − t)

∑
i

x2i

)
= −

∑
i

x2i dt+ 2(T − t)
∑
i

xidwi +m(T − t)dt.
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Since E
[∫ τ

0
(T − t)

∑
i xidwi

]
= 0,

E

[∫ τ

0

∑
i

x2i dt

]
= E

[
−
∫ τ

0

d

(
(T − t)

∑
i

x2i

)
+

∫ τ

0

m(T − t)dt

]

= E

[
−(T − τ)

∑
i

x2i (τ) +m
T 2

2
−m(T − τ)2

2

]
.

(2.5)

Inserting (2.5) into (2.4), we obtain

J(τ) = m
T 2

2
− E

[
(T − τ)

∑
i

x2i (τ) +
m− θn−1

2
(T − τ)2

]
. (2.6)

Therefore, minimizing J(τ) is equivalent to maximizing

E

[
2(T − τ)

∑
i

x2i (τ) + (m− θn−1)(T − τ)2
]
. (2.7)

To solve this optimal stopping problem [44], we can find its Snell envelope

[45] U(t, x) which satisfies

Ut +
1

2

∑
i

Uxixi = 0, (2.8a)

U(t, x) ≥ 2(T − t)
∑
i

x2i (t) + (m− θn−1)(T − t)2, (2.8b)

and attains equality in (2.8b) for some value of ‖xt‖2 for each t. Then, for

any τ ∈ (t, T ],

E [U(τ, xτ )|xt] = E
[
U(t, xt) +

∫ τ

t

dU(s, xs)

∣∣∣∣xt]
= E

[
U(t, xt) +

∫ τ

t

[
Us(s, xs)ds

+
∑
i

Uxi(s, xs)dwi +
1

2

∑
i

Uxixi(s, xs)

]∣∣∣∣∣xt
]

= U(t, xt)
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and

U(t, xt) = E [U(τ, xτ )|xt]

≥ E

[
2(T − τ)

∑
i

x2i (τ) + (m− θn−1)(T − τ)2

∣∣∣∣∣xt
]
.

This shows that if

2(T − t)‖xt‖22 + (m− θn−1)(T − t)2

reaches U(t, x), no τ > t can yield a larger value in expectation, and thus, t

is the optimal time to stop.

Conditions (2.8a) and (2.8b) are satisfied by

U(t, x) = βn

[
m(T − t)2 + 2(T − t)‖x‖22 +

‖x‖42
m+ 2

]
(2.9a)

with

βn =
4 +m+ θn−1 −

√
θ2n−1 + (8 + 2m)θn−1 +m2

4
. (2.9b)

Therefore, (2.9) serves as the Snell envelope for maximizing (2.7). Utilizing

this Snell envelope in (2.6), the optimal cost with n samples can be calculated

as

inf
τ
J(τ) = m

T 2

2
− 1

2
U(0, x0)

= m
T 2

2
− 1

2
mβnT

2

= m(1− βn)
T 2

2

= θn
T 2

2
, (2.10)

where we defined

θn := m(1− βn). (2.11)

The optimal cost in (2.10) verifies that the assumption (2.3) holds for n
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samples as well. Then, the optimal stopping time can be found as

inf
{
t ≥ 0

∣∣∣ 2(T − t)‖xt‖22 + (m− θn−1)(T − t)2 ≥ U(t, xt)
}

= inf

{
t ≥ 0

∣∣∣∣∣ ‖xt‖22 ≥
√

(m+ 2)(θn−1 − θn)

1− θn
m

(T − t)

}
.

As a result, from (2.9b) and (2.11), for n = 1, 2..., N , θn is calculated

iteratively by

θn =
m

4

(
−m− θn−1 +

√
θ2n−1 + (8 + 2m)θn−1 +m2

)
(2.12a)

with θ0 = m, and the optimal time τ ∗n to take the nth sample is obtained as

inf

{
t ≥ τ ∗n−1

∣∣∣∣∣ ‖xt‖22 ≥
√

(m+ 2)(θN−n − θN−n+1)

1− θN−n+1

m

(T − t)

}
(2.12b)

with τ ∗0 = 0.

Comparing (2.12b) with the scheduling rule in (2.2b), the optimal thresh-

olding envelope for the finite horizon problem (2.1) is given as

∆(t, rt) =

√
(m+ 2)(θrt−1 − θrt)

1− θrt
m

(T − t).

2.2 Solution over the Infinite Horizon

In this section, our aim is to find an event-triggered sampling policy over the

infinite horizon which minimizes the average estimation error

lim
T→∞

E
[

1

T

∫ T

0

‖yt − ŷt‖22dt
]

(2.13a)

subject to a constraint on the frequency of sampling:

lim
T→∞

E

 1

T

∑
t∈(0,T ]

δt

 =
1

c
, (2.13b)

where c is a positive constant.
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We can approach this infinite horizon optimal sampling problem by using

the solution for the finite horizon problem (2.1). If the final time T is driven

to infinity while preserving the ratio of number of samples to the length of

horizon, N
T

, the policy for taking the very first sample coincides with the

optimal policy for (2.13).

Let N = n and T = cn, where n is a positive integer. If the sampling

policy in (2.12) is used to determine sampling times,

1

T

∑
t∈(0,T ]

δt =
1

c

is satisfied for all n values. Then, the first sampling time is given by

τ ∗1 = inf

{
t ≥ 0

∣∣∣∣∣ ‖xt‖22 ≥
√

(m+ 2)(θn−1 − θn)

1− θn
m

(cn− t)

}
. (2.14)

To find the infinite horizon policy, we will drive n to infinity in (2.14). For

this, we need to calculate the following limit

lim
n→∞

(m+ 2)(θn−1 − θn)

1− θn
m

(cn− t)2 (2.15)

if it exists. The following three lemmas show the existence of this limit and

give its value.

Lemma 2.1: {θn} is a strictly decreasing positive sequence converging to

0.

Proof: We define the following continuous function

g(ξ) =
m

4

(
−m− ξ +

√
(ξ +m+ 4)2 − 8m− 16

)
so that θn = g(θn−1). Then,

dg(ξ)

dξ
=
m

4

−1 +
ξ +m+ 4√

(ξ +m+ 4)2 − 8m− 16


is positive for all ξ ≥ 0, implying that g is strictly increasing on [0,∞). Since

0 < g(m) =
m

2

(√
m2 + 2m−m

)
<
m

2
< m,
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we have 0 < θ1 = g(m) < θ0 = m. Considering that g is an increasing

function on [0,∞), given 0 < θn < θn−1,

g(0) < g(θn) < g(θn−1) =⇒ 0 < θn+1 < θn.

Therefore, 0 < θn < θn−1 for all n ≥ 1, i.e., {θn} is a decreasing sequence

bounded below from 0. Since 0 is the only non-negative stationary point of

g, the sequence {θn} converges to 0. �

Lemma 2.2:

lim
n→∞

nθn =
m2

m+ 2

Proof: After multiplying both sides of (2.12a) with n, we define αn := nθn

and write the iteration for αn as

αn =
m

4

(
−mn− nαn−1

n− 1
+

√
n2α2

n−1

(n− 1)2
+

(8 + 2m)n2αn−1
(n− 1)

+m2n2

)
=: fn(αn−1) (2.16)

for n ≥ 2, with α1 = θ1 = m
2

(√
m2 + 2m−m

)
.

From (2.16), if αn−1 > 0, then αn > 0 as well. Since α1 > 0,

αn > 0 for all n ≥ 1. (2.17)

Subtracting αn−1 from both sides of (2.16),

αn−αn−1 < 0 if and only if hn(αn−1) :=

(
m+ 2

m2
− 2

m2n

)
αn−1 > 1. (2.18)

Then, either of the following cases is true regarding hn(αn−1).

• Case 1: hn(αn−1) ≤ 1 for all n ≥ 2

Due to reverse implication in (2.18), αn ≥ αn−1 for all n ≥ 2. In addition,

hn(αn−1) =

(
m+ 2

m2
− 2

m2n

)
αn−1 ≤ 1 for all n ≥ 2

implies

αn ≤
m2

m+ 1
for all n ≥ 1.
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Therefore, the sequence {αn} is a nondecreasing sequence bounded from

above.

• Case 2: hn0(αn0−1) > 1 for some n0 ≥ 2

If hn(αn−1) > 1, i.e.,

αn−1 >
m2n

(m+ 2)n− 2
,

then hn+1(αn) > 1 as well, since

m2n

(m+ 2)n− 2
>
m2(n2 − 1) ((m+ 2)n2 + (m+ 2)n+ 2)

n ((m+ 2)n+m) ((m+ 2)n2 −m)
for all n ≥ 2

and

hn+1(αn) > 1 if and only if αn−1 >
m2(n2 − 1) ((m+ 2)n2 + (m+ 2)n+ 2)

n ((m+ 2)n+m) ((m+ 2)n2 −m)
.

Therefore, hn(αn−1) > 1 for all n ≥ n0, which implies that the sequence

{αn}∞n0−1 is a decreasing sequence. From (2.17), it is also bounded from

below by 0.

As a result, in either case, α := limn→∞ αn exists and it is finite. Then, α

must solve

lim
n→∞

[α− fn(α)] = 0

with fn defined in (2.16). This yields

lim
n→∞

[
(m2α− (m+ 2)α2)n

m2(n− 1)
+

2α2

m2(n− 1)

]
= 0,

and the only non-zero solution for α is

α = lim
n→∞

nθn =
m2

m+ 2
.

�

Lemma 2.3:

lim
n→∞

n2 (m+ 2)(θn−1 − θn)

1− θn
m

= m2

Proof: We rearrange the iterative definition of θn given in (2.12a) as

4

m
θn + θn−1 +m =

√
θ2n−1 + (8 + 2m)θn−1 +m2,
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and squaring both sides, after some cancellation, we obtain

θn−1 − θn =
2θ2n
m2

+
θnθn−1
m

.

Therefore,

lim
n→∞

n2 (m+ 2)(θn−1 − θn)

1− θn
m

= lim
n→∞

n2
(m+ 2)

(
2θ2n
m2 + θnθn−1

m

)
1− θn

m

= lim
n→∞

m+ 2

m2

(
2n2θ2n +

mn

n− 1
nθn(n− 1)θn−1

)
=

(m+ 2)2

m2

(
lim
n→∞

nθn

)2
= m2

since limn→∞ θn = 0 by Lemma 2.1 and limn→∞ nθn = m2

m+2
by Lemma 2.2.

�

Finiteness of the limit in Lemma 2.3 also implies

lim
n→∞

(m+ 2)(θn−1 − θn)

1− θn
m

= lim
n→∞

n
(m+ 2)(θn−1 − θn)

1− θn
m

= 0.

Hence, the limit in (2.15) can be calculated as

lim
n→∞

(m+ 2)(θn−1 − θn)

1− θn
m

(cn− t)2 = m2c2

for all t. As a result, the rule to take the very first sample (2.14) converges

to

τ ∗1 = inf
{
t ≥ 0

∣∣ ‖xt‖22 ≥ mc
}
.

This yields to the following theorem.

Theorem 2.1: The optimal sampling policy that minimizes (2.13a) sub-

ject to (2.13b) is the following constant threshold rule:

δ∗t =

{
1 if ‖yt − ŷt‖22 ≥ mc

0 otherwise.
(2.19)

This shows that the simplest form of event-triggered sampling is the opti-

mal policy to sample a multidimensional Wiener process under a hard con-
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straint on the average frequency of sampling.

The minimum cost obtained with (2.19) can be computed using the limit

of the time average of the optimal finite horizon cost (2.10):

lim
T→∞

E
[

1

T

∫ T

0

‖yt − ŷt‖22dt
]

= lim
n→∞

1

cn
θn

(cn)2

2

=
αc

2

=
m2

2(m+ 2)
c. (2.20)

By contrast, conventional periodic sampling with the same average frequency

leads to
1

c
E
[∫ c

0

‖xt‖22dt
]

=
1

c
m
c2

2
=
m

2
c.

Therefore, the ratio of the optimal cost to the periodic sampling cost is

m

m+ 2
.

Let {τn} denote the sequence of time durations between consecutive sam-

pling times. Even though the sampling constraint is expressed with the

frequency of sampling in (2.13b), an equivalent constraint can be imposed

on the expected time between consecutive sampling times. In fact, while

increasing n to infinity to derive the optimal policy for the infinite horizon,

we kept T
N

constant at c. Therefore, the average of the durations between

consecutive samples is c. Assuming ergodicity, this implies that the sampling

rule (2.19) yields an expected time of c between consecutive samples:

E[τn] = c. (2.21)

Similar to [5], this can also be shown using the fact that

‖xt‖22 −mt =
m∑
i=1

(
x2i (t)− t

)
is a martingale in the interval [0, τ1]:

E
[
‖xt‖22 −mt

∣∣ x0 = 0
]

= 0.
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Then, at the first sampling instant,

E
[
‖xτ1‖22 −mτ1

∣∣ x0 = 0
]

= 0,

which implies

E[τ1] =
1

m
E
[
‖xτ1‖22

]
= c.

In [5], the steady state distribution of a one-dimensional Wiener process

confined inside an absorbing constant envelope is also provided. The steady

state Fokker-Plank equation [43] for the estimation error is given as

0 =
1

2

∂2ρ(x)

∂x2
− 1

2

∂ρ(
√
c)

∂x
δ̃x +

1

2

∂ρ(−
√
c)

∂x
δ̃x

with the boundary conditions ρ(
√
c) = ρ(−

√
c) = 0, where δ̃x denotes the

Dirac delta function. This has the following solution:

ρ(x) =

{
(
√
c−|x|)
c

if |x| ≤
√
c

0 otherwise.

With this probability density function, E[x2] is calculated to be c
6
, which is

the same as (2.20) for m = 1.

2.3 Numerical Comparison with a Special Class of

Envelopes

The envelope of the solution for the problem of minimizing (2.13a) subject

to (2.13b) is expected to be monotonic. In this section, we estimate the costs

incurred by a special class of monotonically increasing and monotonically

decreasing thresholding envelopes, and show that they yield larger costs than

that of a constant threshold.

Let xt be a one-dimensional Wiener process. If

τ = inf
{
t ≥ 0

∣∣∣|xt| = a
√
t+ b

}
,
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where 0 ≤ a < 1 and 0 < b <∞, then [44]

E[τ ] =
a2b

1− a2
.

Therefore, if we choose

b =
1

a2
− 1,

the stopping rule

τ = inf

{
t ≥ 0

∣∣∣∣∣|xt| = a

√
t+

(
1

a2
− 1

)}
(2.22)

leads to E[τ ] = 1 for all a ∈ (0, 1). Note that the envelope is monotonically

increasing for each value of a, and as a approaches 0, it becomes a constant

threshold.

Figure 2.1 shows the estimated value of the cost (2.13a) when (2.22) is

used for different values of a. Simulations were carried out with a step size

of 10−4 and 30000 samples.
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Figure 2.1: Estimated cost (2.13a) with the policy (2.22) for different values
of a
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Similarly, defining

τ = inf
{
t ≥ 0

∣∣∣|xt| = a
√
b− t

}
,

where 0 < a <∞ and 0 < b <∞, we have

E[τ ] =
a2b

1 + a2
.

Then, the following stopping rule

τ = inf

{
t ≥ 0

∣∣∣∣∣|xt| = a

√(
1

a2
+ 1

)
− t

}
(2.23)

yields E[τ ] = 1 for all a ∈ (0,∞). For each value of a, the stopping rule has

a monotonically decreasing envelope, which becomes constant as a tends to

0. The estimated costs for different values of a are plotted in Figure 2.2.
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Figure 2.2: Estimated cost (2.13a) with the policy (2.23) for different values
of a

We observe that deviating from a constant envelope to an increasing or a

20



decreasing envelope in these classes leads to a larger cost even though the

average time between consecutive sampling instants is the same. This result

corroborates the optimality of the constant envelope sampling rule.
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CHAPTER 3

OPTIMAL SAMPLING OF LINEAR
DIFFUSION PROCESSES

In this chapter, we study the optimal infinite horizon sampling policy for

scalar linear diffusion processes. Unlike the case for the Wiener processes in

Chapter 2, analytic computation of an optimal finite horizon sampling policy

turns out to be infeasible for linear diffusion processes. Therefore, we develop

a new approach, which does not require the finite horizon solution, to solve

the infinite horizon problem.

Let yt be a one-dimensional stochastic linear diffusion process defined by

a stochastic differential equation:

dy = aydt+ dw

for some a ∈ R. Let ŷt denote its estimate based on the samples received by

the estimator up to time t. Define the estimation error as

xt := yt − ŷt.

As the estimator, we set

ŷt = yt

at sampling instants, and update it according to

dŷ = aŷdt

between sampling instants. Then, the estimation error

xt = 0 (3.1a)
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at sampling times, and

dx = dy − dŷ

= aydt+ dw − aŷdt

= axdt+ dw (3.1b)

between sampling times. This results in a causal unbiased estimator:

E[yt − ŷt] = E[xt] = 0.

Furthermore, at any time t, the probability distribution of the estimation

error is symmetric around 0 and unimodal [27].

We refer to the sampling policies that depend on the time elapsed after

the last sample, but not on the absolute time, as time-homogeneous policies.

In other words, if tlast denotes the last sampling time,

δt =

{
1 if |x| ≥ ∆(t− tlast)
0 otherwise

(3.2)

is a time-homogeneous policy, where ∆ : [0,∞)→ [0,∞) denotes the thresh-

olding envelope of the event-triggered policy. As we are working on an in-

finite horizon problem, restriction to time-homogeneous sampling policies is

reasonable.

Let τk denote the length of time between kth and (k− 1)th samples. When

a time-homogeneous sampling policy is used, τk’s are independent and iden-

tically distributed.

Our goal is to find the optimal time-homogeneous sampling policy δ∗ which

minimizes

lim
T→∞

1

T

∫ T

0

x2dt (3.3a)

subject to

E[τk] = E[τ1] = c. (3.3b)

Note that taking expectation is not needed in (3.3a) since we use time-

homogeneous policies, and hence, the estimation error is ergodic.
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3.1 Reformulation of the Problem

To eliminate the limit in the problem statement (3.3), we use the following

proposition.

Proposition 3.1: If a time-homogeneous sampling policy is used, then

lim
T→∞

[
1

T

∫ T

0

x2dt

]
=

E[
∫ τ1
0
x2dt]

E[τ1]
.

Proof:

lim
T→∞

[
1

T

∫ T

0

x2dt

]
= lim

k→∞

[
1

kE[τ1]

∫ kE[τ1]

0

x2dt

]

=
1

E[τ1]
lim
k→∞

[
1

k

∫ kE[τ1]

0

x2dt

]

For any finite T , assume that a time-homogeneous sampling policy is used

in [0, T ) and one last sample is taken at time T = kE[τ1]. Define nk as the

number of samples taken in the interval (0, kE[τ1]]. Then, sampling times

are given as τ1, (τ1 + τ2), · · · , (τ1 + ... + τnk
). Let z1, z2, · · · , znk

denote∫ τ1
0
x2dt,

∫ τ1+τ2
τ1

x2dt, · · · ,
∫ τ1+...+τnk

τ1+...+τnk−1
x2dt, respectively.

lim
T→∞

[
1

T

∫ T

0

x2dt

]
=

1

E[τ1]
lim
k→∞

[
1

k

∫ τ1

0

x2dt+ · · ·+
∫ τ1+...+τnk

τ1+...+τnk−1

x2dt

]

=
1

E[τ1]
lim
k→∞

1

k

nk∑
i=1

zi

=
1

E[τ1]
lim
k→∞

nk
k

1

nk

nk∑
i=1

zi (3.4)

Since the first (nk − 1) samples are determined by a time-homogeneous

sampling policy, z1, z2, · · · , znk−1 are independent and identically distributed

random variables. The znk
is not identically distributed with the other terms;

however, E[τnk
] ≤ c <∞ and

lim
k→∞

1

k

∫ τ1+...+τnk

τ1+...+τnk−1

x2dt = 0
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with probability 1. Hence, considering z1, z2, · · · , znk
as independent and

identically distributed random variables in the following steps is of no con-

sequence.

Since E[τ1] < ∞, as k is driven to infinity, nk goes to infinity as well. In

fact,

lim
k→∞

nk
k

= 1. (3.5)

This can also be verified from

E[τ1] = lim
k→∞

τ1 + τ2 + · · ·+ τnk

nk

= lim
k→∞

kE[τ1]

nk

= E[τ1] lim
k→∞

k

nk
,

where the second equality follows from the definition of nk.

Then, by the strong law of large numbers,

lim
k→∞

1

nk

nk∑
i=1

zi = lim
nk→∞

1

nk

nk∑
i=1

zi = E[z1]. (3.6)

Inserting (3.5) and (3.6) into (3.4), we obtain

lim
k→∞

[
1

T

∫ T

0

x2dt

]
=

E[z1]

E[τ1]
=

E[
∫ τ1
0
x2dt]

E[τ1]
.

�

As a result of Proposition 3.1, our goal is equivalent to minimizing

E
[∫ τ1

0

x2dt

]
(3.7a)

subject to

E[τ1] = c. (3.7b)

Note that it is also possible to show that (3.3) and (3.7) are equivalent by

following a procedure used in [40], where an infinite horizon control problem

with time-homogeneous control policies is transformed into a Markov chain.
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3.2 Brownian Motion

Before handling stochastic processes including diffusion terms, we first ad-

dress the problem (3.7) for Wiener processes. Let yt be a Wiener process

dy = dw,

and ŷt be its estimate given by the last sampled value. Then the estimation

error xt is 0 at sampling times, and it is governed by dx = dw between

sampling times.

To eliminate the integration in E[
∫ τ1
0
x2dt], consider f(t, x) = x4

6
. Applying

the Itô rule,

df = ftdt+ fxdx+
1

2
fxxdt

= x2dt+
2

3
x3dw.

Then,

E
[∫ τ1

0

x2dt

]
= E

[∫ τ1

0

df − 2

3

∫ τ1

0

x3dw

]
= E

[
f(τ1, xτ1)− f(0, x0)

]
=

1

6
E[x4τ1 ].

As a result, for Brownian motion, the goal in (3.7) can be stated as:

minimize E[x4τ1 ]

subject to E[τ1] = c.

This can also be written as an unconstrained optimization problem with

a Lagrange multiplier λ:

minimize E[ x4τ1 − λτ1 ]. (3.8)

Note that λ ≥ 0, because otherwise (x4τ1 − λτ1) > 0 for all τ1 > 0 and

(x40 − λ0) = 0 for τ1 = 0, and thus, the optimal stopping rule would be to

sample at t = 0. However, this cannot satisfy E[τ1] = c for c > 0.
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The Snell envelope U(t, x) for the optimal stopping problem (3.8) satisfies

Ut +
1

2
Uxx = 0, (3.9a)

U(t, x) ≤ x4 − λt ∀t,∀x, (3.9b)

and attains equality in (3.9b) for some x value for each t. The following

function

λx2 − λt− λ2

4

solves (3.9a) and

(
x4 − λt

)
−
(
λx2 − λt− λ2

4

)
=

(
x2 − λ

2

)2

. (3.10)

Thus, (3.9b) is also satisfied. This suggests that the Snell envelope for (3.8)

is given by

U(t, x) = λx2 − λt− λ2

4
.

Then, the optimal time to take a new sample is the first time (x4−λt) reaches

U(t, x) after the last sample. From (3.10), this corresponds to the instant at

which (
x2 − λ

2

)2

= 0

is satisfied. Consequently, the optimal infinite horizon sampling rule is given

as

δ∗t =

{
1 if x2t = λ

2

0 otherwise.
(3.11)

The sampling rule in (3.11) is a constant threshold delta-sampling rule and

the value of the threshold is determined based on E[τ1] = c. This also verifies

the result of Chapter 2 for scalar Wiener processes, suggesting that the value

of the Lagrange multiplier λ is 2c.

3.3 Linear Stochastic Processes

In this section, we address the optimal sampling of scalar linear diffusion pro-

cesses with drift terms. Let us specify the one-dimensional random process
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yt as

dy = aydt+ dw,

where a 6= 0 and use the following estimate:

ŷ = y at sampling times,

dŷ = aŷdt otherwise.

Then, as shown in (3.1), the estimation error is 0 at sampling times and

obeys

dx = axdt+ dw (3.12)

between sampling times.

To remove the integration in (3.7a), consider f(t, x) = 1
2a

(x2 − t). Again,

by the Itô rule,

df = ftdt+ fxdx+
1

2
fxxdt

= ftdt+ fx(axdt+ dw) +
1

2
fxxdt

= x2dt+
x

a
dw.

Then,

E
[∫ τ1

0

x2dt

]
= E

[∫ τ1

0

df −
∫ τ1

0

x

a
dw

]
= E

[
f(τ1, xτ1)− f(0, x0)

]
=

1

2a
E
[
x2τ1 − τ1

]
.

Therefore, for the estimation error expressed with (3.12) where a 6= 0, the

problem (3.7) can be stated as

minimize
1

2a
E
[
x2τ1 − τ1

]
subject to E[τ1] = c.

By using a Lagrange multiplier λ and considering a > 0 and a < 0 cases

separately, this problem becomes equivalent to

minimize E[x2τ1 − λτ1] for a > 0, (3.13a)
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and

maximize E[x2τ1 − λτ1] for a < 0. (3.13b)

In the sequel, only the case a > 0 is handled, but the solution procedure for

a < 0 is identical.

To minimize E[x2τ1 − λτ1], we can look for the Snell envelope. The Snell

envelope U(t, x) for this stopping problem must satisfy

Ut + axUx +
1

2
Uxx = 0,

U(t, x) ≤ x2 − λt ∀t,∀x, (3.14)

and must attain equality in (3.14) for some x value for each t. Finding

U(t, x), however, turns out to be infeasible.

Instead, we first discretize the problem as

xk+1 = αxk + wk,

where wk’s are independent and identically distributed zero-mean Gaussian

random variables with variance σ2, and α > 1 since a > 0. Then, we create a

truncated problem with finite horizon N , and use dynamic programming to

find the characteristics of the value function, which we denote by V N(x, k).

At the end of the horizon, the process has to be stopped:

V N(x,N) = x2 − λN.

At step (N − 1):

V N(x,N − 1) = min{x2 − λ(N − 1) , E[V N(αx+ wN−1, N)]}

= min{x2 − λN + λ , E[(αx+ wN−1)
2 − λN ]}

= min{x2 − λN + λ , α2x2 + σ2 − λN}.

If V N(x,N−1) is equal to x2−λN+λ, the process is stopped at step (N−1),

otherwise it proceeds to step N .

Claim:

λ > σ2
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Proof: Assume λ ≤ σ2. Then,

x2 − λN + λ ≤ α2x2 + σ2 − λN ∀x,

and

V N(x,N − 1) = x2 − λ(N − 1).

By iteration, it can be shown that

V N(x, k) = x2 − λk for k = 1, 2, · · · , N.

This suggests that stopping at the very first step is optimal. However, this

contradicts with E[τ1] = c, and therefore, the assumption was wrong. �

Then, the value function at step (N − 1) is given as

V N(x,N − 1) =

{
α2x2 + σ2 − λN if |x| ≤ λ−σ2

α2−1 =: ∆N
N−1

x2 + λ− λN otherwise.
(3.15)

The process is stopped at a step when |x| exceeds some threshold value

determined for that step, as suggested by (3.2). Thus, V N(x, k) = x2 − λk
for large values of |x| for each k. The V N(x,N − 1) given in (3.15) is also in

this form.

For the discretized and truncated problem with horizon length N , define

the threshold value of the envelope at step k as

∆N
k = min

x
{|x| : V N(x, k) = x2 − λk}. (3.16)

The following two lemmas show that the thresholding envelope gets nar-

rower toward the end of the horizon for fixed N , i.e., the sequence {∆N
k }Nk=1

is monotonically decreasing.

Lemma 3.1: Let w denote a zero-mean Gaussian random variable with

variance σ2. Then,

E[V N(x+ w, k − 1)] < E[V N(x+ w, k)] + λ ∀x, for k = 2, 3, · · · , N.
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Proof: For k = N :

V N(x,N − 1) = min{x2 − λN + λ , α2x2 + σ2 − λN}

= min{V N(x,N) + λ , α2x2 + σ2 − λN}.

In fact,

V N(x,N − 1) = V N(x,N) + λ for |x| ≥ ∆N
N−1,

V N(x,N − 1) < V N(x,N) + λ for |x| < ∆N
N−1.

Therefore,

E[V N(x+ w,N − 1)] =

∫ ∞
−∞

V N(x+ w,N − 1)pW (w)dw

<

∫ ∞
−∞

(
V N(x+ w,N) + λ

)
pW (w)dw

= E[V N(x+ w,N)] + λ,

where pW (w) denotes the probability density function of w.

Now, to prove by iteration, assume for an arbitrary step k ≤ N − 1,

E[V N(x+ w, k)] < E[V N(x+ w, k + 1)] + λ (3.17)

holds for all x. At step (k − 1),

V N(x, k − 1) = min{x2 − λk + λ , E[V N(αx+ wk−1, k)]}

and

V N(x, k) + λ = min{x2 − λk + λ , E[V N(αx+ wk, k + 1)] + λ}.

By assumption (3.17),

E[V N(αx+ wk−1, k)] < E[V N(αx+ wk, k + 1)] + λ,

and therefore,

V N(x, k − 1) ≤ V N(x, k) + λ ∀x.
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Specifically, when |x| ≥ max{∆N
k−1,∆

N
k },

V N(x, k − 1) = V N(x, k) + λ = x2 − λk + λ,

and otherwise

V N(x, k − 1) < V N(x, k) + λ.

Then, for any x at step (k − 1),

E[V N(x+ w, k − 1)] =

∫ ∞
−∞

V N(x+ w, k − 1)pW (w)dw

<

∫ ∞
−∞

(
V N(x+ w, k) + λ

)
pW (w)dw

= E[V N(x+ w, k)] + λ.

As a result, the assumption (3.17) holds for step (k − 1) as well. �

Lemma 3.2: {∆N
k }Nk=1 is a monotonically decreasing sequence.

Proof: The value function at step k 6= N ,

V N(x, k) = min{x2 − λk , E[V N(αx+ wk, k + 1)]}

is even in x and consists of two segments on [0,∞): E[V N(αx + wk, k + 1)]

and x2 − λk. By definition, ∆N
k is the value of x at which both segments

meet, i.e.,

x2 − λk = E[V N(αx+ wk, k + 1)] (3.18)

is satisfied at x = ∆N
k . In addition, by Lemma 3.1, at x = ∆N

k ,

E[V N(αx+ wk, k + 1)] + λ > E[V N(αx+ wk−1, k)]. (3.19)

On the other hand,

V N(x, k − 1) = min{x2 − λk + λ , E[V N(αx+ wk−1, k)]},

and (3.18) and (3.19) imply that at x = ∆N
k ,

x2 − λk + λ = E[V N(αx+ wk, k + 1)] + λ > E[V N(αx+ wk−1, k)].
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Therefore, E[V N(αx + wk−1, k)] meets x2 − λk + λ at a value of |x| larger

than ∆N
k , i.e.,

∆N
k−1 > ∆N

k .

�

The following lemma shows that if the horizon length N is changed, the

thresholding envelope only shifts along the time axis while maintaining its

shape.

Lemma 3.3:

∆N
k = ∆N+1

k+1

Proof: For the problem with horizon length (N + 1), at the last step,

V N+1(x,N + 1) = x2 − λ(N + 1) = V N(x,N)− λ.

Assume

V N+1(x, k + 1) = V N(x, k)− λ

for an arbitrary step (k + 1). Then,

V N+1(x, k) = min{x2 − λk,E[V N+1(αx+ w, k + 1)]}

= min{x2 − λk + λ− λ,E[V N(αx+ w, k)− λ]}

= min{x2 − λk + λ,E[V N(αx+ w, k)]} − λ

= V N(x, k − 1)− λ,

which shows that the assumption also holds for step k. Therefore, by itera-

tion,

V N+1(x, k + 1) = V N(x, k)− λ ∀x, for k = 1, 2, · · · , N.

As a result, by definition,

∆N
k = min{|x| : V N(x, k) = x2 − λk}

= min{|x| : V N(x, k)− λ = x2 − λk − λ}

= min{|x| : V N+1(x, k + 1) = x2 − λ(k + 1)}

= ∆N+1
k+1 .

�

Corollary 3.1: From Lemma 3.2 and Lemma 3.3, {∆N
1 }∞N=1 is a mono-
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tonically increasing sequence.

Proposition 3.2: limN→∞∆N
1 is finite.

Proof: The sequence {∆N
1 }∞N=1 gives the threshold values of the infinite

horizon envelope, in the reverse order. If limN→∞∆N
1 = ∞, the process xk

will not be stopped at infinitely many steps, and thus, E[τ1] =∞. Therefore,

we must have

lim
N→∞

∆N
1 <∞.

Theorem 3.1: Let ∆ := limN→∞∆N
1 < ∞. Then, ∆∞k = ∆ for all

k ≥ 1. In other words, the optimal sampling rule for the infinite horizon is

event-triggered sampling with a constant threshold:

δ∗k =

{
1 if |xk| ≥ ∆

0 otherwise.

Proof: For any k ≥ 1,

∆∞k = lim
N→∞

∆N
k = lim

N→∞
∆N+k−1
k .

From Lemma 3.3, ∆N+k−1
k = ∆N

1 . Therefore,

∆∞k = lim
N→∞

∆N
1 = ∆.

�

Lemmas 3.1–3.3 do not depend on the degree of fineness of the discretiza-

tion. Consequently, the optimal sampling rule for the original infinite horizon

problem in continuous time is also event-triggered sampling with a constant

threshold. The threshold value is determined based on the frequency of sam-

pling given by (3.3b).

In Chapter 2, the simplest form of event-triggered sampling, which uses

a constant threshold, was shown to be the optimal policy to sample and

estimate Wiener processes over the infinite horizon. In this chapter, we

showed that this result is also valid for scalar linear diffusion processes.
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CHAPTER 4

OPTIMAL SWITCHING FOR A
BANG-BANG CONTROLLER

Chapter 2 and Chapter 3 studied the optimal infinite horizon sampling poli-

cies for estimation problems. In this chapter, we address a control problem

with infinite horizon.

Most control systems with feedback controllers update their control signals

upon receiving a new sample. For distributed networks with a large number

of subsystems, these updates may require substantial computational capacity.

Moreover, if the controllers and plants are located in different places of the

system, a communication network is also needed for the transfer of control

signals.

To handle the systems with limited computational or communicational

capacity, we formulate a problem with a constraint on the sampling frequency.

4.1 Problem Formulation

Let xt be a continuous time stochastic process with a drift term determined

by a bang-bang controller:

dx = u(t)dt+ dw, u(t) ∈ {u1,−u2} , (4.1)

where u is either u1 or −u2 at each t, and u1, u2 ∈ (0,∞). We want to de-

velop an event-triggered time-homogeneous switching policy which has a hard

constraint on the average time between consecutive switches and minimizes

lim
T→∞

1

T

[∫ T

0

x2dt

]
. (4.2)

Note that taking expectation is not needed in (4.2) since we consider only

time-homogeneous switching policies. However, because the values of the
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process at switching instants are not known a priori, we will need to define

different time instants as reference points for the switching policies.

When u1 = u2, the process can be driven into both directions with the

same drift rate. In this case, we can conjecture that the optimal switching

policy does not switch from −u2 to u1 if xt > 0, and u1 to −u2 if xt < 0.

For our problem stated for the process (4.1) with the cost function (4.2) and

the constraint on the frequency of switching, we will assume the following.

Assumption 4.1: There exists a critical level θ such that the optimal

switching policy can switch from u1 to −u2 only if xt > θ. Likewise, switching

from −u2 to u1 is possible only if xt < θ.

Let t′0 be an instant at which u switches from −u2 to u1. By assumption,

xt′0 < θ. Since u = u1 > 0, xt crosses θ in finite time with probability 1. To

show this, we can define t0 as the first time xt reaches θ after t′0. Then,

E[t0 − t′0] = E

[∫ t0

t′0

dt

]

= E

[∫ t0

t′0

1

u1
(dx− dw)

]
=

1

u1
E
[
xt0 − xt′0

]
=

θ − xt′0
u1

<∞.

Therefore, t0 is well defined. Further define

• (t0 + τ1) as the first time u switches from u1 to −u2 after t0,

• (t0 + τ ′1) as the first time xt reaches θ after (t0 + τ1),

• (t0 + τ ′1 + τ2) as the first time u switches from −u2 to u1 after (t0 + τ ′1),

• (t0 + τ ′1 + τ ′2) as the first time xt reaches θ after (t0 + τ ′1 + τ2).

These time instants are shown on a sample path in Figure 4.1.

The event-triggered switching policies we consider are time-homogeneous,

in the sense that if t1 and t2 are two instants at which u switches from −u2
to u1 with xt1 = xt2 , then the thresholding envelopes following these samples

are identical until the next sampling instants. However, by Assumtion 4.1,

we already know that a new sample is not taken until xt reaches θ; therefore,
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Figure 4.1: Defined time instants on a sample path

the time that elapses between a switching instant and the nearest time at

which xt reaches θ is unimportant. Hence, for the policies we consider, the

time τ1 is determined based on (t − t0), but not based on t0. Similarly, the

time τ2 is determined based on (t− t0− τ ′1), but not based on t0 + τ ′1. Then,

the hard constraint on the average time between consecutive switches can be

stated as

E[τ ′1 + τ ′2] = c,

which can also be separated as

E[τ ′1] = c1

E[τ ′2] = c2

c1 + c2 = c,

where c1 and c2 are two constants to be determined later.
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As in Section 3.1, we can define

z1 =

∫ t0+τ ′1+τ
′
2

t0

x2dt,

and if
(
t0 +

∑4
i=1 τ

′
i

)
is the first time xt crosses θ after the next switch of u

from −u2 to u1,

z2 =

∫ t0+
∑4

i=1 τ
′
i

t0+
∑2

i=1 τ
′
i

x2dt,

and so on. Then, we can show that

lim
T→∞

1

T

[∫ t0+T

t0

x2dt

]
= lim

k→∞

1

kE[τ ′1 + τ ′2]

nk∑
i=1

zi

=
E[z1]

E[τ ′1 + τ ′2]

=
1

E[τ ′1 + τ ′2]
E

[∫ t0+τ ′1+τ
′
2

t0

x2dt

]
,

where nk is defined similar to that in Section 3.1.

As a result, our goal becomes equivalent to

minimize E

[∫ t0+τ ′1+τ
′
2

t0

x2dt

]
subject to E[τ ′1] = c1, E[τ ′2] = c2,

which, again due to the time-homogeneity of the switching policy, can be

separated into two problems as:

minimize E

[∫ t0+τ ′1

t0

x2dt

]
subject to E[τ ′1] = c1, (4.3a)

minimize E

[∫ t0+τ ′1+τ
′
2

t0+τ ′1

x2dt

]
subject to E[τ ′2] = c2. (4.3b)

Note that these two problems are almost identical and independent except

for the coupling constraint c1 + c2 = c.
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4.2 Conversion to an Optimal Stopping Problem

To eliminate the integration inside the expectation in (4.3a), we consider the

function fu(x) = x3

3u
− x2

2u2
+ x

2u3
. Applying Itô’s differentiation rule,

dfu = fut dt+ fux dx+
1

2
fuxxdt

= fut dt+ fux (udt+ dw) +
1

2
fuxxdt

= x2dt+

(
x2

u
− x

u2
+

1

2u3

)
dw.

Then,

E

[∫ t0+τ ′1

t0

x2dt

]
= E

[∫ t0+τ1

t0

dfu1
]

+ E

[∫ t0+τ ′1

t0+τ1

df−u2

]
= E

[
fu1(xt0+τ1)− fu1(xt0)

]
+E
[
f−u2(xt0+τ ′1)− f

−u2(xt0+τ1)
]

= E
[(

1

u1
+

1

u2

)
x3t0+τ1

3

]
+ E

[(
1

u22
− 1

u21

)
x2t0+τ1

2

]
+E

[(
1

u31
+

1

u32

)
xt0+τ1

2

]
− fu1(θ) + f−u2(θ). (4.4)

Furthermore, we can express the condition E[τ ′1] = c1 in terms of E[xt0+τ1 ]:

E[τ ′1] = E

[∫ t0+τ1

t0

dt+

∫ t0+τ ′1

t0+τ1

dt

]

= E

[∫ t0+τ1

t0

dx− dw
u1

+

∫ t0+τ ′1

t0+τ1

dx− dw
−u2

]

= E

[
1

u1

∫ t0+τ1

t0

dx− 1

u2

∫ t0+τ ′1

t0+τ1

dx

]

=

(
1

u1
+

1

u2

)
(E [xt0+τ1 ]− θ) .

As a result, ignoring the deterministic terms in (4.4), the problem in (4.3a)
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can be equivalently stated as

minimize E
[(

1

u1
+

1

u2

)
x3t0+τ1

3
+

(
1

u22
− 1

u21

)
x2t0+τ1

2
+

(
1

u31
+

1

u32

)
xt0+τ1

2

]
subject to E[xt0+τ1 ] = θ +

(
1

u1
+

1

u2

)−1
c1. (4.5)

The solution for this problem can be obtained by minimizing

E
[(

1

u1
+

1

u2

)
x3t0+τ1

3
+

(
1

u22
− 1

u21

)
x2t0+τ1

2
+

(
1

u31
+

1

u32
+ λ

)
xt0+τ1

2

]
(4.6)

for a Lagrange multiplier λ ∈ R. Even though we have an expectation

in (4.6), the stochasticity of the problem is lost since we have been able

to express both the cost and the constraint only in terms of xt0+τ1 . As(
1
u1

+ 1
u2

)
> 0, the expression inside the expectation in (4.6) attains its

unique minimum in the region [0,∞) at some constant value x:

x = arg min
x≥0

[(
1

u1
+

1

u2

)
x3

3
+

(
1

u22
− 1

u21

)
x2

2
+

(
1

u31
+

1

u32
+ λ

)
x

2

]
.

Then the optimal time to switch from u1 to −u2 is the first time xt reaches

x after t0. This gives an event-triggered switching rule defined by a constant

thresholding envelope. The value λ, and thus, x are determined from (4.5)

based on the condition E[τ ′1] = c1:

x = E[xt0+τ1 ] = θ +

(
1

u1
+

1

u2

)−1
c1.

For the problem (4.3b), we can follow a similar procedure to obtain the

optimal time to switch from −u2 to u1 as the first time xt reaches

x := θ −
(

1

u1
+

1

u2

)−1
c2.

Then, the optimal switching policy is given by

δ∗ =


switch to −u2 if xt = x and u = u1,

switch to u1 if xt = x and u = −u2,
do not switch otherwise.

(4.7)
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Now, knowing the value of the process at switching times in terms of c1

and c2, we can optimally adjust c1 and c2 values. Note that the following

conditions are equivalent:

c1 + c2 = c ⇐⇒ x− x =

(
1

u1
+

1

u2

)−1
c. (4.8)

With deterministic values of the process at switching instants, we can write

E

[∫ t0+τ ′1+τ
′
2

t0

x2dt

]
= E

[∫ t0+τ1

t0

dfu1
]

+ E

[∫ t0+τ ′1+τ2

t0+τ1

df−u2

]

+E

[∫ t0+τ ′1+τ
′
2

t0+τ ′1+τ2

dfu1

]

=

(
1

u1
+

1

u2

)
x3

3
+

(
1

u22
− 1

u21

)
x2

2
+

(
1

u31
+

1

u32

)
x

2

−
(

1

u1
+

1

u2

)
x3

3
−
(

1

u22
− 1

u21

)
x2

2
−
(

1

u31
+

1

u32

)
x

2

=

(
1

u1
+

1

u2

)
x3 − x3

3
+

(
1

u22
− 1

u21

)
x2 − x2

2

+

(
1

u31
+

1

u32

)
x− x

2
. (4.9)

The unique x∗ and x∗ minimizing (4.9) subject to (4.8) are calculated as

x∗ =
1

2

(
1

u1
− 1

u2

)
+
c

2

(
1

u1
+

1

u2

)−1
, (4.10a)

x∗ =
1

2

(
1

u1
− 1

u2

)
− c

2

(
1

u1
+

1

u2

)−1
. (4.10b)

Therefore, (4.10) provides the optimal threshold values for the optimal policy

(4.7). As the expected time between consecutive switches decreases, the

optimal upper and lower threshold levels get closer. If we let c → 0, which

allows sampling infinitely often,

lim
c→0

x∗ = lim
c→0

x∗ =
1

2

(
1

u1
− 1

u2

)
.

Remark: Note that the value of θ has not been needed in any of the

steps. Only the assumption that there exists such a constant level has been

important to find out that the optimal switching rule is given by a constant
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envelope rule. Then, to find the optimal levels for the envelope, x∗ and x∗,

we minimized the expression (4.9) subject to (4.8), neither of which depend

on the value of θ.

4.3 Comparison with Discounted Cost Minimization

A similar infinite horizon optimal control problem has also been formulated in

[46] although it uses a discounted cost and has no constraint on the frequency

of switching.

Let x̃t be a process driven by a bounded control input:

dx̃ = u(t)dt+ dw,

−u2 ≤ u(t) ≤ u1, ∀t ≥ 0.

Note that the set of possible actions is not binary, but a compact subset of

the set of real numbers containing 0. The optimal control input adapted to

the process x̃t which minimizes

E
[∫ ∞

0

e−βtx̃2tdt

]
has been shown in [46] to be a bang-bang controller:

u(t) =

{
−u2 if x̃t ≥ θβ

u1 if x̃t < θβ,
(4.11a)

where

θβ =
1√

u21 + 2β + u1
− 1√

u22 + 2β + u2
. (4.11b)

The discount rate β affects only the switching level θβ in (4.11), and the

bang-bang structure of the control law is independent of β otherwise. As the

discount rate β approaches 0, the switching level tends to

lim
β→0

θβ =
1

2

(
1

u1
− 1

u2

)
. (4.12)

We cannot directly claim that the control law obtained by taking the limit

of (4.11) will be the optimal rule for the infinite horizon problem with an
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undiscounted cost function. However, we observe that the limit value in

(4.12) coincides with the average of the optimal upper and lower threshold

values given in (4.10). In fact, (4.12) is the only value that lies between x∗

and x∗ for all values of c.

With this relation between the problem with undiscounted cost and con-

straint on the frequency of switching and the unconstrained problem with

discounted cost, we conclude this chapter.
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CHAPTER 5

CONCLUSION

In this thesis, we studied the optimal event-triggered sampling and switch-

ing policies over the infinite horizon. To address the computational and

communicational limitations in systems such as networked control systems,

we integrated a sampling constraint into our analyses. Instead of associating

a cost with each sample, we imposed a hard constraint on the frequency of

sampling.

In Chapter 2, we examined the optimal event-triggered sampling policy

to estimate multidimensional Wiener processes. We first investigated the

solution for a finite horizon problem with a limited number of samples. Af-

ter converting the finite horizon problem to a sequence of optimal stopping

problems, we obtained its solution by providing its Snell envelope. Then,

to solve the infinite horizon problem, we increased the length of the hori-

zon to infinity while maintaining the ratio of the number of samples to the

length of the horizon at a constant value. We showed that the policy to take

the very first sample converges to the event-triggered sampling policy with a

constant envelope and it gives the solution for the infinite horizon problem.

To demonstrate the optimality of the policy suggested, we also compared it

with a class of event-triggered policies via simulation.

With Wiener processes, it was possible to calculate the Snell envelope for

the finite horizon optimal stopping problem. However, this was infeasible for

stochastic linear processes with drift terms. Therefore, to find the optimal

event-triggered sampling policies for these processes over the infinite horizon,

we developed a new approach in Chapter 3.

To deal with linear diffusion processes with time-invariant coefficients, in

Chapter 3, we used the fact that the aggregated estimation errors between

consecutive sampling instants are independent and identically distributed

random variables. This allowed us to formulate a simpler optimal stopping

problem which could be expressed with a single Lagrangian cost function.
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We were able to provide the Snell envelope of this optimal stopping problem

for scalar Wiener processes, which yielded the same solution as the one in

Chapter 2. For the processes with drift terms, however, we could not obtain

an explicit expression for the Snell envelope. Instead, we created discretized

and truncated versions of the problem. Resorting to dynamic programming,

we obtained the characteristics of the thresholding envelope of the event-

triggered sampling policy. Consequently, we proved the optimality of the

sampling policy with a constant threshold for linear diffusion processes as

well.

Whereas the problems in Chapter 2 and Chapter 3 concerned only the

estimation of stochastic linear processes, the problem studied in Chapter 4

involved the control of a process. To focus on the optimality of the sam-

pling policies, we selected a process whose drift rate was controlled with a

bang-bang controller. Following an approach similar to that in Chapter 3,

we obtained a simpler optimal stopping problem. Then, we removed the

stochasticity of this problem by expressing both the cost and the constraint

only in terms of the value of the process at the switching instants. As a re-

sult, we showed that the optimal switching rule for this process is also given

by an event-triggered policy with a constant envelope.

Chapter 4 provided the optimal switching policy for a bang-bang controller.

It is also possible to look for jointly optimal control and sampling policies,

where the sampling instants are determined by the sampling policy to update

the control. In addition, some cost could be associated with the control ap-

plied. Nevertheless, the dual effect arising with the use of an event-triggered

sampling policy in closed-loop control systems renders the analysis of jointly

optimal policies infeasible for most cases.

Our analysis in Chapter 3 was limited to scalar processes. The optimal

event-triggered sampling policy for vector processes are also likely to have a

constant thresholding envelope. However, the weights the policy will place

on different states would possibly be different, and their computation clearly

requires further investigation.

The hard constraints we imposed on the frequency of sampling and switch-

ing are important for networked systems. However, the problems we formu-

lated address the issues that appear in networked systems from the perspec-

tive of a single process, ignoring the other processes in the network. Similar

problems could also be studied with larger networks containing several sub-

45



systems. With such networks, it is possible to handle the problems that

appear when different subsystems simultaneously request to transmit a sam-

ple or to update the control.

In our problems, we also considered observations to be noiseless and trans-

missions to be perfect. The problems could also be modified to include noisy

observations, and the estimator might be changed to a Kalman filter with

intermittent observations. Possible problems that arise in communication

networks, such as delays, transmission errors, and data dropouts, could also

be integrated into the formulation of the problems.

Nevertheless, despite their relative simplicity, the problems addressed in

this thesis capture an important portion of the issues concerning networked

control systems. The results obtained are critical as they show that the event-

triggered sampling with constant thresholds, the simplest and the most com-

monly used type of event-triggered policies, optimally schedules the sampling

instants over the infinite horizon.
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