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Abstract

Let A be a finite subset of N including 0 and f4(n) be the number of ways to write n = >_:° €2, where
€; € A. The sequence (f4(n)) mod 2 is always periodic, and f4(n) is typically more often even than odd.

We give four families of sets (A,,) with |A,,| = 4 such that the proportion of odd f4, (n)’s goes to 1 as

m2r 11

m — oo. We also consider asymptotics of the summatory function s4(r,m) = Z fa(n) and show that
n=m2"

sa(r,m) =~ c(A,m)|A|" for some c(A,m) € Q.
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To my sanity. May you continue to endure.
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Chapter 1

Introduction

1.1 Binary Representations

Every non-negative integer n has a unique standard binary representation and can be written as a sum of

powers of 2 in the form
o0

n= Zq?i, e €{0,1}.

i=0
If we let ffo,13(n) denote the number of ways to write n in this fashion, then fy1;(n) =1 for all n > 0, as
shown by Euler [5, pages 277-8].
Now consider instead the coefficient set {0, 1,2} and let fro 1 2y(n) denote the number of ways to write

n as
o'}

n= Zeﬂi, e €{0,1,2}.

i=0
First note that while it is still possible to represent every non-negative integer in this fashion, the represen-
tation is no longer unique. For example, there are three ways to write n = 4 as Y ;2" with ¢; € {0,1,2},
and they are
4=2-141-2=0-140-2+1-2°=0-1+2-2,

Reznick showed in [10] that when taking coefficients from the set {0, 1,2}, the number of representations
of n — 1 corresponds to the n" term of the Stern sequence, which is defined recursively by s(2n) = s(n)
and s(2n 4+ 1) = s(n) + s(n + 1) with initial values s(0) = 0 and s(1) = 1. The Stern sequence can also be
viewed as a diatomic array in which each row is formed by inserting the sum of consecutive terms between
the terms of the previous row. This diatomic array is symmetric and is like a Pascal’s triangle with memory.
The first few rows of this infinite array are shown in Table 1.1

To generalize these ideas, let A = {0 = ap < a1 < --- < a;} denote a finite subset of N containing 0.

We must include 0 to avoid summing infinitely many powers of 2. Let f4(n) denote the number of ways to
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Table 1.1: Stern diatomic array

write n in the form

= iEiQi, e € A

=0

We associate to A its characteristic function x 4(n). The generating function for x 4(n) is

o0
x) = ZXA(n)x” = Zm“ =1+2a™
n=0 acA
Since A is a finite set, ¢ 4(x) is a polynomial in Fy[x]. For example, we return to the specific cases discussed
earlier and see that ¢ 11(z) =14 and ¢g1,2)(z) = 14+ + 22,

Denote the generating function of f4(n) by

x) = ZfA(n);v”

Then

oo

F{Ol} Z _1+1'+$2+

If we view the number of ways to write n as a partition problem, we obtain a product representation for
Fu(x) as

ﬁ (1+xa12 .-+m%2’“) — ﬁ(bA(ka). (1.1)
k=0

k=0



1.2 Polynomials in ]

This section follows Section 3.1 in [8], but we are only concerned with polynomials in Fo[z] rather than

polynomials over more general finite fields.

Theorem 1.1 ([8, 3.1]). Let f € Fao[z] with f(0) # 0 and deg(f) = n > 1. Then there exists D € Z with
1< D <2"—1 such that f(x) | 1+ 2P.

The proof follows by considering the 2" — 1 nonzero residue classes in the residue class ring Falz]/(f)

and the 2" nonzero residue classes 27 + (f) for 0 < j < 2" — 1 and applying the Pigeonhole Principle.

Definition 1.2 ([8, 3.2]). The least D that satisfies the conditions of Theorem 1.1 is called the order of f

and is denoted ord(f(x)) = ord(f).

Theorem 1.3 ([8, 3.3]). Let f € Fa[x] be an irreducible polynomial over Fy with deg(f) =n and f(0) # 0.

Then ord(f) is equal to the order of any root of f in the multiplicative group F3. .

Corollary 1.4 ([8, 3.4]). Let f € Fa[x] be an irreducible polynomial over Fo with deg(f) = n. Then
ord(f) | 2™ — 1.

Consider ¢1q,1,3}(7) = 1+ +23, which is irreducible over Fy. By Corollary 1.4, we know ord ((;5{07173} (m))
divides 7, and since 7 is prime, ord (¢{07173}(1')) = 7. Similarly, the polynomial ¢ 2 3y(z) =1+ 2% + 23 is

irreducible over Fy with ord (¢0,2,33(x)) = 7. In fact, 1+ factors over Fy as (1+2)(1+z+23)(1+z2423).

Theorem 1.5 ([8, 3.6]). Let ¢ € Z with ¢ > 0 and f € Falx] with f(0) # 0. Then f(x) | 1+ z° if and only
if ord(f) | c.

Theorem 1.6 ([8, 3.7]). Let ey and es be positive integers and d = ged(ey, ez). Then ged(1 + z°, 1 4 2°2)

in Fy[x] is 1+ 2.

Theorem 1.7 ([8, 3.8]). Let g € Fo[z] be irreducible over Fy with g(0) # 0 and ord(g) = D, and let f = g°

for a positive integer b. Let t be the smallest integer with 2t > b. Then ord(f) = D2?.

Theorem 1.8 ([8, 3.9]). Let f = g1--- gk, where 0 # g1,...,gr and the g;’s are pairwise relatively prime
over Fy. Then ord(f) = lem (ord(gy),...,ord(gx)).

Theorem 1.9 ([1, 2.1]). Suppose f € Fa[z], f(0) # 0, and f can be factored over Fa[z] as

S
r=1Ie"
=1



where the g; are distinct irreducible polynomials with deg(g;) = d;. Choose k € N such that 28 > e; for all
i. Let
M = M(f) =2"lem (2" — 1,...,2% —1).

Then f(z) |1+ zM.

Example 1.1 ([1, 4.3]). Consider f(z) = 1+ 2+ 2% +2° = (1 + 2)*(1 + =z + 2%)(1 + 22 + 23). Then
gi=142,di =1,and e; =4, while g = 14+2+22,dy =2,e0 =1,and g3 = 1+ 22 +2>,d3 = 3, and e3 = 1.
Let k = 2 so that 2¥ > ¢; for all i. Then M = 2?]em (2! —1,2% — 1,23 — 1) = 4lem(1,3,7) = 4(21) = 84.
Hence f(x) | 1+2%* and by Theorem 1.5, ord(f) | 84. We can check to see that f(x) {1+ 2 for any proper
divisor D of 84, so 84 is in fact ord(f).

Definition 1.10. For a polynomial f(z) of degree n, the reciprocal polynomial of f(x)is f(gr)(z) := 2" f(1/x).
Theorem 1.11 ([8, 3.13]). Iford(f(x)) = D, then ord (f(g(z)) = D.

Definition 1.12 ([8, 3.15]). Let f € Fo[z] with deg(f) =n > 1. If f is the minimal polynomial over Fy of

a primitive element of Fon, then f is a primitive polynomial over Fs.

Theorem 1.13 ([8, 3.16]). Let f € Fylx] with deg(f) =n. Then f is a primitive polynomial over Fa if and
only if f(0) # 0, fis monic, and ord(f) = 2™ — 1.

Definition 1.14. [2] A Mersenne prime is a prime of the form 2" — 1. A Mersenne exponent is the exponent

r of a Mersenne prime 2" — 1.

In [2] Brent and Zimmermann discuss their search for primitive trinomials in Fo[z] of large degree. They
note that if 2" —1 is prime, then any irreducible polynomial of degree r must be primitive. Thus they consider
in their search trinomials of degree r where r is a Mersenne exponent. They also note the importance of
trinomials over Fy[z] in cryptography and random number generation. We will not pursue this direction,

but note that the polynomials ¢ 1 33 (x) and ¢p233(2) are primitive.

1.3 Known Results

Recall that for A = {0 =ayp < a; < --- < a;} a finite subset of N containing 0, f4(n) denotes the number

of ways to write n in the form

oo
HZZEka, er € A.
k=0



In [1], Anders, Dennison, Lansing, and Reznick studied the behavior of the sequence (f4(n)) mod 2. Also

recall the definitions of

pa(z) = ZXA(n):En = Zxa =14+2% 4 ... 4%
n=0 acA

and the generating function for f4(n),

Fy(x) := ZfA(n)x” = H ¢A($2k).
n=0 k=0

Lemma 1.15 ([8, 1.46]). For a,b € Fy and n €N, (a +b)>" = a®" +1*".

From this lemma and Fermat’s Little Theorem, it follows that for any polynomial f € Fy[z],

f@)? = f(a?). (1.2)

Theorem 1.16 ([1, 1.1]). As elements of the formal power series ring Fa[[x]],

pa(x)Fa(z) = 1.

Hence Fu(z) € Fo(z).

Proof. By repeated use of (1.1) and (1.2),
640 F4 () = 64@)Fa@@?) = 6a@) [ oa () = Fat@). =
k=0

Returning to the coefficient set {0,1,2} with ¢o10y(2) = 14+ 2 + 22, we see by Theorem 1.16 that in
Fo[]),

1
1+z+ 22
1+
1+ a3

Froq2y(7) =

=(1+2)(1+a>+2%4--1)

=l+z+a®+a* +2%+2"+--.

Dennison observed in [4] that f{o1,3)(n) is periodic with least period 7 and each period has four odd

terms, which occur when n =0,1,2,4 (mod 7). Recall from the discussion immediately following Corollary
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1.4 that ord (¢0,1,33(z)) = 7. Using Theorem 1.16, we find that in F[[z]],

1 _1+x—|—x2+x4

Froas (@) = 1+x+a3 1+ 27

Note that the denominator of the last fraction is of the form 1 + z” with D being the least period of the
sequence (f{0)1,3}(n)) and the order of ¢ 1 33(x). Also, the digits of the numerator are precisely the n for
which fro1,31(n) is odd.

Similarly, Dennison noted in [4] that frg2,31(n) is periodic with least period 7 and each period has 4 odd
terms, which occur when n = 0,2,3,4 (mod 7). Using Theorem 1.16, we see that in Fa[[z]],

_ 1 _1+x2+x3—|—x4
T 142243 1427 '

F{0,2,3}(35)

Again, note that the denominator of the last fraction is of the form 1 + 2” with D being the least period of
the sequence (f{072,3}(n)) and the order of ¢ 3y(z). Also, the digits of the numerator are precisely the n
for which frg 2,3y(n) is odd.

Since A is finite, ¢ 4(z) is a polynomial in Fa[z]. Also recall that the order of ¢ 4 is the smallest integer

D such that ¢ a(z) | 1+ 2P. Define ga(z) by

pa(x)ga(z) =1+ 7.

In coding theory, if deg (¢ 4) = d and D = 2% — 1, ¢ 4(z) is called the generator polynomial, while g4 () is
called the parity-check polynomial, [8, page 484]. We do not pursue these here.

Now we have in Fa[z],
1 qa@)

Falw) = pa(z) 142D’

If ga(z) =Y. _o 2, where 0 = by < by < --- < b, = D — max{a;}, then
fa(n) =1mod 2 <= n =b; mod D for some .
Definition 1.17. For a polynomial f(x) € Fa[z], define the length of f(z) to be the number of monomials in

f(z). This can also be viewed as the number of terms in f(z) with coefficient 1 and is denoted by £ (f(z)).

Definition 1.18. For a polynomial f(z) € Fa[z], let £o n(f(z)) denote the number of terms in f(x) with
coefficient 0 when f(x) is viewed as a polynomial of degree N. Note that N may exceed d, the usual degree

of f(x), if we take all terms of the form x*, where k > d, to have coefficient 0.



In [3], Cooper, Eichhorn, and O’Bryant defined sets A and B of natural numbers to be reciprocals if the
number of ways to write an integer n asn =a + b, fora € A and b € B, is 1 when n = 0 and is even when
n>0,50 3,042 Y e’ =1in Fa[z]. They denote this reciprocal relationship by A = B and B = A.
The authors develop typical properties of reciprocals and study reciprocals of special sets.

Theorem 1.1 of [1] and Lemma 2.2(ii) of [3] are the same, but the relation to digital representations is
only developed in [1].

Using the notation of [3], for a given positive integer n, let P,, denote the polynomial in Fs[z] whose
exponents are the powers of 2 in the binary representation of n. This enumerates Fy[z]. For example,
11 = [1011]z, so Py1(x) = 2 + 2 + 1. If n is odd and D is the order of P,, P} is defined in [3] to be the
polynomial such that P, P} = 1+ z” in Fy[z]. If n = 2% + 2%-1 4 ... 4 29 is odd, this corresponds to
letting A = {ag, a1, ...,a;}, Po(z) = ¢pa(z), and P (x) = Fa(z)(1+ 2P) = qa(z).

Cooper, Eichhorn, and O’Bryant considered the fraction § (F), and in our notation, letting D = ord(P),

we have

5(P) = . (1.3)

We also considered the fraction ¢, (P*)/D in [1], but here we instead consider the ordered pair

5(Pn) = (KI(P;)aEO,D—l(P:))a (14)

which gives more precise information than reduced fractions. In this pair, the first coordinate represents the
number of times f4(n) is odd in a minimal period D, and the second coordinate represents the number of

times f4(n) is even in a minimal period.

Definition 1.19. We call a polynomial f(x) robust if the first coordinate of 5(f(x)) exceeds the second
coordinate by more than one, so ¢1(f*(z)) > o p—1(f*(x)) + 1, where D is the order of f(z). This is

equivalent to saying that ¢, (f*(z)) > (D +1)/2.

Remark 1.1. Suppose f(x) is not robust. If 5(f(x)) = (1,0), then % = 1. Otherwise, 8(f(x)) is of

the form (a,b), where b > 1 and a < b+ 1. Let 6(z) = _%5. Note that 6(z) is increasing for z > 0 and

Since § < HTl =1+ % < 2, it follows that

O @) _ a _qa
order(f(z)) a+b b (



n ord(P,) 6(P,) |n ord(P,) 6(Pn) | n ord(P,) 6(P,) | n ord(P,) 6 (Py)
1 1 1 65 6 1/6 129 7 1/7 193 127 64/127
3 1 1 67 63 32/63 | 131 127 64/127 | 195 12 1/2

5 2 1/2 69 14 2/7 133 93 46/93 | 197 63 31/63
7 3 2/3 71 31 15/31 | 135 60 1/2 199 105 52/105
9 3 1/3 73 9 2/9 137 127 64/127 | 201 62 1/2

11 7 4/7 75 28 1/2 139 15 1/3 203 127 64/127
13 7 4/7 77 31 15/31 | 141 62 1/2 205 93 46/93
15 4 1/2 79 15 2/5 143 127 64/127 | 207 14 3/7

17 4 1/4 81 14 2/7 145 127 64/127 | 209 15 1/3

19 15 8/15 83 21 11/21 | 147 62 1/2 211 127 64/127
21 6 1/3 85 8 1/4 149 63 31/63 | 213 127 64/127
23 7 3/7 | 87 21  8/21 | 151 42 10/21 |215 62 1/2

25 15 8/15 89 31 15/31 | 153 24 1/2 217 35 18/35
27 6 1/2 91 63 32/63 | 155 35 18/35 | 219 9 1/3

29 7 3/7 93 15 2/5 157 127 64/127 | 221 28 13/28
31 5 2/5 95 30 1/2 159 21 3/7 223 93 46/93
33 5 1/5 97 63 32/63 | 161 93 46/93 | 225 60 1/2

35 21 10/21 | 99 10 1/2 163 63 31/63 | 227 105 52/105
37 31 16/31 | 101 21 11/21 | 165 20 1/2 229 127 64/127
39 14 1/2 103 63 32/63 | 167 127 64/127 | 231 15 7/15
41 31 16/31 105 28 1/2 169 63 31/63 233 42 10/21
43 15 7/15 107 12 1/2 171 127 64/127 | 235 62 1/2

45 12 1/2 109 63 32/63 | 173 105 52/105 | 237 63 31/63
47 31 16/31 | 111 31 15/31 | 175 42 1/2 239 127 64/127
49 21 10/21 | 113 31 15/31 | 177 62 1/2 241 127 64/127
o1 8 1/2 115 63 32/63 | 179 93 46/93 | 243 14 3/7

53 15 7/15 117 21 8/21 181 105 52/105 | 245 42 1/2

55 31 16/31 | 119 12 5/12 183 63 31/63 | 247 127 64/127
o7 14 1/2 121 15 2/5 185 127 64/127 | 249 21 3/7

59 31 16/31 | 123 31 15/31 | 187 28 13/28 | 251 93 46/93
61 31 16/31 | 125 30 1/2 189 12 1/3 253 127 64/127
63 6 1/3 127 7 2/7 191 127 64/127 | 255 8 1/4

Table 1.2: Properties of P, for odd n < 28, modified from [3]

Hence if % > 2/3, then f(z) is robust.

In section four of [3], the authors state, “The most interesting issued raised in this section, which remains
unanswered, is to describe the set {0 (ﬁ) : P is a polynomial}. For example, is there an n with ¢ (E) =
3/47" They also computed § (H) for n < 28 and found that none of the P, in this range are robust. Table
1.2, taken and adjusted from [3] with permission, records properties of P, for odd n < 256.

Figures 1.1 and 1.2 were also taken from [3] with permission. Figure 1.1 gives a dot plot of all points of
the form (n, 1) (Pn)) for n odd and less than 2'2. The points are tightly clustered around 1/2, but when they
stray from 1/2, there is a strong propeunsity to be smaller than 1/2 rather than greater. Note the four points
near the top represented by boxes. We will explain and generalize these robust polynomials in Chapter 3.

Figure 1.2 is a plot of the empirical distribution function of § (E) Cooper, Eichhorn, and O’Bryant

8



Figure 1.1: The points (n,d (P,)) with n odd, except (1,0) and (3,1), taken from [3]

noted that the large discontinuities near 1/2 mean that these densities occur with large frequency, and we
can again see the tendency for ¢ (ﬁ) to be smaller than 1/2 rather than greater. The authors also point
out that of the 2048 polynomials P; with ¢ odd and 1 < ¢ < 4095, there are 421 which have reciprocals with

density exactly 1/2.

10
08
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00 02 04 06 08 1.C

Figure 1.2: The distribution function A(z) := 27" - #{n:1 <n <22 n odd,d (P,) < z}, taken from [3]

Recall the aforementioned quote from [3], “The most interesting issued raised in this section, which
remains unanswered, is to describe the set {J§ (F) : P is a polynomial}”. Since 1 + z” has order D and
) (m) = 1/D, the lower bound of the set in question is 0. We shall exhibit in Chapter 3 four sequences
{fn} of polynomials such that lim, . ¢ (fTL) = 1, thus establishing a least upper bound for the set.

First, however, we discuss in Chapter 2 background material on linear recurrence sequences over Fy
and their relation to polynomials over Fy. Section 2.1 establishes preliminary results on homogeneous k-th

order linear recurring sequences in o and their generating functions. Section 2.2 introduces impulse response



sequences and characteristic polynomials of linear recurrence sequences. We explore the connections between
the period of a sequence and the order of its characteristic polynomial, and these connections allow us to
present an upper bound given in [8] for the difference in the coordinates of 3(f(z)), the ordered pair defined
in (1.4).

In Chapter 3 we present four sequences of robust polynomials and consider specific examples from those

sequences. We also expound on the methods used to collect data in the search for robust polynomials.

Theorem. The polynomials f.(z) = 1+ 2 + 22 =1 + 22+ are robust with order dividing 4" — 1. If

hea(e) = (1+2%71) /fra(@), then lim £ (hya(2)) /(47— 1) = 1.

Corollary. The reciprocal polynomials f(g)1(z) = 1+ 22 + 22" + 22"t are robust with order dividing

A" — 1 I by (2) = (1424 71) /f(r).ra (2), then Jim £ (hryra(x)) /(4" =1) = 1.

Theorem. The reciprocal polynomials f, 2(z) = 142422 422 2 are robust with order dividing 4”427 +1.
If hyo(z) = (14242 +1Y) /f, (), then lim ¢4 (h.o(z)) /(4" +2"+1) = 1.
r—00

Corollary. The reciprocal polynomials f(g),2(z) =1+ 22 4+ 221 + 22" 2 are robust with order dividing

4" 4+ 2" + 1. If hipyro(z) = (L+ 242 +1) /f(g) r2(2), then lim £, (h(ryr2(x)) /(4" +2"+1) =1

rHl_
Chapter 4 develops asymptotics of the summatory function s(A, m) = Zm2 ! faln).

n=m?2"

Theorem. Fix A,7, and m. Then s4(r,m) ~ c¢(A,m)|A|" for some c(A,m) € Q.

Chapter 5 is a discussion of open questions on these problems and areas for future work.

Appendix A contains samples of the Mathematica code used in determining S(f(z)) for all polynomials
f(z) € Falz] with ord(f(z)) < 83 and tables with information on all robust polynomials in that range.
Appendix B contains samples of the Mathematica code used in determining B(f(x)) for all quadrinomials

f(z) € Fo[z] with deg(f(x)) < 18 and tables with information about robust quadrinomials.

10



Chapter 2

Linear Recurrence Sequences over [y

In this chapter, we explore the strong connections between polynomials over Fo and linear recurrence se-

quences.

2.1 Preliminaries

This section follows Section 8.1 of [8] with results again restricted to Fy rather than the general F,.

Let k be an integer and ag, ..., ar—1 elements of Fy. If (s,,) is a sequence of elements of Fy such that
Sptk = Qk—1Sn+k—1 + Qk—28ntk—2 + + oSn (2.1)

for all n > 0, then (s,) is a homogeneous k-th order linear recurrence sequence in Fo. The sequence is
uniquely determined by the initial values sg, s1, ..., Sk—1. The relation (2.1) is a k-th order linear recurrence
relation.

We associate to (s,) its generating function S(z) defined by

S(z) = i Spa’.
n=0

Note that S(z) € Fa[[x]]. If there exists an M such that for all n > M, s, =0, then S(x) € Fa[z].

A sequence (s,,) is ultimately periodic if there exist integers N > 0 and 7" > 1 such that for any n > N,
Sn+T = Sn. Then T is called a period of the sequence, and the least period of an ultimately periodic sequence
is the smallest such T. Additionally, N is the preperiod of the sequence (s,), and if N = 0, the sequence
is periodic. If (s,) is an ultimately periodic sequence of elements in Fo, then {n : s, = 1} is ultimately
periodic. This is equivalent to S(x) being a rational function [1, Lemma 2.3].

Consider the product

S(z) (1 +ag_1x+ -+ aomk) . (2.2)

11



The integer k is already fixed by the order of the recurrence relation. Now fix an integer n > 0. The term

"% will have coefficient
Sp0o + Sn+101 + Spy202 + -+ Spyk—10k—1 + Sntk-
By (2.1) this coefficient is equal to 2s,11 = 0, so the product S(z) (1 + ap_1z + - -+ + apz*) is a polynomial

in Fo[z] of degree less than k.

Lemma 2.1 ([8, 8.4]). Let (s,) be an ultimately periodic sequence with least period T. If R is a period of
(sn), then T | R.

Theorem 2.2 ([8, 8.7]). For a fized positive integer k, every k-th order homogeneous linear recurrence

sequence in Fy is ultimately periodic with least period T < 2F — 1.

Example 2.1. Consider the sequence (s,) which has third order homogeneous linear recurrence relation
Sp43 = Sp + Sp+1
with initial conditions sg = 1,s; = 0, and s; = 1. Computing values, we see
(sn) =1(1,0,1,1,1,0,0,1,0,1,1,1,0,0,...),

and the sequence is periodic with least period 7 = 22 — 1. Other possible periods include 14, 21, and 28.

Turning to the generating function,

o0
S(a:)zanx"
n=0
ST SN JUUp RURps ST SR [V § REIp TIPS Cipes | guupet s S
= (1+x2+x3+z4) (1+x7+x14+~~-)
1422+ 23+ 24

- o € Fy[z]). (2.3)

Similarly, we can illustrate the period of 14 by writing

Sa)=(1+a2+ % +a* +27 +2° + 20+ a') (1+ 2™ 122 4.
1+ 22+ 28+ 2t + 274+ 2%+ 210 + 211
14 g4 '
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To highlight the connection between (2.3) and (2.4), note that (2.4) can be written aS(Hz(iiii;?f?S;rﬂ).

Example 2.2. Consider the sequence (s,,) satisfying

Sn+3 = Sn+42

with initial conditions sg = 0,s; = 0, and s = 1. This sequence is (s,,) = (0,0,1,1,1,...) and is ultimately

2
x

periodic but is not periodic. Here S(z) = 22 + 23 + 2% + ... = s

We will now see a condition under which a sequence must be periodic.

Theorem 2.3 ([8, 8.11]). If (s,) is a linear recurrence sequence in Fo satisfying (2.1) with the coefficient

ap = 1, then (s,) is a periodic sequence.

Let (s,) be a k-th order homogeneous linear recurrence sequence in Fy satisfying (2.1) for n > 0. We

associate to this sequence the k x k matrix A over Fq given by

0 1 0 0 0
0 0 1 0 0
A= (2.5)
o o0 o0 -- 0 1
ap a1 Gz - Gg—2  Ak—1

If k =1, we take A to be the 1 x 1 matrix (ap). Note that A depends only on the recurrence relation of the

sequence and not the initial values.

Definition 2.4. The general linear group GL (k,F2) is the group comprised of all k x k matrices with entries

in F5 and nonzero determinant.

Definition 2.5. For a linear recurrence sequence satisfying (2.1), the column vector sy, = (S, Snt1s- -« Sntk—1)
is the n-th state vector of the linear recurrence sequence. The state vector sg = (sg, 51, - - -, Sk—1) is the initial

state vector.
For the third order linear recurrence relation in Example 2.1, s = (1,0,1) and s3 = (1,1,0).

Lemma 2.6 ([8, 8.12]). Let (sy,) be a k-th order homogeneous linear recurrence sequence satisfying (2.1)

with associated matriz A as in (2.5). Then the state vectors of the sequence satisfy

sn = A"sg  for allm > 0.

13



Theorem 2.7 ([8, 8.13]). If (s,) is a k-th order homogeneous linear recurrence sequence in Fo satisfying
(2.1) with ap = 1 and associated matriz A as given in (2.5), then the least period of (s,) divides the order

of A in the general linear group GL (k,F2).

2.2 Orders

This section follows Sections 8.2, 8.3, and 8.4 of [8].
Given a k-th order homogeneous linear recurrence relation in Fo, there are 2* sequences (s,,) satisfying
this relation, with each sequence uniquely determined by its initial values sg, s1,...,sx—1. Which of these

sequences will have the maximal least period?

Definition 2.8 ([8, p.402]). Consider the sequence (d,,) which satisfies (2.1), so

ptk = ap—1dptk—1 + ap—2dpyp—2 + -+ agdy, (2.6)

and has initial values dy = d; = --- = dx_2 = 0,di,_1 = 1. This is called the impulse response sequence for

the family of sequences satisfying (2.1).

We know from (2.2) and the discussion immediately following that for the generating function D(x) of
the sequence (dy,), D(z) (1 + agx—12 + - - - + apz") is a polynomial of degree less than k. Because of the initial
conditions on the sequence, the only nonzero term with exponent less than k is #*~!. Hence D(x) is the

rational function

-1
D = . 2.7
O ——— (2.7)
Example 2.3. Let (s,) be a sequence in Fs satisfying
Sn+3 = Sn+2 + Sn (2.8)

with initial values s9 = s1 = 0 and s = 1. Then (s,) = (0,0,1,1,1,0,1,0,0,1,1,1,0,1,...), has least period

7, and is the impulse response sequence (d,,) for the family of sequences satisfying (2.8).

14



The generating function is

S(a) =22+ b 42t + a8 420 420 42 4ol 41T g8 20 B
=(l4+z+2>+2") (®+2°+2"0+ )
=(l+z+2>+2") 2> (1+2"+2"+-)

x2(1—|—x+m2+x4)
1427
22

1+z+a3

Lemma 2.9 ([8, 8.15]). Let (d,) be the impulse response sequence satisfying (2.6) and A be the matrix in

(2.5). The state vectors dy, and dy are equal if and only if A™ = A™.

Theorem 2.10 ([8, 8.16]). Let (s,) be a homogeneous linear recurrence sequence in Fy and (d,) be the

corresponding impulse response sequence. Then the least period of (s,) divides the least period of (dy).

Example 2.4. Consider the fourth order homogeneous linear recurrence relation

Spt+d = Spt+2 T+ Sn-

The sequence (s,) that satisfies this relation and has initial values so = 0, s;1 = so = 1, and s3 = 0 is
(sn) = (0,1,1,0,1,1,0,1,1,...), which has least period 3. The corresponding impulse response sequence
(d,) =(0,0,0,1,0,1,0,0,0,1,0,1,...) has least period 6. Note that the least period of (s,) divides the least
period of (d,).

Let S(x) and D(z) denote the generating functions of (s, ) and (d,), respectively. Then

S@)y=z+2*+a2* +2° +2" +25 + 20+ 2+
=z(l+2)+2*(1+z)+2"1+2)+ 2001 +2)+---

=(1+a)(z+a*+2"+204-)

z(1+4 x)
14 a3

15



and

D@)=a®+ 25 +a° + 2" + 2 42T ..
=214+ 2H) + 221+ 2?) + 21+ 23 + -
:(1+x2)(m3+w9+x15+~-~)

23 (142?)

1426

To highlight the connection between S(x) and D(z), note that S(z) = %ﬁj‘xs)

Theorem 2.11 ([8, 8.17]). Let (d,,) be the impulse response sequence in Fy satisfying (2.6) with ag # 0 and
A the matriz in (2.5). Then the least period of (d,) is equal to the order of A in the general linear group
GL (k,TFy).

Example 2.5. Recall the fourth order impulse response sequence (d,,) of Example 2.4 which has least period

6. The corresponding matrix A is

01 00
0 010
0 0 01 ’
1010

and the order of A in GL(4,F3) is 6.

We know that an impulse response sequence will have maximal least period. We will now see another

condition under which a sequence has maximal least period.

Theorem 2.12 ([8, 8.19]). Let (sy) be a k-th order homogeneous linear recurrence sequence in Fo with
preperiod ng. If there exist k state vectors Smy ,Smys - - - » Smy With mj > ng for all1 < j < k, that are linearly
independent over Fo, then both (s,) and its corresponding impulse response sequence (d,) are periodic, and

they have the same least period.

Definition 2.13 ([8, p. 404]). Let (s,) be a k-th order homogeneous linear recurrence sequence in Fo

satisfying (2.1) with a; € Fy for 0 < j < k — 1. The characteristic polynomial of the sequence is

f(z)= 2P +ap_ 128 ap_paf T2 4 tag € Folz]. (2.9)

Note that the characteristic polynomial depends only on the recurrence relation and not on the initial

conditions. Hence there are 2* distinct sequences in Fo with the same characteristic polynomial.
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Definition 2.14 ([8, p. 404]). Let A be the k x k matrix in (2.5) and I be the k X k identity matrix over
Fy. The characteristic polynomial of A is f(x) = det(xz] — A). The matrix A is known as the companion

matriz of f(x).

The characteristic polynomial of the linear recurrence sequence and the characteristic polynomial of the

corresponding matrix are the same.

Example 2.6. Consider the fourth order homogeneous recurrence relation s, 14 = Sp42+ S, from Examples
2.4 and 2.5. The characteristic polynomial of (s,) is f(x) = #* + 22 + 1, and the characteristic polynomial

of the matrix A is also f(x) = o* + 22 + 1.

Recall Definition 1.2, the definition of the order of a polynomial in F5. We will now state the connection

between the order of the characteristic polynomial of a sequence and the order of the corresponding matrix.

Lemma 2.15 ([8, 8.26]). Let f(x) be as in Definition 2.13 with k > 1 and ag = 1 and A be the matriz in

(2.5). Then the order of f(x) is equal to the order of A in the general linear group GL(k,Fs).

Recall the set-up of Examples 2.4 and 2.5. The order of f(z) is 6, and the order of the matrix A is 6.
Now we explore the relationship between the least period of a sequence and the order of its characteristic

polynomial.

Theorem 2.16 ([8, 8.27]). Let (s,) be a homogeneous linear recurrence sequence in Fo with characteristic
polynomial f(x) € Falx] and corresponding impulse response sequence (dy,). The least period of (s,) divides
the order of f(x), and the least period of (d,) equals the order of f(x). If ag = 1, then both (s,) and (d,)

are periodic.

Consider generating functions in the case where ag = 1, so both (s,) and (d,,) are periodic. Letting N
and M denote the least periods of (s,) and (d,,), respectively, there exist some g(x), h(x) in Fa[z] such that

h(x)

S(x) 9(z) and D(zx) = T a0

T 142N

where S(z) is the generating function of (s,) and D(z) is the generating function of (d,,).
By Theorem 2.10, N | M, so 1 + 2 | 1 + 2™ € Fy[z]. Hence there exists j(z) € Fy[z] such that

(1+2™)j(x) =14z, and thus
h(x)

PO Ty

Example 2.7. Recall that in Example 2.4, we considered the fourth order homogeneous linear recurrence

relation $,,44 = Spiy2 + s, and gave (s,,) initial values sg = 0,81 = s = 1 and let (d,,) be the corresponding
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impulse response sequence. The least period of (s,) was 3, and the least period of (d,) was 6. Since
ord(z* 4+ 22 + 1) = 6, we see that indeed the least period of (s,,) divides ord(f(z)), and the least period of
(dn) equals ord(f(x)).

In Example 2.4 we had

S(x) = % and D(z) =

Note that we can rewrite D(z) in Fo[z] as

23(1 + 2?)

D)= a9

Next we state a condition under which the least period of a sequence (s,) is equal to the order of its

characteristic polynomial.

Theorem 2.17 ([8, 8.28]). Let (sy) be a homogeneous linear recurrence sequence in Fo with sg # 0. Suppose
the characteristic polynomial f(x) of (sn) is wrreducible over Fy with f(0) # 0. Then (sy,) is periodic, and

the least period of (sy,) is equal to the order of f(x).

Example 2.8. Consider the third order homogeneous linear recurrence sequence in Fo given by s,43 =
Sn+1 + 8p with initial values sg = 1,51 = 0, and so = 1. The least period of (s,) is 7, and the characteristic

polynomial f(x) = 2%+ z + 1 is irreducible over Fy and has order 7.

According to Theorem 2.2, the least period r of a k-th order homogeneous linear recurrence sequence

satisfies 7 < 28 — 1. Now we will consider sequences for which r = ok _ 1.

Definition 2.18 ([8, 8.32]). Let (s,,) be a homogeneous linear recurrence sequence in Fy with characteristic
polynomial f(x). If sg # 0 and f(x) is a primitive polynomial over Fa, then (s, ) is a mazimal period

sequence in Fy.

Theorem 2.19 ([8, 8.33]). Let (s,) be a k-th order mazimal period sequence in Fo. Then (sy,) is periodic

with least period r satisfying r = 2F — 1.

Any linear recurrence sequence satisfies multiple linear recurrence relations. Consider a sequence (s;,)
which has least period r. Then, for all n sufficiently large, (s, ) satisfies s, = s, but it also satisfies
Spn+2r = Sp and Spi3- = Sp, and in fact, s,44 = s, for all ¢ > 0. The next theorem illustrates the

connection between different linear recurrence relations satisfied by the same sequence.
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Theorem 2.20 ([8, 8.42]). Let (s,) be a homogeneous linear recurrence sequence in Fo. Then there exists a
uniquely determined monic polynomial m(x) € Fa[z] such that a monic polynomial f(z) € Falz] of positive

degree is a characteristic polynomial of (sy,) if and only if m(x) divides f(x).

Recall the definition of a reciprocal polynomial given in Definition 1.10. Suppose (s,) satisfies (2.1) and
let f(x) denote the characteristic polynomial of this recurrence relation. We know from (2.2) that S(z) is a

rational function of the form

S@) = 1+ akflff?' -+ apxk - f(pR()x()x)
for some p(x) € Fa[z]. The sequence (s,,) satisfies another recurrence with characteristic polynomial g(z) if
and only if S(x)gr)(z) is a polynomial.
The polynomial m(x) of Theorem 2.20 is the minimal polynomial of the sequence (s,). If (s,) is the
constant sequence all of whose terms are zero, m(z) = 1. Otherwise, the degree of m(z) is positive, and

m(x) is the characteristic polynomial of the recurrence relation of least order satisfied by (sy,).
Theorem 2.21 ([8, 8.44]). If (s,) s a homogeneous linear recurrence sequence in Fq with least period r and
minimal polynomial m(z) € Fo[z], then r = ord(m(z)).

Theorem 2.22 ([8, 8.50]). Let f(x) be a monic polynomial in Fax] which is irreducible over Fy. Let (sy)
be a homogeneous linear recurrence sequence in Fo which is not the constant sequence with all terms zero.

If f(x) is a characteristic polynomial of (sy,), then f(x) is the minimal polynomial of (s,).

Theorem 2.23 ([8, 8.51]). Let (s,,) be a sequence inFy satisfying a k-th order homogeneous linear recurrence
relation with characteristic polynomial f(x) € Fazx]. Then f(x) is the minimal polynomial of (sy) if and

only if the state vectors sg,s1,...,8,_1 are linearly independent over F.

Corollary 2.24 ([8, 8.52]). Given a homogeneous linear recurrence relation in Fo with impulse response

sequence (dy,), the minimal polynomial of (dy,) is the characteristic polynomial of the recurrence relation.

Suppose (d,,) is a k-th order impulse response sequence satisfying (2.6) with generating function D(z)

and characteristic polynomial
flx) = z* + akflxk_l + ak,2xk_2 + - 4 a1z + ao,

where ag = 1 so f(0) # 0. Let M = ord(f(z)) so that f(x)f*(z) =1+ 2™. Then fry (@) fpy(@) =1 +aM
and, in fact, (f(R))* (x) = (f*)(R) (z), as we will show in Lemma 3.5, so there is no ambiguity in writing
f(*R) (1')
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Recall from Equation (2.7) that

xkfl xkfl

T 1t agiz+ -+ aork fry(@)

D(x)

Since f(gr)(z) = %, we have
(R

xk_lf;R)(m)

D(z) = T M

(2.10)

Because (d,,) is an impulse response sequence and the constant term of f(x) is 1, we know from Theorem 2.16
that (dy) is periodic and with least period equal to M, the order of f(x). Since f(r)(z)fp)(z) = 1+2™ and
deg (f(r)(x)) = k, we have deg (f(*R)(:zz)) — M — k. Hence deg (a:kflf;R) (1’)) =(k—1)+(M—k)=M—1.
Because the numerator of (2.10) is of degree less than M, the number of 1’s in a cycle of length M of (d,,) is
equal to the number of terms with coefficient 1 in z*~! fir) (z), which is equal to the number of terms with

coefficient 1 in f*(z). Recalling Definitions 1.17 and 1.18, we have
#1’s in a cycle of length M of (d,) = {1 (f*(z)) (2.11)

and

#0’s in a cycle of length M of (dy) = o1 (f*(2)). (2.12)

This fact allows us to use a theorem of [8] to establish an upper bound for |¢1 (f*(z)) — o am—1 (f*(2))].

First we supply some necessary definitions.

Definition 2.25 ([8, 2.22]). For a € F = Fym and K = [, the trace Trp, k() of o over K is defined by
Trryi(@) = ataf 4 +a" 1,

If K is the prime subfield of F, then Trp, k() is called the absolute trace of @ and simply denoted by

Trr(a).
Since we are working in Fy, we have absolute traces Trg, (0) = 0 and Try, (1) = 1.

Definition 2.26 ([8, p.190]). The canonical additive character of Fy is defined by
x(c) = e™ T for all ¢ € Fy.

Thus the only nontrivial additive character of Fy has x(0) = ™ =1 and x(1) = ™ = —1.

20



We return to (d,), the k-th order impulse response sequence described above, which has characteristic
polynomial f(z) with f(0) = 1 and is periodic with least period M. Theorem 8.78 of [8] states that for x

the nontrivial additive character of F,

u+M—1

Z X (dn)

n=u

<282 for all u > 0.

From the above discussion of the nontrivial additive character of Fy and Equations (2.11) and (2.12),

u+M-—1

Z X (dn)

n=u

= |difference between #0’s and #1’s in a cycle of length M of (d,)|

=161 (f*(2)) — Lo,m—1 (f*(2))]-

Hence |6, (f*(2)) — fo.ar—1 (F*(2))] < 2/2,

All polynomials we will discuss in Chapter 3 are of the form f(z) = 2% 4+ ap_12" "' + -+ ayz + 1 with
all a; € Fy. Thus f(z) can be viewed as the characteristic polynomial of the impulse response sequence (d,,)
satisfying (2.6) with ag = 1. Hence 2¥/2 is an upper bound for the difference in the coordinates of B(f(x))
for any f(x) of degree k we will see in Chapter 3. We shall see in Chapter 5 that this is asymptotically much
larger than the difference in coordinates for our most robust examples, suggesting that Theorem 8.78 of [8]

might be sharpened for the Fo case.
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Chapter 3

Families of Robust Polynomials

Recall Equation (1.3), which states that for a polynomial f(z) € Falx],

0 (f*
2(f) = Q{f;

In this chapter, we present four sequences {f,} of polynomials such that lim, . ( fn) = 1, thereby
establishing 1 as the least upper bound of the set {§ (15) : P is a polynomial}. We then consider examples
of elements of these sequences which correspond to the points represented by boxes in Figure 1.1. At the
end of the chapter, we discuss the methods of data collection used in finding these and other examples of

robust polynomials. All polynomials in this section are considered as elements of Fa[z].

Remark 3.1. Recall Equation (1.2), which states that for any polynomial f(z) € Fa(z), f(2?) = (f(x))?,
so f(z2") = f(2)?"

We restate Definitions 1.17 and 1.18 and, a bit later, Definition 1.10 for convenience.

Definition 3.1. For a polynomial f(x) € Fa[z], define the length of f(z) to be the number of monomials in

f(z). This can also be viewed as the number of terms in f(z) with coefficient 1 and is denoted by 41 (f(x)).

Definition 3.2. For a polynomial f(z) € Falz], let £y n(f(x)) denote the number of terms in f(z) with
coefficient 0 when f(x) is viewed as a polynomial of degree N. Note that N may exceed d, the usual degree

of f(z), if we take all terms of the form x*, where k > d, to have coefficient 0.

Also recall Equation (1.4), which defines 8(f(x)) = (41(f*(2)),%o,p—1(f*(2))). We now define the more

general ordered pair By (f(z)).

Definition 3.3. For f(z) € Fy[z] and N a multiple of the order of f(z) with f*(x) := (1 +2")/f(x), we
define

An(f () = (L(f* (@), bo.n 1 (7 (2))) -
Definition 3.4. For a polynomial f(x) of degree n, the reciprocal polynomial of f(x) is f(gr)(z) := 2™ f(1/x).
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Lemma 3.5. In Fsz], B(f(z)) = B (fr(z)), and the robustness of f(x) is equivalent to the robustness of
fR(:L‘)

Proof. According to Theorem 1.11, if order(f(z)) = D, then order (fr(z)) = D. Suppose deg(f(z)) = n.

Then we have

f@)f* (@) =1+a"

and

fry (@) (fimy)" (2) = 142",

where deg(f*(z)) = deg ((f(R))* (m)) =D —n.

Now

Thus there is no ambiguity in writing f() (z), and {1 (f*(z)) = £ (f(*R) (ac)), so we see that 8(f(z)) =

B (fr()).
O

Lemma 3.6. If f(x),g(z), h(z) € Fa[z] satisfy f(z)g(x) =1+ 2V and f(z)h(x) =1+ 2™, where N < M,
then £1(g(x))/N = ¢1(h(x))/M. In particular, if ¢1(g(x))/N is in lowest terms, then N is the order of f(x).

Proof. From Theorem 1.5, we know that N | M, so M = jN . We can write

14azM 1+ aiN

h(z) 7(2) =g(w) - 142N

=g@)(1+aN 4. 42070,

If ¢1(g(x)) = k and o, n—1(g9(z)) = N —k, then {1 (h(z)) = kM /N = jk and £y pr—1(h(x)) = (N —k)M/N =
M — jk = j(N — k). This proves the assertion. O

Definition 3.7. For a non-negative integer k, let b(k) denote the number of 1’s in the standard binary

representation of k.

Lemma 3.8. Forr > 2,
272

POEAREE U
k=0
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Proof. Since b(2"—1) = r with r digits in the representation and no zeros, if 0 < n < 2"—2, then b(n) < r—1.
Consider counting the value of Z 21’(’“) by first fixing the value of b(k). Let b(k) = j, where 0 < j <r—1.
There are (;) numbers 7 in the range of summation with b(n) = j. Hence the contribution to the sum from

numbers with b(k) = j is (;) 27, Using this and the binomial formula, we obtain

2" —2
Z 2b(k) — r 20 + r 21 + r 22 et r 27‘—1
P 0 1 2 r—1

=(2+1) 2"
=3"-2". O
Lemma 3.9. Fora,beN,
m— R
(1+2° —I—x H (1—|—x 2”’):1—&—962 @y 2"h,

Proof. Let m = 1. Then the product is (14 2% +2°%)(1 + 2% + 2°) = (1 +22* + 22°) by Remark 3.1. Suppose

the result holds for all 1 < m < n. Then

(142 +2° H(lJr:r 2”’) = (1422 + 221+ 22"+ 22"
j=0

_ (1 + (@) (332)2nb>

-1+ xz"'“a + x2”+1b
where we have again used Remark 3.1. Hence by induction the result holds for all m. O
Lemma 3.10. For1 <r eN,
(1 +2¥ 1+ ) H (1 + & DY xQTQJ) +24 2 | =142
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Proof. Using Lemma 3.9 with a =2" —1,b=2", and m = r,

r—1

(1 +22 4 :cQT) (1 + @02 4 a:“j> gt

I
—_
+
8
[
3
™
3
2
+
&
N
©
<
+
/
—_
+
8
[
3
L
+
8
[}
3
N——
W
3
S
3

:1+’£472 +l‘4 +£L’472 +£L’471+.’E4

Letd,; =3"—1land ¢, = (4" —1)—d,p =4" - 3".
Theorem 3.11. Fixz r > 3.
(i) The order of fri(x) =142+ 2% ~' + 22! divides 4" — 1.
(ii) The polynomial hy1(z) := (1 +2* =1/ fr1(2) = frq has £y(he1(2)) = cr1
(iii) Hence Byr—_1(fr1) = (¢r1,dr1) and fr1(x) is robust.

(iv) Let A, ={0,1,2"—1,2"+1}. Then ¢4, .(z) = fr1(x) and the sequence (fa,.(n)) mod 2 is periodic with
least period dividing 4" — 1. Among 4" — 1 consecutive terms of (fa,(n)), 4" — 3" terms are odd and

3" — 1 terms are even.

Proof. Define

|
—

T
gra(z) = (1 4712 x2"21> 42 (3.1)
§=0

Then Lemma 3.10 gives
(1 +22 14 xT') gra(z) =1+2 "1

Since
r—1

gra()=J[0+1+1)+1=0 (mod ?2),
=0

we know (1 + z) | gr,1(z). Hence there exists h, 1(z) € Fa[x] such that (1 + z)h,1(z) = gr1(2), so
(1 +22 7 4 x2T> (14 2)hpq(z) =142 1,

Since fra(z) = 1+a+2¥ 1 +2¥ ! = (1+2)(1+22 1 +2%), we see that fr1(z) | (L+2% ). We

have not shown that 4" — 1 is actually the order of f, 1(z), but we know by Lemma 3.6 that the exact order
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is not necessary to determine robustness. We have checked by direct computation that for r < 10, 4" — 1 is
the exact order of f ;.
Now we seek a nice expression for h,1(z) to use in proving part (ii). We will do this by manipulating

gr.1(x). Rewrite (3.1) to obtain

|
—

r

gra(z) = (1 2@ 0 (1 4 ¥ )) ot (3.2)
§=0

We next expand the product in (3.2) and use Remark 3.1, specifically 1+2% = (1+x)2j, to see that, with the
exception of 1 and z% ~2", all summands in the expanded product are terms of the form z(2"~1 > 2 (1+.13)Z Qi,
where > 2% is a sum of some subset of {20,21 ... 2771}, Considering all such Y 2¢, we get all terms of the

form 22 =D"(1 4 2)" for 1 <n < 2" — 1. Thus we can rewrite (3.2) as

271
gr,1(5€) — 14242 4 Z x(Q"_l)n(l +a)"
n=1
142472 2
— 1 (2 —1)n 1 n—1
( ”)<1+x +;w (1+2)
4r_27 1 271

=1+ Z zd + Z g2 =In(] 4 gt
7=0 n=1

Hence by the definition of h,.1(z),

4" —2"—1 2" —1

hr1(z) = Z z + Z e (1 4 )L
j=0 n=1

We shall use this representation of h, 1(x) to determine ¢1(h,1(x)). We begin by focusing on

2"—1

Sra(z) = Z 22 =On(] o)L

n=1
which is a polynomial of degree 4" — 2" — 1. We note that the greatest exponent in a monomial when n =k
is (2" — 1)k + (k — 1) = 2"k — 1, and the least exponent in a monomial when n =k +11is (2" —1)(k+1) =
2"k +2" —(k+1). Since k+1 < 2" —1, it follows that 2"k —1 < 2"k +2" — (k4 1), so there is no cancellation

of terms within S, 1(x). Glaisher’s Theorem, see [7], states that the number of odd binomial coefficients of
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the form (?), 0 < j <mn,is equal to 2°Y). Using this and Lemma 3.8, we see that

271 2" -2
0(Spa(x) = > 20070 = 3" ob) =3 9,
j=1 k=0

Since Sy 1 () is a polynomial of degree 4" —2"—1, S, 1 (z) has 4" —2" possible terms and g 4r_or_1 (Sy1(2)) =
4" — 2" — (3" = 2") = 4" — 3". Then, to construct h,;(z), we add Z?:OQTA 27. Note that the degree of
this sum is equal to the degree of S,1(z). This addition has the effect of reversing the 0’s and 1’s, so
U (hr1(z)) =47 — 3" and £o 4r—2r—1(hyr1(x)) = 3" — 27, completing the proof of part (ii). Because the order
of fr1(x) divides 47 — 1, we consider h,1(z) as a polynomial of degree 4" — 2 with 4" — 1 possible terms.
The 2" — 1 terms of degree 4" — 27,... 4" — 2 have coefficient 0. Thus in total ¢;(h,1(z)) = 4" — 3" = ¢1
and £y ar—a(hp1(2)) =3"—1=d, ;.

Since ged(es 1,ds.1) = ged(37,26) = 1, we know £y (hs 1) /(43 — 1) is in lowest terms. By Lemma 3.6, the
order of f3; is indeed 4% — 1, and the polynomial is robust. For r > 4, it is not necessarily the case that

ged(er,1,dr1) = 1, but it is true that

Ga _A-3 31
4 —1 4 —1 4 —1
3" —(3/4)" 3\"_ 2
1 =1—( =2 z
” 4 —1 4 - 3’7
so fr1(z) is robust by Remark 1.1.
Part (iv) follows immediately. O

Example 3.1. Consider f31(z) =1+ z + 27 + 2. The order of f31(x) is 43> — 1 = 63. The polynomial
fi1(2) has €1 (f5,(x)) = 4% — 33 =37, and B (f3,1(x)) = (37,26). Explicitly,

f;l(l‘) :1}54 + x52 + 1,50 + 1348 + JC45 + ZE44 + I41 + 1’40 + .1738 + I37 + 1,36 + :ZZ34
4 1'33 + 3332 + $27 4 .%'26 + 1,25 + $24 + .’L‘22 + {E20 4 LL’lg + .2718 + 1,17

+I16+l‘13+1’12+ZE11+1‘10+IE9+1’8+1‘6+$5+I4+1‘3+I2+I+1.

Corollary 3.12. The reciprocal polynomials f(gy,1 =1+ 22 + 2% 4+ 221 are robust with order dividing

4" —1.

Proof. This follows immediately from Theorem 3.11 and Lemma 3.5. O
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Example 3.2. Consider fip)s:(z) = 1+ 22 + 28 + 2°. The order of fry,3,1() is 43 — 1 = 63.

polynomial f(*R),S,l(x) has ¢, (f(*R),&l(x)) =43 — 3% =37, and B (f(r)3,1(z)) = (37,26).

We now exhibit another family of robust polynomials.

Let ¢,0 =4" —3"4+2" and d, o = 3" + 1.
Theorem 3.13. Fixr > 3.
(i) The order of fro(x) := 14z + 22" + 22 2 divides 4" + 2" + 1.
(ii) The polynomial hyo(x) := (1L + 2z 2N /£ o(x) = f15 has (1 (hr2(x)) = o

(ili) Hence Bartar41(fr2(z)) = (¢r2,dr2) and fra(x) is robust.

The

(iv) Let A, ={0,1,2",2" 4+ 2}. Then ¢, (x) = fro(z) and the sequence (fa,(n)) mod 2 is periodic with

least period dividing 4" + 2" + 1. Among 4" + 2" + 1 consecutive terms of (fa,(n)), 4" — 3" + 2" terms

are odd and 3" + 1 terms are even.

Proof. Let

|
—-

r

gr}g(:c) = (1 + mzjzv- " m2j(27v+1)) .
0

J

By Lemma 3.9, we know that

(1 +a? 4 I2T+1> Gra(x) = 14222 4 22 C+D

=142 +24 7.

By factoring the terms in (3.3) we obtain

gro(x) = ﬁ (1 + 227 (1 + ij)) .

(3.3)

Then by expanding the product and using Remark 3.1, we see that, with the exception of the term 1, all

summands in the expanded product are terms of the form 2" x2 1+ :C)E Qi, where Y~ 2% is a sum of some

subset of {20,2',...,2"71}. Considering all such Y 2%, we get all terms of the form 22 "(1 4 z)" for all

1 <n <2"—1. Thus we can rewrite (3.3) as

r—1
gro2(x) = H (1 + 2% (1 + x2j)>
=0



Using equations (3.4) and (3.5), we see that

2" -1
<1+x2r +x2T+1) <1+x4 + Z 2 (14 x) )
= (1 +2% + x2T+1) (m4r + gr,2($))
o (R P B

T T i i ™ i i T
B I L L B

— 14 a¥

Now observe that

2" | 2741 1+t & 27 i-1
(1—|—x +a )(1—|—x) s + Y 2?14 2)

=1
r r 1 4" 21 [ ;
= (1+m+x2 + z? +2> (1—:3;4— Z z? Z(1—&—@")1_1)
roo2m—1
1+ 2t or; i1
= fro(z) ( + Z (14 x)
1+ =

=1 + .'I,'4T+2T+1.

Thus the order of f,2(z) divides 4" + 2" + 1, completing the proof of part (i), and that suffices to determine
it f,2(x) is robust by Lemma 3.6. We have checked by direct computation that 4" 42" 41 is the exact order
of fr2(z) when r < 10.

Let
21

Z:v 1+x L

$0 hpo(x) = 11"_5 + Sra(x). We wish to determine ¢4 (h,2(z)) and will begin by determining ¢1 (S, 2(z)).
We first note that when i = k, the monomial of greatest degree is 22 #xF~1 = 22" k+*k=1 When i = k + 1,
the monomial of lowest degree is 22" (F+1) = 22"%+2" " Since k < 2" — 1, it follows that 2"k +k—1 < 2"k +27,
so there is no overlap of terms from ¢ = k and i = k + 1.

Once again, we use Glaisher’s Theorem, see [7], which states that the number of odd binomial coefficients

of the form (?), 0 < j < n, is equal to 2°¢), and Lemma 3.8 to see that

27 —1 2" -2

) = Z 9b(i=1) — Z ob(k) — g
j=1 k=0
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Because S, 2(x) is a polynomial of degree 27(2" — 1) + 2" — 2 = 4" — 2, we have £y 4r_2(Sy2(z)) =
47 —241-3" 42" = 4737427 —1. Adding in the (1+2*")/(1+2) = 1+a+a?+---+2* 2424~ to construct
hr2(z) has the effect of reversing the 0’s and 1’s and adding an additional 1. Hence ¢4 (h,2(x)) =47 —3"+27
and fg4r_o(hr2(xz)) = 3" — 27, and the proof of part (i) is complete. We now consider h,s(z) as a
polynomial of degree 4" + 2", so the remaining 4" + 2" — 4" + 1 = 2" + 1 terms have coefficient 0. Hence
U (hra(z)) =4" — 3"+ 2" = ¢ and Lo arqor(hr2(x)) =37+ 1 =d; 2.

It is not necessarily the case that ged(cr2,dr2) = 1, and when this fails we know only that the order
of fro(x) divides 47 + 2" + 1, but this is still sufficient to determine if f,2(x) is robust by Lemma 3.6. In
fact, ged(cs,2,ds,2) # 1, but 4”7 4+ 27 + 1 is indeed the order of fs2(x) and not just a divisor of the order.
For 1 <r <5, ged(cr2,dr2) =1, so the order of f,o(z) is 4" + 2" + 1, and S(fr2(x)) = (cr,2, dr2), making

fr2(x) robust. For r > 6,

e AT =342 3l
4r42r 41 4r 42741 0 4r2r 41
>1_3 +(3/2)" + (3/4) L 3 >g,
4" +2" +1 4 3
so fro(z) is robust by Remark 1.1. Part (iv) follows immediately. O

Example 3.3. Consider f32(z) = 1+z+2%+ 20 The order of f32(z) is 4% + 23 +1 = 73. The polynomial
f32(x) has €1 (f5,(x)) = 4% — 3%+ 23 =45, and B (fs.2(x)) = (45,28). Explicitly,

fia() 63 4 61 4 59 05T | 055 4 54 51 050 4 47 |46 | 45 4 43
o2 g4 B9 L 038 4 8T L 036 L 031, 30 4 029 | 98 | 27 4 05
L2322 4 g20 4 020 4 10 4 18 4 15 4 0y 18 ) 12 ) o
e o A S LR R R R i . N
Corollary 3.14. The reciprocal polynomials f(gry,2(z) = 1+ z? 4+ 22 4+ 222 are robust with order
dividing 4" + 2" + 1.
Proof. This follows immediately from Theorem 3.13 and Lemma 3.5. O

Example 3.4. Consider f(g)32(x) =1+ 2% + 2% 4+ 2'°. The order of f(g)32(z) = 4% + 2% + 1 = 73. The

polynomial f(*R)73)2(x) has ¢ (f(*R),3,2($)> =43 - 33423 =45, and B (f(r)3,2) = (45,28).

With Examples 3.1, 3.2, 3.3, and 3.4, we have accounted for all of the rectangular points in Figure 1.1.
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In our search for robust polynomials, we have checked all polynomials of order less than or equal to 83,
all quadrinomials of degree less than or equal to 18, all trinomials of degree less than or equal to 19, and
all polynomials of degree less than or equal to 14. The families described above were the most interesting
examples discovered in these searches, but we shall describe here the methods of searching and some of the
results.

We found the four sequences of robust polynomials discussed in this chapter by using Mathematica to
obtain large amounts of data. One tactic was to determine 8(f(x)) for all polynomials f(x) € Fa[z] with
order less than or equal to 83. To accomplish this, we first fixed the value of m and then factored 1 + z™.
The exact code used varies slightly depending on the number of distinct irreducible factors of 1 + ™ but
does not depend on m in any other way. The next step was to build a table whose entries were all of the
polynomial divisors of 14 z™. We then used two nested for loops to calculate ,,(g(x)) for each polynomial
divisor g(x) of 1 + 2™. Appendix A.1 contains the code used for m = 6, and Appendix A.2 contains the
code used for m = 7. For some larger values of m in the range 1 < m < 83 for which 1 + 2™ has a high
number of distinct irreducible factors, we also included an if statement in the nested for loops so that only
the robust polynomial divisors g(z) of 14 z™ and their order pairs 3,,(g(x)) would print. This is illustrated
by the code in Appendix A.3. The tables in Appendix A.4 list all robust polynomials of order less than or
equal to 83, which were obtained in the manner described above.

The robust polynomial f31(z) =1+ z + 27 + 2° of Example 3.1 was found using the method described
above and appeared in the data for polynomials of order 63. Since 8 (f31(z)) = (37,26) had such a high
ratio of the first coordinate to the second coordinate, we began to check other polynomials f; 1(z) for small
r and noticed that they, too, had 3 (f,1(z)) = (4" —3",3" —1). We hoped this would generalize to f,1(z) for
all values of r, and in time the proof of Theorem 3.11 was found. We later noticed among the Mathematica
data on polynomials of order 63 the robust polynomial f(g) 31 of Example 3.2 and applied Lemma 3.5 to
obtain Corollary 3.12. The tale of Theorem 3.13 and Corollary 3.14 is similar.

After finding these four sequences of robust polynomials, we continued our search and narrowed the
focus to quadrinomials. We began to systemically consider all quadrinomials in Fa[z] by degree. We used
Mathematica on a department office computer to obtain S(f(x)) for all quadrinomials f(z) with degree
less than or equal to 15. Appendix B.1 Figure B.1 contains the code used for quadrinomials of the form
1+ + 27 + 2'2, where 2 < j < 11, and Figure B.2 contains the code used for quadrinomials of the form
1+ 2%+ 27 + 2'2, where 3 < j < 11. Nested for loops could have been used to create one piece of code that
would generate data on all quadrinomials of degree 12, but it was more advantageous to break the problem

into smaller pieces to avoid needing large chunks of consecutive run time on the office machine. After degree
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15 the time required to run the code even when broken into smaller pieces became unreasonable. Jonathan
Manton assisted us in learning to use the Illinois Campus Cluster Program. When using the secondary queue
of Campus Cluster, we had access to all available nodes of the 512 in the Campus Cluster with a wall-clock
limit of 4 hours per job. By breaking our overall job into sub-jobs, this allowed us to run many of our
Mathematica calculations simultaneously. We used Campus Cluster to obtain S(f(z)) for all quadrinomials
of degree 16,17, and 18. While we did find robust polynomials in this search, we were unable to generalize
any of them to sequences of polynomials. Appendix B.3 contains a complete list of all robust quadrinomials
of degree less than or equal to 18.

Table V-1 of [6] contains information, including orders, on trinomials of degree less than or equal to 36.
We used this information on orders to obtain S(f(z)) for all trinomials f(z) € Fy[z] with degree less than or
equal to 19. There were only 4 robust trinomials in this range, and they are given in Table 3.1. Calculations

became difficult for trinomials of higher degree because of the large amounts of time needed to run the code.

f(z) ord(f(z)) | B(f(x))
1+23+2 | 5115 (2600, 2515)
1+t + 2™ | 5115 (2600, 2515)

1+29+ 219 | 174251 (87136, 87115)
1+ 210 + 219 | 174251 (87136, 87115)

Table 3.1: All robust trinomials of degree less than or equal to 19

We also determined B(f(x)) for all polynomials of degree less than or equal to 14. Of all the polynomials
studied in these various methods, the most interesting ones remain the families described in this chapter,
due to the large ratio of the first coordinate of B(f(z)) to the second coordinate and because those were
the only cases in which we were able to take the specific examples we noticed in the data and generalize to

entire families of robust polynomials.
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Chapter 4

Asymptotics of the Summatory
Function

We begin by reviewing some basic concepts of sequences introduced in Chapter 2 and include a matrix view
of recurrence relations, following [9].

Consider a sequence (b(n)) such that
b(n) + cr—1b(n — 1) + c—2b(n —2) + -+ cob(n — k) =0 (4.1)
for all n > k and ¢; € N. By shifting the sequence, we see that
b(n+k)+cpib(n+k—1)+cpabn+k—2)+---+cobln+k—k)=0 (4.2)

for n > 0. Recalling definitions from Chapter 2, (4.1) is a homogeneous k-th order linear recurrence relation,
and (b(n)) is a homogeneous k-th order linear recurrence sequence. The coefficients cg, ¢y, ..., cx—1 are the
initial values of the sequence. For any sequence (b(n)) satisfying (4.1) we can define the characteristic
polynomial

f(z) = AR s R Y L SN USRS (4.3)

We can also consider a recurrence relation from the point of view of a matrix system, considering k

sequences indexed as (b;(n)) for 1 <14 < k which satisfy

k
bi(n+1) = mi;b;(n)
j=1
forn>0and 1 <¢<k. Then

bi(ln+1) mi1 o Mag bi(n)

bk(n =+ 1) meg1 - Mik bk(n)
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for n > 0. To simplify the notation, if M = [m;;] and

is the vector of initial conditions.

In this matrix point of view, the characteristic polynomial of M is
g(A) :=det(M — A\Ij).

By the Cayley-Hamilton Theorem, g(M) = 0, the k x k zero matrix.
If g(z) is (4.3), then

0=g(M)=M"+cp, M fop oMF2 4 4 ool

Hence for any n > 0,

O — Mn+k 4 Ck_an+k_1 + Ck-_QMnJrk_z N COMn

and thus

0=B(0) (M"" + e  M"F 1 o oM™ F2 o cgM™)

=B(n+k)+c1Bn+k—1)+co2Bn+k—2)+ -+ coB(n).

Thus each sequence (b;(n)) satisfies the original linear recurrence (4.2).

As an additional connection between these two views of linear recurrence sequences, note that for a
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sequence satisfying (4.1),

b(n+1) 0 1 .- 0 0 b(n)

b(n + 2) 0 0 - 0 0 b(n +1)
bn+k—1) 0 0o - 0 1 b(n+k—2)

b(n+ k) —cyg —C1 ++ —Ch_o —Ch_1 bn+k—1)

where this matrix is the companion matriz to g and has characteristic polynomial (—1)¥g.
To apply these ideas, let f4(n) denote the number of ways to write n = = €;2%, where ¢; belongs to
the set

A:={0=ag,a1,...,a,},

with a; € N and a; < a;41 for all 0 < ¢ < z — 1. Suppose that including 0 there are s even elements
of A. Call them 0 = 2b1,2bs,...,2bs, with 0 = by < by < .-+ < bs. The remaining (z + 1) — s := ¢
elements of A must be odd. Call them 2¢; +1,2¢5 +1,...,2¢; +1 with 0 < ¢y < ¢ < ... < ¢;. Then
A ={0=2by,2bs,...,2b5,2¢1 +1,...,2¢; + 1}.

If n is even, then ¢y = 0, 2bo, 2b3, ..., or 2b, and

fa(n) = fa(n/2) + fa((n — 2b2)/2) + fa((n — 2b3)/2) + - - + fa((n — 2b5)/2).

Writing n = 2¢, we have

Ja(20) = fu(l) + fa(l —ba) + fa(€ —b3) + -+ fall —bs),

so for any even n, f4(n) satisfies a homogeneous linear recurrence relation of order bs. If n is odd, then

€0 =2c1+1,2co+1,...,0or 2¢; + 1, and

fa(n) = faln = 2er +1)/2) + fal(n = 2c2 +1)/2) + -+ + fa((n — (2c¢ +1))/2).

Writing n = 2¢ + 1, we have

fa20+1) = fa(l —c1) + fall —co) + -+ fall — cr),

so for any odd n, f4(n) satisfies a homogeneous linear recurrence relation of order ¢;. This argument is
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given for fa,(n), the b-ary representation of n with coefficients from A, using residue classes modb in [1].

Example 4.1. Let A= {0,1,4,9}. We can write A = {2(0),2(0) + 1,2(2),2(4) + 1}. Then

J10.1,4,03(20) = fro,1,401(€) + fro,1,40(€ —2)

and

J101,4,01(20+ 1) = fro1,4,01(€) + fro1,4,0(€ — 4).

In general, let
fa(2¥m)

Ko, —
em) = fa(2 1)

fa(2Fm —a.)

and consider the fixed (a, + 1) x (a, + 1) matrix M such that for any k > 0,

Wk+1 = ka.

Example 4.2. Let A={0,1,3,4}. Then

fa(20) = fa(l) + fa(l —2)

and
fa+1) = fa(l) + fall = 1).
Now
fa(2¥tm) fa(2¥m) + fa(2¥m —2)
fa(2¥tm —1) fa(@m =1) + fa(2"m - 2)
wipt(m) = | fa2"tm—=2) | = | fa*m—1)+ fa(2*m-3) |,

fa(2¥tm —3) fa(2Fm = 2) + fa(2"m - 3)
fa(2Fm —4) fa2Fm —2) + fa(2"m — 4)
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1 01 00
01 1 0 0
and M= 0 1 0 1 0 | satisfies wii1(m)= Mwi(m).
001 1 0
00 1 01
m2r T -1
We will use these ideas to examine the asymptotic behavior of the summatory function Z faln),
but we must first establish a lemma. e
Lemma 4.1. Let M = [my;] be an n X n matriz with characteristic polynomial g(\) and eigenvalues

)\17)\2,...,)\y. Then
n
max |[A;| < max E myj.
1<i<y 1<i<n® 1
]:

Theorem 4.2. Let A, fa(n), M, and wr(m) be as above, with the additional assumption that there exists
some odd a; € A. Define

m27t—1

sa(r,m) = Z fa(n).

n=m?2"

Let | A| denote the number of elements in the set A. Then for a fized value of m,

. S.A(Ta m) _
Jm =g = eAm),

for some constant c(A,m) € Q, so sa(r,m) ~ c(A,m)|A|".

Proof. Let g(\) := det(M — AI) be the characteristic polynomial of M with eigenvalues A1, Ag, ..., Ay, where

each )\; has multiplicity e;. We can write

a,+1

g(\) = Z ap\F.
k=0

By Cayley-Hamilton, we know that g(M) = 0. Thus we have

and hence, for all r,
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Since

fa(27Fm)
fa2Fm —1)
Wrk(m) = . ;
fa2tEm —a,)
we have
a,+1
> f2m = j) =0 (4.4)
k=0

forall 0 < j < a,.

Let I, = {27, 2" +1,2" +2,...,2"*1 —1}. Then I, = 2I,_, U (2I,_; + 1). Thus

m2r -1
sa(rm) =Y fa(n)
n=m2a"
m2"—1
= Y fan)+ fa@n+1)
R
= > fa)+ faln —ba) 4+ fa(n— b)) + fa(n—c1) + -+ faln— ).
n=m2r—1
Since
m2"—1 m2" —1 k
Yo faln=k)= > fam)+ > (fa(m2 Tt =) = fa(m2 —j)),
n=m2r—1 n=m2r—1 j=1
we deduce that
m2"—1
sa(rom) =[Al > fa(n)+h(r)
n=m2r—1
= |Alsa(r —1,m) + h(r),
where
s b; t ¢
h(r) =3 (fa(m27™" = 4) = fa(m2" = 5)) + > > (fa(m2"™" = j) = fa(m2" - j))
i=2 j=1 i=1 j=1
and
a,+1
Z arh(r+k)=0
k=0

by Equation (4.4).

Thus we have an inhomogeneous recurrence relation for s 4(r, m) and will first consider the corresponding
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homogeneous recurrence relation s4(r,m) = |A| sa(r — 1,m), which has solution s4(r,m) = ¢; |A|". Then

the solution to our inhomogeneous recurrence relation is of the form

y
sa(r,m) =c1|A|" + Zpi()\i, r),
i=1
where p;(X;,r) = 3270 cigrd 7T
By Lemma 4.1, the maximum of the absolute values of the \; is bounded above by the maximum of the
row sums of M, and any row sum of M is at most |A| — 1 since all elements of M are either 0 or 1 and
by assumption not all elements of A have the same parity. Hence the ¢;|A|" term dominates s(r,m) as

r — 00, SO

. SA(Ta m) _
i Ay -

We can compute ZZZ;{)l arsa(r + k,m), and for sufficiently large r, we have

a.+1 a.+1
S apsalr+km)=c1 Y ap A +0=1c1 |4 g (A]),
k=0 k=0

since

1

ax+1 y
> o
k=0 i=

Then we can solve for ¢; to see that

_ ZZ:El agsa(r+k,m)

1 =c(A,m) = AT g (1AD (4.5)
O
Example 4.3. Let A ={0,2,3}. Then
fa(20) = fa(l) + falt—1) (4.6)
and
fa20+1) = fa(t-1), (4.7)
S0
fa(2"'m) 110 fa(2¥m)
fa@*m—1) | =] 0 0 1 fa(2bm —1)
fa(2¥m — 2) 01 1 fa(2Pm —2)
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1 10

Hence M = | o 0 1 | satisfies wiy1(m) = Mwg(m). The characteristic polynomial of M is

01 1

g(z) = —(z —1)(2* =z —1). (4.8)

Let F}, denote the k-th Fibonacci number. Then

fa@F =1) = Fiy (4.9)

for all kK > 1. This can be shown by using induction and Equations (4.6) and (4.7) to prove that f4 (2% —2) =
Fy, for all k > 2 and observing that Equation (4.7) gives f4(2F — 1) = f4(2F71 —2).

Considering the summatory function with m = 1 and using Equations (4.6),(4.7), and (4.9), we see that

2rtl_q
sa(r1)= > fa(n)
n=2"
27 —1
= Y (fa@n) + fa2n+1))
e
= > (fa) + faln—=1) + fa(n—1))
n=2 .
=sa(r—1,1)+2 Z fa(n—1)
n2:r2_71
=sar=1,1)+2 > fa(n)+2fa(2"7" —1) —2fa(2" — 1)
n=27-1

=3s4(r—1,1) +2f4(2"71 —1) —2f4(2" — 1)
= 38_,4(7“ - ]., ].) + 2FT,2 — 2Fr,1

=3s4(r—1,1) — 2F,_3.

This is an inhomogeneous recurrence relation for s4(r,1). We first consider the corresponding homoge-

neous recurrence relation s4(r,1) = 3s4(r — 1,1), which has solution

sa(r,1) =137,

for some ¢; in Q. Recall that the characteristic polynomial g(z) of M has roots 1,¢, and ¢, each with
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multiplicity 1. Hence the solution to the inhomogeneous recurrence relation is
sa(r,1) = 13" + 20" + c3d” + ca(1)", (4.10)

where cg, c3,cq4 € Q. Observe that the ¢;3" summand will dominate as r — oo, so

1
lim SA (7", )

= Cl
r—00 3T

and s4(r, 1) ~ ¢13".

Using Equations (4.8) and (4.10), we can compute ¢; as

sA(r+2,1) —sa(r+1,1) —s4(r,1) =137(32 =3 = 1) + 20" (¢ — 6 — 1)
+e3d (9P =9 —1) +ea(1® =1 -1)

2013T~5—C4.

Plugging in » = 1 and » = 0 and computing sums, we see that ¢; = 2/5. Hence

im 240D _ 2
r—00 3T 5
and s4(r,1) =~ 2(3)".
Given a set A = {0,ay,...,a.}, let A be
A= {0,a, —a,_1,...,a, —ay,a.}.

The following chart displays the value ¢(A,1) for various sets A and their corresponding sets A, where
sa(r,1) = ¢(A,1)|A]". Note that in all cases the denominator of ¢(A4, 1) is the same as that of ¢(A4,1). The

following theorem will show that this holds for all A.
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A (A1) N(e(A 1) A (A1) N(c(A 1))
{0,1,2,4} = 0.636 {0,2,3,4} 2 0.273
{0,2,3,6} 22 0.265 {0,3,4,6} 1 0.141
{0,1,6,9} 3401207 0.206 {0,3,8,9} 50032 0.070
{0,1,7,9} PEepdd 0.202 {0,2,8,9} Sl 0.078
{0,4,5,6,9} 4044 0.048 {0,3,4,5,9} ZH& 0.080

Table 4.1: ¢(A, 1) for various sets A and A

Theorem 4.3. Let A, f4(n), M = [ma.g], and A be as above, with 0 < o, 8 < a.. Let N = [n4.p] be the

(a. +1) x (a, + 1) matriz such that

fi(2n) fa(n)
fA(QT'L—l) N f,a(n‘—l)
fﬂ(Qn_GZ) fj(n_a-Z)

Then ma.g = Na, —a,a,—8-

Proof. Recall that we can write

A:=1{0,2b1,...,2bs,2¢1 + 1,...,2¢;, + 1},

so that

fa@n —=2j) = faln = j) + faln =G = b1) + -+ faln —j = bs)

and

fa@n—2j-1)=fan—j—c1 =1+ + faln—j—c, —1)

42



for j sufficiently large.

Then my g = 1 if and only if f4(n — /) is a summand in the recursive sum that expresses f4(2n — «),
which happens if and only if 2n —a = 2(n— ) + K, where K € A, and this is equivalent to 23 — a belonging
to A.

Now 14, —a,a.—p = 1 if and only if f;(n — (a. — B)) is a summand in the recursive sum that expresses
f4(2n — (as — @)), which happens if and only if 2n — (a; — @) = 2(n — (a, — 8)) + K, where K € A. This

means that a, + o — 28 = K, which gives 28 — o € A. O

Thus M = AN A, where

0 0 01
00 10

A= ;
0 1 00
10 0 0

so M and N have the same characteristic polynomial. By taking n = 2"m, we see that ¢(A, m) and ¢ (fl, m)

have the same denominator.
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Chapter 5

Open Questions

In this chapter, we discuss open questions relating to the problems, theorems, and examples in Chapters 3
and 4.

The original statement by Cooper, Eichhorn, and O’Bryant in [3] was, “The most interesting issued
raised in this section, which remains unanswered, is to describe the set {0 (P) : P is a polynomial}. For
example, is there an n with ¢ (E) = 3/47” Tt is trivial that the infimum of the set is 0, and we saw in
Chapter 3 that the supremum of the set is 1. The cluster points of the set remain to be determined, as does
whether or not 3/4 belongs to the set.

We would like to show that 4" — 1 is in fact the order of the robust polynomials f,; of Theorem 3.11
and their reciprocals f(g) 1 of Corollary 3.12 rather than a multiple of the order, which is the result we
now have. Similarly, we hope to show that 4" 4 2" + 1 is the exact order of the robust polynomials f, » and
f(r),r,2 of Theorem 3.13 and Corollary 3.14.

A nicer formula for ¢(.A,m) than that given in Equation (4.5) is desired and seems likely. To that end,
we have computed values of ¢(.A) for a variety of sets A but have not been able to detect any patterns. Table
5.1 shows ¢(A4, 1) for all sets of the form A = {0,1, k}, where 2 < k < 15. We have also computed c(A4, 1)
for some sets with |A| = 4 and |A| = 5, and that data is contained in Table 4.1. Larger sets have not been
considered because computations become increasingly tedious as the cardinality of A grows.

We would like to find more families of robust polynomials. It seems that the best way to do this would
be to proceed as before, collecting large amounts of data and working to generalize the specific robust
polynomials found in that data. More efficient computing and coding will be needed, however, to obtain
more data. Coding in Sage or PARI/GP would likely be beneficial, as would continuing to utilize Campus
Cluster and other available high-performance computing systems.

Another open problem is to consider properties of f4(n) in bases other than 2. Calculations of sequences
(fa(n)) mod 3 for A = {0,1,3},{0,2,3},{0,1,4,9},{0,1,5,9,10},{0,2,3,4},{0,1,2,...,27} for 2 < j <6,
and {0,1,3,...,37} for 2 < j < 4 showed no immediately obvious periodicity properties. We also considered

the sequence (f{o)Qﬁ&g}(TL)) mod 3,4,5,6,7, and 8 but noticed no periodicities.
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A c(A,1) N(c(A 1)) A c(A, 1) N(c(A, 1))
{0,1,2} 1 1.000 {0,1,3} % 0.800
{0,1,4y 2 0.625 {0,1,5} 42 0.560
{0,1,6} 22 0.499 {o,1,7 i 0.450
{o,1,8} ¥ 0.405 {o,1,9} 4= 0.384
{0,1,10} 2% 0.360 {o,1,11}y 32 0.340
{0,1,12} 2020 0.322 {0,1,13} 22 0.306
{0,1,14} 3384 0.291 {0,1,15} 229224 0.280

Table 5.1: ¢(A, 1) for all sets of the form A = {0, 1, k}, where 2 < k <15

Recall the upper bound from [8, 8.78] of 2%/2 for |¢; (f*(x)) — £o.pr—1 (f*(x))| for a polynomial f(x) of

degree k and order M discussed at the end of Chapter 2. The most extreme robust examples found thus

far are those given in Examples 3.1, 3.2, 3.3, and 3.4. Recall 5(fs1(x)) = 8 (f(R))3’1($)) = (37,26) and

deg (f3,1(x)) = deg (f(r)3.1(x)) = 9. Additionally, 5 (f32(2)) = B (f(r).3.2(x)) = (45,28) and deg (f3,2(x)) =
deg (f(R)’g,’Q (J;)) = 10. Using the bound from [8], we have

’fl (fék’l(l‘)) — fO’GQ (f;k,l(x))’ = ‘61 (f(*R),S,l('r)) — 60762 (fEkR),3,1(x))‘ =37T—-—26=11 < 29/2 ~ 22.6

and

01 (f2(@)) = o2 (f52@)] = |02 (Fimy2(@)) = fo.72 (Fimy (@) | = 45— 28 =17 < 21072 32,

For any r > 3, if we assume that 4" — 1 and 4" + 2" + 1 are the exact orders of f,; and f, 2, respectively,

we have

[0 (f1 () = boar—2 (fia(@))| = ’fl (fEkR),r,l(‘T)) —Lloar—2 (f(*R),r,l(x))‘

—4T 3 (37— 1)

—4"—2.3" 41
< 232+

r—2
— 427 +:
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and

[0 (F2@) = oarser (2@)] = 2 (Fimy ra@)) = orsor (Fimyra@))|
=47 3" 42" — (3" +1)
=4"—2.3" 42" ~1
< 23(2"+2)

— 4273
where the penultimate expressions in both displayed equations come from the upper bound in [8].

Since these are the most extreme examples but do not push the upper bound, we suspect that the bound

of 2¥/2 could be improved in the Fy case.

46



Appendix A

Searching for Robust Polynomials by
Order

This appendix contains samples of the Mathematica code used in determining B(f(z)) for all polynomials
f(z) € Falx] with order less than or equal to 83. It also contains tables with information on all robust

polynomials in that range.

Al

k:=6

Factor [1+x”~k, Mdul us - 2]

(1+x)2 (1+x+x2)2

m= FactorList [1+x"k, Mdulus-2]

({1 1}, (1+x, 2}, {l+x+x2, 2}}
A=Append[Table[m[[2, 1117, {i, m[[2, 2]11}], 1]
{1+x, (1+x)? 1}

B=Append[Tabl e [m[ [3, 1]1]1%i, {i, m[[3, 2]1}1, 1]
{1+x+x2, (1+x+x2)2, 1}

Q=CQuter [Tines, A B]

H(l+x) (1+x+x%), (1+x) (l+x+x2)2, 1+x},
{(1+x)2 (1+x+x2), (1+x)2 (1+x+x2)2, (l+x)2}, {1+x+x2, (l+x+x2)2, 1}}
r = D nensi ons[Q]

{3, 3}

ririnl
3

Figure A.1: Mathematica code for determining £¢(g(x)) for all polynomial divisors of 1 + x°
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For[j =1, j <r[[1]]1+1, j++,
For[i =1, i <Length[Q[[j111+1, i++, Print[Q[[j, i111;p[x_]1:=Q[[j,i1];a:=Mx[Reap[For [n=1,
n< 1000, n++, |f [Polynom al Renai nder [1+x”n, p[x], X, Mdul us -»2] ==0, Break[]]]; Sow[n]]];
q[x_]:=Polynomal Quotient [1+x"a, p[X], X, Mdulus-2]; c:=q[Xx] /. Xx>1;
Print [q[x]]; Print [Row[{c, a}, s]]]]

(1+x) (1+x+x%)
1

1s3

(1+x) (1ex+ X2>2
1+x

2s6

1+x

1

1s1

(1+x)2 (1+x+x%)
1+ x+x2

3s6

(1+x)2 (l+ X + XZ)Z

Figure A.2: Mathematica code for determining B¢ (g(x)) for all polynomial divisors of 14+x°. Each polynomial
divisor g(x) is listed, followed by the polynomial g*(z) := (1 + 2°)/g(z), and then ¢1(g*(x)) s ord(g(x)).
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A.2

k:=7

Factor [1+ X"k, Mdulus - 2]

(L+x) (1+x+x3) (1+x2+x3)

m= FactorList [1+Xx"k, Mdulus-2]

{11 13, {1+x 13, {1+x+x3, 1}, {1+x% 43, 1}}
A=Append[Table[m[[2, 1]1]17i, {i, m[[2, 2]11}], 1]
{1+x, 1}

B=Append[Tabl e [m[ [3, 1]1]17i, {i, m[[3, 2]11}1, 1]
{1+ x+x3, 1}

F=Append[Tabl e[m[[4, 1]11"i, {i, m[[4, 2]11}], 1]
(14243, 1}

Q=CQuter [Tines, A B]

{a+x (1+x+x3), 1+x}, {1+x+x3, 1}}
T=Hatten[Q

[(@ex) (Lex+x®), 1+x 1+x+x3, 1}

S=Quter [Tines, T, F]

{{(1+X) (l+X+X3> <1+X2+X3>, (1+ X) (l+X+X3)},
{(1+X) (l+X2+X3), 1+X}, {(1+X+X3) <1+X2+X3>, 1+X+X3}, {1+X2+X3, 1}}

r = O nensi ons [S]
{4, 2}

ririnl
4

rre21]
2

Figure A.3: Mathematica code for determining 3(g(x)) for all polynomial divisors of 1 + 27
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For[j =1, j <r[[1]]1+1, j++,
For[i =1, i <Length[S[[j1]11+1, i++, Print[S[[j,i111;p[x_]1:=S[[j,i1];a:=Mx[Reap[For [n=1,
n< 1000, n++, |f [Polynom al Renai nder [1+x”n, p[x], X, Mdul us-»2] ==0, Break[]]]; Sow[n]]];
q[x_]:=Polynomal Quotient [1+x"a, p[X], X, Mdulus-2]; c:=q[x] /. Xx>1;
Print [q[x]]; Print [Row[{c, a}, s]]1]]

(Lex) (Tex+x®) (L+x2+x3)
1

1s7

(L+x) (L+x+x3)

14+x24+x3

3s7

(L+x) (1+x%+x°)

1ex+x3

3s7

1+Xx

Figure A.4: Mathematica code for determining 3(g(z)) for all polynomial divisors of 1+z7. Each polynomial
divisor g(z) is listed, followed by the polynomial g*(z), and then ¢;(g*(x)) s ord(g(z)).
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A.3

For[j =1, j <r[[1]11+1 j++,
For [i =1, i <Llength[u[[j]1]1]1+1, i++ Pp[x_1:=ul[j, i]1];a:=Mx[Reap[For [n=1, n <1000,
n++, |f [Polynonial Renai nder [1+X”n, p[X], X, Mdulus-»2] =0, Break[]]]; Sow[n]]];

q[x_] :=Polynomal Quotient [1+Xx"a, p[x], X, Mdulus->2]; c:=q[x] /. X=>1;
If[2xc>a+1, Print [u[[j, i11]; Print [q[x]]; Print [Row[{c, a}, s11,111

(1+x) (1+X+X9>

Tx? e x* o x8 e xB e x® 4 x4+ xB 4 x20 4 X174 x84 x20 4 x4 X2y

X24+X25+X26+X27+X32+X33+X34+X35+X36+X38+X40+X41+X42+X43+X44+

X® 4 x4 x® 4 x50 x5 4 x5 4 x58 X34 o x3B 4 xT 4 x84 x50 4 xB0 4 xBL 4 62, x63

45s 73

(L+x) (1+x8+x7)
Tax+x2ex3 x4 x% x84 X7+ x4 x10 4 x4 x12 4 xB8 4 x4 4 x35 4

X:lg + X20 +X21 + X22 + X23 + X25 + X27 + X28 + X29 +X30 + X3l +X36 + X37 +X38 +
X3 4 XA 4 )2 L x3 L 45 L 46 L 4T | (50 (5L (54 (55 (ST 50 | 61 | 463
45s 73

T+x+x2+xt+x°

1+x+x3+x7+x3+xg+xw+x11+x14+x17+x18+x19+x2°+x21+x22+x25+x26+x27+x23+x3°+x31+
X3 6 x3 1 x® e x3Bx®  x®0  x xR xM e xHT x® 1 x® x50 x3 x5S x5 x5 x4 xB

40s 73

1+x5+x +x8+x°
14 16 +X17+X20 +X22+X23 +X24+X25+X26 +X29+X30 +X32+X33 +X34+

63 64

T3+ x7+ x84 x4+ x10 4 x4 x5 4 x
X3 4 x37 4 x38 4 x39 4 x4 x® e xM e x® x0T x50 1 x3B x3A x5 4 x5BT 4 xBL 4 88 X
40s 73

1

1+ X

2s1

Figure A.5: Mathematica code for determining 3(g(z)) for all polynomial divisors of 14 273. The u referred

to in the code is a 256 by 2 table containing all polynomial divisors of 1 + x

73 Each robust polynomial

divisor g(z) is listed, followed by the polynomial g*(z), and then ¢;(g*(x)) s ord(g(z)).
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A4

Table A.1: All robust polynomials of order less than or equal to 83 except those of order 63 and 73

f(z) ord(f(z)) | B(f(x))
(1+z+23)%(1 + 2+ 2% 30 (16,14)
14z +22)?(1 + 23 + 22 30 16,14
( ) 7

(1+2)1+x+22)21+z+23)2 30 (16,14)
1+ 2)(1+z+22)%(1 + 2% + 23)2 30 (16,14)
1+z+2°+2%+ 210 33 (18,15)
Q+z)1+z+2?)(1+z+2%)? 42 (22,20)
(1+2)(1+x+2?)(1+ 2% +23)2 42 (22,20)
(1+2)(14+z+2®+2* +28) 51 (27,24)
(1+2)1+ a2t +2° + 27 +28) 51 (27,24)
A+2)(1+x+2)(1+x+22+2* + 25+ 27 +28) 51 (27,24)
A+z+2)1+ 22+ 23 + 2% + 29 + 21 + 215 + 216 - 218) | 57 (30,27)
1+ 21+ z + 2?) 60 (31,29)
1+ 2)*(1+ 2% + 2 60 31,29
(1+z)%( :

A+2)*1+z+22)(1+2+ 22+ 23 +2) 60 (31,29)
1+ 22+ 2°)2(1+ o + 22 + 23 + 29) 62 (32, 30)
(1+23+2°)2(1 + 2% + 23 + 2% + 25) 62 (32,30)
(1422 +25)%(1 + 22 + 23 + 2t + 25) 62 (32,30)
(1423 +25)%(1 4z + 2% 4+ 2 + 2°) 62 (32,30)
A+z+22+22 21 +2? +2° + 25+ 27 4+ 210 + 212) 65 (34,31)
1+ 2%+ 25+ 25 + 27 + 219 4 212 65 (34,31)
1+2)1+x+2%)2(1 + 2% +2° + 27 + 219) 66 (34, 32)
A+2)* A +z+ 2+ 2t + 2%+ 27 + 28) 68 (35,33)
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f(x) ord(f(z)) | B(f(x))
A+2)1+24+22) 1+ 24+ 25)(1 4+ 22 + 2% + 2° + 25) 63 (33, 30)
A+2)(1+x+22)(1+2°+ 251 + 2+ 22 + 2* + 2°) 63 (33, 30)
1+2)(1+x+23)(1 +2+ 21 + 2® + 25) 63 (33,30)
1+2)(1+ 2% +2%) (1 + 2° + 2°) (1 + 23 + 2) 63 (33,30)
A+2)(1+x+23)1 +2°+ 251 + 2+ 22 + 2% + 2%) 63 (33, 30)
1+ 2)(1+ 2%+ 23)(1 + 2% + 25)(1 + 2% + 2* + 25 + 20) 63 (33, 30)
1+2)1+ 2%+ 2% (1 + 2 + 2% + 2% + 2°) 63 (33,30)
(1+2)(1+ 23+ 2%) (1 + 2% + 2t + 2° + 29) 63 (33, 30)
14z +22)(1 4z + 2°) 63 (34,29)
(142 +2%)(1 + 25 + 25) 63 (34,29)
A+x+29)Q+2°+2 1 +z+22+2° +25(1 +2+2* +2° +25) | 63 (34,29)
1+2)1+x+23) 1+ 2%+ 23)(1 + 2 + 22 + 2° + 2%) 63 (35,28)
A+z2)1+z+28)1+ 2%+ 231+ +a* + 25 + 2°) 63 35,28
AI+z+23)1+x+22+ 22+ 2% + 2+ 2% + 2° + 2%) 63 (36,27)
(1+z22+ 231 +x+2* +2° + 251 + 22 + 2% + 25 + 25) 63 (36,27)
(142 +2%)(1 + 25 + 25) 63 (36,27)
(1422 +23)(1 + 2 + 25) 63 (36,27)
(1+x+ 2%+ 2t +2%) (1 + 2% + 23 + 2° + 2) 63 (36,27)
(1+24+ 2%+ 2 + 28 (1 + 22 + 2* + 2° + 29) 63 (36,27)
1+ 2)(1+2+2?) (1 + 2% + 23 + 2° + 29) 63 (37,26)
1+2)(1+z+2?)(1+2+ 23+ 2t + ) 63 (37,26)
(1+z+2%01 +2° + %) 63 (38,25)
l+z+2?+2*+2° 73 (40, 33)
1+2°+2" + a8+ 2° 73 (40, 33)
(1+z)(1+z+2%) 73 (45, 28)
(14 z)(1 + 2%+ 29) 73 (45,28)

Table A.2: All robust polynomials of order 63 and 73
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Appendix B

Searching for Robust Quadrinomials
by Degree

This appendix contains samples of the Mathematica code used in determining 8(f(x)) for all quadrinomials
f(z) € Fao[z] of degree less than or equal to 18. Sections B.1 and B.2 contain code and data for quadrinomials
of the form 1+ z 4+ 27 + 2'2 and 1 + 22 + 27 4 2'2, respectively. Section B.3 contains tables of information

about robust quadrinomials of degree less than or equal to 18.
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B.1

For[j =1, j <10, j ++,
For [i =2, j <i <12, i ++, p[x_]:=1+x"] +x"i +x"12; a:=Mx[Reap[For [n=1, n< 10000,
n++, |f [Polynonial Renai nder [1+Xx”n, p[x], X, Modul us »2] ==0, Break[]]]; Sow[n]]11;
q[x_]:=Polynomal Quotient [1+Xx"a, p[x], X, Mdulus-2]; c:=q[b] /. b-1;
Print [p[x]]; Print [a]; Print [Row[{c, a-c}, s]]1]

1+x+x2+x%2
595
303 s 292

3 2

1+x+x3+xt
2046

1023 s 1023
1+ x+x*+x¥2
219

101s 118
1+x+ x>+ x22
1016

508 s 508

1+ x+x8+xt2
1905

953 s 952
1+x+x +x%2
126

61s 65

1+x+ x84+ xt2
651

323s 328
1+x+x%+x22
868

433 s 435

1+ x+x0 4 xt?
1533

767 s 766

1+x+ x4 x?2

22
11s11

Figure B.1: Mathematica code for determining 3(f(x)) for all quadrinomials of the form 1 + x + 27 + x!2.
For each 2 < j < 11, the quadrinomial fj(x) = 1+ x + 27 + 2'? is given, followed by ord(f;(x)), and then
B(fi(x)) given as £1(f1 () s Lo .ord(s; (x))—1(f] (%))
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B.2

For[j =2, j <10, j ++,
For [i =3, j <i <12, i ++, p[x_]:=1+x"] +x"i +x"12; a:=Mx[Reap[For [n=1, n< 10000,
n++, |f [Polynonial Renai nder [1+Xx”n, p[x], X, Modul us »2] ==0, Break[]]]; Sow[n]]1;
q[x_]:=Polynomal Quotient [1+Xx"a, p[x], X, Mdulus-2]; c:=q[b] /. b-1;
Print [p[x]]; Print [a]; Print [Row[{c, a-cC}, S]]11]

1+x%2+x3+x%2
89

33s 56

1+ %%+ x*+ x2
62

15s 47

1+x%+ x5+ x2
465

231s 234
1+x%+ x5+ x%2
56

14 s 42

1+ %2+ x"+x¥2
2047

1023 s 1024
1+x%+x8+x%2
42

11s31
1+x%2+x%+x22
1905

953 s 952

1+ X%+ x10 4 x?
20

5s15

1+ X%+ xM o+ xP?
1533

767 s 766

Figure B.2: Mathematica code for determining B(f(x)) for all quadrinomials of the form 1+ 22 + 27 + 212,
For each 3 < j < 11, the quadrinomial f;(z) =1+ 2 + 27 + 2'? is given, followed by ord(f;(z)), and then
B(f;(x)) given as £1(f7 (x)) s Lo ord(s; (x))—1(f; (2))-
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B.3

f(x) ord(f(x)) | B(f(x))
1+z+2°+28 60 (31,29)
1+a3+2"+ a8 60 (31,29)
1+a2%+ 2%+ 2 63 (37,26)
1+z+z"+2° 63 (37,26)
1+2%+27 + 210 155 (79,76)

1+ a3+ 28+ 210 155 (79,76)

14+ 2+ 28+ 210 73 (45, 28)
1422+ 29+ 210 73 (45, 28)

14+ o+ 25+ 2 315 (159, 156)
1+ a8+ 210 4211 | 315 (159, 156)
1+z+a2" 2! 341 (181, 160)
1+t + 210+ 21 | 341 (181,160)
1+ 2t 42 | 508 (255, 253)
1+a" +2% 42 | 508 (255,253)
1+2%+27+ 211 | 341 (181, 160)
1+at 2% + 21 | 341 (181, 160)
14+ 22+ 212 595 (303, 292)
1+ 219 + 21t + 212 | 595 (303, 292)
1+ +a8+ 213 762 (383,379)
L+a” + 22 213 | 762 (383, 379)
1+ax+2%+ 21 2044 (1023,1021)
1+a%+22+ 213 | 2044 (1023,1021)
14+ ax? +28 42 | 819 (435, 384)
L4+ + 2 + 213 | 819 (435, 384)
1+2+27+ 213 | 1023 (533, 490)
1+2%+ 219+ 21 | 1023 (533,490)
L+at+25+28 | 2044 (1023,1021)
L+a%+ 29 +2 | 2044 (1023, 1021)

o7

Table B.1: All robust quadrinomials of degree less than or equal to 13



f(z) ord(f(z)) | B(f(x))
1+z+ 28+ 2™ 889 (447, 442)
1+20+ 213 421 | 889 (447,442)
1+a23+210+ 2™ | 889 (447, 442)
L+t 2t 2 | 889 (447, 442)
1+t +2° 42 | 2555 (1279, 1276)
1+2%+ 219+ 21 | 2555 (1279, 1276)
1+25+27 + 21 1581 (797,784)
T+27+28%+2™ | 1581 (797,784)
1+2+a25+2% 5461 (2773,2688)
1+ 2% + 2™+ 215 | 5461 (2773, 2688)
l4+ax+a2%+2 5461 (2773, 2688)
1+2%+ 2™ + 2% | 5461 (2773,2688)
1+a2?+2*+ 2% | 1953 (985, 968)
14+ 213 4 2% | 1953 (985, 968)
14+ + 28+ 2% | 5461 (2773,2688)
1429+ 213 +21° | 5461 (2773,2688)
14+ 2%+ 28421 | 2540 (1271, 1269)
L+a" +22 + 2 | 2540 (1271,1269)
T+x+20 426 | 10235 (5119,5116)
1+2%+ 215+ 21 | 10235 (5119, 5116)
1+a2%+2%+21 | 4599 (2327,2272)
1427 4+ 2™ + 2% | 4599 (2327, 2272)
1+28+2t+ 216 | 7161 (3591, 3570)
1+ 22 4+ 213 + 216 | 7161 (3591, 3570)
14+t + 2%+ 26 | 7905 (3963, 3942)
14+ a27 + 22+ 26 | 7905 (3963, 3942)
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Table B.2: All robust quadrinomials of degree 14,15, and 16



f(z) ord(f(x)) | B(f(x))
1+x+at+27 10540 (5275, 5265)
1+ 213 4+ 26 + 217 | 10540 (5275, 5265)
I+z42®+2'7 | 255 (175, 80)
1+a?+ 204+ | 255 (175,80)

2 6 17
l+a2?+a%+ 2 16383 (8277,8106)
1+t + 2% + 217 | 16383 (8277,8106)
1422422 +2'7 | 16383 (8277,8106)
L+ a° + 2% + 217 | 16383 (8277,8106)
1+a23+27+217 | 7161 (3583,3578)
14210 + 2 4 217 | 7161 (3583, 3578)
L+ +2%+2'7 | 16383 (8277,8106)
L+ a8+ 22 4217 | 16383 (8277,8106)
14z +at4+218 32385 (16203, 16182)
1+ 2" 4+ 27 4 218 | 32385 (16203, 16182)
L+o+2B+2% | 3066 (1551, 1515)
1+a% + 217 + 218 | 3066 (1551, 1515)
1+az+2t0+ 28 273 (191, 82)
1+2?+217 + 28 | 273 (191, 82)
1+2% + 23+ 21 | 15841 (7941, 7900)
1+ 215 4+ 210 + 218 | 15841 (7941, 7900)
1422 42" +2'% | 1395 (699, 696)
1+27 + 26 4218 | 1395 (699, 696)
1+ 22+ 213 + 218 | 40005 (20013, 19992)
1425+ 216 + 218 | 40005 (20013, 19992)
1428 424 42 | 14105 (7081, 7024)
1+ '+ 2% 4 28 | 14105 (7081, 7024)
1+ 23 + 29 + 218 | 40955 (20479, 20476)
1428+ 2 + 28 | 40955 (20479, 20476)
14 a* 2 + 28 | 4599 (2303, 2296)
1+a% + o1+ 218 | 4599 (2303, 2296)
1425+ 22 4218 | 7905 (3961,3944)
1425 + 218 4218 | 7905 (3961, 3944)

Table B.3: All robust quadrinomials of degree 17 and 18
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