
c© 2014 Bussaba Amnueypornsakul

AUTOMATIC SOLVER FOR MATHEMATICAL WORD PROBLEMS

BY

BUSSABA AMNUEYPORNSAKUL

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Adviser:

Professor Pramod Viswanath

ABSTRACT

Mathematical word problems (MWP) test critical aspects of reading comprehension in

conjunction with generating a solution that agrees with the “story” in the problem. In this

thesis we design and construct an MWP solver in a systematic manner, as a step toward

enabling comprehension in mathematics. We do this by (a) identifying the discourse

structure of MWPs that will enable comprehension in mathematics, and (b) utilizing the

information in the discourse structure toward generating the solution in a systematic

manner. We build a multistage software prototype that predicts the problem type,

identifies the function of sentences in each problem, and extracts the necessary information

from the question to generate the corresponding mathematical equation. Our prototype

has an accuracy of 86% on a large corpus of MWPs of three problem types from the

elementary grade mathematics curriculum.

ii

To my parents, for their love and support

iii

ACKNOWLEDGMENTS

I am grateful to my adviser, Professor Pramod Viswanath, and Dr. Suma Bhat for all their

guidance and support. I also thank my parents for providing me an invaluable opportunity

to study at the University of Illinois.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 RELATED WORK . 4

CHAPTER 3 METHOD . 6
3.1 Data . 6
3.2 Model . 10
3.3 Implementation . 13
3.4 Evaluation . 18

CHAPTER 4 EXPERIMENTS . 20
4.1 Preprocessing Stage . 20
4.2 Features . 20
4.3 Testing with WEKA Tester . 22
4.4 Parameter Tuning . 27

CHAPTER 5 EXPERIMENT RESULTS . 28
5.1 Problem Type Classification . 28
5.2 Sentence Type Classification . 29
5.3 Sign Prediction . 29
5.4 Overall Accuracy . 29
5.5 Comparison with State of the Art . 30
5.6 Ablation Analysis . 31

CHAPTER 6 DISCUSSION . 32
6.1 Error Analysis . 32
6.2 Effect of Unbalanced Corpus . 33
6.3 Generalizability . 33

CHAPTER 7 CONCLUSION . 35

REFERENCES . 36

v

CHAPTER 1

INTRODUCTION

Mathematical word problems (MWP) constitute an integral part of a child’s elementary

schooling curriculum. Solving an MWP is a complex task involving critical aspects of

reading comprehension (understanding the components of the problem), and generating a

solution that agrees with the “story” in the problem. Children are trained through the

process of problem solving by the use of various strategies.

In this study, we formulate solving an MWP as an NLP task involving text classification,

discourse processing and information extraction. Unlike a top-down approach of having a

template for various problem types and generating a solution for each problem template,

we take a bottom-up approach, identifying the discourse structure of the MWP and then

utilizing the semantic information contained in the components of the problem to generate

a solution.

Personalized learning systems today aim at making learning more enjoyable for learners

of all ages. While there are many systems for language learning (e.g. [1] for learning to

read), few systems available today are geared toward enabling comprehension in

mathematics and solving MWPs [2]. The design of personalized learning systems for

solving mathematical word problems will be more effective by having a module that

identifies the semantic structure of the word problem. This will enable the task of sentence

re-ordering thereby aiding the identification of the givens and unknowns in the problem.

Few prior studies are available that address the task of solving word problems

automatically [3, 4, 5, 6, 7]. There is no study, however, that identifies the semantic

structure of a word problem. In this thesis we address this need by: (a) identifying the

semantic structure of MWPs that will enable comprehension in mathematics, and (b)

utilizing the semantic structure as a source of information toward developing automatic

1

solvers of MWP in a systematic manner.

Table 1.1: Sample problems of each type considered in this thesis.

J-S Grandma had 5 strawberries. Grandpa gave her 8 more strawberries. How many straw-
berries does Grandma have now?
Equation: 5 + 8 = x

PPW Nicole has 6 red buttons and 6 green buttons. How many buttons does Nicole have?
Equation: 6 + 6 = x

C Angela has 6 mittens. Jordan has 4 more mittens than Angela. How many mittens does
Jordan have?
Equation: 4 + 6 = x

In an MWP, significant background information is presented in text format. Table 1.1

shows examples of the MWPs considered in this thesis: J-S stands for Join-Separate, PPW

represents Part-Part-Whole, and C is from Compare. The task is to generate the equation

corresponding to the problem and solve it. The ability to solve an MWP critically depends

on the ability to detect the problem type and identify the components of the word problem

as observed in studies in mathematics education and cognitive psychology [8, 9, 10], which

is not the same as reading comprehension on passages.

Motivated by these studies, we divide the overall problem solving process into stages:

predicting the problem type, identification of the function of sentences (or sentence type) in

each problem, and extracting the necessary information from the question to generate the

corresponding mathematical equation. Since classification of the problem and sentence

types involves a decision based on the textual representation, the classification tasks can be

viewed as automatic text categorization problems [11] with domain-specific feature

engineering. More broadly, a knowledge of the discourse structure of an MWP provides the

human solver with a critical first step for information extraction and text summarization

needed for mathematics problem comprehension and solving. It is conceivable that such a

multi-stage approach can constitute one of the key design factors in applications involving

intelligent tutoring systems for mathematics education.

A text classification perspective to MWP solution calls for an approach different from

routine text classification methods. Surface word statistics and a keyword spotting

approach, that convey topicality, for instance, are insufficient to derive necessary

2

information about problem type or document structure owing to the short document

lengths of MWP. Stop word removal and stemming, two common preprocessing steps in

text classification by topic, have been observed to negatively impact classification of

problem types [12]. Thus, feature engineering that leverages the natural language

properties of word problems not only at a sentence level but also at a problem level is an

important novelty in this work as we explore the usefulness of a text classification approach

to solving MWPs. In addition, our thesis is novel in adopting the multistage approach to

solving word problems automatically.

Specifically, this thesis makes the following contributions.

1. Taking a text classification approach toward automatically identifying the

information structure of MWPs, we show empirically that an ensemble classifier

yields the best performance for identifying the problem type and for identifying the

discourse structure of MWP. Not only are the performance gains over the baseline

vastly substantial, but the performance gains of the solver when compared with

state-of-the-art MWP solvers such as WolframAlpha [13] are also substantial.

2. We demonstrate the efficacy of our multistage approach implemented as a deductive

learner driven by an inductive engine by building a software prototype to solving

MWPs automatically. The multistage approach can be construed as a careful

combination of inductive inference (statistical methods) and deductive inference

(rule-based approach) to reflect the key aspects of mathematics comprehension in

arithmetic problem solving as pointed out in psychology studies: The use of natural

language to identify the discourse structure and a set of rules to derive the

corresponding mathematical form. Supported by psychology studies, we see that this

could be turned around for learning technology development.

3

CHAPTER 2

RELATED WORK

Prior studies attempting to solve mathematical word problems in an automatic manner fall

into two primary categories: those intended to understand the cognitive aspects of problem

solving in children and those intended for intelligent tutoring systems. Prototypical

systems such as WORDPRO [14], SOLUTION [15], and ARITHPRO [16] and [3] are

representations of cognitive models of human mathematical word problem solving

processes. With the exception of [3], these operate on propositional representations of the

problem text later solved in a rule-based manner. Notable among these was the approach

in [3] that solves arithmetic word problems by parsing the meaning on a sentence by

sentence basis and constructing corresponding representations for eventual problem

solving. Evidently, the natural language processing capabilities in these studies were

limited to mostly manual input mechanisms.

In the realm of intelligent tutoring systems automatic MWP solvers were based on either

using specific sentence structures and keywords [5], or using templates (schema) limited in

scope by variety and problem types as in [4] for grade-level problems in Thai and [6, 7] for

grade-level problems in German.

An early approach to automatic classification of MWP using natural language processing

methods was [12]. The study pointed out that certain problem types (such as the

multiplicative compare and equal group) were characterized by their lexical content. Their

empirical results showed that a blind text categorization approach via stop word removal

and stemming failed to help the classification task for those problem types. In addition,

they identify the role of including discriminative part of speech tags for problem type

classification. Another related study [17], addresses sentence-level classification of

sentences in MWP into relevant and irrelevant sentences to identify the

4

information-bearing components of the problem.

A more recent study in a related area is [18], which aims at understanding the

complexity of MWPs encountered by students appearing for a Japanese university entrance

examination. It includes an end-to-end method of problem solving by transforming the

question sentences into their logic representation to be eventually solved by an automatic

solver. The problems considered are significantly more complex than grade-level arithmetic

problems, and the goal was to arrive at a solution automatically without paying attention

to the intermediate stages of problem solving.

While preparing this thesis, we noticed a paper in the conference ACL 2014 on the topic

of learning to solve algebra word problems [19]. It is the most recent study, which attempts

to solve word problems with a system of linear equations automatically. They used a

template to fit in the information that they harnessed from a given problem. The problems

that they considered are different from our scope. While they studied the way to solve the

system of linear equations containing only addition, we consider the problem of

determining an equation from a one-variable MWP with addition and subtraction.

Taking a view different from that of prior studies, our focus here is twofold: first,

inspired by the approach to identify the structure of scientific abstracts in [20], we would

like to gain a fundamental understanding of the discourse structure of an MWP which

serves as the information-bearing component of the problem; second, knowing the structure

of an MWP we would like to discover the interrelation between available units of

information and eventually solve the problem.

Our approach in this study is closely related to that in [4] in spirit, but instead of a

top-down approach via having a static template for each problem type, we resort to

constructing dynamic templates in a bottom-up fashion using information on problem

types and associated discourse structure. The classification algorithm leverages natural

language properties at the sentence level as well as across sentence boundaries.

For the classifiers we use a combination of a deductive learner driven by inductive

learners which has been very successful in other domains such as electronic design

automation tools [21, 22]. The cognitive modeling perspective to solving MWP in children

renders the inductive-deductive learner combination a natural choice for our study.

5

CHAPTER 3

METHOD

Our approach to solving an MWP is grounded in harnessing the information available in

the discourse structure of the word problem. We hypothesize that classification of the

problem type is a crucial first step. After knowing the problem type, we focus on the

solution by identifying the components of the problem and their interrelation.

3.1 Data

MWPs have the information to solve them embedded in text rather than in an equation.

While recognizing that there are several categories of word problems, we consider for our

study the set of word problems considered in a cognitively guided instruction scheme

(CGI).

The CGI framework aims at developing a child’s mathematical thinking via intuitive

strategies for problem solving [23]. Focusing on the curriculum of the cognitively guided

instruction scheme, this study aims to solve all three problem types at the elementary

grade level: problems of the type join and separate, compare and part-part-whole involving

only one mathematical operation – that of addition or subtraction.

The choice of these problem types is motivated by early developmental theories in

children’s arithmetic competencies that focus on word problems classified into natural

classes based on their semantic structures (referring to the relation between sets in the

problem statement)[3]. (The problem types we consider correspond to the change, compare

and combine classes respectively, studied in prior works on cognitive psychology and

mathematics education.)

6

Henry is walking dogs for money. There are 7 dogs to walk on Henry’s
street. Henry walked 4 of them. How many dogs does Henry have left
to walk?
Note : The yellow highlight is the given sentence. The blue highlight
is the change sentence and the pink highlight is the result sentence of
the example problem. The remaining sentences are of the type unknown
sentence.

Figure 3.1: An example of J-S question structure.

3.1.1 Join and Separate (J-S)

J-S problems have three main functional types of sentences in a question: given, change

and result. A Given sentence is a narrative sentence where a quantity is given; a Change

sentence indicates that there are some changes to the quantity in the Given sentence and

the Result sentence is the result of the change applied to the given quantity. A sentence

that is not of the above functional types is an Unknown sentence. When the change

applied to the given quantity results in a decrease, the problem is of the separate kind

(subtraction) and when the result is an increase in the given quantity, the problem is of the

join kind (addition). Problems of this type are characterized by significant action language

that describe changes in the possession or condition of objects. As an example consider a

problem of the type separate is as Figure 3.1

3.1.2 Part-Part-Whole (PPW)

PPW is the second problem type which contains two main functional types of sentences:

part and whole. The part sentence indicates the quantity of a set, while the whole sentence

indicates the total amount in a category that subsumes the set. Problems of this type

involve static descriptions of the counts of two or more disjoint subsets and the union of

those sets and do not contain significant actions. The example represents in Figure 3.2

7

Some kids are playing in a playground. 3 boys are playing on the slide. 4
girls are playing on the merry-go-round. How many kids are there in the
playground?
Note : The yellow highlight is the part sentence. The blue highlight is the
whole sentence. The rest of the question is the unknown sentence.

Figure 3.2: An example of PPW question structure.

3.1.3 Comparison

The simplest of the three types, compare problems (C) involve a comparison of the

counts of two sets. For example, Angela has six mittens. Jordan has four more mittens

than Angela. How many mittens does Jordan have?

3.1.4 Corpus Statistics

In a given problem, the missing quantity could be in the Given, Change or Result sentence

(likewise in the part or the whole sentence). The dataset used in our study is a set of

sample problems from the South Dakota Counts [24] and teacherweb.com [25]. A brief

description of the problems of each type and their characteristics in the corpus is

summarized in Table 3.1, Figure 3.3 and Figure 3.4.1

Table 3.1: Corpus description of the set of problems studied.

Problem type J-S PPW C
No. of problems 330 164 257
No. of words/problem (mean) 25.54 22.47 21.13
No. of sentences/problem (mean) 3.42 2.72 3.06
No. of verb types (total) 99 36 46

The problems were grouped by problem type at the source. However, their sentence type

annotations were not available. The problems in the dataset were manually annotated for

sentence functional type (Given, Change, Result, Part and Whole) and sign (join or

1The set of word problems studied is available for research purposes at
http://anonymized.willbemade.available

8

Figure 3.3: Number of word per problem.

Figure 3.4: Number of sentence per problem.

9

separate) by the researchers. The annotators agreed on 99.4% of the sentence function

types.

Notice from Table 3.1 that the J-S problems constitute a majority of the problem types

and that these problems are also the longest in terms of average number of words per

problem. Another significant feature is the number of sentences per problem. We notice

that it is 3.42 for J-S problems suggesting that there are more than three sentences which

would be the case when just the Given, Change and Result sentences are present. Again,

in the case of PPW sentences, we notice that the sentences are not necessarily Part, Part

and Whole, but the “parts” may even be relegated to the same sentence.

3.2 Model

The first stage is problem type classification. Problem type classification takes as input the

entire problem divided into sentences and assigns it to one of Join-Separate,

Part-Part-Whole or Compare type. Depending on the problem type, the necessary

classifiers are cascaded. We divide the problem solution into a maximum of three stages

depending on the problem type with a classifier for each stage, described as follows. A

schematic representation of the solver is given in Figure 3.5.

3.2.1 Join and Separate

Join and separate problems are the most versatile of problems because the problem’s

discourse structure affords phrasing of its constituent sentences in many ways. The

constituent sentences can either be separate, joined using a conjunction or could be formed

as a complex sentence with the use of conditionals. In its simplest form, the Given, Change

and Result sentences are separate as in Grandma had 5 strawberries. Grandpa gave her 8

more strawberries. How many strawberries does Grandma have now? or joined as in

Grandma had 5 strawberries and Grandpa gave her 8 more strawberries. How many

strawberries does Grandma have now? The same problem can be rephrased as a complex

sentence in How many strawberries would Grandma have now if Grandma had 5

10

Problem	
 Type	
 Classifica2on	

Join	
 and	
 Separate	
 Problem	

Comparison	
 Problem	
 Part	
 Part	
 Whole	
 Problem	

Sentence	

Func2on	

Iden2fica2on	

Sign	
 Predic2on	

Sentence	

Func2on	

Iden2fica2on	

Equa2on	

Generator	

Equa2on	

Generator	

Equa2on	

Generator	

Equa%on	

Arithme%c	
 Word	
 Problem	

Figure 3.5: Flowchart for the system.

strawberries and Grandpa gave her 8 more? In addition to having a versatile structure, the

Change sentence could be constructed to modify the Given sentence via various arithmetic

operations.

Figure 3.6 shows a step-by-step approach to solving problems of this type. First, we

classify the sentence functional type for each sentence (whether it is Given or Change or

Result sentence). Then, we perform a sign prediction (whether the problem calls for

addition or subtraction). The pivot sentence for this task is the Change sentence because it

indicates the direction of change of the quantity in the Given sentence in terms of an

effective increase or decrease. The last task is to combine the results of the first two stages

and generate the corresponding equation.

11

Func%on	

Sentence	

Iden%fica%on	

Sign	

Predic%on	

Equa%on	

Generator	

Iden%fy	
 whether	
 which	
 sentence	
 is	
 Given	
 or	

Change	
 or	
 Result.	

Predict	
 that	
 the	
 theme	
 is	
 addi%on	
 or	
 subtrac%on.	

Figure 3.6: Flowchart for J-S problem.

3.2.2 Part-Part-Whole

This problem focuses on the relationship between nouns in each sentence of the question.

There are two steps to solve this problem. The first step is to identify whether the sentence

is a part sentence or a whole sentence. We then use the information from this classification

to generate the equation. The flowchart of the problem is displayed in Figure 3.7.

3.2.3 Comparison

Comparison problems focus on similarities or differences between sets. By nature of its

type, the problem’s discourse structure is limited. This means we can generate a set of

rules to convert a question to its corresponding equation. Once a problem is classified as

belonging to this type in the problem type identification stage, the problem is then

processed by a rule-based classifier leading to its equation.

12

Func%on	
 Sentence	

Iden%fica%on	

•  Iden%fy	
 whether	

the	
 sentence	
 is	
 a	

part	
 or	
 a	
 whole	

sentence.	

Equa%on	

Generator	

• Using	
 the	
 predic%on	

to	
 generate	
 an	

equa%on	
 as	
 part	
 +	

part	
 =	
 whole	

Figure 3.7: Flowchart for PPW problem.

3.3 Implementation

For the tasks of problem type classification, sentence type classification and sign

prediction, we use three types of inductive classifiers: generative (Naive Bayes),

discriminative (LIBSVM and Logistic Regression), and ensemble method (Random Forest).

The equation generation stage is a rule-based deductive learner that combines the result of

sentence type classification (and sign prediction for the J-S problems) to derive the

numerical quantities needed for the equation. We use the scikit implementation of Random

Forest [26], WEKA implementation of Naive Bayes and logistic regression [27] and the

LibSVM implementation for SVM [28].

3.3.1 Naive Bayes

Naive Bayes is one of the learning classifiers based on Bayes rule. The classifier

approximates an unknown target function f : X → Y , or P (Y |X), where X is a feature

vector and Y is a target label. In short, we would like to select Y such that it maximizes

13

P (Y |X).

Applying Bayes’ rule,

P (Y = yi|X = xk) =
P (X = xk|Y = yi)P (Y = yi)∑
j P (X = xk|Y = yj)P (Y = yj)

. (3.1)

However, unbiased learning of Bayes classifiers is impractical because finding P (X|Y) and

P(Y) depend on training data.

We assumes that Y and all Xi are Boolean variables. For any particular yi, we need to

compute 2n − 1 independent parameters. That means we must estimate 2(2n − 1)

parameters. In order to obtian reliable estimator, we need to observe each parameter

several times. Apparently, this method is unrealistic to compute.

To simplify the Bayes classifier, Naive Bayes assumes that the attributes X1, .X2, , Xn

are all conditional independent of one another, given Y.

P (X|Y) = P (X1, X2|Y)

= P (X1|X2, Y)P (X2|Y)

= P (X1|Y)P (X2|Y).

Therefore, P (X1, X2, , Xn|Y) =
n∏
i=1

P (Xi|Y). With the same assumption on X and Y, the

complexity reduces from 2(2n − 1) to 2n. In short, we want to find Y such that it

maximizes P (X = xk|Y = yi)P (Y = yi).

The advantage of this algorithm is simplicity. However, conditional independence

assumption that simplifies the problem is not always true for every classification. In other

word, Naive Bayes might oversimplify the task which leads to an incorrect classification

result [29].

3.3.2 Logistic Regression

Logistic Regression attempts to learn a target function f : X → Y or P (Y |X) where Y is

discrete-valued, and X =< X1, X2, ..., Xn > is any attributed feature. Unlike Naive Bayes,

14

logistic regression uses training data to directly estimate P (Y |X). Logistic Regression is

often referred to as discriminative classifier because we obtain distribution P (Y |X) directly

from training data. The parametric model assumed by Logistic Regression in the case

when Y is Boolean is:

P (Y = 1|X) =
1

1 + exp (wo +
∑n

i=1wiXi)
(3.2)

and

P (Y = 0|X) =
exp(wo +

∑n
i=1wiXi)

1 + exp(wo +
∑n

i=1wiXi)
. (3.3)

By maximum likelihood ratio estimator, we will declare Y = 0 if

P (Y = 0|X) > P (Y = 1|X). Applying equations 3.2 and 3.3, we will declare Y = 0 if

exp(wo +
∑n

i=1wiXi) > 1 or wo +
∑n

i=1wiXi > 0.

In addition, the parametric form of P (Y |X) used by Logistic Regression is implied by

the assumption of Gaussian Naive Bayes classifier. That means both of them are closely

related.

Although Logistic Regression is consistent with the Naive Bayes assumption that the

input features Xi are conditionally independent given Y, it is not rigidly tied to this

assumption as is Naive Bayes. Given data that disobeys this assumption, the conditional

likelihood maximization will adjust its parameters to maximize the fit to the conditional

likelihood of the data, even if the result are inconsistent with the Naive Bayes parameter

estimates. On the other hand, logistic regression consumes a significant longer time

because it tries to find P (X|Y) directly [29].

3.3.3 SVM

Given a training set of instance-label parameters: (xi, yi), i = 1, ..., l where xi ∈ <n and

y ∈ −1, 1l, the support vector machines (SVM) requires the solution of the following

15

optimization problem:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi (3.4)

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi (3.5)

ξi ≥ 0. (3.6)

Training vectors xi are mapped to a higher-dimensional space by the φ function, which is a

function that satisfies K(xi, xj) = φ(xi)
Tφ(xj) called a kernel function. SVM finds a linear

separating hyperplane with the maximum margin in the higher-dimensional space.

The following are basic kernels:

• linear: K(xi, xj) = xTi xj

• polynimial: K(xi, xj) = (γxTi xj + r)d, γ > 0

• radial basis function (RBF): K(xi, xj) = exp(−γ||xi − xj||2), γ > 0

• sigmoid: K(xi, xj) = tanh(γxTi xj + r)

Here, γ, r, and d are kernel parameters.

In our experiment, we used the default setting of SVM provided in WEKA. The SVM

that we adopted was 1-SVC radial basis function kernel with degree 3 and γ = 1
k
.

In order to get an accurate classification result from SVM, some preprocessing step on

the data is required. All of the attributes should be represented in real numbers. Also,

scaling needs to be applied. Otherwise, the attributes with greater numerical ranges will

dominate those in smaller ranges.

If the number of features is large, one may not need to map data to a higher-dimensional

space. The nonlinear mapping does not improve the performance. That means,

LIBLINEAR (using a linear kernel) is good enough for accurate classification. However,

the LIBSVM is at least as good as LIBLINEAR. In particular case, both numbers of

instances and features are large. The accuracies between LIBSVM and LIBLINEAR are

approximately the same, but speed of LIBLINEAR is significant faster [28].

16

3.3.4 Random Forest

Random Forest is the collection of individual random trees. A single classification tree is a

decision tool that uses a tree-like graph consisted of decisions and their possible

consequences. Each tree gives a classification and we say that the tree votes for that class.

The forest chooses the classification having the most votes. The algorithm is depicted in

Figure 3.8.

Sentence	
 1	

Feature	
 2	
 Feature	
 1	

Feature	
 3	
 Feature	
 4	

…	
 …	

T	

T	

T	

F	

F	

F	

Class	
 A	

Class	
 B	

Sentence	
 n-­‐1	

Feature25	
 Feature	
 32	

Feature	
 9	
 Feature	
 77	

…	
 …	

T	

T	

T	

F	

F	

F	

Class	
 C	

Class	
 B	

Sentence	
 2	

Feature	
 9	
 Feature	
 6	

Feature	
 13	
 Feature	
 43	

…	
 …	

T	

T	

T	

F	

F	

F	

Class	
 D	

Class	
 E	

Sentence	
 n	

Feature	
 98	
 Feature68	
 	

Feature	
 34	
 Feature	
 74	

…	
 …	

T	

T	

T	

F	

F	

F	

Class	
 A	

Class	
 D	

…	

Majority	
 Vote	

decision1	

Decision2	
 Decision	
 n-­‐1	

Decision	
 n	

Figure 3.8: Random Forest algorithm.

The Random Forest error rate depends on two things:

• The correlation between any two trees in the forest. Increasing the correlation

increases the error rate.

• The strength of each individual tree in the forest. A tree with a low error rate is a

strong classifier. Increasing the strength of the individual trees decreases the error

rate.

Reducing the number of features used in each tree reduces both correlation and strength.

Increasing it increase both items. Ideally, we want to have low correlation, but high

strength.

17

Unlike a regular decision tree, Random Forest does not overfit. It runs fast and

efficiently on large data bases. Another advantage of Random Forest over other classifiers

is that it can rank the importance of features. That is, we do not have to hand pick a

feature such that it will provide benefit in classifing. The Random Forest will exploit all

features by itself [30].

3.4 Evaluation

3.4.1 Testing Stage

In order to choose which classifier works best in each sceanario, we employed WEKA to

perform the experiment due to the simplicity of the WEKA interface. We used WEKA

with the following classifiers: Naive Bayes, Logistic Regression, LIBSVM, and Random

Forest. The accuracy were measures from 10-fold cross validation. That is, the data was

randomly devided into 10 parts. Then, 9 parts of the data was trained and the other

section was used for testing. The results from classifiers consisted of the following:

1. Accuracy is the precision of the classification.

2. Precision or positive predictive value is the fraction of retrieved documents that are

relevant to the prediction.

3. Recall or sensitivity is the fraction of the documents that are relevant to the query

that are successfully retrieved.

4. F-measure is a meansure of a test’s accuracy. The quantity is calculated from

precision and recall values as following:

F−measure = 2
PR

P +R
. (3.7)

5. Confusion Matrix or contingency table is a type of tables that allows visualization

of the performance of an algorithm. Each column of a matrix represents the instances

in a predicted class, while each row represents the instances in an actual class.

18

3.4.2 System Stage

Once the component sentence types comprising the discourse structure of the problem are

identified the information in each sentence is extracted. We note that the sentence type

(and hence discourse structure) plays a crucial role in this stage of information extraction.

We use the POS tagger in the NLTK toolkit [31] to extract the numerical quantity from

each sentence.

In the J-S equation generator, we construct an equation of the form (quantity in Given)

+ (quantity in Change) = Result. The quantity in the Change sentence bears the sign of

the question (depending on whether it is addition or subtraction). If a sentence with no

numerical information is classified as Given, Change or Result, we assign an X to that

sentence and the information is excluded from the equation (a potential source of error).

The analog holds for the PPW equation generator. With its sentences classified as Part

or Whole we proceed to the equation generation as follows. When the Part sentence has

more than one numerical quantity, we assign the first number as Part1 and the other

numbers as Part2 (or into more buckets as the case may be). Then, we arrange them into

the corresponding equation as: Part1 + Part2 = Whole.

In both these equation generators, when the equation has insufficient information owing

to errors from previous stages (we will defer discussing some scenarios to Chapter 6), a

solution is not generated. The generated equation can be solved using Numpy [32].

19

CHAPTER 4

EXPERIMENTS

We first consider the preprocessing steps and the features considered before delving into

the models by type of mathematical word problem being solved.

4.1 Preprocessing Stage

We employed the tokenizer and the part-of-speech (POS) tagger from Python NLTK [31]

to segment the problems into sentences, perform tokenization and tag the words with their

Penn treebank POS tags. We also convert words into lower case and lemmatize all the

verbs and nouns using NLTK. We also obtain dependency parse of the sentences using the

Stanford parser [33].

4.2 Features

We use four classes of features that we describe below.

Problem-level features:

• The features in this class are length-related and document-related. The length of the

problem in number of sentences is a feature that we consider at the problem level,

noticing that on an average, J-S problems tend to have more sentences per problem

than those of the C type, which in turn have more sentences than those of the PPW

type (refer to Table 3.1).

• Structure that is specific for particular problem type such as the binary value of the

comparison structure, which will be in form of comparative adjective and “than”.

20

• Keywords (with binary values) extracted using tf-idf constitute another type of

problem-level features. To avoid overfitting, we consider only those keywords that

occur at least five times in the corpus of problems. We exclude verbs and

prepositions from this list. The intuition here is that keywords such as altogether

characterize PPW problems.

Sentence-level features: Mainly used for sentence-level classification into types, the

features in this class are positional, structural or semantic.

• Sentence position in the problem tends to be an indicator of the sentence type for

PPW and JS problems. For instance, a majority of the JS sentences have the first

sentence of the type Given, as a manner of discourse structure.

• Structural features essentially capture shared relationships between entities in a

sentence, such as that between the subject and object in a sentence obtained in the

form of dependency relations. Other structural features are verb phrase (binary

valued) such as to start with, comparative structure (binary values such as more than

and preposition (prepositions) such as on.

Action-related features: We observe that problems of the J-S type are characterized

by significant action language that describe changes in the possession or condition of

objects. Thus, we posit that the count of unique verb lemmas will serve as a discriminating

feature. Consider for instance a J-S problem, Grandma had 5 strawberries. Grandpa gave

her 8 more strawberries. How many strawberries does Grandma have now? . The verb

from the Given sentence Grandma had 5 strawberries has changed in the Change sentence

Grandpa gave her 8 more strawberries and thus the problem has 2 verb lemmas (have and

give). As a contrastive example, consider a problem of type Compare, Angela has 6

mittens. Jordan has 4 more mittens more than Angela. How many mittens does Jordan

have? Here the problem involves a static comparison of two sets and so the problem has

only one verb have.

Entity-related features: An example of this feature is the number of unique noun

phrases. Since problems of type PPW involve static descriptions of two or more disjoint

21

subsets in the Part sentence and the union of those sets (or the super category of the

entities in the Part sentence) in the While sentence, a characteristic of problems of this

type is the variety of noun phrases. For instance, Jarron has 5 red triangles and 10 blue

squares. How many shapes does he have altogether? The first sentence which corresponds

to Part sentence contains two noun phrases: red triangles and blue squares. The other

sentences is whole sentence. It has only one noun which is shapes. Here red triangles and

blue squares are subcategories of shapes and so the number of unique noun phrases is 3.

Taking the same example sentence from J-S as before Grandma had 5 strawberries.

Grandpa gave her 8 more strawberries. How many strawberries does Grandma have now?

we notice that the noun phrase strawberries in the problem are the same.

4.3 Testing with WEKA Tester

We applied WEKA Tester to explore performances of chosen classifiers for each task so

that we could select the best classifier for each stage in our system. We used WEKA tester

because it was easy to test the same data on various classifiers. That is what we want to

determine in this section. However, we need another preprocessing stage. We had to

vectorize all the data in corpus and represented all instances in form of .arff file.

Problem Type Classification

This task is to identify whether the incoming question is J-S, PPW or Comparison. This

is the first stage that the question passes. The accuracy is shown in Table 4.1

Table 4.1: Accuracy from WEKA tester for problem type classification.

Classifier Accuracy
J-S C PPW

P R F P R F P R F
Naive Bayes 88.6269 0.94 0.91 0.93 0.90 0.91 0.91 0.78 0.80 0.79
Logistic Regression 90.9847 0.91 0.94 0.93 0.94 0.89 0.92 0.91 0.91 0.91
LIBSVM 64.7712 0.95 0.57 0.71 0.55 0.96 0.7 0.80 0.19 0.3
Random Forest 91.5395 0.95 0.92 0.94 0.92 0.94 0.93 0.86 0.86 0.86

22

JS	
 C	
 PPW	

JS	
 234	
 9	
 14	

C	
 3	
 274	
 24	

PPW	
 11	
 21	
 131	

JS	
 C	
 PPW	

JS	
 242	
 5	
 10	

C	
 17	
 269	
 15	

PPW	
 7	
 11	
 145	

JS	
 C	
 PPW	

JS	
 146	
 109	
 2	

C	
 5	
 290	
 6	

PPW	
 3	
 129	
 31	

JS	
 C	
 PPW	

JS	
 236	
 11	
 10	

C	
 4	
 283	
 14	

PPW	
 8	
 14	
 141	

(a)	
 (b)	

(c)	
 (d)	

Figure 4.1: Confusion matrix of question type classification: (a) Naive Bayes, (b) Logistic
Regression, (c) LIBSVM, (d) Random Forest.

From Table 4.1 and Figure 4.1, Random Forest performs the best in all criteria. It is

followed by Logistic Regression, Random Forest, and LIBSVM accordingly. Unlike SVM,

the performance of Random Forest, Logistic Regression and Naive Bayes are not

significantly diffent.

J-S Sign Prediction

This classification is specific to the Join and Separate problem type. It will predict the

sign of this problem whether it will be addition or subtraction as show in Table 4.2

Table 4.2: Accuracy from WEKA tester for sign prediction in J-S.

Classifier Accuracy
+ -

P R F P R F
Naive Bayes 80 0.76 0.91 0.83 0.86 0.68 0.76
Logistic Regression 75.3333 0.77 0.76 0.77 0.73 0.75 0.74
LIBSVM 53 0.53 1 0.69 0 0 0
Random Forest 81.3333 0.81 0.84 0.83 0.82 0.78 0.97

From Table 4.2 and Figure 4.2, Random Forest performs the best. It is followed closedly

23

(a)	
 (b)	

(c)	
 (d)	

+	
 -­‐	

+	
 144	
 15	

-­‐	
 45	
 96	

+	
 -­‐	

+	
 121	
 38	

-­‐	
 36	
 105	

+	
 -­‐	

+	
 159	
 0	

-­‐	
 141	
 0	

+	
 -­‐	

+	
 134	
 25	

-­‐	
 31	
 110	

Figure 4.2: Confusion matrix of sign prediction in J-S: (a) Naive Bayes, (b) Logistic
Regression, (c) LIBSVM, (d) Random Forest.

by Naive Bayes, Logistic Regression and LIBSVM. Observing in Figure 4.2, LIBSVM

performs defectively by deciding all questions to be addition. Even though Naive Bayes

and Random Forest have approximately the same accuracy, the confusion matrices show

that Random Forest is less biased than what the Naive Bayes gives. That is, Random

Forest provides a superior performance.

J-S Sentence Function Identification

There are four possible functions in a join and separate problem, which are given,

change, result, and unknown. This part of the system will identify the function of each

sentence in the question.

Table 4.3: Accuracy from WEKA tester for sentence function identification in J-S.

Classifier Accuracy
G C R X

P R F P R F P R F P R F
Naive Bayes 87.5122 0.83 0.9 0.87 0.85 0.89 0.87 0.96 0.86 0.91 0 0 0
Logistic Regression 81.4634 0.81 0.84 0.82 0.85 0.80 0.82 0.87 0.83 0.85 0.06 0.17 0.09
LIBSVM 76.1951 0.83 0.78 0.81 0.69 0.91 0.78 0.82 0.60 0.69 0 0 0
Random Forest 90.2439 0.90 0.91 0.91 0.88 0.93 0.91 0.93 0.89 0.91 0 0 0

According to Table 4.3 and Figure 4.3, the order of classification performance is the

24

(a)	
 (b)	

(c)	
 (d)	

G	
 C	
 R	
 X	

G	
 314	
 31	
 4	
 0	

C	
 36	
 326	
 5	
 0	

R	
 20	
 20	
 257	
 0	

X	
 6	
 5	
 1	
 0	

G	
 C	
 R	
 X	

G	
 292	
 27	
 21	
 9	

C	
 40	
 294	
 14	
 19	

R	
 25	
 21	
 247	
 4	

X	
 3	
 4	
 3	
 2	

G	
 C	
 R	
 X	

G	
 272	
 42	
 35	
 0	

C	
 33	
 332	
 2	
 0	

R	
 13	
 107	
 177	
 0	

X	
 9	
 2	
 1	
 0	

G	
 C	
 R	
 X	

G	
 318	
 21	
 10	
 0	

C	
 16	
 342	
 9	
 0	

R	
 11	
 21	
 265	
 0	

X	
 7	
 4	
 1	
 0	

Figure 4.3: Confusion matrix of sentence type identification in J-S: (a) Naive Bayes, (b)
Logistic Regression, (c) LIBSVM, (d) Random Forest.

same as decribed in Sign prediction. That is, the accuracy of Random Forest > Naive

Bayes > Logistic Regression > LIBSVM. For other criteria, they provide the same

trendency as accuracy.

PPW Sentence Function Identification

There are three possible types of sentences in a PPW question, which are part, whole,

and unknown. The stage will identify the function of each sentence in a question.

Table 4.4: Accuracy from WEKA tester for sentence function identification in PPW.

Classifier Accuracy
P W X

P R F P R F P R F
Naive Bayes 69.697 0.67 0.98 0.80 0.90 0.22 0.35 0 0 0
Logistic Regression 86.2471 0.92 0.86 0.89 0.78 0.87 0.82 0 0 0
LIBSVM 62.4709 0.63 1 0.769 0 0 0 0 0 0
Random Forest 92.0746 0.93 0.94 0.94 0.89 0.89 0.89 0 0 0.91

Based on Table 4.4 and Figure 4.4, the order of accuracy is Random Forest, Logistic

Regression, Naive Bayes and LIBSVM. The difference between each classifier’s accuracy is

25

P	
 W	
 X	

P	
 264	
 4	
 0	

W	
 125	
 35	
 0	

X	
 1	
 0	
 0	

P	
 W	
 X	

P	
 231	
 37	
 0	

W	
 21	
 139	
 0	

X	
 0	
 1	
 0	

P	
 W	
 X	

P	
 268	
 0	
 0	

W	
 160	
 0	
 0	

X	
 1	
 0	
 0	

P	
 W	
 X	

P	
 252	
 16	
 0	

W	
 17	
 143	
 0	

X	
 0	
 1	
 0	

(a)	
 (b)	

(c)	
 (d)	

Figure 4.4: Confusion matrix of sentence type identification in PPW: (a) Naive Bayes, (b)
Logistic Regression, (c) LIBSVM, (d) Random Forest.

considerable. That is, Random Forest surpasses other classifiers. On the other hand, s

popular LIBSVM is defunct in this classification because it labeled every sentence to be

part sentence. LIBSVM is biased to the class with majority quantity.

Even though there are several factors in deciding the best classifier to each task,

accuracy is the most important factor because at the end we are considered only how

precise the equation is. Precision and recall are starting points for understanding relevancy

in the classification. In our case, both precision and recall have the same trend as accuracy.

SVM functions inadequately in two out of four tasks by choosing the majority class for

any attributes. Logistic regression is not outstanding in any stage of classification. Even

though Naive Bayes provides similar accuracy to Random Forest, Naive Bayes has

trendency to be more biased to the majority class.

Hence, we decide to use Random Forest as our classifier for every task because Random

Forest provides comparable high accuracies in all tasks we considered. Using only Random

Forest increases the speed of the end-to-end system because its process is faster compared

to other classifiers such as logistic regression and we do not have to train the data every

26

single classification.

4.4 Parameter Tuning

The hyperparameters of the Random Forest classifier were tuned as follows. The corpus of

problem types and sentence types were split into a training and test set via a random 80-20

split. The parameters of the Random Forest classifiers at the problem type, sentence type

and sign prediction stages were independently tuned by fivefold cross validation on the

training data set.

We considered three types of maximum features:
√

(n), log2(n), and n where n is the

total number of features we have. Also, we speculated the maximum depth of a tree. By

varying the depth from 5 to 50 and unlimited. The best results of each classifier are in

Table 4.5.

Table 4.5: Parameters that provide the best accuracy in each classification.

Task Max Feature Max Depth Accuracy
Problem Type

√
n 15 92.01%

JS Sentence Type log2 n 50 93.92%
JS Sign n 25 89.58%
PPW Sentence Type n 10 91.79%

As a result, with n as the number of total available features the problem type prediction

classifier was set to have a maximum of
√
n features and allowed to reach a maximum

depth of 15 nodes. The sentence type classifier for J-S was set to have a maximum of n

features and allowed to reach a depth of 25 nodes, whereas that for PPW had the

parameters set to n and 10 respectively. The corresponding parameters for sign prediction

module were log2 n and 50.

27

CHAPTER 5

EXPERIMENT RESULTS

We use all classifiers mentioned in Chapter 3 for problem type classification. Since the

errors from this stage propagate to the subsequent stages, we only consider the best

performing in overall classifications: problem type classification, sentence type

identification, and sign prediction.

5.1 Problem Type Classification

Table 5.1: Performance comparison of the classifiers for the problem type classification.

Classifier RF NB SVM Logistic Regression
Baseline Accuracy 43.94%
Classifier Accuracy 91.54% 88.63% 64.77% 90.98%

The majority baseline is the proportion of the largest problem class in the corpus which

is about 44% The performance of the three classifiers is shown in Table 5.1. We observe

that the ensemble method Random Forest is the best performing classifier. We notice that

problem type classification using Random Forest yielded an accuracy of 91.54%, the

highest among the classifiers considered. The performance of Random Forest is justified

considering that many of our features are correlated (a reason why Naive Bayes fails).

Additionally, our data falls in the realm of the “small n, large p” scenario where Random

Forest is known to perform best (a plausible reason for SVM’s poor performance). We thus

use only Random Forest for classification in the following stages.

28

Table 5.2: Performance of the Random Forest classifier for sentence type classification after
tuning all parameters.

JS PPW
Baseline Classifier Baseline Classifier
36.12% 91.55% 62.47% 92.32%

Table 5.3: Comparison of the accuracy of the solvers for each problem type.

JS PPW C Overall
78.67% 87.33% 94.92% 85.64%

5.2 Sentence Type Classification

For the sentence type classification, the baseline is the majority class among sentence types

since the sentences are classified independently. Thus, the baseline for J-S problems is

36.12% (majority class is Change sentence) and for PPW is 62.47% (majority class is Part

sentence). From Table 5.2 we notice that the ensemble classifier outperforms the baseline

by a wide margin in both J-S and PPW solvers. The performance of the classifier on

sentence type prediction for both types seems comparable even though one involves a

three-way classification (for J-S) and the other only two-way (for PPW).

5.3 Sign Prediction

For sign prediction, we note that the module is used only to solve problems of type J-S.

Hence, the baseline is the majority class which in our case is 53% to be positive owing to

the number of addition and subtraction problems. The accuracy of the classifier that

performs sign prediction is 84.33%. This renders the sign-prediction stage a bottleneck for

solving J-S problems.

5.4 Overall Accuracy

The overall solution is obtained by combining the result of the individual stages as per

problem type to generate the corresponding equation. The accuracies of the solvers for

29

each problem type are compared in Table 5.3.

The final accuracy for solving problems of type Join-Separate is 78.67%. For problems of

the PPW type, the accuracy of problem solution after the equation generation stage is

87.33% and that for the class of Compare problems is 94.92%. Based on this we remark

that for the automatic solver, problems of the J-S type are the hardest to solve, and those

of the Compare type are the easiest. This is justified here by noting that the

sign-prediction module is a bottleneck for the J-S solver, as well as an additional

classification stage compared to the other problem types.

Pooling the results of each problem type together, we arrive at the overall accuracy of

our solver to be 85.64%.

5.5 Comparison with State of the Art

A general purpose MWP solver is available via the publicly available WolframAlpha engine

(a blog post associated with its functionality elaborates the development process and the

diagrammatic solution feature of this solver) [13]. We compare the accuracy of our solver

with that of the solver provided by WolframAlpha1 in the absence of other published

MWP solvers for arithmetic problems that we study.

For the purpose of this comparison, we choose a random set of 20% of our corpus and

compare the accuracy of solutions produced by the solvers. While our MWP solver had an

accuracy of 94.4% on the sample, the performance of WolframAlpha is remarkably poor. In

particular, barely 9% of the problems were answered correctly, of which about 4% had an

incorrect diagram associated with the solution. The vast majority of the MWPs are not

solved and the results come back with the error code “Wolfram—Alpha doesn’t understand

your query”. We conclude that the MWP solver aspect of the WolframAlpha engine has a

very poor performance, and particularly so when compared to our solver.

1www.wolframalpha.com visited on June 01, 2014.

30

5.6 Ablation Analysis

Table 5.4: Comparison of the accuracy results (in %) with different feature classes ablated
for each classification task with the accuracy where no features were excluded.

Task Accuracy Problem Sentence Action Entity
level level related related

Prob. type 93.47 77.29 92.17 75.10 81.26
Sign 84.33 61.33 60.33 61.67 65.33

JS sent 91.55 89.48 54.93 87.02 90.63
PPW sent 92.32 81.82 68.05 90.68 92.02

Table 5.4 summarizes the results of the ablation study conducted for each task by

removing each class of features. For problem type prediction, the action-related features

constitute the most important set of features (most likely influenced by the predominance

of J-S problems) followed by the problem-level features. The sentence level features seem

to have little impact on the overall accuracy. Even though the entity-related features do

not have an effect on PPW sentence type classification, it contributes substantially to

question type classification (most likely by way of characterizing PPW problems).

Sign prediction depends not only on verbs but other features as well. The sentence-level

features play an important role, followed by the action-related features.

The J-S and PPW sentence type classifiers suffer the most from missing the sentence

level features because the decisions are made primarily at a sentence level.

31

CHAPTER 6

DISCUSSION

6.1 Error Analysis

The higher the accuracy of classification is, the better the outcome in generating equations

will be. In this section, we consider some of the issues that negatively impact the

classification process. The first issue involves the preprocessing steps that a MWP has to

go through before passing through our analysis. This happens when the problem relates to

time, money, and distance and needs quantity conversions before the arithmetic

calculations (e.g. Josie has 7 pennies and 5 nickels. How much money does she have?).

Another obvious class is when the problem requires world knowledge for its solution (e.g.

Today is October 25th. How many days are there until Halloween?). The other case where

our program fails is when a question is in complex sentence structure. For instant How

many Yodas flew away from the planet in the space shuttle if 23 Yodas stayed on the planet

of 30 Yodas in all?

Next, we consider the errors that occur in the J-S problem solver. The majority of errors

result from incorrect sign prediction, explained by the fact that the sign prediction module

is the bottleneck in our J-S automatic solver. The overall accuracy is slightly higher than

we expect because the error from sign prediction and sentence type classification overlap.

It is also the case that even though the classifier misclassifies Change and Given sentences,

if the sign is correctly assigned as “+”, the final equation is still correct i.e. 3 + x = 4 is

the same as x+ 3 = 4. Finally, the main source of error for problems of PPW type is that

the problem type classifier misclassifies PPW to be JS, which leads to an incorrect

solution. JS and PPW are very similar but they focus on different aspects. JS focuses on

the dynamic action, while PPW captures the relationship between nouns in each sentence.

32

For problems of the Compare type, there are two sources of error. First, the rule-based

classifier itself provides 94.92% because some questions need quantity conversion before

being processed. For example, Joel started the paper route at 7:05. He worked for 25

minutes. When did he finish? The other is that the comparison problem is misclassified as

J-S or PPW at the problem type classification stage. Accounting for these errors would

entail working with better classifiers that handle inter-sentence semantics.

6.2 Effect of Unbalanced Corpus

In certain classification algorithms, unbalanced data sets can be a major issue since the

classifier will focus on the majority classes, ignoring the minority ones [34]. Indeed,

popular classifiers such as SVMs suffer significantly from data imbalance [35]. A severe

case in our data set is the number of sentences of type Unknown in J-S and PPW. Their

role in the discourse structure of the problem is that they constitute irrelevant information

setting up the context of the problem, but not actually aiding the solution. The unknown

type in classifying sentence type is the minority class, with only 23 instances among 1471

samples (1.5%) and its lack of instances affects the ability of the classifier to model them

causing them to be labelled as one of the other sentence types.

We observe that the Random Forest classifier provides the highest accuracy (in the

sentence function identification problem) among the classifiers tested – as such, ensemble

method in conjunction with the randomness in this classifier make it better suited to work

with unbalanced data.

6.3 Generalizability

A new set of MWP is collected from DadsWorksheets.com.1 We were considered only

addition and subtraction problems from this website for 400 problems. These problems

does not have CGI structure. They are regular elementary MWP. We tested the new

corpus in our system. The accuracy became 87%.

1www.dadsworksheets.com visited on March 12, 2013.

33

Beside the set of questions we did not study as mentioned in Section 6.1, we also were

not considered some enigmatic problem such as Sharon has 80 bananas. Chris has 6

bananas. Katherine takes 28 away. How many bananas will Sharon have?. This particular

question is unclear whether Katherine tooks bananas from Chris or Sharon so that there

will be two possible answers for this question. All in all, the question with two or more

possible answers cannot be processed through our solver.

There are three main sources of errors. One is the error in the sign prediction stage. The

features that we had could not capture some structures of questions in the new unseen set

so that the system could not provide correct labels. As expected, the accuracy of sign

prediction is a bottleneck of our system. Another is sentence type identification in J-S

problem. It misclassified between given and change sentence. The failure were occured on

the problem with a sequence structure as CGXR. The other one is from problem type

classification. This source of error was not significant compared to prior causes. Even

though a PPW problem is classified as JS, our system is still able to produce an accurate

equation.

34

CHAPTER 7

CONCLUSION

We present a multistage text-classification approach to solve arithmetic problems of

elementary level automatically. Our approach recognizes the problem type, identifies the

discourse structure and generates the corresponding equation to eventually solve the

problem. This is in line with results from cognitive psychology studies in children learning

to solve MWPs. With accuracies substantially higher than the baseline, we also observe

that the performance gains of our solver compared with the state-of-the-art MWP solvers

such as WolframAlpha are also substantial.

Looking ahead, we are working to solve more complicated MWPs of upper elementary

grades and certain college-level MWPs such as those in introductory probability, which we

have been teaching at an undergraduate level. Another thing that we are currently working

on is about classifying the difficulty level of each MWP so that we can personalize the

MWP exercise for each student.

35

REFERENCES

[1] M. Heilman, K. Collins-thompson, J. Callan, and M. Eskenazi, “Classroom success of
an intelligent tutoring system for lexical practice and reading comprehension,” in
Proceedings of the Ninth International Conference on Spoken Language Processing,
2006.

[2] K. R. Koedinger, J. R. Anderson, W. H. Hadley, M. A. Mark et al., “Intelligent
tutoring goes to school in the big city,” International Journal of Artificial Intelligence
in Education (IJAIED), vol. 8, pp. 30–43, 1997.

[3] M. D. LeBlanc and S. Weber-Russell, “Text integration and mathematical
connections: A computer model of arithmetic word problem solving,” Cognitive
Science, vol. 20, no. 3, pp. 357–407, 1996.

[4] W. Supap, K. Naruedomkul, and N. Cercone, “Mathmaster: An alternative math
word problems translation,” Computational Approaches to Assistive Technologies for
People with Disabilities, vol. 253, p. 109, 2013.

[5] D. G. Bobrow, “A question-answering system for high school algebra word problems,”
in Proceedings of the October 27-29, 1964, Fall Joint Computer Conference, Part I, ser.
AFIPS ’64 (Fall, part I). New York, NY, USA: ACM, 1964. [Online]. Available:
http://doi.acm.org/10.1145/1464052.1464108 pp. 591–614.

[6] C. Liguda and T. Pfeiffer, “A question answer system for math word problems,” in
First International Workshop on Algorithmic Intelligence, H. Messerschmidt, Ed.,
2011.

[7] C. Liguda and T. Pfeiffer, “Modeling math word problems with augmented semantic
networks,” in Natural Language Processing and Information Systems, ser. Lecture
Notes in Computer Science, G. Bouma, A. Ittoo, E. Mtais, and H. Wortmann, Eds.
Springer Berlin Heidelberg, 2012, vol. 7337, pp. 247–252. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-31178-9 29

[8] E. De Corte and L. Verschaffel, “The effect of semantic structure on first graders’
strategies for solving addition and subtraction word problems,” Journal for Research
in Mathematics Education, pp. 363–381, 1987.

36

[9] D. D. Cummins, “Children’s interpretations of arithmetic word problems,” Cognition
and Instruction, vol. 8, no. 3, pp. 261–289, 1991. [Online]. Available:
http://www.jstor.org/stable/3233626

[10] L. Verschaffel, B. Greer, and E. De Corte, Making Sense of Word Problems. Lisse,
2000.

[11] Y. Yang and X. Liu, “A re-examination of text categorization methods,” in
Proceedings of the 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM, 1999, pp. 42–49.

[12] S. Cetintas, L. Si, Y. P. Xin, D. Zhang, and J. Y. Park, “Automatic text
categorization of mathematical word problems,” in FLAIRS Conference, 2009.

[13] P. Barendse, “Sovling word problems with Wolfram|Alpha@ONLINE,” Oct. 2012.
[Online]. Available: http:
//blog.wolframalpha.com/2012/10/04/solving-word-problems-with-wolframalpha/

[14] C. R. Fletcher, “Understanding and solving arithmetic word problems: A computer
simulation,” Behavior Research Methods, vol. 17, no. 5, pp. 565–571, 1985. [Online].
Available: http://dx.doi.org/10.3758/BF03207654

[15] D. Dellarosa, “Solution: A computer simulation of childrens recall of arithmetic word
problem solving,” University of Colorado Technical Report, pp. 85–148, 1985.

[16] D. Dellarosa, “A computer simulation of children’s arithmetic word-problem solving.”
Behavior Research Methods, vol. 18, pp. 147–154, March 1986.

[17] S. Cetintas, L. Si, Y. P. Xin, D. Zhang, J. Y. Park, and R. Tzur, “A joint probabilistic
classification model of relevant and irrelevant sentences in mathematical word
problems,” JEDM-Journal of Educational Data Mining, vol. 2, no. 1, pp. 83–101, 2010.

[18] T. Matsuzaki, H. Iwane, H. Anai, and N. Arai, “The complexity of math problems –
Linguistic, or computational?” in Proceedings of the Sixth International Joint
Conference on Natural Language Processing. Nagoya, Japan: Asian Federation of
Natural Language Processing, October 2013. [Online]. Available:
http://www.aclweb.org/anthology/I13-1009 pp. 73–81.

[19] N. Kushman, Y. Artzi, L. Zettlemoyer, and R. Barzilay, “Learning to automatically
slove algebra word problems,” ACL Conference 2014, 2014.

[20] Y. Guo, A. Korhonen, M. Liakata, I. S. Karolinska, L. Sun, and U. Stenius,
“Identifying the information structure of scientific abstracts: An investigation of three
different schemes,” in Proceedings of the 2010 Workshop on Biomedical Natural
Language Processing, ser. BioNLP ’10. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1869961.1869974 pp. 99–107.

37

[21] A. Chaganty, A. Lal, A. V. Nori, and S. K. Rajamani, “Combining relational learning
with SMT solvers using CEGAR,” in Computer Aided Verification. Springer, 2013,
pp. 447–462.

[22] L. Liu, C.-H. Lin, and S. Vasudevan, “Word level feature discovery to enhance quality
of assertion mining,” in Computer-Aided Design (ICCAD), 2012 IEEE/ACM
International Conference, Nov 2012, pp. 210–217.

[23] T. P. Carpenter, E. Fennema, M. L. Franke, L. Levi, and S. B. Empson, “Cognitively
guided instruction: A research-based teacher professional development program for
elementary school mathematics research report,” 2000.

[24] S. Olson, N. Musser, S. McAdaragh, R. Dyk, J. Weber, T. Mittleider, L. Atwood, and
M. Torgrude, “South Dakota counts: CGI problems created by South Dakota math
teacher leaders @ONLINE,” Jan. 2008. [Online]. Available:
http://sdesa.k12.sd.us/esa5/docs/sdcounts/SDCountsMathProblemBooklet.pdf

[25] K. Ebner, “Cognitively guided instruction (CGI) problem types @ONLINE,” July
2011. [Online]. Available:
http://sdesa.k12.sd.us/esa5/docs/sdcounts/SDCountsMathProblemBooklet.pdf

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[27] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The
WEKA data mining software: An update,” SIGKDD Explor. Newsl., vol. 11, no. 1, pp.
10–18, Nov. 2009. [Online]. Available: http://doi.acm.org/10.1145/1656274.1656278

[28] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27, 2011,
software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[29] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA: McGraw-Hill, Inc.,
1997.

[30] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, Oct. 2001.
[Online]. Available: http://dx.doi.org/10.1023/A:1010933404324

[31] E. Loper and S. Bird, “NLTK: The natural language toolkit,” in Proceedings of the
ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural
Language Processing and Computational Linguistics - Volume 1, ser. ETMTNLP ’02.
Stroudsburg, PA, USA: Association for Computational Linguistics, 2002. [Online].
Available: http://dx.doi.org/10.3115/1118108.1118117 pp. 63–70.

[32] T. E. Oliphant, Guide to NumPy, Provo, UT, Mar. 2006.

38

[33] M.-C. De Marneffe, B. MacCartney, C. D. Manning et al., “Generating typed
dependency parses from phrase structure parses,” in Proceedings of LREC, vol. 6,
2006, pp. 449–454.

[34] R. Longadge and S. Dongre, “Class imbalance problem in data mining review,” ArXiv
e-prints, May 2013.

[35] R. Batuwita and V. Palade, “Class imbalance learning methods for support vector
machines,” Imbalanced Learning: Foundations, Algorithms, and Applications, p. 83,
2013.

39

