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Abstract

In this thesis we construct concrete examples of quasispheres and quasisymmetric spheres. These ex-

amples are double-dome type surfaces in R3 over planar Jordan domains Ω. The thesis consists of three

parts.

Let Ω be a Jordan domain and ϕ a self homeomorphism of [0,+∞). In the Geometric construction, the

surface is the graphs of ±ϕ(dist(x, ∂Ω)). We examine the properties of the Jordan domains Ω and of the

height functions ϕ ensuring that these surfaces are either quasispheres or quasisymmetric equivalent to S2.

As it turns out, the geometry of the sets of constant distance from ∂Ω plays a key role in the geometry of

these surfaces.

The Geometric construction is the motivation of the second part, the study of sets of constant distance

from a planar Jordan curve Γ. We ask what properties of Γ ensure that these sets are Jordan curves, or

uniform quasicircles, or uniform chord-arc curves for all sufficiently small ε. Sufficient conditions are given

in term of a scaled invariant parameter for measuring the local deviation of subarcs from their chords. The

chordal conditions given are sharp.

In the third part, we discuss the Analytic construction. In this construction, the level sets of the height

of the surface built over a Jordan domain Ω are the level sets of |f | for some quasiconformal function f that

maps Ω onto the unit disk. We investigate the properties of f which guarantee that these surfaces are either

bi-Lipschitz or quasisymmetric equivalent to S2.
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Chapter 1

Introduction

A homeomorphism f : D → D′ between two domains in R2 is called conformal if f ∈ C1 and it satisfies

the Cauchy-Riemann equations. An interesting property of conformal maps is that they “map infinitesimal

disks to infinitesimal disks”. Conformal maps can be defined in higher dimensions as follows. A sense

preserving homeomorphism f from a a domain D ⊂ Rn into a domain Rn is conformal if, for each x ∈ D,

Hf (x) = lim sup
r→0

max{|f(x)− f(y)| : |y − x| = r}
min{|f(x)− f(y)| : |y − x| = r}

= 1.

While there are plenty of conformal maps between planar domains, by Liouville’s rigidity theorem, only trivial

examples exist in higher dimensions, namely the restrictions of Möbius transformations. This result was first

proved under the assumption that f ∈ C4 by Liouville in 1850, and in its present form by Gehring [12].

Quasiconformal maps are generalizations of conformal maps. A homeomorphism f of a domain D in Rn

into Rn is said to be K-quasiconformal, K ≥ 1, if for all x ∈ D,

Hf (x) ≤ K.

Conformal mappings are 1-quasiconformal. Roughly speaking, quasiconformal mappings map “infinitesimal

balls” to “infinitesimal ellipsoids of uniformly bounded eccentricity”. The above definitions of quasiconformal

mappings is known as the metric definition. Equivalent definitions of quasiconformality have been given in

terms of the conformal modulus of curve families [39, Theorem 34.1], and of the distortion |Df(x)|n/|Jf (x)|

[39, Theorem 34.6]. Here, Df denotes the formal differential matrix and Jf the Jacobian of f .

Planar quasiconformal mappings first appeared in 1932 in a paper of Grötzsch [19] and under this name

in a paper of Ahlfors [1]. Since then, they have been one of the most important developments in Complex

Analysis. A rigorous treatment of quasiconformal mappings in higher dimensions can be found in [39].

Quasisymmetric mappings are generalizations of quasiconformal mappings to abstract metric spaces.

These mappings first appeared in R as the boundary values of quasiconformal self maps of the upper

half-plane R2
+ in a paper of Beurling and Ahlfors [4], and were first studied in general metric spaces by
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Tukia and Väisälä in [37]. An embedding f of a metric space (X, d) into a metric space (Y, d′) is called

η-quasisymmetric if there exists a homeomorphism η : [0,∞)→ [0,∞) such that, for all x, a, b ∈ X and t > 0

with d(x, a) ≤ td(x, b),

d′(f(x), f(a)) ≤ η(t)d′(f(x), f(b)).

Quasisymmetric mappings distort relative distances by a bounded amount.

It follows from its definition that an η-quasisymmetric embedding of a domain D in Rn into Rn is

η(1)-quasiconformal. Quasisymmetry is a global notion while quasiconformality is an infinitesimal one. A

K-quasiconformal mapping defined on a domain D in Rn is η-quasisymmetric on each compact set G ⊂ D

with η depending on K,n and diamG/dist(G, ∂D) quantitatively [40, Theorem 2.4]. In Rn these two

notions coincide: if f : Rn → Rn is K-quasiconformal then it is ηK,n-quasisymmetric. For the basic theory

of quasisymmetric mappings, the reader is referred to [37] and [20].

1.1 Quasispheres and quasisymmetric spheres

An n-dimensional quasisphere is the image of the unit sphere Sn under a quasiconformal self map of

Rn+1. Unlike the case n = 1, where various characterizations of quasicircles have been found, little is known

of quasispheres in higher dimensions. The only known characterization, until today, is due to Gehring [13]

,for n = 2, and Väisälä [41], for n ≥ 3; a metric n-sphere Σ in Rn+1 is a quasisphere if and only if the

bounded component of Rn+1 \Σ is quasiconformally homeomorphic to Bn+1 and the unbounded component

of Rn+1 \ Σ is quasiconformally homeomorphic to Rn+1 \ Bn+1.

A consequence of an extension theorem of Väisälä [42] is that a smooth metric n-sphere in Rn+1 is a

quasisphere. However, quasispheres can have interesting fractal type structure.

Several examples of fractal-like quasispheres have been found. Bishop [5] constructed quasispheres in R3

that contain no rectifiable curves. The same year, David and Toro [8] constructed quasispheres in Rn+1 with

some snowflake property: for each positive α sufficiently close to 0, they constructed a quasiconformal self

map f of R3 satisfying |f(x)−f(y)| ' |x−y|1−α for all x, y ∈ R2×{0} with |x−y| < 1. Lewis and Vogel [26]

built quasispheres in Rn+1, for each n ≥ 2, which are pseudospheres; that is, non-trivial metric n-spheres

Σ, for which the n-dimensional Hausdorff measure equals the harmonic measure on Σ with respect to a

fixed point. Meyer [30, 31] introduced snowballs in R3, domains whose boundaries are fractal type surfaces

analogue to that of von Koch snowflakes in R2, and proved that their boundaries are quasispheres. Recently,

Pankka and Wu [32] showed that the decomposition spaces of S3 by Antoine’s necklaces constructed using

long chains of tori, when equipped with a Semmes-type metric, are quasispheres in R4.
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The search for intrinsic necessary and sufficient conditions for quasispheres remains a longstanding prob-

lem in the study of Geometric Analysis. At the moment, a geometric characterization of quasispheres seems

to be out of reach.

Quasisymmetric spheres generalize quasispheres beyond the Euclidean setting. A metric n-sphere is

defined to be a quasisymmetric n-sphere if it is quasisymmetric to Sn. In R2 quasisymmetric circles are

exactly the quasicircles; while in Rn+1, for n ≥ 2, the notion of quasisymmetric spheres is weaker than that

of quasispheres. Complete characterizations of quasisymmetric spheres have been given in dimension 1 by

Tukia and Väisälä [37] and in dimension 2 by Bonk and Kleiner [6]. There is no known characterization of

quasisymmetric n-spheres for n ≥ 3.

A necessary property for quasisymmetric spheres, and hence for quasispheres, is linear local contractibility.

Moreover, a consequence of the main theorem in [6] states that a metric space which is a metric 2-sphere

(topological condition), linearly locally contractible (geometric condition) and Ahlfors 2-regular (measure

theoretic condition) is a quasisymmetric sphere. However, in R4, Semmes [34] constructed a metric 3-sphere

which is linearly locally contractible and Ahlfors 3-regular but admits no quasisymmetric parametrization.

Examples that satisfy the above conditions but fail to be quasisymmetric spheres have been constructed by

Heinonen and Wu [21] in Rn for all dimensions n ≥ 4.

The motivation of this thesis comes from the work of Gehring on slit domains [15] and the work of

Väisälä on products of curves [43] and on cylindrical domains [44]. Gehring proved that if Ω is a planar

domain then R3 \ Ω is quasiconformally homeomorphic to the exterior of the unit ball B3 in R3 if and only

if Ω is a quasidisk. Väisälä proved that the product of a simple arc Γ with an interval I is quasisymmetric

embeddable into R2 if and only if Γ satisfies the chord-arc condition (2.2.2). Finally, Väisälä [44] showed

among other results that if Ω is a Jordan domain in R2 then the cylindrical domain Ω×R is quasiconformally

homeomorphic to the unit ball B3 if and only if ∂Ω satisfies the chord-arc condition (2.2.2).

In this thesis, we examine double-dome-like surfaces in R3 defined by the graphs of two functions on a

Jordan domain Ω ⊂ R2. If the height above each point of Ω is constant zero, then the exterior of the surface

resembles a slit domain. On the other hand, a cylindrical domain occurs if the height above each point of Ω

is infinite.

1.2 Geometric Construction

Define

F = {ϕ : [0,+∞)→ [0,+∞) , ϕ is a homeomorphism}.
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In the first construction, to which we refer as the Geometric construction, the height of the surface above

and below a point x ∈ Ω is a function of the distance of x from the boundary ∂Ω. Precisely, if Γ = ∂Ω and

ϕ ∈ F , then define the 2-dimensional surface

Σ(Γ, ϕ) = {(x, z) : x ∈ Ω, z = ±ϕ(dist(x,Γ))}.

Our aim is to find the right conditions on the geometry of the base Ω and the growth of the gauge ϕ in order

for these surfaces to be quasispheres, or quasisymmetric spheres, or bi-Lipschitz equivalent to S2.

In terms of this setting, a slit domain R3 \ Ω may be regarded as the complement of Σ(∂Ω, ϕ) when

ϕ ≡ 0, and a cylindrical domain Ω × R may be regarded as the domain enclosed by Σ(∂Ω, ϕ) by choosing

ϕ ≡ ∞.

For the gauge functions of the form ϕ(t) = tα with α ∈ (0, 1), the surface Σ(Γ, ϕ) near Γ×{0} resembles

Γ × I for some small interval I. In view of Väisälä’s result on products of curves [43], one expects that

Σ(Γ, tα) is quasisymmetric to S2 if and only if Γ is a chord-arc curve. As it turns out, the chord-arc property

is necessary but not sufficient.

The geometry of the level sets γε of Γ plays a key role in the properties of Σ(Γ, ϕ). For ε > 0, the ε-level

set of Γ is defined to be

γε = {x ∈ Ω: dist(x,Γ) = ε}.

A Jordan curve Γ is said to satisfy the level chord-arc property (or LCA property), if there exist ε0 > 0 and

C ≥ 1 such that γε is a C-chord-arc curve for every 0 ≤ ε ≤ ε0.

The behaviour of ϕ near 0 is crucial in the behaviour of Σ(Γ, ϕ). More specifically, if ϕ satisfies

lim inft→0 ϕ(t)/t = 0 then, for any Jordan curve Γ, the surface Σ(Γ, ϕ) is not quasisymmetric to S2; see

Theorem 4.4.2. Therefore, we consider the following sub-collection of F in the study of these surfaces:

F1 = {ϕ ∈ F : lim inf
t→0

ϕ(t)/t > 0 and ϕ is Lipschitz in [r,+∞) for all r > 0}.

The main result from this construction is the following theorem.

Theorem 1.2.1. Let Γ be a Jordan curve.

1. If Γ has the level chord-arc property then Σ(Γ, ϕ) is a quasisymmetric sphere for all functions ϕ in F1.

2. If Γ does not have the level chord-arc property, then there exists a function ϕ in F1 which satisfies

limt→0 ϕ(t)/t = +∞ such that Σ(Γ, ϕ) is not a quasisymmetric sphere.

4



The assumption that ϕ is Lipschitz away from zero is necessary for the first claim; see Remark 4.4.1.

If ϕ ∈ F1 is bi-Lipschitz in a neighbourhood of 0 (e.g. ϕ(t) = t) and Γ is a quasicircle, the surface Σ(Γ, ϕ)

is a quasisphere. A partial converse is also true.

Theorem 1.2.2. Suppose that Γ is a Jordan curve.

1. If Γ is a quasicircle then Σ(Γ, ϕ) is a quasisphere for every ϕ ∈ F1 which is bi-Lipschitz in a neigh-

bourhood of 0.

2. If Σ(Γ, ϕ) is a quasisymmetric sphere for some ϕ ∈ F1 which is bi-Lipschitz in a neighbourhood of 0

then Γ is a quasicircle.

The method of constructing quasispheres in Theorem 1.2.2 produces quasispheres in all dimensions; see

Theorem 5.0.5.

If Γ is not a chord-arc curve then it does not satisfy the LCA property and, by Theorem 1.2.1, Σ(Γ, ϕ)

is not a quasisymmetric sphere for some ϕ ∈ F1 with limt→∞ ϕ(t)/t = ∞. If moreover we assume that Γ

has Assouad dimension larger than 1 (see Chapter 6 for definition) then we have the following result.

Theorem 1.2.3. Let Γ be a quasicircle with Assouad dimension larger than 1. Then, for any α ∈ (0, 1),

the surface Σ(Γ, tα) is not a quasisymmetric sphere.

Since the Assouad dimension is larger than the Hausdorff, upper box counting and lower box-counting

dimensions, the conclusion of Theorem 1.2.3 holds if any of these dimensions is bigger than 1.

1.3 Level sets of Jordan curves and chordal flatness

Sufficient conditions for a curve to satisfy the LCA property can be given in terms of the following flatness

module. For x, y ∈ Γ denote with Γ(x, y) the subarc of Γ connecting x and y that has a smaller diameter

and denote with lx,y the infinite line passing through x, y. Define

ζΓ(x, y) =
1

|x− y|
sup

z∈Γ(x,y)

dist(z, lx,y).

Under this module of flatness, we prove the following result in Theorem 3.0.4, Theorem 3.0.5 and Theorem

3.0.6.

Theorem 1.3.1. Suppose that Γ is a Jordan curve.
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1. If there exists r0 > 0 such that ζΓ(x, y) ≤ 1/2 for all x, y ∈ Γ with |x − y| ≤ r0 then, there is ε0 > 0

depending on r0 such that for each ε ∈ (0, ε0), the level set γε is a Jordan curve.

2. If there exists r0 > 0 and ζ0 ∈ (0, 1/2) such that ζΓ(x, y) ≤ ζ0 for all x, y ∈ Γ with |x − y| ≤ r0 then,

there is ε0 > 0 depending on r0 and K depending on r0, ζ0 such that for each ε ∈ (0, ε0), the level set

γε is a K-quasicircle.

3. The curve Γ has the level chord-arc property if and only if it is a chord-arc curve and for some

K > 1, ε0 > 0 each level set γε, ε ∈ (0, ε0) is a K-quasicircle.

The number 1/2 in the first two claims is sharp; see Remark 3.3.1 and Remark 3.3.2. For the LCA

property we have the following sharp result.

Theorem 1.3.2. If Γ satisfies a local C-chord-arc property with 1 ≤ C < π
2 , then Γ has the level chord-arc

property. Moreover, there exists a Jordan curve Γ satisfying a local π2 -chord-arc property that does not have

the level chord-arc property.

1.4 Analytic Construction

In the second construction, to which we refer as the Analytic construction, the level sets of the surface are

the level sets of |f |, where f is a quasiconformal mapping that maps Ω onto the unit disk. More precisely,

suppose that f is a quasiconformal mapping that maps Ω onto B2. For a function ϕ ∈ F , define the surface

Σ̃(f, ϕ) = {(x, z) : x ∈ Ω, z = ±ϕ(1− |f(x)|)}.

As with the Geometric construction, the behaviour of ϕ near zero is crucial to the behaviour of Σ̃(f, ϕ).

Define the following sub-collection of F :

F2 = {ϕ ∈ F : lim inf
t→0

ϕ(t)/t > 0 and lim sup
t→1

ϕ(1)− ϕ(t)

1− t
<∞}.

Note that F1 ⊂ F2. The second limit condition of F2 is satisfied by all functions ϕ which are locally Lipschitz

at 1; hence all functions ϕ in F1.

The main result from this construction is the following theorem.

Theorem 1.4.1. Suppose that Ω is a Jordan domain and Γ = ∂Ω.

1. If Γ is a chord-arc curve then for any bi-Lipschitz mapping f from Ω onto B2 and for any ϕ ∈ F2, the

surface Σ̃(f, ϕ) is the image of S2 under a bi-Lipschitz self map of R3.
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2. If Γ is not a chord-arc curve then for any quasiconformal mapping f from Ω onto B2 there exists a

function ϕ ∈ F2 satisfying limt→0 ϕ(t)/t =∞ such that Σ̃(f, ϕ) is not a quasisymmetric sphere.

A stronger version of the second claim of Theorem 1.4.1 is proved in Proposition 7.2.1. The necessity of

the limit conditions in F2 for the first claim of Theorem 1.4.1 is illustrated in Remark 7.1.5.

1.5 Outline of the thesis

The thesis is organized as follows.

In Section 2.1 we establish our notation and in Section 2.2 we present some concepts of Geometric

Analysis that appear throughout the thesis. The linear local connectivity (or LLC property) of metric

spaces is discussed in Section 2.3 and the theory of Rohde’s snowflakes is discussed in Section 2.4.

Chapter 3 deals with the theory of the level sets of Jordan curves and the proofs of Theorem 1.3.1 and

Theorem 1.3.2. More precisely, in Section 3.1 we define the chordal flatness of Jordan curves and we compare

it with other notions of flatness. The geometry of the level sets is investigated in Section 3.2. The main

theorems of this chapter are proved in Section 3.3 and Section 3.4. In Section 3.5 we give some applications

of Theorem 1.3.1 to Rohde’s snowflakes.

Chapter 4 is devoted to the proof of Theorem 1.2.1. The proof requires the notions of linear local

connectivity and Ahlfors 2-regularity. In Section 4.1 we establish necessary and sufficient conditions for

Σ(Γ, ϕ) to be linearly locally connected . These conditions are given in terms of the geometry of the level

sets γε. The Ahlfors 2-regularity is discussed in Section 4.2. A method of Väisälä is employed in Section 4.3

to complete the proof of Theorem 1.2.1, which is given in Section 4.4 along with additional remarks.

A multidimensional version of Theorem 1.2.2 is proved in Chapter 5. In Section 5.1, we compare the

Whitney decomposition of the base Ω and that of the domain enclosed by Σ(Γ, ϕ), and in Section 5.3 we

discuss the slit domains. The proof of the main result Theorem 5.0.5 is given in Section 5.4.

The proof of Theorem 1.2.3 is given in Chapter 6. The structure of Rohde’s snowflakes enables us to use

combinatorial arguments.

Finally, the Analytic construction is presented in Chapter 7. We show the first claim of Theorem 1.4.1

in Section 7.1 and the second claim in Section 7.2.
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Chapter 2

Preliminaries

2.1 Notation

The following notation is used throughout the thesis. If x, y ∈ Rn, then |x− y| denotes their Euclidean

distance. For a set E ⊂ Rn, we denote with ∂E its boundary and with E its closure in Rn.

If x ∈ Rn and r > 0, let Bn(x, r) = {y ∈ Rn : |x− y| < r} and Sn−1(x0, r) = ∂Bn(x0, r). In particular,

we write Bn = Bn(0, 1) and Sn−1 = ∂Bn, the unit ball and sphere, respectively, in Rn. Balls in abstract

metric spaces (X, d) are denoted with B(x, r). In addition, let Rn+, Rn− be the open upper, lower respectively,

half-space of Rn. For any a = (a1, . . . , an) ∈ Rn let

π(a) = (a1, . . . , an−1, 0)

be the projection of a on Rn−1 × {0}.

A metric n-sphere is a metric space homeomorphic to the standard unit sphere Sn. Metric 1-spheres are

also called metric circles. A Jordan curve is a metric circle in R2. A Jordan domain is a bounded domain in

R2 whose boundary is a Jordan curve.

For x, y ∈ Rn, define [x, y] to be the line segment that has x, y as its endpoints and lx,y to be the straight

line passing from the points x, y. Given two points x, y on a Jordan curve γ, we denote with γ(x, y) the

subarc of γ connecting x and y that has a smaller diameter, or, to be either subarc when both subarcs have

the same diameter. In same fashion, we denote with γ′(x, y) the subarc of a rectifiable curve γ connecting

x and y that has a shorter length, or, to be either subarc when both subarcs have the same length. The

length of a curve γ is denoted by `(γ).

If X is a subset of Rn and a ∈ R then, we denote with X × {a} the set {(x, a) ∈ Rn+1 : x ∈ X}. We

often identify the plane Rn × {0} with Rn.

In the following, we write u . v (resp. u ' v) when the ratio u/v is bounded above (resp. bounded

above and below) by positive constants. The constants, which we refer to as the comparison constants, may
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vary but are made clear.

2.2 Background in Geometric Analysis

How can we decide whether two domains D,D′ in Rn are quasiconformally equivalents? Furthermore,

how can we decide if two metric spaces (X, d), (Y, d′) are quasisymmetric equivalent? Both problems are

still open and only partial answers exist, even when D,D′ are topological balls or X,Y are metric spheres.

Definition 2.2.1. A Jordan curve Γ in R2 is called a K-quasicircle if it is the image of S1 under a K-

quasiconformal self map of R2. A metric n-sphere Σ ⊂ Rn+1 is called a K-quasisphere if it is the image of

Sn under a K-quasiconformal self map of Rn+1. A quasidisk is a domain enclosed by a quasicircle.

A metric space X is quasisymmetric to a metric space Y if there exists a quasisymmetric homeomorphism

from X onto Y .

Definition 2.2.2. A metric n-sphere is called a quasisymmetric sphere if it is quasisymmetric to Sn.

Beurling and Ahlfors [4] showed that a curve Γ is a quasicircle if and only if there is a quasisymmetric map

f : S1 → R2 such that f(S1) = Γ. Therefore, quasicircles are planar quasisymmetric circles. Quasispheres in

Rn+1, n ≥ 2, are quasisymmetric spheres [40, Theorem 2.4] but the converse is not always true [40, Theorem

6.3].

A geometric characterization of quasicircles was given by Ahlfors [2] who proved that a Jordan curve Γ

is a quasicircle if and only if it satisfies the 2 points condition:

there exists C > 1 such that for all x, y ∈ γ, diam γ(x, y) ≤ C|x− y|, (2.2.1)

where the distortion K and the constant C are quantitatively related. Rohde [33] constructed a catalogue

of snowflake curves and proved that, up to bi-Lipschitz self maps of R3, all quasicircles are these snowflake

curves; see Section 2.4. A long list of remarkably diverse characterizations of quasicircles has been found.

See the monograph of Gehring [17] for informative discussion.

Quasisymmetric circles were first classified by Tukia and Väisälä [37] who showed that a metric circle is a

quasisymmetric circle if and only if it is doubling and of bounded turning. Doubling spaces are those with finite

Assouad dimension; see Chapter 6. The bounded turning property is essentially Ahlfors condition (2.2.1)

for abstract metric circles. Herron and Meyer [22] produced a catalogue of snowflake type metric Jordan

curves, similar to that of Rohde, that describes all quasisymmetric circles up to bi-Lipschitz equivalence.
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On the other hand, there are few known characterizations for high dimensional quasispheres or quasisym-

metric spheres. A necessary and sufficient condition for a metric n-sphere to be quasisphere was first given

by Gehring [13] for n = 2 and later by Väisälä [41] for n ≥ 3.

Theorem 2.2.3 ( [41, Theorem 5.9], [13, Theorem]). Let n ≥ 2 and let Σ be a metric n-sphere in Rn+1.

Suppose that the bounded, unbounded component of Rn+1 \Σ is K-quasiconformally homeomorphic to Bn+1,

Rn+1 \ Bn+1 respectively. Then, there exists a K ′-quasiconformal self map of Rn+1 that maps Σ onto Sn,

with K ′ depending on K and n.

Note that this theorem is false when n = 1.

Bonk and Kleiner [6] identified a necessary and sufficient condition for metric 2-spheres to be quasisym-

metric spheres. A consequence of their main theorem is the following result.

Theorem 2.2.4 ( [6, Theorem 1.1, Lemma 2.5]). Let Z be metric 2-sphere which is Ahlfors 2-regular. Then

Z is quasisymmetric to S2 if and only if Z is LLC.

The LLC property is discussed in Section 2.3 and the definition of Ahlfors 2-regularity can be found in

Section 4.2.

Definition 2.2.5. A domain D ⊂ Rn is called a quasiball if it is quasiconformally homeomorphic to Bn.

By the Riemann mapping theorem, the quasiballs in R2 are exactly the bounded simply connected

domains in R2. For n > 2, no geometric characterization of quasiballs exists. Strong linear local connectivity

is a necessary condition for a domain D ∈ Rn, n ≥ 3 to be quasiball [18]; see Section 2.3. The following

result of Gehring shows that one can characterize quasiballs D in terms of the part of D close to ∂D.

Theorem 2.2.6 ( [14, Theorem 2]). A domain D in Rn, n ≥ 3, is quasiconformally equivalent to Bn if there

exists a neighbourhood U of ∂D and a quasiconformal mapping g of D ∩ U into Bn such that g(x) → Sn−1

as x→ ∂D in D ∩ U .

Definition 2.2.7. An mapping f of a metric space (X, d) into a metric space (Y, d′) is called L-Lipschitz,

L ≥ 1, if for all x1, x2 ∈ X

d′(f(x1), f(x2)) ≤ Ld(x1, x2).

An embedding f of a metric space (X, d) into a metric space (Y, d′) is called L-bi-Lipschitz, L ≥ 1, if both

f, f−1 are L− Lipschitz.
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An L-bi-Lipschitz mapping is η-quasisymmetric with η(t) = L2t. The difference between quasisymmetric

maps and bi-Lipschitz maps is that the latter distort absolute distances by a bounded amount.

A metric space X is bi-Lipschitz to a metric space Y if there exists a bi-Lipschitz homeomorphism from

X onto Y .

Definition 2.2.8. A Jordan curve Γ in R2 is said to be a L-bi-Lipschitz curve if it is the image of S1 under

an L-bi-Lipschitz self map of R2. A metric n-sphere Σ ⊂ Rn+1 is called an L-bi-Lipschitz sphere if it is the

image of Sn under an L-bi-Lipschitz self map of Rn+1.

Definition 2.2.9. A rectifiable Jordan curve Γ in R2 is called a C-chord-arc curve, C ≥ 1, if, for any two

points x, y ∈ Γ, the length of the shorter component Γ′(x, y) of Γ \ {x, y} satisfies

`(Γ′(x, y)) ≤ C|x− y|. (2.2.2)

It follows from its definition that an L-bi-Lipschitz curve is an L2-chord-arc curve. Conversely, Jerison

and Kenig [23] proved that if Γ is a C-chord-arc curve, then there exists L ≥ 1 depending only on C such

that Γ is an L-bi-Lipschitz curve. Moreover, a theorem by Tukia [36] implies that a curve Γ is a bi-Lipschitz

curve if and only if there is a bilipschtz map f : S1 → R2 with f(S1) = Γ.

Intrinsic characterizations of n-dimensional bi-Lipschitz spheres in Rn+1, n ≥ 2, are unknown. A neces-

sary condition is Ahlfors n-regularity.

2.3 The LLC property

A natural extension of Ahlfors condition (2.2.1) to general metric spaces is the linear local connectivity,

or LLC property.

Definition 2.3.1. A metric space X is λ− LLC for λ ≥ 1 if the following two conditions are satisfied.

1. (λ−LLC1) If x ∈ X, r > 0 and y1, y2 ∈ B(x, r)∩X, then there exists a continuum E ⊂ B(x, λr)∩X

containing y1, y2.

2. (λ−LLC2) If x ∈ X, r > 0 and y1, y2 ∈ X \B(x, r), then there exists a continuum E ⊂ X \B(x, r/λ)

containing y1, y2.

Recall that a continuum is a compact connected set consisting of more than one point.

It is an easy consequence of the definition that the LLC property is invariant under quasisymmetric

mappings. As a result, the LLC property is necessary for quasisymmetric spheres and quasispheres.
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Lemma 2.3.2. Suppose that X is λ-LLC and f is an η-quasisymmetric mapping of X onto Y . Then Y is

λ′-LLC for some λ′ depending on λ, η.

Proof. Let η′(t) = 1
η−1(1/t) . Recall that f−1 : Y → X is η′-quasisymmetric.

To verify the LLC1 property take y ∈ Y , r > 0 and y1, y2 ∈ B(y, r). Without loss of generality we may

assume that |y − y2| ≤ |y − y1|. Let x, x1, x2 be the preimages of y, y1, y2 respectively. Then, |x1 − x2| ≤

η′(2)|x−x1|. Since X is λ−LLC1, there exists a continuum E ⊂ B(x, λη′(2)|x−x1|) containing x1, x2. Then,

f(E) is a continuum containing y1, y2. Furthermore, for each w ∈ f(E), since |f−1(w)−x| ≤ λη′(2)|x−x1|,

it follows that |w − y| ≤ η(λη′(2))|y − y1| ≤ η(λη′(2))r.

To verify the LLC2 property take y ∈ Y , r > 0 and y1, y2 ∈ Y \ B(y, r). Let x, x1, x2 be the preimages

of y, y1, y2 respectively. Without loss of generality, we may assume that |y − y2| ≤ |y − y1|. Then, |x −

x2| ≤ η′(1)|x − x1|. Note that x1, x2 are outside of the ball B(x, 1
2η′(1) |x − x2|). Since X is λ − LLC2,

there exists a continuum E ⊂ X \ B(x, 1
2η′(1)λ |x − x1|) containing x1, x2. Then, f(E) is a continuum

containing y1, y2. Furthermore, for each w ∈ f(E), since |f−1(w) − x| ≥ 1
2η′(1)λ |x − x2|, it follows that

|w − y| ≥ 1
η(2η′(1)λ) |y − y2| ≥ 1

η(2η′(1)λ)r.

The importance of linearly locally connected sets was first observed by Gehring and Väisälä [18] and the

term first appeared as strongly locally connected sets, in a paper of Gehring [13]. In the latter, a set X ⊂ Rn

is said to be λ-strongly linearly locally connected ifs conditions (1) and (2) in Definition 2.3.1 are satisfied

for all x ∈ Rn instead of only x ∈ X.

Walker [46, Corollary 5.10] showed that strong linear local connectivity is invariant under quasiconformal

mappings. The next remark follows from Walker’s theorem and the fact that the unit circle S1(0, 1) × {0}

is strongly linearly locally connected in R3.

Remark 2.3.3. If Γ ⊂ R2 is a K-quasicircle then Γ× {0} is λ-strongly linearly locally connected in R3 for

some λ > 1 depending on K.

Bonk and Kleiner [6] introduced the stronger notion of linearly locally contractible spaces. A metric

space is C-linearly locally contractible for some C > 1 if every small ball is contractible inside a ball whose

radius is C times larger. The authors proved that linear local contractibility implies the LLC property;

while for compact and connected topological 2-manifolds, linear local contractibility is equivalent to the

LLC property [6, Lemma 2.5].

12



2.4 Rohde’s snowflakes

In [33], Rohde gave an intrinsic characterization of planar quasicircles. He defined explicitly a family

F of snowflake-type curves, then proceeded to prove that every quasicircle in the plane is the image of a

member of this family under a bi-Lipschitz self map of R2.

Each of Rohde’s snowflakes S is constructed as follows. Fix a number p ∈ [ 1
4 ,

1
2 ), and let S1 be the unit

square. The polygon Sn+1 is constructed by replacing each of the 4n edges of Sn by a rescaled and rotated

copy of one of the only two polygonal arcs allowed in Figure 2.1, in such a way that the polygonal regions

are expanding. The curve S is obtained by taking the limit of Sn, just as in the construction of the usual

von Koch snowflake.

It is easy to check that every p-snowflake satisfies (2.2.1) for some C depending on p. Therefore, every

Rohde snowflake is a quasicircle. On the other hand, every quasicircle has the structure of a p-snowflake.

Theorem 2.4.1 ( [33, Theorem 1.1]). A Jordan curve Γ is a quasicircle if and only if there exist a snowflake

curve S and a bi-Lipschitz self map f of R2 so that Γ = f(S).

We call the polygonal arc on the left, the Type I arc and the the figure on the right, the Type II arc.

Figure 2.1: The two polygonal arcs allowed in the construction of S

Denote with Wk = {1, 2, 3, 4}k the set of all words with letters from the set {1, 2, 3, 4} of length equal to

k and let W =
⋃
k∈NWk. If w ∈ Wk, set `(w) = k to be the length the word.

The structure of S can be coded in the following way. In the first step of the construction we con-

sider the unit square S1 and denote with 〈1〉, 〈2〉, 〈3〉, 〈4〉 its four edges in counter clockwise order. Induc-

tively, in the n-th step we replace the edge 〈w〉 with a polygonal arc consisting of four edges, denoted with

〈w1〉, 〈w2〉, 〈w3〉, 〈w4〉 in counterclockwise order. Let Sw be the smallest subarc of S that has the same

endpoints with 〈w〉.

For each w ∈ W let kw ∈ N be the number such that diam 〈w〉 = 4−`(w)(4p)kw . In other words, kw is the

number of times that the Type I arc has been used towards the construction of 〈w〉. The pair (p, kw) is the

coding of S.
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A p-snowflake S is called homogeneous if, during the construction of S, all of the 4n line segments of

the n-th generation are replaced by the same (rescaled and rotated) polygonal arc of Figure 2.1. In other

words, kw depends only on `(w).
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Chapter 3

Sets of constant distance from a
Jordan curve

Let A be a compact subset of R2. For each ε > 0, define the ε-boundary of A to be the set

∂ε(A) = {x ∈ R2 : dist(x,A) = ε}.

Brown showed in [7] that for all but countably many ε, every component of ∂ε(A) is a point, a simple

arc, or a simple closed curve. In [9], Ferry showed, among other results, that ∂ε(A) is a 1-manifold for

almost all ε. Fu [10] generalized Ferry’s results, and proved that for all ε outside a compact set of zero

1/2-dimensional Hausdorff measure, ∂ε(A) is a Lipschitz 1-manifold. Papers [9] and [10] include theorems

in higher dimensional Euclidean spaces; the work for dimensions n ≥ 3 is more demanding.

Let Γ be a Jordan curve in R2 and Ω be the bounded component of R2 \Γ. In this chapter we investigate

the geometry of the part of ∂εΓ which is contained in Ω. The theory can easily be extended to the part of

∂εΓ contained in R2 \ Ω; see Corollary 3.0.7. As in Section 1.2, for ε > 0 define the ε-level set

γε = {x ∈ R2 : dist(x,Γ) = ε}.

What properties of Γ ensure that the ε-level sets are Jordan curves, or uniform quasicircles, or uniform

chord-arc curves for all ε sufficiently close to 0?

Definition 3.0.2. Let Γ be a Jordan curve in R2.

We say that Γ has the level Jordan curve property (or LJC property), if there exists ε0 > 0 such that the

level set γε is a Jordan curve for every 0 < ε ≤ ε0.

We say that Γ has the level quasicircle property (or LQC property), if there exist ε0 > 0 and K ≥ 1 such

that the level set γε is a K-quasicircle for every 0 < ε ≤ ε0.

We say that Γ has the level chord-arc property (or LCA property), if there exist ε0 > 0 and C ≥ 1 such

that γε is a C-chord-arc curve for every 0 < ε ≤ ε0.

It is not hard to see that if Γ has the LQC property then it is a quasicircle and if Γ satisfies the LCA
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Figure 3.1: A level set of a Jordan curve.

property then it is a chord-arc curve; see Theorem 3.0.6.

Modeled on the linear approximation property of Mattila and Vuorinen [29], we define, for a Jordan curve

Γ in the plane, a scaled invariant parameter to measure the local deviation of the subarcs from their chords.

For points x, y on a Jordan curve Γ and the infinite line lx,y through x and y, we set

ζΓ(x, y) =
1

|x− y|
sup

z∈Γ(x,y)

dist(z, lx,y).

Definition 3.0.3. A Jordan curve Γ is said to have the (ζ, r0)-chordal property for a certain ζ > 0 and

r0 > 0, if

sup
x,y∈Γ,|x−y|≤r0

ζΓ(x, y) ≤ ζ.

We set

ζΓ = lim
r0→0

sup
x,y∈Γ,|x−y|≤r0

ζΓ(x, y).

This notion of chord-likeness provides us a tool for studying the geometry of level sets.

Theorem 3.0.4. Let Γ be a Jordan curve in R2. If Γ has the (1/2, r0)-chordal property for some r0 > 0,

then Γ has the level Jordan curve property.

Theorem 3.0.5. Let Γ be a Jordan curve in R2. If ζΓ < 1/2, then Γ has the level quasicircle property. In

particular, if Γ has the (ζ, r0)-chordal property for some 0 < ζ < 1/2 and r0 > 0, then there exist ε0 > 0

and K ≥ 1 depending on ζ, r0 and the diameter of Γ so that the level sets γε are K-quasicircles for all

0 < ε < ε0.
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Lemmas 3.2.13 and 3.2.15 lead naturally to the (1/2, r0)-chordal condition for LJC in Theorem 3.0.4;

they show that the behavior of the level set near branch points in Figure 3.1 is, in some sense, typical.

Condition ζΓ < 1/2 in Theorem 3.0.5 is used to prove the Ahlfors 2-point condition (2.2.1) for level

Jordan curves, thereby establishing the LQC property.

The chordal conditions in both theorems are sharp. The sharpness in Theorem 3.0.4 is given in Remark

3.3.1, and the sharpness in Theorem 3.0.5 is illustrated in Remark 3.3.2.

Moreover, using a lemma of Brown [7, Lemma 1], we are able to show the following.

Theorem 3.0.6. A Jordan curve Γ in the plane satisfies the level chord-arc property if and only if it is a

chord-arc curve and has the level quasicircle property.

Theorem 3.0.4, Theorem 3.0.5 and Theorem 3.0.6 can easily be extended to the part of ∂εΓ outside of Ω.

Corollary 3.0.7. Suppose that Ω is a Jordan domain and Γ = ∂Ω.

1. If there exists r0 > 0 such that ζΓ(x, y) ≤ 1/2 for all x, y ∈ Γ with |x − y| ≤ r0 then, there is ε0 > 0

depending on r0 such that for each ε ∈ (0, ε0), ∂εΩ is a Jordan curve.

2. If there exists r0 > 0 and ζ0 ∈ (0, 1/2) such that ζΓ(x, y) ≤ ζ0 for all x, y ∈ Γ with |x − y| ≤ r0 then,

there is ε0 > 0 depending on r0 and K depending on r0, ζ0 such that for each ε ∈ (0, ε0), ∂εΩ is a

K-quasicircle.

3. The sets ∂εΩ are chord-arc curves with uniform constant if and only if Γ is a chord-arc curve and ∂εΩ

are quasicircles with uniform constant.

This chapter is organized as follows. We discuss the chordal property in Section 3.1, and study geometric

properties of level sets in Section 3.2. In Section 3.3, we prove Theorems 3.0.4 and 3.0.5 and give examples

to show the sharpness of these theorems. We give the proof of Theorem 3.0.6 and Theorem 1.3.2 in Section

3.4. Finally in Section 3.5, we provide an additional example based on Rohde’s p-snowflakes.

3.1 Chordal property of Jordan curves

For planar Jordan curves, the connection between the chordal property and the 2-point condition is easy

to establish.

Proposition 3.1.1. A Jordan curve Γ is a K-quasicircle if and only if Γ is (ζ, r0)-chordal for some ζ > 0

and r0 > 0. Constants K and ζΓ are quantitatively related, with ζΓ → 0 as K → 1.
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The converse of the second statement is not true since ζΓ = 0 for every smooth Jordan curve Γ.

Proof. Suppose that Γ is a K-quasicircle and C is the constant in the Ahlfors 2-point condition (2.2.1)

associated to K. Then Γ is (C,diam Γ)-chordal.

Next suppose that Γ is (ζ, r0)-chordal. We claim that Γ satisfies property (2.2.1). Let x, y ∈ Γ. If

|x− y| ≥ r0, then

diam Γ(x, y) ≤ diam Γ

r0
|x− y|.

So, we assume |x− y| < r0, and let [z, w] be the orthogonal projection of Γ(x, y) on lx,y, with points z, x, y

and w listed in their natural order on the line. In the case that z 6= x, choose a point z′ ∈ Γ(x, y) whose

projection on lx,y is z. Denote by l the line through x and orthogonal to lx,y, and fix a subarc σ of Γ(x, y)

which contains z′ and has endpoints, called z1, z2, on Γ(x, y) ∩ l. Clearly σ = Γ(z1, z2) and l = lz1,z2 ; and

by the (ζ, r0)-chordal property, dist(z, l) = dist(z′, l) ≤ ζ|z1 − z2| ≤ 2ζ2|x − y|. It follows that, in all cases,

|z − w| ≤ (4ζ2 + 1)|x− y|. Therefore,

diam Γ(x, y) ≤ (4ζ2 + 2ζ + 1)|x− y|.

So Γ satisfies property (2.2.1) with C = max{4ζ2 + 2ζ + 1, diam Γ
r0
} and is a K-quasicircle for some K

depending on ζ, r0 and diam Γ.

The claim that ζΓ → 0 as K → 1 follows from a lemma of Gehring [16, Lemma 7], which states that for

each η > 0, there exists K0 = K0(η) > 1 such that if g is a K-quasiconformal mapping of R2 with K ≤ K0,

and if g fixes two points z1 and z2, then

|g(z)− z| ≤ η|z1 − z2|, when |z − z1| < |z1 − z2|.

Quasiconformality in [16] is defined using the conformal modulus of curve families, which is quantitatively

equivalent to the notion of quasiconformality given in Chapter 1. This line of reasoning has been used by

Mattila and Vuorinen in [29, Theorem 5.2].

By Proposition 3.1.1, the following is a corollary to Theorem 3.0.5.

Corollary 3.1.2. There exists a constant K0 > 1 such that all K0-quasicircles have the LQC property.

Mattila and Vuorinen [29] introduced the linear approximation property to study geometric properties of

K-quasispheres with K close to 1. Let k ∈ {1, 2, . . . , n− 1}, 0 ≤ δ < 1, and r0 > 0. A set Z in Rn satisfies a
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(k, δ, r0)-linear approximation property if for each x ∈ Z and each 0 < r < r0 there exists an affine k-plane

P through x such that

dist(z, P ) ≤ δr for all z ∈ Z ∩Bn(x, r).

In the same year, Jones [24] introduced a parameter, now known as the Jones beta number, to measure the

oscillation of a set at all points and in all scales, for the investigation of the ”traveling salesman problem”.

Later, beta number has been used by Bishop and Jones to study problems on harmonic measures and

Kleinian groups. As it turns out, the Jones beta number and the δ-parameter of Mattila and Vuorinen are

essentially equivalent.

For planar quasicircles, the chordal property and the linear approximation property are quantitatively

related as follows.

Lemma 3.1.3. Let Γ be a Jordan curve in R2. If Γ has the (ζ, r0)-chordal property for some 0 < ζ < 1/4,

then it is (1, 4ζ, r1)-linearly approximable, where r1 = min{ r02 ,
diam Γ
C } and C = C(ζ, r0,diam Γ) > 1 is a

constant. On the other hand, if Γ is a K-quasicircle that has the (1, δ, r0)-linear approximation property,

then it is (C ′2δ, r0/C
′)-chordal, for some constant C ′ = C ′(K) > 1.

Proof. Suppose that Γ is (ζ, r0)-chordal. Then Γ is a K-quasicircle by Proposition 3.1.1, hence satisfies

the 2-point condition (2.2.1) for some C > 1; here K and C depend on ζ, r0 and diam Γ. Let 0 < r <

min{ r02 ,
diam Γ

6C }; take x ∈ Γ, and x′ ∈ Γ \ B2(x, r) such that |x − x′| ≥ diam Γ
2 . Let x1, x2 be the points in

Γ∩S1(x, r) with the property that one of the subarcs Γ\{x1, x2} contains x′ and lies entirely outside B
2
(x, r),

and the other subarc, called τ , contains x. Since diam(Γ \ τ) ≥ |x−x′|− r ≥ diam Γ
2 − r > 2Cr ≥ C|x1−x2|,

we have diam τ ≤ C|x1 − x2| and Γ(x1, x2) = τ . Trivially, dist(x, lx1,x2
) ≤ 2ζr. Then, for y ∈ Γ(x1, x2) and

the line l through x and parallel to lx1,x2 , we have

dist(y, l) ≤ dist(y, lx1,x2) + dist(lx1,x2 , l) ≤ ζ|x1 − x2|+ 2ζr ≤ 4ζr;

and the first claim follows.

For the second claim, suppose that Γ is a K-quasicircle that has the (1, δ, r0)-linear approximation

property. So Γ satisfies the 2-point condition (2.2.1) for some C = C(K) ≥ 1. Take x, y ∈ Γ with

0 < |x−y| < r0
4C and r = (C+1)|x−y|, then Γ(x, y) ⊂ B2(x, r). Since r < r0, there exists a line l containing

x such that

Γ(x, y) ⊂ {z ∈ B2(x, r) : dist(z, l) ≤ δr}.

In particular, dist(y, l) ≤ δr. Given z ∈ Γ(x, y), take a point z′ ∈ l ∩B2(x, r) with |z − z′| ≤ δr; then, from
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elementary geometry we get

dist(z′, lx,y) ≤ dist(y, l)

|x− y|
r ≤ (C + 1)δr.

It follows that dist(z, lx,y) ≤ |z−z′|+dist(z′, lx,y) ≤ (C+2)δr = (C+2)(C+1)δ|x−y|. Hence, ζ(x, y) < 6C2δ,

and the second claim is proved.

3.2 Geometry of level sets

Let Γ be a Jordan curve in R2 and Ω be the bounded component of R2 \ Γ. For any ε > 0, define the

open set

∆ε = {x ∈ R2 : dist(x,Γ) > ε}.

In general, ∆ε need not be connected, and ∆ε and ∆ε ∪ γε may not be equal (see Figure 3.1).

However, for any ε > 0, the set Ω \ ∆ε, is path-connected. Indeed, given x, y ∈ Ω \ ∆ε, take x′, y′ ∈ Γ

such that |x− x′| = dist(x,Γ) and |y− y′| = dist(y,Γ). Note that [x, x′] and [y, y′] are entirely in Ω \∆ε. So

x, y can be joined in Ω \∆ε by the arc [x, x′] ∪ Γ(x′, y′) ∪ [y, y′].

Remark 3.2.1. Given x ∈ Ω let x′ ∈ Γ be such that dist(x,Γ) = |x − x′|. Then, for each z ∈ [x, x′],

dist(z,Γ) = |z − x′|. Moreover, for each ε > 0, the intersection [x, x′] ∩ γε contains either exactly one point

(if ε ≤ |x− x′|) or no point (if ε > |x− x′|).

For the first claim observe that the ball B2(x, |x − x′|) does not intersect with Γ. Since B2(z, |z − x′|)

is entirely inside B2(x, |x− x′|) and x′ ∈ S1(z, |z − x′|), it follows that dist(z,Γ) = |z − x′|. For the second

claim it is clear that if ε > |x − x′| then γε ∩ [x, x′] = ∅. If 0 < ε ≤ |x − x′| , there is a unique point z in

[x, x′] such that |z− x′| = ε. By the first claim, z ∈ γε ∩ [x− x′]. If y was another point in γε ∩ [x− x′] then,

by the first claim, |y − x′| = ε which leads to y = z.

Remark 3.2.2. Given x, y ∈ Ω, let x′, y′ be points in Γ with the property that |x − x′| = dist(x,Γ) and

|y − y′| = dist(y,Γ). If x, y, x′, y′ are not collinear then the segments [x, x′], [y, y′] do not intersect except

perhaps at their endpoints.

Indeed, if there is a point z ∈ [x, x′]∩ [y, y′] which is not x′ or y′, then, by Remark 3.2.1, |z−x′| = |z−y′|.

By the triangle inequality,

|x− y′| < |x− z|+ |z − y′| = |x− z|+ |z − x′| = dist(x,Γ),
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which is a contradiction. The non-crossing property of [x, x′], [y, y′] is a special case of Monge’s observation

on optimal transportation; see [45, p. 163].

In the following, a point is considered as a degenerate arc.

Given a closed subset Λ of Γ and a number ε 6= 0, we define

γΛ
ε = {x ∈ γε : dist(x,Λ) = ε}.

In general, the set γΛ
ε may be empty even when Λ is a non-trivial arc (see Figure 3.1). However, γΛ

ε is an

arc when γε is a Jordan curve and Λ is connected, as we see from the following lemma.

Lemma 3.2.3. Let Γ be a Jordan curve in R2, and assume that for some ε 6= 0, the level set γε is a Jordan

curve. If Λ is a closed subarc of Γ and γΛ
ε is nonempty, then γΛ

ε is a subarc of γε.

Proof. It suffices to prove that if x and y are two distinct points in γΛ
ε then, one of the two subarcs λ1, λ2

of γε connecting x and y is entirely in γΛ
ε .

We claim that if λ1 \ γΛ
ε 6= ∅ then λ2 ⊂ γΛ

ε . Take z ∈ λ1 \ γΛ
ε , x′, y′ ∈ Λ and z′ ∈ Γ \ Λ such that

|x− x′| = |y − y′| = |z − z′| = ε,

and let Λ1 be the subarc of Λ that joins x′, y′ (Λ1 could be just a point). We know that the open line segments

(x, x′), (y, y′), (z, z′) and the Jordan curve γε do not intersect one another. Let U1 be the quadrilateral

(possibly degenerated in the case x′ = y′) enclosed by the Jordan curve [x, x′] ∪ λ1 ∪ [y, y′] ∪ Λ1. Then

the open arc λ2 \ {x, y} must be contained in U1. For otherwise, λ2 \ {x, y} would intersect either the arc

[x, x′] ∪ λ1 ∪ [y, y′] or the segment [z, z′]; this is impossible in view of properties of the distance function

dist(·,Γ). Therefore, the quadrilateral U2 enclosed by the Jordan curve [x, x′]∪ λ2 ∪ [y, y′]∪Λ1 is contained

in U1. Suppose now that λ2 ⊂ γΛ
ε is false. Then, by the argument above with the roles of λ1 and λ2 reversed,

we get U1 ⊂ U2. Hence U1 = U2, which is impossible. This proves the claim.

We show next that when two points x, y on a level Jordan curve γε have a common closest point on Γ

then γε(x, y) is a circular arc.

Lemma 3.2.4. Let Γ be a Jordan curve in R2, and assume that the level set γε is a Jordan curve for some

ε > 0. Suppose that there exist x, y ∈ γε and z ∈ Γ such that |x− z| = |y− z| = ε. Then γε(x, y) is a circular

arc on S1(z, ε) of length at most πε.
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Proof. By Lemma 3.2.3, γ
{z}
ε = {w ∈ γε : |w − z| = ε} is a subarc of γε ∩ S1(z, ε). Since {x, y} ⊂ γ

{z}
ε ,

γε(x, y) is one of the two subarcs of S1(z, ε) that connects x and y.

Suppose that `(γε(x, y)) > πε. Then the domain U enclosed by the Jordan curve γε(x, y)∪ [x, y] contains

precisely one point from Γ, namely the point z; all other points on Γ are in the exterior of U . So, Γ intersects

the segment [x, y]; consequently, dist(x,Γ) < ε and dist(y,Γ) < ε. This is a contradiction.

Using the above result we can prove the following lemma.

Lemma 3.2.5. Suppose that Γ is a K-quasicircle in R2. Then there exists M ≥ 1 depending only on K

such that for any x ∈ Γ and for any ε > 0, dist(x, γε) ≤Mε.

Proof. For any ε > 0 let Γγε be the points on Γ whose distance from γε is ε.

Since Γ is a K-quasicircle, it satisfies Ahlfors condition (2.2.1) for some C > 1 depending on K. If

x ∈ Γγε then dist(x, γε) = ε and the claim holds for M = 1. Suppose now that x ∈ Γ \ Γγε . Since Γγε is

closed in Γ, there exists a component Λ of Γ \ Γγε that contains x. Denote with y′, z′ the endpoints of Λ.

Then, y′, z′ ∈ Γγε and therefore, there exist y, z ∈ γε such that

|y − y′| = |z − z′| = ε. (3.2.1)

The points y, z can be chosen so that their distance is minimal over all pair of points in Λ satisfying (3.2.1).

Then, it follows from Lemma 3.2.3 that y = z. Otherwise, γΛ
ε is either the subarc γε(y, z) or Γ \ γε(y, z)

which are both nonempty. Therefore,

dist(x, γε) ≤ |x− y|+ ε ≤ diam Λ + ε ≤ C|y − z|+ ε ≤ (2C + 1)ε.

Suppose that 0 ≤ ε < ε′ and γε, γε′ are Jordan curves. The next corollary is an immediate consequence

of the simple observation that γε′ is the (ε′ − ε)-level set of γε.

Corollary 3.2.6. Suppose that Γ is a curve in R2 for which there exist K > 1 and ε0 > 0 such that

γε is a K-quasicircle whenever ε ∈ [0, ε0]. There exists a constant M depending only on M such that if

0 ≤ ε < ε′ ≤ ε0 and x ∈ γε then dist(x, γε′) ≤M(ε′ − ε).

The following lemma shows that components of ∆ε satisfy a weak form of the LLC1 property introduced

in Section 2.3. In particular, ∆ε has no inward cusps.

Lemma 3.2.7. Let Γ be a Jordan curve, ε > 0 and D a connected component of ∆ε. Then for any x, y ∈ D

with |x− y| ≤ 2ε, there exists a polygonal arc τ in D that joins x and y and has diam τ ≤ 5|x− y|.
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Proof. Let x, y be two points in D with |x− y| ≤ 2ε. So, for each z ∈ [x, y]

dist(z,Γ) > 2ε−min{|z − y|, |z − x|} > 0

and [x, y]∩Γ = ∅. Consequently, since x, y are contained in the bounded component Ω of R2 \Γ, the segment

[x, y] is contained in Ω as well. Let τ ′ be any curve in D that connects x to y. After approximating τ ′ by

a polygonal curve, erasing the loops and making small adjustments near the segment [x, y], we may assume

that τ ′ is a simple polygonal curve which intersects [x, y] in a finite set. In other words, τ ′ is the union of

finitely many simple polygonal subarcs σ′ in D, each of which meets [x, y] precisely at its end points. The

curve τ in the proposition is obtained by replacing each σ′ with a polygonal arc σ in D ∩ B2(x, 5
2 |x − y|)

with the same end points.

Fix such a subarc σ′ having end points a, b ∈ [x, y]. Assume that σ′ \B2
(x, 2|x− y|) 6= ∅; otherwise, just

let σ = σ′. Let U be the domain enclosed by the Jordan curve σ′ ∪ [a, b]. Since ∂U ∩ Γ = ∅ and Ω is simply

connected, U ⊂ Ω. We claim that

U \B2(x, 2|x− y|) ⊂ ∆ε.

Otherwise, take a point z ∈ U \(B2(x, 2|x−y|)∪∆ε) and assume as we may, by the continuity of the distance

function, that z ∈ γε. Let z′ be a point on Γ for which |z − z′| = dist(z,Γ) = ε. Since U ⊂ Ω, z′ /∈ U and

the open segment (z, z′) intersects ∂U at some point z′′. If z′′ is in [a, b] ⊂ [x, y] then

dist(x,Γ) ≤ |x− z′| ≤ |x− z′′|+ |z′′ − z′| = |x− z′′|+ ε− |z − z′′| < ε,

a contradiction. If z′′ is in σ′ then ε = |z − z′| > |z′′ − z′| ≥ dist(z′′,Γ) > ε, again a contradiction. This

proves the claim.

Let U ′ be the connected component of U ∩B2(x, 2|x−y|) that contains the segment [a, b] in its boundary.

Since U is a polygon, U ′ is simply connected and ∂U ′ is a Jordan curve. In particular, ∂U ′\(a, b) is composed

of finitely many line segments in D and finitely many subarcs of S1(x, 2|x− y|). In view of the claim above,

∂U ′ \ (a, b) is an arc contained in D. After replacing each maximal circular subarc of ∂U ′ \ (a, b) by a

polygonal arc nearby, we obtain a polygonal arc σ in D ∩ B2(x, 5
2 |x − y|) connecting a to b. The arc τ in

the proposition is given by the union of these new σ’s.

We next prove that the boundary of any connected component of ∆ε is a Jordan curve. We need a

theorem of Lennes in [25] which gives a sufficient condition for the frontier, of a bounded planar domain,

to be a Jordan curve. Let D be a bounded domain and p a closed polygonal curve which encloses D in its
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interior. Let E′ be the set of all points in the plane that can be joined to p by a continuous curve in the

complement of D. The frontier F of D is the set of all common limit points of E′ and D, that is, F = E
′∩D.

Define moreover the interior set of the frontier F to be I = R2 \ (E′ ∪F ) and the exterior set of the frontier

F to be E = E′ \ F . Observe that all the above definitions are independent of the choice of p.

Furthermore, a point x ∈ F is said to be externally accessible if there exists a finite or a continuous

infinite polygonal path τ : [0, 1]→ R2 such that τ([0, 1)) ⊂ E and τ(1) = x. And a point x ∈ F is said to be

internally accessible if there exists a finite or a continuous infinite polygonal path τ : [0, 1] → R2 such that

τ([0, 1)) ⊂ I and τ(1) = x. Lennes proved the following.

Lemma 3.2.8 ( [25, Theorem 5.3]). If every point of a frontier F possesses both the internal and the external

accessibility, then F is a Jordan curve.

We now apply the theorem of Lennes to prove the following.

Lemma 3.2.9. Let Γ be a Jordan curve and ε > 0. Then, the boundary of every connected component of

∆ε is a Jordan curve.

Proof. Recall that Ω is the bounded component of R2 \ Γ. Let D be a connected component of ∆ε, and

p be a closed polygonal curve that encloses Ω in its interior. Every point x ∈ Ω \ D can be joined to one

of its closest points on Γ by a line segment entirely outside D, then to p by a curve in R2 \ Ω. Therefore,

E′ = R2 \D, F = E
′ ∩D = ∂D and I = D, and any point in ∂D is externally accessible.

To check the internal accessibility, we take x ∈ ∂D, and a sequence {xn} inD with distance |xn−x| < 2−nε

for every n ≥ 1. By Lemma 3.2.7, there exist a family of polygonal arcs {τn}n∈N in D such that τn joins

xn to xn+1 and has diam τn ≤ 5|xn − xn+1| ≤ 21−nε. Then, take τ to be the infinite polygonal path

{x} ∪
⋃
n≥1 τn. This proves that x is internally accessible, and by Lennes’ theorem, we conclude that ∂D is

a Jordan curve.

Components of ∆ε satisfy LLC1, when Γ is a quasicircle.

Lemma 3.2.10. Suppose that Γ is a K-quasicircle. Then, there exists a constant M > 0 depending only on

K such that for any ε > 0, for any connected component D of ∆ε, and for any two points x, y ∈ D, there

exists a curve τ in D joining x and y such that diam τ ≤M |x− y|.

Proof. In view of Lemma 3.2.7, we consider points x and y in D with distance |x− y| > 2ε only. The proof

follows closely that of Lemma 3.2.7; however, the segment [x, y] here may intersect Γ.

Since Γ is a K-quasicircle, it satisfies condition (2.2.1) for some C = C(K) > 1. Fix a simple polygonal

curve τ ′ in D joining x and y that intersects [x, y] in a finite set. As in Lemma 3.2.7, we replace each
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subarc σ′ of τ ′ that has end points in [x, y] and does not intersect [x, y] anywhere else, by a new arc σ in

D ∩B2(x, (C + 2)|x− y|) having the same end points.

Fix such a subarc σ′ having end points a, b ∈ [x, y]. Assume that σ′ \B2
(x, (C+2)|x−y|) 6= ∅; otherwise,

just set σ = σ′. The domain U enclosed by the Jordan curve σ′ ∪ [a, b] may now contain points outside Ω.

We claim nevertheless that

U \B2(x, (C + 2)|x− y|) ⊂ ∆ε. (3.2.2)

Suppose U \B2(x, (C + 2)|x− y|) * ∆ε. As before, we may pick a point z ∈ (U \B2(x, (C + 2)|x− y|))∩ γε

and a point z′ ∈ Γ such that |z−z′| = dist(z,Γ) = ε. Suppose z′ /∈ U ; the segment [z, z′] must intersect ∂U at

some point z′′. Because |x−y| > 2|ε|, the point z′′ cannot be in [x, y], therefore z′′ ∈ σ′. Hence ε = |z−z′| >

|z′′− z′| ≥ dist(z′′,Γ) > ε, a contradiction. So z′ must be in U , therefore z′ ∈ (U ∩Γ) \B2(x, (C+ 1)|x− y|).

Since ε > 0, Γ cannot be entirely in U , so Γ ∩ ∂U 6= ∅. Since ∂U = σ′ ∪ [a, b] and σ′ ⊂ D, Γ ∩ [a, b] 6= ∅.

Let z1, z2 be the points in [a, b] ∩ Γ with the property that the open subarc Γ′ of Γ connecting z1 to z2 and

containing the point z′, is entirely in U . So |z1 − z2| < |a− b| ≤ |x− y| and

diam Γ′ ≥ dist(z′, [z1, z2]) ≥ |z′ − x| − |x− y| ≥ C|x− y| > C|z1 − z2|.

From the 2-point condition (2.2.1) it follows that the diameter of the subarc Γ′′ = Γ\Γ′ is at most C|z1−z2|.

Therefore, Γ′′ ⊂ B2(x, (C + 1)|x− y|), and Γ ⊂ U ∪B2(x, (C + 1)|x− y|).

Let w be one of the points on σ′ that is furthest from x. Since Γ′ \ {z1, z2} is contained in the open set

U , |x−w| > maxu∈Γ′ |x− u|; furthermore |x−w| ≥ (C + 2)|x− y| > maxu∈Γ′′ |x− u|. As a consequence, w,

also σ′, is contained in the unbounded component of R2 \ Γ. This is impossible because σ′ ⊂ D ⊂ ∆ε ⊂ Ω.

Claim (3.2.2) is proved.

Let U ′ be the component of U ∩B2(x, (C+2)|x−y|) whose boundary contains [a, b]. As in Lemma 3.2.7,

σ′ is replaced by the subarc σ = ∂U ′ \ (a, b) ⊂ D ⊂ ∆ε. The curve τ in the proposition is the union of these

new σ’s.

Remark 3.2.11. Both Lemmas 3.2.7 and 3.2.10 can be strengthened to include the case when x and y are

in D. In such case, curves τ satisfying the diameter estimates in the lemmas are contained in D with the

exception of their endpoints.

We now state an elementary geometric fact needed in the following two lemmas. Given 0 < δ < ε and a

point a = δeiα in B2(0, ε), then

S1(a, ε) \B2(0, ε) = {a+ εeiθ : |θ − α| ≤ π − cos−1(
δ

2ε
)},
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and the circular arc is contained in the sectorial region {z ∈ R2 : | arg z − α| ≤ cos−1( δ2ε )}.

Given any x0 ∈ γε, ε > 0, set

Γ{x0} = {y ∈ Γ: |x0 − y| = ε}.

Lemma 3.2.12. Suppose ε > 0 and x0 is a non-isolated point in γε. Then the set Γ{x0} lies entirely in a

semi-circular subarc of S1(x0, ε).

Proof. Choose a sequence of points an on γε that converges to x0; set δn = |an − x0| and assume as we may

that 0 < δn < ε . Since dist(an,Γ) = ε, we have dist(an,Γ
{x0}) ≥ ε, for all n ≥ 1. In particular Γ{x0} is

contained in the part of S1(x0, ε) that is outsideB2(an, ε), which is a circular arc of length (2π−2 cos−1( δn2ε )) ε.

The claim follows by letting n→∞.

Fix a non-isolated point x0 on γε, we examine the geometry of the level set γε near x0.

Let X = Γ{x0}. Since X is compact, there exist x1, x2 ∈ X (possibly x1 = x2) such that |x1 −

x2| = diamX ≤ 2ε; and by Lemma 3.2.12, X lies in a subarc Σ (possibly degenerated) of S1(x0, ε) having

endpoints x1 and x2 and of length at most πε. Let U = B2(x1, ε) ∪ B(x2, ε); clearly γε ∩ U = ∅. Set

ε0 = (ε2 − |x1 − x2|2/4)1/2. For 0 < δ < ε0, the set S1(0, δ) \ U is a connected arc when |x1 − x2| < 2ε, and

it has two components when |x1 − x2| = 2ε. Let Sδ be a component of S1(0, δ) \ U .

Lemma 3.2.13. Suppose ε > 0 and x0 is a non-isolated point in γε. There exists δ0 ∈ (0, ε0) such that if

0 < δ < δ0 then the set γε ∩ Sδ contains at most two points.

Specifically, if 0 < δ < δ0, a ∈ γε∩Sδ, and a′ is a point in Γ with |a−a′| = ε, then at least one of the two

components (maybe empty) S1
δ,a, S

2
δ,a of Sδ \ {a} is contained entirely in the disk B2(a′, ε); in other words,

there exists j ∈ {1, 2} such that every point in Sjδ,a has distance strictly less than ε from Γ.

Remark 3.2.14. For every non-isolated point x0 on γε and every δ ∈ (0, ε0), the set γε ∩S1(x0, δ) contains

at most two points when |x1 − x2| < 2ε, and at most four points when |x1 − x2| = 2ε. See Figure 3.1 for

some of the possibilities.

Proof. Assume as we may that x0 = 0, x1 = εeiτ , x2 = εei(2π−τ) with τ ∈ [π/2, π], and that Σ ⊂ {z : Re z ≤

0}. Consider from now on only those δ in (0, ε0). Consequently, Sδ ⊂ {z : Re z > 0} when 0 < |x1−x2| < 2ε

and S1(0, δ) ∩ {z : Re z ≥ 0} ⊂ Sδ when x1 = x2 = −ε; assume therefore without loss of generality that

Sδ ⊂ {z : Re z ≥ 0} when |x1 − x2| = 2ε. It is straightforward to check that

− (τ − cos−1(
δ

2ε
)) ≤ arg z ≤ τ − cos−1(

δ

2ε
) for all z ∈ Sδ. (3.2.3)
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Fix a number ξ ∈ (0, π24 ) depending on τ so that τ−ξ > π/2 when τ > π/2, and ξ = π/48 when τ = π/2. Fix

also a number δ0 ∈ (0, ε0), satisfying cos−1( δ02ε ) >
5π
12 , and having the property that for any a ∈ γε∩B2(0, δ0)

and any point a′ on Γ nearest to a, i.e., |a− a′| = ε, we have

τ − ξ ≤ arg a′ ≤ 2π − τ + ξ. (3.2.4)

If there were no such δ0, X would contain a point outside Σ.

Suppose the assertion in the lemma is false. Then, there exist δ ∈ (0, δ0), a ∈ γε ∩ Sδ, a, a point a′ ∈ Γ

with |a− a′| = ε, b1 ∈ S1
δ,a and b2 ∈ S2

δ,a such that b1, b2 /∈ B2(a′, ε). Assume as we may that

−(τ − cos−1(
δ

2ε
)) ≤ arg b1 < arg a < arg b2 ≤ τ − cos−1(

δ

2ε
).

Let l1 (resp. l2) be the line that bisects the segment [a, b1] (resp. [a, b2]). Since |bj − a′| ≥ ε = |a − a′| for

j = 1 and 2, the point a′ lies in the closure of the component of R2 \ {l1, l2} that contains a. In particular

by (3.2.3),

−(τ − cos−1(
δ

2ε
)) ≤ arg b1 + arg a

2
≤ arg a′ ≤ arg b2 + arg a

2
≤ τ − cos−1(

δ

2ε
),

which is impossible in view of (3.2.4) and the fact that ξ < π/24 < cos−1( δ02ε ). This proves the second

assertion and the lemma.

Lemma 3.2.15. Suppose that for some ε > 0, there exist a connected component D of ∆ε and a connected

component G of γε ∪∆ε such that D ( G. Then, there exists a point x0 ∈ ∂D and points x1, x2 ∈ Γ such

that x0, x1, x2 are collinear and

|x0 − x1| = |x0 − x2| = ε.

Furthermore, Γ{x0} = {x1, x2}.

Proof. Let E = G \ D. Since G is connected, we have that E ∩ D 6= ∅ and E ∩ ∂D 6= ∅. Fix a point

x0 ∈ E ∩ ∂D; clearly x0 is a non-isolated point in γε. Define X = Γ{x0}, the shortest subarc Σ of S1(x0, ε)

containing X, its end points x1, x2, the open set U , and the number δ0 > 0, relative to the point x0 as in

Lemma 3.2.13.

Suppose that |x1− x2| < 2ε. Then for δ ∈ (0, ε0), S1(x0, δ) \U is the arc Sδ. Since x0 ∈ ∂D, there exists

a number δ1 = δ1(x0, D, ε) > 0 such that D ∩ Sδ contains a non-trivial arc for every 0 < δ < δ1. Therefore

∂D ∩ Sδ contains at least two points in γε. Hence, by Lemma 3.2.13, E ∩ Sδ = ∅ when 0 < δ < min{δ0, δ1}.

This contradicts the assumption x0 ∈ E. Therefore |x1 − x2| = 2ε and x0, x1 and x2 are collinear.
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We now prove Γ{x0} = {x1, x2}. Assume, as in Lemma 3.2.13, that x0 = 0, Σ ⊂ {Re z ≤ 0}, x1 = εeiπ/2

and x2 = εei3π/2. Suppose there exists another point x3 ∈ Γ{x0} \ {x1, x2}; so Rex3 < 0. Observe,

by elementary calculations, that there exists δ2 = δ2(x3, ε) ∈ (0, ε0) so that for any y in the half disk

B2(0, δ2) ∩ {Re z < 0}, one of the numbers |y − x1|, |y − x2|, |y − x3| is strictly less than ε. Therefore,

(∆ε ∪ γε) ∩ B2(0, δ2) ⊂ {Re z ≥ 0} \ U . Since x0 ∈ D, ∂D ∩ Sδ contains at least two points in γε for all

sufficiently small δ. As before, it follows from Lemma 3.2.13 that E ∩ Sδ must be empty for all sufficiently

small δ, a contradiction. This proves that Γ{x0} = {x1, x2}, and the lemma.

The next two propositions lead naturally to the (1/2, r0)-chordal condition for the LJC property in

Theorem 3.0.4.

Proposition 3.2.16. Suppose that for some ε > 0, ∆ε 6= ∅, γε ∪∆ε is connected, and ∆ε ( γε ∪∆ε. Then,

there exist points x0 ∈ γε and x1, x2 ∈ Γ which are collinear such that

|x0 − x1| = |x0 − x2| = ε.

Moreover, Γ{x0} = {x1, x2}.

From the assumptions, there exist a connected component D of ∆ε and a connected component G of

γε ∪∆ε such that D ⊂ D ( G. The proposition follows from Lemma 3.2.15.

Remark 3.2.17. The point x0 in Proposition 3.2.16, which is chosen according to Lemma 3.2.15, lies, in

fact, on the boundary of a component of ∆ε.

Proposition 3.2.18. Suppose that ∆ε 6= ∅ and γε ∪∆ε is not connected for some ε > 0. Then, there exist

points x0 ∈ Ω and x1, x2 ∈ Γ which are collinear such that

|x0 − x1| = |x0 − x2| = dist(x0,Γ) < ε.

Moreover, Γ{x0} = {x1, x2}.

Proof. Choose a connected component D of ∆ε, a point x ∈ D, and a point y in a connected component of

∆ε ∪ γε that does not meet D, and define

d0 = sup{δ > 0: x, y are in a common component of ∆δ}.

Since Ω is path connected, d0 > 0; and since x and y are in two different components of the closed set

γε ∪∆ε, d0 < ε.
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For δ ∈ (0, d0), let Gδ be the component of ∆δ that contains x and y. Then, for 0 < δ < δ′ < d0 we

have Gδ′ ⊂ Gδ′ ⊂ Gδ. Since {Gδ}δ∈(0,d0) is a nested family of compact connected sets, the intersection

G =
⋂

0<δ<d0
Gδ is a connected subset of γd0 ∪∆d0 that contains D ∪ {y}.

We claim that G is the component of γd0 ∪∆d0 that contains x, y. Indeed, let G̃ be the component of

γd0 ∪∆d0 that contains x, y. Clearly G ⊂ G̃. Since the set
⋃
x∈G̃B

2(x, δ) is open and connected for every

δ ∈ (0, d0),

G̃ ⊂
⋃
x∈G̃

B2(x, δ) ⊂ Gd0−δ for each δ ∈ (0, d0).

So G̃ ⊂ G and G is the component of γd0 ∪∆d0 that contains x, y. Hence, D ( G and the proposition now

follows from Lemma 3.2.15.

Remark 3.2.19. The point x0 in Proposition 3.2.18, chosen according to Lemma 3.2.15, lies on the bound-

ary of a component of ∆d0 for some 0 < d0 < ε.

3.3 Level curves and level quasicircles

In this section, we give the proofs of Theorem 3.0.4 and Theorem 3.0.5 along with two examples that

show the sharpness of the conditions.

Proof of Theorem 3.0.4. By the assumption of the theorem, there exists r0 > 0 such that ζΓ(x, y) ≤ 1/2, for

all x, y ∈ Γ with |x− y| ≤ r0.

First we claim that ∆ε ∪ γε is connected for all ε ∈ (0, r0/2). Otherwise, by Proposition, 3.2.18, there

exist d0 ∈ (0, r0/2) and collinear points x0 ∈ γd0 and x1, x2 ∈ Γ such that Γ{x0} = {y ∈ Γ: |x0 − y| = d0} =

{x1, x2}. The line l that contains x0 and is perpendicular to lx1,x2 intersects Γ(x1, x2) at some point z. Note

that |x1 − x2| = 2d0 < r0 and that

dist(z, lx1,x2
) = |x0 − z| > dist(x0,Γ) = d0.

So ζΓ(x1, x2) > 1/2, a contradiction.

Next we claim that ∆ε must be connected for all ε ∈ (0, r0/2). Otherwise, for some ε ∈ (0, r0/2) the

open set ∆ε would have at least two components, called D1, D2. By the continuity of the distance function,

each Dj , j = 1, 2, would contain a point zj of distance ε′ to Γ, for some ε′ ∈ (ε, r0/2). This would imply that

∆ε′ ∪ γε′ is not connected; this contradicts the previous claim.

Therefore, by Lemma 3.2.9, ∂∆ε is a Jordan curve for every ε ∈ (0, r0/2). It remains to check that
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γε = ∂∆ε for all ε ∈ (0, r0/2). Suppose ∂∆ε  γε for some ε ∈ (0, r0/2). Then ∆ε  ∆ε ∪ γε. Therefore,

by Proposition 3.2.16, we can find collinear points x0 ∈ γε and x1, x2 ∈ Γ such that Γ{x0} = {x1, x2}. As

before, this leads to the inequality ζΓ(x1, x2) > 1/2, a contradiction. So γε = ∂∆ε.

This completes the proof of the theorem.

Remark 3.3.1. The (1/2, r0)-chordal condition is sharp for the conclusion of Theorem 3.0.4.

We construct a chord-arc curve Γ with ζΓ = 1
2 which satisfies

(i) There exist two sequences of points {xn}, {yn} on Γ such that |xn−yn| → 0 and ζΓ(xn, yn) = 1
2 +2−n.

(ii) There exists a decreasing sequence of positive numbers {εn} with εn → 0 such that γεn is not a Jordan

curve.

as follows. Let Γ be the boundary of the domain

D = [−1, 2]× [−3, 0] ∪
∞⋃
n=0

[2−n − 2−n−2, 2−n]× [0, 2−n−2(1/2 + 2−n)].

Observe that Γ is a Jordan curve and it is not difficult to show that Γ is also a chord-arc. Set, for any n ∈ N,

xn = (2−n − 2−n−2, 0) and yn = (2−n, 0).

Note that ζΓ(xn, yn) = 1
2 + 2−n and that it is not hard to check that ζΓ = 1

2 . Let Λn = Γ(xn, yn)

and εn = 2−n−3. Then, the set γΛn
εn = {x ∈ γεn : dist(x,Λn) = εn} is the union of the line segment

{xn + 2−n−3} × [0, 2−2n−2] and two quarter-circles {xn + εne
iθ : 3π

2 ≤ θ ≤ 2π}
⋃
{yn + εne

iθ : π ≤ θ ≤ 3π
2 }.

It follows that γεn is not a Jordan curve.

Figure 3.2: A Jordan curve with ζΓ(xn, yn) = 1
2 + 2−n that does not satisfy the LJC property.

We now apply Lemma 3.2.7, Lemma 3.2.10, and Theorem 3.0.4 to prove Theorem 3.0.5. Recall from

Lemma 3.2.7 that ∆ε, if a Jordan domain, has no inward cusp. Condition ζΓ < 1/2, together with the

estimates (3.3.1) below, shows that ∆ε has no outward cusps.
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Proof of Theorem 3.0.5. By the assumption of the theorem, there exist ζ ∈ (0, 1/2) and r0 > 0 such that

ζΓ(x, y) ≤ ζ for all x, y ∈ Γ with |x − y| ≤ r0. From Theorem 3.0.4 and its proof, γε is a Jordan curve for

every ε ∈ (0, r0/2); by Lemma 3.1.1, Γ is a K(ζ)-quasicircle, therefore satisfies the 2-point condition (2.2.1)

for some constant C(ζ) > 1. Constants below depend only on ζ.

We now prove that there exists K ′ > 1 depending only on ζ such that γε is a K ′-quasicircle for any

0 < ε < min{ r0

10
,

diam Γ

20C(ζ)
}.

By the 2-point condition, it suffices to prove that there exists M > 1, depending only on ζ, such that

diam γε(x, y) ≤M |x− y| for all x, y ∈ γε.

Given x and y in γε, choose x′, y′ ∈ Γ such that |x − x′| = |y − y′| = ε; segments [x, x′] and [y, y′] do not

meet except possibly at x′ and y′. By Remark 3.2.11, there exists a curve τx,y, with τx,y \ {x, y} ⊂ ∆ε, that

connects x to y, and satisfies |x− y| ≤ diam τx,y ≤ C1(ζ)|x− y| for some constant C1(ζ) > 1. Consider the

domain D enclosed by the Jordan curve [x, x′] ∪ Γ(x′, y′) ∪ [y, y′] ∪ τx,y. Let γε(x, y)∗ be the component of

γε \{x, y} that is contained in D; note that γε(x, y)∗ and γε(x, y) are not necessarily the same arc. It suffices

to show that

diam γε(x, y)∗ ' |x− y|.

We consider four cases according to the ratios |x′ − y′|/ε and |x− y|/ε.

Case 1. |x′ − y′| ≥ 4(1− ζ)ε. In this case, |x′ − y′| − 2ε ≤ |x− y| ≤ |x′ − y′|+ 2ε, which implies

1− 2ζ

2− 2ζ
|x′ − y′| ≤ |x− y| ≤ 3− 2ζ

2− 2ζ
|x′ − y′|.

Since 0 < ζ < 1/2, diam τx,y ' |x − y| and Γ is a K(ζ)-quasicircle, we have diamD ' |x − y|. Hence,

diam γε(x, y)∗ ' |x− y|.

Case 2. x′ = y′. In this case, γ(x, y)∗ = γ(x, y). By Lemma 3.2.4, γε(x, y) is a subarc of S1(x′, ε) of

length at most πε, hence diam γε(x, y) = |x− y|.

Case 3. 0 < |x′ − y′| < 4(1− ζ)ε and |x− y| ≥ ε(1− 2ζ)2/10. Since diamD ' ε and γε(x, y)∗ ⊂ D, we

have diam γε(x, y)∗ ' |x− y| ' ε.

Case 4. 0 < |x′− y′| < 4(1− ζ)ε and 0 < |x− y| < ε(1− 2ζ)2/10. In view of Lemma 3.2.10 and Remark

3.2.11, we may assume that diam τx,y ≤ 5|x−y| < ε/2. It is easy to check that in this case γ(x, y)∗ = γ(x, y).

However, there is no relation between |x − y| and |x′ − y′|, and diamD may be much bigger than |x − y|.
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We construct a new domain D′ whose closure contains γε(x, y) and has diamD′ ' |x− y|.

First, let R(x′, y′) be the rectangular domain whose boundary has two sides parallel to the line lx′,y′ of

length a = |x′ − y′|, and two other sides having mid-points x′ and y′ and of length b = 2(ε − ζ|x′ − y′|).

Then define a domain

U(x′, y′) = B2(x′, ε) ∪B2(y′, ε) ∪R(x′, y′).

It is possible that R(x′, y′) is contained in B2(x′, ε) ∪ B2(y′, ε) for some pairs x′ and y′. Nevertheless,

∂U(x′, y′) are K ′′-quasicircles for some constant K ′′ > 1 depending only on ζ, in particular not on x′ and

y′. This observation follows from the inequalities: 0 < ζ < 1/2,

0 < a = |x′ − y′| < 4(1− ζ)ε, and 0 < ε(1− 2ζ)2 <
b

2
= ε− ζ|x′ − y′| < ε. (3.3.1)

Next, we claim that U(x′, y′) ∩∆ε = ∅. Indeed, for any z ∈ R(x′, y′) the line containing z and perpen-

dicular to lx′,y′ must intersect the arc Γ(x′, y′) at some point z′. Note that dist(z,Γ) ≤ dist(z,Γ(x′, y′)) ≤

|z−z′| ≤ dist(z, lx′,y′)+dist(z′, lx′,y′) <
b
2 +ζ|x′−y′| = ε. Clearly, dist(z,Γ) < ε for all z ∈ B2(x′, ε)∪B2(y′, ε).

Recall that x ∈ ∂B2(x′, ε)∩∂U(x′, y′) and y ∈ ∂B2(y′, ε)∩∂U(x′, y′). Let Tx,y be the subarc of ∂U(x′, y′)

connecting x to y that has the smaller diameter. Then, Tx,y ⊂ R2 \ ∆ε, and diamTx,y ' |x − y| because

∂U(x′, y′) is a K ′′-quasicircle.

To summarize, ∆ε is a Jordan domain, x and y are two points on ∂∆ε, and τx,y, γε(x, y), and Tx,y are

arcs connecting x to y, with τx,y \ {x, y} ⊂ ∆ε, γε(x, y) ⊂ ∂∆ε, and Tx,y ⊂ R2 \∆ε.

Let D′ be the domain enclosed by the Jordan curve τx,y ∪ Tx,y. We claim that γε(x, y) is contained

in D′. Otherwise, τx,y would be contained in the closure of the domain D′′ enclosed by the Jordan curve

γε(x, y)∪Tx,y. By the connectedness of ∆ε, the entire ∆ε would be contained in D′′. A preliminary estimate

of diam γε(x, y) from the fact γε(x, y) ⊂ D shows that

diam γε(x, y) ≤ 5|x− y|+ 2ε+ C(ζ)|x′ − y′| ≤ 7C(ζ)ε.

Therefore,

diam ∆ε ≤ diamD′′ ≤ diam γε(x, y) + diamU(x′, y′)

≤ 7C(ζ)ε+ 4ε+ |x′ − y′| ≤ 15C(ζ)ε <
3

4
diam Γ < diam ∆ε,
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a contradiction. So γε(x, y) ⊂ D′, and therefore

diam γε(x, y) ≤ diamD′ ≤ diam τx,y + diamTx,y ' |x− y|.

This completes the proof of diam γε(x, y) ' |x− y| for Case 4, and the theorem.

Remark 3.3.2. The condition ζΓ < 1/2 is sharp for the conclusion of Theorem 3.0.5.

We first make an observation. Given α ∈ [0, π/12], let σ be the circular arc {eiθ : α ≤ θ ≤ π − α}, and

Γ′ be the infinite simple curve obtained by replacing the segment [eiα, ei(π−α)] on leiα,ei(π−α) by σ. The set

of points below Γ′ that have unit distance to Γ′ is a simple arc γ′ consisting of two horizontal semi-infinite

lines and two circular arcs τ1 and τ2, where τ1 is a subarc of the circle S1(eiα, 1) connecting 0 and −i+ eiα

, and τ2 is a subarc of the circle S1(ei(π−α), 1) connecting 0 and −i + ei(π−α). Since τ1 and τ2 meet at an

angle 2α, the arc γ′ is a K(α)-quasiline with K(α)→∞ as α→ 0.

Fix now a decreasing sequence αn converging to 0 with α1 = π/12, and another sequence εn = 4−n−2.

Let pn be the point having coordinates (2−n,−εn sinαn) and σn be the subarc of S1(pn, εn) above the real

axis; and let ω be the simple curve that has end points −1 and 1 and is the union of circular arcs
⋃
n≥1 σn

and a countable number of horizontal segments in [0, 1]. Fix a large N ∈ N, and let P be the boundary of a

regular N -polygon in the lower half-plane which has [−1, 1] as one of its edges. Let Γ be the Jordan curve

obtained from P by replacing the edge [−1, 1] by ω.

It is not hard to see that for sufficiently large N , Γ is a K-quasicircle for some K > 1 independent of N ,

that ζΓ(x, y) < 1/2 for all x, y ∈ Γ with |x− y| ≤ 1/2, and that ζΓ = 1/2.

On the other hand, every level curve γεn is a Kn-quasicircle which contains two circular arcs, with the

same curvature, meeting at an angle 2αn. Since αn → 0, Kn’s cannot have a uniform upper bound. So Γ

does not satisfy the LQC property.

Figure 3.3: A Jordan curve with ζΓ(xn, yn) < 1
2 that does not satisfy the LQC property.
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3.4 Level chord-arc property

In this section we give the proof of Theorem 3.0.6. We start by recalling a known fact: if a bounded

starlike domain in R2 satisfies a strong interior cone property then its boundary is a chord-arc curve.

For a ∈ (0, π), h > 0, x ∈ R2 and v ∈ S1, denote by

Ca,h(x, v) = {z ∈ R2 : cos(a/2) |z − x| ≤ v · (z − x) ≤ h}

the truncated cone with vertex x, direction v, height h and aperture a.

Suppose that U ⊂ R2 is a bounded starlike domain with respect to a point x0 ∈ U , i.e., for every x ∈ ∂U

the line segment [x0, x] intersects ∂U only at the point x. Suppose in addition (U, x0) satisfies the strong

interior cone property, i.e., there exist a ∈ (0, π), h > 0 so that the truncated cone Ca,h(x, vx) \ {x}, in the

direction vx = (x0 − x)/|x0 − x|, is contained in U for every x ∈ ∂U . Assume from now on x0 = 0, and set

ρ = max{|x| : x ∈ ∂U}.

We obtain, by elementary geometry, positive constants c1 = c1(a, hρ ), c2 = c2(a), c3 = c3(a) such that

c2 |x− y| ≤ |x− |x|
y

|y|
| ≤ c3|x− y|, for all x, y ∈ ∂U with | x

|x|
− y

|y|
| ≤ c1.

Let ψ : ∂U → S1 be the map x 7→ x
|x| . Then ρψ is L-bi-Lipschitz for some constant L > 1 depending only

on a and h/ρ. Therefore ∂U is a C-chord-arc curve for some constant C > 1 depending only on a and h/ρ.

Essential to our proof of Theorem 3.0.6 is a lemma of Brown [7] on sets of constant distance from a

compact subset A of R2. Recall from the Introduction that for a given ε > 0, the ε-boundary of A is the set

∂ε(A) = {x ∈ R2 : dist(x,A) = ε}.

In Lemma 1 of his paper, Brown proved that if ε > diamA, then ∂ε(A) is the boundary of a starlike domain

Uε with respect to any point x0 ∈ A. In fact, whenever ε > 3 diamA, (Uε, x0) also possesses the strong

interior cone property, namely, the cone Cπ
3 ,
ε
3
(x, (x0 − x)/|x0 − x|) \ {x} with vertex x ∈ ∂ε(A) is contained

in Uε. Since 2ε < diam(∂ε(A)) < 3ε, we have the following.

Lemma 3.4.1. There is a universal constant c0 > 1 for the following. Suppose that A is a compact subset

of R2 and that ε > 3 diamA. Then the ε-boundary ∂ε(A) of A is a c0-chord arc curve.

34



We now apply Lemma 3.4.1 locally and repeatedly to prove Theorem 3.0.6.

Proof of Theorem 3.0.6. For the necessity, we only need to check that Γ is a chord-arc curve. By the LCA

property, there exist L > 1, n0 ∈ N, and for each n ≥ n0, an L-bi-Lipschitz homeomorphism fn of R2 such

that fn(B2) = ∆ 1
n

. Since fn|B2 are equicontinuous, by Arzela-Ascoli, there is a subsequence fkn |B2 which

converges to a homeomorphism f . It is not hard to see that f is bi-Lipschitz and maps B2 onto Ω. Therefore,

Γ = f(∂B2) is a chord-arc curve.

To show the sufficiency, we assume that Γ is a C1-chord-arc curve, and that there exist ε0 > 0 and K > 1

such that the Jordan curves γε are K-quasicircles for all ε ∈ (0, ε0]. In the rest of the proof, constants are

understood to depend on C1 and K only, in particular independent of ε.

For ε ∈ (0, ε0] and for a closed subset λ ⊂ γε, we set

Γλ = {y ∈ Γ: |y − x| = ε for some x ∈ λ} = {y ∈ Γ: dist(y, λ) = ε}.

In general, Γλ need not be connected, and there is no relation between the diameter of λ and the diameter

of Γλ.

We prove now that γε is a chord-arc curve. Since γε is a K-quasicircle, it suffices to check

`(λ) . diamλ for all subarcs λ ⊂ γε.

We consider three cases according to the diameter of Γλ.

Case 1. diam Γλ ≤ ε/10. Set

∂ε(Γ
λ) = {x ∈ R2 : dist(x,Γλ) = ε}.

After a moment of reflection, we see that λ ⊂ ∂ε(Γ
λ). By Lemma 3.4.1, there exists a universal constant

c0 > 1 such that, for any x, y ∈ ∂ε(Γλ),

`(∂ε(Γ
λ)(x, y)) ≤ c0|x− y|;

recall that ∂ε(Γ
λ)(x, y) is the subarc of ∂ε(Γ

λ) connecting x and y that has the smaller diameter. We deduce

from this the following

`(λ) ≤ c0 diamλ.
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To prepare for the next two cases, we take Λ to be the subarc of Γ that contains Γλ having the smallest

diameter. Subdivide Λ into subarcs Λ1,Λ2, . . . ,ΛN which have mutually disjoint interiors and satisfy the

condition

ε/100 ≤ diam Λn < ε/10 for all n = 1, . . . , N.

Since Γ is a quasicircle, diam Λ ' diam Γλ; since Γ is a C1-chord-arc curve Nε ' diam Λ. So,

N ' ε−1 diam Λ ' ε−1 diam Γλ.

Set λn = γΛn
ε ∩ λ for n = 1, . . . , N . Again, after a moment of reflection, we see that λ =

⋃N
n=1 λn. Recall,

from Lemma 3.2.3, that γΛn
ε = {x ∈ γε : dist(x,Λn) = ε} are arcs whenever they are nonempty, so λn are

subarcs of γε. Note however that some of {λn} may overlap. We now apply Lemma 3.4.1 to the ε-boundary

∂ε(Λn) of Λn. Since λn is also a subarc of ∂ε(Λn), it follows, as in Case 1, that

`(λn) ≤ c0 diamλn . ε.

Case 2. ε/10 < diam Γλ ≤ 10ε. From the estimates above, we obtain

`(λ) ≤
N∑
n=1

`(λn) ≤
N∑
n=1

c0 diamλn ≤ Nc0 diamλ ' diamλ.

Note that in this case, diameter of λ might be much smaller than ε.

Case 3. 10ε < diam Γλ. In this case, it is geometrically evident that

diam Γλ − 2ε ≤ diamλ ≤ diam Γλ + 2ε,

hence diamλ ' diam Γλ. Therefore,

`(λ) ≤
N∑
n=1

`(λn) ≤
N∑
n=1

c0 diamλn . Nε ' diam Γλ ' diamλ.

Remark 3.4.2. Suppose that Γ is a Jordan curve. The proof of the previous theorem shows that each level

set γε, with ε 6= 0, is contained in a finite union of c0-chord-arc curves, and that if γε is a quasicircle with

ε 6= 0, then it is a C(Γ, ε)-chord-arc curve.

We conclude this section with the proof of Theorem 1.3.2. The following simple lemma is needed in the

proof.

36



Lemma 3.4.3. The radial projection f : {x ∈ R2 : |x| > 1} → S1 with f(reiθ) = eiθ is 1-Lipschitz.

Proof. It suffices to check the 1-Lipschitz condition for x1 = 1, x2 = reiθ with r ≥ 1. We have,

|x1 − x2| =≥
√
r2 − 2r cos θ + 1 ≥

√
1− 2 cos θ + 1 = |f(x1)− f(x2)|.

Proof of Theorem 1.3.2. A Jordan curve which satisfies a local π/2-chord-arc condition but fails the LCA

property is given in Remark 3.3.2. It remains to prove the first claim. In view of Theorem 3.0.6, it suffices

to show that if Γ satisfies a local C-chord-arc property with C ∈ [1, π/2) then Γ satisfies the LQC property.

Fix C ∈ [1, π/2) and suppose that there exists ε0 such that, for each x, y ∈ Γ with |x − y| < ε0,

`(Γ′(x, y)) < C|x− y|. We may further assume that ε0 <
1

4C diam Γ. In this case, the arc Γ′(x, y) of shorter

length joining x, y coincides with the arc Γ(x, y) of shorter diameter joining x, y.

We claim that for any ε ∈ (0, ε0] sufficiently small and any x ∈ γε, the set Γ{x} is contained in a subarc

of S1(x, ε) of length at most 2Cε. By Lemma 3.2.12 we already know that Γ{x} is contained in a semicircle

of S1(x, ε). Let S be the smallest subarc of S1(x, ε) containing Γ{x} and let x1, x2 be the endpoints of S. It

is easy to see that x1, x2 ∈ Γ{x}. Since dist(x,Γ) = ε the curve Γ(x1, x2) can not intersect B2(x, ε). Since

the radial projection of Γ(x1, x2) on S1(x, ε) is 1-Lipschitz, and `(Γ(x1, x2)) ≤ C|x1 − x2| ≤ 2Cε, we have

that x1, x2 are in a subarc of S1(x, ε) of length at most 2Cε and the claim follows.

Next, we show that Γ has the LJC property. Suppose that for some ε > 0 sufficiently small, the set ∆ε

is not connected. Then for a suitable ε′ ∈ (ε, 2ε), the set γε′ ∪∆ε′ is not connected. By Proposition 3.2.18,

there exist δ > 0 and points x0 ∈ γδ, x1, x2 ∈ Γ such that |x0 − x1| = |x0 − x2| = δ. The latter contradicts

the above claim. Suppose now that for some ε > 0 sufficiently small, γε∪∆ε is connected, and ∆ε ( γε∪∆ε.

Then by Proposition 3.2.16 there exist points x0 ∈ γε, x1, x2 ∈ Γ such that |x0 − x1| = |x0 − x2| = ε. The

latter contradicts the above claim again. Combining these observations with Lemma 3.2.9, we conclude that

there exists r0 > 0 such that γε is a Jordan curve for each ε ∈ [0, r0].

We now prove that there exists K ′ > 1 depending only on C such that γε is a K ′-quasicircle for any

0 < ε < min{ r0

10
,

diam Γ

20C
}.

By the 2-point condition, it suffices to prove that there exists M > 1, depending only on ζ, such that

diam γε(x, y) ≤M |x− y| for all x, y ∈ γε.

Given x and y in γε, choose x′, y′ ∈ Γ such that |x − x′| = |y − y′| = ε; segments [x, x′] and [y, y′] do not
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meet except possibly at x′ and y′. Let τx,y, D and γε(x, y)∗ be as in the proof of Theorem 3.0.5. It suffices

to show that diam γε(x, y)∗ ' |x−y|. We consider four cases according to the ratios |x′−y′|/ε and |x−y|/ε.

Case 1. |x′ − y′| ≥ 2π
π+C ε. The proof of this case is similar to that of Case 1 in Theorem 3.0.5.

Case 2. x′ = y′. The proof of this case is similar to that of Case 2 in Theorem 3.0.5.

Case 3. 0 < |x′ − y′| < 2π
π+C ε and |x − y| ≥ ε/10. The proof of this case is similar to that of Case 3 in

Theorem 3.0.5.

Case 4. 0 < |x′ − y′| < 2π
π+C ε and 0 < |x− y| < ε/10. The difference between the proof of this case and

that of Case 4 in Theorem 3.0.5 is that instead of a rectangle we use a disk.

In view of Lemma 3.2.10 and Remark 3.2.11, we may assume that diam τx,y ≤ 5|x− y| < ε/2. It is easy

to check that in this case γ(x, y)∗ = γ(x, y). However, there is no relation between |x− y| and |x′ − y′|, and

diamD may be much bigger than |x − y|. We construct a new domain D′ whose closure contains γε(x, y)

and has diamD′ ' |x− y|.

Let z be the midpoint of [x′, y′] and r = ε− C
π |x
′ − y′|. The assumptions on x′, y′ yield

r = ε− C

π
|x′ − y′| > π − 2C

π + C
ε.

Then define a domain

U(x′, y′) = B2(x′, ε) ∪B2(y′, ε) ∪B2(z, r).

It is possible that B(z, r) is contained in B(x′, ε) ∪B(y′, ε) for some pairs x′ and y′. Nevertheless,

|x′ − y′| − 2ε <
π − 2C

π + C
ε

which implies that B2(z, r) intersects both B(x′, ε) and B2(y′, ε) and each intersection is a set of diameter

comparable to ε. It follows that ∂U(x′, y′) are K ′′-quasicircles for some constant K ′′ > 1 depending only on

C, in particular not on x′ and y′.

Next, we claim that U(x′, y′) ∩ ∆ε = ∅. Clearly, dist(z,Γ) < ε for all z ∈ B2(x′, ε) ∪ B2(y′, ε). Let

r′ = C
π |x
′ − y′|. Note that Γ(x′, y′) intersects B

2
(z, r′). Otherwise, the radial projection of Γ(x′, y′) on

S1(z, r′) would contain at least a semicircle and by Lemma 3.4.3 `(Γ(x′, y′)) > πr′ = C|x′ − y′| which

is a contradiction. Since Γ(x′, y′) intersects B
2
(z, r′), for each w ∈ B2(z, r), we have that dist(w,Γ) ≤

dist(z,Γ)− |w− z| < r′ − r = ε. The latter implies that ∆(ε) does not intersect B2(z, r′) and, consequently,

U(x′, y′) ∩∆ε = ∅.

The rest of the proof is similar to that of Case 4 in Theorem 3.0.5 replacing C(ζ) with C.

38



3.5 Examples from Rohde’s snowflakes

Fix a natural number N ≥ 4. Suppose that a regular N -gon, of unit side length, is used in place of

the unit square in the first step of Rohde’s construction, while the remaining steps are unchanged. So each

snowflake-type curve is the limit of a sequence of polygons, having N4n−1 edges at the n-th stage. Let FN

be the family of these snowflakes. Then Rohde’s argument shows that every quasicircle in R2 is the image

of a curve in FN under a bi-Lipschitz homeomorphism of R2.

Let FN,p be the subfamily of curves in FN constructed using only the Type I and Type II polygonal arcs

of Figure 2.1. The following result is a corollary of Theorem 3.0.5.

Corollary 3.5.1. There exist N0 > 4 and p0 ∈ ( 1
4 ,

1
2 ) for the following. Given N ≥ N0 and 1/4 ≤ p ≤ p0,

there exists 0 < ζN,p < 1/2 and rN,p > 0 such that every curve S ∈ FN,p has the (ζN,p, rN,p)-chordal

property, and therefore satisfies the LQC property.
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Chapter 4

Quasisymmetric spheres over
quasidisks – Geometric construction

Let Ω be a Jordan domain with boundary Γ , ϕ be a homeomorphism of [0,∞) onto itself and

Σ(Γ, ϕ) = {(x, z) : x ∈ Ω, z = ±ϕ(dist(x,Γ))}.

It is easy to verify that Σ(Γ, ϕ) is a topological 2-sphere. Define Σ+(Γ, ϕ) = Σ(Γ, ϕ) ∩ R3
+ and Σ−(Γ, ϕ) =

Σ(Γ, ϕ) ∩ R3
−.

The goal of this chapter is to prove Theorem 1.2.1.

In Section 4.1 we show that the LQC property of the curves Γ and the LLC property of the surfaces

Σ(Γ, ϕ) are intimately related. In particular, Proposition 4.1.1 states that the surface Σ(Γ, ϕ) is LLC for

each ϕ ∈ F1 if and only if Γ has the LQC property.

In Proposition 4.2.2, assuming that Γ satisfies the LCA property, we show that Σ(Γ, h) is Ahlfors 2-

regular for each φ ∈ F1. In fact, as it turns out, the limit property of functions in F1 is not necessary.

The first claim of Theorem 1.2.1 follows from Theorem 2.2.4 of Bonk and Kleiner, Proposition 4.1.1 and

Proposition 4.2.2.

The proof of claim (2) of Theorem 1.2.1 consists of two steps. By Proposition 4.1.1, we have that if

Σ(Γ, ϕ) has the LLC property for all ϕ ∈ F1 satisfying limt→0 ϕ(t)/t = ∞ then Γ has the LQC property.

The necessity of the chord-arc condition follows from Proposition 4.3.1 which states that if Γ satisfies the

LQC property but is not a chord-arc then there exists some function ϕ ∈ F1 such that Σ(Γ, ϕ) is not

quasisymmetric to S2. Then, since Γ is a chord-arc surve and has the LQC property, Proposition 3.0.6

implies that Γ has the LCA property.

4.1 The LLC and the LQC properties

In this section we prove the following proposition which connects the notion of the LQC property for Γ

and the LLC property for Σ(Γ, ϕ).

40



Proposition 4.1.1. Suppose that Γ is a Jordan curve.

1. If Γ has the level quasicircle property then Σ(Γ, ϕ) has the LLC property for all ϕ ∈ F1.

2. If Σ(Γ, ϕ) has the LLC property for all ϕ ∈ F1 satisfying limt→0 ϕ(t)/t = ∞ then Γ has the level

quasicircle property.

The proof of the first claim follows from Lemma 4.1.2 and Lemma 4.1.3 while the proof of the second

claim follows from Lemma 4.1.5 and Lemma 4.1.6.

Lemma 4.1.2. Suppose that Γ is a K-quasicircle such that γε is a K-quasicircle for any ε ∈ (0, ε0]. Let

ϕ be a self homeomorphism of [0,+∞) which is L-Lipschitz in [ε0,∞) and, for some M, t0 > 0, satisfies

ϕ(t) > Mt for any t ∈ [0, t0]. Then, Σ(Γ, ϕ) is λ− LLC1 with λ depending on K, L, M , t0, diam Γ.

Proof. Let S+
ε0 , S

−
ε0 be surfaces contained in Σ+(Γ, ϕ),Σ−(Γ, ϕ) respectively such that their projection on

R2 × {0} are ∆ε0 . We start by proving that S+
ε0 , S

−
ε0 are quasisymmetric to the closed unit disc. Since

γε0 is a K-quasicircle, ∆ε0 is η′-quasisymmetric to B2 for some η′ depending on K. Consider now the map

F1 : ∆ε0 → S+
ε0 with F (x) = (x, ϕ(dist(x,Γ)). Since, ϕ is L-Lipschitz and the distance function is 1-Lipschitz,

|x− y| ≤ |F (x)− F (y)| ≤ |x− y|+ |ϕ(dist(x,Γ)− ϕ(dist(y,Γ)| ≤ (L+ 1)|x− y|.

Thus, F is (L+ 1)-bi-Lipschitz and ∆ε0 is η-quasisymmetric to B2 with η depending only on K,L. We work

similarly for S−ε0 .

Now we prove the LLC1 property for Σ(Γ, ϕ). It suffices to show that there exists a λ > 1 such that, for

any two points y1, y2 ∈ Σ(Γ, ϕ), there exists a curve γ in Σ(Γ, ϕ) joining y1, y2 such that diam γ ≤ λ|y1−y2|.

The latter implies that Σ(Γ, ϕ) is (1 + 2λ)− LLC1.

Since all level curves {γε}0≤ε<ε0 are K-quasicircles, they satisfy the 2-points condition (2.2.1) for some

C > 1. The proof is now divided into the following three cases.

Case 1. Suppose that y1, y2 ∈ S+
ε0 or y1, y2 ∈ S−ε0 . Since B2 is 1− LLC1 and F is η-quasisymmetric then

S+
ε0 and S−ε0 are λ′ − LLC1 for some λ′ depending on η, thus on K,L.

Case 2. Suppose that y1 /∈ S+
ε0 ∪ S+

ε0 and y1, y2 are in the same half-space. Assume, for instance, that

y1, y2 ∈ Σ+(Γ, ϕ) and y1 /∈ S+
ε0 . Let ε1 ≤ ε2 be such that π(y1) ∈ γε1 and π(y2) ∈ γε2 . Take y′1 in Σ(Γ, ϕ)∩R3

+

such that π(y′1) ∈ γε1 and |π(y2)− π(y′1)| = ε2 − ε1.
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Since ϕ is increasing in [ε1, ε2] we have that

|y2 − y′1| ≤ |π(y2)− π(y′1)|+ ϕ(ε2)− ϕ(ε1)

≤ |π(y2)− π(y1)|+ ϕ(ε2)− ϕ(ε1)

≤ 2|y1 − y2|

and

|y1 − y′1| = |π(y1)− π(y′1)|

≤ |π(y1)− π(y2)|+ |π(y2)− π(y′1)|

≤ 2|π(y1)− π(y2)|

≤ 2|y1 − y2|.

Since γε1 satisfies (2.2.1) for some C > 1, there exists a path σ′1 ⊂ γε1 joining π(y′1), π(y1) such that

diamσ′1 ≤ C|π(y′1)− π(y1)| ≤ C|y′1 − y1| ≤ 2C|y1 − y2|.

Denote with σ1 ⊂ Σ+(Γ, ϕ) the path joining y′1, y1 such that π(σ1) = σ′1. Let σ2 be a curve on Σ+(Γ, ϕ)

such that π(σ2) = [π(y2), π(y′1)]. Since ϕ is increasing,

diamσ2 ≤ ϕ(ε2)− ϕ(ε1) + ε2 − ε1 ≤ 2|y2 − y′1| ≤ 4|y1 − y2|.

Then, σ = σ1 ∪ σ2 ⊂ Σ(Γ, ϕ) joins y1, y2 and diamσ ≤ (2C + 4)|y1 − y2|.

Case 3. Suppose that y1, y2 are in different half-spaces. Assume, for instance, that y1 ∈ Σ+(Γ, ϕ) and

y2 ∈ Σ−(Γ, ϕ). If π(y1) ∈ γε1 and y2 ∈ π(γε2) then |y1 − y2| ≥ ϕ(ε1) + ϕ(ε2). From the assumption for ϕ it

follows that ϕ(t) ≥M ′t for all t ∈ [0,diam Γ] with M ′ = Mt0/ diam Γ.

Take y′1, y
′
2 ∈ Γ such that |π(y1) − y′1| = ε1 and |π(y2) − y′2| = ε2. There are paths σ1 ⊂ Σ(Γ, ϕ) ∩ R3

+,

σ2 ⊂ Σ(Γ, ϕ)∩R3
− joining y1, y

′
1 and y2, y

′
2 respectively, such that π(σ1) = [π(y1), y′1] and π(σ2) = [π(y2), y′2].

Since ϕ is increasing in [0, ε1] and in [0, ε2],

diamσ1 ≤ |y1 − y′1| ≤ ε1 + ϕ(ε1) ≤ (1 + 1/M ′)ϕ(ε1) ≤ (1 + 1/M ′)|y1 − y2|

Similarly, diamσ2 ≤ (1 + 1/M ′)|y1 − y2|.
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Since Γ is K-quasicircle, there exists path σ3 ⊂ Γ joining y′1, y
′
2 such that diamσ3 ≤ C|y′1 − y′2| with

C > 1 as above. It follows that

diamσ3 ≤ C(|π(y1)− π(y2)|+ ε1 + ε2) ≤ C(2 + 1/M ′)|y1 − y2|.

Note that the path σ = σ1 ∪ σ2 ∪ σ3 joins y1, y2 in Σ(Γ, ϕ) and

diamσ ≤ C(4 + 3/M ′)|y1 − y2|.

Lemma 4.1.3. Suppose that Γ is a K-quasicircle such that γε is a K-quasicircle for any ε ∈ (0, ε0]. Let ϕ

be a self homeomorphism of [0,+∞) which is L-Lipschitz in [ε0/3,∞). Then, Σ(Γ, ϕ) is λ − LLC2 with λ

depending on K, L, ε0, ϕ and diam Γ.

Proof. Let x ∈ Σ(Γ, ϕ), r > 0 and y1, y2 ∈ Σ(Γ, ϕ) \B(x, r). If the set Σ(Γ, ϕ) \B(x, r) is nonempty then

r < diam Σ(Γ, ϕ) ≤ diam Γ + 2ϕ(diam Γ).

We need to prove that there exists a λ > 1 such that for any y1, y2 ∈ Σ(Γ, ϕ) \ B3(x, r) there exists a

continuum E ⊂ Σ(Γ, ϕ) \B3(x, r/λ) that contains y1, y2. It suffices to show this claim for some λ′ > 1 when

r ≤ r∗ = min{ε0/3, ϕ(ε0/3)}.

Then, if r > r∗, note that y1, y2 can be connected in Σ(Γ, ϕ) \B3(x, r/(Hλ′)) where

H =
diam Γ + 2ϕ(diam Γ)

r∗
.

As in Lemma 4.1.2, for each ε > 0, we denote with S+
ε (resp. S−ε ) the subset of Σ+(Γ, ϕ) (resp. Σ−(Γ, ϕ))

whose projection π(S+
ε ) (resp. π(S−ε )) is the domain ∆ε. Since r < ε0/3, it is enough to divide the proof in

the following two cases.

Case 1. Suppose that B3(x, r)∩Σ(Γ, ϕ) ⊂ S+
ε0/3
∪ S−ε0/3. Assume that x ∈ S+

ε0/3
. Note that since π(x) ∈

∆ε0/3, r < ϕ(ε0/3) and ϕ is increasing we have that B3(x, r)∩R3
− = ∅ and, thus, B3(x, r)∩Σ(Γ, ϕ) ⊂ S+

ε0/3
.

We know from the proof of Lemma 4.1.2 that S+
ε0/3

is η-quasisymmetric to B2 where η depends only on

K,L. Since the LLC property is invariant under quasisymmetric maps and B2 × {0} is 1 − LLC, we have

that S+
ε0/3

is λ1 − LLC2 for some λ1 depending on K,L.

Case 1.1. If y1, y2 ∈ S+
ε0/3

, since S+
ε0/3

is λ1 − LLC2, we can find a curve γ ⊂ S+
ε0/3
\ B3(x, r/λ1) that
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connects y1 with y2.

Case 1.2. If y1, y2 ∈ Σ(Γ, ϕ)\S+
ε0/3

, then note that E = Σ(Γ, ϕ)\S+
ε0/3

is a continuum in Σ(Γ, ϕ)\B(x, r)

that contains y1, y2.

Case 1.3. If y1 ∈ S+
ε0/3

and y2 ∈ Σ(Γ, ϕ) \ S+
ε0/3

, let y′1 be a point in γε0/3 × {ϕ(ε0/3)} that does not

belong to B3(x, r). Then, apply Case 1.1 for y1, y
′
1 and Case 1.2 for y2, y

′
1.

Case 2. Suppose that B3(x, r) ∩ (S+
ε0 ∪ S

−
ε0) = ∅. Note that B2(π(x), r) ∩∆ε0 = ∅.

Case 2.1. If y1, y2 ∈ S+
ε0 or y1, y2 ∈ S−ε0 , note that both S+

ε0 \B
3(x, r) and S−ε0 \B

3(x, r) are continua.

Case 2.2. If y1, y2 ∈ Σ(Γ, ϕ) \ (S+
ε0 ∪ S

−
ε0) let ε1, ε2 ∈ [0, ε0] be such that π(y1) ∈ γε1 and π(y2) ∈ γε2 .

For simplicity, we may assume that y1 ∈ R3
+ and y1 ∈ R3

−. The other cases are treated similarly. Fix

x0 ∈ ∆ε0 and a half-line l ⊂ R2, with starting point x0, such that B2(π(x), r) ∩ l = ∅. We use the line

l and the continuity of the distance function to find points y′1, y
′
2 ∈ Σ(Γ, ϕ) such that y′1 = (π(y1), ϕ(ε1)),

y′2 = (π(y2),−ϕ(ε2)) and π(y′1), π(y′2) ∈ l. Since γε1 , γε2 are K-quasicircles, by Remark 2.3.3, there exists λ2

depending on K, such that y1, y
′
1 are contained in a curve γ1 ⊂ Σ(Γ, ϕ)\B3(x, r/λ2) and y2, y

′
2 are contained

in a curve γ2 ⊂ Σ(Γ, ϕ)\B3(x, r/λ2). Finally, consider a curve γ3 ⊂ Σ(Γ, ϕ) which joins y′1, y
′
2 and π(γ3) ⊂ l.

Then, y1, y2 can be joined in Σ(Γ, ϕ) \B3(x, r/λ2) via γ = γ1 ∪ γ2 ∪ γ3.

Case 2.3. If y1 ∈ Σ(Γ, ϕ) \ (S+
ε0 ∪ S

−
ε0) and y2 ∈ S+

ε0 ∪ S
−
ε0 , as with Case 2.2, fix a half-line l′ ⊂ R2 with

starting point π(y2) that does not intersect B2(π(x), r). Since the distance function is continuous, there

exists a point y′2 ∈ Σ(Γ, ϕ) on the same horizontal plane as y2 such that π(y′2) ∈ γε0 ∩ l′. Now apply Case

2.1 for y2, y
′
2 and Case 2.2 for y1, y

′
2.

Case 2.4. If y1 ∈ S+
ε0 and y2 ∈ S−ε0 then, as with Case 2.1, fix half-lines l1, l2 ⊂ R2 such that for each

i = 1, 2 the line li has starting point π(yi) and does not intersect B2(π(x), r). For each i = 1, 2 find point

y′i ∈ Σ(Γ, ϕ), on the same horizontal plane as yi such that π(y′i) ∈ γε0 ∩ li. Now apply Case 2.1 for the pairs

y1, y
′
1 and y2, y

′
2 and Case 2.2 for the pair y′1, y

′
2.

We now turn to the proof of the second claim of Proposition 4.1.

Lemma 4.1.4. Suppose that Γ is a Jordan curve and that ϕ is a function in F whose almost everywhere

derivative satisfies limt→0 ϕ
′(t) = +∞. If Σ(Γ, ϕ) is λ − LLC1 then there exists ε0 > 0 depending on λ, ϕ

such that the set γε is Jordan curve for any 0 < ε ≤ ε0.

Proof. Suppose that Σ(Γ, ϕ) is λ−LLC1 for some λ > 1. Since limt→0 ϕ
′(t) = +∞, there exists t0 such that

ϕ(t2)− ϕ(t1) > 6λ(t2 − t1) for any 0 < t1 ≤ t2 ≤ t0. (4.1.1)

The proof contains two steps. In the first step we prove that the set ∆ε is connected when ε < t0.
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By Lemma 3.2.9, the latter implies that ∆ε is a Jordan domain. Then, in the second step, we prove that

γε = ∂∆ε when ε < t0 which, combined with Step 1, gives that γε is a Jordan curve when ε < t0.

Step 1. We claim that for any 0 < ε < t0, the open set ∆ε is connected. On the contrary, assume that

there exists ε < t0 such that γε ∪ ∆ε is not connected. Then, the open set ∆ε would have at least two

components, called D1, D2. By the continuity of the distance function, each Dj , j = 1, 2, would contain a

point zj of distance ε′ to Γ, for some ε′ ∈ (ε, t0). This would imply that ∆ε′ ∪ γε′ is not connected.

By Remark 3.2.19, there exist d0 < ε′, a component D of ∆d0 and three distinct co-linear points x0 ∈ ∂D

and x1, x2 ∈ Γ such that

|x0 − x1| = |x0 − x2| = d0.

By Lemma 3.2.9, we know that D is a Jordan domain. Moreover, we observe that D is exterior to balls

B
2
(x1, d0) and B

2
(x2, d0), therefore D has a cusp at x0 and that Γ ∩B2(x0, d0) = ∅.

Fix a point w0 ∈ D and a simple arc σ in D ∪ {x0} joining w0 to x0. We observe that the set

W = {(x, z) : x ∈ σ, |z| ≤ ϕ(dist(x,Γ))}

may be served as a tall, wide wall, that prevents two points on two sides of W , but near each other, to be

joined by a path without travelling far. This contradicts the LLC1.

To this end, we pick a point y0 ∈ σ such that

|y0 − x0| < min

{
|w0 − x0|

2
,
d0

16λ

}
,

and let r0 = |y0 − x0|. Simple geometric consideration shows that

dist(y0, B
2
(xi, d0)) ≤ r2

0

d0
<

r0

16λ
.

Set δ0 = d0 − r0
8λ . Since dist(y0,Γ) > d0, by the continuity of the distance function we can find points

z1 ∈ [y0, x1] ∩ γ0 and z2 ∈ [y0, x2] ∩ γδ0 . Note that for i = 1, 2,

δ0 ≤ |zi − xi| < d0.

The lower estimate follows from that fact that z1, z2 are on γδ0 ; the second inequality, if false, would imply

dist(zi,Γ) ≥ dist(y0,Γ)− |zi− y0| ≥ d0− r0
16λ > δ0, a contradiction. Therefore, z1 and z2 are in two different

45



components of B2(y0, r0) \ σ, and for i = 1, 2

|zi − y0| = |y0 − xi| − |zi − xi| <
r0

8λ
+

r0

16λ
=

3r0

16λ
.

Let ẑ1 = (z1, ϕ(δ0)) and ẑ2 = (z2, ϕ(δ0)) be the lifts of z1 and z2 on Σ(Γ, ϕ). Since

|ẑ1 − ẑ2| = |z1 − z2| ≤ |y0 − z1|+ |y0 − z2| <
3r0

8λ
,

ẑ1 and ẑ2 are contained in the ball

B = B3

(
ẑ1,

3r0

8λ

)
.

Since Σ(Γ, ϕ) is λ − LLC1, the points ẑ1, ẑ2 are contained in a continuum E in λB ∩ Σ(Γ, ϕ), where λB =

B3
(
ẑ1,

3r0
8

)
. If w ∈ π(λB), then

|w − y0| ≤ |w − z1|+ |z1 − y0| ≤
3r0

8
+

3r0

16λ
< r0,

which implies that π(E) ⊂ π(λB) ⊂ B2(y0, r0).

Note for any w ∈ λB that w = (π(w), ϕ(dist(π(w),Γ))) and

|ϕ(dist(π(w),Γ))− ϕ(δ0))| ≤ |ϕ(dist(π(w),Γ))− ϕ(dist(z1,Γ)| ≤ |w − ẑ1| ≤
3r0

8λ
.

However, since d0 < t0, by (4.1.1),

ϕ(d0)− ϕ(δ0) >
3r0

8λ
.

It follows that dist(π(z),Γ) < d0 for any z ∈ E, and as a consequence π(E) does not intersect σ. The latter

contradicts the fact that π(E) is a continuum joining two points z1 and z2 lying in two separate components

of B2(y0, r0) \ σ.

Step 2. We claim that ∂∆ε = γε for each ε < t0. Suppose the contrary. Pick ε < t0 such that ∂∆ε $ γε.

Then, by Remark 3.2.17, there exists a component D of ∆ε and collinear points x0 ∈ ∂D and x1, x2 ∈ Γ

such that

|x0 − x1| = |x0 − x2| = ε.

The rest of the proof for this step is similar to the proof in Step 1.

We have proved that, if Σ(Γ, ϕ) is λ − LLC1 for some ϕ ∈ F1 then, for all ε small enough, γε is a
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Jordan curve. In the next lemma we show that if Γ is not a quasicircle, then there exists f ∈ F1 such that

limt→0 ϕ(t)/t = +∞ and Σ(Γ, ϕ) is not quasisymmetric to S2.

Lemma 4.1.5. Suppose that Γ is a Jordan curve. If Γ is not a quasicircle then there exists a height function

ϕ ∈ F1 such that limt→∞ ϕ(t)/t = +∞ and Σ(Γ, ϕ) is not LLC1.

Proof. Suppose that Γ is not a quasicircle. Then, for any C > 1, the curve Γ does not satisfy (2.2.1). In

particular, for any n ∈ N, we can find points xn, x
′
n ∈ Γ such that if γn, γ

′
n are the two components of

Γ \ {xn, x′n} then

min{diam γn,diam γ′n} ≥ 2n|xn − x′n|.

Furthermore, we may choose xn, x
′
n so that the sequence {n|xn − x′n|} is decreasing and convergent to 0.

Find points yn ∈ γn and y′n ∈ γ′n such that

min{|xn − yn|, |xn − y′n|} ≥ n|xn − x′n|.

After choosing the points xn, x
′
n, yn, y

′
n, we fix a path σn ⊂ Ω that joins yn, y

′
n.

Consider the ball B = B3(xn, 2|xn − x′n|) and note that xn, x
′
n ∈ B ∩ Σ(Γ, ϕ) for any ϕ ∈ F . Define

εn = dist(σn ∩
n

3
π(B),Γ).

Note that since yn, y
′
n are not in n

3π(B), the number εn is nonzero. Choosing σn carefully we may assume

that εn is decreasing and εn < (n|xn − x′n|)2.

Define a function ϕ : {εn} → R+ with ϕ(εn) = n|xn − x′n|. By our assumptions for xn, x
′
n, εn it follows

that ϕ is increasing and limn→∞ ϕ(εn) = 0. Moreover, ϕ(εn) >
√
εn for any n ∈ N. Therefore, ϕ can be

extended to a function ϕ ∈ F1 that satisfies ϕ(t) ≥
√
t.

It remains to prove that Σ(Γ, ϕ) is not LLC1. Fix n ∈ N. We claim that xn, x
′
n are in different components

of Σ(Γ, ϕ) ∩ n
3B. Suppose, otherwise, that there exists a continuum E ⊂ Σ(Γ, ϕ) ∩ n

3B containing xn, x
′
n.

Then, π(E) is a continuum in π(n3B) ∩ Ω that contains xn, x
′
n. However, π(E) intersects with σn which

implies that there exists a point z ∈ E such that π(z) ∈ σ. Hence, dist(π(z),Γ) ≥ εn which, by the choice of

ϕ(εn), implies that z /∈ n
3B. The claim follows from this contradiction and we conclude that Σ(Γ, ϕ) is not

n
3 − LLC1 for any n ∈ N.

We show next that if Γ is a quasicircle and Σ(Γ, ϕ) is λ−LLC1 for some ϕ ∈ F1 satisfying limt→0 ϕ(t)/t+

∞, then Γ satisfies the LQC property.
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Lemma 4.1.6. Suppose that Γ is a K-quasicircle and ϕ is a function in F whose almost everywhere

derivative satisfies limϕ′(t) → ∞ as t → 0. If Σ(Γ, ϕ) is λ − LLC1 then Γ satisfies LQC. In particular,

there exist ε0 > 0 depending on λ, ϕ and K ′ > 1 depending on K,λ such that γε is a K ′-quasicircle for any

ε ≤ ε0.

Proof. Since Γ is a K-quasicircle, there exists C > 1 depending on K so that

diam Γ(x, y) ≤ C|x− y|, for all x, y ∈ Γ.

Fix t0 > 0 so that

ϕ′(t) ≥ 10λ a.e. t ∈ (0, t0). (4.1.2)

By Lemma 4.1.4, there exists ε0 ∈ (0, t0) depending on λ, ϕ such that γε is a Jordan curve for any ε ≤ ε0.

It suffices to show that for every ε ∈ (0, ε0), the curve γε satisfies the 2-points condition

diam γ(x, y) ≤ 50λC|x− y|, for all x, y ∈ γε. (4.1.3)

The latter implies that there exists K ′ = K ′(λ,C) such that γε is a K ′-quasicircle. Assume the opposite.

Then there exist ε ∈ (0, ε0) and points x1, x2, x3, x4 on γε in cyclic order such that x3 and x4 are on two

different components of γε \ {x1, x2} and that

|x3 − x1|, |x4 − x1| > 25λC|x1 − x2|.

We claim that

|x1 − x2| <
ε

6λ
.

Set d = |x1−x2|. Fix, for each i = 1, . . . , 4, a point pi on Γ that is nearest to xi, so |pi−xi| = ε. By Lemma

3.2.3, points p1, p2, p3, p4 follow the same order as that of x1, x2, x3, x4. Note, however, that some of the

points pi might coincide. Note that |p1 − p2| ≤ 2ε + |x1 − x2|. On the other hand, the 2-points condition

(2.2.1) on Γ yields

C|p1 − p2| ≥ min{|p1 − p3|, |p1 − p4|}

≥ min{|x1 − x3|, |x1 − x4|} − 2ε

≥ 25λC|x1 − x2| − 2ε.
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Hence, |x1 − x2| < ε
6λ .

Since pi is a nearest point on Γ to xi, the intersection [xi, pi] ∩ γε−d contains a single point, let us call

this point zi. Let ẑi = (zi, ϕ(ε− d)) be the lift of zi on the surface Σ(Γ, ϕ).

Consider the ball B = B3(ẑ1, 5d). Since |z1 − z2| ≤ |z1 − x1| + |x1 − x2| + |x2 − z2| ≤ 3d we have that

ẑ2 ∈ B. By the λ− LLC1, there is a continuum E in λB ∩ Σ(Γ, ϕ) that contains ẑ1, ẑ2.

Note for any w ∈ λB that w = (π(w), ϕ(dist(π(w),Γ))) and that

10λ|π(w)− z1| ≤ |ϕ(dist(π(w),Γ))− ϕ(dist(z1,Γ))| ≤ |w − ẑ1| < 5λd.

Thus π(E) is contained in the annular region A = ∆ε−d \ ∆ε bordered by two Jordan curves γε−d and

γε. Since π(E) is a continuum in π(λB) ∩ Ω that contains z1, z2, it must intersect at least one of the two

components in A \ ([x3, p3] ∪ [x4, p4]). From this it follows that

diam(π(E)) ≥ min{|x1 − x3|, |x1 − x4|} − |x1 − z1| − |x2 − z2| ≥ 25λCd− 12d > 10λd,

which is a contradiction to E ⊂ λB. Therefore (4.1.3) must hold.

4.2 Ahlfors 2-regularity

Definition 4.2.1. A metric space X is called Ahlfors Q-regular if there is a constant C > 0 such that the

Q-dimensional Hausdorff measure HQ of every open ball B(a, r) in X satisfies

C−1rQ ≤ HQ(B(a, r)) ≤ CrQ, (4.2.1)

whenever 0 < r ≤ diamX.

Our goal in this section is to prove the following proposition which, combined with Theorem 2.2.4 and

Proposition 4.1.1, completes the proof of the first claim of Theorem 1.2.1.

Proposition 4.2.2. Suppose that Γ satisfies the level chord-arc property and ϕ ∈ F1. Then Σ(Γ, ϕ) is

Ahlfors 2-regular.

The statement is quantitative in the following sense: Suppose that, for some ε0 > 0 and c > 1, the level

set γε is a c-chord-arc curve for every ε ∈ [0, ε0]. Suppose also that ϕ is a self-homeomorphism of [0,∞)

which is L-Lipschitz in [ε0/3,∞). Then Σ(Γ, ϕ) satisfies (4.2.1) with C depending only on ε0, c, L, diam Γ.
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If a ∈ Σ+(Γ, ϕ) then by symmetry of Σ(Γ, ϕ) with respect to R2 × {0} we have

H2(B3(a, r) ∩ Σ+(Γ, ϕ)) ≤ H2(B3(a, r) ∩ Σ(Γ, ϕ)) ≤ 2H2(B3(a, r) ∩ Σ+(Γ, ϕ)).

Therefore, it is sufficient to show that there exists a constant C > 1 depending on ε0, c, L, diam Γ such that

for all r ≤ diam Σ(Γ, ϕ) and a ∈ Σ+(Γ, ϕ),

r2/C ≤ H2(B3(a, r) ∩ Σ+(Γ, ϕ)) ≤ Cr2.

Recall that S+
ε0/3

is the piece of Σ+(Γ, ϕ) such that the projection π(S+
ε0/3

) is the domain ∆ε0/3 of all

points enclosed by Γ that their distance from Γ is greater than ε0/3. Recall also that S+
ε0/3

is (L + 1)-

bi-Lipschitz to ∆ε0/3. Since γε0/3 is a c-chord-arc curve, the domain ∆ε0/3 is Ahlfors 2-regular with the

constant depending on L, c. Hence, S+
ε0/3

is the graph of a Lipschitz function defined on a 2-regular domain

and therefore, S+
ε0/3

is Ahlfors 2-regular. Suppose that π(a) ∈ ∆2ε0/3. Then, B3(a, r) ∩Σ(Γ, ϕ) ⊂ S+
ε0/3

and

H2(B3(a, r)∩Σ(Γ, ϕ)) ' r2. Thus, for the rest of this section, we may assume that π(a) ∈ γε with ε ≤ 2ε0/3.

Furthermore, we may assume that r ≤ min{ε0/3, 1
160c2 diam γε0/3}.

The 2-regularity of Σ+(Γ, ϕ) is first checked for some rectangular pieces on Σ+(Γ, ϕ) which we define

below.

Suppose that x1, y1, x2, y2 are points in Σ+(Γ, ϕ) such that

π(x1), π(y1) ∈ γt1 and π(x2), π(y2) ∈ γt2 for some 0 ≤ t2 < t1 ≤ ε0, (4.2.2)

|π(x1)− π(x2)| = |π(y1)− π(y2)| = t1 − t2, (4.2.3)

3c|x1 − x2| ≤ |x1 − y1| ≤
diam γε0

10c
. (4.2.4)

Property (4.2.2) implies that x1 is on the same horizontal plane with y1 and x2 is on the same horizontal

plane with y2. Thus, |π(x1) − π(y1)| = |x1 − y1| and |π(x2) − π(y2)| = |x2 − y2|. By property (4.2.3),

π(x2) is a point in γt2 which is closest to π(x1) and π(y2) is a point in γt2 which is closest to π(y1). Hence

|x1 − x2| = |y1 − y2|.

By Remark 3.2.2, the segments [π(x1), π(x2)] and [π(y1), π(y2)] do not cross each other; see the dis-

cussion in the beginning of Section 3.2. Moreover, by Remark 3.2.1, each of the curves γt1(π(x1), π(y1)),

γt2(π(x2), π(y2)) intersect with each of the segments [π(x1), π(x2)], [π(y1), π(y2)] at exactly one point. Define

D = D(x1, y1, x2, y2) to be the subset of Σ+(Γ, ϕ) such that its projection is the Jordan domain bounded

by the following four arcs: [π(x1), π(x2)], [π(y1), π(y2)], γt1(π(x1), π(y1)), γt2(π(x2), π(y2)).
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Remark 4.2.3. If t ∈ [t2, t1], x ∈ γt ∩ [π(x2), π(x1)] and y ∈ γt ∩ [π(y2), π(y1)] then γt(x, y) ⊂ π(D).

To prove the remark, note first that both γt∩ [π(x2), π(x1)] and γt∩ [π(y2), π(y1)] contain only one point.

Consider the components γ′, γ′′ of γt \ {x, y} and observe that if γ′ ⊂ π(D) then diam γ′ ≤ 4c|x1 − y1| <
1
2 diam γε0 <

1
2 diam γt. Hence, γ′ = γt(x, y) and the remark follows.

Remark 4.2.4. The diameter of D satisfies |x1 − y1| ≤ diamD ≤ 6c|x1 − y1|.

To prove the remark, note that

diam γt2(π(x2), π(y2)) ≤ c|x2 − y2| ≤ c|x1 − y1|+ 2c|x1 − x2| ≤ 2c|x1 − y1|

which yields

diamπ(D) ≤ 2|x1 − x2|+ diam γt1(π(x1), π(y1)) + diam γt2(π(x2), π(y2)) ≤ 4c|x1 − y1|.

Moreover, if x ∈ D we have that

|x− x2| ≤ dist(x, γt2 × {h(t2)}) + diam γt2(π(x2), π(y2))

≤ |x1 − x2|+ 2c|x1 − y1|

≤ 3c|x1 − y1|

Therefore, |x1 − y1| ≤ diamD ≤ 6c|x1 − y1|.

Suppose that the points x1, y1, x2, y2 are in Σ+(Γ, ϕ) and satisfy (4.2.2) – (4.2.4). We say that the

rectangular piece D(x1, y1, x2, y2) is a square piece if 1
6c |x1 − y1| ≤ 3|x1 − x2|.

In Lemma 4.2.5,we show that B3(a, r) ∩ Σ+(Γ, ϕ) contains and is contained to two square pieces of

diameters comparable to r. Then, it follows from Lemma 4.2.6 that each square piece D satisfies H2(D) '

(diamD)2.

Lemma 4.2.5. Let Γ be a chord-arc curve such that, for some r0 > 0, c > 1, each level set γε, with

ε ∈ [0, 3r0], is a c-chord-arc curve. Then, for each a ∈ Σ+(Γ, ϕ) \S+
2r0

and each r ≤ min{r0,
1

160c2 diam γr0},

there exist two square pieces D1, D2 on Σ+(Γ, h) with diamD1 ≥ 3
22c2 r, diamD2 ≤ 96c3r and

D1 ⊂ B(a, r) ∩ Σ+(Γ, ϕ) ⊂ D2.

Proof. We first construct D1. Set ρ = r
22c2 . There exists unique ε′ > ε such that the graph of ϕ from
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(ε, ϕ(ε)) to (ε′, ϕ(ε′)) has length equal to ρ. Note that ε′ − ε ≤ ρ. By Corollary 3.2.6, we can find a point

x1 ∈ γε′ × {ϕ(ε′)} such that |π(a)− π(x1)| ≤ 3c(ε′ − ε). Choose a point y1 ∈ γε′ × {ϕ(ε′)} such that

`(γε′(π(x1), π(y1))) = 3cρ

and points x2, y2 ∈ γε × {ϕ(ε)} such that

|π(x1)− π(x2)| = |π(y1)− π(y2)| = ε′ − ε.

Observe that the points x1, y1, x2, y2 satisfy (4.2.2) – (4.2.4) and let D1 = D(x1, y1, x2, y2). If z ∈ D,

|z − a| ≤ |x1 − a|+ diamD ≤ |x1 − a|+ 6c|x1 − y1| ≤ 21c2ρ < r.

Thus, D1 ⊂ B3(a, r). Moreover diamD1 ≥ |x1 − y1| ≥ 3
22c2 r.

We now construct D2. Suppose that π(a) ∈ γε. Define ε1, ε2 be the maximum, respectively minimum, of

numbers δ ≥ 0 for which the closed ball B
3
(a, r) intersects with γδ×{ϕ(δ)}. Note that 0 ≤ ε2 ≤ ε < ε1 ≤ 3r0

and |εi − ε| ≤ r for each i = 1, 2. Let z1 ∈ γε1 × {ϕ(ε1)} be such that |a− z1| ≤ r.

Take distinct points x1, y1 ∈ γε1 × {ϕ(ε1)} such that π(z1) ∈ γε1(π(x1), π(y1)) and

`(γε1(π(x1), π(z1))) = `(γε1(π(z1), π(y1))) = 8cr.

Take also points x2, y2 ∈ γε2 × {ϕ(ε2)} such that

|π(x1)− π(x2)| = |π(y1)− π(y2)| = ε1 − ε2 ≤ 2r.

We claim that x1, y1, x2, y2 satisfy (4.2.2) – (4.2.4). The properties (4.2.2) – (4.2.3) are immediate; we

verify (4.2.4). Since |x1 − y1| = |π(x1) − π(y1)|, we have 16r ≤ |x1 − y1| ≤ 16cr. On the other hand, it

is easy to see that the distance of γε1 × {ϕ(ε1)} and γε2 × {ϕ(ε2)} is at least r and at most 2r. Hence,

|x1 − y1| ≤ |x1 − x2| ≤ 16c|x1 − x2|. Finally, |x1 − y1| ≤ 16cr < 1
10c diam γr0 and the claim follows.

Define the square piece D2 = D(x1, y1, x2, y2). Note that diamD2 ≤ 6c|x1 − y1| ≤ 96c3r. To show that

B3(a, r) ∩ Σ+(Γ, ϕ) is contained in D2 we first prove that a ∈ D. Let z2 ∈ γε2 × {ϕ(ε2)} be such that
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|π(z2)− π(a)| = ε− ε2 ≤ r. Note that

|π(z2)− π(x2)| ≥ |π(z1)− π(x1)| − |π(z1)− π(z2)| − |π(x1)− π(x2)|

≥ 8cr − (|π(z1)− π(a)| − |π(z2)− π(a)|)− (ε1 − ε2)

≥ (8c− 4)r.

The same lower bound can be obtained for |π(z2)− π(y2)|. Let σ = γε2 \ γε2(π(x2), π(y2)). Then

dist(π(a), σ) ≥ dist(π(z2), σ)− |π(a)− π(z2)|

≥ 1

c
min{|π(z2)− π(x2)|, |π(z2)− π(y2)|} − |π(a)− π(z2)|

≥ (8− 4

c
− 1)r

> 3r.

The latter implies that z2 ∈ γε2(π(x2), π(y2)) and, by Lemma 3.2.3, π(a) ∈ π(D). Therefore, if x ∈

B3(a, r) ∩ Σ+(Γ, ϕ),

dist(π(x), γ2) ≥ dist(π(a), γ2)− |π(x)− π(a)| ≥ 2r

which implies that π(x) ∈ π(D2). It follows that B3(a, r) ∩ Σ+(Γ, ϕ) ⊂ D2.

The proof of Proposition 4.2.2 follows now from the next lemma.

Lemma 4.2.6. Suppose that ϕ ∈ F and Γ is a chord-arc curve such that, for some c > 1 and ε0 > 0,

the level set γε is a c-chord-arc curve for each ε ∈ [0, ε0]. Let x1, y1, x2, y2 be points in Σ+(Γ, ϕ) satisfying

properties (4.2.2) – (4.2.4) and D(x1, y1, x2, y2) be the rectangular piece on Σ+(Γ, ϕ) defined as above. Then,

there exists C > 1 depending only on c such that

C−1 ≤ H
2(D(x1, y1, x2, y2))

|x1 − y1||x1 − x2|
≤ C.

Proof. For simplicity we write D = D(x1, y1, x2, y2). Since ϕ is increasing,

1

2
(t1 − t2 + ϕ(t1)− ϕ(t2)) ≤ |x1 − x2| = |y1 − y2| ≤ t1 − t2 + ϕ(t1)− ϕ(t2). (4.2.5)

For the lower bound we consider the following two cases.

Case 1. Suppose that t1 − t2 < ϕ(t1) − ϕ(t2). It follows from (4.2.5) that ϕ(t1) − ϕ(t2) ≥ |x1 − x2|/2.

Let lπ(x1),π(y1) be the infinite straight line passing through π(x1), π(y1). We claim that there exists a line
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segment [a, b] ⊂ lπ(x1),π(y1), of length |x1 − y1|/3, such that the projection of D on the plane lπ(x1),π(y1) ×R

contains the rectangle [a, b]× [ϕ(t2), ϕ(t1)]. Assuming the claim,

H2(D) ≥ H2([a, b]× [ϕ(t2), ϕ(t1)]) ≥ |x1 − x2||x1 − y1|
6

.

Let a, b be the points in [π(x1), π(y1)] such that a ∈ S1(π(x1), |x1 − x2|) and b ∈ S1(π(y1), |x1 − x2|).

Such points exist since |x1 − y1| > 2|x1 − x2|. Note that |a− b| ≥ |x1 − y1| − 2|x1 − x2| ≥ |x1 − y1|/3. Let

t ∈ [t2, t1] and w be a point on the segment [a, b]. We show that there exists a point w′ ∈ D whose projection

on [a, b] × [h(t2), h(t1)] is the point (w, h(t)). Let x ∈ γt ∩ [x1, x2] and y ∈ γt ∩ [y1, y2]. By Remark 4.2.3,

γt(x, y) ⊂ π(D). Observe that the line l perpendicular to [a, b] and passing through w, separates x, y. Thus,

there exists a point w′′ ∈ γt(x, y)∩ l. Let w′ = (w′′, h(t)) and note that w′ projected on [a, b]× [h(t2), h(t1)]

is the point (w, h(t)).

Case 2. Suppose that t1 − t2 ≥ ϕ(t1) − ϕ(t2). By (4.2.5), t1 − t2 ≥ |x1 − x2|/2. We claim that, π(D)

contains at least |x1 − y1|/|x1 − x2| mutually disjoint discs of radius |x1 − x2|/8. Assuming the claim,

H2(D) ≥ H2(π(D)) ≥ |x1 − y1|
|x1 − x2|

|x1 − x2|2

64
≥ |x1 − y1||x1 − x2|

64
.

Set t3 = (t1 + t2)/2 and let x3, y3 ∈ D be such that π(x3) ∈ γt3 ∩ [x1, x2] and π(y3) ∈ γt3 ∩ [y1, y2]. By

Remark 4.2.3, π(D) contains γt3(π(x3), π(y3)). Note that

diam γt3(π(x3), π(y3)) ≥ diam γt1(π(x1), π(y1))− 2|x1 − x2| ≥ c|x1 − y1|.

Since γt3 is rectifiable, we can find consecutive points π(x3) = z0, z1, . . . , zn = π(y3) on γt3(π(x3), π(y3))

such that

c

2
(t1 − t2) ≤ `(γt3(zi, zi+1)) ≤ c(t1 − t2).

Since `(γt3(π(x3), π(y3))) ≥ c|x1 − y1|,

n ≥ `(γt3(π(x3), π(y3)))

c(t1 − t2)
≥ |x1 − y1|

t1 − t2
≥ |x1 − y1|
|x1 − x2|

.

The c-chord-arc property of γt3 implies that, for any i 6= j,

|zi − zj | ≥
`(γt3(zi, zj))

c
≥ t1 − t2

2
.
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Moreover, for any i = 1, 2, . . . , n− 1, we have that

dist(zi, γt1) = dist(zi, γt2) =
t1 − t2

2

and

dist(zi, [π(x1), π(x2)]) ≥ |zi − z1| −
t1 − t2

4
≥ t1 − t2

4
.

Similarly, dist(zi, [π(x1), π(x2)]) ≥ t1−t2
4 . Therefore, the balls B2(zi,

t1−t2
4 ) are mutually disjoint and inside

π(D).

To establish the upper bound, we claim that, for every ε ∈ (0, |x1 − x2|/3), D can be covered by at most

64c
ε2 |x1 − y1||x1 − x2| balls of radius ε. Assuming the claim,

H2(D) ≤ 64c

ε2
|x1 − y1||x1 − x2|ε2 ≤ 64c|x1 − y1||x1 − x2|.

Fix ε ∈ (0, |x1 − x2|/3). Since ϕ is a homeomorphism, by Lemma 7.1.2, its graph is a 2-chord-arc curve

and we can find numbers

t2 = τn < · · · < τi+1 < τi < · · · < τ0 = t1

such that the length of the graph of ϕ from τi+1 to τi satisfies

ε/4 ≤ `({(t, ϕ(t)) : τi+1 ≤ t ≤ τi}) ≤ ε/2.

Then,

n ≤ `({(t, ϕ(t)) : t2 ≤ t ≤ t1})
ε/4

≤ 2|x1 − x2|
ε/4

=
8|x1 − x2|

ε
.

Fix i ∈ {0, . . . , n} and let σ = γτi × {ϕ(τi)} and w,w′ be the unique points on σ such that π(w) ∈

[π(x1), π(x2)] ∩ γτi and π(w′) ∈ [π(y1), π(y2)] ∩ γτi . Since the curve σ(w,w′) is rectifiable, it can be divided

into disjoint subarcs σ1, . . . , σN such that ε/4 ≤ `(σj) ≤ ε/2. The c-chord-arc property of γτi yields that

N ≤ c|w − w′|
ε/4

≤ 4c
|x1 − y1|+ 2|x1 − x2|

ε
≤ 8c|x1 − y1|

ε
.

For each j = 1, . . . , N let wj ∈ σj and note that σj ⊂ B3(wj , ε/2). Consequently, the ε/2-neighborhood of

σ(w,w′) can be covered by at most 8c
ε |x1 − y1| balls of radius ε. Therefore, the part of D which is between

the planes R2 ×{ϕ(τi)} and R2 ×{ϕ(τi+1)} can be covered by at most 8c
ε |x1 − y1| balls of radius ε centered

at γτi × {ϕ(τi)}. It follows that D can be covered by at most 64c
ε2 |x1 − y1||x1 − x2| balls of radius ε.
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4.3 Chord-arc curves and Väisälä’s method

In this section we prove that the chord-arc property of Γ is necessary for Σ(Γ, ϕ) to be quasisymmetric

to S2 for all ϕ ∈ F1 with limt→0 ϕ(t)/t = ∞. Combined with Proposition 4.1.6 and Proposition 3.0.6, the

following proposition completes the proof of the second claim of Theorem 1.2.1.

Proposition 4.3.1. Suppose that Γ is a quasicircle but not a chord-arc curve. Then, there exists ϕ ∈ F1

with limt→0 ϕ(t)/t =∞ such that Σ(Γ, ϕ) is not quasisymmetric to S2.

If Γ does not satisfy the LQC property then the conclusion of the proposition is immediate by Proposition

4.1.6. Thus, we can assume that there exists ε0 > 0 and C ≥ 1 such that for each ε ∈ [0, ε0], the set γε is a

quasicircle satisfying (2.2.1) with constant C.

We define inductively numbers εn > 0 and arcs Γn ⊂ Γ as follows. Let ε0 be as above and set and Γ0 = Γ.

Suppose that εn−1, Γn−1 have been defined. Since Γ is not a chord-arc curve, there exists a subarc Γn ⊂ Γ

such that diam Γn ≤ 1
2 diam Γn−1 and `(Γn) ≥ 2ndiam Γn. Find consecutive points xn1 , x

n
2 , . . . , x

n
Nn

on Γn

such that for i ∈ 1, . . . , Nn − 1, |xni+1 − xni | ≤
εn−1

9C and

Nn∑
i=1

|xni − xni−1| ≥ ndiam Γn. (4.3.1)

Define

εn =
1

36c
min{ min

1≤i≤N
|xni − xni−1|, (diam Γn)2}.

Each of the subarcs Γ(xni−1, x
n
i ) is compact and can be further subdivided so that the new collection of

endpoints, which by abuse of nations we still denote with xn1 , . . . , x
n
Nn

, satisfies

9Cε ≤ |xni − xni−1| ≤ 36Cε.

It follows from their constructions that the sequences {εn}n∈N, {diam Γn}n∈N are decreasing and con-

verging to zero. Define

ϕ : {εn}n∈N → R with ϕ(εn) = diam Γn.

Note that ϕ(εn) ≥ √εn. We extend ϕ on [0,+∞) so that the extension is in F1 and satisfies ϕ(t) ≥
√
t for

all t ≥ 0. Clearly, limt→0 ϕ(t)/t =∞.

The proof of Proposition 4.3.1 follows now from the next lemma. The main idea is due to Väisälä [43].

Lemma 4.3.2. Let Γ be a quasicircle such that for any ε ∈ [0, ε0], the level set γε is a quasicircle satisfying
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(2.2.1) for some C > 1. Suppose that for any n ∈ N there exist consecutive points xn1 , . . . , x
n
Nn

on Γ and a

positive number εn < min{ 1
9C diam Γ(xn1 , x

n
Nn

), ε0} such that

1.
∑Nn−1
i=1 |xni − xni−1| ≥ ndiam Γ(xn0 , x

n
Nn

)

2. 9Cεn ≤ |xni − xni−1| for all i = 1, . . . , Nn − 1.

Let ϕ ∈ F be such that, for some L > 1 and for each n ∈ N

L−1 diam Γ(xn1 , x
n
Nn) ≤ ϕ(εn) ≤ Ldiam Γ(xn1 , x

n
Nn)

Then Σ(Γ, ϕ) is not quasisymmetric to S2.

Proof. Suppose, on the contrary, that there exists an η-quasisymmetric mapping that maps Σ(Γ, ϕ) onto S2.

Post-composing this mapping with an inversion, we may assume that there exists an η-quasisymmetric map

F : Σ+(Γ, ϕ)→ B2.

Fix n ∈ N. For simplicity we write N = Nn, xni = xi, εn = ε and the dependence of quantities, points

and sets on n is not recorded. However, the comparison constants in ' and . depend only on C, η.

As in the discussion before Lemma 4.3.2, by adding points in the collection {xi} we may further assume

that, for each i = 1, . . . , N − 1, we have |xi+1 − xi| ≤ 36Cε.

Since Γ is a quasicircle, by Lemma 3.2.5, for each i = 1, . . . , N there exists wi ∈ γε such that |xi −wi| ≤

3Cε. Choose also points w′i ∈ Γ such that |wi − w′i| = ε. Note that w′i ∈ B2(xi, 4Cε) ∩ Γ and thus the

points w′1, . . . , w
′
N have the same orientation as the points x1, . . . , xN . By Lemma 3.2.3, w1, . . . , wN have

the same orientation as the points x1, . . . , xN . The points w′i have been chosen so that the line segments

[wi, w
′
i] intersect every level set at most once. This intersecting property follows from Remark 3.2.1 and is

not necessarily true for the segments [xi, wi].

Observe that for i, j ∈ {1, 2, . . . , N} with i 6= j,

|wi − wj | ≥ |xi − xj | − |xi − wi| − |xj − wj | ≥ 9Cε− 6Cε & ε

and

|wi − wi+1| ≤ |xi − xi+1|+ |xi − wi|+ |xi+1 − wi+1| . ε.

Similarly we deduce |w′i − w′i+1| ' ε. Note that

diam Γ(w′1, w
′
N ) ' diam γε(w1, wN ) ' |w1 − wN | ' |w′1 − w′N | ' ϕ(ε). (4.3.2)
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Moreover, since γε satisfies (2.2.1), for all i = 1, . . . , N − 1

diam Γ(w′i, w
′
i+1) ' diam γε(wi, wi+1) ' |wi − wi+1| ' |w′i − w′i+1| ' ε.

Denote by Λ the subset of Σ+(Γ, ϕ) whose projection on R2 is the Jordan domain bounded by the curves

Γ(w′1, w
′
N ), [w1, w

′
1], [wN , w

′
N ] and γε(w1, wN ). As with the square pieces defined in Section 4.2, the piece

Λ is well defined. In fact, the points X1 = (w′1, h(ε)), Y1 = (w′N , h(ε)), X2 = (w1, 0), Y2 = (wN , 0) satisfy

properties (4.2.2)–(4.2.3). They also satisfy property (4.2.4) but with different constants. From (4.3.2) it

follows that diam Λ ' ϕ(ε).

Define

β = min{|F (x)− F (y)| : x ∈ Γ(w′1, w
′
N ) , y ∈ γε(w1, wN )× {ϕ(ε)}}.

We claim that

β2n . H2(F (Λ)). (4.3.3)

Assume for the moment the claim; the proof then completes as follows. Let x∗ ∈ Γ(w′1, w
′
N ) and y∗ ∈

γε(w1, wN ) × {ϕ(ε)} be the points for which β is realized. Then, for any x ∈ Λ, |x − x∗| . |x∗ − y∗| which

implies that |F (x)−F (x∗)| . β and H2(F (Λ)) . β2. Since β 6= 0, the last inequality and (4.3.3) imply that

n ≤ C for some C depending on η, which is a contradiction.

We now show (4.3.3). For i = 1, . . . , N − 1 define Λi be the subset of Λ whose projection on R2 is the

Jordan domain bounded by the curves Γ(w′i, w
′
i+1), [wi, w

′
i], [wi+1, w

′
i+1] and γε(wi, wi+1).

Let k be the integer part of ϕ(ε)/ε− 1. The curves

σj =


Γ for j = 0,

γϕ−1(jε) × {jε} for 1 ≤ j ≤ k

γε × {ϕ(ε)} for j = k + 1.

divide Λ into horizontal strips. Therefore, Λ is divided into smaller square-like pieces Λij with i = 1, . . . , N

and j = 1, . . . k + 1. More precisely, Λij is the subset of Λ whose projection on R2 is the Jordan domain

bounded by [wi, w
′
i], [wi+1, w

′
i+1], γϕ−1(jε), γϕ−1((j+1)ε).

For each i = 1, . . . , N −1 let τi = {(x, ϕ(dist(x,Γ))) : x ∈ [wi, w
′
i]}. Note that τi is isometric to the graph

of ϕ from 0 to ε.
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Fix a piece Λij and define its four vertices

Aij = τi ∩ σj , Bij = τi+1 ∩ σj , Cij = τi+1 ∩ σj+1 , Dij = τi ∩ σj+1.

Since

diamσj(Aij , Bij) ' diamσj(Cij , Dij) ' ε

there exist points y′′ ∈ σj(Aij , Bij), y′ ∈ σj(Cij , Dij) and

y ∈ Λij ∩ (γϕ−1((j+1/2)ε)) × {(j + 1/2)ε})

such that

dist(y, τi+1(Bij , Cij)) ' dist(y′, τi+1(Bij , Cij)) ' dist(y′′, τi+1(Bij , Cij)) ' ε

dist(y, τi(Aij , Dij)) ' dist(y′, τi(Aij , Dij)) ' dist(y′′, τi(Aij , Dij)) ' ε

and

dist(y, τi(Aij , Dij)) ' dist(y, τi+1(Bij , Cij)) ' ε.

In a sense, the points y, y′, y′′ are the “centers” of Λij , σj(Cij , Dij), σj(Aij , Bij) respectively.

Write βij = |F (y′′)− F (y′)|. Let u ∈ ∂Λij be the point at which

|F (u)− F (y)| = dist(F (y), ∂F (Λij)) = r.

Then, |u−y| & |w′i−w′i+1| and since |y−y′| . |w′i−w′i+1| the quasisymmetry of F implies that |F (y)−F (y′)| .

r. The same inequality is true with y′ replaced by y′′. Hence, βij . r which implies β2
ij . H2(F (Λij)). By

Schwarz inequality this yields

β2 ≤

k+1∑
j=1

βij

2

. (k + 1)H2(F (Λi)).

Note that (k + 1)ε ' (k + 1)|w′i − w′i+1| ' diam Γ(x0, xN ). Thus,

β2|w′i − w′i+1| . diam Γ(x0, xN )H2(F (Λi)).

Since |w′i − w′i−1| ' |xi − xi−1|, summing over i we obtain (4.3.3) from (4.3.1).
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4.4 Proof of Theorem 1.2.1

In this section we give the proof of Theorem 1.2.1 and some remarks on the assumptions of the theorem.

Proof of Theorem 1.2.1. Suppose that Γ satisfies the LCA property and ϕ ∈ F1. By Proposition 4.1, the

surface Σ(Γ, ϕ) is LLC and by Proposition 4.2.2, the surface Σ(Γ, ϕ) is 2-regular. The first claim follows

now from Theorem 2.2.4.

Conversely, suppose that Σ(Γ, ϕ) is a quasisymmetric sphere for all functions ϕ ∈ F1 which satisfy

limt→0 ϕ(t)/t = ∞. By Proposition 4.1, we know that Γ is a quasicircle that satisfies the LQC property.

Then, Proposition 4.3.1 gives that Γ is a chord-arc curve and the second claim follows from Proposition

3.0.6.

Remark 4.4.1. The assumption that lim inft→0 ϕ(t)/t > 0 is necessary for the first claim of Theorem 1.2.1.

For example, if ϕ(t) = t2 and Γ = S1 then it is easy to see that Σ(Γ, ϕ) is not LLC1 and therefore not

quasisymmetric to S2. With some effort this observation can be generalized into the following result.

Theorem 4.4.2. Let ϕ be a self homeomorphism of [0,+∞) that satisfies lim inft→0 ϕ(t)/t = 0. Then, for

any Jordan curve Γ, the surface Σ(Γ, ϕ) is not LLC1.

Proof. Contrary to the claim, assume that Σ(Γ, ϕ) is λ-LLC1.

Fix x0 ∈ Ω and find t0 ∈ (0,dist(x0,Γ)/2) such that h(t0)/t0 < (4λ)−1. Suppose that y0 ∈ Γ is such that

dist(x0,Γ) = |x0 − y0|. It is easy to see that for any x ∈ [x0, y0], dist(x,Γ) = |x − y0| which implies that

B(x, |x− y0|) ⊂ Ω. Let z0 ∈ [x0, y0] ∩ γ(t0), z1 = (z0, ϕ(t0)) and z2 = (z0,−ϕ(t0)).

Consider the ball B = B3(z1, 3ϕ(t0)) and note that z1, z2 ∈ B. Suppose that there is a continuum

E ⊂ λB ∩ Σ(Γ, ϕ) containing z1, z2. Then, E intersects Γ × {0}. However the choice of t0 implies that

π(E) ⊂ π(λB) ⊂ Ω and thus E ∩ Γ× {0} = ∅.

Remark 4.4.3. The assumption that ϕ is Lipschitz in [ε,+∞) for any ε > 0 is necessary for Theorem 1.2.1.

In particular, let F ′1 be the set of all ϕ ∈ F such that lim inft→0 ϕ(t)/t > 0 and ϕ is Lipschitz in [δ,∞)

for some δ > 0. Clearly F1 ⊂ F ′1 and the inclusion is strict. For ϕ ∈ F ′1 it turns out that the property

”Σ(Γ, ϕ) is quasisymmetric to S2” is not in general invariant under dilations, that is, there exists h ∈ F ′1,

quasicircle Γ and a dilation function T such that Σ(Γ, ϕ) is quasisymmetric to S2 but Σ(T (Γ), ϕ) is not. For

example, if Γ = S1, T (x) = x/2 and

ϕ(t) =


1−
√

1− t t ∈ [0, 1]

t t ∈ [1,+∞)

60



then, by Theorem 1.2.1, Σ(T (S1), ϕ) is quasisymmetric to S2 but the surface Σ(S1, ϕ) is not LLC2 and

therefore not quasisymmetric to S2. With a slight modification in the proofs of Lemma 4.1.2, Lemma 4.1.3

and Proposition 4.2.2, the following result can be deduced.

Corollary 4.4.4. Let Γ be a quasicircle. If Γ satisfies the level chord-arc property and ϕ ∈ F ′1 then there

exists a dilation T such that the surface Σ(T (Γ), ϕ) is quasisymmetric to S2.
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Chapter 5

Quasispheres constructed over
quasidisks

In this chapter we show that an iteration of the Geometric construction, using functions ϕ1(t), ϕ2(t), · · · ∈

F1 which are bi-Lipschitz when t is close to 0, yields quasispheres of any dimension. Theorem 1.2.2 follows

as a corollary.

Let Γ be a Jordan curve and

F∗1 = {ϕ ∈ F1 : ϕ is bi-Lipschitz in a neighborhood of 0}.

Suppose that ϕ is L-bi-Lipschitz in [0, ε] and L-Lipschitz in [ε,+∞). In the following, the numbers ε, L are

called the data of ϕ.

Let ϕ1, ϕ2, · · · ∈ F∗1 and Γ be a planar Jordan curve. Define Σ1 = Γ and Ω2 to be the bounded component

of R2 \ Γ. For n ∈ N, define inductively

Σn = Σ(Σn−1, ϕn−1) = {(x, z) ∈ Ωn × R : z = ±dist(x,Σn−1)}

and Ωn+1 to be the bounded component of Rn+1 \ Σn. The main result of this chapter is the following

theorem.

Theorem 5.0.5. Let ϕ1, ϕ2, · · · ∈ F∗1 be such that, for any n ∈ N, the function ϕn is Ln-bi-Lipschitz in

[0, εn] and Ln-Lipschitz in [εn,∞).

1. If Γ is a K-quasicircle then, for each n ∈ N, the surface Σn is an n-dimensional K ′-quasisphere in

Rn+1 with K ′ depending on K,n,diam Γ and the data of ϕ1, . . . , ϕn−1.

2. If Γ is a C-chord-arc curve then, for each n ∈ N, the surface Σn is an n-dimensional L′-bi-Lipschitz

sphere in Rn+1 with L′ depending on C, n,diam Γ and the data of ϕ1, . . . , ϕn−1.

For the first part of Theorem 5.0.5 we use Theorem 2.2.3. In Section 5.2 we prove that the bounded

component of Rn+1 \ Σn is quasiconformally homeomorphic to Bn+1 and in Section 5.4 we show that the

unbounded component of Rn+1 \ Σn is quasiconformally homeomorphic to Rn+1 \ Bn+1.
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The second part is proved in Section 5.4 by constructing a piecewise bi-Lipschitz self map of Rn+1 that

maps Σn onto Sn and showing that this mapping is bi-Lipschitz in Rn+1.

5.1 Whitney decomposition

For the following, we define the dyadic Whitney decomposition of an open set. Recall that a dyadic cube

W ⊂ Rn is a set of the form

W = 2m(k + [0, 1]n) = {2m(k + x) : x ∈ [0, 1]n}

for some m ∈ Z and k ∈ Zn. Two such dyadic cubes W1,W2 are called disjoint if they have disjoint interiors.

Note that if W1,W2 are two dyadic cubes of Rn with a common interior point then, either W1 ⊆ W2 or

W2 ⊆W1.

Setting c = 3
√
n in the proof in [35, pp. 167–168], the following lemma can be established.

Lemma 5.1.1 ( [35, Theorem IV.1.1]). Let Ω ⊂ Rn be an open set which is not all of Rn. Then, there exists

a collection D = {W1,W2, . . . } of dyadic cubes so that

1. the cubes Wk are mutually disjoint,

2. Ω =
⋃
W∈DW ,

3. 2 diamW ≤ dist(W,∂Ω) ≤ 6 diamW , for each W ∈ D.

As a result of the proof, we can further require that if a cube W ∈ D, of edge length 2−k, intersects the

set

Ω(k) = {x : 3
√
n2−k < dist(x, ∂Ω) ≤ 3

√
n2−k+1)}

then, either W ∈ D or W is a subset of a cube W ′ ∈ D. Therefore, if a cube W ∈ D intersects Ω(k) then

√
n2−k−1 ≤ diamW ≤ 3

√
n2−k.

For a domain Ω ( Rn, a collection D satisfying the above properties is called a dyadic Whitney decom-

position of Ω and its elements are called Whitney cubes.

For each n ∈ N, we fix Dn a dyadic Whitney decomposition of Bn and En a dyadic Whitney decomposition

of the double cone

Cn = {(x, z) ∈ Bn−1 × R : |z| < 1− |x|}.
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Remark 5.1.2. For any W ∈ En, there exists a unique W ′ ∈ Dn−1 such that the projection π(W ) is

contained in W ′.

Assume that W ∈ En and diamW = 2−k
√
n. Then diamπ(W ) = 2−k

√
n− 1 and by Lemma 5.1.1,

dist(π(W ), ∂Bn−1) ≥ dist(W,∂Cn) > 21−k√n− 1.

Suppose that π(W ) intersects Bn−1(k). Then either π(W ) ∈ Dn−1 or π(W ) ⊂ W ′ for some W ′ ∈ Dn−1.

Suppose that π(W ) does not intersect the annulus Bn−1(k). Then, we have that

dist(π(W ), ∂Bn−1) > 2−k+13
√
n− 1.

If W ′ ⊂ π(W ) for some W ′ ∈ Dn−1 then

dist(W ′, ∂Bn−1)

diamW ′
≥ dist(π(W ), ∂Bn−1)

diamπ(W )
> 6

which is false by Lemma 5.1.1. Hence π(W ) ⊆W ′ for some W ′ ∈ Dn−1.

For the uniqueness, note that if there are W ′,W ′′ ∈ Dn−1 such that π(W ) ⊂ W ′,W ′′ then, since

W ′ ∩W ′′ 6= ∅, we would have that either W ′ ⊂W ′′ or W ′′ ⊂W ′. Since both are Whitney cubes, it follows

that W ′ = W ′′ and the the proof of Remark 5.1.2 is complete.

We conclude this section with the following result by Gehring [12].

Lemma 5.1.3 ( [12, Theorem 11]). Let F be a K-quasiconformal mapping of a domain D ⊂ Rn onto a

domain D′ ⊂ Rn. If ∂D is not empty, then ∂D′ is not empty. Moreover, there exists a strictly increasing

and continuous function ΘK : [0, 1)→ [0,+∞) such that

|F (x)− F (y)|
dist(F (x), ∂D′)

≤ ΘK

(
|x− y|

dist(x, ∂D)

)

for all x, y in D with |x−y| < dist(x, ∂D). The function ΘK depends only on K and satisfies limt→1 ΘK(t) =

+∞.

As a corollary note that if f : Ω → Ω′ is K-quasiconformal, D is a dyadic Whitney decomposition of Ω

and W ∈ D then for all x, y ∈W ,

|F (x)− F (y)|
dist(F (x), ∂Ω′)

≤ ΘK

(
|x− y|

dist(x, ∂Ω)

)
≤ ΘK

(
diamW

dist(W,∂Ω)

)
≤ ΘK(1/2).
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Therefore, there exists a number C1(K) such that

diamF (W )

dist(F (W ), ∂Ω′)
≤ C1(K).

In similar fashion, using the function F−1, we have that

diamF (W )

dist(F (W ), ∂Ω′)
≥ C2(K)

for some positive number C2(K).

It is clear now that, if D′ is a dyadic Whitney decomposition of D′, the image of a Whitney cube W ∈ D

intersects a finite number of cubes in D′. In particular, the number of cubes in D′ that W intersects, is

bounded by a constant depending on K. Indeed, suppose that k ∈ N is the smallest natural number such

that dist(F (W ),Ω′) ≥ 3
√
n2−k. Then,

3C2(K)
√
n2−k ≤ diamF (W ) ≤ 6C1(K)

√
n2−k.

Following the discussion after Lemma 5.1.1, if W ′ ∈ D′ intersects F (W ) then diamW ′ ≥ 2
√
n2−k. Thus,

F (W ) can be covered with at most (6
√
nC1(K))n Whitney cubes of D′. Therefore, it is natural to say that

quasiconformal functions map Whitney cubes to “Whitney type objects”.

5.2 A class of quasiballs

We show that for any bounded simply connected domain Ω and for any ϕ1, ϕ2, . . . , ϕn−2 ∈ F∗1 , the

domain enclosed by the double-dome-like surface Σn−1 is quasiconformally equivalent to the unit ball Bn.

Proposition 5.2.1. Let Ω2 ⊂ R2 be a simply connected domain and ϕ1, ϕ2, · · · ∈ F∗1 . Suppose that, for

each n ∈ N, the function ϕn is Ln-bi-Lipschitz in [0, εn] and Ln-Lipschitz in [εn,+∞). For n > 2, define

inductively

Ωn = {(x, z) ∈ Ωn−1 × R : |z| < ϕn−2(dist(x, ∂Ωn−1))}.

Then, there exists a quasiconformal mapping F that maps Bn onto Ωn. Moreover, if Dn = {Wk}k∈N, then F

is a (λk, L)-quasisimilarity in every Whitney cube Wk with L > 1 depending on n, the data of ϕ1, . . . , ϕn−2

and diam Ω2.
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Recall that a a mapping f between two domains D,D′ ⊂ Rn is a (λ, L)-quasisimilarity if

λ

L
|x− y| ≤ |f(x− f(y))| ≤ λL|x− y|

for all x, y ∈ D and some constants L ≥ 1 and λ > 0.

Suppose that D,D′ ⊂ Rn and D is a Whitney decomposition of D. It is easy to see that if F : D → D′

is a (λk, L)-quasisimilarity in each Wk ∈ D, then F is K-quasicondormal for some K > 1 depending only on

L.

The proof of Proposition 5.2.1 is done by induction. For the first step of the induction we use some

well-known inequalities from the classical function theory.

Lemma 5.2.2 (Koebe 1/4-Theorem). Let f be a conformal map from the unit disk B2 onto a simply-

connected domain Ω. Then for all z ∈ B2

1

4
|f ′(z)| ≤ dist(f(z), ∂Ω)

1− |z|2
≤ |f ′(z)|.

For a proof of Koebe 1/4-Theorem see J. Garnett and D. Marshall [11, Theorem.4.3]. The next corollary

is an easy consequence of Koebe’s theorem.

Corollary 5.2.3. There is an absolute constant A > 0 such that if f is a conformal map from the unit disk

B2 onto a simply-connected domain Ω. Then f is (λk, L)-quasisimilarity in each Whitney cube Wk ∈ D2.

The induction step is proved in the following lemma.

Lemma 5.2.4. Suppose that Ω is a domain in Rn and f is a K-quasiconformal map that maps Bn onto Ω

and is a (λk, L)-quasisimilarity in each dyadic cube wk ∈ Dn. Given a function ϕ which is L0-bi-Lipschitz

in [0, ε] and L0-Lipschitz in [ε,+∞) consider the domain

K(Ω, ϕ) = {(x, z) ∈ Ω× R : |z| < ϕ(dist(x, ∂Ω))}.

Then, there exists a K ′-quasiconformal function F that maps Bn+1 onto K(Ω, ϕ) and is (λ′m, L
′)-quasisimilarity

in each Whitney cube of Wm ∈ Dn+1. Here L′ depend only on L, n, diam Ω and the data of ϕ.

Proof. Recall that for n ∈ N,

Cn+1 = {(x, z) ∈ Bn × R : |z| < 1− |x|}

denotes the double cone constructed over Bn. It is easy to see that Cn+1 is Cn+1-bi-Lipschitz to Bn+1 with
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Cn+1 depending only on n+1. Therefore, it is sufficient to construct a function that maps Cn+1 onto K(Ω, ϕ)

and satisfies the properties of the lemma.

By Lemma 5.1.3, there exist constants 0 < c < C depending on K, hence on L, such that

c ≤ diam f(wk)

dist(f(wk), ∂Ω)
≤ C. (5.2.1)

Consider the fixed dyadic Whitney decomposition En+1 = {Wk}k∈N of Cn+1, satisfying the properties of

Lemma 5.1.1. By Remark 5.1.2, the projection of each Wk ∈ En+1 on Rn × {0} is contained in a unique

Whitney cube wj ∈ Dn with j = j(k).

Define the homeomorphism G : Cn+1 → K(Ω, ϕ) such that for (x, z) ∈ Cn+1

G(x, z) = (f(x),Mxz) where Mx =
ϕ(dist(f(x), ∂Ω))

1− |x|
.

For the rest of the proof let δ(y) = dist(y, ∂Ω) when y ∈ Ω.

Take (x1, z1), (x2, z2) ∈ Wk. By Lemma 5.1.2, there exists unique j = j(k) ∈ N such that x1, x2 ∈ wj .

Note that,

|Mx1
−Mx2

| = |(1− |x2|)ϕ(δ(f(x1)))− (1− |x1|)ϕ(δ(f(x2)))|
(1− |x1|)(1− |x2|)

≤ (1− |x2|)L0|δ(f(x1))− δ(f(x2))|+ ϕ(δ(f(x2)))|x1 − x2|
(1− |x1|)(1− |x2|)

≤ L0λjL|x1 − x2|
1− |x1|

+Mx2

|x1 − x2|
1− |x1|

.

These inequalities follow from the fact that the distance function δ(x) is 1-Lipschitz, ϕ is L0-Lipschitz and

f is (λj , L)-quasisimilarity in wj .

We claim that if x ∈ wj then Mx ' λj . Applying (5.2.1), we have that

Mx ≤
L0δ(f(x))

1− |x|
≤ L0

diam f(wj) + dist(f(wj), ∂Ω)

dist(wj ,Sn−1)
≤ λjL0L(c+ 1)

2c
.

For the lower bound of Mx, take x ∈ wj and consider two cases. If δ(f(x)) ≤ ε then

Mx ≥
1

L0

δ(f(x))

1− |x|
≥ 1

L0

dist(f(wj), ∂Ω)

diamwj + dist(wj ,Sn−1)
≥ λj

7L0CL
.
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If δ(f(x)) ≥ ε then

Mx ≥
ϕ(ε)

diamwj + dist(wj ,Sn−1)
≥ ε

7L0 diamwj
≥ λjε

7L0Ldiam Ω
.

Combining the two estimates, it follows that, for x ∈ wj ,

1

R
λj ≤Mx ≤ Rλj

where R > 1 depends only on L,L0, ε,diam Ω.

Therefore, for (x1, z1), (x2, z2) ∈Wk,

|Mx1 −Mx2 | ≤
L0λjL|x1 − x2|

1− |x1|
+Mx2

|x1 − x2|
1− |x1|

≤ (L0L+R)λj
|x1 − x2|
1− |x1|

.

Set A = L0L+R and take (x1, z1), (x2, z2) in Wk. The inequalities above yield

|G(x1, z1)−G(x2, z2)| ≤ |f(x1)− f(x2)|+ |Mx1
z1 −Mx2

z2|

≤ Lλj |x1 − x2|+Mx1 |z1 − z2|+ |z1||Mx1 −Mx2 |

≤ (L+A)λj |x1 − x2|+Aλj |z1 − z2|

≤ 4Aλj |(x1, z1)− (x2, z2)|.

Set B = 1 + 2A2. If |z1 − z2| ≤ B|x1 − x2| then,

|G(x1, z1)−G(x2, z2)| ≥ |f(x1)− f(x2)| ≥ λj
L
|x1 − x2| ≥

λj
2L
|(x1, z1)− (x2, z2)|.

On the other hand, if |z1 − z2| ≥ B|x1 − x2| then,

|G(x1, z1)−G(x2, z2)| ≥ |Mx1
z1 −Mx2

z2|

≥Mx2 |z1 − z2| − |(Mx1 −Mx2)z1|

≥ λj
A
|z1 − z2| −Aλj |x1 − x2|

≥ λj
2A
|(x1, z1)− (x2, z2)|.
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Set Λk = λj(k) and Λ = max{4A, 2L}. Then, for (x1, z1), (x2, z2) ∈Wk,

Λk
Λ
≤ |G(x1, z1)−G(x2, z2)|
|(x1, z1)− (x2, z2)|

≤ ΛΛk.

Thus, G is a (Λk,Λ)-quasisimilarity in every Whitney cube Wk.

Observe that the distortion of G in the interior of each Wk depends only on Λ. Hence G is K1-

quasiconformal in each cube Wk with K1 depending only on Λ. By a theorem of Väisälä for removable

singularities [39, Theorem 35.1], G is K2-quasiconformal on Cn+1 for some K2 depending only on Λ.

Suppose that H is a Cn+1-bi-Lipschitz self map of Rn+1 that maps Bn+1 onto Cn+1. Then, F = G ◦H

is K2C-quasiconformal and maps Bn+1 onto K(Ω, h).

If Dn+1 = {Qm}m∈N is the fixed Whitney decomposition of Bn+1 then the image of each Whitney cube

Qm intersects with at most N(Cn) Whitney cubes of En+1. Therefore, F is a (λ′m,Λ
′)-quasisimilarity with

L′ depending only on L, L0, n, ε, diam Ω.

We now prove Proposition 5.2.1

Proof of Proposition 5.2.1. We first prove the statement for n = 2 and then apply induction on n.

By Riemann Mapping Theorem, there exists a conformal mapping F that maps the unit disc B2 onto Ω.

Let D2 = {Wk}k∈N be the fixed Whitney decomposition of B2. By Lemma 5.1.1 and Lemma 5.2.2, for any

k ∈ N and x ∈Wk

2

7

diamF (Wk)

diamWk
≤ |F ′(x)| ≤ 14

diamF (Wk)

diamWk
.

Set λk = diamF (Wk)
diamWk

. It follows that F is 1-quasiconformal and a (λk, 14)-quasisimilarity in every Whitney

square Wk.

Suppose now that the claim holds true for some n. By Lemma 5.2.4 it follows that the claim is also true

for n+ 1 and the induction is complete.

5.3 Slit domains

A domain D ⊂ Rn is called a slit domain if Rn \D ⊂ Rn−1 × {0}. When n = 3, Gehring discovered the

following elegant characterization of quasidisks.

Theorem 5.3.1 ( [15, Theorem 5]). Suppose that Ω is a planar Jordan domain. Then the slit domain R3 \Ω

is quasiconformally homeomorphic to R3 \ B3 if and only if Ω is a quasidisk.
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The sufficiency of this theorem can easily be generalized in higher dimensions by the Tukia and Väisälä

extension theorem [38, Theorem 3.11]. The necessity is much more demanding.

It follows from Proposition 5.2.1 that the bounded component of Rn+1\Σn is quasiconformally equivalent

to Bn+1. For the unbounded component of Rn+1 \ Σn we use the following lemma.

Lemma 5.3.2. Suppose that h : Rn → R is an L-Lipschitz function for some L > 0. Then the function

G(x, z) = (x, z + h(x)) : Rn+1 → Rn+1 is 2(L+ 2)-bi-Lipschitz.

Proof. Note first that

|G(x1, z1)−G(x2, z2)| ≤ 2(L+ 2)|(x1, z1)− (x2, z2)|.

For the lower bound we consider two cases. If |z1 − z2| ≤ (L+ 1)|x1 − x2| then

|G(x1, z1)−G(x2 − z2)| ≥ |x1 − x2| ≥
|(x1, z1)− (x2, z2)|

L+ 2
.

If |z1 − z2| > (L+ 1)|x1 − x2| then

|G(x1, z1)−G(x2 − z2)| ≥ |z1 − z2| − |h(x1)− h(x2)| ≥ |(x1, z1)− (x2, z2)|
L+ 2

.

As a corollary we deduce that Rn \ Ωn is quasiconformally equivalent to a slit domain.

Corollary 5.3.3. Let D be a bounded domain in Rn and h1, h2 : Rn → R be two L-Lipschitz functions

satisfying h1 = h2 = 0 in Rn \D and h2 ≤ h1 in D. Then the domain

Rn+1 \ {(x, z) : x ∈ D, h2(x) ≤ z ≤ h1(x)}

is K-quasiconformal to the slit domain Rn+1 \D for some constant K ≥ 1 depending only on L.

Proof. Define H : Rn+1 \D → Rn+1 \ {(x, z) : x ∈ D,h2(x) ≤ z ≤ h1(x)} with

H(x, z) =


(x, z + h1(x)) if x ∈ D , z > 0

(x, z + h2(x)) if x ∈ D , z < 0

(x, 0) if x 6∈ D.

Since H is (L+2)-bi-Lipschitz in each of the half-spaces Rn+1
+ and Rn+1

− , and is homeomorphism on Rn+1\D,

it is locally (L+ 2)-bi-Lipschitz, therefore K-quasiconformal for some K depending only L.
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5.4 Proof of Theorem 5.0.5

We are now ready to prove the first part of Theorem 5.0.5. It is enough to show that Rn \ Ωn is

quasiconformally homeomorphic to Rn \ Bn.

Proof of the first claim of Theorem 5.0.5. We apply induction on n. For n = 1, Σ1 = Γ which is a quasicircle

and the claim holds true.

Suppose that Σn is a Kn-quasisphere in Rn+1 with Kn depending on n, K, diam Γ and the data of

ϕ1, . . . , ϕn−1. Define Σn+1 and let Ωn+2 be the bounded component of Rn+2 \ Σn+1. In view of Theorem

2.2.3 it is sufficient to show that Ωn+2 is quasiconformally homeomorphic to Bn+2 and Rn+2 \ Ωn+2 is

quasiconformally homeomorphic to Rn+2 \ Bn+2. The first equivalence follows from Proposition 5.2.1. The

rest of the proof is essentially a generalization of the proof of Theorem 5.3.1. We repeat it for the shake of

completeness.

Since the distance function δ(·) = dist(·,Σn) is 1-Lipschitz, by Corollary 5.3.3, we can find a K ′-

quasiconformal map G1 that maps Rn+2 \ Ωn+2 onto Rn+2 \ Ωn+1 and a K ′′-quasiconformal map G2 that

maps Rn+2 \ Cn+2 onto Rn+2 \ Bn+1 with K ′,K ′′ being absolute constants.

By the induction step, there exists a Kn-quasiconformal mapping fn : Rn+1 → Rn+1 with fn(Bn+1) =

Ωn+1. By an extension theorem of Tukia and Väisälä [38, Theorem 3.12], fn can be extended to a K ′n-

quasiconformal function F : Rn+2 → Rn+2. Here, K ′n depends only on Kn, n, hence only on K,n and the

data of ϕ1, . . . , ϕn−1.

Finally, there exists a Cn+2-bi-Lipschitz map H : Rn+2 → Rn+2 that maps Rn+2\Bn+2 onto Rn+2\Cn+2,

where Cn+2 depends only on n+ 2. Define fn+1 : Rn+2 \ Bn+2 → Rn+2 \ Ωn+2 with

fn+1 = (G1)−1 ◦ F ◦G2 ◦H.

Note that fn+1 is a Cn+2K
′K ′′K ′n-quasiconformal and maps Rn+2 \ Bn+2 onto Rn+2 \ Ωn+2.

We now give the proof of Theorem 1.2.2.

Proof of Theorem 1.2.2. The first claim of Theorem 1.2.2 is a special case of Theorem 5.0.5. It remains to

show the second claim.

Suppose that h is L-Lipschitz and Σ(Γ, ϕ) is a quasisymmetric sphere. So Σ(Γ, ϕ) is λ − LLC for some

λ > 1 depending on the distortion K and the Lipschitz constant L. We claim that Γ satisfies the 2-point

condition with C = 16Lλ2.
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Suppose the claim is false. Then there exist consecutive points x1, x2, x3, x4 ∈ Γ such that,

|x2 − x1|, |x4 − x1| > 16Lλ2|x3 − x1|. (5.4.1)

Define

d = inf{diamσ : σ ⊂ Ω is a continuum that contains x1 and x3}.

We consider the following two cases.

Case 1. Suppose that d > 2λ|x1 − x3|. Note that x1 and x3 are included in Σ(Γ, ϕ)∩B3(x1, 2|x1 − x3|).

The λ− LLC1 condition implies the existence of a continuum E ⊂ Σ(Γ, ϕ) ∩B3(x1, 2λ|x1 − x3|) containing

x1, x3. Its projection π(E) on R2 is a continuum in Ω that contains x1, x3 and has diamπ(E) ≤ diamE ≤

2λ|x1 − x3| < d, which contradicts the definition of d.

Case 2. Suppose that d ≤ 2λ|x1 − x3|. Let σ ⊂ Ω be a path joining x1 with x3 satisfying diamσ ≤

3λ|x1 − x3|. Observe that each path γ ⊂ Ω, which joins x2 with x4, intersects σ and satisfies diam γ ≥

(16Lλ2 − 3λ)|x1 − x3|. The first observation is trivial. For the second, note that if γ ⊂ Ω is a path joining

x2 with x4 of diameter less than (16Lλ2 − 3λ)|x1 − x3| then

|x1 − x2| ≤ diam γ + diamσ ≤ 16Lλ2|x1 − x3|

which contradicts (5.4.1).

Consider the ball B = B3(x1, 8Lλ
2|x1 − x3|). Using (5.4.1), note that x2, x4 ∈ Σ(Γ, ϕ) \B and x2, x4 ∈

Σ(Γ, ϕ) \ 1
λB. Suppose that E ⊂ Σ(Γ, ϕ) is a continuum that contains x2, x4. Then, π(E) ⊂ Ω is a

continuum that contains x2, x4 and, therefore, intersects σ. Suppose that x ∈ E is such that π(x) ∈ σ. Since

ϕ is L-Lipschitz,

|x− x1| ≤ |π(x)− x1|+ L|π(x)− x1| ≤ 2Ldiamσ ≤ 6Lλ|x1 − x3|.

Thus, x ∈ B and E ∩ B 6= ∅. The latter implies that Σ(Γ, ϕ) is not λ − LLC2, which is a contradiction.

Moreover, x2, x4 are in different components of Σ(Γ, ϕ) \ 1
λB.

For the proof of the second claim of Theorem 5.0.5, we construct a self homeomorphism of Rn that maps

Sn onto Σn which is of bounded length distortion.

Recall that a continuous map f between two path connected metric spaces is of bounded length distortion
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(abbv. λ-BLD map) if for every rectifiable path γ ⊂ X,

`(γ)

λ
≤ `(f(γ)) ≤ λ`(γ).

Trivially, every L-bi-Lipschitz map is L-BLD but the converse is not always true, even locally. However,

if f : Rn → Rn is a λ-BLD homeomorphism, then it is λ-bi-Lipschitz [28, Corollary 2.13].

Proof of the second claim of Theorem 5.0.5. We apply induction on n.

For n = 1, Σ1 = Γ is a C-chord-arc curve and by a theorem of Jerison and Kenig [23, Proposition 1.13],

there exists a Λ1-bi-Lipschitz transformation f : R2 → R2 with f(Γ) = S1 and Λ1 depending only on C and

diam Γ. Hence, the claim holds for n = 1.

Suppose that there exists a Λn-bi-Lipschitz map fn : Rn+1 → Rn+1 that maps Σn onto Sn with Λn

depending only on C, n,diam Γ and the data of ϕ1, . . . , ϕn−1. For (x, z) ∈ Rn+1 × R define the function

F (x, z) =



(fn(x),Mxz) if (x, z) ∈ Cn+2

(fn(x), z − 1 + |x| − ϕ(δ(fn(x))) if x ∈ Bn+1, z > 1− |x|

(fn(x), z + 1− |x|+ ϕ(δ(fn(x))) if x ∈ Bn+1, z < |x| − 1

(fn(x), z) otherwise

where Mx is as in the proof of Lemma 5.2.4 and δ(·) = dist(·,Σn).

First, observe that F is a homeomorphism of Rn+2 onto itself that maps the double cone Cn+2 onto

Ωn+2. Since the boundary of the double cone is a Cn+2-bi-Lipschitz sphere, for some Cn+2 depending on

n+ 2, it suffices to show that F is bi-Lipschitz.

Clearly, F is Λn-bi-Lipschitz in (Rn+1 \ Ωn+1)× R. Also, following the proof of Lemma 5.2.4, it is easy

to show that F is L(1)-bi-Lipschitz in Cn+2 for some L(1) > 1 depending on C, n,diam Γ and the data of

ϕ1, . . . , ϕn. Furthermore, applying the proof of Corollary 5.3.3 twice, we conclude that F is L(2)-bi-Lipschitz

in (Bn+1 × R) \ Cn+2 for some L(2) > 1 depending only on Λn and the data of ϕn.

Note that F is piecewise L(3)-bi-Lipschitz with L(3) = max{L(1), L(2)}. Consequently, F is L(3)-BLD

homeomorphism, hence L(3)-bi-Lipschitz with L(3) depending only on C, n,diam Γ and the data of ϕ1, . . . , ϕn.
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Chapter 6

Snowflake curves and Assouad
dimension

In this chapter we use the theory of Rohde’s snowflakes for the proof of Theorem 1.2.3. The basic notation

for Rohde’s snowflakes is presented in Section 2.4. In Section 6.1, we create an index that measures, on small

scale, the deviation of a quasicircle from being a chord-arc curve. The proof of Theorem 1.2.3 is given in

Section 6.2. Finally, in Section 6.3 we give examples of quasicircles Γ that have Assouad dimensions equal

to 1, satisfy the level quasicircle property and Σ(Γ, tα) is not quasisymmetric to S2 for any α ∈ (0, 1).

Definition 6.0.1. The Assouad dimension of a metric space (X, d) is the infimum of all s > 0 that satisfy

the following property: There exists C > 1 such that for any ε > 0, any Y ⊂ X can be covered by at most

Cε−s subsets of diameter at most εdiamY .

This dimension was first introduced by Assouad [3] under the name metric dimension as a tool to study

the metric spaces which are bi-Lipschitz embeddable into some Euclidean space Rn. If (X, d) is a metric

space, we always have

dimH(X) ≤ dimB(X) ≤ dimB(X) ≤ dimA(X)

where dimH ,dimB ,dimB ,dimA are the Hausdorff, lower box-counting, upper box-counting and Assouad

dimension respectively. The main difference between Hausdorff and Assouad dimension is that that the

former is related to the average small scale structure of sets, while the latter measures the size of sets in all

scales. A detailed survey of the concept can be found in [27].

6.1 Coding of quasicircles and a chord-arc index

Let Γ be a quasicircle. Suppose that S is a p-snowflake and f a bi-Lipschitz self map of R2 that maps S

onto Γ. The coding (p, kw) of the construction of S, as in Section 2.4, induces a coding of Γ. In particular,

the subdivision {Sw}w∈W , induces a subdivision of Γ by setting Γw = f(Sw). The quadruple (p, kw,Γw, f)

is called a coding of Γ and S is called the snowflake associated to the given coding.
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Note that if f is L-bi-Lipschitz then for any w, u ∈ W

diam Γw
4`(u)L2

≤ diam Γwu ≤ min{p`(u)L2, 1} diam Γw. (6.1.1)

Fix a quasicircle Γ and a coding (p, kw,Γw, f). We define an index that measures, on small scale, how

much a subarc Γw deviates from being a chord-arc curve. For w ∈ W and c ∈ (0, 1) denote with A(Γw, c)

the set of all words u ∈ W that satisfy

1. diam Γwu ≥ cdiam Γw,

2. diam Γwui < cdiam Γw for some i ∈ {1, 2, 3, 4},

3. the words in A(Γw, c) are minimal in the sense that if u is a word satisfying the above two conditions,

then uv /∈ A(Γw, c) for each v ∈ W.

We think of A(Γw, c) as a decomposition of Γw into disjoint subarcs Γwu ⊂ Γw that have diameter

comparable to cdiam Γw. Denote with N(Γw, c) the number of elements in A(Γw, c). The dependence on

the chosen coding is suppressed.

For w ∈ W and c ∈ (0, 1) define

M(Γw, c) =
1

diam Γw

∑
u∈A(Γw,c)

diam Γwu. (6.1.2)

The number M(Γw, c) is an approximation of the number `(Γw)/diam Γw with c being the scale of ap-

proximation. Since all the subarcs Γwu have diameter comparable to cdiam Γw, it easily follows that

M(Γw, c) = cN(Γw, c). The following lemma summarizes the properties of this index.

Lemma 6.1.1. Let Γ be a quasicircle, (p, kw,Γw, f) be a coding of Γ and f be L-bi-Lipschitz.

1. If c ∈ (0, 1) and w ∈ W then M(Γw, c) ' cN(Γw, c) with the comparison constants depending on L.

2. If 0 < c1 ≤ c2 < 1 then M(Γw, c2) ≤M(Γw, c1) ≤ mM(Γw, c2) with m > 1 depending on p, L and the

ratio c2/c1.

3. Suppose that S is the p-snowflake associated to the given coding. If c ∈ (0, 1) and w ∈ W then

M(Γw, c) 'M(Sw, c) with the comparison constants depending on p, L.

4. For any w ∈ W,

lim
c→0

M(Γw, c) =
`(Γw)

diam Γw
.
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Proof. Property (1) is an immediate consequence of the definition.

For property (2) consider the sets G1 = {Γw : w ∈ A(Γw, c1)} and G2 = {Γw : w ∈ A(Γw, c2)}. To obtain

G1 we subdivide, if necessary, each of the subarcs of G2 until they satisfy the properties in the definition of

A(Γw, c1). Thus, M(Γw, c1) ≥M(Γw, c2). To show the other inequality, by property (1) of Lemma 6.1.1, it

suffices to check the ratio N(Γw, c1)/N(Γw, c2). Fix a subarc Γwv ∈ G2 and assume that Γwvu ∈ G1. We

claim that `(u) ≤ N = N(p, L, c2/c1). Assuming the claim we have that

N(Γw, c1) ≤ 4NN(Γw, c2).

To show the claim apply (6.1.1) twice and note that for some i ∈ {1, 2, 3, 4}

c1 diam Γw ≤ diam Γwvu ≤ L2p`(u) diam Γwv ≤ 4L4p`(u) diam Γwvui ≤ 4L4p`(u)c2 diam Γw.

To prove (3), it suffices to show that N(Γw, c) ' N(Sw, c) with the comparison constants depending on

p, L. Let

c′ = min
v∈A(Sw,c)

{
diam Γwv
diam Γw

}
.

Since f is L-bi-Lipschitz, the ratio c/c′ is bounded above and below by constants depending on L. By (2)

of Lemma 6.1.1, N(Sw, c) ≤ N(Γw, c
′) . N(Γw, c

′). Similarly we obtain the inverse inequality.

For the proof of (4), fix w ∈ W and assume that `(Γw) < ∞. Similar arguments apply in the case

`(Γw) = +∞. Let ε > 0 and x0, . . . , xN ∈ Γw be consecutive points such that x0, xN are the endpoints of

Γw and
∑N
i=1 |xi− xi−1| ≥ `(Γw)− εdiam Γw. For each i ∈ {0, . . . , N} find vi ∈ W such that one of the two

endpoints x′i of Γwvi satisfies |xi − x′i| ≤ ε2−i−1 diam Γw. If c = (4L2 diam Γw)−1 min1≤i≤N diam Γwvi then,

M(Γw, c) ≥
1

diam Γw

N∑
i=1

|x′i − x′i−1| ≥
1

diam Γw

N∑
i=1

|xi − xi−1| − ε ≥
`(Γw)

diam Γw
− 2ε.

6.2 Proof of Theorem 1.2.3

The following lemma is a variation of Lemma 4.3.2 and gives a necessary condition for Γ and ϕ so that

Σ(Γ, ϕ) is quasisymmetric to S2.

Lemma 6.2.1. Let Γ be a quasicircle which has the level quasicircle property, (p, kw,Γw, f) a coding of Γ
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and ϕ ∈ F . Suppose that there exists a sequence {Γwn}n∈N such that for each n ∈ N,

cn =
ϕ−1(diam Γwn)

diam Γwn
< 1

and limn→∞M(Γwn , cn) = +∞. Then Σ(Γ, ϕ) is not quasisymmetric to S2.

Proof. Suppose that there exist ε > 0 and K > 1 such that γε is a K-quasicircle for all ε ∈ [0, ε0]. Then, for

all ε ∈ [0, ε0], the curves γε satisfy Ahlfors 2-point condition (2.2.1) for the same C > 1. Suppose also that

f is L-bi-Lipschitz.

For each n ∈ N set εn = cn diam Γwn and c′n = 9C2cn. By Lemma 6.1.1 we have that M(Γwn , c
′
n) ≥

1
mM(Γwn , cn) for some m = m(L) > 1. Passing to a subsequence, we may assume that M(Γwn , c

′
n) > Cn.

Let xn1 , . . . , x
n
Nn

be the endpoints of the subarcs Γwnv, v ∈ A(Γwn , c
′
n). We may assume that xn1 , . . . , x

n
Nn

are consecutive. Then,

Nn−1∑
i=1

|xni − xni−1| ≥
1

C

∑
v∈A(Γwn ,c

′
n)

diam Γwnv =
M(Γwn , c

′
n) diam Γwn
C

> ndiam Γ(xn0 , x
n
Nn).

Moreover, for all i = 1, . . . , Nn−1, |xni −xni−1| ≥ 1
C c
′
n diam Γwn = 9Cεn. Finally, ϕ(εn) = diam(Γ(xn1 , x

n
Nn

)).

The assumptions of Lemma 4.3.2 are satisfied and Σ(Γ, ϕ) is not quasisymmetric to S2.

To prove Theorem 1.2.3 we need to show that if the Assouad dimension of a quasicircle Γ is bigger than

1 and ϕ(t) = tα with α ∈ (0, 1) then Γ, ϕ satisfy the assumptions of Lemma 6.2.1. The following two lemmas

are required for the proof of Theorem 1.2.3.

Lemma 6.2.2. Suppose that Γ has a coding (p, kw,Γw, f) and f is L-bi-Lipschitz. There exist α = α(p) > 0

and A = A(L) > 0 with the following property: If Γw0
⊂ Γ, δ < δ′ < 1 and M(Γw0

, δ) > M for some M > 1

then there exists Γw0w ⊂ Γw0
such that M(Γw0w, δ

′) ≥ AMα log δ′
log δ .

Proof. Suppose that S is the p-snowflake associated to the given coding.

For v ∈ W and n ∈ N, define µ(Γv, n) = 4−n
∑
u∈Wn

(4p)kwu−kw . It is easy to see that if v ∈ W and

n ∈ N then

µ(Γv, n) =
1

diamSv

∑
u∈Wn

diamSvu '
1

diam Γv

∑
u∈Wn

diam Γvu

with the comparison constants depending on L. Like M(Γv, ·), the index µ(Γv, ·) is an approximation of the

number `(Γv)/diam Γv but in a different sense. While in M(Γv, ·) we divide Γv into subarcs of roughly the

same diameter, in µ(Γv, ·) we divide Γv into subarcs of same generation.
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If v ∈ W, n1 ≤ n2 then µ(Γv, n1) ≥ µ(Γv, n2). We claim that, for any n ∈ N and v ∈ W

M(Γv, p
n) . µ(Γv, n) .M(Γv, 4

−n)

with the comparison constants depending on L. Indeed, since M(Γv, c) ' M(Sv, c) for any c < 1 we only

need to prove the replacing Γ with S. If vu ∈ A(Sv, 4−n) then `(u) ≥ n. Thus,

M(Sv, 4−n) =
1

diamSv

∑
u∈Wn

∑
uu′∈A(Sv,4−n)

diamSvuu′ ≥
1

diamSv

∑
u∈Wn

diamSvu.

We work similarly for the lower bound.

Let m be the integer part of − log δ′/ log 4 and N be the integer part of log δ/ log p. Since δ < δ′, it is

easy to see that m . N with the comparison constants depending on p. Take N ′ to be the smallest multiple

of m that is bigger than N . If m ≥ N then N ′ = m while if m < N then N ′ ≤ N + m. In each case,

N ' N ′. Hence,

µ(Γw0 , N
′) ≥ µ(Γw0 , N) &M(Γw0 , δ) > M.

Set C = µ(Γw0 , N
′). We claim that there exists w ∈ W with `(w) ≤ N ′ −m such that µ(Γw0w,m) ≥

Cm/N
′
. Assuming the claim,

M(Γw0w, δ
′) & µ(Γw0w,m) ≥ Cm/N

′
&Mα log δ′

log δ

with α > 0 depending on p and the comparison constants depending on L.

To prove the claim, assume the opposite. That is, for all w ∈ W with `(w) ≤ N ′−m we have µ(Γw0w,m) <

Cm/N
′
. We apply induction to show that µ(Γw0

, im) < Cim/N
′

for all i ∈ {1, . . . , N ′/m}. For i = 1, it is
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true by our assumption. Suppose it is true for i. Then,

µ(Γw0 , (i+ 1)m) = 4−(i+1)m
∑

w∈W(i+1)m

(4p)kw0w
−kw0

= 4−(i+1)m
∑

u∈Wim

∑
v∈Wm

(4p)kw0uv−kw0

= 4−(i+1)m
∑

u∈Wim

(4p)kw0u
−kw0

∑
v∈Wm

(4p)kw0uv
−kw0u

= 4−(i+1)m
∑

u∈Wim

(4p)kw0u−kw0 4mµ(Γw0u,m)

< 4−imCm/N
′
µ(Γw0 , im)4im

< Cm(i+1)/N ′ .

By induction the claim holds for i = N ′/m contradicting the fact that µ(Γw0
, n) = C.

Lemma 6.2.3. Suppose that ε > 0, Γ is a quasicircle and (p, kw,Γw, f) is a coding of Γ. If the Assouad

dimension of Γ is greater than 1 + ε, then, for any n ∈ N, there exist wn ∈ W and δn ∈ (0, 1) such that

N(Γwn , δn) > nδ
−(1+ε)
n .

Proof. Suppose that f is L-bi-Lipschitz.

Assume the opposite, that is, N(Γw, δ) . δ−(1+ε) for all δ > 0 and Γw. Fix a δ ∈ (0, 1) and a set X ⊂ Γ

such that diamX ≤ diam Γ/10. Let Γ′ be the smallest subarc of Γ that contains X. Since Γ satisfies (2.2.1),

diam Γ′ ≤ C diamX for some C > 1 depending only on Γ. Choose a maximal word w such that Γ′ ⊂ Γw.

Suppose that Γ′ contains a subarc Γwi for some i = 1, 2, 3, 4. If v ∈ A(Γw, δC
−1(2L)−4) and j ∈

{1, 2, 3, 4}, using (6.1.1) twice, we see that

diam Γwv ≤ 4L2 diam Γwvj ≤
δ diam Γw

4CL2
≤ δ diam Γwi

C
≤ δ diamX.

Therefore,

X ⊂
⋃

u∈A(Γw,δC−1(2L)−4)

Γwu

where all such subarcs Γwu have diameter less or equal to δ diamX and

N(Γw, δC
−1(2L)−4) . δ−(1+ε).

Suppose that Γ′ does not contain one of the subarcs Γw1,Γw2,Γw3,Γw4. Then, there exist i ∈ {1, 2, 3}
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and maximal natural numbers r, q such that Γ′ ⊆ Γwi4r ∪Γw(i+1)1q . In that case repeat the above argument

for the subarcs Γ′ ∩ Γwi4r and Γ′ ∩ Γw(i+1)1q .

In both cases, X can be covered by at most Mδ−(1+ε) subsets of diameter at most δ and Γ has Assouad

dimension less or equal to 1 + ε.

We are now ready to prove Theorem 1.2.3. The basic idea of the proof is to show that if the Assouad

dimension of Γ is bigger than 1 and α ∈ (0, 1) then Γ and ϕ(t) = tα satisfy the assumptions of Lemma 6.2.1.

Proof of Theorem 1.2.3. Suppose that Γ is a quasicircle with a coding (p, kw,Γw, f) and Assouad dimension

bigger than 1 + ε for some ε > 0. Suppose also that f is L-bi-Lipschitz. In view of Proposition 4.1.6, we

may assume that Γ satisfies the LQC property.

By Lemma 6.2.3, for each n > 0 there exist wn ∈ W and δn ∈ (0, 1) such that N(Γwn , δn) > nδ
−(1+ε)
n .

We may assume that the sequence {δn}n∈N is decreasing and converges to 0. By Lemma 6.1.1, it follows

that M(Γwn , δn) & nδ−εn . Set cn =
ϕ−1(diam Γwn )

diam Γwn
and consider the following two cases.

Case 1. Suppose that cn ≤ δn. Then, by Lemma 6.1.1,

M(Γwn , cn) ≥M(Γwn , δn) & nδ−εn & n

with the similarity constants depending on L.

Case 2. Suppose that cn > δn. By Lemma 6.2.2, there exists Γwnv ⊂ Γwn such that

M(Γwnv, cn) & δ
−εα log cn

log δn
n = c−αεn

with the similarity constants depending on L. Set c′n =
ϕ−1(diam Γwnv)

diam Γwnv
and note that c′n < cn. It follows that

M(Γwnv, c
′
n) ≥M(Γwnv, cn) & c−αεn .

By Case 1 and Case 2, there exists a sequence Γvn of subarcs of Γ such that if cn =
ϕ−1(diam Γvn )

diam Γvn
then

limn→∞M(Γvn , cn) =∞. The theorem follows now from Lemma 6.2.1.

6.3 Further examples from Rohde’s snowflakes

For the rest of this section we give an example of quasicircles with Assouad dimension equal to 1, satisfying

the LQC property such that the surface Σ(Γ, tα) is not quasisymmetric to S2 for any α ∈ (0, 1).
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Let N ≥ 4 be a natural number. As in Section 3.5, an (N, p)-snowflake is a snowflake constructed with

Rohde’s method except for the first step where a regular N -gon of side length 1 is used in place of the unit

square.

Also, as in Section 2.4, S is called homogeneous if, for any n, at the n-th step of the construction of S,

all edges of the n-th generation are replaced by the same polygonal arc. In other words, kw depends only on

`(w). If S is homogeneous then, for n ∈ N, define k(n) = kw for some w ∈ Wn. Intuitively, k(n) represents

the number of times that the Type I arc of Figure 2.1 was used in the first n steps.

By Corollary 3.5.1, there exist N0 ∈ N and p0 ∈ (1/4, 1/2) such that, every (N, p)-snowflake, with

N ≥ N0 and p ≤ p0, satisfies the LQC property.

Proposition 6.3.1. Let α, β ∈ (0, 1), ϕ(t) = tα and S be a homogenous (N, p)-snowflake with N ≤ N0,

p ≤ p0 and k(n) equal to the integer part of nβ. Then, S has the level quasicircle property, has Assouad

dimension equal to 1 and Σ(S, ϕ) is not quasisymmetric to S2.

The proof requires the following simple lemma.

Lemma 6.3.2. Let β ∈ (0, 1). For any ε > 0 there exists M > 0 such that, for any x > M and y > 0,

|xβ − yβ | ≤ ε|x− y|.

Proof. Let M = (2/ε)
1

1−β . If x > M and y ≥ M/2, by Mean Value Theorem, it is easy to see that

|xβ − yβ | ≤ ε|x− y|. If x > M and y < M/2 then

x− y > x

2
>

1

ε
xβ >

1

ε
(xβ − yβ).

For the proof of Proposition 6.3.1, we need to show that S and ϕ satisfy the assumptions of Lemma 6.2.1.

Proof of Proposition 6.3.1. Since N ≥ N0 and p ≤ p0, by Corollary 3.5.1, the (N, p)-snowflake S satisfies

the LQC property.

Fix ε > 0; we claim that S has Assouad dimension less than 1+ε. Take δ > 0 and w ∈ Wn for some n ∈ N.

Since S is homogenous, there exists m ≥ n such that A(Sw, δ) = Wm−n. Then, 4n−m(4p)k(m)−k(n) ≥ δ

which implies that

(m− n) log 4− (mβ − nβ) log 4p ≤ log

(
1

δ

)
+ C (6.3.1)

for some C > 0 depending only on p, β. By Lemma 6.3.2, there exists M > 0 such that for x > M and x > y

xβ − yβ ≤ ε

1 + ε

log 4

log(4p)
(x− y). (6.3.2)
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If m < M then clearly N(Sw, δ) = 4m−n ≤ 4M
(

1
δ

)1+ε
. If m ≥M then by (6.3.2)

(m− n) log 4− (mβ − nβ) log 4p ≥ log 4

1 + ε
(m− n)

and (6.3.1) yields

(m− n) log 4 ≤ log

(
1

δ

)1+ε

+ 2C2.

Therefore,

N(Sw, δ) = 4m−n ≤ 4Me2C2

(
1

δ

)1+ε

and the claim is proved. Since ε was chosen arbitrarily, it follows that S has Assouad dimension equal to 1.

We prove now that Σ(S, ϕ) is not quasisymmetric to S2. Take n ∈ N, w ∈ Wn and assume that

A(Sw, (diamSw)
1
α−1) =Wm−n. If v ∈ A(Sw, (diamSw)

1
α−1) then

pα(diamSwv)α ≤ diamSw ≤ (diamSwv)α

and for some 0 < A1 < A2 depending on p, α,

A1

(
4−m(4p)m

β
)α

< 4−n(4p)n
β

< A2

(
4−m(4p)m

β
)α

.

Therefore,

logA1

m
≤
(
α− n

m

)
log 4− 1

m1−β

(
α−

( n
m

)β)
log(4p) ≤ logA2

m
.

Note that as n goes to infinity, m goes to infinity and n/m goes arbitrarily close to α. Hence, for any

ε > 0 we can find sufficiently large n so that | 1α −
m
n | < ε. Therefore, if c = diamSw1/α−1

M(Sw, c) ' N(Sw, c)c = (4p)m
β−nβ > (4p)((1/α−ε)β−1)nβ

which goes to infinity as n goes to infinity. The proposition follows from Lemma 6.2.1.
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Chapter 7

Quasisymmetric spheres over
quasidisks – Analytic construction

Suppose that f is a quasiconformal mapping that maps a Jordan domain Ω onto the unit disk B2. For a

function ϕ ∈ F we write

Σ̃(f, ϕ) = {(x, z) : x ∈ Ω, z = ±ϕ(1− |f(x)|)}.

This chapter is devoted to the proof of Theorem 1.4.1.

7.1 Surfaces obtained by rotations of decreasing functions

Suppose that ϕ ∈ F2. Define

Σ̃(ϕ) = Σ̃(id, ϕ) = {(x, z) ∈ B2 × R : z = ±ϕ(1− |x|)}.

Write R3 = {(t, s, z) : t, s, z ∈ R}. Note that Σ̃(ϕ) is the surface generated by first revolving the graph of

ϕ(1− t), t ∈ [0, 1] around the vertical axis {t = s = 0} and then reflecting the resulting surface with respect

to the horizontal plane {z = 0}.

To prove the first claim of Theorem 1.4.1, we first show the following result.

Proposition 7.1.1. Suppose that ϕ ∈ F is such that for some δ ∈ (0, 1) and M > 0, ϕ(t) > Mt for each

t ∈ (0, δ) and ϕ(1) − ϕ(t) < M(1 − t) for each t ∈ (1 − δ, 1). Then, the surface Σ̃(ϕ) is a 2-dimensional

bi-Lipschitz sphere.

The following two simple observations are needed for the proof of Proposition 7.1.1.

Lemma 7.1.2. If ϕ : (a, b) → R is a monotone continuous function, then the graph of ϕ is a 2-chord-arc

curve. More precisely, if ϕt1,t2 is the graph of ϕ from t1 to t2 with t1 < t2, then,

`(ϕt1,t2) ≤ 2|(t1, ϕ(t1))− (t2, ϕ(t2))|.
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Proof. First observe that

diamϕt1,t2 = |(t1, ϕ(t1))− (t2, ϕ(t2))| ≥ 1

2
(|t1 − t2|+ |ϕ(t1)− ϕ(t2)|).

Let t1 = x0 < x1 < · · · < xn = t2 and zi = (xi, ϕ(xi)). Then

n∑
i=1

|zi − zi−1| ≤
n∑
i=1

(|x1 − xi−1|+ |ϕ(xi)− ϕ(xi−1)|)

= |t1 − t2|+ |ϕ(t1)− ϕ(t2)|.

Therefore, `(ϕt1,t2) ≤ |t1 − t2|+ |ϕ(t1)− ϕ(t2)| and the lemma follows.

Lemma 7.1.3. Suppose that f = (f1, f2) : R× [0,+∞)→ R× [0,+∞) is an L-bi-Lipschitz homeomorphism.

For r ≥ 0, ν ∈ S1 and z ∈ R define F (rν, z) = (f1(r, z)ν, f2(r, z)). Then F is an L′-bi-Lipschitz self map of

R3 with L′ depending only on L.

Proof. Let r, r′ > 0, ν, ν′ ∈ S1 and z ∈ R. We have that

|F (rν, z)− F (r′ν′, z′)| ' |f1(r′, z′)ν′ − f1(r, z)ν|+ |f2(r′, z′)− f2(r, z)|

' |f1(r′, z′)− f1(r, z)|+ |f1(r, z)||ν − ν′|+ |f2(r′, z′)− f2(r, z)|

' |f1(r′, z′)− f1(r, z)|+ |(r, z)||ν − ν′|+ |f2(r′, z′)− f2(r, z)|

' |(r, z)||ν − ν′|+ |(r, z)− (r′, z′)|

' |(rν, z)− (r′ν′, z′)|

with the comparison constants depending at most on L.

Proof of Proposition 7.1.1. Let ψ(t) = ϕ(1 − t), t ∈ [0, 1]. By Lemma 7.1.2, the graph ψ0,1 satisfies the

chord-arc condition. Consider the points a1 = (0, 0), a2 = (1, 0), a3 = (0, 1) and a4 = (0, ϕ(1)). The two

limit conditions of F2 imply that the union of ψ0,1 with the line segments [a1, a2] and [a1, a4] is a C-chord-

arc curve for some C depending on M, δ. Using arc-length parametrization, it is easy to find a bi-Lipschitz

mapping g that maps ψ0,1 onto the line segment [a2, a3], the points a1, a2, a4 to a1, a2, a3 respectively, and

the half-lines {(0, t) : t ≥ 0}, {(t, 0) : t ≥ 0} onto themselves. By Tukia’s extension theorem [36, Theorem

A], g can be extended to an L1-bi-Lipschitz map G = (g1, g2) of the first quadrant [0,+∞)× [0,+∞) onto

itself. Here L1 > 1 depends only on C.
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Consider now the mapping F : R3 → R3 such that for each ν ∈ S1, r > 0 and z ≥ 0

F (rν, z) = (g1(r, z)ν, g2(r, z)) and F (rν, z) = (g1(r,−z)ν, g2(r,−z)).

Clearly, F maps Σ̃(ϕ) onto the boundary of the double cone C3 = {(x, z) : x ∈ B2, |z| < 1− |x|}. By Lemma

7.1.3 we have that F is bi-Lipschitz and the claim follows from the fact that ∂C3 is the image of S2 under a

bi-Lipschitz self map of R3.

Proof of the first claim of Theorem 1.4.1. Suppose that f : Ω→ B2 is L-bi-Lipschitz. It is easy to show that

f can be extended to an L-bi-Lipschitz map of Ω. Moreover, by Tukia’s extension theorem [36, Theorem A],

f can be extended to an L′-bi-Lipschitz self map of R2 for some L′ > 1 depending on L. Consider the function

G : R3 → R3 with G(x, z) = (f(x), z), where x ∈ R2 and z ∈ R. Note that, for each (x1, z1), (x2, z2) ∈ R3,

|G(x1, z1)−G(x2, z2)| ≤ |f(x1)− f(x2)|+ |z1 − z2| ≤ (L+ 1)|(x1, z1)− (x2, z2)|

|G(x1, z1)−G(x2, z2)| ≥ 1

2
|f(x1)− f(x2)|+ 1

2
|z1 − z2| ≥ |(x1, z1)− (x2, z2)|.

Hence, G is a bi-Lipschitz self map of R3 that maps Σ̃(ϕ) onto Σ̃(f, ϕ). By Proposition 7.1.1, Σ̃(f, ϕ) is a

bi-Lipschitz sphere.

Remark 7.1.4. Suppose that f : B2 → Ω is bi-Lipschitz and ϕ1, ϕ2 ∈ F2. Define Σ̃1 = Γ and F1 = f . By

Theorem 1.4.1, there exists a bi-Lipschitz mapping F2 : R3 → R3 that maps the surface Σ̃2 = Σ̃(F1, ϕ1) onto

S2. Let Ω′ be the domain enclosed by Σ2. Consider the 3-dimensional surface in R4

Σ̃3 = Σ̃(F2, ϕ2) = {(x, z) ∈ R4 : x ∈ Ω′, z = ±ϕ2(1− |F2(x)|)}.

The proof of the first part of Theorem 1.4.1 shows that Σ̃3 is the image of S3 under a bi-Lipschitz self map

of R4.

Remark 7.1.5. The limit assumptions of the functions ϕ ∈ F2 are necessary for the first claim of Theorem

1.4.1.

For the necessity of the first limit assumption, take Γ = S1, f = Id and ϕ(t) = t2. It is not hard

to see that Σ̃(f, ϕ) is not LLC1 and thus not quasisymmetric to S2. For the necessity of the second limit
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assumption, take Γ = S1, f = Id and

ϕ(t) =


1−
√

1− t t ∈ [0, 1]

t t ∈ [1,+∞).

It is easy to see that Σ̃(f, ϕ) is not LLC2 and therefore not quasisymmetric to S2.

7.2 Proof of the second claim of Theorem 1.4.1

In this section we prove a statement stronger than the second part of Theorem 1.4.1. For each r ∈ [0, 1]

let Br = B2(O, r) and Sr = ∂Br.

Proposition 7.2.1. Suppose that f is a quasiconformal mapping of a Jordan domain Ω onto B2 such that

Σ̃(f, ϕ) is quasisymmetric to S2 for all ϕ ∈ F2 satisfying limt→0 ϕ(t)/t = +∞. Then, for some r0 ∈ (0, 1),

the pre-images f−1(Sr) are chord-arc curves for each r ∈ [r0, 1].

Suppose that Ω, f satisfy the assumptions of Proposition 7.2.1. In Lemma 7.2.2 we show that ∂Ω is a

quasidisk. Then, in Proposition 7.2.3 we show that for some r0 ∈ (0, 1), the pre-images f−1(Sr) are chord-arc

curves for each r ∈ [r0, 1). The proof in the case r = 1 is identical to that of Proposition 7.2.3; see Corollary

7.2.6.

Lemma 7.2.2. Suppose that f is quasiconformal mapping of a Jordan domain Ω onto B2. If ∂Ω is not a

quasicircle then, there exists a function ϕ ∈ F1 satisfying limt→0 ϕ(t)/t = +∞, such that the surface Σ̃(f, ϕ)

is not quasisymmetric to S2.

Proof. The proof is quite similar to that of Lemma 4.1.5.

Suppose that xn, x
′
n, yn, y

′
n and εn, σn are as in the proof of Lemma 4.1.5. We construct ϕ so that Σ̃(f, ϕ)

fails the LLC1 property.

Since Ω is a Jordan domain, f can be extended to a homeomorphism of Ω onto B2. For each n ∈ N, find

rn ∈ (0, εn) such that dist(f−1(Srn),Γ) < εn. The sequence {rn}n∈N can be chosen to be decreasing. Define

a function

ϕ : {rn} → R+ with ϕ(rn) = n|xn − x′n|.

The arguments in the proof of Lemma 4.1.5 show that Σ̃(f, ϕ) is not LLC1.
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Proposition 7.2.3. Let f be a quasiconformal mapping of a quasidisk Ω onto B2. Suppose that for a

sequence {rn} ⊂ (0, 1) with rn ↑ 1, the pre-images f−1(Srn) are not chord-arc curves. Then, there exists a

function ϕ ∈ F2, satisfying limt→0 ϕ(t)/t = +∞, such that Σ̃(f, ϕ) is not quasisymmetric to S2.

It is well known that any quasiconformal map of a quasidisk Ω onto B2 can be extended to a quasicon-

formal self map of R2. Therefore, f : Ω→ B2 is η-quasisymmetric for some homeomorphism η depending on

the quasiconformal constant K of f .

For the rest we write Γr = f−1(Sr) and O = (0, 0).

Fix an increasing sequence {rn}n∈N ⊂ (0, 1) such that lim rn = 1 and Γrn are not chord-arc curves. For

each n ∈ N, we define inductively a positive number r′n and an arc Jn ⊂ Γrn . Set r′0 = r0 and J0 = Γr0 .

Suppose that r′n−1, Jn−1 have been defined. Since Γrn is not a chord-arc curve, there exists Jn ⊂ Γrn such

that `(Jn) > ndiam Jn. Moreover, Jn can be chosen so that

diam Jn ≤
1

2
(
√

1− rn−1 −
√

1− rn). (7.2.1)

Indeed, since Γrn is not a chord-arc curve, it contains arbitrarily small subarcs which are not chord-arc

curves.

Find consecutive points Pn1 , . . . , P
n
Nn
∈ Jn such that Γrn(Pn1 , P

n
Nn

) = Jn and

Nn∑
i=1

|Pni+1 − Pni | > ndiam Jn. (7.2.2)

Define also pni = f(Pni ). By adding more points in the collection {pni }
Nn
i=1, we may assume that, for each

i, j ∈ {1, . . . , Nn},
1

2
|pni+1 − pni | ≤ |pnj+1 − pnj | ≤ 2|pni+1 − pni |.

Since f is η-quasisymmetric, for each z ∈ Γrn(Pni , P
n
i+1),

|Pni − Pni+1|
|z − Pni+1|

≥ η−1

( |pni − pni+1|
|f(z)− pni+1|

)
≥ η−1(1).

Therefore, for each i ∈ {1, . . . , Nn − 1}, diam Γrn(Pni , P
n
i+1) ≤ 2

η−1(1) |P
n
i − Pni+1|.

By uniform continuity of f , there exists a number r′n ∈ (rn−1, rn) such that

dist(Γr′n ,Γrn) ≤ min
i=1,...,Nn

{|Pni+1 − Pni |}.
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We may also assume that r′n is close enough to rn so that

rn − r′n ≤
1

η(3)
min

i=1,...,Nn
{|Pni+1 − Pni |} (7.2.3)

and √
1− r′n −

√
1− rn ≤ diam Jn. (7.2.4)

Define ϕ : {1− rn}n∈N ∪ {1− r′n}n∈N → (0,+∞) with

ϕ(1− rn) =
√

1− rn and ϕ(1− r′n) =
√

1− rn + diam Jn.

It follows from (7.2.1) and (7.2.4) that ϕ is increasing. Moreover, by (7.2.4), ϕ(1− r′n) ≥
√

1− r′n. Extend

ϕ in [0, 1] so that ϕ(t) ≥
√
t for each t ∈ [0, 1]. The extension, which we still denote by ϕ, is in F2 and

satisfies limt→0 ϕ(t)/t = +∞.

The following lemma concludes the proof of Proposition 7.2.3.

Lemma 7.2.4. Let f and ϕ be as above. Then, Σ̃(f, ϕ) is not quasisymmetric to S2.

Proof. Suppose, on the contrary, that there exists a quasisymmetric mapping that maps Σ̃(f, ϕ) onto S2.

Post-composing this mapping with an inversion, we may assume that there exists a θ-quasisymmetric map

F : Σ̃(f, ϕ) ∩ R3
+ → B2.

Fix n ∈ N. For simplicity we write Jn = J , Nn = N , rn = r, r′n = r′, Pni = Pi, p
n
i = pi and

the dependence of quantities, points and sets on n will not be recorded. However, the constants in the

comparisons ' and . are depending only on η, θ and not on n.

For each i = 1, . . . , N let qi ∈ Sr′ ∩ [O, pi] and Qi = f−1(qi). Then, the points q1, . . . , qN are consecutive

with q1, qN being the first and last points respectively. Moreover, by (7.2.3),

|Pi − Pi+1|
|Qi − Pi|

≥ η−1

(
|pi − pi+1|
|qi − pi|

)
≥ 3.

Therefore, for any i = 1, . . . , N − 1,

|Qi −Qi+1| ≤ |Pi − Pi+1|+ |Pi −Qi|+ |Pi+1 −Qi+1| ≤ 2|Pi − Pi+1|

and

|Qi −Qi+1| ≥ |Pi − Pi+1| − |Pi −Qi| − |Pi+1 −Qi+1| ≥
1

3
|Pi − Pi+1|.
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Thus, |Pi − Pi+1| ' |Qi −Qi+1| which yields
∑N−1
i=1 |Qi+1 −Qi| & ndiam J .

Let Λ be the piece of Σ̃(f, h) whose projection on R2 is the Jordan domain bounded by the arcs

Γr(P1, PN )), Γr′(Q1, QN ), f([p1, q1]), f([pN , qN ]). Define also

β = min{|F (x)− F (y)| : x ∈ Γr(P1, PN ))× {ϕ(1− r)}, y ∈ Γr′(Q1, QN )× {ϕ(1− r′)}}.

As in the proof of Lemma 4.3.2, to finish the proof it suffices to show that

β2n . H2(F (Λ)). (7.2.5)

For each i = 1, . . . , N − 1 let Λi be the piece of Λ whose projection is the Jordan domain bounded by

the four arcs Γr(Pi, Pi+1)), Γr′(Qi, Qi+1)), f([pi, qi]), f([pi+1, qi+1]). Denote with τi the arc on Λ such that

π(τi) = f([qi, pi]). Clearly, τi, τi+1 are boundary arcs of Λi.

For each i = 1, . . . , N − 1 let δi = |Pi−Pi+1|, di = δi
diam J and ki be the integer part of 1

di
− 1. Note that

ki|Pi − Pi+1| ' diam Γr(P1, PN ) ' ϕ(1− r′)− ϕ(1− r).

Fix i ∈ {1, . . . , N − 1}. For j = 1, . . . , ki + 1, let ρij ∈ (0, 1) be such that

ϕ(1− ρij) = ϕ(1− r) + jdi diam J.

The curves

σij =


Γr × ϕ(1− r) for j = 0,

Γρij × {ϕ(1− ρij)} for 1 ≤ j ≤ ki

Γr′ × {ϕ(1− r′)} for j = ki + 1

subdivide Λi into pieces Λij with 1 ≤ j ≤ ki + 1. More precisely, Λij is the piece of Λ whose projection on

R2 is the Jordan domain bounded by f([pi, qi]), f([pi+1, qi+1]), Γρij , Γρi(j+1)
. The choice of ρij implies that

the height of each piece Λij is in the range [δi, 2δi].

Fix a piece Λij and define

Aij = τi ∩ σij , Bij = τi+1 ∩ σij , Cij = τi+1 ∩ σi(j+1) , Dij = τi ∩ σi(j+1).

The points Aij , Bij , Cij , Dij can be thought as the four vertices of the piece Λij .

Since Aij , Bij are on the same horizontal plane, |Aij −Bij | = |π(Aij)−π(Bij)|. Since π(Aij), π(Bij) are
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in Γρij and since f is η-quasisymmetric,

|Pi − Pi+1|
|π(Aij)− Pi|

≥ η−1

(
|pi − pi+1|

|f(π(Aij))− pi|

)
≥ η−1

(
|pi − pi+1|
|qi − pi|

)
≥ 3.

Therefore, 1
3δi ≤ |Aij −Bij | ≤ 2δi. Similarly, |Cij −Dij | ' δi = |Pi − Pi+1|.

Since f is quasisymmetric, it is easy to show that the curves {Γt}t satisfy (2.2.1) with C = 2
η−1(1) . Thus,

there exist points z′′ ∈ σij(Aij , Bij), z′ ∈ σi(j+1)(Cij , Dij) such that

dist(z, τi+1(Bij , Cij)) ' dist(z′, τi+1(Bij , Cij)) ' dist(z′′, τi+1(Bij , Cij)) ' δi

dist(z, τi(Aij , Dij)) ' dist(z′, τi(Aij , Dij)) ' dist(z′′, τi(Aij , Dij)) ' δi

Moreover, if ρ′ij ∈ (ρi(j+1), ρij) satisfies ϕ(1 − ρ′ij) = ϕ(1 − ρij) + 1
2δi, then there exists a point z ∈

Λij ∩ (Γρ′ij × {ϕ(ρ′ij)}) such that

dist(y, τi(Aij , Dij)) ' dist(y, τi+1(Bij , Cij)) ' δi.

We think of the points z′, z′′ as the “centers” of σi(j+1)(Cij , Dij), σij(Aij , Bij) respectively, and z as the

“center” of Λij .

Set βij = |F (z′′)− F (z′)| and let u ∈ ∂Λij be the point at which

|F (u)− F (z)| = dist(F (z), ∂F (Λij)) = R.

Then, |u − z| & |Pi − Pi+1| and by the quasisymmetry of F , since |z − z′| . |Pi − Pi+1|, it follows that

|F (z) − F (z′)| . R. The same inequality is true with z′ replaced by z′′. Hence, βij . R which implies

β2
ij . H2(F (Λij)). By Schwarz inequality, this yields

β2 ≤

ki+1∑
j=1

βij

2

. (ki + 1)H2(F (Λi)).

Since (ki + 1)δi = (ki + 1)|Pi+1 − Pi| ' diam Γr(P1, PN ) we have

β2|Pi − Pi+1| . diam Γr(P1, PN )H2(F (Λi)).

Summing over i, by (7.2.2), we obtain (7.2.5).
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Remark 7.2.5. The function ϕ constructed for the proof of Proposition 7.2.3 is in F1.

Corollary 7.2.6. Let f be a quasiconformal mapping of B2 onto a quasidisk Ω. Suppose that ∂Ω is not a

chord-arc curve. Then, there exists ϕ ∈ F2 with limt→0 ϕ(t)/t = +∞ such that Σ̃(f, ϕ) is not quasisymmetric

to S2.

Proof. For the proof of the corollary, simply set rn = 1 in the proof of Proposition 7.2.3 and follow the same

arguments. The only thing that changes is the definition of the arcs Jn.

Define inductively numbers r′n > 0 and arcs Jn ⊂ Γ as follows. Set r′0 = 0 and J0 = Γ. Given r′n−1 and

Jn−1 ⊂ Γ, let Jn ⊂ Γ be such that diam Jn <
1
2 diam Jn−1 and `(Jn) > n diam Jn. Let Pn1 , . . . , P

n
Nn
∈ Jn

satisfying (7.2.2) and Γ(Pn1 , P
n
Nn

) = Jn. For the rest of the proof, repeat the arguments in the proof of

Proposition 7.2.3 setting rn = 1.
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