
c© 2014 by Kasey Alan Ackerman. All rights reserved.

DEVELOPMENT OF A PILOT-IN-THE-LOOP FLIGHT SIMULATOR

USING NASA’S TRANSPORT CLASS MODEL

BY

KASEY ALAN ACKERMAN

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Mechanical Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Advisor:

Professor Naira Hovakimyan

Abstract

This thesis presents the development of an immersive flight simulator at the University of Illinois at Urbana-

Champaign using NASA’s Transport Class Model. Flight simulators are a common and useful tool for control

system design as well as verification and validation, and are used extensively throughout the aviation industry

to evaluate system performance. The simulation environment at the Illinois Simulator Laboratory uses a

modular architecture composed of a Simulink dynamics model, X-Plane visualization, a Frasca 142 cockpit,

and a customizable digital cockpit instrument panel, with communication between elements conducted over a

local area network. The simulator is intended to streamline the design and evaluation process for a prototype

flight control architecture integrating flight envelope protection and loss-of-control prevention systems with

a robust adaptive control law, and the availability of a local simulator for control system development will

serve to expedite the eventual transfer of this technology to alternate facilities.

The thesis documents the creation of a Simulink library that enables efficient switching of simulation

modes and controller configurations, so that a control design can be rapidly evaluated and tested using

batch simulations and flight simulator testing to obtain pilot performance feedback. Also documented here

is the development of automated tools to improve the performance of the simulation during flight testing.

Additionally, interfaces for improving the utility and usability of the simulator during testing are presented,

as is the design of an environmental disturbance model to provide additional functionality for upcoming

flight tests. Finally, preliminary results from simulator flight testing at the Illinois Simulator Laboratory are

discussed.

ii

To my parents, Jay and Susan Ackerman. It is only because of your love and support that I have had the

opportunity to pursue my education, and for that I will be forever grateful.

iii

Acknowledgments

First and foremost I would like to express my gratitude to my advisor, Prof. Naira Hovakimyan, for welcoming

me into her research group and for the wonderful academic and professional opportunities that I have had

as a result. I am deeply grateful for her guidance and support over the course of my Master’s studies.

I would also like to thank my colleagues and friends from the ACRL for sharing their knowledge and

insight with me, and also for welcoming me into their group. In particular, I am grateful to Enric Xargay,

Niko Tekles, and June Chongvisal for their contributions to the development of the flight simulator software

and the piloted testing at the Illinois Simulator Laboratory (ISL).

A special thanks goes to Ron Carbonari at the ISL, who has been instrumental in the development of

the simulator environment and of the pilot interface, and is always a pleasure to work with. I would like

to express my gratitude also to Don Talleur of the UIUC Institute of Aviation, whose insight and feedback

during flight testing have been invaluable to the development of the software tools for the simulator and of

the flight control system.

My thanks go out to all the great people at NASA Langley Research Center for their support and

contributions to this research, and also for the amazing and rewarding opportunity to work at LaRC over

the last two summers. Specifically I would like to thank Dr. Irene Gregory, Dr. Dave Cox, and Dr.

Christine Belcastro, whose support and advice have made this research possible, as well as Paul Rothhaar,

Carey Buttrill, and all the people at LaRC whom I have had the pleasure of working with.

I am truly grateful for the encouragement and support from many close friends who have helped me get

to this point, both academically and personally. Finally, I would like to express my heartfelt thanks to my

family, who have been a constant source of unconditional love and support over the years. I can’t thank you

enough!

This work was supported in part by the National Aeronautics and Space Administration.

iv

Table of Contents

Abbreviations and Terminology . vi

Chapter 1 Introduction . 1

Chapter 2 Simulator System Overview . 4

2.1 TCM Simulation Model . 5
2.2 Flight Simulator Hardware . 9

Chapter 3 Integration of the TCM Simulation at ISL . 13

3.1 Implementation of the Communication Tools . 13
3.2 Input Library . 18

Chapter 4 Improving the Simulator Performance . 23

4.1 Compiling the Flight Dynamics Block . 24
4.2 Compiling the Flight Control System Block . 30
4.3 Automating the Compilation Process . 33

Chapter 5 Interface Development . 41

5.1 Simulation User Interface . 42

Chapter 6 Piloted Testing . 48

6.1 Environmental Disturbance Modeling . 49

Chapter 7 Conclusion . 54

Appendix A Compiled Simulink Block Source Code . 55

Appendix B TCM Setup GUI Callback Source Code . 60

Appendix C Data Acquisition Function Source Code . 69

References . 71

v

Abbreviations and Terminology

ACRL Advanced Controls Research Laboratory

FCS Flight Control System

FEP Flight Envelope Protection

iReCoVeR Integrated Reconfigurable Controller for Vehicle Resilience

ISL Illinois Simulator Laboratory

LoC Loss-of-Control

mex Matlab executable

NASA National Aeronautics and Space Administration

PITL Pilot-in-the-Loop

RTW Real-Time Workshop

TCM Transport Class Model

UDP User Datagram Protocol

UIUC University of Illinois at Urbana-Champaign

V&V Verification and Validation

vi

Chapter 1

Introduction

As automated systems become more complex, conducting a comprehensive performance evaluation becomes

very difficult. When complex automation is intended for use in a cyber-physical human system, e.g., depen-

dent on the input or reaction of a human operator, the task of performance evaluation becomes even more

challenging. Inputs to such systems are typically more complicated than what can be readily generated in a

normal simulation environment, and these inputs are usually dependent on the state of the simulated system.

This complexity poses an issue for evaluating the behavior of a system at all points in its operational space.

Verification and Validation (V&V), used to ensure that the system is designed correctly and functioning

in the intended manner across its operational space, is a crucial step in the development of any safety-critical

system, and many excellent software solutions exist for system V&V. A complement to these software tools

is in-the-loop testing, a physical V&V technique where the physical object the system is designed to interact

with is included in the feedback loop. When the physical object is a human, the process becomes human-in-

the-loop testing, or pilot-in-the-loop (PITL) in the specific case of an aircraft system intended for use by a

pilot. Human-in-the-loop testing is especially useful for evaluating subjective aspects of the system, such as

the “feel” of the system performance to the human operator, that may not be readily determined through

software methods. Since there will be human-machine interaction within the system, subjective criterion

such as performance “feel” become important design considerations that are difficult to evaluate without

the use of a simulator.

Simulator testing is common practice in many fields for the design of cyber-physical human systems, and

is mandatory in many safety critical systems. Aviation is an excellent example of one such field; simulators

are used both for software and hardware design testing, as well as pilot training and performance evaluation.

The primary benefit of using a simulation for testing purposes is that it allows for system evaluation in a

safe environment. In addition, simulation testing usually provides data collection capabilities beyond what

would be available in the real system, allowing for advanced systems analysis.

Simulation testing is also useful in the process of flight control design, where control law iterations can be

tested by a rated pilot whose feedback can be used to adjust the performance or functionality of the controller.

1

Typically an aircraft control system must meet a stringent set of safety and performance requirements,

although many design decisions are also made using more subjective performance criterion. The ability to

perform simulation testing and obtain pilot feedback at multiple stages of control law development can help

streamline the design process.

To this end, the flight simulator at the Beckman Institute’s Illinois Simulator Laboratory (ISL) [1] at the

University of Illinois at Urbana-Champaign (UIUC) has been selected to develop a simulation environment

which may be used to test and evaluate prototype flight control technologies. The Advanced Controls

Research Laboratory (ACRL) at UIUC is working to develop the Integrated Reconfigurable Controller

for Vehicle Resilience (iReCoVeR) flight control architecture, which combines a baseline gain-scheduled

control and stability augmentation system with Flight Envelope Protection (FEP) and Loss-of-Control (LoC)

prediction and prevention systems, fault detection and isolation, and a robust adaptive flight controller.

This system is being developed under the National Aeronautics and Space Administration (NASA) Vehicle

System Safety Technologies program, with the goal of preventing LoC incidents and accidents in transport

class aircraft. This control architecture will require extensive software and PITL simulation prior to flight

tests using a testbed flight vehicle.

Initial testing and verification of the control design is streamlined through the use of a local simulator

that can run aircraft dynamics and controller design models using the same software environment in which

the models are typically developed. The use of a single software environment provides portability between

the design and test environments to enable rapid turnaround of design iterations and prompt feedback on

performance of the system. Further, the use of a local simulator enables debugging of any software or

hardware issues that could arise when transferring the simulation to a real-time environment for V&V work

performed by research pilots, saving time and money during later development stages. Since the iReCoVeR

architecture has been designed under a NASA program, it was envisioned that this technology would be

transferred to NASA for flight testing in the future. It is therefore advantageous to have a flexible local

simulator platform for preliminary design and V&V work prior to this technology transfer.

In order to provide such a platform for use with the iReCoVeR control architecture, a modular simulator

architecture has been created at the ISL. The simulation environment is a networked system composed

of a Frasca 142 cockpit, a projection display using X-Plane graphics software, a custom-designed digital

cockpit instrument panel, and an aircraft dynamics model implemented in Matlab [2] and Simulink [3].

The simulation environment currently used has been tailored specifically to the iReCoVeR control system

development for use with NASA’s Transport Class Model (TCM) Simulink dynamics model, although the

tools developed for the simulator were designed to be as portable as possible for use with future control designs

2

and alternative dynamics models. The modularity of the simulator design allows for further reconfiguration

of the simulation environment as needed for future testing.

This thesis documents the contributions made to the flight simulator environment at ISL, including the

integration of the TCM dynamics with communication tools developed at the ACRL, and the design of a

user-friendly interface for operating the simulation and recording data. Also detailed here are the simulation

performance gains obtained by using compiled versions of Simulink subsystems, and the development of a

environmental disturbance model that will enhance the set of available simulation scenarios for upcoming

PITL testing. This thesis is also intended to be a reference for future use of the simulation environment and

the tools developed and described here, as well as for adaptation of these tools for alternative applications.

The remainder of this work is divided into the following chapters:

• Chapter 2 provides an overview of the ISL simulator architecture and the TCM Simulink model. The

structure of the hardware and software that make up the simulation environment is described, as well

as the internal structure and basic operation of the TCM simulation. A brief guide for operating the

simulation is also provided.

• Chapter 3 discusses the network communication tools used to integrate the TCM dynamics into the

flight simulator environment and modifications needed for applications to new system configurations.

The development of the Input library for efficiently switching between simulation modes and configu-

rations is detailed.

• Chapter 4 describes the need to develop a method for improving simulation performance during flight

testing, and documents the automated compilation procedures created to substitute computation-

ally heavy Simulink subsystems with binary executable functions, substantially enhancing simulation

performance while preserving the original functionality of the model and its supporting utilities.

• Chapter 5 outlines the development and usage procedure for the operator interface of the TCM sim-

ulation. A Graphical User Interface (GUI) is developed to facilitate the initialization of the Simulink

model in a user-specified configuration, and substantial modifications are made to the data acquisition

procedure to reduce postprocessing workload and analysis time.

• Chapter 6 describes the flight testing conducted at ISL and the preliminary results obtained. Addi-

tionally, an environmental disturbance model is developed that uses additive methods to produce a

wind disturbance of a user specified profile. The mathematical model used for generating disturbances

is presented as well as its implementation in the Simulink model.

3

Chapter 2

Simulator System Overview

The development process for the iReCoVeR Flight Control System (FCS) can be significantly enhanced

through the use of a local simulator platform where FCS design changes can be tested. The simulator

allows for PITL testing which can serve not only as a V&V process, but can also be used to improve the

control system design. If FCS design iterations can be transferred to the simulator quickly and without the

time-consuming process of porting the software to a different hardware implementation, then the testing

and development process can be greatly expedited.

The goal of this thesis is to develop a simulation environment that brings together several preexisting

elements under a single architecture that facilitates the design and testing of flight control systems and pilot

interfaces. Additionally, the tools developed to integrate the simulation elements should be generalizable so

that they may be applied to enable similar functionality between different simulation elements. The primary

benefit of this architecture is that it allows design and development work to occur in its native interface,

then be immediately tested and verified using batch simulations, desktop flight simulation, or full-scale PITL

testing without the need to implement the design in a different environment. This streamlining of the design

and testing process can yield a significant benefit in terms of reduced design time and greater flexibility in

evaluating design changes.

The FCS design work in this case is development of a flight controller with FEP and LoC prevention

systems as part of the iReCoVeR control architecture. The FCS is designed for and implemented within the

TCM Simulink model developed at NASA’s Langley Research Center [4]. Since the TCM and its supporting

tools are implemented in Matlab and Simulink, and also because the tools created for the iReCoVeR archi-

tecture are to be transferred to NASA at a future date, it is required that the dynamic model used to drive

the simulation be implemented in Matlab and Simulink. The implementation of the dynamics model and

FCS in Simulink is the primary motivation for the development of the communication tools and software

utilities presented in this thesis.

Similarly, the PITL simulator hardware was also predetermined for this project. The simulator at ISL

is comprised of a Frasca 142 [5] cockpit and three projectors providing a full 180◦ view with graphics

4

driven by X-Plane 9 [6]. User Datagram Protocol (UDP) connections over a local area network are used to

communicate between the computers which drive the aircraft dynamics, the graphical representation, and

the cockpit controls. UDP communication tools must then be incorporated into the TCM simulation in

order to be compatible with the existing infrastructure.

Another requirement on the development of the simulation environment is that the dynamics model

must be capable of performing design work and batch simulation in an office or laboratory setting, and also

capable of piloted testing at the ISL flight simulator facility, driving the aircraft dynamics and handling the

data acquisition. It is with these requirements in mind that the simulation tools described in this thesis

were developed, as well as with the intention of transferring the tools developed here to different dynamics

models and simulator elements.

Previous work at the ACRL at UIUC has resulted in the development of the CNCT library [7], a set

of tools to enable UDP communication between a Simulink model and the simulator hardware at ISL. The

library contains blocks that can be placed into the Simulink model to send and receive via UDP the signals

required to interact with the rest of the simulator. The CNCT library will be utilized to facilitate the

communication with the TCM simulation, while newly developed tools will integrate the TCM simulink

model into the simulator for design and testing. In the following sections the simulink model of the TCM

and the ISL simulator hardware will be discussed, while new developments will be discussed in Chapters 3

through 6.

2.1 TCM Simulation Model

The Simulink model of the TCM aircraft was developed by NASA for research and development of flight

control laws and other technologies to prevent LoC incidents and manage aircraft upset conditions that

could potentially contribute to an LoC event [8]. The TCM Simulink model is divided into subsystems, with

each subsystem represented by a “block,” illustrated in Figure 2.1. Each block may have a set of inputs and

outputs, with functions and operations performed on internal signals within the block. Blocks representing

subsystems may be nested, and signals (variables passed between blocks and operators) are represented as

lines with arrows showing the direction of signal dependency.

The internal structure of the white GTM FullScale block in the center of Figure 2.1 is shown in Figure 2.2.

This block contains the Simulink implementation of the mathematical model which governs all of the aircraft

dynamics. Contained within the dynamics subsystem are blocks in which the aircraft equations of motion,

actuator dynamics, engine dynamics, aerodynamics model, sensor models, and aircraft system models are

5

Figure 2.1: Top level of the NASA Transport Class Model Simulink dynamics model.

6

Figure 2.2: Dynamics portion of the NASA TCM Simulink model.

implemented. At the top left of Figure 2.2, the GTM FS Actuators block takes the control surface commands

from the green Input block of Figure 2.1 and calculates the actual positions of the control surfaces using

the mathematical actuator dynamics model. The surface position information is then available to other

subsystems through the use of a global signal routing tag, shown in orange. Forces and moments generated

from the engines, aerodynamics, gravity, and landing gear are calculated through mathematical models

contained within the GTM FS Engines, GTM FS Aero, Gravity, and LandingGear FS blocks, respectively. The

forces and moments are routed to the equations of motion in the EOM block where along with the aircraft

geometric and inertial information from the A/C parameters block, the aircraft accelerations and position

derivatives are integrated to calculate position, angular rates, and velocities. Aerodynamic variables such as

angle-of-attack, angle-of-sideslip, true and estimated airspeed, dynamic pressure, and others are calculated

in the AuxiliaryVariables block, and the sensor dynamics used to provide feedback to the FCS and cockpit

instruments are implemented in GTM FS Sensors. Additional detail pertaining to the functionality of the

TCM dynamics model can be found in [8].

7

Figure 2.3: Schematic structure of the TCM simulation Input block.

Control surface command inputs to the aircraft dynamics block are generated in the Input block, which

has the basic internal structure shown schematically in Figure 2.3. The Input block is where the core of

the development work for the TCM is conducted and where the communication and flight control software

tools are implemented. Depending on the simulation mode, the input source portion of the Input block

either generates preprogrammed commands or receives pilot inputs, which are then sent to the FCS. The

current implementation of the FCS consists of a C*U longitudinal control law and roll rate and angle-of-

sideslip lateral-directional control law, augmented with FEP and LoC prediction and prevention systems [9]

[10]. Pilot commands are modified by the FCS and transformed to control surface commands through the

control allocation. Aircraft feedback signals are then utilized to update the X-Plane visualization and cockpit

instrument panel through UDP communication software implemented in the command source system.

To ensure that the simulation runs in real-time during flight simulation and desktop piloted simulation,

a pacer block provided by NASA is used in the command source system to enforce that the simulation pace

matches the pace of the computer system clock. Alternatively, the Simulation Pace block from Simulink’s

Aerospace Blockset can be used, although the accuracy observed using the NASA-provided pacer is better

by several orders of magnitude. The pacer block is not used in batch simulation mode, as in this mode it

is desirable for the simulation to run as fast as possible. It is worth noting that the pacer block can only

delay the pace of the simulation. If the nominal simulation pace is slower than real-time, then additional

measures are needed to speed up the simulation. Techniques to prevent the simulation from lagging real-

time are especially important when conducting simulations using noisy signals, turbulent environmental

conditions, or when computationally heavy control techniques are used. During flight testing at ISL it was

discovered that the simulation was running slower that real-time during large environmental disturbances,

8

which resulted in the need to compile portions of the simulation as discussed in Chapter 4.

Finally, simulation signals are collected and routed into the NamedStore struct block on the right of

Figure 2.1 for data acquisition and recording, detailed in Section 5.1.2. The final block in the TCM block

diagram is the Subsystem block, which is utilized by the support functions to trim and linearize the TCM

dynamics.

2.1.1 Running the Simulation

The software for the TCM simulation is divided into two main directories. The libs directory, where TCM

subsystems are stored and linked from within the Simulink model, and the gtm design directory, containing

the simulation model and supporting utilities. At the top level of the gtm design folder is the gtm designFS

TCM simulation and the setup functions used to initialize the model. Running the setupTCM.m script will

start the setup GUI, where the user can specify the simulation mode and initial conditions. Clicking the

Setup Simulation button calls the TCM init fnc script to add the file paths to the supporting functions and

trim the model for simulation. The simulation can then be controlled using the Simulink Play, Pause, and

Stop commands.

Supporting files for the TCM simulation are located in the matfiles, mdls, mexfiles, and mfiles directories,

organized by file type. Flight test data is saved to the data directory, and signal bus definitions are saved

to the busdef folder. Source code for the executable functions and communication tools are included in the

src directory. Additional utilities are included at the same file level as the simulation model for compiling

the aircraft dynamics and FCS, and will be discussed in detail in Section 4.3.

2.2 Flight Simulator Hardware

The flight simulator at ISL uses a modular architecture to provide a flexible simulation environment where

components operate independently and communicate over a local area network using UDP. The schematic

architecture of the simulator shown in Figure 2.4 provides a platform that can be applied to a variety of

simulator hardware and software, and the tools developed here can be transferred directly to other flight

simulators, visualization software, or aircraft dynamics models.

The Frasca cockpit used in the simulator is equipped with a yoke-wheel and pedals for aircraft attitude

control as well as controls for throttle, spoiler deployment, flap deployment, and trim settings, and additional

features are also available for use as needed for different aspects of the simulation. Pilot commands are read

through an analog-to-digital card connected to a computer at the back of the cockpit and sent via UDP over

9

Figure 2.4: Schematic representation of the simulation architecture at the Illinois Simulator Laboratory.

the local area network to be used in the dynamics model driving the simulation.

The graphical representation is driven by four computers, all running X-Plane 9. There are three com-

puters which drive the displays; one for each projector, and there is a main computer which runs a master

copy of X-Plane. It is on this main computer that the aircraft dynamics built into X-Plane are normally

used to provide the simulation experience. The aircraft position and orientation information is sent via UDP

to the other three computers which then update the projected displays as new information is received. Since

the simulator is also used for simulation and demonstration purposes, which do not use the TCM or any

Matlab/Simulink dynamics model, it is desired to retain the architecture of the flight simulator so as not to

interfere with the original functionality.

To make use of the existing X-Plane software at the simulator facility, a plugin provided by NASA with

the TCM Simulink model is used to disable X-Plane’s internal solver, forcing every element of the X-Plane

dynamics to remain constant. The plugin is then used to overwrite the reference variables, or “datarefs,”

used by X-Plane to store the aircraft dynamic information such as position and orientation of the aircraft

and the aircraft control surface positions. By writing new values to the datarefs, it is possible to control the

position of the aircraft in space using information from an external source. The aircraft dynamics information

is then produced by running the TCM dynamics model, with the aircraft and control surface positions sent

10

Figure 2.5: The flight simulator cockpit and visualization at the Illinois Simulator Laboratory.

via UDP to all four computers which drive the simulator displays. The plugin can be enabled or disabled to

alternate between the use of X-Plane’s dynamics models or an external source, minimizing the intrusiveness

of this interface. When the simulation is driven from the TCM dynamics, pilot commands are routed to the

computer running the Simulink model instead of to the main X-Plane computer. However, pilot command

information can be sent to both computers at the same time to eliminate the need for switching between

pilot command destinations.

The display panels in the simulator cockpit are used to present the pilot with a digital representation of

instruments similar to those in a standard aircraft, along with additional information about the aircraft state

including aerodynamic data, control surface deflections, and aircraft angular rates. The instrument panel was

developed specifically for testing with the TCM model by members of the ACRL and ISL. Standard round

“steam-gauge” style displays in the upper left and center portion of Figure 2.6 inform the pilot of the aircraft

dynamic state. Clockwise from the upper left corner, these gauges display the airspeed, attitude, altitude,

vertical speed, heading, and turn information respectively. The numeric displays in the upper right corner of

Figure 2.6 give the pilot additional information about the aircraft dynamics and aerodynamic data. Many

of these extra measurements are not available on real aircraft, but this information is useful for verification

and evaluation of control system performance. The extra numeric displays can also be disabled during flight

testing to avoid providing the pilot with normally unavailable information and artificially altering the results

of a flight test session. The bar gauges in the lower right corner indicate the engine pressure ratio, throttle

position, and spoiler and flaps setting, while the gear and brake indicators in the lower center alert the pilot

when the gear or brake systems are active. The cockpit display is set up on a switch so that when the

11

Figure 2.6: Simulator cockpit display instrument panel.

X-Plane dynamics are used, the built-in X-Plane cockpit can be displayed instead of the custom instrument

panel. It is worth noting that this version of the instrument panel will soon be superseded by a newer

version, which will incorporate a primary flight display augmented with information from the FCS. The new

version will be more representative of the glass cockpit environments found on modern airliners, and is thus

more applicable for research purposes.

12

Chapter 3

Integration of the TCM Simulation at

ISL

In order to use the TCM dynamics to drive the simulator at ISL, the communication functions must be

integrated into the TCM Simulink model. The communication functions send the aircraft dynamics infor-

mation to the visualization software, receive the pilot inputs, and send the data to the instrument panel for

feedback to the pilot. The CNCT Simulink library was developed to enable portability of the communication

functions between Simulink models, however details of the CNCT library and the communication utilities

will not be discussed here as they are not part of this work, but may be found in [7].

3.1 Implementation of the Communication Tools

The communication functions are implemented in the Input block of Figure 2.1. The communication functions

must be external to the GTM FullScale dynamics block and within the Input block so that the communication

functionality may be altered with selection of different simulation modes. For controls development and

simulation purposes, there are three modes in which the simulation can be operated. Batch simulation mode

is a mode where the inputs to the controller or plant are predetermined and usually automated, and often

requires multiple simulations to test or validate the result of a controller design change. The simulation

should run quickly, ideally significantly faster than real-time, and space should be provided in the model for

modification of the input commands. In desktop piloted simulation mode, the aircraft model can be flown

using the X-Plane visualization software and a joystick without requiring the use of a full-blown simulator.

This mode is useful for evaluating and visualizing the behavior of the aircraft, and also for inputting complex

commands or commands that are more easily executed using visual cues. Flight simulation mode is used to

provide the full flight simulator functionality when performing piloted testing. The use of simulation modes

is discussed in more detail in Section 3.2. Flight simulation mode is the only mode which requires the use

of the communication tools from the CNCT library, since desktop piloted simulation mode uses preexisting

communication functions provided by NASA and batch simulations do not require any communication

functionality. Thus only the communication implementation for the flight simulation mode is discussed

13

here.

The portion of the Input block which contains the communication functions is the FRASCA IN subsystem,

shown in Figure 3.1. At the far left of the figure, the Frasca To Sim block is a C-Matlab executable (mex)

s-function block which receives the UDP pilot command information sent from the Frasca cockpit. A C-mex

function is a Matlab executable binary function written in the C programming language. The use of C-mex

functions allows the use of the Winsock C libraries to facilitate UDP communication. The UDP information

is read in as a character string which is then parsed in the C-mex function into an array of numeric values

corresponding to the pilot commands. The array is then passed to the FRASCA Baseline FEP block which

performs basic precalculations to process the pilot inputs into commands which can be sent to the FCS. The

processed pilot commands are output from the block and collected into a bus structure which is then sent to

the FCS via the FRASCA CMD and PLT CMD output blocks. The orange XPlane POS SURFS block in the

center right of Figure 3.1 uses the global signal routing tags in the TCM dynamics block to select and sort

the aircraft position and orientation information and the control surface position information that is routed

to the large orange Sim to Xlink block. The Sim to Xlink block is a C-mex function used to send information

to the Xlink plugin and thus to update the X-Plane visual representation.

Another important block in the FRASCA IN subsystem is the Gauge Feed block, which uses the global

signal routing tags to collect information to be passed to the instrument panel display in the Frasca cockpit.

The data are collected into a vector and routed to the SimToGauges C-mex s-function block, which then

sends the information to the instrument panel via UDP. Some auxiliary functions have also been included

within the FRASCA IN subsystem to provide additional functionality to the simulation. The orange Graph-

ical GND Height block at the top center of Figure 3.1 receives via UDP the altitude of the ground at the

current aircraft location, which comes from X-Plane’s navigation database. The ground height information

can be used to automatically deploy landing gear in the event of incipient ground contact in the visualization

through the FRASCA ALT Triggered Gear block, or can be used to perform takeoffs and landings without the

need to preprogram the runway height into the simulation.

3.1.1 Modifying the Communication Tools

There are several foreseeable situations for which a user would be required to alter the number or type of

signals sent from or received by the simulation. For example, the pilot inputs from the cockpit may change

as new functionality is added, or if new information is needed for display to the pilot through the cockpit

display. When this occurs, it is then necessary to alter the structure and content of the communication

functions. In order to change the signals sent from Simulink to either the X-Plane Xlink plugin or to the

14

Figure 3.1: Simulink implementation of the CNCT library communication tools in the Input block of the
TCM simulation.

15

cockpit display, the CNCT library blocks, the corresponding s-functions, and the data packet definition

header files must all be modified in order to implement the changes.

To alter the data sent to the cockpit instrument panel, the first step is to augment the data packet header

file dataPacketGauges.h with the new information. This file defines the Gauge dataPacket structure, and

the structure fields are the variables to be sent to the instruments. For example, to add the variables myvar1

and myvar2 to the structure with myvar1 defined as a double and myvar2 defined as a float, adding lines 3

and 4 in Listing 3.1 would define the variables as valid fields in the data packet structure. The second step

following the variable definition, it is necessary to modify the corresponding C-mex s-function by editing

the C++ file of the same name. Continuing with the example of the instrument panel information, the

appropriate s-function is SimulinkToGauges SP VARS.cpp.

Listing 3.1: Example of syntax for adding variables to a data packet structure.

1 s t r u c t Gauge dataPacket {
. . .

3 double myvar1 ; // Comment de s c r i b i ng myvar1
f l o a t myvar2 ; // Comment de s c r i b i ng myvar2

5 . . .
}

Now, if it is necessary just to add signals to the existing input vector, the line ssSetInputPortWidth(S,

0, 36); in the static void mdlInitializeSizes(SimStruct *S) function should be set to reflect the new number

of input elements. To add the two variables myvar2 and myvar2, the line should be changed to ssSetInput-

PortWidth(S, 0, 38);. The second input to the ssSetInputPortWidth(·) function is the index of the input,

where the inputs are 0-indexed. To assign values to the new variables, adding lines 6 and 7 of Listing 3.2 to

the static void mdlOutputs(SimStruct *S, int T tid) function will assign the 37th and 38th element of the

first s-function input to the the new structure variables, recalling that C++ is a 0-indexed language.

Listing 3.2: Example of syntax for assigning values to new variables in a data packet structure.

. . .
2 const r ea l T ∗u1 = ssGetInputPortRea lS igna l (S , 0) ;

. . .
4 Gauge dataPacket data ;

. . .
6 data . myvar1 = (double) u1 (36) ;

data . myvar2 = (f l o a t) u1 (37) ;
8 . . .

}

Once the variables have been declared and assigned in the s-function, the Simulink model must then be

modified to append the desired signals to the s-function input vector. Additional signals must be added to

the vector multiplex (mux) block inside the Gauge Feed block of Figure 3.1. Double-clicking the mux block

16

Figure 3.2: Simulink dialog for modifying the number of input signals to the communication s-function.

brings up a dialog where the number of signals is specified, shown in Figure 3.2. Changing the number of

inputs here to 38 will allow the addition of the two new variables. The global signal routing tags and bus

selector in the Gauge Feed block can be used to extract the desired signals and route them to the new inputs.

To complete the process, the modified C-mex s-function needs to be recompiled. Running the buildmex script

from the Matlab command prompt within the gtm designFS directory will recompile all of the s-functions

needed by the TCM simulation and copy the executables to the appropriate file path.

It is also possible to add a second input port to the s-function instead of concatenating additional signals

to an existing port. In this case the additional port must be declared in the s-function and initialized

appropriately. Declaration of a second input port is done in the C-mex s-function SimulinkToXPlane2.cpp,

and is also briefly described in [7]. Once the C-mex function has been recompiled, the additional input port

will be visible in the Simulink model for signal routing.

Alteration of the data sent to the X-Plane visualization is accomplished through the same process as for

the cockpit display information. The data packet definition should be modified in the dataPacket.h header

file, and the new variables should be assigned in the C-mex function SimulinkToXPlane2.cpp. The function

should then be recompiled using the buildmex script and the XPlane POS SURF CNCT library block should

be modified appropriately.

The same process is also followed to modify the information sent from the Frasca cockpit controls to

the simulation. The header file FRASCAdataPacket.h and the C-mex function FRASCA To SIMRW.cpp

should be modified and recompiled, and the FRASCA Baseline FEP CNCT library block modified to accept

the new signal structure.

17

Figure 3.3: TCM Input library, containing various implementations of the communication tools and
controller configurations, along with general utilities for the simulation.

3.2 Input Library

The three distinct simulation modes of batch simulation, desktop piloted simulation, and flight simulator

mode each require very different functionality in terms of input sources and communication tools. Addition-

ally, the different modes must all be implemented in the same location in the TCM Simulink model. This

poses a challenge to enable efficient switching between simulation modes. If multiple control systems are

to be tested as well, then it is desirable to be able to quickly switch between control configurations during

testing, which necessitates an additional dimension of functionality within the Input block. To facilitate

efficient switching between simulation modes and controller designs, a library was created to store different

iterations of the Input blocks, visible in Figure 3.3.

The Input blocks are the larger cyan blocks in the center of Figure 3.3, and are arranged in a grid in

18

order of simulation mode and controller version. Vertically from bottom to top the label prefixes Desktop,

X-Plane, and FRASCA correspond to the simulation modes batch simulation, desktop piloted simulation, and

flight simulator mode, respectively. Horizontally, the label suffixes on each column denote different controller

implementations. The left column of cyan blocks is open-loop operation, there is no flight control law and

pilot inputs are passed directly to the control surfaces, a control mode referred to as stick-to-surface. The

center column with the label suffix latDirController uses the lateral-directional portion of the baseline flight

control law only, longitudinal control is still stick-to-surface and there is no envelope protection. The right

column, with the label suffix FEP, implements the full baseline control law with the FEP system. In this

mode, the FEP can be turned on or off, allowing the baseline controller to be used independently of the FEP.

It is worth noting that the white NavGuidControl block in the lower left of Figure 3.3 is the default block

provided by NASA with the TCM simulation, and all subsequent flight control and simulation developments

were initially designed based on this template.

Switching between simulation modes and controller configurations is then accomplished by replacing the

Input block in the TCM Simulink model with the appropriate block from the Input library. A brute-force

approach to this would be to either delete the Input block from the TCM Simulink model and replace it with a

new library block, or to replace the block in the Simulink model using the replace block(·) command. A more

elegant approach is to use a configurable subsystem to switch between the Input blocks. The configurable

subsystem works not by replacing the block itself, but by altering the link to the Input library block.

Switching between modes is accomplished by simply changing the target of the link in the Simulink model.

The configurable subsystem block is visible as the green block labeled Input in Figure 3.3. Double-clicking

this block opens the configuration dialog, shown in Figure 3.4, in which the user can specify which blocks

to include in the configurable subsystem. It is critical to ensure that each block included in the configurable

subsystem has an an input and output structure identical to all other included blocks. Otherwise, the

configurable subsystem will not work. Changing the link target to switch between Input blocks can be done

either by right-clicking the configurable subsystem block in the TCM Simulink model and selecting Block

Choice and the desired block, as in Figure 3.5, or programmatically through the set param(·) function, as

used in the setup script for the TCM simulation. The code relevant to the block selection in the setup script

is shown in Listing 3.3.

The Input library was implemented in the UserContent lib Simulink library file. This file is the original

location that research and design work for the TCM simulation was intended to be stored, and there are

additional files in the library not directly related to the configurable subsystem. Since each column of

the Input blocks in Figure 3.3 uses an identical controller implementation, the controller can either be

19

Figure 3.4: Dialog for choosing elements of the Input library to include in a configurable subsystem.

Figure 3.5: The configurable subsystem link may be changed using the right-click menu in Simulink.

20

Listing 3.3: Programmatic block selection for Input configurable subsystem in the setup function
TCM init fnc.

1 SimType = IC . simtype ;
. . .

3

switch Cont r o l l e r
5 case 2

blk appnd = ’ l a tD i rCon t r o l l e r ’ ;
7 case 3

blk appnd = ’ FEP ’ ;
9 otherw i s e

blk appnd = ’ ’ ;
11 end

13 . . .

15 con f i g sub sy s = [modelname , ’ / Input ’] ;

17 . . .

19 switch SimType
case 3

21 set param (con f i g sub sy s , ’ BlockChoice ’ , s t r c a t (’FRASCA ’ , blk appnd)) ;
cas e 2

23 set param (con f i g sub sy s , ’ BlockChoice ’ , s t r c a t (’X−Plane ’ , blk appnd)) ;
cas e 1

25 set param (con f i g sub sy s , ’ BlockChoice ’ , s t r c a t (’ Desktop ’ , blk appnd)) ;
o therw i s e

27 e r r o r (’ I nva l i d s imulat i on mode s e t t i n g . ’)
end

29 . . .
}

21

implemented separately in each block, as is done for the latDirController blocks, or the controller can be

linked to an external block, as is the case for the FEP blocks. When the controller is implemented separately

in several different blocks, changes made to the controller in one are not automatically propagated to the

other blocks using the same controller. This method is most beneficial if the desired controller function

varies between blocks, or if there are minimal modifications required to the controller. In the case where the

controller implementation is linked to an external source, changes made to the controller in any block can

then be propagated back to the source, and the other blocks will update automatically when they load the

link to the source.

The FCS block on the far right of Figure 3.3 is an example of an external source block. By placing

it in the library model, it can be linked from within each of the FEP Input blocks, ensuring consistent

functionality between the implementations. The FCS block is a compiled version of the flight control law,

to be discussed further in Chapter 4. Similarly, other blocks in the Input library are source blocks, defined

externally to the Input systems to enforce consistent behavior between simulation modes. Additionally, since

the communication functions are also defined in an external library, modifications made to these functions

are automatically loaded when the TCM Simulink model is opened.

By enabling simulation mode selection through a configurable subsystem, it is possible to efficiently

switch between simulation modes and flight control law configurations. However, the use of a configurable

subsystem necessitates a change in how the Input systems are modified. Since Simulink does not allow

modifications within the configurable subsystem block used in the TCM Simulink model, any modification

to the Input blocks must be done within the UserContent lib library model. Once the changes are made

and the library is saved, the changes will automatically propagate to the TCM Simulink model when the

configurable subsystem link is updated.

22

Chapter 4

Improving the Simulator Performance

As new elements and features were added to the TCM simulation, it was noticed that the performance of

the simulation was not adequate to perform PITL simulation in real-time. Dynamic models typically have

a single integrator in the dynamics block to calculate positions and rates from the forces and moments

imparted on the vehicle. Each element of the simulation that modifies the forces on the vehicle is an

additional calculation that is required before the accelerations can be integrated.

After the addition of the FEP system, the number of calculations required exceeded the abilities of the

computer that the simulation was implemented on at ISL. It was observed that the simulation was running

at only two-thirds of real-time as observed in Figure 4.1. The lag ratio is computed as

lag ratio =
tsystem clock − tsimulation clock

tsystem clock

(4.1)

The lag ratio will be zero when there is no difference between the system clock time and the simulation

time, and approaches unity as the simulation pace approaches zero. The quantity (1 − lag ratio) is then

a characteristic of the severity of the simulation lag. The observed lag was obviously detrimental to PITL

testing performance, and in fact invalidated several tests that had been conducted prior its discovery. To

mitigate the observed lag issue, several steps were taken to improve the simulation performance.

As an initial step, the computer at ISL was upgraded to a level where the current version of the simulation

could be run without delay. The upgrade was a precautionary measure taken with the knowledge that

additional components would be added to the control system. While the computer upgrade was helpful,

the improvement that produced the greatest benefit for reducing simulation lag was compiling particular

elements of the TCM simulation. Compiled executables are able to run much faster than standard Simulink

block implementations of the same function, comparable to the difference in execution time between an

interpreted function to its compiled counterpart; there is usually an order of magnitude difference in the run

time.

The two elements of the simulation that were the largest contributors to the delay were the flight control

23

Figure 4.1: Simulation lag observed at ISL. This lag was observed without compiled dynamics or FCS, and
prior to the installation of the upgraded computer.

law with the FEP system and the vehicle dynamics subsystem containing the acceleration integrator. To

improve the simulation pace, the FCS and dynamics subsystems were replaced in the TCM Simulink model

by compiled s-function versions. In the code generation and compilation of the Simulink subsystems, a

standard programming process was adopted: source code files are created where changes can be made to

alter the function of the Simulink block, the source block is then compiled into a binary form, and the

block is run as a mex file. Simulink provides autocoder functionality to automatically generate code for

individual blocks and compile it into binary executable form. To further facilitate the compilation process,

and to make it more easily usable for the TCM simulation, scripts have been written to automate the

procedure. The following sections detail the compilation of the flight dynamics block and flight control law

block, respectively, along with the automated compilation procedure.

4.1 Compiling the Flight Dynamics Block

The flight dynamics integrator is one of the primary reasons the simulation was not able to run in real-time,

though not due to poor design of the dynamics. Rather, the integrator is called frequently when computing

the quantities needed by other simulation components during the next time step, and large disturbances or

noisy signals can increase the integrator block execution time. As noted in Figure 4.2 the dynamics integrator

is the nineteenth most frequently called block during the simulation, however it is called at most major and

minor output steps, which means that simulation is highly dependent on the output of this integrator. In

addition, several blocks in the FCS are called more even more frequently than the dynamics integrator, hence

the need to also compile the FCS block at the same time.

Motivated by the desire to reduce simulation lag, there are several steps that must be taken prior to the

24

Figure 4.2: Diagnostic report showing the frequency and call time during a simulation. Several blocks in
the aircraft dynamics and flight control systems are called very frequently, and have long call times which
delay simulation execution.

25

compilation of the dynamics block. The structure of the dynamics block is fixed as shown in Figure 2.2, and

the I/O structure, while alterable in the Simulink model, is essentially fixed since the model is generated

by NASA and any developments made to the FCS must be compatible with the given I/O structure. Ad-

ditionally, many of the existing functions that support the TCM model are written in a way that precludes

compatibility with a compiled dynamics block. In particular, the trimming function that calculates control

inputs that yield an equilibrium solution (zero accelerations) at a desired flight condition requires interaction

with specific blocks and their handles. However, once a system is compiled it no longer contains blocks, so

the original block handles do not exist and the trimming function is not able to operate. For simplicity and

ease of use it is strongly desired to retain all of the preexisting functionality of the TCM simulation and its

support tools.

To preserve the I/O structure of the dynamics, the buses that serve as the interface to the dynamics

block need be defined to be compatible with an s-function block. Bus structures must be defined as bus

objects in order for them to be recognized by the Simulink autocoder. Bus object definition is similar in

nature to requiring a header file specifying the definition of a structure object in a conventional coding

environment. The definition of the bus objects is done using the Simulink bus editor. As with normal

programming environments, each structure must be specified individually. Figure 4.3 shows the Simulink

bus editor environment, which may be accessed via the Simulink toolbar by clicking Tools → Bus Editor.

Buses created in this interface can be exported to the Matlab workspace and saved as a .mat file. The

buses must then be loaded when the simulation is started. Additionally, the bus type must be specified in

the properties block of the bus object from which the signal originates, and individual bus objects must be

defined for each unique bus which is an input to or output from the compiled block.

When the TCM simulation is trimmed to desired flight condition, it is set up so that input commands are

delta commands to the flight control surfaces. That is, the trimmed configuration is stored in a data structure

and the trimmed positions for the surface are implemented through constant value blocks that access the data

structure fields. Incoming commands are then interpreted as deflections about the trim point. Since the trim

positions need to modified each time the simulation is started at a different flight condition, the trim values

cannot be hard coded in the source code generated from the block, but instead must be tunable parameters.

Again, there is a standard analogy from conventional programming to help conceptually illustrate the role

tunable parameters play in a Simulink s-function block: The autocoder generates a function that can by

invoked by the Simulink interpreter at run time, and the tunable parameters are essentially input arguments

passed to the function by the interpreter. However, the Simulink coder for the version of Matlab currently

used does not support the use of data structure fields as tunable parameters. As a workaround, it is possible

26

Figure 4.3: Simulink bus editor environment.

27

Figure 4.4: The circled constant block values were modified from calling a structure field to calling a
standard variable to set the value of the block to be a tunable parameter in the compiled version of the
dynamics block.

to define the values in the constant blocks as non-structure elements and pass the structure field to the

parameter at run time. Figure 4.4 shows the implementation of this workaround in the TCM actuator

system block.

With the bus objects defined and the tunable parameter workaround complete, it is possible to compile

the dynamics block. The model in which the block to be compiled is implemented must be a functioning

model; it must be able to run without any errors. Therefore all incoming bus signals must be defined and any

variable used by the model must be defined and nonempty. The block can be compiled directly from the main

simulation model if desired, but this is not good practice since the goal of compiling the dynamics block is to

replace it completely. Unless a backup is made of the original block, it will be lost upon replacement, along

with the possibility to easily make further modifications. In theory, the code generated by the autocoder

could potentially be modified and recompiled, but this is far more trouble than it is worth. Instead, a reduced

version of the original simulation is used which contains only the bare minimum elements necessary to run.

The reduced model is shown in Figure 4.5, and is saved under the file name gtm designFS DYN.mdl. The

inputs to the dynamics block GTM FS are just the normal input buses as defined in the bus editor in the

original simulation model, with all signals set to zero. These input signals are essentially just placeholders,

as they are only used to define the correct signal structure. The global GoTo tags (SurfacePos, ThrustFM,

etc., and APengage) are included to provide signal routing destinations and sources in order to suppress

warnings and to prevent errors resulting from undefined signals. The input and output subsystem in the

upper right corner Figure 4.5 is used by the TCM support functions required to initialize the model.

28

Figure 4.5: Reduced version of the TCM Simulink model used for compiling the dynamics block. The
reduced version contains only the dynamics block GTM FS and other necessary components.

29

Compiling the block can be accomplished by right-clicking on the GTM FS block and selecting Code

Generation → Generate S-Function, which will start the build process by which the block code is generated

and compiled. The first window that pops up asks the user to select which parameters to make tunable,

an example of which is given in Figure 4.6. Any constant-valued variable that is used in the block and its

subsystem is automatically populated to the list of variables, including values for constant blocks, integrator

initial conditions, saturation block upper and lower limits, etc. The Pick tunable parameters section of

Generate S-Function window is where the user should select any variables that need to be tunable, as their

values will be hard-coded if they are not selected. Clicking Build in the parameter selection window will call

the autocoder to generate the source code files and the Matlab compiler to build the executable. The output

of the build process is the code files (C source code and header files in the case of the TCM simulation since

C was the target language specified in the Simulink configuration parameters), the Matlab executable file

which is called by the Simulink interpreter, and a new untitled model containing the s-function version of

the dynamics block. The s-function block has exactly the same functionality as the dynamics block from

which it was compiled, however it runs much more efficiently since it is a binary executable. Once the mex

file has been moved to a location in the path of the original model’s working directory, the compiled block

can be used to directly replace the original dynamics block. The tunable parameters selected during the

build process are accessed through the compiled block’s mask; double-clicking the block brings up the mask

dialog where the variables for the tunable parameters can be altered. These default to the names of the

variables at compile time. Changing the names of the altered variables back to their original structure field

references restores the full functionality of the TCM support functions.

4.2 Compiling the Flight Control System Block

Similar to the integrator in the flight dynamics, there are several elements in the FCS that are called

frequently during the simulation and require substantial time to execute at each time step, as observed in

Figure 4.2. In order to speed up the simulation rate, it is desired to compile the FCS in the TCM Simulink

model as well. The compilation process is similar to that for compiling the dynamics block and follows the

same basic steps.

A model containing an editable version of the FCS has been saved under the FCS src directory entitled

gtm designFS FCS.mdl, containing the uncompiled Simulink implementation of the control system and FEP

in the FCS block in Figure 4.7. The creation of the FCS source model is similar to the source model created

in Figure 4.5, and serves the same function.

30

Figure 4.6: Tunable parameter selection window. Any variables not selected will be hard coded as numeric
values when the autocoder is invoked if they are not selected here.

31

Figure 4.7: Flight control system Simulink source. The FCS block (center of diagram) is compiled for
implementation in the TCM Simulink model.

32

Again, the input and output bus signals of the FCS block need to be defined as bus objects using the

Simulink bus editor. For the FCS, there are no parameters that need to be made tunable. None of the

control system or FEP system parameters need to be modified each time the simulation is started and

do not affect the trim condition of the model. It is therefore acceptable to allow the autocoder to hard

code these values into the executable function. However, if it is desired to alter some set of parameters

within the FCS subsystem, the selection of tunable parameters is done in a manner similar to that for the

dynamics block. Right-clicking on the FCS block and selecting Code Generation → Generate S-Function,

then clicking Build will generate the binary mex file with source code along with a Simulink model containing

the compiled version of the FCS block. The s-function version of the block can then be implemented in the

TCM simulation, replacing the original system, while all of the original functionality of the block will be

retained.

The performance improvement from compiling both the dynamics and FCS can be observed in Figure 4.8.

The performance test was conducted by artificially stopping the simulation for a short time while the

computer system clock was still running. The simulation was then allowed to run and attempt to catch

up to the real-time target. Using the original version of the simulation, for an approximately ten-second

induced lag the recovery time was about twenty seconds, a lag recovery rate of roughly 0.5 sec/sec. After

implementing the compiled versions of the two systems, the recovery time dropped to about 12.5 seconds

with a recovery rate of roughly 0.8 sec/sec. The increase in lag recovery rate and reduction in lag recovery

time represent a substantial improvement in simulation performance, and ensure that the simulation will

run in real-time on the upgraded computer at the ISL.

4.3 Automating the Compilation Process

While compiling the dynamics and FCS elements yields significant improvements in simulation performance,

it complicates the design procedure when adding or modifying features in either system. Where before it was

possible to open the model, make a modification, and then run the simulation to verify the functionality, the

procedure is now much more complicated. For example, if the modification is to the FCS (most of the design

changes will be; it is usually desired to avoid modifications to the aircraft dynamics) the gtm designFS FCS

source model must be opened so that modifications can be made and verified there. The compilation

procedure outlined in Sections 4.1 and 4.2 must then be followed to generate a block which then needs to

be copied over to the main gtm designFS model.

Compiling subsystems in the above manner is a cumbersome procedure, and several steps must be

33

Figure 4.8: Simulation lag recovery for the for the TCM simulation without (left) and with (right) the
compiled versions of the dynamics and FCS. An artifical lag was induced on the simulation, which was
then allowed to recover to real-time. Recovery is significantly faster using the compiled blocks, indicating a
large improvement in simulation performance.

34

followed each time a new modification is made. In order to streamline the compilation process, several of

the intermediate steps have been automated. Two different functions have been created, one for compiling

the dynamics block and one for compiling the FCS block. These functions handle the tasks of compiling the

source blocks, saving a copy of the compiled version, copying the compiled version into its final location for

the TCM simulation, and copying the executable files into the path of the TCM simulation. The automated

compilation of the FCS is the simpler of the two processes and will be discussed first, followed by the

automated compilation of the dynamics.

4.3.1 Automating FCS Compilation

The FCS is always implemented in the Input block of the simulation, and the library blocks need to use

identical copies of the FCS to ensure consistent operation between simulation modes. To ensure that the

FCS is consistent across the range of simulation modes, the process from Section 4.2 was used to generate

a compiled version of the FCS, which was then copied into the library UserContent lib, see Figure 3.3. The

uncompiled version of the FCS was then deleted in each of the FEP Input blocks and replaced with the

compiled version using Simulink’s drag-and-drop copy method. Since the compiled version is now a library

block, instead of making a wholesale copy Simulink creates a link back to the library block. Thus, each time

a change is made to the compiled FCS library block, the change is automatically propagated to all of of the

linked versions.

The procedure for compiling the FCS has now been reduced to two steps. Changes are made to the

Simulink source model gtm designFS FCS, then running the Matlab script buildFCS performs the remaining

steps to compile the block and replace its library implementation and the executable functions used in the

simulation. The full script can be viewed in Listing A.1.

When the buildFCS script is called, the variables in the Matlab workspace need to be cleared since the

setup scripts for the FCS use many of the same variables as the main simulation. The user is prompted

before the data in the workspace is deleted, in case anything needs to be saved. The script then clears the

workspace, saves the current directory location, and changes the working directory to FCS src. Modifiedd

setup programs are needed for the FCS version of the simulation, since this model does not have all of the

functionality or components of the full simulation. The setup script setupFS FCS is a modified version of

the original setup script provided with the TCM simulation by NASA. All of the functions called within the

original script have been copied to the FCS src directory and appended with FCS to distinguish them from

the originals.

The compilation script then uses the Matlab Real-Time Workshop (RTW) to compile the FCS block

35

Figure 4.9: Selecting the use of inline parameters in the Simulink configuration parameters menu.

through the rtwbuild(·) function, see line 38 of Listing A.1. The compiled block is then saved under the

filename FCS sfcn and used to replace the version in the UserContent lib library. The Matlab executable is

then copied to the mexfiles directory where all the binaries used by the TCM simulation are stored. Finally,

the user is prompted to run the main setup file setupTCM to refresh the library links in the simulation. The

prompt signifies the completion of the process outlined in Section 4.2.

4.3.2 Automating the Dynamics Compilation

Additional setup work is required to automate the compilation process for the TCM dynamics. The dynamics

block requires tunable parameters, which were selected manually in the procedure in Section 4.1. Unfor-

tunately, it is not possible to programmatically select tunable parameters in the same way. Instead, RTW

requires the use of inline parameters. To specify inline parameters, after running the setupFS DYN script,

open the source model dynamics for compile and select Simulation → Configuration Parameters. Then se-

lect Optimization → Signals and Parameters and ensure Inline parameters is checked, as in Figure 4.9. Click

Configure to open the dialog to select the parameters which should be inlined and made tunable, shown

in Figure 4.10. Confirming these changes sets the selected variables as inlined tunable parameters in the

generated code and in the compiled version of the dynamics block.

Additionally, since the trimming function relies on the uncompiled version of the dynamics, it is necessary

to swap these two versions in and out depending on whether the simulation is being trimmed or executed.

To facilitate the block swapping, a storage model gtm designFS sfun model was created to store the unal-

tered version of the dynamics, the version with the modified parameter names, and the s-function version.

Figure 4.11 shows the contents of the storage model, along with the internal structure of each block.

36

Figure 4.10: Inlined parameters are selected using the model parameter configuration menu.

37

Figure 4.11: Structure of the TCM dynamics storage model. The compiled version of the dynamics and its
internal structure are highlighted in red, while the uncompiled versions with and without modifications to
the trim condition variables are highlighted in blue.

38

The script buildDYN automates the compilation of the dynamics block, and the full Matlab source code

is provided in Listing A.2. Since the DYN version of the simulation also uses the same variables as the

full simulation, the Matlab workspace variables must be cleared. The user is prompted to proceed or quit

to save data. The current working directory is saved and the working directory is changed to DYN src.

Here, the setupFS DYN function is called, this time as an overloaded modification of the original TCM

setup file from NASA. The setup file runs the scripts to load required variables into the model workspace,

then opens the gtm designFS DYN model with the original version of the dynamics. Here the model can

be trimmed and the trim information is stored into modified constant parameters, shown in Listing 4.1. If

given an optional argument of 1, the setup function initializes and loads the required parameters into the

model workspace and copies the latest version of the dynamics block with modified constants into the model

used for compiling, shown Figure 4.5. Otherwise, the compiled version of the dynamics is used to update

and replace the dynamics block in the gtm designFS DYN model. The latter option (an input argument

not equal to 1 passed to the setup function) may be useful for verification of functionality, but is not used

during the automated compilation process.

Listing 4.1: Modification to setup script for compiling dynamics.

MWS. b i a s a i l e r o n = MWS. b ias . a i l e r o n ;
2 MWS. b i a s e l e v a t o r = MWS. b ias . e l eva to r ;

MWS. b i a s f l a p s = MWS. b ias . f l a p s ;
4 MWS. bias geardown = MWS. b ias . geardown ;

MWS. bias N1 = MWS. b ias .N1 ;
6 MWS. bias NfR = MWS. b ias .NfR ;

MWS. b i a s r udde r = MWS. b ias . rudder ;
8 MWS. b ias rudhys = MWS. b ias . rudhys ;

MWS. b ias speedbrake = MWS. b ias . speedbrake ;
10 MWS. b i a s s t a b i l i z e r = MWS. b ias . s t a b i l i z e r ;

MWS. b i a s t h r o t t l e = MWS. b ias . t h r o t t l e ;
12 MWS. bias TRA = MWS. b ias .TRA;

14 MWS. Act ElevUL = MWS. Act . ElevUL ;
MWS. Act ElevLL = MWS. Act . ElevLL ;

16 MWS. Act AilPL = MWS. Act . AilPL ;
MWS. Act RudPL = MWS. Act .RudPL ;

18 MWS. Act SplPL = MWS. Act . SplPL ;

20 i f e x i s t (’myopt ’) && ˜ isempty (myopt) && myopt==1
loadmws2 ([] , ’ gtm designFS DYN ’) ;

22 loadmws2 (MWS, ’ gtm designFS DYN ’) ;
bdc l os e (’ gtm designFS DYN ’) ;

24 open system (’ dynamics f o r compi l e ’) ;
r ep l a c e b l o ck (’ dynamics f o r compi l e ’ , ’Name ’ , ’GTM FS ’ , ’ gtm des ignFS sfun model /

GTM FS PLNT RTDYN ’ , ’ noprompt ’) ;
26 e l s e

appendmws (MWS, ’ gtm designFS DYN ’)
28 r ep l a c e b l o ck (’ gtm designFS DYN ’ , ’Name ’ , ’ GTM FullScale ’ , ’ gtm designFS DYN sfun model /

GTM FS PLNT SFUN ’ , ’ noprompt ’) ;
sim (’ gtm designFS DYN ’ , 0 . 0) ;

30 end

39

The rtwbuild(·) function is then used to compile the dynamics block, and the compiled block is saved.

The number of parameters in the s-function mask of the compiled block needs to be determined next so

that desired parameters can be replaced automatically. A list of old and new parameter names is specified,

and the list of parameters is parsed and the old parameter names replaced by their new versions. Next,

the compiled block with updated parameters is saved and copied to the storage model, replacing the older

version of the block. The executable file is then copied to the mexfiles directory and the user is prompted

to run setupTCM to import the newest version of the compiled dynamics into the simulation.

Using the two functions buildFCS and buildDYN, it is thus possible to automate the procedure of com-

piling the different elements of the simulation to reduce the burden on the user and improve the simulation

performance. Under the new simulation structure using compiled systems, modifications to either system

need to be made in the Simulink source files, as all access to the internal structure of the block is lost once it

is compiled to s-function form. However, great care has been taken to simplify the process so that the user

is able to make a modification in the source models, then quickly verify that there are no errors by running

the modified model. The user can then automatically compile the systems and changes will be propagated

to the main TCM simulation where functionality can be verified. It is worth noting that if the input and

output structure of the block is changed, the automated process will fail unless additional steps are taken.

First, the bus definitions must be updated to reflect the new structure, as do the inputs to the block in the

source model. Then if the number of inputs or outputs has changed, the new connections will need to be

made (or the excess connections deleted) manually in the source model, the library blocks or storage model,

and in the TCM simulation itself. It is then necessary that the user follow the manual compilation procedure

(as outlined in Sections 4.1 and 4.2) the first time the block is compiled after changing the number of input

or output signals.

40

Chapter 5

Interface Development

In order to efficiently conduct control design, flight testing, and data acquisition, there are three primary

interfaces that need to be considered in the design of the simulator environment: the interface between

the simulator components, the interface between the simulator and the pilot, and the interface between the

simulator software and the operator. Each of these interfaces must be properly designed in order for the

simulator to function effectively.

The interface between the simulator components must be defined so that the communication between

each pair of components is compatible. Each element of the simulator is connected to the local area network,

over which communication is enabled through UDP. The messages sent over the network are defined by the

header files discussed in Section 3.1.1, while message targets are specified by the IPv4 address and port

information defined by the islnetports.h header file. Messages communicated between two components are

always defined by a single data packet header file for that component pair, so proper definition of the pairwise

header files ensures congruous information transfer between Simulink and X-Plane, Simulink and the cockpit

display, and between the Frasca cockpit controls and Simulink. The same communications strategy is also

used for the desktop piloted simulation: pilot commands are defined through a data packet header file to

transfer joystick commands from X-Plane to the Simulink model, however communication is done only on

the host computer rather than a network.

The interface between the pilot and the simulator is defined by the Frasca cockpit flight controls and by

the feedback from both the X-Plane visualization and the cockpit display panel. It is important to construct

a cockpit environment where information is presented to the pilot in a clear, intuitive, and veridical manner,

and that the control inputs provide functionality with which the pilot is familiar. As the Frasca cockpit

controls are similar to those found in real aircraft, pilot familiarity is not a major concern provided the

control inputs are mapped appropriately in the simulation. Information about the world environment is

generated through the X-Plane graphics and the three projectors to provide a representative viewpoint for

the pilot, and aircraft information is presented to the pilot through a flat panel display running the digital

instrument panel from Figure 2.6. The instrument panel display has been quite useful for testing conducted

41

to date, however upcoming flight tests require the use of an augmented glass cockpit-style display, which

is more representative of cockpit environments found in transport class aircraft. The new panel design

will allow simulator testing using new visual cues in an effort to increase pilot situational awareness during

aircraft component failure or aircraft upset conditions in order to prevent LoC.

Additionally, a user-friendly interface has been developed to enable efficient use of the TCM simulation

software by the simulator operator. This interface provides the user with a convenient environment to setup

the simulation in the the desired mode and with user-specified initial conditions, as well as providing the

ability to efficiently record and store data during flight testing.

5.1 Simulation User Interface

5.1.1 Simulation Setup

Simulation setup is conducted through the use of a Graphical User Interface (GUI), shown in Figure 5.1,

which was built using the Matlab GUIDE software. The various fields of the GUI allow the user to select

the simulation mode and controller configuration, Simulink model name, simulation initial conditions, and

environmental conditions.

The upper half of the GUI in Figure 5.1 defines the simulation mode and controller configuration. The

Select sim type option allows the user to choose between batch simulation, desktop piloted simulation,

and flight simulator mode by checking the option Desktop sim, Desktop sim with X-Plane, or ISL sim,

respectively. The Model Name option is used to specify the name of the Simulink model to be used for

the simulation, useful if there are multiple simulation models. The Select Controller section of the GUI

lets the user choose between multiple controller configurations, as well as to select whether flight envelope

protection is enabled and which protections are active. The throttle operation mode can also be set to either

a pass-through mode to command engine pressure ratio directly, or as a speed or altitude command using

the EPR, Speed, and Altitude options the Throttle command mode section of the GUI.

Initial conditions of the simulation and environmental parameters are set under the Initial Conditions

section in the lower half of Figure 5.1. Selecting either of the predefined initial condition sets NASA default

or O’Hare takeoff will change all of the variables to the values defined in the set. Selecting a location through

the Airport Selection dropdown menu will change the initial position information by setting the appropriate

latitude, longitude, and runway altitude. Individual parameters may be altered through the text entry boxes

in the Select initial conditions portion of the GUI. Environmental conditions are set through the wind speed,

direction and turbulence level options in the Select wind properties panel. Finally, clicking on the Setup

42

Figure 5.1: Graphical user interface used to set up and initialize the TCM Simulink model.

43

Simulation button will send the user-specified information to the TCM setup script to trim the aircraft and

prepare the model for simulation.

The GUI relies on callback functions which are executed based on user actions in the GUI. Each element

of the GUI has a callback function that runs anytime a parameter of that element changes, and there are also

callbacks that run when the GUI is opened or closed. The GUIDE software autocodes the basic functions of

the GUI when it is created, however the callbacks may be manually edited to perform the desired operations.

A listing of the manually edited callbacks for the TCM simulation is provided in Listing B.1. Each element

of the GUI is an object that can be accessed through a handle, and element parameters can be queried or

specified using the get(·) and set(·) commands. Handle names can be specified in the object properties menu

in the GUIDE software.

When the GUI script is first run, the startup callback setupTCM OpeningFcn, lines 2-64 of Listing B.1,

is executed to set the default values of the GUI parameters. Setting up default parameter values is done as a

shortcut for simulation setup; the default configuration is automatically set to enable the user to immediately

setup the simulation if desired. Selecting options within the GUI executes that element’s callback function.

For example, selecting the NASA default option in the initial conditions panel uses the nasa def Callback

function in lines 115-146 of Listing B.1 to set the string parameter of the initial condition text entry fields

to the set of prespecified values that starts the simulation off with the aircraft in flight over NASA’s Wallops

Flight Facility. Other GUI objects that have callbacks that edit handle values of related objects are the

O’Hare takeoff and Airport Selection option, which alter the initial condition values, as well as the elements

in the Active protections panel, which all interact with the FEP All On and FEP All Off options.

Selecting the Setup Simulation button runs the setup sim Callback function in lines 68-111 of Listing B.1.

The setup sim Callback function queries the values of the GUI objects to collect the simulation setup in-

formation, which is then stored in the data structure IC. The structure is then passed to the Matlab base

workspace and the TCM initialization script is called. The initial condition information is used to trim the

aircraft to the specified state using the NASA-supplied trimming support utility, and the simulation type

and controller configuration options are used to specify the link to the appropriate Input block used by the

configurable subsystem discussed in Section 3.2. Upon successful completion of the model setup, the GUI is

closed and the Simulink model is ready for operation.

The use of a GUI provides an efficient and convenient utility for the simulation operator to setup the

simulation for flight testing and for switching between simulation modes. Additional space has been allotted

in the GUI for expansion of functionality as the development and testing work progresses.

44

Figure 5.2: Data logging block parameter selection dialog. Data logging in the simulation can be enabled
or disabled along with the postprocessing functions, and the data sampling rate can be specified.

5.1.2 Data Acquisition

Data recording and storage from a set of flight tests or simulations for later postprocessing and analysis is a

necessary function for the simulation environment, especially if the flight test objectives are to compare mul-

tiple simulation runs using different pilots or FCS configurations. The data acquisition process for the TCM

simulation is facilitated by the development of a data acquisition interface which is a significant modification

of the data logging functionality provided with the original TCM simulation. Data are collected into a single

bus structure using the global signal routing tags in the model, then routed into the NamedStore struct block

on the far right of Figure 2.1. The original TCM simulation used Simulink’s built in data logging function-

ality with a postprocessing function to store the information in a data structure in the Matlab workspace.

The data structure could then be saved manually if desired, and the logging functionality could be turned

on or off as well.

In order to present the flight test data to the simulation operator in an efficient manner for postprocessing

after a series of flight tests or batch simulations, it was necessary to modify the existing data collection

function. Data recording may be toggled by double-clicking on the NamedStore struct block and checking

or unchecking the Enable Data Logging field, as shown in Figure 5.2. The data can be output in its raw

form from the Simulink data logging utility if desired by disabling the Post-process logsout option, and the

data sample rate can also be altered in the NamedStore struct parameter dialog to increase resolution or to

reduce disk memory usage.

45

The data from a flight test session may be recorded and saved using the Simulink model Play, Pause, and

Stop commands. Clicking the Play button will start the simulation and start recording data. Data will be

recorded until either a Pause or Stop command is given, or until the simulation stop time has elapsed. Once

the simulation is paused or stopped, the output data stream is processed and stored in a structure, then

saved in a time-stamped file in the simulation data directory. If the simulation was paused and resumed,

the output data stream is bookmarked at the time of the pause. Upon the next Pause or Stop command,

the output data stream is again processed, but only the data from the last bookmark is stored and saved in

a new time-stamped file. Bookmarking and selective output of the data stream allows the user to control

the data output using preexisting Simulink functionality to reduce data postprocessing and analysis time by

automatically saving only the desired data into an easily identifiable file. Additionally, it is desirable to be

able to modify the output structure that is recorded as testing needs dictate. Therefore, the data recording

utility should also be able to parse the data output dynamically.

The data acquisition functionality is obtained through Matlab code implemented as block property call-

backs, which may be accessed by right-clicking on a block and selecting Block Properties. The initialization

callback saves the initial configuration at setup time and stores it in the variable SetupInfo. The initializa-

tion callback is provided in Listing 5.1. When the simulation is started, the time bookmark flag is set to −1

so that data will be recorded from the start of the simulation. When the simulation is paused or stopped,

the pause or stop callback function is invoked to store the data output from the previous bookmark time.

The identical pause and stop function callbacks are given in Listing 5.2. The function checks to ensure that

data logging and postprocessing are enabled, then processes the data log variable logsout using the NASA

provided utility CreatSimOut. The data structure is then processed through the function MakeTestOutput,

which strips out data recorded prior to the last bookmark time and reduces the data using the specified

sampling rate. The current time is then appended to the standard filename and the modified structure is

saved under the time-stamped filename. The source code for the MakeTestOutput function and its helper

function getfields, which dynamically parses a structure and returns an array of variable names that define

a new structure to be saved, are provided in Listings C.1 and C.2.

Listing 5.1: Initialization callback for NamedStore struct block.

root mws = grabmws(bdroot) ;
2 SetupInfo = root mws . SetupInfo ;

c l e a r root mws ;

46

Listing 5.2: Pause and Stop function callback for NamedStore struct block.

1 i f strmatch (get param (gcb , ’ enab l e l ogg i ng ’) , ’ on ’ , ’ exact ’) ,
i f get param (bdroot , ’ SimulationTime ’)>l a s t t ime ,

3 i f strmatch (get param (gcb , ’ do s top f cn ca l l ba ck ’) , ’ on ’ , ’ exact ’) ,
i f e x i s t (’ l o g s ou t ’ , ’ var ’) ,

5 sout = CreateSimOut (l og s ou t) ;
[f s t r u c t , fname]=MakeTestOutput (sout , l a s t t ime) ;

7 f s t r u c t . SetupInfo = SetupInfo ;
save (fname , ’ f s t r u c t ’) ;

9 end ,
c l e a r l og s ou t ;

11

%la t ch cur r ent time
13 l a s t t ime =get param (bdroot , ’ SimulationTime ’) ;

end ,
15 end ,

end

47

Chapter 6

Piloted Testing

Ongoing PITL testing at ISL has been crucial to the development and evaluation of both the simulation

environment and the controls design work for the iReCoVeR flight control system. Pilot and simulator

operator feedback have been employed to improve the simulator hardware, software, and flight control

systems. Feedback regarding functionality and ease of use is critical to developing a simulation environment

that is representative of a real aircraft and realistic enough to ensure that meaningful results can be obtained

through flight tests. Operator feedback is also important for development of the software utilities so that they

enable the operator to conduct testing, data acquisition, and analysis in an efficient and effective manner.

Early flight tests at ISL focused primarily on system shakedown and performance tests, and included

control input mapping and command shaping to properly interpret the pilot control inputs from the Frasca

cockpit, as well as testing the cockpit instrument panel and visualization operation and verifying communica-

tion system operation. Having verified the functionality of the simulator system, testing moved to refinement

of system components. Pilot feedback was utilized to refine the control mapping, along with the layout and

information content of the instrument panel.

Recent testing work has concentrated on evaluation of the flight control system, specifically the FEP and

LoC prediction and prevention systems. FEP and LoC prevention system testing has been conducted using

environmental disturbance models which lead to potential aircraft upset and LoC conditions. Environmental

disturbance situations tested at ISL include a simulated microburst based on the wind speed profile and

flight path of Delta 191 during the microburst leading to the accident at the Dallas-Fort Worth airport in

1985, and also a generalized gust disturbance model that uses a sequence of “(1− cos)” profiles to generate

a wind profile. A typical (1− cos) profile can be seen in Figure 6.1, and implementation of the general gust

disturbance model is discussed in Section 6.1. Flight testing using the FEP and LoC prevention systems has

yielded useful data and has shown benefits for mitigation of aircraft upset situations and for LoC prevention

[11]. However, flight tests have highlighted the need for an improved pilot interface.

Automated systems such and the FEP and LoC prediction and prevention systems pose a risk to pilot

situational awareness in the cockpit. Actions taken by automated systems may not be noticed or understood

48

Figure 6.1: “(1− cos)” gust profile, named for the rise and falloff of the signal which follows the profile
1− cos(ωt).

by the pilot, especially if the system is opaque to the pilot or utilizes information not available to the pilot.

Whenever automated system actions are not clearly visible there exists the threat that the pilot may not

fully understand the state of the aircraft, and therefore may not be able to respond appropriately, unless the

actions of the automated systems are communicated clearly. Research into both the technical and human

factors elements of cockpit interface design will be a major part of upcoming testing at ISL. Future research

work will involve the design and evaluation of a new cockpit display based on the glass cockpit environment

found in modern transport class aircraft, augmented with information from the FEP and other automated

control systems in an effort to enhance pilot situational awareness to prevent LoC during aircraft upset

conditions.

6.1 Environmental Disturbance Modeling

The gust disturbance model implemented in the TCM simulation is built on top of the environmental

disturbance model provided with the TCM Simulink model, and is used to generate a wind gust scenario

whose profile is defined as a summation of (1− cos) profiles. The new gust disturbance model allows for the

definition of test scenarios consisting of multiple independent gusts, occurring separately or simultaneously,

which are repeatable, flexible, and can be tuned and modified to produce a desired scenario.

A scenario is defined by three sets of gusts: a set of tailwind (TW) gusts which initiate in the direction

parallel to the projection of the longitudinal axis of the airplane in the horizontal plane, a set of side gusts

(SG) which initiate in the direction perpendicular to the projection of the longitudinal axis of the airplane

in the horizontal plane, and a set of downdraft (DD) gusts in the vertical direction with positive direction

defined as toward the ground. The sets of gusts are independent and may each have an arbitrary nonnegative

49

number of gusts. Each gust is defined by its onset time Ts, rise time Tr, hold time Th, wind speed k, and

turbulence level l. The meaning of the gust parameters is illustrated in Figure 6.1, except for the turbulence

level which is an integer value between 1 and 4 inclusive, with 1 corresponding to no turbulence and 2, 3,

and 4 corresponding to light, moderate, and severe turbulence respectively.

The set of scenarios is stored in a data structure, and each scenario is itself a structure composed of

three 6-column matrices TW , SG, and DD, and a gust heading hold parameter which can be 0 or 1. The

heading hold parameter specifies whether a wind gust, once initiated in a given direction, will maintain a

constant bearing regardless of which direction the aircraft subsequently turns, or whether the gust direction

rotates with the aircraft in the horizontal plane. The first column of each matrix is the gust number, used

for convenience to keep track of the number of gusts, and the remaining columns are the values of the five

parameters respectively. The number of rows in each matrix, denoted nTW , nSG, and nDD, are the number

of gusts that will initially impact the aircraft in each direction.

A single (1− cos) gust profile is defined as

G(t) = g(t, Ts, Tr, k)− g(t, Ts + Tr + Th, Tr, k), (6.1)

where

g(t, Ts, Tr, k) =
k

2

[

1− cos

(

satπ0

[

(t− Ts)
2π

sat1000.01 [2Tr]

])]

, (6.2)

and sat is the saturation function. LetGTW , GSG, andGDD be gusts in the body coordinate frame Tail, Side,

and Down, and define the column vectors r1(ψ) = (cosψ sinψ 0)⊺, r2(ψ) = (− sinψ cosψ 0)⊺,

and r3 = (0 0 1)⊺, where ψ is the aircraft heading angle. Now let R(ψ) be the rotation matrix

R(ψ) =

(

r1(ψ) r2(ψ) r3

)

, (6.3)

then the ith gust in the inertial North, East, Down frame used by the default TCM environment model is













GNi

GEi

GDi













= R(ψ)













GTWi

GSGi

GDDi













, (6.4)

50

and the total gust in the inertial frame is given by













GNi

GEi

GDi













=

nTW
∑

i=1

r1(ψ)GTWi
+

nSG
∑

i=1

r2(ψ)GSGi
+

nDD
∑

i=1

r3GDDi
. (6.5)

Using the method in Equations 6.1 through 6.5 to define disturbances allows for flexible definition of

disturbance scenarios, and can approximate nearly any desired disturbance profile, given enough gust defini-

tions, in a manner similar to series approximation. However, series approximation using this gust generation

technique could become tedious due to the manual definition of gust events currently employed. The method

described here is therefore better suited for simple or mildly complex profiles. The above method is also

not particularly realistic in that the gust direction rotates in the horizontal plane with the aircraft. A more

realistic mechanism is to hold the gust heading constant at its onset time. Then each gust will have the

desired initial effect, but the individual gust heading will be constant through its duration. Note that this

is only a concern in the TW and SG directions, as the downward gusts are not affected by aircraft rotation

in the above model.

Define

ψH ∈ R
nTW+nSG . (6.6)

Then if the gust heading hold option is set to 1, for each i ∈ [1, 2, . . . , nTW + nSG], if gust i is in progress

(which can be checked by either t > Tsi or Gi(t) 6= 0), let

ψHi
= ψHi

, (6.7)

otherwise let

ψHi
= ψ. (6.8)

Then the total gust can be calculated as













GNi

GEi

GDi













=

nTW
∑

i=1

r1 (ψHi
)GTWi

+

nSG
∑

i=1

r2

(

ψHnTW +i

)

GSGi
+

nDD
∑

i=1

r3GDDi
. (6.9)

The method using the heading hold option in Equation 6.9 is a more realistic implementation that can be

used to generate environmental disturbances used for flight testing. The disturbance model architecture

51

described here provides an environment where multiple scenarios can be created, stored, and imported into

the model to provide user-defined repeatable disturbance events.

Associated with each gust is a turbulence level. The turbulence is generated using the Dryden turbulence

model, which takes an integer value argument to create white noise turbulence of the intensity specified by

the argument, from no turbulence to severe. The overall turbulence level during each scenario is calculated

similarly to the wind gust speed. Define the turbulence level for each gust as

li ∈ {1, 2, 3, 4} (6.10)

and the turbulence level for the ith gust as

Li = g(t, Ts, Tr, li)− g(t, Ts + Tr + Th, Tr, li). (6.11)

Then the overall turbulence level is calculated by

L =
⌊

sat41

[

max
i

{LTWi
, LSGi

, LDDi
}
]⌋

, (6.12)

where ⌊·⌋ denotes the floor function. Then the turbulence level is scaled with the magnitude of the gust it

accompanies and occurs simultaneously with the gust.

Implementation of the disturbance model is done in the Winds block of Figure 2.1. Within the Winds

block, the disturbance model sends gusts in the North, East, Down inertial frame and passes the turbulence

level variable to the Dryden turbulence model, illustrated in Figure 6.2. The scenario variable is imported

through constant-value blocks and passed to a Matlab function block which performs the calculations for

the disturbance model.

52

Figure 6.2: Implementation of the general gust disturbance model in the TCM simulation Winds block.

53

Chapter 7

Conclusion

This thesis has presented the work done to implement NASA’s Transport Class Model within a modular flight

simulator environment with independent simulator components communicating over a local area network.

A simulation framework was developed to enable control design and testing in both a laboratory and flight

simulator setting using a single Simulink model. The simulator development was accomplished through the

creation of an Input library using a configurable subsystem to switch between simulation modes and flight

control law configurations. A graphical user interface was developed to assist the simulation operator with

configuring the simulation and setting initial conditions for both flight testing and batch simulations. The

thesis has also documented the process of compiling subsystems of the TCM Simulink model to improve the

simulation performance. The subsystems are compiled using Matlab’s Real-Time Workshop utility, and tools

were developed to automate the process of compiling the aircraft dynamics and flight control systems, while

preserving the operability of the existing support functions for the TCM. An environmental disturbance

model was also designed to allow for the creation of repeatable disturbance scenarios for flight testing, which

uses additive gust profiles with optional turbulence to define the overall disturbance.

Initial flight testing at ISL has been beneficial for improvement of the simulator and the software tools

presented in this thesis. Testing has also yielded positive results concerning the development of the iRe-

CoVeR flight control system, the current version consisting of a baseline gain-scheduled control and stability

augmentation system with flight envelope protection and LoC prediction and prevention systems. Future

work at ISL will involve the creation and evaluation of a pilot interface designed to enhance pilot situa-

tional awareness during environmental disturbance events, with the goal of preventing LoC events during

aircraft upset. Opportunities for improving the simulator environment will continue to be investigated, and

the results obtained through the use of the simulator software and through flight testing will translate to

expedited development of flight control systems.

54

Appendix A

Compiled Simulink Block Source

Code

Listing A.1: buildFCS.m: Matlab script for automated compiling of the flight control system Simulink

block.

%%

2 % build FCS .m

%

4 % Generates mex f i l e f o r TCM FCS developed by Niko Tekles .

%

6 % Inputs :

% None

8 %

% Outputs :

10 % None

%

12 % Bui lds the FCS block in gtm designFS FCS/NavGuidControl with an

% s−f unc t i on ta r g e t . Saves masked s−f unc t i on block and r ep l a c e s i n s tance s

14 % used by gtm designFS FCS and gtm designFS .

% Replaces mex f i l e i n mex f i l e s d i r e c to r y with new ve r s i on .

16 %

% Author : Kasey Ackerman

18 % kaa ck e r 2@ i l l i n o i s . edu

% Created : 2 Apr 2014

20 % Modi f i ed : 2 Apr 2014 by K. Ackerman

%

22 %%

24 % We need to c l e a r the data from the workspace , conf i rm be f o r e proceed ing

f p r i n t f (1 , ’ Bu i ld ing FCS mex f i l e . . . \ n\nWARNING: t h i s w i l l e r a s e a l l data from the workspace

\n\n [y/N] ’) ;

26 proceed = input (’ ’ , ’ s ’) ;

i f (˜ strcmp (proceed , ’ y ’))&&(˜strcmp (proceed , ’Y ’))

28 e r r o r (’ bui ld FCS abort ’ , ’ build FCS func t i on bu i ld aborted by user ’) ;

55

end

30 c l e a r a l l ;

32 % sto r e cur r ent d i r e c to r y l o c a t i o n and change to FCS src

homedir = pwd ;

34 cd . / FCS src ;

36 % Run setup f i l e and bu i ld FCS block

setupFS FCS ;

38 r twbui ld (’ gtm designFS FCS/NavGuidControl /FCS ’) ; % FCS

save system (’ un t i t l e d ’ , ’ FCS sfcn ’) ;

40 bdc l os e (’ u n t i t l e d ’) ;

42 % Replace FCS block in model used f o r compi l ing

open system (’ FCS sfcn ’) ;

44 r ep l a c e b l o ck (’ gtm designFS FCS/NavGuidControl ’ , ’Name ’ , ’S−Function ’ , ’ FCS sfcn /FCS ’ , ’

noprompt ’) ;

save system (’ gtm designFS FCS ’) ;

46 bdc l os e (’ gtm designFS FCS ’) ;

eva l ([’ cd ’ , homedir]) ;

48

% Replace FCS block in UserContent l i b

50 open system (’ UserContent l i b ’)

set param (’ UserContent l i b ’ , ’ Lock ’ , ’ o f f ’)

52 r ep l a c e b l o ck (’ UserContent l i b /FCS ’ , ’Name ’ , ’ FCS sfcn ’ , ’ FCS sfcn /FCS ’ , ’ noprompt ’) ;

save system (’ UserContent l i b ’) ;

54 bdc l os e (’ UserContent l i b ’) ;

bdc l os e (’ FCS sfcn ’) ;

56

% Move mex f i l e to main mex f i l e s t o r age d i r e c to r y

58 archtype = computer (’ arch ’) ;

p r o c e s s o r = archtype ((end−1) : end) ;

60 c o p y f i l e ([’ . / FCS src/FCS sf .mexw ’ , p r o c e s s o r] , [’ . / mex f i l e s /FCS sf .mexw ’ , p r o c e s s o r]) ;

62 f p r i n t f (1 , ’FCS bui ld complete . P l ease run <setupTCM> to r e f r e s h l i b r a r y l i n k s .\n\n ’) ;

c l e a r a l l ;

64 r e turn ;

56

Listing A.2: buildDYN.m: Matlab script for automated compiling of the TCM aircraft dynamics block.

%%

2 % build DYN .m

%

4 % Generates mex f i l e f o r modi f i ed ve r s i on o f TCM dynamics block .

%

6 % Inputs :

% None

8 %

% Outputs :

10 % None

%

12 % Bui lds the GTM FS block in gtm designFS DYN with an s−f unc t i on ta r g e t .

% Saves masked s−f unc t i on block and r ep l a c e s i n s tance s used by

14 % gtm designFS DYN sfun model and gtm des ignFS sfun model .

% Replaces mex f i l e i n mex f i l e s d i r e c to r y with new ve r s i on .

16 %

% Author : Kasey Ackerman

18 % kaa ck e r 2@ i l l i n o i s . edu

% Created : 2 Apr 2014

20 % Modi f i ed : 2 Apr 2014 by K. Ackerman

%

22 %%

24 % We need to c l e a r the data from the workspace , conf i rm be f o r e proceed ing

f p r i n t f (1 , ’ Bu i ld ing FCS mex f i l e . . . \ n\nWARNING: t h i s w i l l e r a s e a l l data from the workspace

\n\n [y/N] ’) ;

26 proceed = input (’ ’ , ’ s ’) ;

i f (˜ strcmp (proceed , ’ y ’))&&(˜strcmp (proceed , ’Y ’))

28 e r r o r (’ build DYN abort ’ , ’ build DYN func t i on bu i ld aborted by user ’) ;

end

30 c l e a r a l l ;

32 % sto r e cur r ent d i r e c to r y l o c a t i o n and change to FCS src

homedir = pwd ;

34 cd . /DYN src ;

36 % Run setup f i l e and bu i ld GTM FS block

setupFS DYN(1) ;

38 r twbui ld (’ dynamics f o r compi l e /GTM FS ’) ;

57

save system (’ un t i t l e d ’ , ’GTM FS sfcn ’) ;

40 bdc l os e (’ u n t i t l e d ’) ;

save system (’ dynamics f o r compi l e ’) ;

42 bdc l os e (’ dynamics f o r compi l e ’) ;

44 % Get the number o f parameters in the GTM FS s−f unc t i on mask

open system (’GTM FS sfcn ’) ;

46 t ry

i = 1 ;

48 whi le 1

eva l ([’ get param (’ ’GTM FS sfcn/GTM FS ’ ’ , ’ ’ sfcnParam ’ , num2str (i) , ’ ’ ’) ; ’]) ;

50 i = i +1;

end

52 catch

num params = i −1;

54 end

56 % These are the parameters that had to be changed to al low these v a r i a b l e s

% to be i n l i n e d

58 % rep l a c e t h i s with t h i s

params2change = { ’ Act AilPL ’ , ’ Act . AilPL ’ ; . . .

60 ’ Act ElevLL ’ , ’ Act . ElevLL ’ ; . . .

’ Act ElevUL ’ , ’ Act . ElevUL ’ ; . . .

62 ’Act RudPL ’ , ’ Act .RudPL ’ ; . . .

’ Act SplPL ’ , ’ Act . SplPL ’ ; . . .

64 ’ b ias N1 ’ , ’ b i a s .N1 ’ ; . . .

’ bias TRA ’ , ’ b i a s .TRA’ ; . . .

66 ’ b i a s a i l e r o n ’ , ’ b i a s . a i l e r o n ’ ; . . .

’ b i a s e l e v a t o r ’ , ’ b i a s . e l eva to r ’ ; . . .

68 ’ b i a s f l a p s ’ , ’ b i a s . f l a p s ’ ; . . .

’ b ias geardown ’ , ’ b i a s . geardown ’ ; . . .

70 ’ b i a s r udde r ’ , ’ b i a s . rudder ’ ; . . .

’ b i a s speedbrake ’ , ’ b i a s . speedbrake ’ ; . . .

72 ’ b i a s s t a b i l i z e r ’ , ’ b i a s . s t a b i l i z e r ’ ; . . .

’ b i a s t h r o t t l e ’ , ’ b i a s . t h r o t t l e ’ } ;

74

% Change the va lues o f the parameters to t h e i r o r i g i n a l v e r s i on (r i gh t

76 % column above)

f o r i = 1 : num params

78 prm = eva l ([’ get param (’ ’GTM FS sfcn/GTM FS ’ ’ , ’ ’ sfcnParam ’ , num2str (i) , ’ ’ ’) ; ’]) ;

58

f o r j = 1 : s i z e (params2change , 1)

80 i f strcmp (prm , params2change{ j , 1})

eva l ([’ set param (’ ’GTM FS sfcn/GTM FS ’ ’ , ’ ’ sfcnParam ’ , num2str (i) , ’ ’ ’ ,

params2change{ j , 2}) ; ’])

82 end

end

84 end

save system (’GTM FS sfcn ’) ;

86

% Replace GTM FS block in plant model s t o r age : gtm des ignFS sfun model

88 eva l ([’ cd ’ , homedir]) ;

addpath (’ . / mdls ’) ;

90 rehash path ;

open system (’ gtm des ignFS sfun model ’) ;

92 r ep l a c e b l o ck (’ gtm des ignFS sfun model /GTM FS PLNT SFUN ’ , ’Name ’ , ’GTM FS ’ , ’GTM FS sfcn/

GTM FS ’ , ’ noprompt ’) ;

save system (’ gtm des ignFS sfun model ’) ;

94 bdc l os e (’ gtm des ignFS sfun model ’) ;

bdc l os e (’GTM FS sfcn ’) ;

96

% Move mex f i l e to main mex f i l e s t o r age d i r e c to r y

98 archtype = computer (’ arch ’) ;

p r o c e s s o r = archtype ((end−1) : end) ;

100 c o p y f i l e ([’ . /DYN src/GTM FS sf .mexw ’ , p r o c e s s o r] , [’ . / mex f i l e s /GTM FS sf .mexw ’ , p r o c e s s o r]) ;

102 f p r i n t f (1 , ’DYN bui ld complete . P l ease run <setupTCM> to import compiled dynamics i n to TCM

simulat i on .\n\n ’) ;

c l e a r a l l ;

104 r e turn ;

59

Appendix B

TCM Setup GUI Callback Source

Code

Listing B.1: Modified callback functions for TCM setup graphical user interface. This is not a complete

listing of the callback code, only the modified functions have been listed.

% −−− Executes j u s t b e f o r e setupTCM i s made v i s i b l e .

2 f unc t i on setupTCM OpeningFcn(hObject , eventdata , handles , vararg in)

% This f unc t i on has no output args , s ee OutputFcn .

4 % hObject handle to f i g u r e

% eventdata r es erved − to be de f ined in a f u tu r e ve r s i on o f MATLAB

6 % handles s t r u c tu r e with handles and user data (s ee GUIDATA)

% vararg in command l i n e arguments to setupTCM (see VARARGIN)

8

% Startup commands

10 % Set i n i t i a l va lues f o r the GUI

s e t (handles . c a s s e l e c t , ’ Value ’ , 1) ;

12 s e t (handles . a l t s e l e c t , ’ Value ’ , 1) ;

s e t (handles . l a t s e l e c t , ’ Value ’ , 1) ;

14 s e t (handles . l o n s e l e c t , ’ Value ’ , 1) ;

s e t (handles . r unwaya l t s e l e c t , ’ Value ’ , 1) ;

16 s e t (handles . a l pha s e l e c t , ’ Value ’ , 1) ;

s e t (handles . gamma select , ’ Value ’ , 1) ;

18 s e t (handles . b e t a s e l e c t , ’ Value ’ , 1) ;

s e t (handles . h ead i ng s e l e c t , ’ Value ’ , 1) ;

20 s e t (handles . f l a p s s e l e c t , ’ Value ’ , 1) ;

s e t (handles . g e a r s e l e c t , ’ Value ’ , 1) ;

22

s e t (handles . i s l s im , ’ Value ’ , 1) ;

24 s e t (handles . nasa def , ’ Value ’ , 1) ;

s e t (handles . ohar e de f , ’ Value ’ , 0) ;

26 s e t (handles . desktop sim , ’ Value ’ , 0) ;

s e t (handles . desktopxp sim , ’ Value ’ , 0) ;

28 s e t (handles . i s l s im , ’ Value ’ , 1) ;

60

30 s e t (handles . model name , ’ St r ing ’ , ’ gtm designFS ’) ;

s e t (handles . fepcon , ’ Value ’ , 1) ;

32 s e t (handles . aoafep , ’ Value ’ , 1) ;

s e t (handles . nzfep , ’ Value ’ , 1) ;

34 s e t (handles . theta f ep , ’ Value ’ , 1) ;

s e t (handles . vfep , ’ Value ’ , 1) ;

36 s e t (handles . betafep , ’ Value ’ , 1) ;

s e t (handles . phi f ep , ’ Value ’ , 1) ;

38 s e t (handles . e f ep , ’ Value ’ , 1) ;

s e t (handles . throtIsEPR , ’ Value ’ , 1) ;

40 s e t (handles . locprev , ’ Value ’ , 1) ;

s e t (handles . FEPAllOn , ’ Value ’ , 1) ;

42 s e t (handles . FEPAllOff , ’ Value ’ , 0) ;

44 s e t (handles . a i rpor t , ’ Value ’ , 1) ;

s e t (handles . cas input , ’ S t r ing ’ , ’ 250 ’) ;

46 s e t (handles . a l t i npu t , ’ S t r ing ’ , ’ 10 e3 ’) ;

s e t (handles . l a t i npu t , ’ S t r ing ’ , ’ 37 .827926944 ’) ;

48 s e t (handles . l on input , ’ S t r ing ’ , ’ −75.494061666 ’) ;

s e t (handles . runwayal t input , ’ S t r ing ’ , ’ 12 ’) ;

50 s e t (handles . a lpha input , ’ S t r ing ’ , ’ 3 ’) ;

s e t (handles . gamma input , ’ S t r ing ’ , ’ 0 ’) ;

52 s e t (handles . beta input , ’ S t r ing ’ , ’ 0 ’) ;

s e t (handles . heading input , ’ S t r ing ’ , ’ 90 ’) ;

54 s e t (handles . f l ap s i npu t , ’ Value ’ , 1) ;

s e t (handles . gear input , ’ Value ’ , 1) ;

56 s e t (handles . windSpd , ’ St r ing ’ , ’ 0 ’) ;

s e t (handles . windDir , ’ S t r ing ’ , ’ 0 ’) ;

58 s e t (handles . turbLev , ’ Value ’ , 1) ;

s e t (handles . windsModel , ’ Value ’ , 1) ;

60

% Choose de f au l t command l i n e output f o r setupTCM

62 handles . output = hObject ;

% Update handles s t r u c tu r e

64 guidata (hObject , handles) ;

66

% −−− Executes on button p r e s s in setup s im .

68 f unc t i on setup s im Cal lback (hObject , eventdata , handles)

% hObject handle to setup s im (see GCBO)

61

70 % eventdata r es erved − to be de f ined in a f u tu r e ve r s i on o f MATLAB

% handles s t r u c tu r e with handles and user data (s ee GUIDATA)

72

% Save user input to base workspace

74 IC . mdl name = get (handles . model name , ’ St r ing ’) ;

IC . cas = str2num (get (handles . cas input , ’ S t r ing ’)) ;

76 IC . a l t = str2num (get (handles . a l t i npu t , ’ S t r ing ’)) ;

IC . l a t = str2num (get (handles . l a t i npu t , ’ S t r ing ’)) ;

78 IC . lon = str2num (get (handles . l on input , ’ S t r ing ’)) ;

IC . runwayalt = str2num (get (handles . runwayal t input , ’ S t r ing ’)) ;

80 IC . alpha = str2num (get (handles . a lpha input , ’ S t r ing ’)) ;

IC .gamma = str2num (get (handles . gamma input , ’ S t r ing ’)) ;

82 IC . beta = str2num (get (handles . beta input , ’ S t r ing ’)) ;

IC . heading = str2num (get (handles . heading input , ’ S t r ing ’)) ;

84 f l a p s a r r a y = get (handles . f l ap s i npu t , ’ S t r ing ’) ;

IC . i n i t f l a p s p o s = get (handles . f l ap s i npu t , ’ Value ’) ;

86 IC . f l a p s = str2num (f l a p s a r r a y {IC . i n i t f l a p s p o s }) ;

IC . gear = get (handles . gear input , ’ Value ’)−1;

88

IC . simtype = f i nd ([get (handles . desktop sim , ’ Value ’) ; get (handles . desktopxp sim , ’ Value ’) ;

get (handles . i s l s im , ’ Value ’)]) ;

90 IC . contype = f i nd ([get (handles .OLCon, ’ Value ’) ; get (handles . latCon , ’ Value ’) ; get (handles .

fepcon , ’ Value ’)]) ;

92 IC .FEP. aoa = get (handles . aoafep , ’ Value ’) ;

IC .FEP. nz = get (handles . nzfep , ’ Value ’) ;

94 IC .FEP. theta = get (handles . theta f ep , ’ Value ’) ;

IC .FEP. v = get (handles . vfep , ’ Value ’) ;

96 IC .FEP. beta = get (handles . betafep , ’ Value ’) ;

IC .FEP. phi = get (handles . phi f ep , ’ Value ’) ;

98 IC .FEP. e = get (handles . e f ep , ’ Value ’) ;

IC . speedcontro l = f i nd ([get (handles . throtIsEPR , ’ Value ’) , get (handles . throt I sA l t , ’ Value ’) ,

get (handles . throtIsSpd , ’ Value ’)])−1;

100 IC . LOClogic = get (handles . locprev , ’ Value ’) ;

102 IC . windSpd = str2num (get (handles . windSpd , ’ St r ing ’)) ;

IC . windDir = str2num (get (handles . windDir , ’ S t r ing ’)) ;

104 IC . turbLev = get (handles . turbLev , ’ Value ’) ;

IC . windsModel = get (handles . windsModel , ’ Value ’) ;

106

62

a s s i g n i n (’ base ’ , ’ IC ’ , IC) ;

108

% Setup the model and c l o s e the GUI

110 TCM init fnc ;

c l o s e (handles .TCMgui)

112

114 % −−− Executes on button p r e s s in nasa de f .

f unc t i on nasa de f Ca l lback (hObject , eventdata , handles)

116 % hObject handle to nasa de f (s ee GCBO)

% eventdata r es erved − to be de f ined in a f u tu r e ve r s i on o f MATLAB

118 % handles s t r u c tu r e with handles and user data (s ee GUIDATA)

% Hint : get (hObject , ’ Value ’) r e tu r n s togg l e s t a t e o f nasa de f

120

% Change the i n i t i a l c ond i t i on s to the NASA de f au l t va lues

122 s e t (handles . a i rpor t , ’ Value ’ , 2) ;

124 s e t (handles . c a s s e l e c t , ’ Value ’ , 1) ;

s e t (handles . a l t s e l e c t , ’ Value ’ , 1) ;

126 s e t (handles . l a t s e l e c t , ’ Value ’ , 1) ;

s e t (handles . l o n s e l e c t , ’ Value ’ , 1) ;

128 s e t (handles . r unwaya l t s e l e c t , ’ Value ’ , 1) ;

s e t (handles . a l pha s e l e c t , ’ Value ’ , 1) ;

130 s e t (handles . gamma select , ’ Value ’ , 1) ;

s e t (handles . b e t a s e l e c t , ’ Value ’ , 1) ;

132 s e t (handles . h ead i ng s e l e c t , ’ Value ’ , 1) ;

s e t (handles . f l a p s s e l e c t , ’ Value ’ , 1) ;

134 s e t (handles . g e a r s e l e c t , ’ Value ’ , 1) ;

136 s e t (handles . cas input , ’ S t r ing ’ , ’ 250 ’) ;

s e t (handles . a l t i npu t , ’ S t r ing ’ , ’ 10 e3 ’) ;

138 s e t (handles . l a t i npu t , ’ S t r ing ’ , ’ 37 .827926944 ’) ;

s e t (handles . l on input , ’ S t r ing ’ , ’ −75.494061666 ’) ;

140 s e t (handles . runwayal t input , ’ S t r ing ’ , ’ 12 ’) ;

s e t (handles . a lpha input , ’ S t r ing ’ , ’ 3 ’) ;

142 s e t (handles . gamma input , ’ S t r ing ’ , ’ 0 ’) ;

s e t (handles . beta input , ’ S t r ing ’ , ’ 0 ’) ;

144 s e t (handles . heading input , ’ S t r ing ’ , ’ 90 ’)

s e t (handles . f l ap s i npu t , ’ Value ’ , 1) ;

146 s e t (handles . gear input , ’ Value ’ , 1) ;

63

148

% −−− Executes on button p r e s s in ohar e de f .

150 f unc t i on oha r e de f Ca l l ba ck (hObject , eventdata , handles)

% hObject handle to ohar e de f (s ee GCBO)

152 % eventdata r es erved − to be de f ined in a f u tu r e ve r s i on o f MATLAB

% handles s t r u c tu r e with handles and user data (s ee GUIDATA)

154 % Hint : get (hObject , ’ Value ’) r e tu r n s togg l e s t a t e o f ohar e de f

156 % Change the i n i t i a l c ond i t i on s to setup f o r a t a k e o f f from O’ Hare

% In t e r n a t i o n a l Airport

158 s e t (handles . a i rpor t , ’ Value ’ , 3) ;

160 s e t (handles . c a s s e l e c t , ’ Value ’ , 1) ;

s e t (handles . a l t s e l e c t , ’ Value ’ , 1) ;

162 s e t (handles . l a t s e l e c t , ’ Value ’ , 1) ;

s e t (handles . l o n s e l e c t , ’ Value ’ , 1) ;

164 s e t (handles . r unwaya l t s e l e c t , ’ Value ’ , 1) ;

s e t (handles . a l pha s e l e c t , ’ Value ’ , 1) ;

166 s e t (handles . gamma select , ’ Value ’ , 1) ;

s e t (handles . b e t a s e l e c t , ’ Value ’ , 1) ;

168 s e t (handles . h ead i ng s e l e c t , ’ Value ’ , 1) ;

s e t (handles .OLCon, ’ Value ’ , 1) ;

170 s e t (handles . f l a p s s e l e c t , ’ Value ’ , 1) ;

s e t (handles . g e a r s e l e c t , ’ Value ’ , 1) ;

172

s e t (handles . cas input , ’ S t r ing ’ , ’ 0 ’) ;

174 s e t (handles . a l t i npu t , ’ S t r ing ’ , ’ 667 ’) ;

s e t (handles . l a t i npu t , ’ S t r ing ’ , ’ 41 .9691 ’) ;

176 s e t (handles . l on input , ’ S t r ing ’ , ’ −87.9253 ’) ;

s e t (handles . runwayal t input , ’ S t r ing ’ , ’ 667 ’) ;

178 s e t (handles . a lpha input , ’ S t r ing ’ , ’ 0 ’) ;

s e t (handles . gamma input , ’ S t r ing ’ , ’ 0 ’) ;

180 s e t (handles . beta input , ’ S t r ing ’ , ’ 0 ’) ;

s e t (handles . heading input , ’ S t r ing ’ , ’ 90 ’) ;

182 s e t (handles . f l ap s i npu t , ’ Value ’ , 4) ;

s e t (handles . gear input , ’ Value ’ , 2) ;

184

186 % −−− Executes on button p r e s s in aoafep .

64

f unc t i on aoa f ep Cal lback (hObject , eventdata , handles)

188 % hObject handle to aoafep (s ee GCBO)

% eventdata r es erved − to be de f ined in a f u tu r e ve r s i on o f MATLAB

190 % handles s t r u c tu r e with handles and user data (s ee GUIDATA)

% Hint : get (hObject , ’ Value ’) r e tu r n s togg l e s t a t e o f aoafep

192 s e t (handles . FEPAllOn , ’ Value ’ , 0) ;

s e t (handles . FEPAllOff , ’ Value ’ , 0) ;

194

196 % −−− Executes on button p r e s s in the ta f ep .

f unc t i on the ta f ep Ca l l back (hObject , eventdata , handles)

198 % hObject handle to the ta f ep (s ee GCBO)

% eventdata r es erved − to be de f ined in a f u tu r e ve r s i on o f MATLAB

200 % handles s t r u c tu r e with handles and user data (s ee GUIDATA)

% Hint : get (hObject , ’ Value ’) r e tu r n s togg l e s t a t e o f th e ta f ep

202 s e t (handles . FEPAllOn , ’ Value ’ , 0) ;

s e t (handles . FEPAllOff , ’ Value ’ , 0) ;

204

206 % −−− Executes on button p r e s s in vfep .

f unc t i on v f ep Cal lback (hObject , eventdata , handles)

208 % hObject handle to vfep (s ee GCBO)

% eventdata r es erved − to be de f ined in a f u tu r e ve r s i on o f MATLAB

210 % handles s t r u c tu r e with handles and user data (s ee GUIDATA)

% Hint : get (hObject , ’ Value ’) r e tu r n s togg l e s t a t e o f vfep

212 s e t (handles . FEPAllOn , ’ Value ’ , 0) ;

s e t (handles . FEPAllOff , ’ Value ’ , 0) ;

214

216 % −−− Executes on button p r e s s in ph i f ep .

f unc t i on ph i f ep Cal lback (hObject , eventdata , handles)

218 % hObject handle to ph i f ep (s ee GCBO)

% eventdata r es erved − to be de f ined in a f u tu r e ve r s i on o f MATLAB

220 % handles s t r u c tu r e with handles and user data (s ee GUIDATA)

% Hint : get (hObject , ’ Value ’) r e tu r n s togg l e s t a t e o f ph i f ep

222 s e t (handles . FEPAllOn , ’ Value ’ , 0) ;

s e t (handles . FEPAllOff , ’ Value ’ , 0) ;

224

226 % −−− Executes on button p r e s s in e f ep .

65

f unc t i on e f ep Cal lback (hObject , eventdata , handles)

228 % hObject handle to e f ep (s ee GCBO)

% eventdata r es erved − to be de f ined in a f u tu r e ve r s i on o f MATLAB

230 % handles s t r u c tu r e with handles and user data (s ee GUIDATA)

% Hint : get (hObject , ’ Value ’) r e tu r n s togg l e s t a t e o f e f ep

232 s e t (handles . FEPAllOn , ’ Value ’ , 0) ;

s e t (handles . FEPAllOff , ’ Value ’ , 0) ;

234

236 % −−− Executes on button p r e s s in beta f ep .

f unc t i on beta f ep Cal lback (hObject , eventdata , handles)

238 % hObject handle to beta f ep (s ee GCBO)

% eventdata r es erved − to be de f ined in a f u tu r e ve r s i on o f MATLAB

240 % handles s t r u c tu r e with handles and user data (s ee GUIDATA)

% Hint : get (hObject , ’ Value ’) r e tu r n s togg l e s t a t e o f beta f ep

242 s e t (handles . FEPAllOn , ’ Value ’ , 0) ;

s e t (handles . FEPAllOff , ’ Value ’ , 0) ;

244

246 % −−− Executes on button p r e s s in l ocpr ev .

f unc t i on l o cp r ev Ca l l back (hObject , eventdata , handles)

248 % hObject handle to l ocpr ev (s ee GCBO)

% eventdata r es erved − to be de f ined in a f u tu r e ve r s i on o f MATLAB

250 % handles s t r u c tu r e with handles and user data (s ee GUIDATA)

% Hint : get (hObject , ’ Value ’) r e tu r n s togg l e s t a t e o f l ocpr ev

252 s e t (handles . FEPAllOn , ’ Value ’ , 0) ;

s e t (handles . FEPAllOff , ’ Value ’ , 0) ;

254

256 % −−− Executes on s e l e c t i o n change in a i r p o r t .

f unc t i on a i r po r t Ca l l ba ck (hObject , eventdata , handles)

258 % hObject handle to a i r p o r t (s ee GCBO)

% eventdata r es erved − to be de f ined in a f u tu r e ve r s i on o f MATLAB

260 % handles s t r u c tu r e with handles and user data (s ee GUIDATA)

% Hints : contents = c e l l s t r (get (hObject , ’ Str ing ’)) r e tu r n s a i r p o r t contents as c e l l ar ray

262 % contents { get (hObject , ’ Value ’) } r e tu r n s s e l e c t e d item from a i r p o r t

264 % Change the l o c a t i o n and runway in f ormat i on to match the s e l e c t e d a i r p o r t

switch get (handles . a i rpor t , ’ Value ’)

266 case 2 % Wallops

66

l a t = ’ 37.827926944 ’ ; % deg

268 l on = ’ −75.494061666 ’ ; % deg

heading = ’ 90 ’ ;

270 runwayAlt = ’ 12 ’ ;

cas e 3 % O’ Hare

272 l a t = ’ 41.9691 ’ ;

lon = ’ −87.9253 ’ ;

274 heading = ’ 90 ’ ;

runwayAlt = ’ 667 ’ ;

276 otherw i s e

l a t = ’ 0 ’ ;

278 l on = ’ 0 ’ ;

runwayAlt = ’ 0 ’ ;

280 heading = ’ 0 ’ ;

end

282 i f get (handles . a i rpor t , ’ Value ’)>=2

s e t (handles . l a t i npu t , ’ S t r ing ’ , l a t) ;

284 s e t (handles . l on input , ’ S t r ing ’ , lon) ;

s e t (handles . runwayal t input , ’ S t r ing ’ , runwayAlt) ;

286 s e t (handles . heading input , ’ S t r ing ’ , heading) ;

end

288

290 % −−− Executes on button p r e s s in FEPAllOn .

f unc t i on FEPAllOn Callback (hObject , eventdata , handles)

292 % hObject handle to FEPAllOn (see GCBO)

% eventdata r es erved − to be de f ined in a f u tu r e ve r s i on o f MATLAB

294 % handles s t r u c tu r e with handles and user data (s ee GUIDATA)

% Hint : get (hObject , ’ Value ’) r e tu r n s togg l e s t a t e o f FEPAllOn

296

% Turn on pr o t e c t i on f o r a l l f l i g h t enve l opes

298 i f get (handles . FEPAllOn , ’ Value ’)

s e t (handles . aoafep , ’ Value ’ , 1) ;

300 s e t (handles . nzfep , ’ Value ’ , 1) ;

s e t (handles . theta f ep , ’ Value ’ , 1) ;

302 s e t (handles . vfep , ’ Value ’ , 1) ;

s e t (handles . betafep , ’ Value ’ , 1) ;

304 s e t (handles . phi f ep , ’ Value ’ , 1) ;

s e t (handles . e f ep , ’ Value ’ , 1) ;

306 s e t (handles . locprev , ’ Value ’ , 1) ;

67

s e t (handles . FEPAllOff , ’ Value ’ , 0) ;

308 end

310

% −−− Executes on button p r e s s in FEPAllOff .

312 f unc t i on FEPAllOff Cal lback (hObject , eventdata , handles)

% hObject handle to FEPAllOff (s ee GCBO)

314 % eventdata r es erved − to be de f ined in a f u tu r e ve r s i on o f MATLAB

% handles s t r u c tu r e with handles and user data (s ee GUIDATA)

316 % Hint : get (hObject , ’ Value ’) r e tu r n s togg l e s t a t e o f FEPAllOff

318 % Turn o f f p r o t e c t i on f o r a l l f l i g h t enve l opes

i f get (handles . FEPAllOff , ’ Value ’)

320 s e t (handles . aoafep , ’ Value ’ , 0) ;

s e t (handles . nzfep , ’ Value ’ , 0) ;

322 s e t (handles . theta f ep , ’ Value ’ , 0) ;

s e t (handles . vfep , ’ Value ’ , 0) ;

324 s e t (handles . betafep , ’ Value ’ , 0) ;

s e t (handles . phi f ep , ’ Value ’ , 0) ;

326 s e t (handles . e f ep , ’ Value ’ , 0) ;

s e t (handles . locprev , ’ Value ’ , 0) ;

328 s e t (handles . FEPAllOn , ’ Value ’ , 0) ;

end

68

Appendix C

Data Acquisition Function Source

Code

Listing C.1: MakeTestOutput function. This function processes a data structure to remove all data

before a flagged time, and resamples the data at a user-specified rate.

1 f unc t i on [sout , f i l ename] = MakeTestOutput (sout , l a s t t ime)

% Kasey Ackerman <ka a c k e r 2@ i l l i n o i s . edu>

3 % Advanced Control s Research Laboratory

% Univer s i ty o f I l l i n o i s at Urbana−Champaign

5

ctime = clock ;

7 f i l ename = sp r i n t f (’ data / sout %02. f %02. f %02. f %02. f %02. f %02. f ’ , . . .

ctime (1) , ctime (2) , ctime (3) , ctime (4) , ctime (5) , ctime (6)) ;

9 fn = g e t f i e l d s (sout , ’ sout ’ , []) ;

11 names = [] ;

f o r i i =1: l ength (fn)

13 i f strcmp (’ s t r u c t ’ , c l a s s (eva l (char (fn (i i)))))

names = g e t f i e l d s (eva l (char (fn (i i))) , char (fn (i i)) , names) ;

15 end

end

17 names2=names ;

purgeva l s = [] ;

19 f o r i i =1: l ength (names)

i f strcmp (’ s t r u c t ’ , c l a s s (eva l (char (names (i i)))))

21 names2 = g e t f i e l d s (eva l (char (names (i i))) , char (names (i i)) , names2) ;

purgeva l s = [purgeva l s ; i i] ;

23 end

end

25

names2 (purgeva l s) = [] ;

27 t ime loc = f i nd (sout . c l ock . time>l a s t t ime , 1) ;

29 f o r i i = 1 : l ength (names2)

69

eva l ([char (names2 (i i)) , ’=’ , char (names2 (i i)) , ’ (’ , num2str (t ime loc) , ’ : end) ; ’]) ;

31 end

Listing C.2: getfields function. Helper function to MakeTestOutput. This function processes a data

structure to obtain the structure field names and return an array of names that define a new structure

with the same fields.

1 f unc t i on [sout , f i l ename] = MakeTestOutput (sout , l a s t t ime)

f unc t i on names = g e t f i e l d s (obj , objname , names)

3 % Kasey Ackerman <ka a c k e r 2@ i l l i n o i s . edu>

% Advanced Control s Research Laboratory

5 % Univer s i ty o f I l l i n o i s at Urbana−Champaign

7 fn = f i e ldnames (obj) ;

9 f o r i i =1: l ength (fn)

namestemp{ i i } = s p r i n t f (’%s .%s ’ , objname , char (fn (i i))) ;

11 end

names = [names ; namestemp ’] ;

70

References

[1] University of Illinois at Urbana-Champaign, “Beckman Institute Illinois Simulator Laboratory,”
http://www.isl.uiuc.edu/.

[2] The Mathworks, Inc., “Matlab,” http://www.mathworks.com/products/matlab/.

[3] The Mathworks, Inc., “Simulink,” http://www.mathworks.com/products/simulink/.

[4] National Aeronautics and Space Administration, “Langley Research Center,”
http://www.nasa.gov/centers/langley/home/.

[5] Frasca International, “Frasca flight simulation,” http://www.frasca.com/.

[6] Laminar Research, “X-plane,” http://www.x-plane.com/.

[7] S. Pelech, “Integration of the GTM T2 model into a full sized simulator for human-in-the-loop testing,”
M.S. thesis, University of Illinois at Urbana-Champaign, May 2013.

[8] R. M. Hueschen, “Development of the Transport Class Model (TCM) aircraft simulation from a sub-
scale Generic Transport Model (GTM) simulation,” NASA, Technical Memorandum 217169, August
2011.

[9] N. Tekles, E. Xargay, R. Choe, N. Hovakimyan, I. M. Gregory, and F. Holzapfel, “Flight envelope
protection for NASA’s Transport Class Model,” in AIAA Guidance, Navigation and Control Conference,
National Harbor, MD, January 2014.

[10] N. Tekles, “Flight envelope protection, loss-of-control prevention, and upset recovery systems for
NASA’s Transport Class Model,” M.S. thesis, Technical University of Munich, March 2014.

[11] J. Chongvisal, N. Tekles, E. Xargay, D. Talleur, A. Kirlik, and N. Hovakimyan, “Loss-of-control predic-
tion and prevention for NASA’s Transport Class Model,” in AIAA Guidance, Navigation and Control
Conference, National Harbor, MD, January 2014.

71

http://www.isl.uiuc.edu/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/simulink/
http://www.nasa.gov/centers/langley/home/
http://www.frasca.com/
http://www.x-plane.com/

	Abbreviations and Terminology
	Chapter 1 Introduction
	Chapter 2 Simulator System Overview
	TCM Simulation Model
	Flight Simulator Hardware

	Chapter 3 Integration of the TCM Simulation at ISL
	Implementation of the Communication Tools
	Input Library

	Chapter 4 Improving the Simulator Performance
	Compiling the Flight Dynamics Block
	Compiling the Flight Control System Block
	Automating the Compilation Process

	Chapter 5 Interface Development
	Simulation User Interface

	Chapter 6 Piloted Testing
	Environmental Disturbance Modeling

	Chapter 7 Conclusion
	Appendix A Compiled Simulink Block Source Code
	Appendix B TCM Setup GUI Callback Source Code
	Appendix C Data Acquisition Function Source Code
	References

