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ABSTRACT 

 

Sacrificial bonds and hidden length (SBHL) in structural molecules provide a mechanism for energy 

dissipation at the nanoscale. It is hypothesized that their presence leads to greater fracture toughness than 

what is observed in materials without such features. Here, we investigate this hypothesis using a 

simplified model of a mineralized collagen fibril sliding on a polymeric interface with SBHL systems. A 

1D coarse-grained nonlinear spring-mass system is used to model the fibril. Rate-and-displacement 

constitutive equations are used to describe the mechanical properties of the polymeric system. The model 

quantifies how the interface toughness increases as a function of polymer density and number of 

sacrificial bonds. Other characteristics of the SBHL system, such as the length of hidden loops and the 

strength of the bonds, are found to influence the results. The model also gives insight into the variations in 

the mechanical behavior in response to physiological changes, such as the degree of mineralization of the 

collagen fibril and polymer density in the interfibrillar matrix. The model results provide constraints 

relevant for bio-mimetic material design and multiscale modeling of fracture in human bone. 
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CHAPTER 1 

Introduction 

 

The human bone structure is a hierarchical composite of collagen and hydroxyapatite (HA) with 

several mechanisms to resist fracture at various scales [Koester et al., 2008; Nalla et al., 2004; 

Ritchie et al., 2009] .These size scales relate to the characteristic structural dimensions in bone, 

which vary from twisted peptide chains at the nanometer scale to the (secondary) osteon 

(haversian) structures, which are several hundred micrometers in size. The hierarchical structure 

at the intermediate scales includes (i) hydroxyapatite- impregnated twisted collagen fibrils at the 

scale of tens of nanometers; (ii) collagen fibers that are typically a micrometer in diameter and 

(iii) the lamellar structure of collagen fibers at several micrometer dimensions. The combination 

of this complex geometry and unique blending of material properties provides bone with 

remarkable levels of strength and toughness [Espinoza et al., 2009; Elbanna and Carlson, 2013]. 

In this paper, we focus on the mechanical response of a single mineralized collagen fibril sliding 

on a polymeric layer that includes sacrificial bonds and hidden length (SBHL) systems 

[Thompson et al., 2001]. The fibril utilizes the breakage of sacrificial bonds and the release of 

hidden length to dissipate energy while being stretched. This process introduces a microscopic 

mechanism for fracture resistance [Fantner et al., 2005]. Our primary focus is investigating the 

effect of the polymeric glue material on the basic characteristics of crack propagation such as 

critical crack size, stable crack growth speed and energy dissipation. 

The basic structure and operation mechanism of the SBHL system is shown in Figure 1. The 

assembled glue molecule may include more than one polymer chain with sacrificial bonds 

forming within the chain itself, crosslinking the different chains and connecting the chains to the 

collagen fibrils. The large scale separation of the collagen fibrils is resisted by an array of 

parallel gel molecules as shown in Figure 1(a). As long as the bond is intac t, it shields parts of 

the polymer length from contributing to the end-to-end distance. This corresponds to a reduction 
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in the chain entropy (the possible number of configurations resulting in the same end-to-end 

distance) and a corresponding increase in the initial stiffness of the polymer chain. After the 

sacrificial bond is broken, the shielded loop unfolds and significant energy is dissipated in 

reducing the chain entropy as it straightens out. 

 
Figure 1: The structure and the basic operation principles of the SBHL system.  

(a) High-resolution Scanning Electron Micrographs (A and B) and AFM (C) show glue molecules 

resisting fracture in bone suggesting that these molecules form quasi-one-dimensional bundles. Subplots 

(D) and € shows two adjoining mineralized collagen fibrils at rest and during the formation of 

microcracking respectively.  (Reprinted with permission from G. E. Fantner et al., [2005]).  

(b) Force change associated with sacrificial bond breakage and hidden length release. (i) Before a 

sacrificial bond is broken, only the black length of the molecule contributes to the entropic configurations 

and to the force with which the molecule resists stretching. The red length of the molecule is hidden from 

the force by the sacrificial bond. (ii) When the bond breakage threshold is reached, the bond breaks and 

the whole length of the polymer (black plus red) contribute to its configurational entropy. This sudden 

increase in entropy leads to an abrupt force drop. (iii) As the polymer molecule is further stretched, the 

force it supports increases, until the entire molecule detaches from the substrate and ruptures. The grey 

area represents the extra work done in stretching a polymer with sacrificial bonds and hidden lengths, 

relative to a polymer of the same length but without such structural features (from Elbanna and Carlson 

[2013]). 

 

Previous theoretical models describing the mechanical behavior of bone glue polymers [e.g. 

Fantner et al., 2006; Elbanna and Carlson, 2013; Lieou et al., 2013] have implemented the 

worm-like chain model [Bustamente et al., 1994] as an approximation for the AFM experimental 

curves. We adopt this model here as well. The more flexible the glue polymers are, the better this 

approximation will be. Nonetheless, further work is required to constrain the force displacement 
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relation of single polymer molecules in the bone glue along its whole deformation history. 

The existence of SBHL systems is incorporated in the worm-like-chain model by introducing a 

dynamical variable: the available length [Elbanna and Carlson, 2013]. This available length is the 

difference between the polymer contour length and the sum of the length of the hidden loops that 

have not been unfolded yet. The rate dependence of the SBHL system is modeled using the 

transition state theory [Bell, 1979; Lieou et al., 2013]. In this paper we will implement the rate 

and displacement model developed by Lieou et al., [2013] as the constitutive law for the 

polymeric layer with SBHL system. 

The primary component of the human bone structure is mineralized collagen fibril. Buehler 

[2007] developed a model for the mineralized fibril in nascent bone in which collagen is 

represented by tropocollagen molecules, cross- linked by hydrogen bonds, and the mineral plates 

are hydroxyapatite (HA) crystals forming in the gap regions between the collagen fibrils. The 

stiffness of collagen fibrils depends on the mineralization percentage. With aging, bone 

properties degrade [e.g. Zioupos and Currey, 1998]. The mineralization percentage decreases and 

both the stiffness and the peak strength of the fibrils are reduced. We will also study the influence 

of mineralization on fracture properties of the mineralized fibril-polymer system. 

We developed a coarse grained model for the mineralized collagen fibril with polymeric glue. 

The fibril is modeled using a one-dimensional mass-spring system. The stiffness of the springs is 

calculated using the fibril geometric properties and the stress strain behavior computed from 

Beuhler [2007]. The polymeric layer is modeled using the constitutive description of Lieou et al., 

[2013]. The system is integrated in the quasistatic limit which is appropriate for exploring 

nucleation characteristics and stable crack growth speeds.  Depending on the polymer density, 

the system may fail by the breakage of the collagen fibril and not the detachment of the polymers. 

In this limit we use a fully dynamic approach to track these instabilities. This failure mode is 

relevant for understanding the deterioration of bone quality with age since the ability of bone 

cells to produce the polymeric glue decreases with age. We have also investigated the properties 

of the SBHL system since it has been shown previously that these molecular bonding p rovide a 
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small scale energy dissipation mechanism and hence contribute to fracture toughness [Thompson 

et al., 2001]. There is still insufficient experimental data about the geometrical properties of these 

systems and the effect of this mechanism on crack resistance. Hence, we pursue in this paper a 

parametric study to explore their relative contribution on fracture processes. 

The remainder of the paper is organized as follows: In Section II we introduce our model for 

numerical simulation as well as its discretization. Then, the material properties of collagen fibrils 

and the polymer system are discussed. In Section III, we describe the numerical method and the 

integration scheme. In Section IV, the results of our simulations are presented demonstrating the 

effect of different properties of SBHL system, polymer density and mineralization ratios. We 

discuss the implications of our simplified model on bone fracture in Section V. 
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CHAPTER 2 

Kinetic Model 

 

In this section, we introduce the basic elements of the coarse grained model for the mineralized 

collagen fibril and the polymeric layer. We consider a single fibril, idealized as 1-D array of 

masses and nonlinear springs, sliding on a viscoplastic polymeric layer. As the fibril is pulled, the 

motion is resisted by the interfacial forces provided by the polymeric system. Detachment of 

polymer end bonds and failure of collagen fibril are expected as limit states. 

 

2.1 Model setup 

A mineralized collagen fibril may be idealized as a 1-D prismatic solid bar. We are primarily 

interested in the longitudinal deformation of the bar as interfibrillar slip is one of the major 

failure modes in fibrillar arrays [Beuhler, 2007; Espinosa, 2009]. Polymer molecules are 

uniformly distributed along the interface. Displacement controlled loading is applied in the 

longitudinal direction on one end of the collagen fibril as shown in Figure 2(a). We discretize the 

collagen fibril into a number of identical blocks connected with nonlinear springs which capture 

the behavior of the mineralized fibril molecules as shown in Figure 2(b). 
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Figure 2: The mineralized fibril. (a) Schematic plot of the continuum representation 

(b) Schematic plot of discretized model, bn is the number of discretized fibril blocks. 

 

The stiffness of the springs interconnecting the blocks is computed based on the geometric and 

material properties of the mineralized fibrils. The material model for the fibril is adapted from 

Beuhler [2007] (Figure 3(a)). The different stress drops represent internal slip events between the 

tropocollagen molecules or between collagen molecules and mineral plates. We adopt a 

simplified version of these curves with a linear elastic behavior up to the yield point followed by 

a saw tooth response in the post-yielding phase up to the point of complete failure (Figure 3(b)). 
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Figure 3: Constitutive behavior of collagen fibrils. (a) Stress-Strain relation of MCF & CF [Beuhler, 

2007]. Figure reproduced with permission from Beuhler [2007] (b) Simplified stress-strain relation of 

MCF & CF. 

 

For the stress-strain relation under compression, we assume that the fibril is linear elastic up to 

its buckling stress and has no compressive strength in the post-buckling regime. We take the 
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buckling stress in compression to be equal to the tensile yield stress. That assumption is 

sufficient for our purpose, because simulations show the compression strain of collagen fibril 

will not exceed -0.07; the assumed value for yield strain. We discuss the implications of this 

assumption and possible modification in Section V. 

If the fibril is unloaded in the post-yielding regime, residual inelastic strains develop and energy 

is dissipated. Beuhler [2007] found that the energy dissipation ratio between MCF and CF is 

approximately 5. Since the full stress strain curve for the unmineralized collagen fibril is known, 

we use this estimate of the energy dissipation to extrapolate the stress strain curve for the 

mineralized case beyond what is shown in Beuhler [2007] (Figure 3(a)). 

 

2.2 Dynamical constitutive behavior of polymer system 

Based on the worm-like chain model, the force extension relationship for a single polymer is 

given by [Bustamente et al., 1994; Rubenstein, 2003; Elbanna and Carlson, 2013]: 

𝐹 =  
𝑘𝐵𝑇

𝑏
[
1

4
(1 −

𝑥

𝐿𝑎

)
−2

−
1

4
+

𝑥

𝐿 𝑎

]                                                                                                       (1) 

where 𝐹 is the polymer force, 𝑥 is the end-to-end distance, 𝑏 is the persistence length, 𝑘𝐵  is 

Boltzmann constant, 𝑇 is the temperature and 𝐿 𝑎 is the available length of polymer, which is 

the sum of the length of polymer parts that contributes to entropic elasticity [Elbanna and 

Carlson, 2013] . 

To account for pulling rate effects, Bell’s theory is applied [Bell, 1978; Lieou et al., 2013]. 

Assuming a double well potential for the bond, the rates of bond formation and breakage depend 

on the applied force. In particular, the rates of these two events have exponential dependence on 

the pulling force and transition state distance. That is, for sacrificial bonds: 

𝑘𝑓 =  𝛼0 exp ( 
𝐹∆𝑥𝑓

𝑘𝐵𝑇
 )                                                                                                                          (2) 

𝑘𝑏 =  𝛽0 exp  (−
𝐹∆𝑥𝑏

𝑘𝐵 𝑇
)                                                                                                                        (3) 

For end bonds, we obtain: 
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𝑘𝑓
𝑒𝑛𝑑 =  𝛼𝑒 exp ( 

𝐹∆𝑥𝑓
𝑒𝑛𝑑

𝑘𝐵𝑇
 )                                                                                                               (4) 

𝑘𝑏
𝑒𝑛𝑑 =  𝛽𝑒  exp  (−

𝐹∆𝑥𝑏
𝑒𝑛𝑑

𝑘𝐵𝑇
 )                                                                                                             (5) 

Here, F = F(x) is the polymer force given by Eq. (1), ∆𝑥𝑓 and ∆𝑥𝑏 are the distances to the 

transition state; 𝛼0 and 𝛽0 are, respectively, inverse time scales which describe the rate at 

which bond breakage and formation events occur at zero pulling force. The same applies for end 

bonds. The master equation for the change of the number of bonds is given as: 

𝑑𝑁𝑏
∗

𝑑𝑡
=  −𝑘𝑓𝑁𝑏 + 𝑘𝑏𝑁𝑓                                                                                                                           (6) 

where 𝑁𝑏
∗ is the continuous version of integer 𝑁𝑏, representing the number of sacrificial bonds 

at a given instant of time. 𝑁𝑓 = 𝑁 − 2𝑁𝑏 is the number of free sites to form potential sacrificial 

bonds, with N = L/b being the number of sites. The same applies for end bonds as: 

𝑑𝑁𝑒
∗

𝑑𝑡
=  −𝑘𝑓

𝑒𝑛𝑑𝑁𝑒 + 𝑘𝑏
𝑒𝑛𝑑(1 − 𝑁𝑒)                                                                                                      (7) 

The condition for bond breakage is thus satisfied if: 

∫ (𝑘𝑓(𝐹(𝑥))𝑁𝑏 − 𝑘𝑏(𝐹(𝑥))𝑁𝑓)𝑑𝑡
𝑡2

𝑡1

= 1                                                                                          (8) 

∫ 𝑘𝑓
𝑒𝑛𝑑(𝐹(𝑥))𝑑𝑡

𝑡𝑐

0

= 1                                                                                                                           (9) 

The polymeric system is usually composed of a large number of polymers (Np). We assume that 

the polymer molecules are parallel to one another forming quasi-one-dimensional bundles and 

neglect cross linking between the bundles. Each idealized polymer molecule, however, may 

consist of more than one single polymer strand crosslinked together as shown in Fig. 1a. In this 

case, the hidden length concept does not represent globular domains only but is also extended to 

cover parts of the polymer chains that are shielded by the cross links. Also, the persistence length 

used in the WLC model should be interpreted as an effective persistence length for the polymer 

blob to fit its mechanical behavior and not necessarily the actual persistence length of a single 

strand. The blob of polymer molecules deforms predominantly in one dimension and thus we 
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approximate it by a quasi-one-dimensional bundle. Figure 1a suggests that during the separation 

of the fibrils, several of these bundles resist the failure with weak connection between the 

bundles. We thus neglect the cross linking between the fiber bundles. This approximate model of 

polymers with SBHL has successfully reproduced many of the features observed in previous 

AFM experiments [e.g. Fantner et al., 2006; Elbanna and Carlson, 2013; Lieou et al., 2013]. It is 

possible, nonetheless, that the actual topology of the polymeric interface is more complicated. In 

particular, the cross linking between the polymer molecules may lead to the development of 

two-dimensional network structure. We discuss this further in Section V. 

Moreover, we assume that the contour lengths of polymers as well as the lengths of the hidden 

loops are chosen from a uniform random distribution. By coupling the worm-like chain model 

equations with the transition rate factors it is possible to generate force extension curves for the 

polymeric system at different pulling rates. This is shown in Figure 4 for both the single and 

multiple polymers cases. If all polymers are detached, we assume that the residual frictional 

resistance of the polymeric layer is negligible. The rate dependence of the residual friction will 

be the subject of future investigation. 
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Figure 4: Constitutive response of the polymer molecules, stretched at v=102m/s (green), v=103m/s 

(blue) and v=104m/s (red). (a) Single polymer molecule force-extension curve. (b) Polymer system 

force-extension curve. 
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Moreover, we allow for the case of polymer retraction. That is, when the pulling rate becomes 

negative, the system unloads. The unloading force decreases according to the worm-like 

Force-Elongation model (Eqn. (1)), now applied to a group of polymers simultaneously with 

their available lengths the same as their values at the unloading point (i.e. we assume no bonds 

break during unloading). This is shown in Figure 5. 

 

Figure 5: Polymer force under loading (Blue) and unloading (Black) in a representative numerical 

experiment. 

 

2.3 Parameters selection 

In the numerical simulations we used the following parameters for the collagen fibril model. We 

assume that its cross section is square with side dimension ls= 100 nm. The total length of the 

fibril bar is Lf= 2000nm, and is discretized into bn = 100 identical blocks with each length = 

20nm. The density of fibril is assumed to be 𝜌=1500 kg/m3. We apply a constant pulling rate of 

v0 =1 µm/s at the first block. The elastic modulus E of the fibril is approximately 5.7 GPa for the 

fully mineralized case and 4.3 GPa for the unmineralized case. The stiffness of the spring is 

calculated as /n fk EAb L . The yielding strain is 𝜀=0.07 for both tension and compression. 
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We assume the polymer density is spatially homogeneous along the interface. We consider 

different values for this density D varying between 5 and 25 polymers per nm. Each polymer is 

assumed to have the same number of sacrificial bonds (N). The effect of increasing the number 

of sacrificial bonds per polymer from 0 to 8 will be discussed shortly. Setting a uniform number 

of sacrificial bonds across the polymer enables us to investigate the effect of number of SBHL on 

crack propagation independent of other factors. In real systems it is possible that the number of 

sacrificial bonds may vary from one polymer bundle to another. This is accounted for, partially, 

in our simulations by allowing randomness in other system variables (e.g. contour length and 

length of hidden loops) as we will shortly discuss. Furthermore, previous work [e.g. Elbanna and 

Carlson, 2013] has shown that the maximum increase in toughness from a polymer blob is 

achieved with just a few sacrificial bonds (less than 10). The contour lengths of polymers (Lc) are 

chosen from a uniform random distribution with average length, minimum length and maximum 

length of 150 nm, 75nm and 225 nm, respectively. These values are consistent with what is 

observed in AFM experiments [Hansma et al., 2005]. The hidden lengths (Ln) are also generated 

randomly between 0 to C*Lc / N with the only constraint that the initial available length (L0) is 

positive, where C is a positive design coefficient typically set as unity. 

As for the characteristics of the bonds, we followed Lieou et al. [2013] and choose the following 

parameters: 𝛼0 = 0.3 s-1, 𝛽0 = 0.003 s-1, 𝛼𝑒= 0.1 s-1, b = 0.1 nm, ∆𝑥𝑓 = 0.25 nm, ∆𝑥𝑏 = 0.1 

nm, and ∆𝑥𝑒 = 0.15 nm. 

All the parameters are summarized in Table 1. 
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Table 1. List of parameters used in model and simulation 

Parameter Physical meaning Values in simulations References 

ls 

Collagen fibril cross section side 

dimension 

100 nm Ritchie et al., 2009 

Lf 
†
 Length of collagen fibril bar 

1000nm 

2000 nm* 

Ritchie et al., 2009 

Beuhler 2007 

*Assumed in simulation 

bn Number of discretized blocks in fibril bar 100 Assumed in simulation 

𝜌 density of fibril bar 1500 kg/m3 Kurtz, SM. Edidin AA 2006 

v0 
‡
 Loading velocity 1 µm/s Assumed in simulation 

E Elastic modulus of collagen fibril 

5.7 / 4.3 GPa 

mineralized / unmineralized 

Beuhler 2007 

𝜀 Yielding strain of collagen fibril 0.07 Beuhler 2007 

D Polymer density 5 ~ 25 /nm Varies in simulation 

N Number of SBHL in each polymer 0 ~ 8 Varies in simulation 

Lc Contour length of polymer molecule 75 ~ 225 nm 

Lieou et al 2013; 

Hansma et al., 2005 

Ln Hidden length of each hidden loop 0 ~ C*Lc / N 

Varies as uniform distribution in 

simulation 

L0 

Initial available length of polymer 

molecule 

>0 Determined by Lc and Ln 

𝛼0
§ 

Describe the rate of breakage of 

Sacrificial bonds at no loads 

0.3 s-1 

Lieou et al 2013 

Su et al 2009 

𝛽0
§
 

Describe the rate of formation of 

Sacrificial bonds at no loads 

0.003 s-1 

Lieou et al 2013 

Su et al 2009 

𝛼𝑒
§
 

Describe the rate of breakage of end 

bonds at no loads 

0.1 s-1 

Lieou et al 2013 

Su et al 2009 
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Table 1(cont.). List of parameters used in model and simulation 

Parameter Physical meaning Values in simulations References 

b
§
 Persistence length 0.1 nm 

Lieou et al 2013 

Su et al 2009 

∆𝑥𝑓
§
 

Distance to transition state about 

formation of bonds 

0.25 nm 

Lieou et al 2013 

Su et al 2009 

∆𝑥𝑏
§
 

Distance to transition state about breakage 

of sacrificial bonds 

0.1 nm 

Lieou et al 2013 

Su et al 2009 

∆𝑥𝑒
§
 

Distance to transition state about breakage 

of end bonds 

0.15 nm 

Lieou et al 2013 

Su et al 2009 

 

†: Lf has been estimated prev iously to be of the order of 1 micrometer [Ritchie et  al., 2009]. However, we extended 

the bar to 2 micrometers to ensure that there is no effect for the end conditions on the crack characteristics in the 

stable growth reg ime. We got identical results for the crit ical crack size and stable crack growth for simulat ions with 

a bar of length 1 micron (not shown here). The longer bar enables the observation of the dynamic propagation 

regime.  

‡: Consistent with loading rates adopted in AFM tests [e.g. Adams et al., 2008]. 

§: These values (from 𝛼0 to ∆𝑥𝑒) for the bond parameters may vary depending on the chemical nature of bonding. 
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CHAPTER 3 

Implementation of dynamic and quasistatic analysis 

 

The equations of motion of individual blocks take the following form: 

     
1, , 11 1 , 0

i i i i ii i cf i i cf i i p i im x F x x F x x F x x
                                     (10) 

Here,
1,i icfF
 1,i icfF


and 

, 1i icfF


 are the forces on the ith block due to its motion relative to the i+1 

and i-1 blocks, respectively. These forces are a function of the relative displacement between the 

adjacent blocks and their values are determined from Figure 3(b).  ,
ip i iF x x  is the polymer 

force acting on the ith block . It is a function of the block absolute displacement and velocity. 

We numerically integrate the system in time using Newmark-beta method [Newmark, 1959]: 

𝑥̇𝑡+∆𝑡
= 𝑥̇𝑡 + [(1 − 𝛼)𝑥̈𝑡 + 𝛼 𝑥̈𝑡+∆𝑡

]∆𝑡 .                                                                                          (11) 

𝑥𝑡+∆𝑡
= 𝑥𝑡 + 𝑥̇𝑡∆𝑡 + [(

1

2
− 𝛽) 𝑥̈𝑡 + 𝛽 𝑥̈𝑡+∆𝑡

] ∆𝑡
2.                                                                        (12) 

In the above equations, t is the current time step, 𝑡 + ∆𝑡 is the next time step, ∆𝑡 is the time 

step size, and coefficients 𝛼 and 𝛽 are set as 1/2 and 1/4 respectively. Since the acceleration at 

the next time step is not known, we implement a predictor-corrector scheme to solve Eqns. (12) 

and (13). 

Equations 1-12 represent a highly nonlinear system with strong coupling between forces, 

displacements and velocities. At time t, the displacement and polymer forces for all the blocks 

are known. We use this information to compute the instantaneous accelerations of all the blocks 

at time t. To estimate the response of the system at time tt    we initially assume that the 

acceleration of each block is constant during the interval [t, tt   ]. Using Eqns. (11) and (12) a 

predicted value for the displacement and velocity of each block at time tt    is determined. 

Using the predicted values we estimate the polymer and collagen forces acting on each block. We 
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use these values to compute the new acceleration magnitude for each block at time 
tt   . This 

latter value is not, in general, equal to the constant acceleration assumed previously. We then use 

Newmark-beta method (Eqns. (11) and (12)) to compute corrected values for displacements and 

velocities. We repeat the process until the errors between the predicted and computed 

displacements (velocities) are sufficiently small ( 610 of the latest predicted value). 

We adopt an adaptive time stepping algorithm. To detect bond breakage events, we integrate 

Eqns. (8) and (9) numerically using a trapezoidal rule. We also compute the changes in the 

polymer force due to the breakage of a sacrificial or end bond. If the value of integration of 

either Eqn. (8) or Eqn. (9) is greater than 1+  , where   is a prescribed small number, there is a 

probability that the drop in polymer force may not be accurately represented. In this case, the 

time step is reduced to half its original value and the calculation is repeated. Only if the drop in 

the polymer force is much smaller than the total force in the polymer system do we tolerate 

integration outcomes exceeding 1 by values slightly larger than  . In this case, the effect of the 

discontinuity is negligible in the force displacement curve. This enables us to use larger time 

steps without compromising the accuracy of the constitutive law. 

Two approaches are implemented in this paper: a quasistatic approach to model stable crack 

growth, and a fully dynamic approach to model fracture of the collagen fibril. In the former, the 

inertia term in Eqn. (10) is set to zero. The time dependent loading (imposed displacement rate at 

the end) as well as the rate dependence of the polymer force are still included. In this case, we 

solve for static equilibrium, using Eqn. (10) but with the L.H.S. set to zero, at each time step. In 

the dynamic approach, the inertia term is included and integrated numerically. This is appropriate 

for tracking dynamic crack propagation and strain localization in the fibril during the 

post-yielding stage. At the instant of yielding, we switch to the dynamic solver and repeat the last 

few simulation steps from the quasistatic analysis. The initial conditions for the dynamic analysis 

are taken from the solution corresponding to the last step in the quasistatic solution. Both the 

dynamic and quasistatic analysis yield identical results for the stable crack growth regime as long 

as the collagen fibril remain elastic. The comparison of two schemes is shown in Figure 6. 
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Figure 6: Comparison of quasistatic analysis and dynamic analysis on a benchmark problem. (a) Polymer 

forces (pN) as a function of extension (nm). Both scheme yield identical results. (b) Motions (nm) of 

fibril block as a function of time (ns) and (c) zoomed-in details of motions. The motion of quasistatic 

analysis can be idealized as the averaged dynamical motion. 
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CHAPTER 4 

Results of simulations 

 

Numerical integration of the equations of motion (Eqn. (10)) together with the constitutive 

equations (Eqns. (1)-(9)) provides quantitative insight into different characteristics of crack 

nucleation and propagation in our system.  

 

4.1 Effect of sacrificial bonds and hidden length (SBHL) system 

First, we focus on the effect of sacrificial bonds and hidden length system on the energy 

dissipation and crack nucleation properties. In each group of simulation, the number of sacrificial 

bonds (N) per polymer molecule ranges from 0 to 8. The lengths of hidden loops (Ln) are chosen 

from a uniform random distribution. 

 

4.1.1 Critical crack size 

Figure 7(a) shows the time history for crack propagation along the interface for different number 

of sacrificial bonds per polymer (N). We define the crack tip position by the location of the 

farthermost block whose all polymers have been completely detached. The crack length is thus 

defined as the distance between the edge block and the crack tip. 
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Figure 7: Effect of sacrificial bonds and hidden length system on crack propagation. (a) Crack length 

(nm) as a function of time (ns) for different number of sacrificial bonds per polymer ranging from 0 to 8. 

Fully mineralized collagen fibril and polymer density = 25 polymers/nm are used in this model. 

Increasing the number of sacrificial bonds increases the time to the onset of dynamic instability (signaled 

by divergent crack propagation speed) and increases the critical crack size (taken as the size 

corresponding to the end of the stable crack growth at constant speed regime) (b) Average stable crack 

propagation speed (nm/ns) as a function of number of sacrificial bonds per polymer. The results are 

averaged over 8 runs. The vertical bars and the red curve indicate one standard deviation and average 

value, respectively. 
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Under the displacement controlled loading condition considered here, the crack goes through a 

stable growth phase [Nalla et al., 2004] until it reaches a critical length after which kinetic 

energy is no longer negligible. This is shown in Figure 7(a). In the stable crack growth, the crack 

expands slowly at nearly constant speed represented by the initial linear regime in the crack 

space time plots. As the crack approaches a critical size its propagation speed increases and 

eventually it diverges signaling that the quasistatic solution is no longer valid and the crack 

propagation is dynamic. We define the critical crack size as the crack length at the end of the 

initial linear regime in Figure 7(a). For the simulations shown here, the existence of sacrificial 

bonds slightly increases the time to dynamic instability (from 0.1063s to 0.1075s) and increases 

the critical crack size (from 510 nm to 600 nm). Thus the existence of sacrificial bonds 

increases the flaw tolerance [Gao et al., 2003] of the system. 

In Figure 7(b) we plot the stable crack growth speed as a function of number of sacrificial bonds. 

The stable crack growth is given by the slope of the initial linear regime in Figure 7(a). The 

presence of sacrificial bonds reduces the stable crack speed by approximately 1 µm/s (~4.4% of 

the speed at zero sacrificial bonds). This effect is weakly dependent on the precise number of 

sacrificial bonds and the crack stable growth speed converges to, on average, 17.5 µm/s 

for 𝑁 ≥ 4. 

 

4.1.2 Energy dissipation 

Another indicator of the system response is its fracture toughness. This is measured by how 

much energy is dissipated as the crack grows and propagates. The higher this energy is, the 

tougher the system becomes and the more resistant to cracking it is [Park et al., 2009]. There are 

two types of toughness: initiation toughness and propagation toughness [Nalla, 2004]. The 

initiation toughness is related to the energy necessary to start the crack growth. The propagation 

toughness is measured by the energy dissipated during the crack growth.  
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Figure 8: Effect of sacrificial bonds and hidden length system on energy dissipation. (a) Energy 

consumption (J) versus crack position (nm) for different number of sacrificial bonds per polymer. Fully 

mineralized collagen fibril and 15 polymers/nm are used in this model. The dotted parts reflect that the 

mode of crack propagation has become dynamic and energy estimates based on quasistatic analysis are no 

longer applicable. Increasing the number of bonds increases both the initiation and propagation toughness 

(b) Normalized total energy dissipation during the entire simulation as a function of number of sacrificial 

bonds. The results are averaged over 8 runs. The vertical bars and the red curve indicate one standard 

deviation and average value, respectively.  

 



23 
 

The evolution of energy dissipation as a function of crack position for different numbers of 

sacrificial bonds per polymer is shown in Figure 8(a). Here, the dissipated energy is calculated as 

the sum of inelastic work done by all the blocks up to the current time t. The initiation toughness 

increases with increasing the number of sacrificial bonds.  The presence of sacrificial bonds 

also increases the total energy dissipation during the stable crack growth. In Figure 8(b) we 

compute the total energy dissipation as a function of the number of sacrificial bonds. The energy 

value is normalized by energy dissipation when there are no sacrificial bonds. As the number of 

sacrificial bonds increases, the total energy dissipation increases as well. For N=8, the relative 

increase in energy dissipation is approximately 8.5%. 

However, similar to what was shown in Elbanna and Carlson [2013] and Lieou et al., [2013] for 

individual polymer systems, energy dissipation saturates in the limit of large number of 

sacrificial bonds. For the simulations shown here, increasing number of sacrificial bonds beyond 

N=4 has a limited effect on further energy dissipation. 

 

4.2 Effect of polymer density and fibril mineralization 

Another important system parameter is polymer density [Elbanna and Carlson, 2013] and degree 

of mineralization [Jaeger and Fratzl, 2000; Beuhler, 2007; Nair et al., 2013] of the collagen fibril. 

These are expected to influence the fracture toughness and affect the mechanical features of 

crack nucleation and propagation. 

 

4.2.1 Effect of polymer density on constitutive relation of cohesive interface 

and energy dissipation 

Developing cohesive law formulations for the polymeric interface is an essential ingredient for 

multiscale modeling of fracture propagation as it enables the inclusion of small scale physics into 

macroscopic models [Burr et al., 1988; Vashishth et al., 1997; Ural and Vshishth, 2006, 

2007,2007; Yang et al.,2006; Ural, 2009; Ural and Mischinski, 2013] . Figure 9(a) shows the 
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average force, favg, along the interface as a function of the fibril edge displacement for different 

values of polymer density (5 to 25 polymers/nm). Both the peak force and the edge displacement 

at failure increase as the polymer density increases. Our results indicate a linear dependence of 

the peak favg (denoted by red circles) on the polymer density. The edge displacement at failure is 

also found to weakly increase as the polymer density increases. This value depends on the length 

distribution of polymers more than the polymer density itself. However, increasing the number of 

polymer increases the probability of finding longer polymers leading to larger maximum 

elongation. 

The plots in Figure 9(a) show the general features characteristic of cohesive laws [Park and 

Paulino, 2001, and references therein]. In the slip strengthening regime, the interfacial force 

increases as a function of slip up to a critical slip value. Beyond this value, the detachment of 

polymers lead to progressive softening and slip weakening behavior; the interfacial force 

decreases with increasing slip. 

Variations in polymer density affect fracture toughness. Figure 9(b) shows the time evolution of 

energy dissipation during crack propagation for different values of polymer density. As the 

polymer density increases, this leads to (i) an increase in the total value of energy dissipated, and 

(ii) an increase in the energy dissipation rate as a function of time. This increased energy 

dissipation leads to a longer slip strengthening region; the displacement at which the peak favg is 

achieved increases as the polymer density increases. 
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Figure 9: Effect of polymer density on cohesive force and energy dissipation. (a) Average slip force (10
-3

 

N/m) as a function of pulling edge displacement (nm), for different polymer densities, from 5 to 25 

polymers/nm. The average slip force is the total force at the interface of shear over the length of the 

interface. Peak favg are marked with red circles. (b) Energy consumption (J) by polymer system as 

function of time (ns) for different polymer density ranging from 5 to 25 per nm. 
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4.2.2 Crack propagation 

Variations in polymer density are also expected to influence characteristics of crack nucleation 

and growth, Figure 10(a) shows the crack position as a function of time for different values of 

polymer density. Increasing the polymer density leads to an increase in the time to crack 

initiation. For example, for 5 polymers/nm the crack starts to grow at t = 6.1 ns, whereas when 

25 polymers/nm are used the crack starts to grow at t = 6.5 ns. Moreover, polymer density affects 

the crack growth pattern. At the lowest polymer density, the crack propagates dynamically 

through the system as soon as it starts. This is reflected by the nearly vertical crack evolution in 

the space time plot shown in Figure 10(a). On the other hand, at the highest polymer density 

there is a stable crack growth regime followed by dynamic instability. That is, increasing 

polymer density leads to an increase in the critical crack size and delays the onset of dynamic 

crack growth. 

These features are further explored in Figure 10(b) where the average crack propagation speed is 

plotted for various polymer densities. The crack moves approximately 20% to 30% slower for 

each 5/nm increment of polymer density. Notice that the large variability in case of 5 polymers 

per nm is reflective of the randomness of the polymer system properties and the significance of 

discrete effects in the limit of low polymer density. 
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Figure 10: Effect of polymer density on crack propagation (a) Crack length (nm) as a function of time 

(ns) for different polymer density ranging from 5 to 25/nm. (b) Average crack speed (nm/ns) as function 

of polymer density (/nm), averaged over 8 runs. The vertical bars and the red curve indicate one standard 

deviation and average value, respectively. 
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Fibril mineralization also influences crack growth patterns. Figure 11(a) shows the crack position 

as a function of time for two limiting cases: an unmineralized case and a fully mineralized case  

[Beuhler, 2007; Nair et al., 2013]. The mineralization ratio in the fully mineralized case 

corresponds to what is reported in Beuhler [2007]. The mineralized case appears to be more 

brittle with shorter rise time to dynamic instability and a slightly smaller critical crack size. In 

this simulation, the polymeric interface was chosen to be weak enough so that the system fails by 

sliding along the interface and not by fracture through the fibril. In particular, both the 

mineralized and the unmineralized fibrils are within their elastic regimes throughout the 

simulation. In that sense, the difference between the mineralized and the unmineralized cases is 

that the former is stiffer than the latter. The crack propagation speed depends on different factors 

such as the interface fracture toughness, the collagen fibril density and the fibril density. Higher 

fracture toughness leads to lower propagation speeds (see Figure 10(b)) while higher rigidity 

enables faster crack propagation [Freund, 1990]. Hence, the crack propagates faster as the degree 

of mineralization increases. This is shown in Figure 11(b) which depicts the average crack speed 

as a function of the mineralization percentage. The average crack speed rises by 23% from 

unmineralized to fully mineralized case. 
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Figure 11: Effect of fibril mineralization on crack propagation. (a) Crack position in length (nm) as a 

function of time (ns) for different fibril mineralization percentage from 0 to 100. (b) Average crack speed 

(nm/ns) as function of fibril mineralization (%). 
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4.2.3 Collagen fibril breakage analysis 

The results of the previous section are valid when the polymeric interface is weak enough such 

that the force in the collagen fibril does not exceed its yield strength. In the case of 

unmineralized collagen fibril, the stiffness and the yielding stress is 33% less than that of the 

fully mineralized case. If the polymer density is high enough (e.g. 25 polymers/nm), the limit 

state of tensile failure governs for the case of unmineralized fibril. In this limit, the kinetic 

energy associated with the fibril softening and breakage is not negligible. To capture these 

dynamic effects we turn on the dynamic solver a few time steps before the force in the fibril 

reaches its yield value. The initial conditions for the full dynamic simulation are taken from the 

results of the last step of the quasistatic analysis. 

Figure 12 shows the displacement of the different blocks, representing the collagen fibril, as a 

function of time. Shortly after the yield force is attained in the first spring, the deformation 

becomes increasingly localized in the leading edge of the fibril. The collagen fibril eventually 

breaks in this region before the crack propagates along the interface. 

 

 

Figure 12: Failure of the system by collagen fibril breakage. (a) Displacement of discretized collagen 

fibril and (b) zoomed in details at the instant of fa ilure (nm) as a function of time after failure of collagen 

fibril. Displacements are measured from the initial positions of blocks. Only the first 5 block motions are 

shown. The displacement of leading block where external force is applied is not shown. Mineralization 

percentage=0% (pure collagen fibril) and polymer density=25/nm. 
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Figure 13(a) and 13(b) shows the force displacement relation for the first five springs in our 

model. Only the first spring was able to reach the yield force and explore the post yielding 

regime. All other springs remain linearly elastic. The deformation increases in the leading edge 

of the fibril while the remaining springs unload. As a result, the first spring continues to stretch 

until it completely fails. The force-extension curve for this spring (Figure 13(a)) is consistent 

with the idealized constitutive model adopted in Figure 3(b). Other springs unload as their blocks 

relax to their equilibrium position. This is further shown in Figure 13(c) where the force 

displacement curves of the polymers attached to the first few blocks are plotted. As the blocks 

unload, the polymers relax and follow the unloading path shown schematically in Figure 5. Since 

none of the blocks are detaching, the crack never had a chance to propagate along the interface. 

This is an example of failure by rupture through the collagen fibril rather than by sliding along 

the polymeric interface. Unmineralized fibrils are more susceptible to this rupture mode than the 

mineralized ones. 
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Figure 13: Forces in collagen fibril and polymer system for a case in which the collagen fibril breaks. (a) 

Forces in idealized collagen fibril springs and (b) zoomed in details at instance of failure (pN) as a 

function of extension right after failure of collagen fibril. Only forces of the 5 front most fibrils are shown 

here. The linear part of first spring is not shown. Mineralization percentage=0% and polymer 

density=25/nm. (c) Forces of polymer system in each discretized block (pN) as a function of extensions 

(nm) after failure of fibril. Only the forces of the 5 front most polymer systems are shown here. The 

extensions of polymer system are calculated as the displacements of blocks. 
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CHAPTER 5 

Discussions 

 

Problems involving dynamics of cohesively held interfaces arise broadly in biological [Ural and 

Mischinski, 2013 and references therein], engineering [Barenblatt, 1962; Tvergaard and 

Hutchinson, 1992; Xu and Needleman, 1993; Xia et al., 2006], and geophysical [Scholz, 2002; 

Lapusta, 2009; and references therein] applications. Common to all of these applications are 

fundamental physical processes involving deformation, rupture nucleation, propagation and 

arrest. In strongly nonlinear problems, like dynamic fracture, small scale instabilities can lead to 

large scale system fragilities and it is imperative to understand how the microscopic processes 

influence the crack macroscopic response [Rice, 1983; Carlson and Langer, 1989; Kolmogrov, 

1991]. In the case of bone, the internal interfaces between the mineralized collagen fibrils may 

fail under different loading conditions, and the details of the resulting dynamic rupture can 

determine whether only a part or the whole of the body part (e.g. knee) will fracture. 

In this paper, we focused primarily on interfibrillar sliding as one of the major failure modes in 

bone structure at the micrometer scale. Other failure modes definitely exist depending on the 

fibril orientation, bone type and loading conditions. These other modes include for example: 

delamination (i.e. mode I cracks), twisting (i.e. mode III cracks) and mixed fracture (under 

combined shear and normal loading of the polymeric interface). The methodology described in 

this paper is extensible to these other modes and it is expected that the quantitative p redictions 

for the critical crack size, fracture energy and rupture speed may be different. The dominant 

rupture mode will depend on both the properties of the fibril-polymer system as well as the 

orientation of the applied loading. For example, delamination may be prevalent in trabecular 

bone whereas interfibrillar sliding may be dominant in cortical bone. 

The separation of the mineralized collagen fibrils under shear or tension is resisted by a special 

type of polymeric glue that is composed of polymers with the sacrificial bonds and hidden length 
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(SBHL) system [Thompson et al., 2001]. The constitutive response of this glue controls the 

strength and ductility of the fibril system. 

In this paper we used the rate and displacement model developed by Lieou et al. [2013] to model 

the polymeric interface. We assume that fibril sliding is resisted by a series of 

quasi-one-dimensional polymer bundles. The idealized SBHL system adapted here represents 

globular domains within the polymer chains as well as crosslinking between the polymer 

molecules within these bundles. Crosslinking between the bundles has been neglected here. It is 

possible; however, that crosslinking may be dense enough to lead to the formation of 

two-dimensional polymer networks. That will change the force distribution within the polymeric 

system from the idealized parallel bundles model [see for example Fantner et al., 2006]. In this 

case, a description based on theory of statistical mechanics that has been previously applied to 

amorphous materials and thin film lubricants may be more appropriate [Bouchbinder and Langer, 

2009]. These theories implement internal state variables to discuss the mechanical evolution of 

the system. In the case of polymers with SBHL system, the primary state variable will be the 

number of active bonds. However, as long as the quasi-one-dimensional bundle picture is 

applicable [e.g. see Fig. 1a] the idealized model presented here, with appropriate choice of 

distribution of hidden length and strength of sacrificial bonds, is adequate for reproducing the 

observations of AFM experiments on polymer blobs [e.g. Lieou et al., 2013]. Further 

investigations are required to explore the influence of extended 2D polymeric structure. Our 

numerical results show that the sacrificial bonds and hidden length system generally increases 

energy dissipation and resists crack propagation. The presence of SBHL system increases the 

system toughness (~ 8.5%), increases the critical crack size that has to be reached before 

dynamic instability is triggered (~10%), and it also reduces the stable crack growth speed (~5%). 

The exact numbers depend on the underlying assumption. In particular, we have assumed that the 

length of the polymers and the hidden loops are drawn from a uniform random distribution. We 

expect that other probabilistic distributions may lead to different results quantitatively. We think, 

nonetheless, that the qualitative nature of our findings will continue to hold. 
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We have also shown that the increase in the polymer density leads to an increase in energy 

dissipation, peak resistance force and ductility. Smaller polymer density reduces both the 

initiation and propagation toughness leading to increased brittleness. This is signaled by faster 

crack propagation as well as smaller critical crack size. Since the number of polymers produced 

by the osteocytes may decrease as the individual ages [Hansma et al; 2005], this investigation 

reveals that a possible mechanism for bone toughness degradation with age, other than loss of 

bone density, is the reduction in polymer density. 

Many cohesive law formulations exist in mechanics literature and some of them have been used 

in the context of multiscale modeling of bone fracture [e.g. Ural and Mischinski, 2013; and 

references therein]. Our approach is different in the sense that the cohesive law is derived based 

on physical principles. The constitutive law parameters (such as peak force, maximum 

elongation and fracture energy) vary in response to variations in the internal variables (e.g. 

polymer density and number of sacrificial bonds) in a self-consistent way. Hence, the proposed 

approach has a more predictive power and is capable of integrating small scale physics in 

multiscale simulations without prior assumptions on the specific shape of the cohesive law. 

Similar to other systems [e.g. Gao et al., 2003], we have shown that there exists a critical crack 

size beyond which crack propagation becomes dynamic. Determining this critical crack size is 

important for both medical and engineering applications. In particular, it may be used for 

assessing fracture risk in bone by determining how close the current crack size is to the critical 

one. Moreover, the critical crack size sets an important length scale to be considered in 

biomimetic material design. For example, to increase fracture resistance, polymeric interfaces 

should be continuous only for distances smaller than the critical crack length. In that aspect, 

staggered or random distribution of the fibrils may be preferred to the more regular brick and 

mortar geometry [Jaeger and Fratzel, 2000]. 

The degree of mineralization of the collagen fibril is another factor controlling the fracture 

properties of bone. We have found that within the elastic regime of the fibril, the average crack 

propagation speed along the interface increases as the percentage of mineralization increases. On 
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the other hand, for unmineralized fibrils and high polymer density the system fails by strain 

localization within the fibril rather than by slip along the interface. This mode of failure is brittle 

and prevents the full utilization of the SBHL system. With aging, the degree of mineralization is 

reduced [Nalla et al., 2004; Koester, 2011; Nair et al., 2013] and this may be another mechanism 

for frequent bone fractures in the elderly. 

In this paper, we adopted the approximation that mineral plates fill the gaps between the 

tropocollagen molecules. The exact distribution of mineralization is a subject of debate. The 

distribution, however, may have strong impact on the mechanical response  of the fibril, 

especially its compressive strength. Here, we assume that the fibril buckles once it reaches the 

yield stress in compression and consequently loses its compressive strength completely. Better 

understanding of the mineralization distribution may allow us to track the fibril behavior in the 

post-buckling regime. 

The model we developed in this paper is one-dimensional. We reduced the problem to its basic 

ingredients related to fibril elasticity and polymer toughness. We were able to develop some 

constraints on the basic fracture response of the collagen fibrils at the microscale. 

Three-dimensional effects for bone are important, however, and the geometrical complexity is an 

essential ingredient for toughness [Ritchie et al., 2009]. This current study represents the first 

step towards building these more complicated models. 

The model proposed in this paper provides predictions for critical crack size, stable crack 

propagation speed and energy dissipation for a fibril-polymer system under different conditions. 

These predictions are derived using a mathematically consistent procedure (integrating Newton’s 

second law) that implements constitutive models that were validated independently by different 

experiments. For example, the rate and displacement model of Lieou et al. (2013) reproduces 

many of the AFM experimental observations on glue molecules [e.g. Admas et al., 2008; and 

references therein] including logarithmic rate dependence of strength, time dependent healing 

and irregular force drops. On the other hand, the mechanical model of the fibril [Beuhler, 2007] 

was validated using Synchrotron diffraction studies of Gupta et al. [2004]. To the best of our 
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knowledge there are yet no experiments that have been done to explore the fracture behavior of a  

single fibril-polymeric interface system at the microscale with which we can compare our 

predictions to. While the different parts of the model have been validated independently, we do 

believe there is a need for developing experiments that can probe the fracture response at that 

scale. In this respect, we believe that extending novel techniques such as the scratch test [Akono 

et al., 2011] to the microscale may provide valuable insight into the fracture toughness of bone at 

the scale of collagen fibril. Mechanical testing at the microscale alongside with Scanning 

Electron Microscope Imaging can provide information about crack development and speed. This 

may be done by loading the fibril in incremental steps, stopping the experiment after each step, 

and imaging the deformation patterns. Eventually, a multiscale framework of fracture that 

integrates the model proposed here as its building block, will link the micro and macroscales and 

provide more opportunities for validation through classical fracture mechanics techniques [e.g. 

Ritchie et al. 2009] and medical diagnostics. 

Further extension of this study includes investigating arrays of collagen fibrils in two and three 

dimensions using the finite element method including other failure modes such as delamination, 

twisting and mixed mode fractures. This will enable the investigation of the characteristics of the 

wave field generated by the crack propagation and the influence of array geometry on crack 

propagation, crack arrest and energy dissipation for bone structure. It will also help us better 

understand the fundamental mechanics of deformation in bone which will eventually help in 

developing better biomimetic materials. 
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