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ABSTRACT

The thesis presents a novel situation awareness tool for sensing classifica-

tion. We proposed a general scheme for sensing, and applied that to build an

acoustic tool for teams of first responders and emergency personnel. It con-

stitutes an audio interface for reliably recording and disseminating situation

progress as extracted from the team’s audio communications. The tool that

we built is intended for emergency teams operating in noisy acoustic envi-

ronments, where standalone speech recognition systems fail to deliver desired

accuracy. Such teams typically follow predefined collaborative workflow as

dictated by the relevant engagement protocols, specifying their roles and

communications. Given the critical nature of the situation, the vocabulary

used is often constrained and dependent on the current stage of the workflow

being executed. Treating a traditional speech recognition component as a

noisy sensor, the novelty of our tool lies in exploiting knowledge of the work-

flow to correct the noisy measurements. The intellectual contribution in this

exploitation lies in the joint estimation of the current state of the workflow

together with the correction of sensed data, given only the noisy (speech)

measurements and an overall workflow description. Evaluation shows that

the tool provides a significant accuracy enhancement compared to the stan-

dalone speech recognition, effectively coping with the noisy environment of

emergency teams.
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CHAPTER 1

INTRODUCTION

1.1 Situation Awareness and Workflow

Situation awareness is defined as the ability of an actor to understand the

context of its activity. While humans are able to continuously integrate back-

ground data to sensory inputs and easily understand their context, machines

are still a long way apart from mastering this ability. This is in largely

because what determines the context (situation) are subtle changes in vari-

ables that cannot be directly and accurately sensed, but needs to be largely

inferred. Situation awareness is fundamental in all those domains where it is

crucial to understand the state of the environment and predict its changes in

the near future. Common examples are: military command and control [1],

industrial plant operation [2], air traffic control [3] [4], and emergency ser-

vices [5] such as health-care [6] and fire-fighting [7].

It is important to consider that in those contexts where situation awareness

can be remarkably beneficial, human interactions do not evolve freely. In

fact, domain-specific operators are trained to take actions according to a

predetermined workflow that imposes a finite set of possible decisions and

actions at each relevant change of state. We refer to workflow-based human

interactions as structured human interactions. In addition to those critical

domains mentioned above, a wide range of situations evolve according to

structured human interactions. In sports, for instance, players on the field

follow precise strategies set by the coach during the game and repeatedly

trying to achieve the scoring goal; a similar model applies to card/board

games where card holders adjust and actuate his/her strategy according the

situation in the game; in business/political meetings, topics are discussed

based on a tight schedule and a finite set of decisions can be taken for each

of them.
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In this work, we propose a general methodology to augment the capabil-

ities of sensing devices to improve situation awareness of structured human

interactions in noisy environments. Note that the noise hereby does not only

refer to acoustic noise, but sensing-task-specific. For instance, it could be the

visionary distortion when it comes to vision recognition task. Specifically, we

exploit the additional information embedded in the domain-specific workflow

to continuously correct the unreliable stream of sensor data. In particular, a

number of sensing objects are embedded within a workflow, which consists of

states/stages inside. And each state has certain possible objects associated

with it, and transits to another abiding to certain probability. In another

word, the workflow defines the possible range and the relationship between

different objects.

Due to the noisy environment and the inherent unreliability of sensors,

the sensing results cannot truly represent the reality of the sensing objects.

In this work, we propose our scheme to exploit the workflow information to

reconstruct the inaccurate sensing measurements. In this way, it is possible

to produce instantaneous results that exhibit the maximum likelihood in

terms of probability of being in state x given that a sensor has produced the

output y. We show how the problem can be formulated using the Hidden

Markov Model (HMM) and consider the emergency medical environments as

a concrete application for our technique.

1.2 Situation-Awareness in Emergency Environment

In this section, we present a specific example of situation-awareness in the

emergency department of hospitals and motivate the intuition of our user

study.

While a patient is in an emergency department (ED) of a hospital, the

surrounding environment can be quite noisy because of the oral communica-

tions between physicians, the utterance of the patients, the noise generated

by medical devices, etc [8]. Various studies have shown that the sound levels

in the emergency department are sufficiently high (on average between 61

and 69 dB(A)) [9] to raise concerns regarding the communication of speech

without errors–an important issue everywhere in a hospital and a particu-

larly critical issue in emergency departments (EDs) because of the fact that
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doctors and nurses frequently need to work at an urgent pace and to rely on

hearing and understanding each other’s oral communication [10] [8].

Despite the chaotic and stressful characteristics of the emergence depart-

ment, in such environment, physicians are surrounding the patient and per-

forming medical operations following a known predefined collaborative work-

flow according the diagnosis to the patient, thus specifying their roles and

communications. A transition in the workflow is determined by either a

sudden change in the conditions of the patient or the interactions among

physicians. Given the critical nature of the situation, the vocabulary used is

often constrained and dependent on the current stage of the workflow being

executed.

Unfortunately, however, since humans are responsible for taking the right

decision at the right moment, mistakes are possible. Such mistakes can arise

from a failure to correctly follow the workflow and/or due to misunderstand-

ings among the physicians. It has been estimated that $11,529 emergency

department malpractice claims have been filled between 1985 and 2007 in

United States, representing a total of $664 millions in liability [11]. Each

claim reports an event in the emergency department that has been identified

as the cause of injury to an adult patient. Out of the total considered claims,

18% of the cases revealed that no evident mistake affected the conditions of

the patient; 37% of the cases referred to diagnostic errors that caused injury

to patients due to wrong or not timely treatment; and 17% highlighted that

improper performance of procedures has caused damage to bones, internal

organs or infections.

In the emergency department particularly, the current operation manner

is that the head nurse keeps track of what the physicians have said [12]. Due

to the chaotic nature of the working environment, and the human memory

decay, it is possible that the nurse may miss recording the commands that

has been executed by some physicians and thus lead to possible overdose and

misoperation. It is easy to understand that being able to deploy a method

to correctly track the workflow of an emergency situation would result in a

valuable benefit for both patients and physicians. In fact, this could provide:

(a) early detection of procedural mistakes; (b) accurate logging of events to

either validate patients claims or support physician’s defence from invalid

claims; (c) a less error-prone interaction among physicians thanks to a cen-

tralized view of the followed steps in the procedural workflow.
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1.3 Speech Recognition in Noisy Environment

Speech/voice recognition is a well-established realm that many academic en-

deavours have been invested into [13] [14] [15] [16]. However, due to the

inherently chaotic acoustic environment, standalone speech recognition sys-

tems may fail to deliver an acceptable level of accuracy. There are also many

other works which focus on building up resilient speech recognition systems

in noisy environments, such as [17] [18]. Most of the existing work focuses

on eliminating recognition mismatch probabilities via the methods of giving

more priority to high signal to noise ration (SNR) portions of the speech in

decision making, exploiting class-dependent processing, and including audi-

tory models in voice processing, etc.

In comparison to that, we propose to treating a traditional speech recog-

nition component as a noisy sensor and to correct the noisy measurements

relying on the workflow knowledge. The intellectual contribution in this ex-

ploitation lies in the joint estimation of the current state of the workflow

together with correction of sensed data, given only the noisy (speech) mea-

surements and an overall workflow description.

The challenge of this work lies in the fact that the measurements are inac-

curate, while the states associated with the sensing results are hidden. We

first model the state transition relationship via Hidden Markov Model [19].

Next, we use a confusion matrix to characterize the properties of the sensor

and the sensing environment. We then describe an algorithm which is able

to find the optimal sequence of guessed data (objects) so that not only we

are able to (a) reconstruct the inaccurate sensing measurements, but also (b)

keep track of the state transitions.

We first explore the advantages and limitations of this approach via sim-

ulation, where abstract workflow states are associated with objects and an

”object sensor” is used to do classification based on features of objects. The

sensor in the simulation has certain reliability and might cause errors. We

then construct a user study in the emergency environment, applying one of

the most common workflow – adult cardiac resuscitation algorithm [20] that

occurs in emergency departments to show that our approach can recover cor-

rect data from noisy measurements by exploiting workflow topology. From

our evaluations, it emerges that we are able to achieve an accuracy in the

workflow state detection of about 80% while relying on a standalone sensor
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with an accuracy of around 40%.

1.4 Thesis Contribution

The research topic of this work falls into cyber-physical systems. In particu-

lar, we explored possible solutions to increase the sensing accuracy given the

sensing environment is noisy and the sensors are unreliable, and we built a

real system in our user study to enhance the voice recognition accuracy in

the physical world by using our scheme. To the best of out knowledge, our

work is the first one to exploit the workflow information to achieve this goal.

We propose to exploit known workflow information to enhance the accu-

racy in the achievable situation awareness of structured human interactions.

And the measurement in return can enhance the inference of the workflow

state transition relationships in the workflow.

Moreover, we formulate the general problem as a maximum likelihood

problem, which lays the foundation for the further analysis. And we pro-

pose an optimal algorithm to solve this problem, which enables us to find

the most probable state transition sequence as well as the speech recognition

results.

Last but not the least, we build a workflow-aware recoding system for

noisy emergency environment that sensitively increases the achievable state-

tracking abilities of state-of-the-art speech recognition techniques for emer-

gency personnels.

1.5 Thesis Organization

The thesis is organized in the as follows. In Chapter 2, we model our sys-

tem and then present the terminologies that are used in later sections. In

Chapter 3, we formulate the problem rigorously and proposed our algorithm

to find the optimal path with recovered sensing measurements. We explored

the benefits and the limitations of our scheme in Chapter 4 via simulation,

and we discuss the case study of emergency transcriber system in Chapter 5.

We introduce the related work in Chapter 6 and we finally conclude this

thesis in Chapter 7.
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CHAPTER 2

PROBLEM DESCRIPTION AND SYSTEM
MODEL OVERVIEW

In this chapter, we give a detailed description of the general problem we

target on, and introduce the system model that we develop for tackling the

problem.

2.1 Problem Description

1

2

3

1/3 1/2

1/2

2/3

4
1/4

5
3/4

obj 1
obj 2

obj 1
obj 5

obj 3
obj 4

obj 6
obj 7

obj 8
obj 9
obj 10

Figure 2.1: An example workflow

In this thesis, we target on the workflow-based sensing problems. Our tar-

get lies in two folds: on one hand, we try to augment the situation-awareness

capability of structured human interaction, on the other hand, we aim to

correct the unreliable sensing data in the noisy environment.

In order to enable the reader with better understanding of what the work-

flow looks like, we devise a simple example for clearer illustration. Fig. 2.1

shows, as a graph, a simple workflow topology defined for a set of sensing
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tasks. The nodes represent abstract states/stages as defined in the workflow,

and they are hidden from the sensors. The task of the sensors is to measure

the objects accurately while inferring the state transition. Each state is asso-

ciated with certain objects, which are the classification targets of the sensor.

Each state associates with the objects abiding to certain probabilities, which

will be further explained in the next section. The directed edges indicate the

transition probabilities among states. For instance, at State1, Object1 and

2 are the potential classification targets for the sensor(s). Upon completion

at State1, the sensing task transits to State2 (or 3) with probability 1/3 (or

2/3), respectively.

The goal of the sensing tasks is to correctly classify the objects, as well

as keeping track of the sequence of states traversed. Let us take a sample

sequence of objects as an example. Suppose the sensing results come from the

standalone sensor is Object2, Object1, followed by Object3. However, this

sequence cannot be met under the constraint of the workflow, since no state

transition generates from Object1 to Object3. This error could be caused

by the sensor unreliability or the noisy environments which interrupts the

sensing classification. The hypothesis example illustrates the motivation of

our work, namely, we would like to make use of the workflow information to

correct the unreliable sensing results and keep track of the sequence of states

those have been traversed.

The challenges stem from the fact that the environments within which the

sensing tasks are carried out are usually noisy, and that sensor themselves

have inherent unreliability, potentially leading to incorrect decisions for in-

dividual classification tasks. It is also challenging to keep track of the state

traversal when there is overlapping of objects between different states, since

it generates confusion for differentiating them. For example, both State1

and State3 have the potential to generate Object1. Even though we assume

that the sensing result is accurate, without extra information, we cannot tell

which state the current object belongs to.

2.2 System Model Overview

In this section, we formulate the above problem as an optimization program.

Next we give a high-level overview of our system model.

7



zk-2 zk-1 zk

xk-2

yk-2

xk-1 xk

yk-2 yk-2

Figure 2.2: System Model

For clearer presentation, we first introduce our notations and terminologies.

The workflow is represented as a directed graph with a set of states, s =

s1, ..., sN , where N is the total number of states. Notice that the transition

of the states is not directly visible to the sensor or the human beings. But

the outputs of the states, namely, the objects are visible. Each state has

certain probability distribution over the possible output objects. Therefore

the sequence of the objects provides some hints about the state transition.

The above mentioned characteristic of the state transition fits well with the

requirement of Hidden Markov Model (HMM) [19]. HMM has been widely

used in modeling workflows and the emission procedures in machine-aided

human translation [21], cryptanalysis [22], and time series [23]. Given the

workflow, the transition probability distribution is ti,j = p(zt+1 = sj|zt = si),

where z = (z1, ..., zT ) is a state transition sequence for the time t = 1, ..., T ,

as the circles in Fig. 2.2 shows.

However, despite the fact that the state transition could be modeled by

Hidden Markov Model, the real challenging part of this work has not been

tackled yet, i.e., the noisy sensing environment and the inherent unreliability

of the sensors. Therefore we are going to present our solution to that in the

following paragraphs.

Notice that the state sequence is hidden, thus it is not possible for us to

directly observe state transitions. However, the good news for us is that, at

each state, an observation of the object associated with that specific state
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is acquired, denoted as yi, where i = 1, 2, ..., T , represented by the rounded

rectangles in the figure. It is important to notice that, due to the environment

noise and the unreliability of the sensor, those observations may not correctly

represent the true object values. Therefore, we utilize a confusion matrix to

capture the relationship between the true objects and the observations, and

we will explain in detail about the generation and the utility of the confusion

matrix in the next section.

The total number of possible true objects is limited because of the restric-

tion of the workflow, denoted by x = x1, ..., xT , represented by the rectangles.

It is easy to understand that, in the real world, the structured human inter-

actions have to follow certain rules and the total number of possible states

is finite.

The probability that the true object xt is observed at state sj is called

emission probability, denoted as ej,t = p(xt|zt = sj). And it quantifies the

relationship between the objects and the states, which provides important

hints on inferring the hidden state sequence.

We use classification probability, denoted as ci,j = p(yi|xj), to measure the

correspondence between the actual observation in the sensed results and the

true object set. This classification probability is obtained from the confu-

sion matrix of the sensor—a sensor’s performance can be characterized by a

confusion matrix, which contains the information about actual and predicted

classification results done by the sensor’s classification system. It is a specific

table layout that visualizes performance of a sensing system. As Table 2.1

shows, the column of the confusion matrix stands for the instances in a pre-

dicted class, while each row represents the instances in an actual true class.

In this confusion matrix, of the ten Object1, the sensing system predicted

that three were Object2, and two were Object3, and only five of the Object1

were correctly predicted. Similarly of the ten Object2, six of the instances

were correctly predicted while the remaining instances were wrong, with two

Obejct1 and two Object3 respectively. As we can see from the confusion

matrix, all the correct guesses reside in the main diagonal of the table.

With the confusion matrix defined above, we can further define the clas-

sification matrix. The classification probability ci,j, which is the element in

the classification matrix, is essentially the precision of the system. And it

is defined as the ratio
# True Positive

# True Positive + # False Positive
. Let us take the

previous confusion matrix as a concrete example. For the instances who

9



were predicted as Object1 by the sensing system, five of them were actually

Object1, and two of them are essentially Object2, and one of them is essen-

tially Object3. Therefore the total number of true positive and false negatvie

are 5 and 3, respectively. Taking the above information into the equation, we

can get that the classification probability ci,j is 5/8. In the similar manner,

we can fill the remaining blanks of the classification matrix as Table 2.1(b)

shows.

Table 2.1: An example of confusion matrix and classification matrix

(a) An example of confusion matrix

Predicted Class
Obj 1 Obj 2 Obj 3

Actual Class
Obj 1 5 3 2
Obj 2 2 6 2
Obj 3 0 2 7

(b) An example of classification matrix

Actual Class
Obj 1 Obj 2 Obj 3

Predicated Class
Obj 1 5/8 3/11 2/11
Obj 2 2/8 6/11 2/11
Obj 3 1/8 2/11 7/11

Last but not the least, as we assume the state transitions to follow the

Markov model, we have:

p(zt+1|zt, zt−1, ..., z1) = p(zt+1|zt) (2.1)

, which essentially states the fact that the current state only depends on

the most recent previous state, and it has nothing to do with other previous

states. This assumption meets the requirement of the situations in the real

world. For instance, in [24], the physicians make the decision and move to

the next state based on the current the reaction of the patient to the current

state operations. Moreover, the emission probability satisfies:

p(xt|zt, zt−1, ..., z1) = p(xt|zt) (2.2)

, which reveals that the observation is state-dependent. And the observations

of different states are independent with each other. This is also valid in the

10



real case [24] since the physicians only speak keywords according to the

current stage in the operation.
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CHAPTER 3

MATHEMATICAL FORMULATION

In this chapter, we introduce the core algorithm we proposed to solve the

problem described in the previous chapter. We first build mathematical

foundation of the algorithm, and then we propose an addendum to the basic

algorithm to meet the requirement of a special situation. And Last but not

the least, we discuss some of the practical issues when implementing the

algorithm in the real world.

3.1 Basic Algorithm

With the previously defined notations and terminologies, we formulate the

target problem as an optimization problem. And the solution to this problem

lies in two folds: on the one hand, we would like to find the most probable

sequence of states (represented by the state vector z), and on the other hand,

we would like to have correct sequence of classified objects (represented by

the object set x). That being translated to the mathematical form, and is

equivalent to maximizing the posterior probability p(zx|y), based on inaccu-

rate measurement of y. More rigorously, we write our goal as follows:

ẑx = arg max
zx

p(zx|y) (3.1)

In general, solving this equation would involve an exhaustive search for all

possible state sequences and the actual object set. It is not hard to see that

the general method would rapidly become impossible due to the fact that the

operations grow exponentially. The reasoning is as follows: it will first search

through all the possible true objects, and find the possibility of misclassifi-

caiton according to the classification matrix, and then it searches through all

the different states in the workflow to get the possibility of observing that

particular object at that state based on the emission probability. And lastly,
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it has to combine with the previous round of computation by taking the

transition probability into consideration. Suppose the total number of states

in the workflow is Ns, the total number of different objects is No, and the

state transition has taken T steps. Then the exhaustive search would have

the time complexity of (Ns ×Nv)
T . Thus, we propose the following method

which can bring a significant reduction in terms of computational efforts.

Based on Bayes’ theorem, the posterior probability could be expressed as

below:

p(zx|y) =
p(zxy)

p(y)
(3.2)

=
p(y|xz)p(zx)

p(y)
(3.3)

=
p(y|x)p(x|z)p(z)

p(y)
(3.4)

The emission probability, by using the independence characteristics of the

true object set Eqn. 2.1 and Eqn. 2.2, can be written as follows:

p(x|z) = p(x1, ..., xT |z1, ..., zT ) (3.5)

= p(x1|z1)p(x2|z2)...p(xT |zT ) (3.6)

=
T∏
i=1

p(xi|zi) (3.7)

In the similar manner, the probability of sequence of state transition z is

given by considering the Markov property, shown as below:

p(z) = p(z1, z2, ..., zT ) (3.8)

= p(zT |zT−1, ..., z1)...p(z1|z0)p(z0) (3.9)

=
T∏
i=1

p(zi|zi−1)p(z0) (3.10)

where p(z0) is the initial probability given as prior knowledge.

Furthermore, based on the classification probability discussed in Chapter 2,

the conditional probability for the objects that are measured is:

13



p(y|x) = p(y1, y2, ..., yT |x1, x2, ..., xT ) (3.11)

= p(y1|x1, ..., xT )...p(yT |x1, ..., xT ) (3.12)

=
T∏
i=1

p(yi|x1, ..., xT ) (3.13)

With the above analysis in mind, and the fact that the posterior probability

is proportional to its numerator, ẑx in Eqn. (3.1) could be written as follows:

arg max
zx

[
T∏
i=1

p(xi|zi)
T∏
i=1

p(zi|zi−1)
T∏
i=1

p(yi|x1, ..., xT )p(z0)]

We denote the final result of the above equation as µT (zT , xT )., thus we

can rewrite it as:

µT (zT , xT ) = arg max
z1:T ,x1:T

[
T∏
i=1

p(xi|zi)p(zi|zi−1)p(yi|x)p(z0)] (3.14)

= arg max
z1:T ,x1:T

[
T−1∏
i=1

p(xi|zi)p(zi|zi−1)p(yi|x)p(z0) (3.15)

p(xT |zT )p(zT |zT−1)p(yT |x)] (3.16)

= arg max
z1:T ,x1:T

[µT−1(zT−1, xT−1)p(xT |zT ) (3.17)

p(zT |zT−1)p(yT |x)] (3.18)

It is easy to see from the above equation that µT (zT , xT ) can be expressed

by the its previous term µT−1(zT−1, xT−1), which motivates the following

algorithm that can find the optimal state transition sequence as well as the

true object sequence. It is easy to show that the algorithm we proposed can

maximize the posterior probability of p(zx|y).

The basic idea of the proposed algorithm stem from 3.18, which reveals

the essence of dynamic programming of the algorithm. The input to the

algorithm are: the initial probability pi, the observation sequence y, and

the prior knowledge of the workflow, which is represented by the transition

probability ti,j, the emission probability ei,j, as well as the classification ma-

trix. The output of the algorithm is the sequence of the most possible state
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Algorithm 1 find optimal z and x

1: for i = 0; i < Ns; i+ + do
2: initialize V [0][i], B[0][i], X[0][i];
3: end for
4: for t = 1; i <= T ; t+ + do
5: for i = 0; i < Ns; i+ + do
6: pmax = 0;
7: for m = 0; m < Nv; m+ + do
8: if t == 1 then
9: p← piexm,ip(yt|xm)

10: else
11: for j = 0; j < Ns; j + + do
12: p← V [t− 1][j]tj,iexm,ip(yt|xm)
13: if p > pmax then
14: pmax ← p
15: smax ← j
16: vword ← xm
17: end if
18: end for
19: end if
20: end for
21: V [t][i]← pmax

22: B[t][i]← smax

23: X[t][i]← vword

24: end for
25: end for

transition sequence and the true object sets. The pseudo code is shown as

follows.

In this algorithm, V [i][j] stands for the maximum overall probability of

arriving at Statej at time i. And B[i][j] stands for the previous state that

can transit to Statej and generate the overall possibility of V [i][j]. X[i][j]

stores the corresponding true object corresponding to V [i][j]. Those three

matrices are initialized at the beginning of the algorithm, and updated in

the later iterations. The key to reducing the computational efforts lie in the

fact that, at each time step, we keep only the path of states coming from

the previous state that has the largest probability. And since the probability

stores at V [i][j] is the maximum cumulative probability achieved so far in

the transitioning to Statej, it also ensures the optimality of the algorithm.

At any time step t, we first explore the probability of generating the actual
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observation based on the true object, and it is accomplished by referring to

the sensors’ classification matrix. We then explore all the possible transitions

that lead to the state that we are currently sitting at. And we store a list

of most probable transitions and the true objects in B and X respectively

(for the backtracking purpose) before we move on to the next step. We put

the above-mentioned two steps of exploration together, and build a series of

sequence from the beginning to the end of the states. When we get to the

end, we select the final sequence that generates the highest likelihood and

move backwards, following the transitions with the highest probability until

we arrive at the beginning. Corresponding, we also trace back the true ob-

jects that are observed along the path, and therefore getting the final results

of optimal state transition sequence and object sequence. Notice that when

t is equal to 1, meaning that we just get started from the very beginning,

the update of the overall probability needs special treatment. Specifically,

the transition probability tj,i, was replaced by the prior knowledge of ini-

tial probability pi, since there is no previous state, and thus the transition

probability does not apply in here.

Also it is worthy of noticing that the time complexity of this algorithm

is O(N2
s TNv), where Ns stands for the overall state space, T stands for

state sequence length, and Nv represents the vocabulary space. When we

implement the algorithm, we made several adjustment though. For instance,

we use the log likelihood to avoid the underflow problem.

3.2 Enhancement to Missing Measurements

The above section presents the basic algorithm that can meet the require-

ment of correcting inaccurate sensing results of standalone sensors as well

as keeping track of the state transition of the workflow. However, in the

real world, more challenging situations might take place. For example, in a

figure recognition sensing task, the sensor may suddenly stop working due

to mechanical malfunction. Another example might be the speech recogni-

tion task in the emergency room where the doctors may forgot to speak out

about their operations occasionally due to the heavy workload of their work.

It could also be possible that the doctor speaks so lightly that the automatic

speech recognizer (ASR) does not capture his/her voice. All the above men-

16



tioned situations will lead to one consequence, namely, the measurement,

based on which our basic algorithm keeps track of the workflow and enables

the correction of the sensing data is missing. In this section, we propose an

improvement addendum, which could be combined with our basic algorithm

to solve this problem.

The consequence of missing of measurements could be reflected on the

change of transition probability between different states of the workflow.

Take Fig. 2.1 as an example, in which state1 transits to state3 with the

probability of 66.67%, and state1 cannot transit to state4 directly. For the

sake of simplicity, we assume that the sensors are perfect. Suppose the previ-

ous state is state1, with the Object1 generated and correctly classified. The

current operation is at state3, and the object that has been generated, e.g.

Object5, is missing due to one of the causes mentioned above. And then the

workflow reaches state4, with one of the objects 6 observed and classified by

the sensor. Therefore, the overall output from sandalone sensor is: Object1

and Object6; implying that state1 transits to state4 directly, which is con-

tradictory to the predefined workflow. If we use the basic algorithm solely,

it will try to match Obejct6 to the objects in State2 and State3 and thus

give erroneous classification result. Motivated by the above scenario, we pro-

pose our solution that tackles this problem by preprocessing the transition

probability before running the basic algorithm.

Before we describe our detailed method, we first present some terminologies

and our assumption. Suppose the probability that an object is missing at

each state of the workflow is p. We also assume that at each state, at most one

object will be missing, i.e., continuous missing of objects at each state does

not happen. We make this assumption based on the following two reasons.

First, in the normal sensing environment, where critical sensing tasks take

place, the sensors in the system should have basic reliability guarantee, the

missing of the objects should not happen too frequently. Moreover, our

approach focuses on the most fundamental case, and it can provide insight

for other cases where multiple objects are continuously missing at each state.

Based on the above analysis and assumptions, we adapt the transition

probability according to the following equation:

t
′

i,j = ti,j − ti,jp+
∑
m∈M

ti,mptm,j (3.19)
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where t
′
i,j represents the updated transition probability, and M stands for the

set of source node of all the incoming edges of node j. The first term on the

right hand side of the equation indicates the traditional transition probability

from state i to j based on the domain protocol, which is prior knowledge. The

second term indicates the probability that the workflow transits from i to j

without observing an object associated with j. And the last term indicates

the probability that i transits to m but the word associated m is missing at

the previous round, and then m transits to j at the current round, where

m has direct transition link to j. After updating the transition probability

matrix as Eqn. (3.21), we can combine it with our basic algorithm to cater

the situations where missing measurements happen. In theory, the combined

algorithm can tackle the scenario where measure missing happens every other

object, which is rare enough in practical scenarios.

Moreover, it is worthy of proving that the previous equation from a more

rigorous perspective. From the definition of the transition probability matrix,

we know that the ith row of the matrix represent the probability that Statei

transits to any other Statej, where j = 1, 2, ..., N , and N is the total number

of states. It is easy to see that the sum of the elements in one row adds up

to 1 since that row concludes all the possibilities of the outgoing edges. We

can summarize this into the formulation as follows:

N∑
j=1

ti,j =
∑
j∈M

ti,j = 1 (3.20)

We can then argue that the updated transition probability matrix remains

correct if for each row, the sum of the elements of that row adds up to 1,

which is shown as follows:

t
′

i,j = ti,j − ti,jp+
∑
m∈M

ti,mptm,j (3.21)
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N∑
j=1

t
′

i,j =
N∑
j=1

ti,j −
N∑
j=1

ti,jp+
N∑
j=1

(
∑
m∈M

ti,mptm,j) (3.22)

= 1− p+
N∑
j=1

(
∑
m∈M

ti,mptm,j) (3.23)

= 1− p+
N∑

m=1

(
N∑
j=1

ti,mtm,jp) (3.24)

= 1− p+
N∑

m=1

ti,mp(
N∑
j=1

tm,j) (3.25)

= 1− p+ p (3.26)

= 1 (3.27)

One might still argue that what if multiple continuous missing happens.

The solution to that problem is described in the next section.
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3.3 Practical Issues

In this section, we present some of the practical issues when using our algo-

rithm in real sensing environment to do the workflow tracking and sensing

result correction.

One real scenario that could happen is that multiple continuous missing

of measurements. Based on the analysis in Section 3.2, we can see that

the missing of the measurements essentially contradicts with the workflow

information, because it breaks the transition relationship between different

states in the workflow. In other words, the previous states that has been

recognized and recorded has become a negative factor, trying to match the

object to a wrong state. Since when the continuous missing makes the work-

flow hinder rather than help us to achieve our goal, we should abandon it

when that happens. Therefore, in practice, we can set up a threshold of time

for the detection of missing measurements. If the sensor does not provide

output longer than this threshold while the operations are on, it indicates

that continuous missing happens. And then, the history of state tracking

is refreshed, and the algorithm runs all over again when a newly classified

object comes out of sensor.
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CHAPTER 4

SIMULATION

In this section, we evaluate the performance of the schemes proposed in the

thesis. We first introduce our experiment settings, and then present the

results.

4.1 Simulation Settings

We consider two types of workflow in our simulation, namely, random di-

rected graph and directed tree, as they represent two distinct types of work-

flow in the real world. A random graph represents a workflow where loops

could be possible. For instance, the workflow for intubation and airway man-

agement algorithm [25], and the workflow for adult cardiac arrest algorithm

[20]. Another type of workflow could be abstracted as a directed tree where

circles are not present, such as the workflow for ventricular failure with car-

diogenic shock [26], and the workflow for bradycardia algorithm [26]. In our

simulation, we simulated the workflow topology by generating two typical

random topologies as stated above. Each state of the workflow, which rep-

resented by a node in the topology, is associated with some objects, whose

values are sensed by sensors. For the simulation purpose, without partic-

ularly mentioned, we chose a path and some associated objects randomly

from the topology as the ground truth. The comparison metric is the fi-

delity, which indicates the percentage of right classified results among the

ground truth.

Notice that there are four different legends in the following figures. sensor

object and modified object represent the object fidelity of the sensor and our

scheme, respectively. sensor state and modified state represent the state fi-

delity of the sensor and our scheme, respectively. As mentioned in the above

chapter, the classification matrix between the observation and true objects is
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very important when doing object recovery and state tracking. For the simu-

lation, the classification matrix is generated in the following way. Suppose the

recall, which is defined as the ratio,
# True Positive

# True Positive + # False Negative
of

each object is r. For simplicity, we assume that for a single simulation set-

ting, the recall is the same. Therefore, the diagonal of the confusion matrix

is identical, which is r, and the remaining entries of the same row of the ma-

trix will be evenly populated the with 1−r
N−1 , where N is the total number of

objects. The detailed simulation results is presented in the following section.

4.2 Simulation Results

Random Graph based Workflows: We first study the sensing fidelity

result on random graphs. We study the system performance impact from

four different aspects: raw sensor classification reliability, path length of

the ground truth task workflow, average node degree of the graph, and the

number of nodes in the graph.

The baseline sensor in the simulation does not use workflow information at

all, it is merely based on the classification matrix to do classification of the

sensing objects. Even the standalone sensor does not have the functionality

of state tracking, we add the state tracking fidelity to the sensor to compare

that with our scheme. In order to make it a fair comparison, we assume that

the sensor already knows the workflow and makes the judgement based on a

naive way that the current state is just the the state that object belongs to.

First, we take a look at how the reliability of raw sensors affects system

performance, where we use the classification recall as a measure of raw sensor

reliability. The experiment setting in this set of experiment is as follows: the

total number of nodes is 30, the average in/out degree of a node is 3, and

the path length, which is defined as the number of node in the path, is 8.

The average object per node is 5. The results are shown in Fig 4.1. First

and foremost, more reliable sensors lead to better system performance, as

expected. We also observe that our proposed approach of taking advantage

of workflow information brings consistent improvement across all sensor re-

liability settings, up to about 20% as shown in the results. Evidently, our

approach would have a hard time improving system performance when the

raw sensor reliability is too low (e.g., with only about 10% recall) or too high
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Figure 4.1: Impact of sensor classification reliability on system performance
under graph based workflows

(e.g. sensors are perfectly reliable, saturating the system performance and

leaving no room for improvements). We do, however, argue that in reality,

“perfect” sensors rarely exist, and that system practitioners would normally

utilize sensors that are reasonably reliable when building systems. There-

fore, our proposed method will bring meaningful benefits to sensing systems

in practice.
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Figure 4.2: Impact of graph node degree on system performance under
graph based workflows

Next, we study how system behaves when we vary the node degree in the
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graph. The experiment setting in this set of experiment is similar to the

previous one, which has 30 number of nodes, and the path length of 8. And

we set the recall of the confusion matrix of the sensor to 0.6. The average

object per node is 5. The results are shown in Fig 4.2. As can be seen, as

it doesn’t utilize the workflow information, the system performance in the

baseline scheme remains at around 60%, unaffected by how the workflow

structure changes. On the other hand, our proposed method achieves quite

a advantage margin over the baseline in terms of system performance. This

is because workflow topologies can provide extra information on how tasks

are carried out, which our method takes into consideration and computes

the constraints of where task progressions can move towards during execu-

tion. We do see that as the node degree increases, the effectiveness of our

method shrinks. This is understandable because high node degree means

higher connectivity in the graph, which in turn leads to less task progression

constraints. An extreme case would be a fully connected graph, which would

effectively provide no meaningful workflow information.
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Figure 4.3: Impact of task path length on system performance under graph
based workflows

We also look at how our method performs with varying task path lengths

under the same workflow topology. The setting now becomes as follows: still

the number of nodes in the graph is 30, the recall of the confusion matrix is

0.6, the degree is 3. The average object per node is 5. The results are shown

in Fig 4.3. Similar to the previous experiment, the system performance under

the baseline scheme does not change much as it does not take into considera-
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(b) Task has known starting point (i.e., the root of the
tree).

Figure 4.4: Impact of sensor classification reliability on system performance
under tree based workflows

tion the workflow information in the first place. Our method, however, does

benefit from taking advantage of the workflow information, clearly reflected

in the result shown. We also observe that tasks corresponding to longer paths

in the workflow topology tend to benefit more from our approach. This is

because more matching constraints would be incurred when tasks last longer

under a workflow, leading to higher error correction power in our method.

Tree based Workflows: We also study the sensing fidelity result on work-

flows whose topologies have tree shapes. We investigate the system perfor-

mance impact from sensor classification reliability and path lengths. We also

study the effect of whether or not the starting states of the tasks within

workflows are known beforehand.

We first look at how the reliability of raw sensors affects system perfor-

mance. The simulation setting for this experiment is as follows: The directed

tree has the order of 3, and the height of 5. The number of objects per tree

node is 5. The path length is 6.
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Figure 4.5: Impact of task path length on system performance under tree
based workflows

The results are shown in Fig 4.4. We see the general trends of system

behavior are similar to that of the graph based experiment result previously

shown in Fig reffig:treeRecall. It can also be observed that, our scheme

delivers better performance (compared to Fig. 4.5(a), Fig. 4.5(b) starts with

higher fidelity score at low sensor reliabilities, and saturates sooner to perfect

fidelity at high sensor reliabilities) when the starting point of the task is

known (at the root of the tree), which is as expected.

Fig. 4.5 shows the experiment results of how task path lengths affect system

performance. The simulation setting for this experiment is as follows: The

directed tree has the order of 3, and the height of 5. The number of objects

per tree node is 5. The recall of confusion is 0.6. We see that Fig. 4.5(a) is

quite similar to the previously discussed graph based experiment (Fig. 4.3).

However, if the starting point of tasks are known beforehand (fixed at the

root of the trees in our experiment), we observe a slight V-shape in terms of

the system performance under our proposed method; When the path length
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Figure 4.6: Impact of task object per node on system performance under
tree based workflows

is extremely small, the prior knowledge of the starting point of the task path

offers great help in terms limiting the search space in the workflow topology

(i.e., only the tree-root vicinity will yield meaningful matching probabilities).

The dominating effect of this prior knowledge decreases as the task path

lengthens. But as path length keeps growing, the general workflow topology

information will have an increasing constraining power that helps with path

matching. Therefore, we observe the V-shape in the result figure.

Fig. 4.6 shows the experiment results of how number of object per tree

node affect system performance. The simulation setting for this experiment

is as follows: The directed tree has the order of 3, and the height of 5. The

path length of the tree is 6. The recall of confusion is 0.6.

We see that Fig. 4.6(a) is quite different from the previously discussed

graph based experiment (Fig. 4.3). One important conclusion we can draw

from the simulation result is that the number of object per tree node does not

have an impact on the sensing performance. However, if the starting point of
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tasks are known beforehand (fixed at the root of the trees in our experiment),

we observe a higher fidelity in terms of the system performance under our

proposed method. Moreover, it is quite apparent that our scheme constantly

outperforms the standalone sensors, therefore there are always a difference

between the ’modified object fidelity’ and the ’sensor object fidelity’.
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CHAPTER 5

CASE STUDY EVALUATION

In this section, we apply our proposed scheme in the field of voice recognition

under medical realm and develop a situation awareness tool for teams of first

responders and emergency personnels. Experiment results using recorded

audio data are presented and discussed.

5.1 Experimental Settings

Workflow Information: We chose adult cardiac arrest [24] as our case

of study, as it strictly follows the emergency reaction algorithm, as shown

in the Fig. 5.1. In realistic settings, when a patient is subject to cardiac

arrest, multiple physicians and nurses are operating around the patient at

the same time, and medical orders are vocally communicated, making the

entire environment quite noisy, for which general-purpose standalone voice

recognition softwares tend to perform poorly due to their error-prone nature.

System component: Our system consists of two major components.

The first component is a standalone automatic speech recognizer (ASR),

which we implemented using Google speech API [28]. And the web inter-

face is available at the [29]. Its main functionality is that it acts as an

audio interface for doing the initial recognizing of the medical team’s audio

communications, as indicated by R1 in Fig. 5.2. We also added additional

functionality of making pauses and sending the recognition results to the

server which is running the emergency transcriber component. Since the

ASR does not have the workflow information, it tries to use the general lan-

guage model and acoustic model embeded in the recognizer itself to match

the signal it hears, which may lead to error recognition results, especially

under noisy environment. One of the common mistake it makes is when it

hears ’epinephrine’, which is quite common under emergency situation when

29



it comes to resuscitate a cardiac patient, but very rare in general conversa-

tion. Since the ASR tries to make sense out of common language model,

the recognizing result would usually be ’a friend of mine’, which consists of

common words and phonetically similar to the original ’epinephrine’. This

phenomenon motivates our following solution.

The initial recognizing results R1 are then fed into the second and most

important component of our system – emergency transcriber as input. The

emergency transcriber consists of two modules, i.e., the keyword matching

module and the word recovery and state tracking module. And we will intro-

duce their functionality in detail in the next section.

Since R1 consists of sentences recognized by the standalone ASR, which

does not take the workflow or the keyword information into consideration,

the keyword matching module first applies keyword matching scheme in our

emergency transcriber. The basic idea for this step is to find the most proba-

ble keyword that might occur in each sentence, which is equivalent to finding

which keyword has the maximum number of overlapping phoneme charac-

ters with the heard sentence. We adopt the name of convolution to represent

the maximum overlapping character. And the rationale behind is that the

convolution measures the area overlap between two functions, which is sim-

ilar to what we are trying to do with the phonemes. Since both R1 and

the keywords are in the form of English text, we need to convert them into

phoneme representations before we do the matching since pure text cannot

reveal the acoustic characteristics. We converted the R1 and all the keywords

into their phoneme representations using [30], a text synthesis software, and

then calculate convolution according to the Algorithm 2:

In Algorithm 2, lenSrc and lenDst represent the length of the phoneme

characters of the source word x and the destination word y, respectively.

retval is the final return value of the overlapping phonetic characteristic.

The basic idea of this algorithm is that we keep the destination word y

unchanged, and we shift the source word and compare the shifted word with

the destination word. step is the total maximum value of offset that the

source word has. The algorithm loops through different values of offsets

and sets add up the overlapping characters. It finally returns the possible

maximum value.

Having been processed by the above algorithm, R2, which contains the

keyword matching result of most probable keyword sequence, is is then fed
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Algorithm 2 find maximum number of overlapping phonetic character be-
tween sentence x and keyword y

1: lenSrc = x.length
2: lenDst = y.length
3: step = lenSrc+ lenDst− 2
4: retval = 0
5: for i = 0; i < step; i+ + do
6: convIndex = 0
7: startSrc = max(0, lenSrc− 1)
8: startDst = max(0, i− lenSrc− 1)
9: while startSrc<lenSrc and startDst<lenDst do

10: if x.substring(startSrc, startSrc +
1).equals(y.substring(startDst, startDst+ 1)) then

11: + + convIndex
12: end if
13: + + startSrc
14: + + startDst
15: end while
16: if convIndex > retval then
17: retval = convIndex
18: end if
19: end for

into the second module in the emergency transcriber, namely, the word re-

covery and state tracking modules. We applied the general method described

in Chapter 2 to this module. However, the speech recognition task has its

own character that needs some special attention. Specifically, what makes

the case study different from the general sensing scenario is the construction

of the classification matrix. In the general sensing scenario, the classification

matrix reveals the classification accuracy of a sensor, and it is obtained by

training the sensor using large amount of training data, which is not available

by the time we conducted our experiment. However, having been inspired

by the above mentioned example of ’epinephrine’, the probability that the

ASR makes mistakes could essentially be measured by the phonetic similarity

between different word phonemes. Therefore, instead of training the ASR to

get the classification matrix, we can apply the following Eqn 5.1 to calculate

the each element in the classification matrix.
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sim(yi|xj) = (1− LDi,j

max(length(yi), length(xj)))
)conv(yi, xj) (5.1)

where sim(yi|xj) represents the similarity between the observation word yj

and the true keyword xi. And it is also the element in the ith row and jth col-

umn of classification matrix. Note that LDi,j represents the Levensthein dis-

tance [31] between the phoneme representation of yi and xj. The length(yi)

and length(xj) represent their phoneme length, respectively. The conv(yi, xj)

represents the convolution of their phoneme representation, which captures

the sub-phoneme overlapping between yi and xj. And it is calculated accord-

ing to Algorithm 2.

5.2 Experimental Results

We recorded an episode of audio signals, which follows the workflow as pre-

sented in the Fig. 5.1. It is available for download from the source [32]. The

sequence of states represented by the audio signals contains 21 sentenses,

and each sentence in the recording contains certain keyword according to

the workflow. We fed the audio signals directly into the first component of

our system, and the screenshot of the result of the standalone ASR, R1, is

shown in the Fig. 5.3, where red circles means the words that are wrongly

recognized. We then added noise with different amplitude to the original

audio file, and sent them through the same pipeline as before. The final

comparison result is shown in the figure below:

As we can see from the comparison results, when no noise is added to

the signal, the accuracy of the standalone speech recognizer is 76.69%. And

the first phase of keyword match can increase this word accuracy since the

standalone ASR does not have the keyword information, and the phoneme

similarity helps the system to enhance the its recognition accuracy to 81.2%.

Moreover, with the workflow information taken into consideration, the word

accuracy increased to 95.24%, and the state accuracy increase to 100%,

which bolster the idea that workflow can help enhancing the sensing ac-

curacy. When we add Guassian white noise to the original voice signals with

a signal to noise ratio of 40dB, it is understandable that we the accuracy of
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the word of R1, R2, and R3 are decreasing. But it is also clear that word

matching can enhance the R1 results and word recovery can enhance the

R2 even more. The situation is similar when the signal to noise ratio goes

to 33dB. The only difference, which is expected, is that the system overall

accuracy decreases due to the environment noise, but still, our system can

increase both the state-tracking and the word recovery accuracy.
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Figure 5.1: This illustration, from [27], demonstrates adult cardiac arrest
algorithm used for resuscitation.
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Figure 5.2: This illustration demonstrates the system component consisting
of three major modules.

Figure 5.3: This graph shows system result for initial recognition.
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CHAPTER 6

RELATED WORK

6.1 Sensing Classification

Classification techniques in sensing area have been widely studied. For in-

stance, [33] studies data classification problem in wireless sensor networks.

It proposed a classification approach in combining local classifier to form a

global classifier in order to achieve high accuracy. [34] proposed a hierarchi-

cal aggregate classification method to achieve high accuracy in lack of energy

and label information, and the author tested their scheme in the wild to clas-

sify bird species. In [35], the authors proposed a novel tiered heterogeneous

wireless image sensor network for real-time unobtrusive species detection and

video cataloguing. Their scheme enhanced the detection accuracy via a new

hierarchically scalarized-character oriented detection (HIS-CODE) algorithm

and architecture.

[36] [37] [38] [39] and [40] have also accomplished some achievements in

this area. Our work differs from the existing work in the sense that it takes

the workflow information into consideration to increase the sensing accuracy

in the face of unreliable sensors and environmental noise. What counts for

more is that it also keeps track of the states that have been traversed in the

workflow.

6.2 Hidden Markov Model

We utilized the Hidden Markov Model (HMM) [19] [41] to model the state

transition and the relationship between each sensing object and its associated

state. However, our scheme is different from traditional HMM because the

observations that the sensing system acquired is not accurate, and merely
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based on the inaccurate sensing result to predict the state transition sequence

will lead to erroneous prediction results. In order to tackle that problem, we

combine the classification matrix of the sensor with the general HMM and

form a tiered solution to find the optimal sensing object as well as the hidden

states as a whole.

Hidden Markov Model has been applied in different realms in engineer-

ing, such as time series analysis [42] [43], part of speech tagging [44], gene

prediction [45], and metamorphic virus detection [46]. However, it is best

known that the most successful field that Hidden Markov Model has been

exploited is the area of speech recognition. Various works have utilized Hid-

den Markov Model to enable and enhance the performance of automatic

speech recognizer, such as [47] [48] [49]. However, traditional HMM models

the state transition between different phonemes as Hidden Markov Process.

It is different than ours where we treat the state transition behind the sens-

ing procedure as Hidden Markov Process. For the case study specifically, the

hidden states refer to the stage where physicians have been working on.

6.3 Speech Recognition

We apply our scheme in the area of speech recognition [50] [51] under medical

environment. There are several commercialized speech recognition software

available for medical practice purposes. For example, Nuance Dragon Med-

ical [52] is a speech recognition package specifically for physician practices.

[53] is another industrial grade speech recognition used in healthcare sector.

In fact, our scheme is complementary to the above-mentioned automatic

speech recognizers (ASRs) because it includes the effect of workflow when

doing the speech recognition. And the workflow information is free from

the errors of the sensor and the noise of the environment, which makes our

scheme perform better. It can act as a light-weight wrapper outside the

ASRs for any specific use case, thus our scheme has the advantage of good

compatibility and portability.
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CHAPTER 7

CONCLUSION

In this thesis, we consider the problem of exploiting context information to

enhancing the accuracy of sensing under noisy environment and unreliable

sensors. We proposed a scheme which can find the optimal combination of

sensing measurements and state transition relationship based on the work-

flow information and the confusion property of the sensors. Simulation re-

sults show that our scheme can bring performance improvement compared

with standalone sensors. A user study in emergency environment shows that

our scheme can increase the speech recognition accuracy and state tracking

accuracy.
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