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Abstract

Quantile autoregression (QAR) provides an alternative way to study asymmetric dy-

namics and local persistence in time series. It is particularly attractive for censored

data, where the classical autoregressive models are unidentifiable without further

parametric assumptions on the distributions. There have been prominent works by

Powell (1986), Portnoy (2003) and Peng and Huang (2008) on estimating the condi-

tional quantile functions with censored data. However, unlike the standard regression

models, the autoregressive models should take account of censoring on both response

and regressors.

In this dissertation, we show that the existing censored quantile regression methods

produce empirically consistent estimator on QAR models when using only observed

part of regressors. A new algorithm is proposed to improve a censored quantile au-

toregression (CQAR) estimator by adopting an idea of imputation methods. The

algorithm distributes probability mass of each censored point to any sufficiently large

value appropriately, and iterates towards self-consistent solutions.

Monte Carlo simulations are conducted to examine the empirical consistency of the

CQAR estimator. Also, empirical applications of the algorithm to the Samish river

water quality study and dry decomposition of NH4 demonstrate the merits of the

proposed method.

KEYWORDS: Censored time-series; Autoregression; Quantile; Self-consistent; Kaplan-

Meier.
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Chapter 1

Introduction

1.1 Motivation

Quantile Regression (QR) has received great attention due to its advantages over the

classical Least Squares (LS) regression in terms of robustness and applicability to

many complicated research questions which LS method may not answer. Whereas

the LS regression relies only on the conditional mean function, QR focus on the con-

ditional quantile functions which helps on modeling data with possible heterogeneity.

Let Y and X be scalar random variables. Then the conditional quantile function of

Y given X is the inverse of the corresponding conditional distribution function, i.e.

QY (τ |X) = F−1
Y (τ |X) = inf{y : FY (y|X) ≥ τ},

where FY (y|X) = P (Y ≤ y|X). The conditional quantile function of Y given X fully

describes the relationship between Y and X.

Based on the conditional quantile function, Koenker and Bassett (1978) estab-

lished the QR model. Consider the following classical linear model,

yi = x⊤i β + ui, i = 1, · · · , n,

with i.i.d errors {ui}. Suppose that {ui} have a common distribution function F with

associated density f , with f(F−1)(τ) > 0. The QR estimator β̂ is obtained based on

1



the following optimization problem:

β̂(τ) = min
β

n∑
i=1

ρτ (yi − x⊤i β) (1.1)

where ρτ (u) = u(τ − I(u < 0)), τ ∈ (0, 1) and I(·) is the indicator function. Given

β̂(τ), the τ -th conditional quantile function of Yt given Xt can be estimated by

Q̂yi(τ |xi) = x⊤i β̂(τ),

and the conditional density of yi at y = Qyi(τ |xi) can be estimated by the difference

quotients,

f̂yi(y|xi) =
2h

Q̂yi(τ + h|xi)− Q̂yi(τ − h|xi)
,

for some appropriately chosen sequence of h = h(T ) → 0.

Under appropriate regularity conditions, Koenker (2005) shows that solution of

(1.1), β̂, is a consistent estimate of β as follows.

√
n(β̂(τ)− β(τ)) =⇒ N(0, ω2D−1

0 ), (1.2)

where ω2 = τ(1− τ)/f 2
i (F

−1
Yi

(τ |xi)).

Further, in non-i.i.d error settings,

√
n(β̂(τ)− β(τ)) =⇒ N(0, τ(1− τ)D−1

1 D0D
−1
1 ) (1.3)

where D0 = limn→∞ n−1
∑
xix

⊤
i and D1(τ) = limn→∞ n−1

∑
fi(F

−1
Yi

(τ |xi))xix⊤i .

Relaxation of the independence condition on the observations naturally extends

applicability of QR method to time series data. Quantile regression not only provides

a method of estimating the conditional quantiles of existing time series models, it

also substantially expands the modeling options for time series analysis. There are
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substantial theoretical literature on quantile autoregression methods including Weiss

(1991), Knight (1989, 1998), Koul and Saleh (1995) and Hallin and Jurečkova (1999).

Recently, Koenker and Xiao (2006) generalized the Quantile autoregression model

(QAR) as an competitive alternative of classical ARMA model. It allows to study

asymmetric dynamics and local persistency in time series. More details about QAR

model appear in Chapter 1.2.

However, time series measurements are often observed with a detection limit or

other form of censoring. For instance, a water-quality monitoring device in the Samish

River station, Washington, has a detection limit and it records the limit value of

Ammonia-Nitrogen (NH3-N) measurements when the true value precedes the detec-

tion limit. This motivates us to consider censored time series models. In this paper,

we first show the existing censored quantile regression methods still can play an im-

portant role in censored quantile autoregression models. And later, we propose a new

algorithm to improve a censored quantile autoregression estimator.

For the standard regression model, Powell (1986) initially proposed a regression

quantile estimator for responses with fixed censoring. Later, Portnoy (2003) and

Peng and Huang (2008) introduced methods for random censoring. The Portnoy and

Peng-Huang estimators can be viewed, respectively, as generalizations to regression

of the Kaplan-Meier and Nelson-Aalen estimators of univariate quantiles for censored

observations. In their paper, both methods achieves root-n consistency of censored

quantile regression estimator. Further, on the Portnoy’s estimator, a correction giving

root-n consistency was presented in Neocleous et al. (2006), and under mild conditions

asymptotic normality was shown in Portnoy and Lin (2010). Recently, Wang and

Wang (2009) proposed a censored quantile regression estimator that employs a local

reweighting scheme. Throughout the paper, we follow the grid method of Portnoy

(2003), but other methods such as Powell (1986) and Peng and Huang (2008) can be

used as alternatives.
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Since censoring is a form of missing data, we improve our estimates by adopting an

idea of imputation methods which is widely considered in many applications. Imputa-

tion methods for time series have been presented by several authors. Robinson (1980)

suggested imputing the censored part with its conditional expectation given the com-

pletely observed part. Since the conditional expectation has the form of multiple

incomplete integrals, he subgrouped the data vector so that each subgroup includes

one censored observation, and thus requires a single integral. However, the method

may not be feasible for many consecutive censored observations which can happen in

many time series data. Zeger and Brookmeyer (1986) suggested a full likelihood esti-

mation and approximate method for an autoregressive time series model. In addition,

they suggested the use of pseudolikelihood estimation to overcome non-feasibility in

case of high censoring rate in previous method. Later, Rubin (1987) introduced Multi-

ple Imputation (MI) method to address the question of how to obtain valid inferences

from imputed data. MI is a Monte Carlo technique in which the missing values are

replaced by m > 1 simulated versions, where m is typically small (e.g. 3-10). In

Rubin’s method for ‘repeated imputation’ inference, each of the simulated complete

datasets is analyzed by standard methods, and the results are combined to produce

estimates and confidence intervals that incorporate missing-data uncertainty. Hopke

et al. (2001) used multiple imputation based on a Bayesian approach. Recently, Park

et al. (2007, 2009) presented parametric imputation method based on ARMA mod-

els and nonparametric estimation of autocovariance function. In quantile regression

models, Wei et al. (2012) proposed a multiple imputation estimator for the quantile

function when some covariates are missing at random.

In the rest of this chapter, we shall introduce quantile autoregression proposed by

Koenker and Xiao (2006). In Chapter 2, we define censored quantile autoregression

model and give a consistent estimate of autoregressive parameter. Then we introduce

the Censored Quantile AutoRegression (CQAR) algorithm. In Chapter 3, a simula-
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tion study is conducted based on an QAR process to study the empirical consistency

of the censored regression quantiles on time series data and show performance of the

CQAR method compared with ordinary methods. Chapter 4 summarize our work

and discuss some future directions in this area.

1.2 Introduction to Quantile Autoregression

The quantile autoregression (QAR) model was introduced in Koenker and Xiao

(2006). Let {Ut} be a sequence of iid standard uniform random variables, and con-

sider the pth order autoregressive process,

yt = β0(Ut) + β1(Ut)yt−1 + · · ·+ βp(Ut)yt−p, (1.4)

where the βj’s are unknown functions [0, 1] → R that we will want to estimate. Then,

the τth conditional quantile function of yt can be written as,

Qyt(τ |yt−1, ..., yt−p) = β0(τ) + β1(τ)yt−1 + · · ·+ βp(τ)yt−p, (1.5)

or more compactly as,

Qyt(τ |Ft−1) = x⊤t β(τ), (1.6)

where xt = (1, yt−1, ..., yt−p)
⊤, and Ft is the σ-field generated by {ys, s ≤ t}. This

model is called the QAR(p) model in Koenker and Xiao (2006). The autoregression

quantile estimator, β̂(τ), is the minimizer over β of the objective function,

n∑
t=1

ρτ (yt − x⊤t β), (1.7)

where ρτ (u) = u(τ − I(u < 0)). To facilitate asymptotic analysis, Koenker and

Xiao (2006) reformulate the QAR(p) model in (1.4) in the more conventional random

5



coefficient notation as,

yt = µ0 + α1,tyt−1 + · · ·+ αp,tyt−p + ut (1.8)

where µ0 = Eβ0(Ut), ut = β0(Ut)− µ0, and αj,t = βj(Ut), for j = 1, ..., p. Thus, {ut}

is an iid sequence of random variables with distribution function F (·) = β−1
0 (·+ µ0),

and the αj,t coefficients are functions of this ut innovation random variable. The

QAR(p) process in (1.8) can be expressed as an p-dimensional vector autoregression

process of order 1:

Yt = Γ + AtYt−1 + Vt

with

Γ =

 µ0

0p−1

 , At =

 Ap−1,t αp,t

Ip−1 0p−1

 , Vt =
 ut

0p−1

 ,
where Ap−1,t = [α1,t, · · · , αp−1,t], Yt = [yt, · · · , yt−p+1]

⊤, and 0p−1 is the (p − 1) di-

mensional vector of zeros. Then, the QAR(p) process yt given by (1.4) is covariance

stationary and satisfies a central limit theorem,

1

n

n∑
t=1

(yt − µy) ⇒ N(0, ω2
y), (1.9)

where µy = µ0/(1 −
∑p

j=1 µj), ω
2
y = limn−1E[

∑n
t=1(yt − µy)]

2, and µj = E(αj,t),

j = 1, ..., p. The appropriate conditions are as follows:

1. {ut} are iid random variables with mean 0 and variance σ2 < 0. The distribution

function of ut, F , has a continuous density f with f(u) > 0 on U = {u : 0 <

F (u) < 1}.

2. Let E(At

⊗
At) = ΩA; the eigenvalues of ΩA has a moduli less than unity.

3. Denote the conditional distribution function P [yt < ·|Ft−1] as Ft−1(·) and its

6



derivative as ft−1(·); ft−1 is uniformly integrable on U .
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Chapter 2

Quantile Autoregression with
Censored data

In many practical situations we may not be able to observe {yt} directly. Here we

focus on censored data. Specifically, suppose we observe {yt} only when {yt} is

less than a constant value ct. Let {ỹt} be the value we observe instead of {yt} due

to censoring and ct be the censored value at time t. Then, the censored response

variable and censoring indicator can be denoted as

Ỹt = min{Yt, ct}, ∆t = I{Yt < ct}. (2.1)

The main differences of this setting, compared with ordinary censored quantile

regression, are that {yt} is dependent and xt in (1.6) is also censored as well as

yt. This prevents the use of any previously introduced censored regression quantile

methods. Here the regressor, Xt, and its censoring indicator can be denoted as

X̃t = (1, Ỹt−1, ..., Ỹt−p)
⊤, Γt = I{Yt−1 < ct−1} · · · I{Yt−p < ct−p} =

p∏
k=1

∆t−k.

(2.2)

On estimating a model with censored regressors, one can approach this as an esti-

mation problem with missing data since censoring is a form of missing data. When

censoring is conditionally independent of the response given the regressors, implying

that censoring is not systematically related to the value of the response under study,

estimation can proceed with complete cases only. That is, as long as conditional

independence of the response and the censoring time given the regressors holds, one

8



can still have consistent estimator using only observed part of regressors.
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Figure 2.1: Scatter plot for simple QAR(1) model. Random time series with size 100

were generated. β = .6 and i.i.d Gaussian innovation were used. The left side is all

observations before censoring and the right side is after censoring. Dashed line shows

the cutoff value c which was generated to give a censoring rate of 20% approximately.

Working with complete part of observations, we have

{Ỹt, X̃t,∆t} for t ∈ {t : γt = 1}, (2.3)

which leads to estimating problem for regression quantiles under dependency. Previ-

ous work by Cai (2001) showed that under some regularity conditions, the Kaplan-

Meier estimator enjoys uniform consistency when estimating a distribution function

for censored time series data. This motivates us to apply the grid method proposed

by Portnoy (2003) to censored quantile autoregressive models since this method it-
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self is a natural generalization of the Kaplan-Meier estimator to the case of censored

regression quantiles.

Following notations from Portnoy and Lin (2010), we define β̂(gk) recursively

along a grid {g1, ..., gM}. We assume that there is no censoring below some positive

gk, and so we can define β̂(g1) (and β̂(g2)) by ordinary uncensored regression quantile

methods (see Koenker (2005)). We then recursively define weights, wt(g), for each

censored observation that is crossed between the regression quantiles at gj and gj+1

and define β̂(gj+2) as a weighted regression quantile.

Before we define the weights, we need to define the true censoring probability, τt,

so that x′tβ(τt) = ct. And the estimated censoring probability, τ̂t, is defined as

τ̂t = (1− α̂tj)gj + α̂tjgj+1; α̂tj =
ct − x′tβ̂(gj+1)

x′t(β̂(gj+1)− β̂(gj))
. (2.4)

Then, given τ̂t for censored observations crossed before gj, we define the weights,

ŵt(g), as follows:

ŵt(g) =


g−τ̂t
1−τ̂t

if δt = 0 and g ≥ τ̂t

0 if δt = 0 and g < τ̂t

1 if δt = 1

(2.5)

Finally, given the weights we can define the regression quantile estimator, β̂(tj+2),

recursively as the minimizer (over b) of the weighted objective function:

Rj+2(b) ≡
∑

{t:γt=1}{I(δt = 1)ρ(Yt − x′tb) + I(δt = 0)

×[ŵt(gj+2)ρ(ct − x′tb) + (1− ŵt(gj+2))ρ(Y
∗ − x′tb)]}

(2.6)

where Y ∗ is any sufficiently large value (specifically, larger than all the observations

and fitted values), and ρ is the usual “check” function: ρτ (u) = u(τ − I(u ≤ 0)).

And it is also possible to define β̂(gj+2) using the subgradient, Ψj+2(w(β̂j+1
, tj+2), b)

10



corresponding to (2.6), where

Ψk(ŵ, b) ≡
∑

{t:γt=1} xt{I(δt = 1)ψ(Yt − x′tb, gk) + I(δt = 0)

×[ŵt(gk)ψ(ct − x′tb, gk) + (1− ŵt(gk))ψ(Y
∗ − x′tb, gk)]}

(2.7)

and where ψ(u, τ) = τ − I(u ≤ 0), and Y ∗ is as above. As described in Koenker

(2005), the gradient conditions impose a bound of the form Ψk(ŵ, b) = O(1) at

b = β̂(g) (uniformly in k), as long as ∥xt∥ remain bounded.

The conditions needed for the asymptotic properties of the censored quantile re-

gression estimator are listed here:

1. Yt given by Equation (1.8) is a stationary time series.

2. All conditions restrict to ϵ ≤ τ ≤ min{τ̄ , 1−ϵ} where τ̄ is the largest identifiable

τ -value. Furthermore, there is no censoring below x′tβ(ϵ). Hence, β̂(ϵ′) can

be computed as an unweighted regression quantile for ϵ′ < ϵ with probability

tending to one.

3. The conditional density ft(x
′
tβ(g)) (conditional on {xt}) has uniformly bounded

derivative (with respect to g) on ϵ ≤ τ ≤ min{τ̄ , 1− ϵ}, and is strictly positive

on this set.

4. ∥xt∥ has bounded support.

5. {g1, ..., gM} is a grid with mesh δn = dnn
−a for some a with 1/4 < a < 1/2 and

dn → d (with d > 0).

6. The design matrix, X, satisfies 1
n
X ′X → A, where A is invertible.

Under the above conditions, a strong uniform root-n consistency result is proved

in the next section. Note that all calculations below will be done conditionally on

{xt} so that we may implicitly consider {xt} as fixed.
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Remark 1. With heavy censoring in large τ , it is not unusual to limit range of

τ ∈ [0, 1] where a regression quantile is estimable. The value τ̄ in Condition (2) is

the largest τ for which β(τ) is identifiable.

Remark 2. By letting ut in (1.8) be serially uncorrelated, Condition (6) follows.

Remark 3. A further extension of the following theorem on random censoring

would require some form of conditional independence of the response and the censor-

ing time given the regressors.

2.1 Inductive Proof of Consistency under

Dependence

Theorem 2.1 Let β̂
M

≡ (β̂(g1)
′, ..., β̂(gM)′) be the right censored quantile estimator

along the grid ϵ = g1 < g2 < ... < gM < min{τ̄ , 1 − ϵ} (where τ̄ is the largest

identifiable τ -value). Under Conditions (1)-(6), we have

∥ β̂(gk)− β(gk) ∥≤ 2r1n
−1dk,n, k = 1, ...,M.

where M = o(n1/2), dk,n = Rn

√
n(1 + 2r1r2E

∗
nδn)

k−1 with E∗
n = Op(1), and Rn =

Op(1) and is defined by: Rn = n−1/2(maxt{∥xt∥})−1 (1−τ̄)2

1−ϵ
maxk{∥Ψk+1(wk, β(gk))∥+

En,k}. Here, Ψk is defined by Equation (2.7) and r1 and r2 are positive constants; and

we show that En,k = Op(n
1/4 log n) uniformly in k, where En,k is defined by Equation

(2.11). Recall that β(gk) is the true regression quantile along the same grid, and

δn = O(n−1/2) is defined in Condition (5).

Remark Note that since M ≤ 1/δn, the factor (1 + 2r1r2E
∗
nδn)

k−1 = Op(1) uni-

formly in k ≤M . Thus, the uniform bound in Theorem is Op(n
−1/2).

Proof. Let CIk = {t : Yt = ct and max{τ̂t, τt} ≤ gk} be the index set of the

12



crossed censored observations. We shall use mathematical induction to show that for

any k = 1, 2, ...,M ,

∑
t∈CIk

|τ̂t − τt| ≤ dk,n, and ∥β̂(gk)− β(gk)∥ ≤ 2r1n
−1dk,n. (2.8)

First let k = 1, since β̂(g1) is the quantile estimator at g1 by applying the usual

(uncensored) regression quantile, it is known that ∥β̂(g1) − β(g1)∥ = Op(n
−1/2) by

Theorem 2 in Koenker and Xiao (2006). Thus,

∥β̂(g1)− β(g1)∥ = Op(n
−1/2) ≤ 2r1n

−1d1,n

We can also see that all τt and τ̂t exceed g1. So Σt∈CI1 |τ̂t − τt| = 0 since the sum is

empty. Thus, Equation (2.8) is true for k = 1.

Assume that for k = l, Equation (2.8) is true. Now we can obtain a bound for the

difference between the estimated weights and the true weights at the gk+1th quantile:

n∑
t=1

|wt(β̂l
, gl+1)− wt(βl

, gl+1)| =
∑
t∈CIl

|wt(β̂l
, gl+1)− wt(βl

, gl+1)|

+
∑

{t : Yt=ct between x′
tβ̂(gl) and x′

tβ(gl)}

|wt(β̂l
, gl+1)− wt(βl

, gl+1)| (2.9)

For the second term above, each summand is bounded by the grid mesh, δn. From

Equation (2.8) and the Condition (1), the number of summands in this second term

is Op(n
1/2). It follows that there are random bounds, En = Op(1) and Ẽn = Op(1),
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such that the difference of weights in Equation (2.9) is bounded by

∑
t∈CIl

∣∣∣gl+1 − τ̂t
1− τ̂t

− gl+1 − τt
1− τt

∣∣∣+√
nEnδn =

∑
t∈CIl

(1− gl+1)|τ̂t − τt|
(1− τ̂t)(1− τt)

+
√
nEnδn

≤
∑
t∈CIl

1− ϵ

(1− τ̄)2
|τ̂t − τt|+

√
nEnδn

≤ 1− ϵ

(1− τ̄)2
dl,n +

√
nEnδn

=
1− ϵ

(1− τ̄)2
dl,n

(
1 + Ẽnδn

)
. (2.10)

From Lemma 3.4 and 3.5 in Portnoy (1991), we can see that for any constant

C∗ > 0, there is a constant A2 > 0, such that for large enough values of A1 > 0 and

n,

P

(
sup

{θ:∥θ−β(gl+1)∥≤C∗n−1/2}
∥ηn(θ, β(gl+1))− Eηn(θ, β(gl+1))∥ > A1n

1/4 log n

)
≤ A2e

−A1n,

where ηn(θ, β(gl+1)) = Ψl+1(w(βl
, gl+1), θ)−Ψl+1(w(βl

, gl+1), β(gl+1)), with Ψl+1 given

by Equation (2.7). Thus, we have

P

(
max
1≤l≤M

sup
θ

∥ηn(θ, β(gl+1))− Eηn(θ, β(gl+1))∥ > A1n
1/4 log n

)
≤MA2e

−A1n,

That is, on {θ : ∥θ − β(gl+1)∥ ≤ C∗n−1/2},

En,l =Ψl+1(w(βl
, gl+1), θ)−Ψl+1(w(βl

, gl+1), β(gl+1))

− E{Ψl+1(w(βl
, gl+1), θ)−Ψl+1(w(βl

, gl+1), β(gl+1))}, (2.11)

where En,l = Op(n
1/4 log n) uniformly in l.
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The expectation in Equation (2.11) is as follows:

∑
t

xtE{[I(Yt ≤ x′tθ)− I(Yt ≤ x′tβ(gl+1))]I(Yt ≤ ct)

+ wt(gl+1)[I(ct ≤ x′tθ)− I(ct ≤ x′tβ(gl+1))]I(Yt ≥ ct)}.

For ct between x′tθ and x′tβ(gl+1), either wt(gl+1) = 0 (if ct is uncrossed; that is,

ct > x′tβ(gl+1)), or wt(gl+1) = O(n−1/2)(from the definition of the weights (2.5), the

fact that ∥θ − β(tl+1)∥ = O(n−1/2), and the definition of the interpolating weights

(2.4)). Thus the second term above is O(1)(again using ∥θ − β(tl+1)∥ = O(n−1/2))

and the expectation becomes:

∑
t

xtE{[I(Yt ≤ x′tθ)− I(Yt ≤ x′tβ(gl+1))]I(Yt ≤ ct)}+O(1)

=
∑
t

xt{[P (Yt ≤ x′tθ)− P (Yt ≤ x′tβ(gl+1))]P (Yt ≤ ct)}+O(1)

=
∑
t

xt{[Ft(x
′
tθ)− Ft(x

′
tβ(gl+1))]Ft(ct)}+O(1)

≤
∑
t

xt{ft(x′tβ(gl+1))(x
′
tθ − x′tβ(gl+1))Ft(ct)}+O(1)

=
∑
t

xt{ft(x′tβ(gl+1))Ft(ct)}x′t(θ − β(gl+1)) +O(1)

Then, the sum becomes X ′V X(θ− β(gl+1)) +O(1) where X is the design matrix

and V is a diagonal matrix with

Vtt ≡ ft(x
′
tβ(gl+1))Ft(ct). (2.12)

As a consequence, Equation (2.11) can be written as follows:

Ψl+1(w(βl
, gl+1), θ)−Ψl+1(w(βl

, gl+1), β(gl+1)) +X ′V X(θ − β(gl+1)) = En,l, (2.13)
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where En,l is modified by the O(1) term in the expectation, but still Op(n
1/4 log n).

Now for k = l + 1, and {θ : ∥θ − β(gl+1)∥ ≤ C∗n−1/2},

Ψl+1(w(β̂l
, gl+1), θ) = Ψl+1(w(β̂l

, gl+1), θ)−Ψl+1(w(βl
, gl+1), θ) + Ψl+1(w(βl

, gl+1), θ)

=
∑
t∈CIl

(ŵt − wt)I(ct < x′tθ)xt +Ψl+1(w(βl
, gl+1), θ)

=
∑
t∈CIl

(ŵt − wt)I(ct < x′tθ)xt +Ψl+1(w(βl
, gl+1), β(gl+1))

−X ′V X(θ − β(gl+1)) + En,l. (2.14)

Note that, uniformly in l (and with w denoting w(β
l
, gl+1)),

∥Ψl+1(w, θ)∥ = O(n1/2),∥∥∥∑
t

(ŵt − wt)I(ct < x′tθ)x
′
t

∥∥∥ ≤
∑
t

∥xt∥|ŵt − wt|

≤ max
t

{∥xt∥}
∥∥∥ 1− ϵ

(1− τ̄)2
dl,n

(
1 + Ẽnδn

)∥∥∥
= max

t
{∥xt∥}

∥∥∥ 1− ϵ

(1− τ̄)2
dl,n

∥∥∥
= Op(n

1/2),

∥Ψl+1(w, β(gl+1))∥ = Op(n
1/2), and

En,l = Op(n
1/4 log n).

An upper bound on the maximum eigen value, λmax((X
′V X)−1) is also needed.

By Condition (3), f(x′tβ(g)) is bounded from below (uniformly in t) for ϵ ≤ g ≤

min{τ̄ , 1 − ϵ}. Thus, Vtt ≥ a for some a > 0 (uniformly in t), and hence (using

Condition (6)), for some a1 > 0,

λmax((X
′V X)−1) ≤ a−1λmax((X

′X)−1) ≤ a1n
−1. (2.15)
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Now, since Ψl+1(w, θ) is the gradient of a convex function ρ on θ, inserting these

results into Equation (2.13) implies that the gradient condition cannot hold for {θ :

∥θ − β(tl+1)∥ > C∗n−1/2} if C∗ is chosen large enough (see Theorem 2.1 in Koenker

(2005)). Therefore, Equation (2.14) is true for θ = β̂(gl+1). After inserting θ = β̂(gl+1)

in Equation (2.14), solving Equation (2.13), and using Equation (2.10) and (2.15),

and the definition of Rn, we have

∥β̂(gl+1)− β(gl+1)∥ =
∥∥∥(X ′V X)−1

{∑
t

(ŵt − wt)I(ct < x′tβ̂(gl+1))xt

−Ψl+1(ŵ, β̂(gl+1)) + Ψl+1(w, β(gl+1)) + En,l

}∥∥∥
≤ a1n

−1
{∑

t

∥xt∥|(ŵt − wt)|+ ∥Ψl+1(ŵ, β̂(gl+1))∥

+ ∥Ψl+1(w, β(gl+1))∥+ ∥En,l∥
}

≤ a1n
−1
{
max

t
{∥xt∥}

1− ϵ

(1− τ̄)2
dl,n(1 + Ẽnδn)

+ ∥Ψl+1(w, β(gl+1))∥+ ∥En,l∥
}

≤ r1(n
−1dl,n(1 + Ẽnδn) + n−1Rn

√
n)

≤ r1n
−1dl,n(1 + Ẽnδn) + r1n

−1dl,n

≤ 2r1n
−1dl,n(1 + Ẽnδn) (2.16)

≤ 2r1n
−1dl+1,n, (2.17)

as long as Ẽn ≤ 2r1r2E
∗
n(see Equation (2.22)); thus providing the first part of the

induction result.

Here we define

r1 = a1max
t

{∥xt∥}
1− ϵ

(1− τ̄)2
. (2.18)
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Note that, by definition of Rn in the hypothesis of the theorem,

Rn = n−1/2(max
t

{∥xt∥})−1 (1− τ̄)2

1− ϵ
max

l
{∥Ψl+1(wl, β(gl+1))∥+ En,l} = Op(1).

Note also that the last steps in Equations (2.16) and (2.17) use the facts that dl,n ≥

Rn

√
n and dl,n(1 + Ẽnδn) = dl+1,n (by definitions in the hypotheses of the theorem).

Also, applying the induction hypothesis, using the first inequality in Equation (2.16)

in the next-to-last inequality below,

∑
t∈CIl+1

|τ̂t − τt|

≤
∑
t∈CIl

|τ̂t − τt|+
∑
t

|τ̂t − τt|I(x′tβ̂(gl) ≤ ct ≤ x′tβ̂(gl+1)) (2.19)

≤
∑
t∈CIl

|τ̂t − τt|+
∑
t

(
n1/2ft(x

′
tβ(gl))x

′
tB

∗
l +O(δ2n)

)
I(x′tβ̂(gl) ≤ ct ≤ x′tβ̂(gl+1))

≤ dl,n +
∑
t

(
n1/2r2∥B∗

l ∥+O(δ2n)
)
I(x′tβ̂(gl) ≤ ct ≤ x′tβ̂(gl+1))

≤ dl,n + r2

(
2r1n

−1dl,n(1 + Ẽnδn)
)∑

t

I(x′tβ̂(gl) ≤ ct ≤ x′tβ̂(gl+1))

≤ dl,n + 2r1r2dl,n(1 + Ẽnδn)δn

≤ dl,n(1 + 2r1r2E
∗
nδn) = dl+1,n (2.20)

where

B∗
l =

1

2
n−1/2((β̂(tl)− β(tl)) + (β̂(tl+1)− β(tl+1))) (2.21)

and E∗
n may be defined by

E∗
n ≡ max

{ Ẽn

(2r1r2)
, 1 + Ẽnδn

}
= Op(1), (2.22)
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and where r2 is a chosen constant satisfying

r2 ≥ ∥xt∥ft(x′tβ(gl)). (2.23)

Note that (2.19) uses only the smoothness of the true β(τ) function and the definition

of τt to find the bound for |τ̂t − τt|. And from (2.17), the indication function can be

reformulated as

I(x′tβ̂(gl) ≤ ct ≤ x′tβ̂(gl+1)) ≤ I(x′tβ(gl)−M ≤ ct ≤ x′tβ(gl+1) +M) (2.24)

where M = 2r1n
−1dl,n. Since the interval is of length O(δn) and x

′
tβ(t) is monotoni-

cally increasing at a rate that is at least linear, the indicator function can be non-zero

only for O(δn) indices and thus the sum is nO(δn).

Combining Equations (2.16) and (2.20), the induction step is done. So Equation

(2.8) is true for k = 1, 2, ...,M , and the induction proof is complete.

2.2 The Self-Consistent Algorithm for Censored

QAR

In many applications, despite the fact that the estimation with complete cases only

still produce a consistent estimator when censoring is conditionally independent of the

response, there has been concern on precision of the estimates. The set of complete

cases is often a very small fraction of the original data, so that estimation based only

on complete cases involves substantially lower precision than with the full sample.

This suggests that imputation of missing value may be useful, that is rather than

removing censored observations, reasonable alternatives are to be filled in or “im-

puted”. A variety of imputation approaches can be used that range from extremely
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simple to rather complex. These methods keep the full sample size, which can be

advantageous for bias and precision. For a classical autoregressive time series model,

Zeger and Brookmeyer (1986) suggested a full likelihood estimation and approximate

method. Later Park et al. (2007) introduced an imputation algorithm using Gibbs

sampling on conditional distribution of the censored part of an autoregressive model.

However, there have not been any studies to adapt the imputation method to cen-

sored quantile autoregressive models. Here we propose a self-consistent algorithm

to refine autoregressive coefficients for censored time series data. The algorithm es-

timates quantile autoregressive coefficients in a self-consistent manner by imputing

regression predictions for censored observations.

Given the initial estimates, β̂0(gk), along a grid {g1, ..., gM} from Equation (2.6),

for censored observations in X̃t from (2.2), we can define τ̂t by

x′t−1β̂0(τ̂t) = ct (2.25)

Since the true value, xt, is located somewhere above the censored observation, ct, the

corresponding τ ∗t which makes x′t−1β̂0(τ
∗
t ) = xt is somewhere in between (τ̂t, 1). By

selecting random τ̂ ∗t from (τ̂t, 1), each censored observation is replaced by its quantile

regression prediction, xnewt = x′t−1β̂0(τ̂
∗
t ). After imputing all censored observations in

X̃t, we re-estimate β(gk) using full sample. Given the weights defined in (2.5), the

quantile autoregressive estimator, β̂1(gj+2), is defined recursively as minimizer (over

b) of the weighted objective function:

Rj+2(b) ≡
∑

t{I(δt = 1)[I(γt = 1)ρ(Yt − x′tb) + I(γt = 0)ρ(Yt − xnew
′

t b)]

+I(δt = 0)[I(γt = 1)[ŵt(gj+2)ρ(ct − x′tb) + (1− ŵt(gj+2))ρ(Y
∗ − x′tb)]

+I(γt = 0)[ŵt(gj+2)ρ(ct − xnew
′

t b) + (1− ŵt(gj+2))ρ(Y
∗ − xnew

′
t b)]]}

(2.26)
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and corresponding subgradient:

Ψk(ŵ, b) ≡
∑

t xt{I(δt = 1)[I(γt = 1)ψ(Yt − x′tb, gk) + I(γt = 0)ψ(Yt − xnew
′

t b, gk)]

+I(δt = 0)[I(γt = 1)[ŵt(gk)ψ(ct − x′tb, gk) + (1− ŵt(gk))ψ(Y
∗ − x′tb, gk)]

+I(γt = 0)[ŵt(gk)ψ(ct − xnew
′

t b, gk) + (1− ŵt(gk))ψ(Y
∗ − xnew

′
t b, gk)]]}

(2.27)

where Y ∗ is any sufficiently large value, and ρ and Ψ are as described previously.

Next we repeatedly carry out the imputing and estimating steps in an iterative

fashion. Then, the censored autoregressive quantile estimator, β̂(τ) is computed in

a self-consistent manner. Formally, the censored quantile autoregression (CQAR)

algorithm is described as follows:

• Step 1 (initialization). Obtain the initial estimates β̂(τ). We can estimate β̂(gk)

recursively along a grid {g1, . . . , gM} by using only the uncensored part of x̃t.

• Step 2 (randomly assign τ ∗t ≥ τt). For Ỹt, starting from the first observa-

tion, when the censoring is encountered, find the smallest g̃k which satisfies

Ỹt−1β̂(gk) ≥ ct. Then, randomly select τ ∗t ∼ Unif(g̃k, 1) for each censored

observation.

• Step 3 (recomputing censored quantile regression). Impute a censored value ct

with x̃t−1β̂(τ̂
∗
t ). Now re-estimate β̂(tk) using newly imputed X̃t.

• Step 4 Repeat step 3 until a stopping rule is satisfied. Here the stopping rule

is that either there are little changes in X̃t from two consecutive steps or the

maximum iteration number is reached.

Remark 1. A stopping rule used later in our simulation is that the Absolute Mean

Difference of X̃t in two consecutive steps is less than δ, where δ = 10−3. And, the

maximum number of steps is 20.

Remark 2. If “Self-consistent” iteration converges, then Qyt|x̃t(τ) → x̃′tβ(τ)

21



2.3 Inference on the Quantile Autoregression

Estimator

Among several possible approaches to construct confidence intervals on the quan-

tile regression estimator, the bootstrap could be the simplest to adapt and is indeed

known to have asymptotically correct coverage probabilities. However, previous lit-

erature relies on the assumption that resampling triples (Yi, Ci, xi) are i.i.d. Since

this assumption no longer holds in time series data, we look for more appropriate

bootstrap methods.

The first type of bootstrap we considered is the so-called “xy-paired” bootstrap,

which was originally proposed by Freedman (1981). The idea is to resample entire

observations from the original data in the form of (Yt, Ct, xt) triples. Each bootstrap

sample consists of some of original triples once, some of them more than once, and

some of them not at all. Although it does not appear to be directly applicable

to a autoregressive model, the xy-paired bootstrap can be used with autoregressive

models that have serially independent error terms (See Gonçalves and Kilian (2004)).

Especially, in Buhlmann (1994), if the data follow the AR(p) model, the optimal

choice of block length (l) in the block bootstrap with respect to the mean square

error of the bootstrap variance is l = p, which implies that the paired bootstrap is as

good as the block bootstrap and works in autoregression models.

The second bootstrap method we used in our simulation is the block bootstrap,

which was originally proposed by Kunsch (1989). By its nature, the block bootstrap

captures the dependence structure of neighbored observations. Buhlmann (1994)

showed that within the class of AR-models the block bootstrap is more robust than

the paired bootstrap with respect to model miss-specification. The idea is to divide

(Yt, Ct, xt) triples that are being resampled into blocks of b consecutive observations,

and then resample blocks. The blocks may be either overlapping or non-overlapping.
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In either case, it is required to specify a block length, b. If b is too small, the bootstrap

sample fails to capture the patterns of dependence in the original data, because these

patterns are lost whenever one block ends and the next begins. On the other hand,

if b is too large, the bootstrap samples will tend to be excessively influenced by the

random characteristics of the actual sample. Therefore, finding the optimal block

length is evidently very important and it makes this procedure much complicated

compared to the paired bootstrap.

It is generally believed that both methods work competitively, but the block boot-

strap has advantage on its greater generality on dependent data and therefore it is

more wildly used and might be a better choice in our study. We will investigate the

performance of two methods in the next chapter.
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Chapter 3

Simulation Studies

In this chapter, we shall investigate the performance of the proposed CQAR methods

through Monte Carlo simulation studies. The performance shall be evaluated in

terms of consistency and efficiency of the estimator. Throughout the simulations, we

apply the CQAR methods under several circumstances. Since the CQAR method

can be applied to both fixed and random censoring, we shall design the simulation

under these two types of censoring to investigate performance of the CQAR estimator.

Also, although we only consider right-censoring where we are only allowed to observe

Ỹt = min(Yt, Ct), the CQAR method is applicable to left-censored data with simple

adjustments. To avoid technical redundance, we restricts order of autoregressive

models up to the first and second.

Three experiments are performed as follows. The first shows the consistency

of the initial censored regression estimator that relies only on those observations

where the regressor is not censored. The second experiment allows us to compare the

performance of self-consistent method with ordinary censored regression method and

other types of existing methods. The third experiment is to verify a proper bootstrap

inference method under dependance. Although it is impossible to consider all the

situations, we hope to investigate the performance of the proposed estimator in a

variety of settings so that the comparison can be more informative and convincing.
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3.1 Experiment 1 : Empirical Consistency of

CRQ estimator under dependence

In this simulation we show that we can have a consistent estimator of β by using

only part of observations where the regressor, Xt, is not censored. After generating

a random time series with size n, following Portnoy (2003), we estimate coefficients

twice based on different sets of data. The first set is using all observations on re-

gressor by assuming that we know true xt. And the second set is using only the

uncensored part of observations by discarding all censored observation on regressor.

Two estimates are denoted by θ̂1 and θ̂2, respectively. Since θ̂1 is a consistent esti-

mate of β at least in stationary time series as shown in previous chapter, θ̂2 is also

likely to be a consistent estimate if it converges to θ̂1 as the sample size (n) increase.

Among all the simulations, the censoring rate for each data set was approximately

either 20% or 30% by calibrating censoring constants for fixed censoring or adjusting

distribution of censoring times in case of random censoring. For each model, we re-

peated simulation 1000 times (N). Then, we observed mean absolute differences of

two estimates, 1/N
∑

|θ̂1 − θ̂2|. To show compactly, we only reported the results at

3 different quantiles: .25, .5, .75. for 3 different sample sizes: 500, 1000, 2000. The

true models used to generate random samples are as follows.

Model 1. (QAR(1) with Fixed Censoring) Yt = β0(Ut) + β1(Ut)Yt−1, where

β1 = .55 + .25Ut, β0 = Φ−1(Ut), and Ut ∼ U(0, 1). Hereafter, U(·) stands for uniform

distribution. For censoring constants, Ct, 1.1 and 0.7 were used to get approximately

20% and 30% censoring, respectively.

Model 2. (QAR(1) with Random Censoring) Yt = β0(Ut) + β1(Ut)Yt−1, where

β1 = .55 + .25Ut, β0 = Φ−1(Ut), and Ut ∼ U(0, 1). Censoring times Ct ∼ −1 +

exp(1/4.5) for 20% and Ct ∼ −1 + exp(1/2.8) for 30% censoring. Here Yt and Ct are
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mutually independent.

Model 3. (QAR(2) with Fixed Censoring) Yt = β0(Ut)+β1(Ut)Yt−1+β2(Ut)Yt−2,

where β1 = .35 + .25Ut, β2 = .25 + .20Ut, β0 = Φ−1(Ut), and Ut ∼ U(0, 1). For

censoring constants, Ct, 1.25 was used to get approximately 20% censoring.

Model 4. (QAR(2) with Random Censoring) Yt = β0(Ut)+β1(Ut)Yt−1+β2(Ut)Yt−2,

where β1 = .35 + .25Ut, β2 = .25 + .20Ut, β0 = Φ−1(Ut), and Ut ∼ U(0, 1). Censoring

times Ct ∼ −1 + exp(1/4.5) for 20% censoring.

Model 1 and 2 are QAR(1) models with same coefficients, but their censoring

distributions are different. Censoring times in Model 1 are fixed constants and in

Model 2 are random. Model 3 and 4 are QAR(2) models sharing same coefficients

and being censored at a fixed constant or randomly, respectively.

The results of this experiment are organized in Figures 3.1-3.4 and Tables 3.1-3.4.

They show the mean absolute differences of two estimates get smaller as sample size

n increase. Note that for Model 3 and 4, we only considered 20% censoring since 30%

censoring in Yt results in overall censoring rate of over 50% in Xt. Although, here we

only considered the case where Yt and Ct are mutually independent, we can extend

to the case where Yt and Ct are conditionally independent given Xt.

From this experiment, we can see that;

• The CRQ estimator converges to true parameter at least empirically, when it is

estimated using only part of observations where the regressor is not censored.

• Although we only considered fixed censoring in previous chapter, our proposed

algorithm can be applied in random censoring.
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3.2 Experiment 2 : The Self-consistent Algorithm

As the second experiment, we compare the performance of six different methods

including multiple imputation and the self-consistent algorithm. The data in experi-

ments were generated from models in Experiment 1. Details for each method are as

follows.

Method 1. The regular quantile regression method is used on complete data, yt.

Method 2. Censoring is applied on complete data. Instead of having all yt,

we observe ỹt = min{yt, ct}. Then we use the regular quantile regression using all

observations. Here we treat the censored values as observed.

Method 3. Portnoy’s censored regression quantile method is used on all obser-

vations leaving censored xt as observed.

Method 4. Portnoy’s censored regression quantile method is used on part of

observations where the regressor is not censored.

Method 5. The multiple imputation (MI) method is used. Since Step 1-3 in

CQAR algorithm enables us to fill-in the missing data with plausible values, the MI

method, proposed by Rubin (1987), can be adopted. Repeating Step 1-3 m times

generates m simulated complete data. For a given τ , estimate β̂i(τ), i = 1, ...,m

based on simulated data. Then, the MI estimator of β(τ) is β̃(τ) = m−1
∑m

i=1 β̂i(τ).

Method 6. The self-consistent algorithm proposed in Chapter 2.2 is imple-

mented.

Note that Method 1 is omniscient since we already know true yt and estimate β

using all yt before censored. Method 2-3 are naturally biased since they do not take

account of censoring. β(τ) estimated by Method 4 is same as the initial estimate of

CQAR algorithm. In Method 5, the number of simulation, m, is decided as suggested

in Rubin (1987) where it showed that the efficiency of an estimate based on m sets

of imputations is approximately (1 + γ
m
)−1 with γ being the censoring rate. With
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around 20% to 30% censoring rate, m = 5 already achieves about 95% efficiency.

In the Tables 3.5-3.16, we compared the performance of method 1-6. For each

model, we made the total censoring rate to be about 20% or 30%. We drew 1000

simulations with sample size n = 300 and 1000. Three different quantiles, τ =

.25, .5, .75 were used. To evaluate each estimates, Mean Bias, Standard Error(SE),

Mean Squared Error(MSE), and Mean Absolute Error(MAE) were calculated. Also,

all MSE and MAE results are expressed as efficiencies with respect to Method 1.

The results from Tables 3.5-3.16 can be summarized as follows;

• Method 2 performs the worst in most cases, followed by Method 3 since both

methods produce biased estimator.

• Method 4 gives fairly reasonable results. With increasing sample size, it per-

forms similarly with Method 5-6.

• When comparing Method 5 and Method 6, performance-wise Method 5 did gen-

erally better than Method 6. However, with large sample size, both methods

produced competitive results. Also, in Method 6, the CQAR algorithm con-

verged very fast, resulting in shorter computation time than the MI method.

Note that computing the entire regression quantile process in Method 6 on Model

1 required 1.39 seconds on a Intel(R) Core(TM) i5 CPU with 2.50GHz and Method

5 took 1.68 seconds.

3.3 Experiment 3 : Comparison of Bootstrap

methods

As the third experiment, we compare performance of two bootstrap methods, the

paired bootstrap and the block bootstrap, on constructing confidence intervals on the

28



CQAR estimator. In our simulation, both methods applied to Model 1 and Model 3,

used in Chapter 3.1. For the block bootstrap, we allowed blocks to be overlapping

and set the block length to be n1/3.

When implementing bootstrap approaches, the ordinary percentile confidence in-

tervals might be unreliable for large τ , where the conditional quantile function is

unestimable because of heavy censoring at the top of distribution. Following the

hybrid approach introduced by Portnoy (2003), we take the bootstrap estimate of

the interquartile range and use normality. Specifically, take the bootstrap sample

interquartile values β∗
.75 − β∗

.5 and β
∗
.5 − β∗

.25, multiply 2.906, and add the values to β∗
.5

to get upper and lower 95% confidence bounds.

In Table 3.17-18, we compared the coverage probability of both types of boot-

strap for QAR(1) and QAR(2) models with fixed censoring. The results show both

methods give reliable coverage probability around 90% to 95%. It is worth to note

that although the paired bootstrap showed slightly better results in our simulation,

the block bootstrap is considered as an appropriate choice because of its generality

on dependent data and its robustness with respect to model misspecification.

3.4 Summary

Motivated by Portnoy (2003) and Rubin (1987), the censored quantile autoregression

(CQAR) algorithm has been proposed. The CQAR algorithm follows Portnoy’s grid

method to produce the initial estimator and adopts an idea of imputation methods

to further refine the estimator in self-consistent manner.

Throughout the simulations, we can see that:

• The CRQ estimator on triples (Ỹt, X̃t,∆t) where t ∈ {γt = 1} in (2.3) converges

to the CRQ estimator on triples (Ỹt, Xt,∆t), which implies that it converges

to true parameter at least empirically, when it is estimated using only part of
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observations where the regressor is not censored.

• Among the simulation examples in Experiment 2, the CQAR algorithm per-

forms competitively well. It works better than naive methods that treats cen-

sored values as observed. And compared to the MI method, it has faster com-

putation time.

• Within the class of AR-models, the paired bootstrap gives reliable coverage

probability compared to the block bootstrap, which is more generally used in

constructing inference on time series. However, it is believed that the block

bootstrap is more robust than the paired bootstrap with respect to model miss-

specification.

• The computation time using the CQAR algorithm is very fast. In most time

it converges within 10 steps, and since the objective function in each step is

convex with respect to the regression coefficients, it can be efficiently solved

by the standard linear programming algorithm or interior point methods for

regression quantiles described in Koenker (2005).
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3.5 Figures and Tables
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Figure 3.1: The Mean Absolute Difference (|θ̂1 − θ̂2|) for intercept and slope from

Model 1 with three different sample sizes (500, 1000, 2000). Q1: the first quartile;

Q2:the second quartile (median); Q3:the third quartile. C1: 20% censoring rate; C2:

30% censoring rate.
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Figure 3.2: The Mean Absolute Difference (|θ̂1 − θ̂2|) for intercept and slope from
Model 2 with three different sample sizes (500, 1000, 2000). Q1: the first quartile;
Q2:the second quartile (median); Q3:the third quartile. C1: 20% censoring rate; C2:
30% censoring rate.
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Figure 3.3: The Mean Absolute Difference (|θ̂1 − θ̂2|) for intercept and slope from
Model 3 with three different sample sizes (500, 1000, 2000). Q1: the first quartile;
Q2:the second quartile (median); Q3:the third quartile. C1: 20% censoring rate.

33



n

m
ea

n 
ab

so
lu

te
 d

iff
er

en
ce

500 1000 2000

.0
1

.0
3

.0
5

Intercept

Q1C1
Q2C1
Q3C1

n

m
ea

n 
ab

so
lu

te
 d

iff
er

en
ce

500 1000 2000

.0
1

.0
3

.0
5

β1

Q1C1
Q2C1
Q3C1

n

m
ea

n 
ab

so
lu

te
 d

iff
er

en
ce

500 1000 2000

.0
1

.0
3

.0
5

β2

Q1C1
Q2C1
Q3C1

Figure 3.4: The Mean Absolute Difference (|θ̂1 − θ̂2|) for intercept and slope from
Model 4 with three different sample sizes (500, 1000, 2000). Q1: the first quartile;
Q2:the second quartile (median); Q3:the third quartile. C1: 20% censoring rate.
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Table 3.1: The Mean Absolute Difference (|θ̂1 − θ̂2|) for intercept and slope from
Model 1 with three different sample sizes (500, 1000, 2000).

Intercept

20% Censoring 30% Censoring

Quantiles .25 .50 .75 .25 .50 .75

n=500 0.0378 0.0344 0.0269 0.0503 0.0433 0.0340

n=1000 0.0268 0.0243 0.0179 0.0360 0.0315 0.0232

n=2000 0.0197 0.0162 0.0123 0.0259 0.0213 0.0158

Slope

n=500 0.0395 0.0331 0.0248 0.0470 0.0381 0.0293

n=1000 0.0277 0.0233 0.0171 0.0327 0.0266 0.0197

n=2000 0.0206 0.0156 0.0115 0.0239 0.0181 0.0132

Table 3.2: The Mean Absolute Difference (|θ̂1 − θ̂2|) for intercept and slope from
Model 2 with three different sample sizes (500, 1000, 2000).

Intercept

20% Censoring 30% Censoring

Quantiles .25 .50 .75 .25 .50 .75

n=500 0.0329 0.0327 0.0380 0.0429 0.0449 0.0552

n=1000 0.0230 0.0224 0.0266 0.0304 0.0319 0.0380

n=2000 0.0160 0.0163 0.0187 0.0220 0.0222 0.0269

Slope

n=500 0.0275 0.0252 0.0294 0.0327 0.0328 0.0386

n=1000 0.0185 0.0178 0.0209 0.0233 0.0234 0.0271

n=2000 0.0137 0.0126 0.0141 0.0168 0.0164 0.0190
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Table 3.3: The Mean Absolute Difference (|θ̂1 − θ̂2|) for intercept and slope from
Model 3 with three different sample sizes (500, 1000, 2000). Approximately 20%
censoring applied.

Intercept b1 b2

Quantiles .25 .50 .75 .25 .50 .75 .25 .50 .75

n=500 0.0533 0.0448 0.0415 0.0418 0.0349 0.0327 0.0460 0.0366 0.0367

n=1000 0.0376 0.0321 0.0282 0.0293 0.0242 0.0229 0.0308 0.0251 0.0256

n=2000 0.0258 0.0224 0.0189 0.0201 0.0174 0.0155 0.0219 0.0178 0.0170

Table 3.4: The Mean Absolute Difference (|θ̂1 − θ̂2|) for intercept and slope from
Model 4 with three different sample sizes (500, 1000, 2000). Approximately 20%
censoring applied.

Intercept b1 b2

Quantiles .25 .50 .75 .25 .50 .75 .25 .50 .75

n=500 0.0537 0.0533 0.0579 0.0409 0.0365 0.0402 0.0400 0.0373 0.0406

n=1000 0.0363 0.0365 0.0405 0.0283 0.0248 0.0283 0.0287 0.0255 0.0293

n=2000 0.0262 0.0254 0.0296 0.0212 0.0183 0.0197 0.0199 0.0179 0.0200
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Table 3.5: Bias, SE, MSE, MAE and Ratios for method 1 - 6 on Model 1. Sample
size: 300. Replication: 1000. Censoring rate: 20%.

Intercept

300 obs, 20% Mean Bias SE MSE MAE RMSE RMAE

τ = .25

RQ(complete obs.) 0.0047 0.0040 0.0048 0.0549 1.00 1.00

RQ(all obs.) 0.0998 0.0041 0.0150 0.1059 3.12 1.93

CRQ(all obs.) 0.0521 0.0041 0.0078 0.0716 1.62 1.31

CRQ(only uncensored) -0.0539 0.0054 0.0115 0.0847 2.39 1.54

MI(CRQ) -0.0406 0.0048 0.0086 0.0707 1.79 1.29

selfconsist(CRQ) -0.0466 0.0049 0.0093 0.0734 1.92 1.34

τ = .50

RQ(complete obs.) 0.0002 0.0035 0.0037 0.0489 1.00 1.00

RQ(all obs.) 0.1191 0.0036 0.0180 0.1209 4.88 2.47

CRQ(all obs.) 0.0854 0.0039 0.0118 0.0916 3.19 1.87

CRQ(only uncensored) -0.0441 0.0048 0.0088 0.0749 2.38 1.53

MI(CRQ) -0.0077 0.0040 0.0048 0.0552 1.31 1.13

selfconsist(CRQ) -0.0153 0.0039 0.0049 0.0557 1.32 1.14

τ = .75

RQ(complete obs.) 0.0020 0.0036 0.0039 0.0493 1.00 1.00

RQ(all obs.) -0.1857 0.0030 0.0372 0.1858 9.62 3.77

CRQ(all obs.) 0.0485 0.0049 0.0097 0.0752 2.51 1.53

CRQ(only uncensored) -0.0397 0.0051 0.0094 0.0777 2.43 1.57

MI(CRQ) -0.0092 0.0045 0.0061 0.0618 1.57 1.25

selfconsist(CRQ) -0.0155 0.0046 0.0066 0.0644 1.70 1.31

Slope

τ = .25

RQ(complete obs.) -0.0068 0.0034 0.0034 0.0467 1.00 1.00

RQ(all obs.) 0.0765 0.0041 0.0108 0.0863 3.15 1.85

CRQ(all obs.) 0.0724 0.0041 0.0102 0.0830 2.99 1.78

CRQ(only uncensored) -0.0194 0.0047 0.0070 0.0663 2.05 1.42

MI(CRQ) -0.0264 0.0045 0.0068 0.0629 1.99 1.35

selfconsist(CRQ) -0.0330 0.0044 0.0070 0.0649 2.05 1.39

τ = .50

RQ(complete obs.) -0.0086 0.0030 0.0028 0.0422 1.00 1.00

RQ(all obs.) 0.0915 0.0035 0.0120 0.0964 4.25 2.28

CRQ(all obs.) 0.0906 0.0037 0.0123 0.0954 4.35 2.26

CRQ(only uncensored) -0.0184 0.0042 0.0056 0.0591 1.98 1.40

MI(CRQ) 0.0017 0.0040 0.0048 0.0538 1.69 1.27

selfconsist(CRQ) -0.0046 0.0037 0.0042 0.0506 1.48 1.20

τ = .75

RQ(complete obs.) -0.0084 0.0034 0.0036 0.0475 1.00 1.00

RQ(all obs.) -0.1816 0.0027 0.0352 0.1816 9.78 3.83

CRQ(all obs.) 0.0636 0.0045 0.0100 0.0822 2.79 1.73

CRQ(only uncensored) -0.0082 0.0047 0.0067 0.0650 1.87 1.37

MI(CRQ) 0.0093 0.0041 0.0052 0.0573 1.46 1.21

selfconsist(CRQ) 0.0046 0.0042 0.0052 0.0572 1.45 1.21
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Table 3.6: Bias, SE, MSE, MAE and Ratios for method 1 - 6 on Model 1. Sample
size: 1000. Replication: 1000. Censoring rate: 20%.

Intercept

1000 obs, 20% Mean Bias SE MSE MAE RMSE RMAE

τ = .25

RQ(complete obs.) -0.0003 0.0013 0.0017 0.0330 1.00 1.00

RQ(all obs.) 0.0972 0.0015 0.0116 0.0981 6.64 2.97

CRQ(all obs.) 0.0657 0.0015 0.0065 0.0697 3.71 2.11

CRQ(only uncensored) -0.0331 0.0017 0.0039 0.0500 2.24 1.52

MI(CRQ) -0.0306 0.0016 0.0034 0.0457 1.93 1.38

selfconsist(CRQ) -0.0346 0.0015 0.0035 0.0472 2.01 1.43

τ = .50

RQ(complete obs.) -0.0011 0.0012 0.0015 0.0309 1.00 1.00

RQ(all obs.) 0.1196 0.0014 0.0164 0.1198 11.02 3.87

CRQ(all obs.) 0.0959 0.0015 0.0114 0.0965 7.63 3.12

CRQ(only uncensored) -0.0265 0.0015 0.0030 0.0439 2.02 1.42

MI(CRQ) -0.0003 0.0014 0.0019 0.0350 1.30 1.13

selfconsist(CRQ) -0.0048 0.0014 0.0019 0.0342 1.26 1.11

τ = .75

RQ(complete obs.) -0.0022 0.0013 0.0017 0.0334 1.00 1.00

RQ(all obs.) -0.1915 0.0009 0.0375 0.1915 21.60 5.74

CRQ(all obs.) 0.0588 0.0018 0.0065 0.0664 3.76 1.99

CRQ(only uncensored) -0.0301 0.0017 0.0037 0.0492 2.11 1.47

MI(CRQ) -0.0056 0.0015 0.0024 0.0394 1.37 1.18

selfconsist(CRQ) -0.0093 0.0015 0.0025 0.0402 1.41 1.20

Slope

τ = .25

RQ(complete obs.) -0.0020 0.0010 0.0011 0.0268 1.00 1.00

RQ(all obs.) 0.0842 0.0013 0.0088 0.0847 8.11 3.16

CRQ(all obs.) 0.0813 0.0013 0.0083 0.0820 7.64 3.06

CRQ(only uncensored) -0.0045 0.0015 0.0022 0.0373 1.98 1.39

MI(CRQ) -0.0215 0.0015 0.0026 0.0391 2.38 1.46

selfconsist(CRQ) -0.0252 0.0014 0.0025 0.0389 2.30 1.45

τ = .50

RQ(complete obs.) -0.0043 0.0009 0.0009 0.0237 1.00 1.00

RQ(all obs.) 0.0981 0.0012 0.0111 0.0983 12.44 4.16

CRQ(all obs.) 0.0958 0.0012 0.0107 0.0960 12.03 4.06

CRQ(only uncensored) -0.0064 0.0012 0.0016 0.0317 1.78 1.34

MI(CRQ) 0.0054 0.0012 0.0015 0.0304 1.65 1.28

selfconsist(CRQ) 0.0019 0.0011 0.0013 0.0286 1.46 1.21

τ = .75

RQ(complete obs.) -0.0037 0.0011 0.0011 0.0271 1.00 1.00

RQ(all obs.) -0.1765 0.0008 0.0319 0.1765 28.10 6.52

CRQ(all obs.) 0.0688 0.0015 0.0069 0.0722 6.08 2.67

CRQ(only uncensored) -0.0033 0.0014 0.0020 0.0364 1.80 1.34

MI(CRQ) 0.0101 0.0014 0.0019 0.0353 1.70 1.30

selfconsist(CRQ) 0.0071 0.0013 0.0018 0.0345 1.63 1.28
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Table 3.7: Bias, SE, MSE, MAE and Ratios for method 1 - 6 on Model 1. Sample
size: 300. Replication: 1000. Censoring rate: 30%.

Intercept

300 obs, 30% Mean Bias SE MSE MAE RMSE RMAE

τ = .25

RQ(complete obs.) 0.0140 0.0037 0.0044 0.0542 1.00 1.00

RQ(all obs.) 0.1784 0.0042 0.0372 0.1788 8.44 3.30

CRQ(all obs.) 0.1303 0.0043 0.0224 0.1330 5.08 2.46

CRQ(only uncensored) -0.0384 0.0064 0.0136 0.0917 3.08 1.69

MI(CRQ) -0.0280 0.0053 0.0091 0.0747 2.06 1.38

selfconsist(CRQ) -0.0393 0.0052 0.0098 0.0774 2.22 1.43

τ = .50

RQ(complete obs.) 0.0109 0.0032 0.0032 0.0449 1.00 1.00

RQ(all obs.) 0.1474 0.0018 0.0227 0.1474 7.14 3.28

CRQ(all obs.) 0.1777 0.0037 0.0356 0.1778 11.21 3.96

CRQ(only uncensored) -0.0315 0.0056 0.0103 0.0805 3.24 1.79

MI(CRQ) 0.0255 0.0042 0.0060 0.0619 1.90 1.38

selfconsist(CRQ) 0.0107 0.0041 0.0051 0.0569 1.61 1.27

τ = .75

RQ(complete obs.) 0.0147 0.0035 0.0039 0.0494 1.00 1.00

RQ(all obs.) -0.3034 0.0024 0.0939 0.3034 23.80 6.14

CRQ(all obs.) 0.0988 0.0072 0.0251 0.1213 6.36 2.45

CRQ(only uncensored) -0.0227 0.0067 0.0139 0.0934 3.53 1.89

MI(CRQ) 0.0206 0.0060 0.0112 0.0827 2.83 1.67

selfconsist(CRQ) 0.0092 0.0061 0.0111 0.0825 2.82 1.67

Slope

τ = .25

RQ(complete obs.) -0.0046 0.0032 0.0031 0.0442 1.00 1.00

RQ(all obs.) 0.1272 0.0044 0.0220 0.1302 7.16 2.94

CRQ(all obs.) 0.1233 0.0045 0.0212 0.1267 6.89 2.86

CRQ(only uncensored) -0.0099 0.0056 0.0094 0.0776 3.07 1.75

MI(CRQ) -0.0318 0.0053 0.0096 0.0747 3.11 1.69

selfconsist(CRQ) -0.0423 0.0053 0.0101 0.0763 3.28 1.72

τ = .50

RQ(complete obs.) -0.0036 0.0030 0.0027 0.0413 1.00 1.00

RQ(all obs.) 0.1009 0.0025 0.0120 0.1018 4.45 2.47

CRQ(all obs.) 0.1477 0.0036 0.0258 0.1486 9.53 3.60

CRQ(only uncensored) -0.0073 0.0050 0.0074 0.0679 2.74 1.64

MI(CRQ) 0.0171 0.0044 0.0060 0.0613 2.21 1.48

selfconsist(CRQ) 0.0062 0.0042 0.0052 0.0563 1.94 1.37

τ = .75

RQ(complete obs.) -0.0072 0.0034 0.0035 0.0470 1.00 1.00

RQ(all obs.) -0.2675 0.0035 0.0752 0.2675 21.41 5.70

CRQ(all obs.) 0.0851 0.0057 0.0169 0.1054 4.82 2.24

CRQ(only uncensored) -0.0018 0.0058 0.0101 0.0800 2.88 1.70

MI(CRQ) 0.0166 0.0052 0.0085 0.0732 2.42 1.56

selfconsist(CRQ) 0.0090 0.0053 0.0084 0.0720 2.39 1.53
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Table 3.8: Bias, SE, MSE, MAE and Ratios for method 1 - 6 on Model 1. Sample
size: 1000. Replication: 1000. Censoring rate: 30%.

Intercept

1000 obs, 30% Mean Bias SE MSE MAE RMSE RMAE

τ = .25

RQ(complete obs.) 0.0048 0.0013 0.0018 0.0342 1.00 1.00

RQ(all obs.) 0.1691 0.0016 0.0311 0.1691 17.07 4.95

CRQ(all obs.) 0.1371 0.0016 0.0213 0.1371 11.67 4.01

CRQ(only uncensored) -0.0296 0.0020 0.0049 0.0563 2.70 1.65

MI(CRQ) -0.0248 0.0018 0.0040 0.0497 2.20 1.45

selfconsist(CRQ) -0.0325 0.0018 0.0041 0.0509 2.27 1.49

τ = .50

RQ(complete obs.) 0.0048 0.0012 0.0014 0.0300 1.00 1.00

RQ(all obs.) 0.1489 0.0006 0.0225 0.1489 15.95 4.96

CRQ(all obs.) 0.1755 0.0012 0.0323 0.1755 22.92 5.85

CRQ(only uncensored) -0.0228 0.0018 0.0037 0.0484 2.60 1.61

MI(CRQ) 0.0258 0.0015 0.0030 0.0437 2.14 1.46

selfconsist(CRQ) 0.0149 0.0015 0.0024 0.0386 1.69 1.29

τ = .75

RQ(complete obs.) 0.0044 0.0013 0.0016 0.0320 1.00 1.00

RQ(all obs.) -0.3089 0.0007 0.0960 0.3089 59.92 9.64

CRQ(all obs.) 0.0978 0.0023 0.0146 0.1010 9.13 3.15

CRQ(only uncensored) -0.0239 0.0022 0.0053 0.0586 3.31 1.83

MI(CRQ) 0.0116 0.0020 0.0040 0.0491 2.47 1.53

selfconsist(CRQ) 0.0046 0.0020 0.0040 0.0501 2.53 1.56

Slope

τ = .25

RQ(complete obs.) 0.0006 0.0010 0.0010 0.0249 1.00 1.00

RQ(all obs.) 0.1308 0.0014 0.0191 0.1308 19.85 5.24

CRQ(all obs.) 0.1277 0.0014 0.0183 0.1277 19.01 5.12

CRQ(only uncensored) -0.0024 0.0017 0.0028 0.0428 2.94 1.72

MI(CRQ) -0.0278 0.0018 0.0039 0.0472 4.03 1.89

selfconsist(CRQ) -0.0345 0.0016 0.0038 0.0478 3.98 1.91

τ = .50

RQ(complete obs.) -0.0007 0.0009 0.0008 0.0230 1.00 1.00

RQ(all obs.) 0.1082 0.0007 0.0122 0.1082 14.48 4.70

CRQ(all obs.) 0.1441 0.0011 0.0219 0.1441 25.91 6.27

CRQ(only uncensored) -0.0044 0.0015 0.0022 0.0375 2.57 1.63

MI(CRQ) 0.0166 0.0014 0.0022 0.0372 2.59 1.62

selfconsist(CRQ) 0.0085 0.0013 0.0016 0.0325 1.95 1.41

τ = .75

RQ(complete obs.) -0.0020 0.0010 0.0010 0.0258 1.00 1.00

RQ(all obs.) -0.2597 0.0011 0.0686 0.2597 66.89 10.06

CRQ(all obs.) 0.0874 0.0017 0.0105 0.0896 10.20 3.47

CRQ(only uncensored) -0.0014 0.0017 0.0030 0.0431 2.95 1.67

MI(CRQ) 0.0143 0.0016 0.0026 0.0407 2.57 1.58

selfconsist(CRQ) 0.0092 0.0016 0.0025 0.0393 2.45 1.52
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Table 3.9: Bias, SE, MSE, MAE and Ratios for method 1 - 6 on Model 2. Sample
size: 300. Replication: 1000. Censoring rate: 20%.

Intercept

300 obs, 20% Mean Bias SE MSE MAE RMSE RMAE

τ = .25

RQ(complete obs.) -0.0033 0.0045 0.0060 0.0615 1.00 1.00

RQ(all obs.) -0.1273 0.0043 0.0216 0.1296 3.62 2.11

CRQ(all obs.) 0.0435 0.0053 0.0102 0.0829 1.71 1.35

CRQ(only uncensored) -0.0515 0.0055 0.0118 0.0853 1.98 1.39

MI(CRQ) -0.0656 0.0048 0.0112 0.0854 1.87 1.39

selfconsist(CRQ) -0.0695 0.0050 0.0122 0.0892 2.04 1.45

τ = .50

RQ(complete obs.) -0.0071 0.0041 0.0052 0.0579 1.00 1.00

RQ(all obs.) -0.1825 0.0044 0.0390 0.1828 7.57 3.16

CRQ(all obs.) 0.0854 0.0053 0.0158 0.1034 3.06 1.79

CRQ(only uncensored) -0.0460 0.0054 0.0110 0.0842 2.13 1.45

MI(CRQ) -0.0403 0.0044 0.0075 0.0698 1.46 1.21

selfconsist(CRQ) -0.0437 0.0047 0.0084 0.0728 1.63 1.26

τ = .75

RQ(complete obs.) -0.0081 0.0045 0.0061 0.0623 1.00 1.00

RQ(all obs.) -0.1575 0.0053 0.0332 0.1607 5.45 2.58

CRQ(all obs.) 0.1356 0.0065 0.0312 0.1482 5.12 2.38

CRQ(only uncensored) -0.0518 0.0060 0.0136 0.0927 2.24 1.49

MI(CRQ) -0.0191 0.0050 0.0078 0.0715 1.28 1.15

selfconsist(CRQ) -0.0223 0.0053 0.0090 0.0766 1.49 1.23

Slope

τ = .25

RQ(complete obs.) -0.0093 0.0035 0.0037 0.0483 1.00 1.00

RQ(all obs.) -0.1648 0.0040 0.0319 0.1649 8.52 3.41

CRQ(all obs.) 0.0021 0.0043 0.0055 0.0591 1.48 1.22

CRQ(only uncensored) -0.0113 0.0044 0.0059 0.0611 1.57 1.26

MI(CRQ) -0.0483 0.0036 0.0061 0.0635 1.64 1.32

selfconsist(CRQ) -0.0537 0.0039 0.0074 0.0695 1.96 1.44

τ = .50

RQ(complete obs.) -0.0112 0.0032 0.0032 0.0444 1.00 1.00

RQ(all obs.) -0.1637 0.0038 0.0312 0.1640 9.72 3.69

CRQ(all obs.) 0.0077 0.0041 0.0052 0.0573 1.62 1.29

CRQ(only uncensored) -0.0157 0.0042 0.0054 0.0579 1.69 1.30

MI(CRQ) -0.0364 0.0034 0.0047 0.0546 1.48 1.23

selfconsist(CRQ) -0.0400 0.0036 0.0055 0.0586 1.73 1.32

τ = .75

RQ(complete obs.) -0.0141 0.0035 0.0039 0.0480 1.00 1.00

RQ(all obs.) -0.1365 0.0043 0.0242 0.1378 6.23 2.87

CRQ(all obs.) 0.0135 0.0051 0.0081 0.0717 2.09 1.49

CRQ(only uncensored) -0.0161 0.0046 0.0065 0.0639 1.68 1.33

MI(CRQ) -0.0215 0.0039 0.0051 0.0559 1.31 1.16

selfconsist(CRQ) -0.0259 0.0041 0.0058 0.0600 1.48 1.25
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Table 3.10: Bias, SE, MSE, MAE and Ratios for method 1 - 6 on Model 2. Sample
size: 1000. Replication: 1000. Censoring rate: 20%.

Intercept

1000 obs, 20% Mean Bias SE MSE MAE RMSE RMAE

τ = .25

RQ(complete obs.) -0.0003 0.0013 0.0018 0.0336 1.00 1.00

RQ(all obs.) -0.1277 0.0012 0.0178 0.1277 9.85 3.80

CRQ(all obs.) 0.0668 0.0017 0.0072 0.0726 4.00 2.16

CRQ(only uncensored) -0.0340 0.0017 0.0039 0.0506 2.18 1.51

MI(CRQ) -0.0493 0.0014 0.0044 0.0552 2.44 1.64

selfconsist(CRQ) -0.0528 0.0015 0.0049 0.0583 2.73 1.74

τ = .50

RQ(complete obs.) -0.0005 0.0012 0.0015 0.0316 1.00 1.00

RQ(all obs.) -0.1767 0.0013 0.0329 0.1767 21.52 5.59

CRQ(all obs.) 0.1090 0.0017 0.0147 0.1101 9.63 3.48

CRQ(only uncensored) -0.0271 0.0016 0.0034 0.0465 2.22 1.47

MI(CRQ) -0.0224 0.0014 0.0023 0.0388 1.53 1.23

selfconsist(CRQ) -0.0255 0.0014 0.0026 0.0410 1.72 1.30

τ = .75

RQ(complete obs.) -0.0034 0.0014 0.0019 0.0345 1.00 1.00

RQ(all obs.) -0.1531 0.0016 0.0260 0.1531 13.97 4.43

CRQ(all obs.) 0.1625 0.0022 0.0311 0.1628 16.74 4.72

CRQ(only uncensored) -0.0337 0.0019 0.0046 0.0543 2.46 1.57

MI(CRQ) -0.0002 0.0016 0.0024 0.0396 1.30 1.15

selfconsist(CRQ) -0.0032 0.0016 0.0027 0.0411 1.43 1.19

Slope

τ = .25

RQ(complete obs.) -0.0026 0.0011 0.0011 0.0266 1.00 1.00

RQ(all obs.) -0.1611 0.0012 0.0275 0.1611 24.49 6.07

CRQ(all obs.) 0.0110 0.0013 0.0018 0.0337 1.59 1.27

CRQ(only uncensored) -0.0049 0.0013 0.0018 0.0332 1.59 1.25

MI(CRQ) -0.0423 0.0011 0.0030 0.0455 2.68 1.71

selfconsist(CRQ) -0.0472 0.0012 0.0036 0.0499 3.22 1.88

τ = .50

RQ(complete obs.) -0.0029 0.0010 0.0010 0.0248 1.00 1.00

RQ(all obs.) -0.1572 0.0012 0.0261 0.1572 27.32 6.33

CRQ(all obs.) 0.0202 0.0013 0.0020 0.0357 2.07 1.44

CRQ(only uncensored) -0.0053 0.0012 0.0016 0.0315 1.65 1.27

MI(CRQ) -0.0267 0.0011 0.0018 0.0340 1.93 1.37

selfconsist(CRQ) -0.0306 0.0011 0.0022 0.0370 2.27 1.49

τ = .75

RQ(complete obs.) -0.0036 0.0010 0.0011 0.0264 1.00 1.00

RQ(all obs.) -0.1276 0.0013 0.0180 0.1276 16.34 4.83

CRQ(all obs.) 0.0292 0.0015 0.0032 0.0461 2.95 1.74

CRQ(only uncensored) -0.0044 0.0014 0.0019 0.0343 1.72 1.30

MI(CRQ) -0.0090 0.0012 0.0015 0.0307 1.39 1.16

selfconsist(CRQ) -0.0129 0.0012 0.0017 0.0328 1.55 1.24
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Table 3.11: Bias, SE, MSE, MAE and Ratios for method 1 - 6 on Model 2. Sample
size: 300. Replication: 1000. Censoring rate: 30%.

Intercept

300 obs, 30% Mean Bias SE MSE MAE RMSE RMAE

τ = .25

RQ(complete obs.) 0.0070 0.0043 0.0056 0.0593 1.00 1.00

RQ(all obs.) -0.1526 0.0038 0.0276 0.1527 4.90 2.58

CRQ(all obs.) 0.1145 0.0053 0.0216 0.1247 3.83 2.10

CRQ(only uncensored) -0.0451 0.0061 0.0134 0.0923 2.37 1.56

MI(CRQ) -0.0590 0.0048 0.0103 0.0806 1.83 1.36

selfconsist(CRQ) -0.0682 0.0051 0.0124 0.0896 2.21 1.51

τ = .50

RQ(complete obs.) 0.0048 0.0040 0.0047 0.0554 1.00 1.00

RQ(all obs.) -0.2615 0.0042 0.0736 0.2615 15.50 4.72

CRQ(all obs.) 0.1806 0.0057 0.0424 0.1831 8.94 3.31

CRQ(only uncensored) -0.0340 0.0061 0.0121 0.0884 2.56 1.60

MI(CRQ) -0.0178 0.0044 0.0060 0.0619 1.27 1.12

selfconsist(CRQ) -0.0266 0.0048 0.0075 0.0692 1.57 1.25

τ = .75

RQ(complete obs.) 0.0042 0.0041 0.0051 0.0566 1.00 1.00

RQ(all obs.) -0.2588 0.0053 0.0754 0.2589 14.87 4.57

CRQ(all obs.) 0.2684 0.0077 0.0900 0.2698 17.75 4.76

CRQ(only uncensored) -0.0466 0.0069 0.0165 0.1049 3.26 1.85

MI(CRQ) 0.0166 0.0051 0.0082 0.0726 1.62 1.28

selfconsist(CRQ) 0.0050 0.0055 0.0090 0.0758 1.77 1.34

Slope

τ = .25

RQ(complete obs.) -0.0069 0.0035 0.0037 0.0482 1.00 1.00

RQ(all obs.) -0.2134 0.0042 0.0507 0.2134 13.82 4.43

CRQ(all obs.) 0.0217 0.0046 0.0067 0.0658 1.82 1.37

CRQ(only uncensored) -0.0100 0.0047 0.0068 0.0647 1.85 1.34

MI(CRQ) -0.0587 0.0039 0.0080 0.0719 2.19 1.49

selfconsist(CRQ) -0.0675 0.0040 0.0092 0.0779 2.52 1.62

τ = .50

RQ(complete obs.) -0.0081 0.0032 0.0032 0.0448 1.00 1.00

RQ(all obs.) -0.2274 0.0041 0.0568 0.2274 17.85 5.07

CRQ(all obs.) 0.0390 0.0048 0.0083 0.0734 2.60 1.64

CRQ(only uncensored) -0.0099 0.0046 0.0065 0.0649 2.05 1.45

MI(CRQ) -0.0351 0.0038 0.0055 0.0587 1.73 1.31

selfconsist(CRQ) -0.0424 0.0039 0.0064 0.0638 2.00 1.42

τ = .75

RQ(complete obs.) -0.0087 0.0035 0.0037 0.0482 1.00 1.00

RQ(all obs.) -0.1974 0.0049 0.0460 0.1976 12.35 4.10

CRQ(all obs.) 0.0598 0.0064 0.0157 0.1026 4.20 2.13

CRQ(only uncensored) -0.0122 0.0054 0.0088 0.0735 2.35 1.52

MI(CRQ) -0.0121 0.0044 0.0058 0.0597 1.56 1.24

selfconsist(CRQ) -0.0203 0.0047 0.0070 0.0659 1.88 1.37
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Table 3.12: Bias, SE, MSE, MAE and Ratios for method 1 - 6 on Model 2. Sample
size: 1000. Replication: 1000. Censoring rate: 30%.

Intercept

1000 obs, 30% Mean Bias SE MSE MAE RMSE RMAE

τ = .25

RQ(complete obs.) 0.0003 0.0014 0.0019 0.0347 1.00 1.00

RQ(all obs.) -0.1562 0.0011 0.0257 0.1562 13.30 4.50

CRQ(all obs.) 0.1212 0.0018 0.0178 0.1218 9.21 3.51

CRQ(only uncensored) -0.0357 0.0019 0.0050 0.0566 2.58 1.63

MI(CRQ) -0.0520 0.0015 0.0050 0.0586 2.57 1.69

selfconsist(CRQ) -0.0616 0.0016 0.0063 0.0665 3.24 1.92

τ = .50

RQ(complete obs.) -0.0014 0.0012 0.0015 0.0313 1.00 1.00

RQ(all obs.) -0.2641 0.0012 0.0711 0.2641 46.07 8.43

CRQ(all obs.) 0.1819 0.0020 0.0371 0.1819 24.04 5.80

CRQ(only uncensored) -0.0293 0.0019 0.0043 0.0523 2.82 1.67

MI(CRQ) -0.0170 0.0014 0.0023 0.0383 1.52 1.22

selfconsist(CRQ) -0.0250 0.0015 0.0029 0.0431 1.88 1.38

τ = .75

RQ(complete obs.) -0.0013 0.0014 0.0019 0.0351 1.00 1.00

RQ(all obs.) -0.2605 0.0016 0.0705 0.2605 36.57 7.42

CRQ(all obs.) 0.2741 0.0026 0.0821 0.2741 42.57 7.81

CRQ(only uncensored) -0.0349 0.0023 0.0064 0.0645 3.30 1.84

MI(CRQ) 0.0217 0.0017 0.0033 0.0462 1.74 1.32

selfconsist(CRQ) 0.0143 0.0018 0.0035 0.0463 1.79 1.32

Slope

τ = .25

RQ(complete obs.) -0.0036 0.0010 0.0011 0.0258 1.00 1.00

RQ(all obs.) -0.2064 0.0013 0.0442 0.2064 41.88 8.00

CRQ(all obs.) 0.0258 0.0014 0.0025 0.0400 2.39 1.55

CRQ(only uncensored) -0.0070 0.0015 0.0022 0.0373 2.05 1.45

MI(CRQ) -0.0544 0.0012 0.0044 0.0571 4.18 2.22

selfconsist(CRQ) -0.0667 0.0013 0.0060 0.0681 5.71 2.64

τ = .50

RQ(complete obs.) -0.0034 0.0009 0.0009 0.0236 1.00 1.00

RQ(all obs.) -0.2206 0.0012 0.0501 0.2206 57.11 9.36

CRQ(all obs.) 0.0447 0.0014 0.0040 0.0519 4.60 2.20

CRQ(only uncensored) -0.0068 0.0014 0.0020 0.0354 2.23 1.50

MI(CRQ) -0.0311 0.0011 0.0022 0.0388 2.55 1.65

selfconsist(CRQ) -0.0409 0.0012 0.0031 0.0459 3.48 1.95

τ = .75

RQ(complete obs.) -0.0039 0.0010 0.0011 0.0266 1.00 1.00

RQ(all obs.) -0.1889 0.0014 0.0375 0.1889 33.91 7.10

CRQ(all obs.) 0.0699 0.0018 0.0081 0.0767 7.33 2.88

CRQ(only uncensored) -0.0071 0.0016 0.0026 0.0402 2.33 1.51

MI(CRQ) -0.0066 0.0013 0.0017 0.0330 1.55 1.24

selfconsist(CRQ) -0.0163 0.0014 0.0021 0.0364 1.92 1.37
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Table 3.13: Bias, SE, MSE, MAE and Ratios for method 1 - 6 on Model 3. Sample
size: 300. Replication: 1000. Censoring rate: 20%.

Intercept

300 obs, 20% Mean Bias SE MSE MAE RMSE RMAE

τ = .25

RQ(complete obs.) 0.0014 0.0039 0.0046 0.0536 1.00 1.00

RQ(all obs.) 0.1445 0.0041 0.0258 0.1454 5.57 2.71

CRQ(all obs.) 0.0949 0.0042 0.0142 0.1011 3.06 1.89

CRQ(only uncensored) -0.0483 0.0066 0.0154 0.0973 3.32 1.81

MI(CRQ) -0.0386 0.0049 0.0087 0.0720 1.87 1.34

selfconsist(CRQ) -0.0482 0.0049 0.0095 0.0766 2.05 1.43

τ = .50

RQ(complete obs.) 0.0029 0.0032 0.0030 0.0439 1.00 1.00

RQ(all obs.) 0.1132 0.0020 0.0140 0.1134 4.65 2.59

CRQ(all obs.) 0.1355 0.0034 0.0219 0.1361 7.26 3.10

CRQ(only uncensored) -0.0360 0.0057 0.0109 0.0818 3.62 1.86

MI(CRQ) -0.0059 0.0039 0.0047 0.0539 1.55 1.23

selfconsist(CRQ) -0.0176 0.0039 0.0049 0.0555 1.61 1.27

τ = .75

RQ(complete obs.) 0.0023 0.0037 0.0040 0.0502 1.00 1.00

RQ(all obs.) -0.2020 0.0036 0.0448 0.2021 11.06 4.03

CRQ(all obs.) 0.0890 0.0052 0.0161 0.1000 3.98 1.99

CRQ(only uncensored) -0.0424 0.0061 0.0128 0.0899 3.17 1.79

MI(CRQ) -0.0102 0.0046 0.0065 0.0639 1.60 1.27

selfconsist(CRQ) -0.0197 0.0048 0.0072 0.0674 1.78 1.34

b1

τ = .25

RQ(complete obs.) -0.0052 0.0042 0.0054 0.0582 1.00 1.00

RQ(all obs.) 0.0631 0.0048 0.0110 0.0838 2.05 1.44

CRQ(all obs.) 0.0589 0.0049 0.0107 0.0824 2.01 1.42

CRQ(only uncensored) -0.0044 0.0057 0.0097 0.0792 1.80 1.36

MI(CRQ) -0.0037 0.0044 0.0059 0.0609 1.11 1.05

selfconsist(CRQ) -0.0085 0.0046 0.0064 0.0648 1.21 1.11

τ = .50

RQ(complete obs.) -0.0041 0.0039 0.0047 0.0538 1.00 1.00

RQ(all obs.) 0.0427 0.0041 0.0068 0.0651 1.46 1.21

CRQ(all obs.) 0.0645 0.0042 0.0094 0.0786 2.00 1.46

CRQ(only uncensored) -0.0053 0.0049 0.0072 0.0678 1.53 1.26

MI(CRQ) 0.0086 0.0042 0.0054 0.0572 1.15 1.06

selfconsist(CRQ) 0.0062 0.0042 0.0053 0.0574 1.12 1.07

τ = .75

RQ(complete obs.) -0.0017 0.0043 0.0054 0.0583 1.00 1.00

RQ(all obs.) -0.1076 0.0045 0.0177 0.1128 3.26 1.93

CRQ(all obs.) 0.0457 0.0048 0.0089 0.0747 1.64 1.28

CRQ(only uncensored) -0.0031 0.0053 0.0084 0.0717 1.55 1.23

MI(CRQ) 0.0115 0.0046 0.0066 0.0648 1.22 1.11

selfconsist(CRQ) 0.0094 0.0047 0.0066 0.0655 1.22 1.12
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Table 3.13: (Continued)

b2

300 obs, 20% Mean Bias SE MSE MAE RMSE RMAE

τ = .25

RQ(complete obs.) -0.0106 0.0042 0.0055 0.0594 1.00 1.00

RQ(all obs.) 0.0478 0.0050 0.0096 0.0797 1.76 1.34

CRQ(all obs.) 0.0444 0.0050 0.0095 0.0791 1.75 1.33

CRQ(only uncensored) -0.0136 0.0055 0.0093 0.0772 1.70 1.30

MI(CRQ) -0.0196 0.0042 0.0057 0.0601 1.05 1.01

selfconsist(CRQ) -0.0245 0.0045 0.0066 0.0649 1.22 1.09

τ = .50

RQ(complete obs.) -0.0115 0.0038 0.0045 0.0536 1.00 1.00

RQ(all obs.) 0.0306 0.0040 0.0057 0.0607 1.28 1.13

CRQ(all obs.) 0.0523 0.0042 0.0080 0.0728 1.80 1.36

CRQ(only uncensored) -0.0149 0.0048 0.0070 0.0669 1.58 1.25

MI(CRQ) -0.0140 0.0039 0.0048 0.0556 1.09 1.04

selfconsist(CRQ) -0.0211 0.0040 0.0052 0.0574 1.17 1.07

τ = .75

RQ(complete obs.) -0.0143 0.0044 0.0059 0.0608 1.00 1.00

RQ(all obs.) -0.1112 0.0047 0.0191 0.1170 3.22 1.93

CRQ(all obs.) 0.0357 0.0050 0.0086 0.0742 1.46 1.22

CRQ(only uncensored) -0.0160 0.0054 0.0091 0.0754 1.54 1.24

MI(CRQ) -0.0141 0.0047 0.0067 0.0656 1.14 1.08

selfconsist(CRQ) -0.0186 0.0047 0.0069 0.0666 1.16 1.10
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Table 3.14: Bias, SE, MSE, MAE and Ratios for method 1 - 6 on Model 3. Sample
size: 1000. Replication: 1000. Censoring rate: 20%.

Intercept

1000 obs, 20% Mean Bias SE MSE MAE RMSE RMAE

τ = .25

RQ(complete obs.) -0.0025 0.0013 0.0016 0.0318 1.00 1.00

RQ(all obs.) 0.1404 0.0015 0.0219 0.1405 13.86 4.42

CRQ(all obs.) 0.1089 0.0015 0.0140 0.1092 8.87 3.44

CRQ(only uncensored) -0.0324 0.0020 0.0052 0.0567 3.32 1.79

MI(CRQ) -0.0260 0.0016 0.0032 0.0450 2.04 1.42

selfconsist(CRQ) -0.0331 0.0016 0.0035 0.0477 2.24 1.50

τ = .50

RQ(complete obs.) -0.0045 0.0011 0.0012 0.0282 1.00 1.00

RQ(all obs.) 0.1126 0.0006 0.0130 0.1126 10.42 4.00

CRQ(all obs.) 0.1429 0.0014 0.0223 0.1429 17.86 5.07

CRQ(only uncensored) -0.0281 0.0018 0.0042 0.0520 3.34 1.85

MI(CRQ) -0.0015 0.0014 0.0019 0.0347 1.51 1.23

selfconsist(CRQ) -0.0108 0.0014 0.0020 0.0357 1.61 1.27

τ = .75

RQ(complete obs.) -0.0046 0.0012 0.0015 0.0304 1.00 1.00

RQ(all obs.) -0.2101 0.0011 0.0453 0.2101 31.19 6.92

CRQ(all obs.) 0.0967 0.0017 0.0122 0.0976 8.40 3.21

CRQ(only uncensored) -0.0327 0.0019 0.0047 0.0553 3.25 1.82

MI(CRQ) -0.0060 0.0015 0.0022 0.0378 1.53 1.25

selfconsist(CRQ) -0.0121 0.0015 0.0025 0.0399 1.72 1.31

b1

τ = .25

RQ(complete obs.) -0.0017 0.0013 0.0016 0.0320 1.00 1.00

RQ(all obs.) 0.0595 0.0015 0.0057 0.0630 3.54 1.97

CRQ(all obs.) 0.0567 0.0015 0.0054 0.0609 3.37 1.90

CRQ(only uncensored) -0.0040 0.0016 0.0026 0.0414 1.63 1.29

MI(CRQ) -0.0016 0.0014 0.0019 0.0345 1.18 1.08

selfconsist(CRQ) -0.0040 0.0014 0.0019 0.0346 1.19 1.08

τ = .50

RQ(complete obs.) -0.0019 0.0011 0.0013 0.0288 1.00 1.00

RQ(all obs.) 0.0439 0.0012 0.0033 0.0481 2.52 1.67

CRQ(all obs.) 0.0646 0.0013 0.0058 0.0667 4.42 2.32

CRQ(only uncensored) -0.0051 0.0014 0.0020 0.0356 1.50 1.24

MI(CRQ) 0.0107 0.0013 0.0017 0.0322 1.28 1.12

selfconsist(CRQ) 0.0080 0.0013 0.0017 0.0319 1.25 1.11

τ = .75

RQ(complete obs.) -0.0026 0.0012 0.0016 0.0319 1.00 1.00

RQ(all obs.) -0.1072 0.0013 0.0132 0.1074 8.45 3.37

CRQ(all obs.) 0.0454 0.0014 0.0040 0.0520 2.57 1.63

CRQ(only uncensored) -0.0048 0.0016 0.0025 0.0396 1.58 1.24

MI(CRQ) 0.0113 0.0014 0.0021 0.0367 1.34 1.15

selfconsist(CRQ) 0.0096 0.0014 0.0021 0.0370 1.36 1.16
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Table 3.14: (Continued)

b2

1000 obs, 20% Mean Bias SE MSE MAE RMSE RMAE

τ = .25

RQ(complete obs.) -0.0066 0.0013 0.0017 0.0321 1.00 1.00

RQ(all obs.) 0.0548 0.0015 0.0052 0.0613 3.14 1.91

CRQ(all obs.) 0.0526 0.0015 0.0050 0.0595 3.00 1.85

CRQ(only uncensored) -0.0041 0.0016 0.0026 0.0411 1.57 1.28

MI(CRQ) -0.0131 0.0013 0.0019 0.0337 1.11 1.05

selfconsist(CRQ) -0.0172 0.0013 0.0020 0.0353 1.22 1.10

τ = .50

RQ(complete obs.) -0.0073 0.0012 0.0014 0.0297 1.00 1.00

RQ(all obs.) 0.0382 0.0012 0.0029 0.0450 2.12 1.52

CRQ(all obs.) 0.0584 0.0013 0.0051 0.0614 3.66 2.06

CRQ(only uncensored) -0.0044 0.0014 0.0018 0.0350 1.33 1.18

MI(CRQ) -0.0064 0.0012 0.0014 0.0298 1.02 1.00

selfconsist(CRQ) -0.0112 0.0012 0.0015 0.0311 1.09 1.04

τ = .75

RQ(complete obs.) -0.0078 0.0013 0.0017 0.0325 1.00 1.00

RQ(all obs.) -0.1034 0.0015 0.0128 0.1037 7.62 3.19

CRQ(all obs.) 0.0412 0.0014 0.0037 0.0499 2.19 1.53

CRQ(only uncensored) -0.0047 0.0015 0.0024 0.0394 1.44 1.21

MI(CRQ) -0.0064 0.0014 0.0019 0.0347 1.13 1.07

selfconsist(CRQ) -0.0095 0.0014 0.0020 0.0351 1.17 1.08
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Table 3.15: Bias, SE, MSE, MAE and Ratios for method 1 - 6 on Model 4. Sample
size: 300. Replication: 1000. Censoring rate: 20%.

Intercept

300 obs, 20% Mean Bias SE MSE MAE RMSE RMAE

τ = .25

RQ(complete obs.) -0.0029 0.0042 0.0052 0.0582 1.00 1.00

RQ(all obs.) -0.1259 0.0041 0.0210 0.1273 4.04 2.19

CRQ(all obs.) 0.1067 0.0053 0.0197 0.1179 3.80 2.02

CRQ(only uncensored) -0.0599 0.0065 0.0162 0.1016 3.12 1.74

MI(CRQ) -0.0632 0.0046 0.0102 0.0808 1.97 1.39

selfconsist(CRQ) -0.0707 0.0048 0.0119 0.0873 2.30 1.50

τ = .50

RQ(complete obs.) -0.0078 0.0037 0.0041 0.0508 1.00 1.00

RQ(all obs.) -0.1571 0.0040 0.0295 0.1575 7.25 3.10

CRQ(all obs.) 0.1642 0.0054 0.0359 0.1669 8.82 3.29

CRQ(only uncensored) -0.0435 0.0064 0.0141 0.0950 3.47 1.87

MI(CRQ) -0.0367 0.0039 0.0058 0.0606 1.44 1.19

selfconsist(CRQ) -0.0435 0.0042 0.0072 0.0679 1.78 1.34

τ = .75

RQ(complete obs.) -0.0104 0.0042 0.0055 0.0597 1.00 1.00

RQ(all obs.) -0.1115 0.0054 0.0213 0.1234 3.90 2.07

CRQ(all obs.) 0.2353 0.0072 0.0710 0.2377 13.00 3.98

CRQ(only uncensored) -0.0610 0.0076 0.0209 0.1159 3.83 1.94

MI(CRQ) -0.0138 0.0048 0.0072 0.0679 1.32 1.14

selfconsist(CRQ) -0.0220 0.0053 0.0089 0.0761 1.63 1.28

b1

τ = .25

RQ(complete obs.) -0.0053 0.0043 0.0055 0.0595 1.00 1.00

RQ(all obs.) -0.0954 0.0042 0.0143 0.1025 2.62 1.72

CRQ(all obs.) 0.0227 0.0045 0.0066 0.0646 1.22 1.08

CRQ(only uncensored) -0.0122 0.0055 0.0091 0.0765 1.67 1.28

MI(CRQ) -0.0138 0.0041 0.0053 0.0586 0.98 0.98

selfconsist(CRQ) -0.0181 0.0044 0.0060 0.0621 1.11 1.04

τ = .50

RQ(complete obs.) -0.0068 0.0040 0.0048 0.0556 1.00 1.00

RQ(all obs.) -0.0922 0.0040 0.0132 0.0978 2.74 1.76

CRQ(all obs.) 0.0318 0.0043 0.0065 0.0634 1.36 1.14

CRQ(only uncensored) -0.0095 0.0051 0.0078 0.0713 1.62 1.28

MI(CRQ) -0.0065 0.0040 0.0050 0.0567 1.03 1.02

selfconsist(CRQ) -0.0110 0.0041 0.0053 0.0575 1.09 1.03

τ = .75

RQ(complete obs.) -0.0088 0.0043 0.0057 0.0610 1.00 1.00

RQ(all obs.) -0.0753 0.0046 0.0120 0.0898 2.11 1.47

CRQ(all obs.) 0.0397 0.0052 0.0098 0.0783 1.71 1.28

CRQ(only uncensored) -0.0140 0.0059 0.0105 0.0819 1.83 1.34

MI(CRQ) 0.0037 0.0048 0.0068 0.0660 1.20 1.08

selfconsist(CRQ) -0.0010 0.0050 0.0076 0.0690 1.33 1.13
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Table 3.15: (Continued)

b2

300 obs, 20% Mean Bias SE MSE MAE RMSE RMAE

τ = .25

RQ(complete obs.) -0.0095 0.0042 0.0053 0.0576 1.00 1.00

RQ(all obs.) -0.0534 0.0039 0.0074 0.0699 1.41 1.21

CRQ(all obs.) 0.0344 0.0047 0.0078 0.0713 1.48 1.24

CRQ(only uncensored) -0.0105 0.0054 0.0090 0.0751 1.70 1.30

MI(CRQ) -0.0281 0.0040 0.0055 0.0600 1.05 1.04

selfconsist(CRQ) -0.0301 0.0043 0.0065 0.0650 1.23 1.13

τ = .50

RQ(complete obs.) -0.0113 0.0039 0.0047 0.0546 1.00 1.00

RQ(all obs.) -0.0508 0.0039 0.0072 0.0686 1.55 1.26

CRQ(all obs.) 0.0485 0.0044 0.0083 0.0725 1.77 1.33

CRQ(only uncensored) -0.0111 0.0048 0.0070 0.0662 1.50 1.21

MI(CRQ) -0.0241 0.0039 0.0050 0.0565 1.08 1.03

selfconsist(CRQ) -0.0249 0.0040 0.0055 0.0584 1.18 1.07

τ = .75

RQ(complete obs.) -0.0122 0.0043 0.0057 0.0613 1.00 1.00

RQ(all obs.) -0.0268 0.0049 0.0080 0.0719 1.40 1.17

CRQ(all obs.) 0.0743 0.0056 0.0151 0.0990 2.63 1.62

CRQ(only uncensored) -0.0120 0.0057 0.0100 0.0799 1.75 1.30

MI(CRQ) -0.0154 0.0047 0.0069 0.0667 1.21 1.09

selfconsist(CRQ) -0.0164 0.0051 0.0081 0.0715 1.41 1.17
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Table 3.16: Bias, SE, MSE, MAE and Ratios for method 1 - 6 on Model 4. Sample
size: 1000. Replication: 1000. Censoring rate: 20%.

Intercept

1000 obs, 20% Mean Bias SE MSE MAE RMSE RMAE

τ = .25

RQ(complete obs.) -0.0033 0.0014 0.0018 0.0341 1.00 1.00

RQ(all obs.) -0.1277 0.0012 0.0179 0.1277 9.67 3.75

CRQ(all obs.) 0.1298 0.0018 0.0201 0.1304 10.91 3.83

CRQ(only uncensored) -0.0365 0.0020 0.0055 0.0586 2.98 1.72

MI(CRQ) -0.0475 0.0014 0.0043 0.0544 2.35 1.60

selfconsist(CRQ) -0.0581 0.0015 0.0056 0.0633 3.06 1.86

τ = .50

RQ(complete obs.) -0.0031 0.0012 0.0015 0.0314 1.00 1.00

RQ(all obs.) -0.1541 0.0012 0.0252 0.1541 16.52 4.92

CRQ(all obs.) 0.1857 0.0021 0.0388 0.1857 25.38 5.92

CRQ(only uncensored) -0.0304 0.0020 0.0048 0.0555 3.11 1.77

MI(CRQ) -0.0229 0.0014 0.0024 0.0391 1.57 1.25

selfconsist(CRQ) -0.0324 0.0014 0.0031 0.0447 2.00 1.42

τ = .75

RQ(complete obs.) -0.0048 0.0014 0.0019 0.0347 1.00 1.00

RQ(all obs.) -0.1009 0.0017 0.0131 0.1023 6.78 2.95

CRQ(all obs.) 0.2656 0.0027 0.0780 0.2656 40.48 7.65

CRQ(only uncensored) -0.0401 0.0022 0.0064 0.0655 3.34 1.89

MI(CRQ) 0.0023 0.0016 0.0026 0.0407 1.36 1.17

selfconsist(CRQ) -0.0055 0.0017 0.0029 0.0435 1.51 1.25

b1

τ = .25

RQ(complete obs.) -0.0009 0.0013 0.0017 0.0330 1.00 1.00

RQ(all obs.) -0.0966 0.0012 0.0108 0.0968 6.36 2.93

CRQ(all obs.) 0.0259 0.0013 0.0024 0.0393 1.41 1.19

CRQ(only uncensored) -0.0055 0.0016 0.0027 0.0421 1.60 1.28

MI(CRQ) -0.0104 0.0012 0.0016 0.0322 0.95 0.98

selfconsist(CRQ) -0.0169 0.0013 0.0019 0.0356 1.14 1.08

τ = .50

RQ(complete obs.) -0.0014 0.0012 0.0014 0.0297 1.00 1.00

RQ(all obs.) -0.0924 0.0012 0.0099 0.0925 7.19 3.12

CRQ(all obs.) 0.0352 0.0013 0.0029 0.0437 2.12 1.47

CRQ(only uncensored) -0.0043 0.0015 0.0022 0.0378 1.62 1.28

MI(CRQ) -0.0026 0.0012 0.0014 0.0306 1.03 1.03

selfconsist(CRQ) -0.0084 0.0012 0.0016 0.0320 1.13 1.08

τ = .75

RQ(complete obs.) -0.0013 0.0013 0.0017 0.0326 1.00 1.00

RQ(all obs.) -0.0697 0.0014 0.0069 0.0714 4.13 2.19

CRQ(all obs.) 0.0496 0.0016 0.0050 0.0582 3.02 1.79

CRQ(only uncensored) -0.0038 0.0017 0.0030 0.0440 1.82 1.35

MI(CRQ) 0.0096 0.0014 0.0021 0.0373 1.28 1.15

selfconsist(CRQ) 0.0039 0.0015 0.0022 0.0373 1.33 1.14
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Table 3.16: (Continued)

b2

1000 obs, 20% Mean Bias SE MSE MAE RMSE RMAE

τ = .25

RQ(complete obs.) -0.0044 0.0012 0.0015 0.0312 1.00 1.00

RQ(all obs.) -0.0450 0.0012 0.0035 0.0495 2.32 1.59

CRQ(all obs.) 0.0475 0.0013 0.0040 0.0533 2.69 1.71

CRQ(only uncensored) -0.0028 0.0016 0.0025 0.0394 1.65 1.26

MI(CRQ) -0.0204 0.0012 0.0018 0.0338 1.18 1.09

selfconsist(CRQ) -0.0247 0.0013 0.0022 0.0378 1.47 1.21

τ = .50

RQ(complete obs.) -0.0050 0.0011 0.0013 0.0291 1.00 1.00

RQ(all obs.) -0.0411 0.0012 0.0031 0.0459 2.33 1.58

CRQ(all obs.) 0.0607 0.0013 0.0055 0.0635 4.08 2.19

CRQ(only uncensored) -0.0061 0.0014 0.0021 0.0363 1.56 1.25

MI(CRQ) -0.0157 0.0012 0.0016 0.0317 1.18 1.09

selfconsist(CRQ) -0.0186 0.0012 0.0018 0.0341 1.37 1.18

τ = .75

RQ(complete obs.) -0.0055 0.0013 0.0017 0.0321 1.00 1.00

RQ(all obs.) -0.0152 0.0014 0.0023 0.0385 1.41 1.20

CRQ(all obs.) 0.0846 0.0016 0.0098 0.0866 5.89 2.69

CRQ(only uncensored) -0.0084 0.0017 0.0029 0.0429 1.73 1.34

MI(CRQ) -0.0088 0.0014 0.0019 0.0353 1.16 1.10

selfconsist(CRQ) -0.0103 0.0015 0.0023 0.0378 1.36 1.18
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Table 3.17: The coverage probabilities of bootstrap methods: the xy-paired and the
block bootstrap. (QAR(1) model, 95% Confidence level, n=100)

xy-paired bootstrap Block bootstrap

Quantiles .25 .50 .75 .25 .50 .75

Intercept 0.920 0.943 0.945 0.911 0.941 0.929

Slope 0.918 0.926 0.951 0.905 0.923 0.947

Table 3.18: The coverage probabilities of bootstrap methods: the xy-paired and the
block bootstrap. (QAR(2) model, 95% Confidence level, n=100)

xy-paired bootstrap Block bootstrap

Quantiles .25 .50 .75 .25 .50 .75

Intercept 0.920 0.947 0.945 0.925 0.936 0.940

β1 0.912 0.943 0.949 0.910 0.934 0.942

β2 0.926 0.935 0.946 0.912 0.934 0.926
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Chapter 4

Empirical data analysis

4.1 Samish River Example

As the first example, we shall apply our method to Ammonia-Nitrogen (NH3-N) mea-

surements taken in the Samish River in Washington State from 1977-2009 (see Hallock

(2009)). TheWashington State Department of Ecology have monitored monthly NH3-

N as one of conventional parameters indicating water quality level. Approximately,

360 measurements were taken over the period and we are interested in modeling how

the past concentration measurements affect the present. Before going deep in the

analysis there are a few features we need to consider.

• The data is left censored.

• The data is not evenly spaced.

Measurements of less than .01 percent were considered as undetectable and such mea-

surements were listed as censored. This is called “left” censoring, which is different

from our settings in previous chapters. But, this can be handled in software by multi-

plying the data by -1 and replacing τ by (1−τ) in quantile function. Another feature

to be considered in this data is that it is not evenly spaced. In several periods of times,

it is measured bi-monthly or once in three months. When this happens, we add a

blank observation and treat it as a missing. Since we could think of missing values as

censored values with no detection limits, those can be easily managed throughout the

self-consistent algorithm. There are 361 observations, 104 censored observations, and
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11 missing observations, which results in 68.1% uncensoring, 28.8% left censoring,

and 3% missing. Note that with few exceptions, all of .01 measurements were listed

as censored, and so overall censoring rate is about 30%, which can be considered as

highly censored in autoregressive models since it results in only 51% of measurements

to be uncensored in both regressor and response.

Figure 4.1 shows the data with fitted lines. The censored values in the plot

are marked as “C”. The lines in the plot corresponds to the .10,.25,.5,.75, and .9

(conditional) quantiles for two methods of estimation. The dashed lines use the usual

quantile autoregression method by treating censored values as observed. The solid

lines use the self-consistent algorithm.

Notice that as illustrated previously, the classical constant-coefficient linear time

series models have limitation to have the reasonable fit to the heterogeneity in this

data since it requires that the conditional quantiles have similar shapes. Also, due to

heavy censoring at low quantiles, the censored regression quantile algorithm gives a

defective distribution, which cannot estimate quantiles below .15. Also it results in

limiting modeling options for the data.

The table 4.1-4.2 shows the estimates of intercept and slope parameters at quan-

tiles .1, .25, .5, .75, and .9. Here we only considered autoregressive models of order

1 and 2. The ordinary QAR models which treat censored observations as uncensored

do not seem unreasonable, but clearly do not take censoring into account and fails to

provide consistent estimates.

From this example, we can see that;

• The CQAR method captures heterogeneity in data by its nature and provides

empirically consistent estimates.

• The CQAR algorithm converges very fast, taking less than 5 steps until it

satisfies the stopping rule.
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• Due to heavy left censoring, conditional quantiles below .15 are not estimable

from the CQAR method.

From the results in Figure 4.1-3 and Table 4.1-4, we can see that both intercept and

slope coefficient estimates with CQAR algorithm are monotonically increasing as τ

increase, which shows the heterogeneity that cannot be explained in classical constant-

coefficient time series models. Also, coefficient estimates with CQAR algorithm are

generally smaller than those with ordinary QAR method, which might give us reasons

to taking the censored values into account. Unrealized data structure under the

censored values may affect estimation of regression coefficients in upper quantiles.

Notice that CQAR algorithm on QAR(2) model was able to estimate coefficients down

to τ = .10, which was unable on QAR(1) model. This might suggest that conditional

quantiles below .10 can be models by allowing higher order in autoregression.

The bootstrap inferences are summarized in Table 4.3-4.4. Note that we used the

block-bootstrap to capture the dependance in time series and make it robust with

respect to model misspecification. However, as we discussed in Chapter 2.3, usual xy-

paired bootstrap also gives reliable results. Figure 4.2-4.3 shows intercept and slope

estimates of QAR(1) and QAR(2) models, evaluated at 17 equally spaced quantiles.

Note that the shaded region is a .95 confidence band.

4.2 Dry Decomposition of NH4 Example

As the second example, we shall apply our method to time series data on the chem-

ical composition of atmospheric deposition. The data was collected monthly by the

Environmental Measurements Laboratory between 1977 and early 1980 at a num-

ber of sites in the United States on the composition of dry deposition (see Zeger

and Brookmeyer (1986) for more details). The main objective of collecting the data

was to study geographical differences and time trends in precipitation chemistry and
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concentration of pollutants in deposition.

We are interested in how the past monthly concentration of ammonia affects the

current at the Lawrence Livermore, California, site. There are lower detection limits

of the assays. In fact, as stated in Zeger and Brookmeyer (1986), the detection limit

depends on the total quantity of deposition collected each month; smaller volumes

collected give higher detection limits. There are 43 measurements; 34 uncensored

measurements, 6 left censored measurements, and 3 missing measurements, which

resulting in 79% uncensoring, 14% left censoring, and 7% missing. We have fit a first

and second order autoregressive model to log-transformed concentration of ammonia

(NH4).

Figure 4.4 shows the scatterplot with fitted lines. The censored observations in

the plot are marked as “C”. The dashed lines are estimated by using the usual

QAR method of order 1 at .10,.25,.5,.75, and .90 quantiles. The solid lines represents

corresponding quantiles by the censored QAR with self-consistent algorithm. Note

that a quantile at .10 was unestimable. And also notice that there are possible crossing

at .25 and .50 quantiles.

Table 4.5-4.6 give the QAR(1) and QAR(2) estimates of intercept and slope pa-

rameters at quantiles .1, .25, .5, .75, and .9. The ordinary QAR models which treat

censored observations as uncensored fails to capture dynamics of the data especially

at low quantiles. And Table 4.7-4.8 summarize the bootstrap inferences of the cen-

sored QAR(1) and QAR(2) models at 9 equally spaced quantiles from .10 to .90. The

inferences are based on 1000 bootstrap samples and the block bootstrap methods was

implemented. Figure 4.5-4.6 shows changes of intercept and slope estimates with 95%

confidence band over 18 equally spaced quantiles.
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Figure 4.1: Scatter plot for NH3-N rate. Superimposed on the plots are the .10, .25,

.50, .75, .90 quantile autoregression lines from bottom to top. The dotted lines are

estimated from naive QAR(1) (treating the censored observations as uncensored);

The solid lines are estimated from the self-consistent algorithm. Censored values are

marked as C.
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Figure 4.2: Estimating the QAR(1) Model using the self-consistent algorithm on the
NH3-N rate data. The figure illustrates the QAR(1) intercept and slope estimates:
the estimate at 17 equally spaced quantiles. The shaded region is a .95 confidence
band.
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Figure 4.3: Estimating the QAR(2) Model using the self-consistent algorithm on the
NH3-N rate data. The figure illustrates the QAR(2) intercept and slope estimates:
the estimate at 19 equally spaced quantiles. The shaded region is a .95 confidence
band.
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consistent algorithm. Censored values are marked as C.
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Figure 4.5: Estimating the censored QAR(1) Model using the self-consistent algo-
rithm on dry decompostion for NH4. The figure illustrates the QAR(1) intercept and
slope estimates: the estimate at 18 equally spaced quantiles. The shaded region is a
.95 confidence band.
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Figure 4.6: Estimating the censored QAR(2) Model using the self-consistent algo-
rithm on dry decompostion for NH4. The figure illustrates the QAR(2) intercept and
slope estimates: the estimate at 17 equally spaced quantiles. The shaded region is a
.95 confidence band.
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Table 4.1: Estimates of a QAR(1) model for the NH3-N measurements from dif-
ferent methods (The ordinary QAR method and the CRQ with the self-consistent
algorithm). NA means the “quantreg” package fails.

τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

QAR method (treating the censored observations as uncensored)

Intercept 0.01000 0.00833 0.00444 0.01333 0.03143

slope 0.00000 0.16667 0.55556 0.66667 0.85714

CRQ method with self-consistent algorithm

Intercept NA 0.00932 0.00639 0.01064 0.02084

Slope NA 0.03310 0.36135 0.63832 0.71966

Table 4.2: Estimates of a QAR(2) model for the NH3-N measurements from dif-
ferent methods (The ordinary QAR method and the CRQ with the self-consistent
algorithm).

τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

QAR method (treating the censored observations as uncensored)

Intercept 0.01000 0.00728 0.00389 0.00932 0.02679

β1 0.00000 0.13289 0.36111 0.52273 0.62500

β2 0.00000 0.09967 0.25000 0.25000 0.32143

CRQ method with self-consistent algorithm

Intercept 0.00506 0.00344 0.00360 0.00855 0.01806

β1 0.03048 0.12890 0.24694 0.47956 0.45675

β2 0.04729 0.09952 0.23418 0.21042 0.32933
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Table 4.3: Results from a censored QAR(1) model for the NH3-N measurements with
1000 Bootstrap samples.

τ Coeff Lower Bd Upper Bd Std Error T Value P-value

.20 Intercept 0.0100 0.0096 0.0104 0.0002 50.6563 0.0000

Slope 0.0000 -0.0188 0.0189 0.0096 0.0041 0.9967

.30 Intercept 0.0060 0.0026 0.0094 0.0017 3.4455 0.0006

Slope 0.2000 0.0236 0.3764 0.0900 2.2219 0.0263

.40 Intercept 0.0075 0.0062 0.0089 0.0007 10.6247 0.0000

Slope 0.2421 0.1516 0.3326 0.0462 5.2422 0.0000

.50 Intercept 0.0064 0.0052 0.0076 0.0006 10.3339 0.0000

Slope 0.3613 0.2656 0.4571 0.0488 7.3971 0.0000

.60 Intercept 0.0052 0.0014 0.0090 0.0019 2.6587 0.0078

Slope 0.5809 0.3664 0.7953 0.1094 5.3081 0.0000

.70 Intercept 0.0085 0.0049 0.0121 0.0018 4.6290 0.0000

Slope 0.6168 0.4592 0.7745 0.0804 7.6701 0.0000

.80 Intercept 0.0134 0.0091 0.0177 0.0022 6.1534 0.0000

Slope 0.6646 0.5093 0.8199 0.0792 8.3876 0.0000

.90 Intercept 0.0208 0.0144 0.0273 0.0033 6.3052 0.0000

Slope 0.7197 0.4439 0.9955 0.1407 5.1143 0.0000
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Table 4.4: Results from a censored QAR(2) model for the NH3-N measurements with
1000 Bootstrap samples.

τ Coeff Lower Bd Upper Bd Std Error T Value P-value

.10 Intercept 0.0051 0.0043 0.0059 0.0004 12.4559 0.0000

β1 0.0305 0.0198 0.0412 0.0055 5.5782 0.0000

β2 0.0473 0.0114 0.0831 0.0183 2.5860 0.0097

.20 Intercept 0.0049 0.0016 0.0083 0.0017 2.8888 0.0039

β1 0.0399 -0.0251 0.1049 0.0332 1.2021 0.2293

β2 0.0852 0.0342 0.1363 0.0260 3.2747 0.0011

.30 Intercept 0.0028 0.0012 0.0044 0.0008 3.4044 0.0007

β1 0.2052 0.1472 0.2632 0.0296 6.9389 0.0000

β2 0.1075 0.0036 0.2114 0.0530 2.0284 0.0425

.40 Intercept 0.0030 0.0012 0.0047 0.0009 3.3863 0.0007

β1 0.2146 0.1638 0.2655 0.0259 8.2708 0.0000

β2 0.1924 0.1316 0.2531 0.0310 6.2091 0.0000
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Table 4.4: Cont.

τ Coeff Lower Bd Upper Bd Std Error T Value P-value

.50 Intercept 0.0036 0.0010 0.0061 0.0013 2.7673 0.0057

β1 0.2469 0.1754 0.3185 0.0365 6.7665 0.0000

β2 0.2342 0.1360 0.3324 0.0501 4.6742 0.0000

.60 Intercept 0.0038 0.0009 0.0067 0.0015 2.5534 0.0107

β1 0.3790 0.2536 0.5044 0.0640 5.9241 0.0000

β2 0.2581 0.1561 0.3602 0.0521 4.9575 0.0000

.70 Intercept 0.0075 0.0051 0.0100 0.0012 6.0579 0.0000

β1 0.4383 0.3701 0.5066 0.0348 12.5863 0.0000

β2 0.2253 0.1474 0.3031 0.0397 5.6706 0.0000

.80 Intercept 0.0110 0.0080 0.0140 0.0015 7.2010 0.0000

β1 0.5248 0.4119 0.6377 0.0576 9.1088 0.0000

β2 0.1979 0.0930 0.3028 0.0535 3.6989 0.0002

.90 Intercept 0.0181 0.0134 0.0227 0.0024 7.6151 0.0000

β1 0.4567 0.3133 0.6002 0.0732 6.2404 0.0000

β2 0.3293 0.0854 0.5732 0.1244 2.6463 0.0081
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Table 4.5: Estimates of a QAR(1) model for the dry decomposition from different
methods (The ordinary QAR method and the CRQ with the self-consistent algo-
rithm).

τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

QAR method (treating the censored observations as uncensored)

Intercept 1.9188 1.3407 3.7066 3.9276 5.4255

slope 0.3468 0.5784 0.3248 0.3586 0.2209

CRQ method with self-consistent algorithm

Intercept -0.7861 -3.2068 2.0538 3.5486 4.0292

Slope 0.6969 1.2297 0.5323 0.3920 0.3468

Table 4.6: Estimates of a QAR(2) model for the dry decomposition from different
methods (The ordinary QAR method and the CRQ with the self-consistent algo-
rithm). NA means the “quantreg” package fails.

τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

QAR method (treating the censored observations as uncensored)

Intercept 2.21957 3.08977 3.79464 3.47857 4.00989

β1 0.64813 0.35349 0.32462 0.29642 0.02319

β2 -0.32529 -0.12349 -0.01412 0.15164 0.48438

CRQ method with self-consistent algorithm

Intercept NA -1.19688 3.59142 3.73737 3.64332

β1 NA 1.17959 0.39505 0.27497 0.24303

β2 NA -0.30065 -0.17611 0.08080 0.17989
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Table 4.7: Results from a censored QAR(1) model for the dry decomposition with
1000 Bootstrap samples.

τ Coeff Lower Bd Upper Bd Std Error T Value P-value

.10 Intercept -0.7861 -3.2732 1.7011 1.2690 -0.6195 0.5356

Slope 0.6969 0.1494 1.2443 0.2793 2.4950 0.0126

.20 Intercept -1.8522 -4.3394 0.6350 1.2690 -1.4596 0.1444

Slope 0.9315 0.3841 1.4790 0.2793 3.3351 0.0009

.30 Intercept -3.2066 -9.1454 2.7322 3.0300 -1.0583 0.2899

Slope 1.2297 0.2981 2.1613 0.4753 2.5871 0.0097

.40 Intercept 0.3437 -0.8336 1.5211 0.6007 0.5722 0.5672

Slope 0.7645 0.4466 1.0824 0.1622 4.7133 0.0000

.50 Intercept 2.0538 0.8562 3.2515 0.6111 3.3611 0.0008

Slope 0.5323 0.3099 0.7547 0.1135 4.6910 0.0000

.60 Intercept 2.8984 1.8624 3.9345 0.5286 5.4833 0.0000

Slope 0.4306 0.2482 0.6130 0.0930 4.6276 0.0000

.70 Intercept 3.3446 2.4862 4.2031 0.4380 7.6366 0.0000

Slope 0.3912 0.2160 0.5664 0.0894 4.3758 0.0000

.80 Intercept 3.5526 2.5980 4.5071 0.4870 7.2946 0.0000

Slope 0.4187 0.2318 0.6057 0.0954 4.3901 0.0000

.90 Intercept 4.0292 3.0962 4.9622 0.4760 8.4643 0.0000

Slope 0.3468 0.1612 0.5323 0.0947 3.6630 0.0002
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Table 4.8: Results from a censored QAR(2) model for the dry decomposition with
1000 Bootstrap samples.

τ Coeff Lower Bd Upper Bd Std Error T Value P-value

.20 Intercept -3.1401 -5.7490 -0.5312 1.3311 -2.3590 0.0183

β1 1.4878 1.0431 1.9326 0.2269 6.5568 0.0000

β2 -0.3325 -0.4449 -0.2202 0.0573 -5.8028 0.0000

.30 Intercept -0.2853 -2.8711 2.3004 1.3193 -0.2163 0.8288

β1 1.0334 0.6655 1.4012 0.1877 5.5056 0.0000

β2 -0.2827 -0.4660 -0.0994 0.0935 -3.0227 0.0025

.40 Intercept 1.9888 -0.0310 4.0085 1.0305 1.9299 0.0536

β1 0.6585 0.3711 0.9460 0.1467 4.4898 0.0000

β2 -0.2194 -0.5031 0.0642 0.1447 -1.5162 0.1295

.50 Intercept 3.5914 1.4881 5.6948 1.0732 3.3466 0.0008

β1 0.3951 0.0332 0.7569 0.1846 2.1396 0.0324

β2 -0.1761 -0.3777 0.0255 0.1028 -1.7124 0.0868
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Table 4.8: Cont.

τ Coeff Lower Bd Upper Bd Std Error T Value P-value

.60 Intercept 4.2080 2.7001 5.7160 0.7694 5.4695 0.0000

β1 0.2925 0.1031 0.4820 0.0967 3.0267 0.0025

β2 -0.1525 -0.3651 0.0601 0.1085 -1.4063 0.1596

.70 Intercept 3.8751 2.7412 5.0089 0.5785 6.6986 0.0000

β1 0.2726 0.1285 0.4167 0.0735 3.7074 0.0002

β2 0.0376 -0.1351 0.2103 0.0881 0.4267 0.6696

.80 Intercept 3.5876 2.7500 4.4253 0.4274 8.3944 0.0000

β1 0.2921 0.1808 0.4035 0.0568 5.1417 0.0000

β2 0.1090 -0.0186 0.2365 0.0651 1.6748 0.0940

.90 Intercept 3.6433 2.7812 4.5055 0.4399 8.2824 0.0000

β1 0.2430 0.1227 0.3633 0.0614 3.9596 0.0001

β2 0.1799 0.0366 0.3231 0.0731 2.4614 0.0138
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Chapter 5

Conclusions and Future Work

The quantile autoregression (QAR) models has advantages over classical constant

coefficient linear time series models. It can capture systematic influences of condi-

tioning variables on the location, scale and shape of the conditional distribution of

the response whereas classical models are restricted only on observing a location shift.

Having coefficients functionally dependent, the QAR model differs from the random-

coefficient autoregressive (RCAR) model and substantially extends modeling options

for time series data.

Quantile autoregression models with censored data have been rarely discussed in

the literature. In this dissertation, we have proposed a censored quantile autore-

gression model which generally extends a censored regression method on standard

regression model by adopting an idea of imputation methods. The censored quantile

estimators can be easily implemented by using an existing R package “quantreg”,

and we have implemented our proposed algorithm in R-language. The full R-code is

available upon request to the authors. Throughout this paper, we can see that:

• The CQAR algorithm generates the empirically-consistent estimator in self-

consistent manner.

• In the simulation experiments, the CQAR algorithm works much better than

any currently available naive methods that treats censored values as observed.

• The computation time using the CQAR algorithm is very fast. In most time

it converges within 10 steps, and since the objective function in each step is
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convex with respect to the regression coefficients, it can be efficiently solved

by the standard linear programming algorithm or interior point methods for

regression quantiles described in Koenker (2005).

• The CQAR algorithm can be generalized in various types of censoring: left- or

right-fixed censoring and random censoring.

The results of the proposed algorithm from the simulation are very promising.

However, The theoretical backgrounds of the proposed model are not well established

yet and still need intensive investigation. Also, there are many interesting questions

in this area. and we are particularly interested in:

• extending the algorithm in more complicated situation, where the order of au-

toregressive model is higher(i.e., ≥ 3).

• inference methods for censored quantile autoregression models.

• extensive comparison between quantile regression methods and other existing

methods for censored time series.

• providing a R package that can handle different types of censoring on time

series and allows users to obtain estimates and make inference based on desired

bootstrap methods.
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