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ABSTRACT

In this research, we evaluate the robustness of hardware samplers to hardware

faults. This study was motivated by our observation that several applica-

tions use sampling as a primitive and that sampling itself is an approximate

method for computation. As such, it might be possible to lower energy con-

sumption of hardware implementations of applications by implementing the

samplers using more energy efficient, but fault prone, devices. We imple-

mented a sampler in hardware and characterized its output quality in the

presence of stuck-at faults and transient faults using an FPGA based gate

level fault injection methodology. To understand the application level im-

plications of such errors made by the sampler, we studied its impact on two

applications: particle filtering and clustering using a Dirichlet Process Mix-

ture Model (DPMM). Our results indicate that hardware samplers are indeed

robust to hardware faults and that their robustness improves in the context

of application level metrics. Specifically, we observed that (a) the two appli-

cations can tolerate multiple stuck-at faults in the sampler ( > 5 faults at

the same time), (b) the applications can tolerate gate level transient fault

rates as high as 2.4 × 10−4, and (c) only faults in a small number of gates

(< 5.2%) affect the output quality of the applications. The results show that

there may be significant promise to leveraging this robustness to implement

sampling based applications with much higher energy efficiency than what

was previously thought possible.
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CHAPTER 1

INTRODUCTION

Our research is motivated by two trends in computing. First is the growing

importance of sampling based applications. Sampling is widely used for ma-

chine learning and inference applications that include applications such as

classification and clustering [1], [2]. Sampling is used in these applications

to perform approximate inference as exact inference in many of these appli-

cations is not computationally tractable [1]. Also, these machine learning

and inference applications are now considered some of the most important

emerging high performance applications [3], [4]. Recent work has also shown

that hardware implementations of sampling based applications could have

significant performance and energy efficiency advantages over software im-

plementations [5], [6].

The second trend that motivates our research is the growing unreliability

of hardware devices [7]. With increased CMOS technology scaling, devices

are becoming more susceptible to manufacturing defects, variability and soft

errors [8]. These reliability issues are also present in post-CMOS devices [9].

As such, a lot of recent work has focused on ways to perform computation

even in presence of such unreliability in hardware [10], [11]. These works

exploit the fact that several classes of important applications can indeed

tolerate errors introduced due to hardware faults.

Based on the above trends, our research explores the possibility of imple-

menting sampling based applications on hardware with unreliable devices. As

a first step, we evaluate the robustness of a hardware sampler - a primitive

used by sampling based applications [5] - to hardware faults.

To evaluate the robustness of a hardware sampler we use an FPGA based

fault injection methodology to study the effect of gate level stuck-at and tran-

sient faults. We study the effect of these faults on the quality of output of the

sampler. In addition, we study two sampling based applications - particle fil-

tering and clustering using a Dirichlet Process Mixture Model (DPMM) - to
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understand the application level implications of hardware faults in the sam-

pler. Both these applications benefit from being implemented in hardware

[12], [13], [14], and [6].

Our results indicate that hardware samplers are indeed robust to hardware

faults and that their robustness improves in the context of application level

metrics. Specifically, we observed that (a) the two applications can tolerate

multiple stuck-at faults in the sampler ( > 5 faults at the same time), (b) the

applications can tolerate gate level transient fault rates as high as 2.4×10−4,

and (c) only faults in a small number of gates (< 5.2%) affect the output

quality of the applications. To the best of our knowledge, this is the first

demonstration of the fault tolerance of a hardware sampler, especially in

the context of an end to end application. The results show that there may

be significant energy benefits from leveraging this robustness to implement

sampling based applications.

The remainder of the thesis is organized as follows. Chapter 2 describes the

design of our hardware sampler and the metric used to evaluate the quality of

its output. Chapter 3 describes the two applications used in our evaluations

and the metrics used to evaluate the quality of their outputs. Chapter 4

describes our evaluation methodology and Chapter 5 presents our results.

We present related work in Chapter 6 and conclude in Chapter 7.
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CHAPTER 2

SAMPLING IN HARDWARE

Sampling is the operation of generating a sample from a specified probability

distribution. In this research, we focus on sampling from discrete distribu-

tions. Sampling then corresponds to randomly choosing from a set of states

with specified probabilities for choosing each state (Figure 2.1).

Figure 2.1: Sampling is the operation of randomly choosing from a set of
states with specified probabilities for choosing each state.

Our hardware sampler is based on the inverse CDF method (also known

as inverse transform sampling or inversion sampling) for sampling from a

discrete distribution [15]. The inverse CDF method first computes the cu-

mulative distribution function (CDF) of the specified distribution and then

returns the largest entry that is smaller than a uniformly generated random

number between 0 and 1.

3



Figure 2.2: Architecture of the hardware sampler.

Figure 2.3: Adder tree used to implement the Prefix Sum block of the
sampler.

A block diagram of our hardware sampler is shown in Figure 2.2. It consists

of three blocks and takes as input a probability distribution over sixteen

states. Each of these probabilities is represented as a 32 bit fixed point

number. It then uses an adder tree (Figure 2.3) in the Prefix Sum block to

generate the CDF. The comparators then compare these sixteen sums to an
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input random number. These generate sixteen 1-bit signals that the decoder

block converts into a 4-bit number between 0 and 15 that is output as the

sample. For our experiments, the uniform random numbers were generated in

hardware using a 32-bit pseudo random number generator (PRNG) based on

the XORShift Algorithm [16]. These generators have area efficient hardware

implementations and their outputs pass strong statistical tests [17].

prefix sum

decoder

comparators

Figure 2.4: Relative number of gates in the different blocks of the sampler.
Total number of gates is 3,656.

The hardware sampler was implemented at the RTL level using Verilog

and was synthesized using Synopsys Design Compiler and the technology

independent GTECH standard cell library. The design consisted of 3,656

gates whose distribution among the three blocks is in Figure 2.4.

To evaluate the quality of output of the sampler, we compare the applied

input distribution to the empirical distribution over 1,000,000 samples gen-

erated by the sampler. These comparisons are done in terms of the KL

divergence [18] between these two distributions. The value of the KL di-

vergence is always non-negative and is zero for two distributions that are

identical. Figure 2.5 presents a few examples of KL divergence between dif-

ferent distributions over 16 states. We note that that at a KL divergence of

about 0.3 the distributions look very similar.
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(a) Two distributions with low KL divergence (∼ 0.3)

(b) Two distributions with high KL divergence (∼ 4)

(c) Two distributions with very high KL divergence (∼ 16)

Figure 2.5: Examples of KL divergences between different pairs of
distributions.
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Figure 2.6: Output quality for the sampler for input distributions with
different entropies.

We can characterize different inputs to the sampler in terms of their en-

tropy [18], which is a measure of randomness. For a distribution over 16

states, the entropy ranges from 0 to 4. It has the value 0 for a distribution

that has all the probability mass associated with one state. It has the value

4 for an uniform distribution. Figure 2.6 presents the output quality of the

sampler (in terms of the KL divergence) for inputs with different entropies.

We observe that there is a systematic degradation in output quality as the

entropy increases. However, the difference is relatively small (compared to

the KL divergence value of 0.3 in Figure 2.5a). We present further evalua-

tions of the output quality of the sampler in presence of hardware faults in

Chapter 5.
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CHAPTER 3

APPLICATIONS

In this chapter, we provide an overview of two sampling based applications

that we use to evaluate the application level impact of hardware faults in

the sampler. Both these applications are iterative and the computation in

each iteration follows a model of calculating a probability distribution and

sampling from it.

3.1 Particle Filtering

Dynamical systems in areas such as navigation, robotics, signal processing,

and time series analysis are often modeled using a state-space framework

where the phenomenon of interest is viewed as the unknown state of a system

[19]. Often the problem of interest is to estimate the state of the system from

noisy observations of the state that are available. If the state space model is

assumed to be linear, a Kalman filter is often used since it produces the linear

minimum mean squared error (MMSE) estimator of the state [20]. When the

linearity assumptions are not valid, the Kalman filter and its extensions have

clear limitations. In such scenarios, an algorithm called particle filtering is

used [21]. Particle filtering has found wide applications in areas such as

communications, image and video processing, and computer vision (under

the name of condensation algorithm [22]).

Dynamical systems to which particle filtering is applied can often be rep-

resented as

xt = ft(xt−1, qt) (3.1)

yt = gt(xt,vt) (3.2)
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where xt is the dynamical state of the system, qt is the process noise, and yt

is the observation vector with measurement noise vt at time instant t. ft and

gt are possibly non-linear functions describing the model. Given this model

and the noisy observation vectors yt at time instant t, the particle filtering

algorithm estimates the state of the system xt.

Figure 3.1: Overall structure of the particle filtering algorithm.

The algorithm starts with N samples (also called particles) of the state at

time t = 0 and then generates new samples to estimate the state at each time

instant as it receives the value of the noisy observation at that instant. At

each time instant, the algorithm proceeds through the following steps (shown

in Figure 3.1):

1. Prediction Step: In this step, samples (particles) for a time step are

computed from the samples of the previous time step using the prior

probability density function (pdf) p(xt|xt−1). The prior pdf can be

derived from Equation 3.1. The sampled set of particles at instant t is

denoted by {x(n)
t }N−1n=0 .

2. Importance (Weight) Computation Step: In this step, the weights w
(n)
t

corresponding to each particle x
(n)
t are computed. If the prior pdf is

used in the prediction step, then the weights are given by

w
(n)
t = w

(n)
t−1 × p(yt|x

(n)
t ) (3.3)

where p(yt|x(n)
t ) can be derived from Equation 3.2. These weights are

then renormalized to sum to 1.

9



3. Resampling Step: This step samples from the set of predicted particles

using their importance weights. This eliminates particles with small

weights and replicates particles with large weights. The resampled set

of particles is denoted by {x̃(n)
t }N−1n=0 and the weights of these particles

are denoted by {w̃(n)t}N−1n=0 which are typically set to 1/N . These re-

sampled particles and their weights are used to represent the posterior

p(xt|y1:t) and to calculate the estimates of the state xt.

In our evaluations, the hardware sampler is used during the resampling

step. We use the linear model presented in [20] for our evaluations. The

state space in this case is one dimensional and the model is described as

follows:

xt = Axt−1 + q (3.4)

yt = xt + v (3.5)

where A = 1, q is Gaussian noise with mean 0 and variance 0.001, and v

is Gaussian noise with mean 0 and variance 0.1. For our particle filter, we

assumed the variance of the initial particles to be 1. Figure 3.2 shows the

estimate of the particle filter as well as a Kalman filter for 100 iterations.
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Figure 3.2: Tracking the state of a dynamical system using particle filtering.
In every iteration the particle filter takes as input the noisy observation
(noisy measurement) and estimates the state (true value) of the system.

The output quality of particle filtering can be characterized by the mean

squared error (MSE) between the true state (green line in Figure 3.2) and

the estimated state (red line). Figure 3.3 shows the MSE of one run of the

particle filtering application. For subsequent evaluations, we use the mean

of the MSE from iteration 21 to 30 as the output quality metric for particle

filtering.
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Figure 3.3: The squared error between the true state of the system and the
state predicted by a particle filtering with 256 particles. We observe that
the particle filter starts tracking the state successfully in less than 15
iterations. For subsequent evaluations, we use the mean of the MSE from
iteration 21 to 30 as the output quality metric for particle filtering.

The output quality of particle filtering depends on the number of particles

used. Figure 3.4 shows the output quality of particle filtering (in terms of

MSE) for different number of particles. For subsequent evaluations, we use

a particle filter with 256 particles.
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Figure 3.4: The output quality of particle filtering for different number of
particles. No Filter represents the MSE of using the noisy observations as
the estimate of the state of the system. For subsequent evaluations, we
used 256 particles.

3.2 Clustering using DPMM

In clustering, the objective is to group N observed data points (say xi’s) into

multiple clusters based on some similarity between the data points (Figure

3.5). One method for performing clustering is by using a mixture model

[1] which assumes that the overall data was generated from a mixture of

several distributions with each cluster representing the subset of the data

that originated from the same distribution. Each such distribution generally

has the same form F (θk) (say Gaussian) with different cluster parameters θk.

A particular distribution contributes to the overall distribution based on its

weight πk (also called its mixing proportion).
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Figure 3.5: An illustration of clustering.

The Dirichlet Process Mixture Model (DPMM) (Figure 3.6) is one such

mixture model that assumes specific priors over the cluster parameters and

the mixing proportions [23]. A detailed discussion of the model can be found

in [24]. Here, we briefly present the details and characteristics of this model

that are relevant to understanding its use in clustering.

N

∞

α$ π$ λ$

zi$

xi$

θk$

Figure 3.6: The Dirichlet Process Mixture Model (DPMM).

DPMM assumes that each data point xi has a corresponding hidden vari-

able zi that represents the cluster that generated xi. Hence, zi takes a value

k (that corresponds to a cluster number) with probability πk. The cluster

parameters θk are given a common prior distribution G(λ) with hyperparam-

eter λ (Equation 3.8). The distribution G(λ) is generally chosen to be the

conjugate prior of the distribution F (θk). π (a vector of all πks) is given a

Griffiths-Engen-McClosky (GEM) prior π ∼ GEM(1, α) (Equation 3.6)[25].

The conditional distributions in the model are presented below.
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π |α ∼ GEM(1, α) (3.6)

zi |π ∼ π (3.7)

θk |λ ∼ G(λ) (3.8)

xi | zi, {θk}∞k=1 ∼ F (θzi) (3.9)

An interesting characteristic of the DPMM is that it allows the model to

have an infinite number of clusters a priori. However, any finite observed

dataset would only contain a finite, but random, number of clusters. Once

the data is observed, the number of clusters is inferred from the data using

the Bayesian posterior inference framework. This allows the complexity of

the model to grow as new data is observed, allowing future data to map to

previously unseen clusters. The expected number of clusters grows logarith-

mically with the size of the dataset. For clustering, a sampling algorithm in

addition to inferring the number of clusters, also has to infer the values of

the hidden variables zi corresponding to each data point xi.
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(a)

(b)

(c)

Figure 3.7: An illustration of an intermediate step during the collapsed
Gibbs sampling for DPMM. (a) Current clustering at the start of iteration.
(b) A data point is removed from its cluster. (c) The probability of this
data point belonging to each of three clusters (the two clusters present and
a potential new cluster) is calculated. These three probabilities constitute a
probability distribution. The algorithm then samples from this distribution
and assigns the data point to the cluster corresponding to the sample.
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A variety of inference methods based on Gibbs sampling (which is a Markov

chain sampling algorithm) have been proposed for inference in DPMM [26].

The collapsed Gibbs sampling algorithm (Algorithm 3 in [26]) is suitable for

our use of DPMM for clustering as we are only interested in knowing the

cluster assignments (zi’s) and not the actual cluster parameters (θk’s). It is

an iterative algorithm that in each iteration updates the values of zi for each

data point one at a time (Figure 3.7). It does that by (a) removing xi from

its present cluster (Figure 3.7a), (b) computing the conditional probability

of xi belonging to each of the clusters present in that iteration and also to

a potential new cluster (Figure 3.7b and 3.7c), and (c) sampling from this

distribution to obtain a cluster assignment for zi (this step is performed using

the hardware sampler in our evaluations). Thus, in each iteration, a cluster

assignment is recalculated for each data point. In this process new clusters

can be created or previously created clusters can be destroyed.
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Figure 3.8: The dataset used for our evaluations consists of 200 data points
generated from a mixture of five Gaussian distributions.

For our evaluations, we used a dataset of 200 points generated from a

mixture of five Gaussian distributions (shown in Figure 3.8). As such, a
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Gaussian mixture model with F (θk) being a Gaussian distribution is used.

In such a model, the conditional probabilities of xi’s belonging to different

clusters are easy to compute (a detailed discussion can be found in [24]).

We begin the clustering algorithm with all data points assigned to a single

cluster. As the algorithm iterates, the number of clusters changes and it set-

tles to the correct value of five (Figure 3.9). Figure 3.10 shows the clustering

of the datapoints at iteration 3.
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Figure 3.9: The number of clusters corresponding to each iteration for a
particular run of the collapsed Gibbs sampling algorithm. The algorithm
starts from all data points in a single cluster. We observe that the
algorithm finds the right number of cluster (5) in less than 10 iterations.
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Figure 3.10: An intermediate clustering of the dataset (at iteration 3) for a
particular run of the collapsed Gibbs sampling algorithm. The algorithm
has clustered the data into four clusters at this point.

The output quality of clustering can be assessed by the mean of the squared

error of each data point from the centroid of it cluster. We plot the mean

squared error (MSE) of the entire dataset for each iteration in Figure 3.11.

For our subsequent evaluations, we use the mean of the MSE from iteration

11 to 15 as an output quality metric for clustering this dataset using DPMM.
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Figure 3.11: The mean squared error (MSE) of the clustered dataset at
each iteration of a particular run of the collapsed Gibbs sampling algorithm.
We observe that the MSE drops to a low value in less than 10 iterations.
For subsequent evaluations, we use the mean of the MSE from iteration 11
to 15 as a output quality metric for clustering this dataset using DPMM.
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CHAPTER 4

METHODOLOGY

To evaluate the robustness of the sampler to hardware faults, we considered

two gate level fault models for our evaluations. The first is the stuck-at fault

model where we assume that the output of gates can be stuck to a logical

0 or 1 value. The second fault model is the transient fault model where we

assume that the output of a gate is flipped with a certain probability every

clock cycle.

We developed an FPGA based fault injection framework1 to operate a

circuit under stuck-at and transient faults and to study the impact faults

have on the final output of our applications. Our framework is targeted

at the Xilinx Zedboard hardware platform [27] that has a system on chip

(SOC) that combines programmable logic (FPGA) with an ARM processor.

We used the Xilinx Vivado toolchain [28] for FPGA development and Xilinx

SDK [29] for developing software for the ARM processor.

An overview of our fault injection framework is shown in Figure 4.1. Below

we describe the individual steps in our toolflow:

• We begin with the RTL description of the circuit and synthesize to a

netlist using Synopsys Design Compiler with the technology indepen-

dent GTECH standard cell library [30] (Figure 4.2a).

• Our tool2 then lets users specify the number of fault gates, randomly

selects that many gates in the netlist and modifies the netlist to add

extra logic and ports to enable faults at the output of each faulty gate

(Figure 4.2b).

• Our tool generates a hardware wrapper that has the logic and the reg-

isters that are used to enable the faults in the netlist during operation.

For stuck-at faults, the wrapper consists of registers to which the fault

1This was developed in collaboration with Qingkun Li and Zhihao Hong
2For this part, we use a modified version of the publicly available CrashTest tool [31]
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enable signals are connected. For transient faults, each fault location

needs a fault enable signal that is enabled with a specified fault rate.

We achieve this by having hardware pseudo random number generators

(PRNGs) and comparing the random number generated in each clock

cycle to a value written in a register (Figure 4.2c).

• Our tool also generates a software driver that runs on the ARM pro-

cessor on the Zedboard. It communicates with the personal computer

(PC) using the Universal Asynchronous Receiver/Transmitter (UART)

port and accepts commands to write the programmable registers in the

hardware wrapper.

• Finally, our framework compiles the software drivers and the hardware

components (modified netlist and the hardware wrapper) and down-

loads them to the Zedboard.

Figure 4.1: An overview of the FPGA based fault injection framework.

Our framework also included utilities written in the high level language

Python that a user can run on the PC to perform various fault injection

campaigns. We executed software implementations of our applications on the

PC and replaced the sampling operations with calls to our Python utilities.

These utilities return a sample by performing the sampling operation on the

sampler circuit implemented on the FPGA under different fault conditions.
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(a) Original Netlist

(b) Our tool adds a multiplexer at each fault location with the original input
connected to one input and the other input connected to a 0, 1 or a negation of
the original input. The select signal of the multiplexer is connected to a new
input port.

(c) The hardware wrappers contain additional logic and registers to enable faults
in the netlist.

Figure 4.2: Circuit netlist during different stages of our toolflow.

We developed the particle filtering application in-house and used it for the

model presented in [20] with 256 particles. This results in the application

generating samples from a distribution with 256 states every iteration. Since

our hardware sampler can only sample from a distribution over 16 states,

we perform two sampling operations to generate each sample. For the first
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sampling operation, we compose 16 bins each comprised of 16 states. We

compute the probability of each bin by adding the probabilities of the states

in that bin. We then sample from this probability distribution to select a

bin. In the second sampling operation, we sample from the probabilities of

the 16 states in the selected bin to select a state. We used the particle filter

on the linear model with Gaussian noise as described in Section 3.1. The

output quality metric is the mean squared error (MSE) from iteration 21 to

30 for 100 independent runs.

For clustering using DPMM, we used a publicly available implementation.3

We used a dataset that consists of 200 data points generated from a mixture

of five Gaussian distributions as described in Section 3.2. The output qual-

ity metric is the mean squared error (MSE) from iteration 10 to 15 for 30

independent runs.

3https://github.com/jacobeisenstein/DPMM
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CHAPTER 5

RESULTS

In this section, we present the results of our fault injection experiments as

described in Chapter 4. Through our results, we aim to answer the following

questions:

• How defect tolerant is the hardware sampler? Can it provide acceptable

output even in the presence of multiple defects (stuck-at faults)?

• Is the hardware sampler tolerant to transient faults? Under what tran-

sient fault rates does the sampler still provide acceptable outputs?

• What fraction of the gates are critical in the sampler? How are these

critical gates distributed across different sub-blocks?

First, we answer each of the above questions at the sampler level using the

KL divergence as a metric to compare the quality of output of the sampler

(as described in Chapter 2). Then, we answer each of the above questions

at the application level in context of the two applications - particle filtering

(Section 3.1) and clustering using DPMM (Section 3.2).

5.1 Robustness to Stuck-at Faults

To evaluate the robustness of the sampler to stuck-at faults (defect toler-

ance), we performed sampling with different number of stuck-at faults. For

each stuck-at fault number we randomly select the fault injection locations.

Figure 5.1 presents the KL divergence observed for one particular input (with

entropy around 2) at different number of stuck-at faults. We report the mean

of 100 independent runs for each experiment. We observe that the KL di-

vergence remains low (< 0.1) even at more than 10 stuck-at faults. Also,

there is gradual degradation in the quality of output with increasing number
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of faults. However, the acceptable value of KL divergence depends on the

particular application a sampler is used for.
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Figure 5.1: The output quality of the sampler for different number of
stuck-at faults. We observe that the KL divergence remains low (< 0.1)
even at 5-10 stuck-at faults.

Figure 5.2 presents the output quality of particle filtering at different num-

ber of stuck-at faults in the sampler. We observe that the application can

tolerate multiple stuck-at faults in the sampler and performs meaningful fil-

tering even in the presence of more than 10 stuck-at faults.
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Figure 5.2: The output quality of particle filtering in the presence of
different numbers of stuck-at faults. No Filter represents the MSE of using
the noisy observations as the estimate of the state of the system. We
observe that the application can tolerate multiple stuck-at faults in the
sampler and performs filtering even in the presence of more than 5 stuck-at
faults.

Figure 5.3 presents the output quality of clustering using DPMM at differ-

ent number of stuck-at faults in the sampler. We observe that the application

can tolerate multiple stuck-at faults in the sampler and performs clustering

even in the presence of more than 5 stuck-at faults.

The above results indicate that the hardware samplers indeed exhibit de-

fect tolerance and applications using the sampler can still produce meaningful

outputs in the presence of multiple stuck-at faults.
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Figure 5.3: The output quality of clustering using DPMM in the presence
of different numbers of stuck-at faults. No Clustering represents the MSE
at the initial iteration of the algorithm when all input data points are
considered to be in one cluster. We observe that the application can
tolerate multiple stuck-at faults in the sampler and performs clustering
even in the presence of more than 5 stuck-at faults.

5.2 Robustness to Transient Faults

To evaluate the robustness of the sampler to transient faults, we performed

sampling under different gate level transient fault rates. For each transient

fault rate, we inject faults at that rate in the output of all gates in the design.

Figure 5.4 presents the KL divergence observed for one particular input (with

entropy around 2) at different transient fault rates. We report the mean of

100 independent experiments for each fault rate. We observe that the KL

divergence remains low (< 0.1) even at fault rates as high as 1.2×10−2. Also,

there is gradual degradation in the quality of output with increasing fault

rate.
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Figure 5.4: The output quality of the sampler for different gate level
transient fault rates. We observe that the KL divergence remains low
(< 0.1) even at fault rates as high as 1.2× 10−2.

Figure 5.5 presents the output quality of particle filtering at different gate

level transient fault rates. We observe that the application can tolerate tran-

sient faults with rates as high as 2× 10−3 and performs meaningful filtering

even at that fault rate.
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Figure 5.5: The output quality of particle filtering for different gate level
transient fault rates. No Filter represents the MSE of using the noisy
observations as the estimate of the state of the system. We observe that the
KL divergence remains low (< 0.1) even at fault rates as high as 1.2× 10−2.

Figure 5.6 presents the output quality of clustering using DPMM at dif-

ferent gate level transient fault rates. The dotted line represents the output

quality if all data points were assumed to be in the same cluster (as in the

starting point of the algorithm). We observe that the application can toler-

ate transient faults with rates as high as 2.4×10−4 and performs meaningful

clustering even at that fault rate.

These results indicate that the hardware samplers indeed exhibit tolerance

to transient faults at high error rates and applications using the sampler can

still produce meaningful outputs. The fault rates we experimented with are

high compared to transient fault rates in present systems. For example, the

104K node BlueGene/L system at Lawrence Livermore National Laboratory

experiences a soft error in the cache once every five hours [32]. Our fault

rates are of the order of 1 every 1,000-10,000 clock cycles and in every gate.
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Figure 5.6: The output quality of clustering using DPMM for different gate
level transient fault rates. No Clustering represents the MSE at the initial
iteration of the algorithm when all input data points are considered to be in
one cluster. We observe that the application can tolerate transient faults
with rates as high as 2.4× 10−4 and performs meaningful clustering even at
that fault rate.

5.3 Distribution of Critical Gates

We are interested in knowing what fraction of gates in the design cannot

tolerate faults (we call them critical gates). To determine the fraction of

critical gates, we systemically injected stuck-at faults at all 3,656 possible

locations one location at a time. We then looked at the resulting quality

of the samplers output (in terms of KL divergence) for faults in each gate.

Figure 5.7 shows, for different KL divergence levels, the percentage of gates

that would be deemed critical for that level. We observe that less than 20%

of the gates would be critical for an acceptable KL divergence level of 0.1.
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Faults in the other 80% of the gates do not increase the KL divergence to

more than 0.1 for this particular input distribution.
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Figure 5.7: The percentages of gates that would be deemed critical for
different KL divergence levels that can be tolerated by an application using
the sampler. We observe that less than 20% of the gates would be critical
for an acceptable KL divergence level of 0.1.

The distribution of critical gates among different sub-blocks is shown in

Figure 5.8 for an acceptable KL divergence threshold of 0.1. We observe

that critical gates are distributed almost equally between the prefix-sum

and comparator blocks (Figure 5.8a). Also, 13%, 21%, and 17% of gates in

the prefix-sum, comparators and the entire sampler, respectively, are critical

(Figure 5.8b).

The preceding results are for one input distribution. We expect the number

of critical gates at the application level to be lower because a particular gate

might be critical for one input but not for another. When the application

uses the sampler with a faulty gate, it uses the sampler with several different

inputs throughout the application. Only for some of those inputs will that

particular gate be critical and as such, it might end up not showing any

significant impact on the final application output quality. Of course, we
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Figure 5.8: Distribution of critical gates for an acceptable KL divergence of
0.1. (a) The number of critical gates in different sub-blocks. We observe
that the critical gates are distributed almost equally between the prefix
sum block and the comparators. (b) The percentage of critical gates in
different sub-blocks. We observe that the entire sampler has around 4%
critical gates.

expect that there would be some gates that would be critical for a large

number of inputs and would indeed affect the final application output quality.

To find the number of such critical gates at the application level, we re-

peated the same experiment for particle filtering and clustering using DPMM.

For particle filtering, we injected stuck-at faults into half of the 3,656 gates

(randomly chosen) one at a time and observed the impact on the output

quality (in terms of MSE) of the particle filter. To determine an accept-

able output quality threshold, we ran the application 100 times without any

faults and observed the MSE. The highest MSE observed was 1.86 × 10−3

or a log10MSE of −2.73. We used this MSE as our threshold. We consider

a gate to be critical if a fault in that gate results in a mean MSE (over 5

experiments) higher than this threshold. Figure 5.9 shows the results of our

experiment. We observed that less than 4% of the gates were critical. This

is significantly lower than the 17% estimate we had from Figure 5.8b.
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Figure 5.9: The output quality of particle filtering under stuck-at faults in
1,828 (50%) randomly chosen gates injected one at a time. The
acceptability threshold was chosen by running the application without any
faults 100 times and taking the worst MSE that was observed. We observed
that less than 4% of the gates were critical.

The distribution of critical gates among different sub-blocks is shown in

Figure 5.10 in the context of particle filtering. We observe that the prefix

sum block contains 62.5% of the critical gates (Figure 5.10a). Also, the

percentages of critical gates in the prefix-sum, comparators, and the entire

sampler are all less than 4.2% (Figure 5.10b).

For clustering using DPMM, we injected stuck-at faults into 15% of the

3,656 gates (randomly chosen) one at a time and observed the impact on the

output quality (in terms of MSE) of clustering. To determine an acceptable

output quality threshold, we ran the application 100 times without any faults

and observed the MSE. The highest MSE observed was 3.90. We used this

MSE as our threshold. We consider a gate to be critical if a fault in that

gate results in a mean MSE (over 5 experiments) higher than this threshold.
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Figure 5.10: Distribution of critical gates at the application level for
particle filtering. (a) The number of critical gates in different sub-blocks.
We observe that the prefix sum block contains 62.5% of the critical gates.
(b) The percentage of critical gates in different sub-blocks. We observe that
the entire sampler has less than 4% critical gates.

Figure 5.11 shows the results of our experiment. We observed that 5.1% of

the gates were critical. This is significantly lower than the 17% estimate we

had from Figure 5.8b.

The distribution of critical gates among different sub-blocks is shown in

Figure 5.12 in the context of clustering using DPMM. We observe that the

prefix sum block contains 60.7% of the critical gates (Figure 5.12a). Also, the

percentages of critical gates in the prefix-sum, comparators, and the entire

sampler are all less than 5.2% (Figure 5.12b).
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Figure 5.11: The output quality of clustering using DPMM under stuck-at
faults in 548 (15%) randomly chosen gates injected one at a time. The
acceptability threshold was chosen by running the application without any
faults 100 times and taking the worst MSE that was observed. We observed
that 5.1% of the gates were critical.

The above results suggest that since the percentage of critical gates in the

design is low, it could be possible to pay the extra cost (in terms of area

or power) to make these gates more fault tolerant while implementing the

rest of the gates with more energy efficient, but fault prone, devices. These

critical gates could be made more fault tolerant in either of two ways: by

implementing them with reliable devices or by adding redundancy for these

gates.
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Figure 5.12: Distribution of critical gates at the application level for
clustering using DPMM. (a) The number of critical gates in different
sub-blocks. We observe that the prefix sum block contains 60.7% of the
critical gates. (b) The percentage of critical gates in different sub-blocks.
We observe that the entire sampler has 5.1% critical gates.
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CHAPTER 6

RELATED WORK

Sampling in hardware has been studied before. Prior work has proposed us-

ing hardware samplers as a hardware primitive towards building probabilistic

computing systems for Bayesian inference [5]. Prior work also has demon-

strated using multiple Bayesian inference applications that sampling based

hardware implementations can have significant performance advantages over

software implementations of such applications [6]. These works, however, do

not study the effect of hardware faults and do not consider the possibility

of implementing the samplers using more energy efficient, but fault prone,

devices.

The closest prior work to our work was by Deka et al. [33]. That work

showed using several applications that sampling based applications could be

tolerant to errors at the output of the sampler. However, it does not take into

account the relationship between hardware faults and the errors at the output

of the sampler. In our work, we perform fault injections at the hardware level

and study the effect of hardware faults at the output of the sampler as well

as the impact these errors have on the output of the application.

While our work is focused on evaluating the fault tolerance of a hardware

sampler, there has been prior work studying the fault tolerance of other

circuits and accelerators. For example, prior work has demonstrated the

stuck-at fault tolerance of a hardware accelerator based on artificial neural

networks [4].
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CHAPTER 7

CONCLUSION

In this research, we evaluated the robustness of hardware samplers to hard-

ware faults. Our work was motivated by the facts that (a) several impor-

tant applications use sampling, (b) sampling in hardware could have energy-

efficiency and performance benefits, and (c) hardware devices are increasingly

becoming more error prone. We carried out evaluations of the robustness of

a hardware sampler using stuck-at and transient fault models at the gate

level. To understand the application level implications of errors made by

the sampler due to hardware faults, we studied its impact on two appli-

cations: particle filtering and clustering using a Dirichlet Process Mixture

Model (DPMM). Our results demonstrate that the hardware sampler is in-

deed robust to hardware faults and its robustness improves in the context of

end to end applications. Specifically, we observed that (a) the applications

can tolerate multiple stuck-at faults in the sampler ( > 5 faults at the same

time), (b) the applications can tolerate gate level transient fault rates as high

as 2.4× 10−4, and (c) only faults in a small number of gates (< 5.2%) were

found to affect the output quality of these applications. The results show

that there may be significant energy benefits from leveraging this robustness

to implement sampling based applications.
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