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ABSTRACT 

 

Erwinia amylovora, the causal agent of fire blight of apples and pears, is a necrogenic 

bacterium, whose virulence is dependent upon a functional hypersensitive response and 

pathogenicity (hrp)-type III secretion system (T3SS). It has been previously demonstrated that 

HrpL, an ECF sigma factor, is the master regulator of hrp-T3SS. Recently, it is reported that 

expression of hrpL is under the control of sigma 54 complex, including σ
54

 (RpoN), its 

modulation protein YhbH and σ
54

-enhancer binding protein HrpS. In this study, we investigated 

the role of integration host factors (IHFs) in regulating σ
54

-dependent hrpL and other T3SS gene 

expression. IHFs are nucleoid-associated proteins and consist of two subunits, i. e. IHFα and 

IHFβ. IHFα and IHFβ usually form heterodimers, which could influence nucleoid structure and 

gene expression via DNA bending. Two single mutants (ihfA and ihfB) were generated and 

characterized in E. amylovora. Results showed that both ihfA and ihfB mutants failed to colonize 

and produce necrotic lesions on immature pear fruits. Bacterial growth of both mutants in pear 

fruits was greatly reduced and expression of hrpL, dspE, hrpA and hrpN was also significantly 

down-regulated as compared to wild type (WT) strain. In addition, both ihfA and ihfB mutants 

exhibited slower growth in rich medium and showed hypermotile phenotype as compared to WT 

strain. Furthermore, results showed that both IHFs positively regulated the expression of small 

non-coding regulatory RNA rsmB/csrB, which negatively regulates motility as previously 

reported. These results indicate that IHFs are required for σ
54

-dependent hrpL and other T3SS 

gene expression and virulence in E. amylovora. 

  

On the other hand, the bacterial enhancer binding protein (bEBP) HrpS plays a central 

role in regulating T3SS gene expression by activating the transcription of hrpL gene in E. 

amylovora. Upon binding to upstream activator sequence (UAS) at the hrpL promoter, HrpS 

interacts with the σ
54

-RNA polymerase holoenzyme through conserved GAYTGA motif, which 

allows the initiation of hrpL transcription. However, where HrpS binds to the promoter of hrpL 

and what is the role of the conserved GAYTGA motif in regulating hrpL and other T3SS gene 

expression remain elusive. In this study, our goals were to identify the HrpS binding site and to 

characterize the role of conserved GAYTGA motif of HrpS in transcription activation of hrpL in 

E. amylovora. First, eight 5’ deletion constructs of hrpL promoter fused to a promoter-less gfp 

were made, and promoter activities were measured by flow cytometry. The results of promoter 
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screening suggested a potential region for HrpS binding. Second, complementation of hrpL 

mutant using twelve constructs containing hrpL gene and various lengths of hrpL promoter 

further delineated the UAS region for HrpS binding. Bioinformatic analysis of this region 

revealed a dyad symmetry sequence between -141 to -122 nt (AT-N-TGCAA-N4-TTGCA-N-

AT), which is characteristic for bEBP binding. Third, site-directed mutation analyses and 

quantitative real time-PCR (qRT-PCR) assays demonstrated that the complete-dyad symmetry 

sequence was all required for T3SS gene expression and complementation of hrpL mutant. 

Finally, electrophoretic mobility shift assay (EMSA) with purified truncated HrpS protein 

containing its DNA binding domain further verified that HrpS binds to this sequence, indicating 

that hrpL promoter from -141 to -122 is the HrpS binding site. In addition, results from site-

directed mutagenesis analyses of the conserved GAYTGA motif of HrpS showed that Y100F 

substitution did not affect the function of HrpS, whereas Y100A and Y101A mutations 

completely abolished HrpS activity. These results suggest that tyrosine and phenylalanine can 

compensate functionally for each other in the GAYTGA motif of HrpS in E. amylovora. 
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CHAPTER 1 

INTRODUCTION 

1.1 Fire blight and Erwinia amylovora 

1.1.1 Fire blight disease and symptoms 

Fire blight is one of the most devastative diseases of plants in the Rosaceae family, such 

as apple (Malus sylvestris) and pear (Pyrus communis L.), and has become a serious economic 

concern in pome fruit production globally. The first incidence of fire blight was reported in the 

Hudson Valley of New York in the late 1700s (Denning, 1794). It has since been observed 

throughout the United States and in other regions of the world, including New Zealand, Europe, 

the Middle east and Asian countries (Bonn and Zwet, 2000). The causal agent of fire blight, 

Erwinia amylovora (Burrill) Winslow et al., was first discovered in the late 1800s (Burill, 1880) 

and proven by Koch’s postulates a few years later (Arthur, 1885). The bacterium E. amylovora is 

regarded as the first known bacterium to cause a plant disease. 

 

Disease symptoms of fire blight are characterized by water soaking of infected tissue, 

followed by wilting and rapid tissue necrosis. These result in a blackened and scorched 

appearance in leaves and twigs, thus the name fire blight. Invasion of E. amylovora can occur in 

all parts of the plant through natural openings and wounds, causing various phases of the disease, 

such as rootstock blight, shoot blight, and blossom blight (Vanneste, 2000; Norelli et al., 2003). 

The bark or cankers in wood are the site of pathogen survival over the winter, which establish the 

major source of primary inoculum for a continuing epidemic of secondary rootstock and shoot 

blight in the spring and summer (Khan et al., 2012). Rootstock blight girdles and eventually kills 

the limbs or the entire trees, while shoot blight exhibits a characteristic shepherd’s crook and 
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wilting with brown to black necrotic lesions on the affected succulent shoots (Oh and Beer, 

2005). Under conditions of high humidity and warm temperature, droplets of sticky bacterial 

ooze are often exuded from the diseased parts of the plant, and bacteria can be disseminated to 

other tissues or plants by wind, rain, and insects. Pathogen colonization and multiplication on the 

stigma of blossom of apples and pears are thought to be an important step for subsequent disease 

development, including fruit blight and infection of other shoots (Malnoy et al., 2012). A severe 

outbreak of fire blight is closely associated with not only favorable weather conditions, but also 

age and susceptibility of the host plant (Thomson, 2000). 

 

1.1.2 Causal agent of fire blight: Erwinia amylovora 

E. amylovora is a necrogenic, Gram-negative bacterium. The cells of E. amylovora are 

short rods with rounded ends, weakly fermentative (Holt et al., 1994), and motile by peritrichous 

flagella in pH- and temperature-dependent manner (Raymundo and Ries, 1981). Optimum 

growth of E. amylovora occurs between 21°C and 30°C, and a temperature above 18°C is 

required for the development and epidemic of blight symptoms (Billing, 1974). E. amylovora 

shows unique chemotactic response toward aspartate and several organic acids of the citric acid 

cycle, such as succinate, oxaloacette, malate, and fumarate, but not toward the other amino acids 

and sugars (Raymundo and Ries, 1980). As a member of the family Enterobacteriaceae, E. 

amylovora is closely related to several other plant-associated bacteria, such as Pantoea, 

Pectobacterium and Brennaria (Smits et al., 2011), and share some common characteristics with 

many animal enterobacterial pathogens such as Salmonella spp. and Shigella spp. Although there 

are other related Erwinia species capable of causing blight symptoms, several cultural, 

physiological and biochemical characteristics, including facultative anaerobe, mucoid growth, 



3 

reducing substances from sucrose, acetoin production and gelatin liquefaction, distinguish E. 

amylovora from other Erwinia species (Vanneste, 2000). The host range of E. amylovora 

includes more than 180 species from 39 genera (Zwet and Keil, 1979; Bradbury, 1986). Based on 

different host specificity, E. amylovora strains can be further divided into three major groups; 

strains isolated from the Rosaceae subfamily Spiraeoideae (e.g., Crataegus, Malus), from Rubus 

(e.g., raspberries and blackberries), and from Asian pear (a new species E. pyrifoliae) (Zhao and 

Qi, 2011).  

 

E. amylovora has a circular genome of about 3.8 Mb which is relatively small as 

compared to 4.5 to 5.5 Mb of sequenced enterobacterial genomes (Sebaihia et al., 2010). 

Different strains of E. amylovora may contain different plasmids, such as pEA29, pEA72, and 

pE170, but the specific roles of the plasmids in virulence have not been characterized (Malnoy et 

al., 2012). The complete genome sequence of E. amylovora was first revealed in 2010 for strain 

CFBP1430, isolated in France from Crataegus (Smits et al., 2010). Since then, more than 20 

different strains infecting hosts within Rosaceae and Rubus families have been fully sequenced, 

allowing in-depth comparative and evolutionary genomic studies. A comparison of two different 

E. amylovora strains CFBP 1430 and Ea273, isolated in New York from apple, revealed more 

than 99.99% nucleotide sequence identity, suggesting a high homogeneity of this species (Smits 

et al., 2010). Through comparative genomic analysis of 12 distinct strains of E. amylovora, it 

was also reported that the core genome of the pathogen contains about 89% conserved coding 

sequences and shares more than 99% amino acid identity among all strains (Mann et al., 2013). 

In addition, comparative analysis of E. amylovora with two other Erwinia species, E. pyrifoliae 

and E. tasmaniensis, has revealed that major virulence factors, such as type III secretion systems 
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(T3SS), sorbitol metabolism, and levan biosynthesis are highly conserved between the species. 

However, it has been proven that four E. amylovora wild-type strains (Ea1189, Ea273, Ea110, 

and CFBP1430) exhibit different levels of disease symptoms and expression of genes related to 

pathogenesis of fire blight pathogens (Wang et al., 2010). For example, Ea273 and Ea110 caused 

more severe blight symptoms on apple cv. Golden Delicious, which is a relatively tolerant 

genotype, and expressed higher levels of amylovoran biosynthesis and T3SS genes, as compared 

to Ea1189 and CFBP1430, suggesting variation in pathoadaptation on different host plants (Khan 

et al., 2012). 

 

1.2 Type III secretion system (T3SS) in Erwinia amylovora 

1.2.1 Type III secretion system as a virulence factor 

The T3SS of most Gram-negative, phytopathogenic bacteria generally consists of four 

components: cytoplasmic ATPase, secretion apparatus spanning the two bacterial membranes 

(inner membrane and outer membrane), extracellular pilus for the penetration of plant cell wall 

and translocon for the transport of effector proteins (Büttner and He, 2009). As the T3SS 

functions in delivering bacterial effector proteins into the eukaryotic cells, many plant 

pathogenic bacteria, such as Pseudomonas syringae, Xanthomonas spp, and Erwinia spp. employ 

this mechanism for their pathogenicity and interaction with host plants (Büttner and Bonas, 

2006).  

 

E. amylovora contains three pathogenicity islands (PAIs; PAI-1, PAI-2 and PAI-3), but 

only PAI-1, i.e. hrp (hypersensitive response and pathogenicity) pathogenicity island 1, has been 

shown to be essential for virulence in host plants (Oh et al., 2005; Bocsanczy et al., 2008; Zhao 
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et al., 2009a; Smits et al., 2010). The T3SS of E. amylovora, including both structural and 

effector proteins, are encoded by the hrp PAI-1 (Oh et al., 2005). They are so named since strains 

with mutation in some of these genes failed to elicit the hypersensitive response (HR), a rapid, 

local death of plant cell at the site of infection, in resistant plants (Lindgren et al., 1986). In E. 

amylovora, the hrp PAI-1 is composed of four distinct clusters of genes (Figure 1.1): the 

hypersensitive response and conserved (hrp/hrc) region, the Hrp effectors and elicitors (HEE) 

region, the Hrp-associated enzymes (HAE) region and the island transfer (IT) region (Oh and 

Beer, 2005).  

 

Among them, the genes important for T3SS function and regulation are mainly located 

in the hrp/hrc region and the HEE region. The hrp/hrc region contains 25 genes, including four 

genes (hrpL, hrpS, and hrpXY) responsible for regulation of T3SS gene expression and nine hrc 

genes largely involved in the T3SS assembly (Bogdanove et al., 1996; Oh et al., 2005). The HEE 

region is found to harbor seven genes, including two major effectors for virulence (hrpN and 

dspA/E) (Oh et al., 2005). Since the hrp/hrc region and the HEE region include most hrp and dsp 

genes, the two regions together are called the hrp/dsp gene cluster. Unlike the hrp PAI-1, two 

other PAIs in E. amylovora, PAI-2 and PAI-3, were not involved in virulence in immature pear 

fruits and apple seedlings, although they encode complete sets of T3SS apparatus proteins 

(Bocsanczy et al., 2008; Zhao et al., 2009a). Both PAI-2 and PAI-3 belong to inv/spa-type T3SS 

found in the insect endosymbiont Sodalis glossidinius (Triplett et al., 2006). Some genes 

associated with mobile genetic elements are also located on the upstream region of PAI-2 and 

PAI-3, suggesting that horizontal gene transfer occurred in the evolution of E. amylovora (Zhao 

et al., 2009a). 
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In addition to T3SS, it is well known that exopolysaccharide amylovoran, an acidic 

heteropolymer composed of pentasaccharide repeating units, is a major virulence factor of E. 

amylovora and produced by an ams (amylovoran synthesis) operon (Oh and Beer, 2005; Khan et 

al., 2012). Both ams and hrp PAI deletion mutants have been shown to fail to cause fire blight 

disease on immature pear fruits (Zhao et al., 2009a). However, previous studies reported that 

T3SS mutants could not induce an HR in tobacco and a local necrotic reaction in apple leaf 

mesophyll, while an ams mutant could still elicit both reactions (Metzger et al., 1994; Malnoy et 

al., 2012). Furthermore, it has been shown that T3SS is responsible for inducing oxidative stress 

responses, such as accumulation of superoxide anion and lipid peroxidation, at the beginning of 

the infection process in pears (Venisse et al., 2001).  

 

1.2.2 Type III-secreted proteins of Erwinia amylovora 

The T3SS of E. amylovora secretes several proteins, which mediate host-pathogen 

interactions and contribute to disease development in host plants. Since HrpN was identified as 

the first cell-free elicitor of HR (Wei et al., 1992a), at least 15 proteins have since been known to 

be secreted by the T3SS in E. amylovora, including not only effectors but also helper proteins 

which play a role in effector translocation (Bogdanove et al., 1998; Zhao et al., 2006; Nissinen et 

al., 2007).  

 

One of the well-known type III-secreted proteins in E. amylovora is the harpin family 

proteins. Harpins are a unique subset of the type III proteins found only in plant pathogenic 

bacteria. Although most harpin proteins exhibit a low degree of sequence homology and may 

function differently in different bacteria, they are all acidic, glycine-rich, heat-stable, lack 
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cysteine and have few aromatic amino acids (Alfano and Collmer, 1997). Harpins are secreted in 

the apoplast, not in the cytoplasm, during infection process to presumably act on plant cell wall 

and/or plasma membrane (Perino et al., 1999; Tampakaki and Panopoulos, 2000). In E. 

amylovora, two harpins, HrpN and HrpW, have been identified, but virulence functions are 

detected only in the HrpN protein (Wei et al., 1992a). HrpN has been reported to trigger 

oxidative stress (Venisse et al., 2003) and contribute either directly or indirectly to callose 

deposition and translocation of other effector proteins (Bocsanczy et al., 2008). However, the 

exact function of HrpN remains to be explored. Nevertheless, HrpN on non-host plants has been 

relatively well characterized and shown to induce various cellular responses which are related to 

plant defense reactions, including oxidative burst (Baker et al., 1993; Cessna and Low, 2001), 

myelin basic protein kinase activation (Adam et al., 1997), increase of internal Ca2+ 

concentration (Cessna et al., 2001), defense gene activation (Dong et al., 1999; Peng et al., 2003), 

modulation of ion channel activity in the cell (Popham et al., 1995) and mitochondrial 

dysfunction (Xie and Chen, 2000).  

 

The DspA/E effector is another major type III-secreted protein in E. amylovora required 

for pathogenicity. The dspA/E gene exhibits homology with avrE gene of P. syringae pv. tomato, 

which confers cultivar specificity on host plants (Gaudriault et al., 1997; Bogdanove et al., 1998). 

During infection on host plants, DspA/E of E. amylovora is found to interact with intracellular 

domains of host plant receptor kinases (Meng et al., 2006) and precursor of the host chloroplast 

protein ferredoxin (Bonasera et al., 2004), resulting in oxidative stress (Venisse et al., 2003) and 

suppression of salicylic acid (SA)-dependent innate immunity and promotion of cell death 

(DebRoy et al., 2004). The dspA/E mutant is also shown to have a significantly reduced capacity 



8 

to trigger electrolyte leakage in apple and tobacco leaves, indicating that DspA/E plays a major 

role in causing cell death after translocation into plant cells (Boureau et al., 2006). Secretion of 

DspA/E is partially dependent on DspB/F which acts as a DspA/E specific chaperone and 

inhibits intrabacterial DspA/E degradation (Gaudriault et al., 2002). In addition, DspA/E is also 

reported to be more efficiently delivered into plant cells with the help of HrpN (Bocsanczy et al., 

2008). 

 

The T3SS of E. amylovora requires several type III-secreted helper proteins to be fully 

functional and/or virulent. Analysis of the secretomes of E. amylovora (Nissinen et al., 2007) 

revealed that HrpJ is important in efficient translocation or extracellular accumulation of two 

harpin proteins (HrpN and HrpW), and HrpK may contribute to formation of the secretion 

apparatus. Function of HrpJ was further identified as an essential virulence factor of E. 

amylovora for virulence and elicitation of the HR through hrpJ mutation analysis (Nissinen et al., 

2007). E. amylovora also has several other type III-secreted proteins involved in pilus formation, 

such as HrpA (Kim et al., 1997), FlgL (Nissinen et al., 2007), and TraF (Haase and Lanka, 1997), 

and virulence, such as AvrRpt2Ea (Zhao et al., 2006) and effector-like proteins (Eop1 and Eop3) 

(Nissinen et al., 2007); however, despite several studies, current understanding of their properties 

and function in T3SS and virulence is still limited. 

 

1.2.3 Regulation of type III secretion system 

 In many plant pathogens including E. amylovora, the extracytoplasmic function (ECF) 

sigma factor, HrpL, is a master regulator that controls the expression of genes encoding the T3SS 

components (Figure 1.2) (Shen and Keen, 1993; Wei and Beer, 1995; Chatterjee et al., 2002). It 
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has been shown that ECF is one of the most abundant signal transduction pathways to mediate 

specific gene expression in response to environmental stimuli (Mascher, 2013). Significant 

down-regulation of T3SS gene expression associated with a loss of ability to cause disease and 

HR was observed in hrpL mutant of E. amylovora (Ancona et al., 2014). As an alternative sigma 

factor belonging to the sigma 70 (σ
70

) family, HrpL binds to a consensus nucleotide sequence 

(GGAACC-N16-CCACNNA), called the hrp box or hrp promoter, at the -35 and -10 promoter 

regions to direct transcription by RNA polymerase at a target site (Wei and Beer, 1995). To date, 

30 putative hrp promoters including all known genes encoding T3SS components have been 

identified in E. amylovora (McNally et al., 2012).  

 

Regulation of T3SS gene expression in many phytopathogenic bacteria including E. 

amylovora is subject to transcriptional control of hrpL expression (Figure 1.2) (Xiao et al., 1994; 

Wei and Beer, 1995). In E. amylovora, hrpL transcription is positively regulated by alternative 

sigma factor 54 (σ
54

) (RpoN), HrpS and YhbH (Figure 1.2) (Wei et al., 2000; Ancona et al., 

2014). HrpS, a member of the NtrC family, acts as a bacterial enhancer binding protein (bEBP) 

which is a σ
54

-dependent transcription activator, whereas YhbH of E. amylovora is annotated as 

a σ
54 

modulation protein (Smits et al., 2010). Deletion of rpoN, hrpS and yhbH in E. amylovora 

resulted in a dramatic decrease in hrpL and other T3SS gene expression, thus a non-pathogenic 

mutant strain on immature pear fruits and apple shoots (Ancona et al., 2014). Consistently, the 

ability to elicit HR on nonhost tobacco leaves was also abolished in these mutants, but restored 

after hrpL expression using arabinose inducible-hrpL complementation (Ancona et al., 2014). 

These results indicate that RpoN, YhbH and HrpS are essential activators of hrpL transcription 

and other T3SS gene expression.  
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 The signal cascade leading to hrpL transcription may begin with environmental stimuli, 

such as low pH, low temperature, and low concentrations of ammonium ions and certain carbon 

sources (Wei et al., 1992b). It has been shown that hrp gene expression of E. amylovora is 

repressed in nutrient-rich media, but induced in minimal media and in planta, indicating that 

nutritional condition is important for transcription of hrp genes (Wei et al., 1992b). In E. 

amylovora, HrpXY two-component signal transduction system has been proposed to perceive 

hrp-inducing stimuli and either directly or indirectly induce hrpS transcription for the subsequent 

hrpL gene induction (Figure 1.2), but this remains to be determined (Wei et al., 2000; Zhao et al., 

2009b). 

 

1.3 Sigma 54-dependent transcription 

1.3.1 Sigma factors 

Regulation of transcription initiation process is a major point in controlling gene 

expression in both prokaryotes and eukaryotes. Transcription in bacteria generally requires two 

components for initiation: core RNA polymerase (RNAP), composed of five subunits (α2ββ’ω), 

and sigma factor, a sixth dissociable subunit of RNAP. Association of the two components forms 

a holoenzyme that is capable of initiating transcription. Bacteria have only one form of the core 

RNAP, and the specificity for promoter recognition of the holoenzyme is primarily determined 

by a sigma factor. Therefore, expression of individual genes and gene groups can be effectively 

regulated by different holoenzyme species (Haugen et al., 2008). There are multiple forms of 

sigma factors in most bacteria. The number of sigma factors is highly diverse between different 

bacterial species depending on the complexity and/or lifestyle of the organism, ranging from 1 in 

Mycoplasma genitalium to 63 in Streptomyces coelicolor (Fraser et al., 1995; Bentley et al., 2002; 
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Gruber and Gross, 2003). In order to promote a proper transcriptional response to various 

environmental stimuli, it has been shown that bacteria can manipulate the holoenzyme 

composition through several different mechanisms, including regulation of sigma factor 

expression, anti-sigma factors and small regulatory proteins (Ö sterberg et al., 2011). Sigma 

factors, thus, play a central role in controlling gene expression in bacteria.  

 

 Bacterial sigma factors can be grouped into two families based on their domain structure 

and promoter specificity: the σ
70 

family and the σ
54

 family. Most sigma factors, including 

‘housekeeping’ sigma factor, σ
70

, belong to the σ
70 

family; while only a single member, σ
54

, is 

classified into the σ
54 

family. The σ
70 

family members bind to and direct a holoenzyme to their 

own specific, consensus binding sequences at positions -35 and -10 of the promoter, followed by 

the formation of holoenzyme-promoter complex with a default closed form called a closed 

complex (Figure 1.3A) (Guo et al., 2000; Bush and Dixon, 2012). The closed complex must be 

converted into the open complex in order for the holoenzyme to access single-stranded DNA as a 

template. In σ
70 

family-dependent transcription, the transition from closed complex to open 

complex (isomerization) occurs spontaneously because the closed complex in this system is 

energetically unfavorable (Guo et al., 2000; Bush and Dixon, 2012). Therefore, the holoenzyme 

with the σ
70 

family does not need any energy input for isomerization and transcription initiation. 

However, the closed complex in σ
54

-dependent transcription is an energetically stable structure, 

which requires bEBP and integration host factor (IHF), to activate transcription (Figure 1.3B) 

(Buck et al., 2000; Guo et al., 2000; Cannon et al., 2001; Bush and Dixon, 2012). 
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1.3.2 Sigma 54 

RpoN (σ
54

) was first reported in glutamine synthetase (glnA) gene transcription in 

Escherichia coli and Salmonella typhimurium (Hirschman et al., 1985; Hunt and Magasanik, 

1985). It is now known to play a major role in regulation of gene expression involved in a wide 

range of cellular processes in many bacterial species, including nitrogen assimilation (Reitzer 

and Schneider, 2001), survival under stress environment in E. coli (Model et al., 1997), cell-to-

cell communication in P. aeruginosa (Thompson et al., 2003) and flagella biosynthesis and 

virulence in Vibrio anguillarum (O’Toole et al., 1997). Although 70 RpoN-dependent
 
promoters 

were identified in E. coli strain MG1655 through microarray and computational analysis (Zhao et 

al., 2010), the RpoN regulon has not been clearly defined in most bacteria presumably due to 

difficulty in estimating inducible conditions of each gene in the regulon. In phytopathgenic 

bacteria, the function of RpoN has been emphasized in the regulation of T3SS gene expression. 

It has been shown that the transcription of hrpL gene is dependent on RpoN in P. syringae, 

Pantoea stewartii, and Pectobacterium carotovorum. Their pathogenicity on host plants and HR-

inducing ability on nonhost plants are significantly reduced or abolished in the rpoN mutant 

(Frederick et al., 1993; Hendrickson et al., 2000a; Hendrickson et al., 2000b; Chatterjee and Cui, 

2002). Recently, the function of RpoN in activation of hrpL gene expression is also confirmed in 

E. amylovora (Ancona et al., 2014). In addition to T3SS gene expression, RpoN has been shown 

to play a role in regulation of other activities in phytobacteria, such as production of the 

phytotoxin coronatine in P. syringae and resistance to osmotic stress in P. fluorescens (Alarcón-

Chaidez et al., 2003; Péchy-Tarr et al., 2005). 
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Unlike σ
70

, σ
54

 binds to consensus -24 (GG) and -12 (TGC) regions of the promoter 

sequence (Figure 1.3B). In terms of function, σ
54

 protein can be divided into three regions 

(region I, region II and region III) (Figure 1.4). The N-terminal region I acts as a regulatory 

domain, interacting with both bEBP and RNAP and also binding to the -12 promoter element 

(Bordes et al., 2003). Region II is dispensable for σ
54

-dependent transcription (Buck et al., 2000). 

Region III contains several functionally important domains, including determinants of promoter 

DNA binding, such as RpoN box (Taylor et al., 1996), DNA cross-linking region (Cannon et al., 

1994) and RNAP binding (Hsieh et al., 1999). Among the three regions of σ
54

, the region I has 

been proposed to be the main reason of the need for bEBP in σ
54

-dependent transcription. Cryo-

electron microscopy analysis suggests that region I of the σ
54 

blocks the loading of DNA by 

RNAP within the catalytic cleft, thus preventing the transcription initiation (Bose et al., 2008; 

Bush and Dixon, 2012). 

 

1.3.3 Bacterial enhancer binding protein (bEBP) 

In σ
54

-dependent transcription, the presence of bEBPs is essential to initiate RNA 

synthesis (Figure 1.3B). Bush and Dixon (2012) have summarized structural and biochemical 

analysis of σ
54

-dependent transcriptional activation (Guo and Gralla, 1998; Chaney et al., 2001; 

Bose et al., 2008; Ghosh et al., 2010) and have proposed essential properties of σ
54

-dependent 

transcription activator: The activators must be able to induce both σ
54 

remodeling and DNA 

melting as the region I of σ
54 

forms energetically favorable closed complex at the -12 promoter 

element. The activators also must be able to reposition DNA binding domains of σ
54 

within the 

transcription start site in order for the core RNAP to promote transcription elongation correctly. 

As a member of AAA
+
 (ATPase associated with various cellular activities) family of proteins 
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which are capable of converting chemical energy into a mechanical action, bEBPs have been 

shown to fulfill all the requirements to activate σ
54

-dependent transcription as well as regulatory 

functions. 

 

Most bEBPs are modular proteins composed of three domains, N-terminal regulatory (R) 

domain, central (C) domain and C-terminal DNA binding (D) domain (Figure 1.5), and generally 

exist as dimer and hexamer in their inactive and active states, respectively (Klose et al., 1994; 

Wyman et al., 1997; Schumacher et al., 2006). Since the C domain consists of AAA
+
 domain 

responsible for ATP hydrolysis, oligomerization and σ
54

 contact, it contains several structurally 

and functionally conserved motifs, including Walker A, Walker B, sensor I, sensor II, and 

GAFTGA motifs. The Walker A, Walker B and sensor II motifs have been shown to serve as 

sites for ATP binding and hydrolysis (Walker et al., 1982; Bush and Dixon, 2012), and sensor I 

motif has been reported to play a role in conformational changes in the AAA
+
 domain during 

nucleotide hydrolysis (Schumacher et al., 2006). The GAFTGA motif is a specific structural 

characteristic of bEBP that has been specifically implicated in the isomerization of the closed 

complex via σ
54 

contact (Rappas et al., 2005; Bush and Dixon, 2012). Through cryo-electron 

microscopy and three-dimensional reconstruction studies (Rappas et al., 2005), surface-exposed 

loop of the GAFTGA motif has been confirmed to interact with σ
54

, which subsequently lead to 

conformational changes in AAA
+
 domain upon ATP hydrolysis therefore remodeling of the 

holoenzyme (Bordes et al., 2003; Cannon et al., 2003). Amino acid substitution analysis within 

the GAFTGA motifs of several different bEBPs revealed that a mutation of any one of six 

residues results in failure to activate transcription and/or reduced ATPase activity, indicating the 

requirement for the integrity of GAFTGA motif (González et al., 1998; Li et al., 1999; Zhang et 
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al., 2009; Bush et al., 2010). The AAA
+
 C domain also contains R fingers with one or two 

arginine residues, which contribute to nucleotide sensing and oligomerization of bEBP (Lupas 

and Martin, 2002).  

 

 The R and D domains of bEBPs also have important roles in the activation of σ
54

-

dependent transcription, although some bEBPs lack either and/or both of these domains, 

including FlgR in Helicobacter pylori, CtcC in Chlamydia trachomatis and FleT in Rhodobacter 

sphaeroides (Beck et al., 2007). The N-terminal R domain can regulate the activity of AAA
+
 

domain in response to environmental signals through phosphorylation, ligand binding and 

protein-protein interactions (Schumacher et al., 2006; Bush and Dixon, 2012). Among them, 

protein-protein interaction can be used for the regulation of bEBPs lacking R domain (Bush and 

Dixon, 2012). As an example, HrpS in P. syringae pv. tomato DC3000 does not contain R 

domain, but can be negatively regulated by HrpS-specific binding protein, HrpV (Jovanovic et 

al., 2011). On the other hand, the C-terminal D domain contains a helix-turn-helix (HTH) motif 

and is responsible for recognition of specific DNA sequences called upstream activator 

sequences (UASs) (Studholme and Dixon, 2003). Since the dimer form of bEBPs bind to DNA 

before formation of higher oligomers, all UASs identified are reported to have dyad symmetric 

sequences (Bush and Dixon, 2012). The binding site of bEBPs is generally located 80 to 150 bp 

upstream of the transcription start site. Therefore, in some cases, IHF binding and bending of the 

DNA at a position between promoter and UAS are required to allow interaction of bEBP with the 

σ
54

-RNAP
 
holoenzyme (Figure 1.3B and Fig 1.6) (Claverie-Martin and Magasanik, 1992). In 

addition to DNA binding, it has been shown that the D domain is also involved in facilitating 

oligomerization (Austin and Dixon, 1992; Pérez-Martín and de Lorenzo, 1996) and stabilizing 
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the oligomer (De Carlo et al., 2006). However, the binding sites for HrpS in E. amylovora and 

HrpS/HrpR in P. syringae are still unknown.  

 

1.3.4 Integration host factor (IHF) 

IHF is one of the most abundant nucleoid-associated proteins (NAPs) in Gram-negative 

bacteria. NAPs are generally referred to small DNA-binding proteins of bacteria that affect 

genome topology by looping, bending, wrapping or bridging of the DNA (Figure 1.7). These 

unique properties allow them to control nucleoid structure and gene expression (Dillon and 

Dorman, 2010). To date, E. coli and Salmonella enterica have been reported to have twelve 

species of NAPs varying in size, DNA-binding motif and function (Azam and Ishihama, 1999; 

Mangan et al., 2011), but their regulation and role in cellular processes are sometimes 

controversial due to ambiguous results from different bacterial species (Navarre et al., 2006; 

Oshima et al., 2006; Dillon and Dorman, 2010; Prieto et al., 2012). 

 

Since the first identification of IHF as a factor for the site-specific recombination of 

bacteriophage-λ in E. coli (Miller et al., 1979; Miller and Friedman, 1980), its structural and 

functional properties have been extensively studied. IHF is about 11 kDa in size and 

predominantly exists in a heterodimeric form composed of an α subunit (IHFα) and a β subunit 

(IHFβ) (Swinger and Rice, 2004). Binding of IHF to DNA occurs in a sequence-specific manner 

((A/T)ATCAANNNNTT(A/G)), which is highly conserved in Gram-negative bacteria (Yang and 

Nash, 1995; Murtin et al., 1998), although it was reported that the binding specificity can be also 

determined by DNA structural features (Travers, 1997). The primary function of IHF is to cause 

DNA looping and bending up to 160˚ upon binding (Rice et al., 1996; Lorenz et al., 1999; Teter 
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et al., 2000). With this ability to influence on nucleoid structure, IHF facilitates interaction of 

transcription factors, RNAP, and other NAPs during transcription of a large number of genes 

including σ
54

-dependent genes (Santero et al., 1992; Macchi et al., 2003; Dillon and Dorman, 

2010). Positive and negative regulatory effects of IHFs on transcription can be dependent on its 

position within the promoter relative to the binding sites of other factors involved in transcription 

initiation (Browning et al., 2010). In E. coli, it was found that IHF binding on DNA can induce 

open complex formation at the chromosomal origin, oriC (Bramhill and Kornberg, 1988; Hwang 

and Kornberg, 1992), but also can inhibit DNA replication process by promoting formation of 

initiation titration complex at datA locus (Nozaki et al., 2009), indicating that IHF plays an 

important role in controlling the replication timing. Consistent with this function, it was shown 

that the intracellular abundance of IHFs changes under different growing phases and reaches 

peak levels when cells enter stationary phase (Ditto et al., 1994). Therefore, like other NAPs, 

IHFs contribute to not only maintenance of nucleoid structure, but also control of several DNA-

dependent processes. 

 

1.4 Research objectives 

 The hrp-T3SS is a major virulence factor required at an early infection of many plant-

pathogenic bacteria, including E. amylovora. The ECF alternative sigma factor, HrpL, acts as a 

master regulator of hrp-T3SS of E. amylovora by regulating the expression of hrp-T3SS gene 

(Wei and Beer, 1995; Oh et al., 2005; McNally et al., 2012). Based on a current model of hrp-

T3SS regulation (Figure 1.2) (Ancona et al., 2014), hrpL transcription is positively regulated by 

RpoN (σ
54

), HrpS (bEBP) and YhbH (σ
54

-modulation protein). However, in hrpL transcription of  
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E. amylovora, the requirement of IHFs or the binding site of HrpS has not yet been 

experimentally determined. 

 

Most bEBPs contain the GAFTGA motif which plays a central role in the isomerization 

during the σ
54

-dependent hrpL transcription (Bush and Dixon, 2012); whereas about 7% of the 

annotated bEBPs, including HrpS, contain the GAYTGA motif (Zhang et al., 2009). A recent 

report showed that substitution of tyrosine (Y) with phenylalanine (F) in the GAYTGA motif of 

HrpS in P. syringae pv. tomato DC3000 showed an increase in hrpL promoter activity by about 

1.5-fold (Jovanovic et al., 2011). This led us to ask whether a tyrosine to phenylalanine 

substitution in the GAYTGA motif of HrpS in E. amylovora also affect hrpL expression. 

Therefore, the specific aims of my thesis research are: 

1) To determine the role of IHFs in hrpL transcription and virulence in E. amylovora; 

2) To identify the HrpS binding site on the upstream sequence of the hrpL promoter in E. 

amylovora; and 

3) To examine the role of tyrosine residue of GAYTGA motif in HrpS of E. amylovora 
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1.5 Figures 

 

 

Figure 1.1 Schematic map of the hrp pathogenicity island in Erwinia amylovora strain 

Ea321. IT, Island transfer region; HEE, Hrp effectors and elicitors region; hrp/hrc, 

hypersensitive reaction and conserved region; HAE, Hrp-associated enzyme region. (From Oh 

and Beer, 2005) 

 

 

 

 

 

Figure 1.2 A working model of type III secretion system (T3SS) regulation in Erwinia 

amylovora. HrpL, an extracytoplasmic functions (ECF) sigma factor; HrpS, a bacterial enhancer 

binding protein; HrpX/HrpY, two component regulatory systems; RpoN, a sigma 54 (σ
54

) 

alternative sigma factor; RNAP, RNA polymerase; YhbH, a σ
54

 modulation protein. OM, outer 

membrane; PM, plasma membrane; IM, inner membrane; P, phosphorylation; open triangle, σ
54

 

promoter; filled triangle, σ
70

 promoter; circle open triangle, hrp-promoter. Positive regulation is 

indicated by an arrow; ‘?’ and broken line, unknown mechanism. (From Ancona et al., 2014) 
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A. 

 

B. 

 

Figure 1.3 Transcription initiation by the σ
70

-RNAP and the σ
54

-RNAP holoenzyme. (A) The 

σ
70 

family members direct RNA polymerase (RNAP) to their consensus DNA binding sequences 

at positions -35 and -10 region of the promoter. Since the closed complex formed by the σ
70

-

RNAP holoenzyme and promoter DNA is energetically unfavorable, the open complex is formed 

without any energy input. (B) The σ
54 

directs RNAP to their consensus DNA binding sequences 

at positions -24 and -12 region of the promoter. Since the closed complex formed in the σ
54

-

dependent transcription is energetically favorable, bacterial enhancer binding protein (bEBP) is 

essentially required to provide energy and form the open complex. In some cases, integration 

host factors (IHFs) are required for interaction between the holoenzyme and bEBP. 
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Figure 1.4 Domain organization of σ
54 

in Escherichia coli. The σ
54 

of E. coli is composed of 

477 residues and divided into three regions (region I, II and III). Region I is important for bEBP 

interaction, RNA polymerase (RNAP) binding and DNA binding at position -12 region of the 

promoter. Region III contains several motifs responsible for RNAP binding (residues 120 to 215) 

and promoter DNA binding (residues 329 to 346, 366 to 386 and 454 to 463). No specific 

function for σ
54

-dependent transcription has been described in Region II.  

 

 

 

 

 

Figure 1.5 Domain organization of bacterial enhancer binding protein. Bacterial enhancer 

binding proteins (bEBPs) generally consist of three domains (R, C and D domain). The N-

terminal regulatory (R) domain regulates bEBP function in response to external and internal 

stimuli. The central (C) domain, also known as AAA
+
 domain, contains highly conserved motifs, 

including Walker A, GAFTGA, Walker B, Sensor I and Sensor II, which are essential for 

activation of σ
54

-dependent transcription. bEBPs recognize and bind to specific DNA sequence, 

called upstream activator sequence (UAS) via an helix-turn-helix (HTH) motif in the C-terminal 

DNA binding (D) domain. 
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Figure 1.6 Transcription activation in σ
54

-dependent transcription. The σ
54

 directs RNA 

polymerase (RNAP) to the -24 (GG) and -12 (TGC) promoter region and forms σ
54

-RNAP 

holoenzyme. Bacterial enhancer binding proteins (bEBPs) bind to an upstream activator 

sequences (UASs) generally located about -80 to -150 position of the promoter DNA. In σ
54

-

dependent transcription, bEBPs must interact with the closed complex to fulfill the function of 

coupling ATP hydrolysis to transition to the open complex. DNA bending via integration host 

factors (IHFs) are often required for correct interfacing between bEBP and σ
54

-RNAP 

holoenzyme. IHFs typically bind as a heterodimer to a consensus sequence 

[(A/T)ATCAANNNNTT(A/G)] between UAS and σ
54 

binding site.  
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A.                B.                      C.                      D. 

                            

 

Figure 1.7 Nucleoid-associated proteins in bacterial genome architecture. (A) DNA looping. 

(B) DNA bending. (C) DNA wrapping. (D) DNA bridging. Most nucleoid-associated proteins 

(NAPs) in Gram-negative bacteria are active as a dimer. DNA binding and structuring properties 

of NAPs contribute to not only maintaining nucleoid structure, but also a variety of DNA-

dependent processes, including gene expression, DNA replication and recombination. 
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CHAPTER 2 

 

INTEGRATION HOST FACTORS ARE REQUIRED FOR SIGMA 54-DEPENDENT 

hrpL GENE EXPRESSION AND VIRULENCE IN Erwinia amylovora 

 

2.1 Abstract 

Erwinia amylovora, the causal agent of fire blight of apples and pears, is a necrogenic 

bacterium, whose virulence is dependent upon a functional hypersensitive response and 

pathogenicity (hrp)-type III secretion system (T3SS). It has been previously demonstrated that 

HrpL, an ECF sigma factor, is the master regulator of hrp-T3SS. Recently, it is reported that 

expression of hrpL is under the control of sigma 54 complex, including σ
54

 (RpoN), its 

modulation protein YhbH and σ
54

-enhancer binding protein HrpS. In this study, we investigated 

the role of integration host factors (IHFs) in regulating σ
54

-dependent hrpL and other T3SS gene 

expression. IHFs are nucleoid-associated proteins and consist of two subunits, i. e. IHFα and 

IHFβ. IHFα and IHFβ usually form heterodimers, which could influence nucleoid structure and 

gene expression via DNA bending. Two single mutants (ihfA and ihfB) were generated and 

characterized in E. amylovora. Results showed that both ihfA and ihfB mutants failed to colonize 

and produce necrotic lesions on immature pear fruits. Bacterial growth of both mutants in pear 

fruits was greatly reduced and expression of hrpL, dspE, hrpA and hrpN was also significantly 

down-regulated as compared to wild type (WT) strain. In addition, both ihfA and ihfB mutants 

exhibited slower growth in rich medium and showed hypermotile phenotype as compared to WT 

strain. Furthermore, results showed that both IHFs positively regulated the expression of small 

non-coding regulatory RNA rsmB/csrB, which negatively regulates motility as previously 

reported. These results indicate that IHFs are required for σ
54

-dependent hrpL and other T3SS 

gene expression and virulence in E. amylovora 
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2.2 Introduction 

Fire blight, caused by the Gram-negative enterobacterium Erwinia amylovora, is a major 

threat worldwide to plants in the Rosaceae family, including apple and pear. E. amylovora 

infection typically results in disease symptoms characteristic of water soaking and rapid tissue 

necrosis. Invasion of E. amylovora can occur through natural openings and wounds in plants, 

causing various phases of the disease, including rootstock blight, shoot blight, and blossom 

blight (Vanneste, 2000; Norelli et al., 2003). Like many other plant pathogenic bacteria, E. 

amylovora employs a hypersensitive response and pathogenicity (hrp)-type III secretion system 

(T3SS) to translocate effector proteins directly into host cells and modulate host cell functions 

during infection. 

 

Since HrpN was identified as the first cell-free elicitor of hypersensitive response (HR) 

(Wei et al., 1992a), at least 15 virulence-associated proteins, including HrpA, DspE, HrpW, 

AvrRpt2, HopC1 and Eop1, have been identified to be secreted by the T3SS in E. amylovora 

(Bogdanove et al., 1998; Zhao et al., 2006; Nissinen et al., 2007). Many genes encoding these 

effector proteins as well as other components of T3SS in E. amylovora are clustered in hrp 

pathogenicity island (PAI), which can be divided into four regions: the hrp/hrc region, the Hrp 

effectors and elicitors (HEE) region, the Hrp-associated enzyme (HAE) region and the island 

transfer (IT) region (Oh and Beer, 2005). Among them, the hrp/hrc region and the HEE region, 

together called the hrp/dsp gene cluster, contain most T3SS structural and regulatory genes. 

Expression of all known components of the hrp-T3SS in E. amylovora is regulated by the master 

regulator HrpL, belonging to the exocytoplasmic functions (ECF) sigma factors (Wei and Beer, 

1995; McNally et al., 2012). As an alternative sigma factor within the sigma 70 (σ
70

) family, 



26 

HrpL binds to the hrp box (GGAACC-N16-CCACNNA) at the -35 and -10 promoter regions 

(Wei and Beer, 1995). 

 

Recently, it has been shown that hrpL transcription is sigma 54 (σ
54

, RpoN)-dependent 

along with HrpS and YhbH (Ancona et al., 2014). RpoN, initially identified for its role in 

nitrogen assimilation, is a sigma factor which binds to RNA polymerase (RNAP) and directs a 

holoenzyme to promoter for transcription initiation (Hirschman et al., 1985; Hunt and Magasanik, 

1985; Bush and Dixon, 2012). HrpS, a member of the NtrC family, acts as a bacterial enhancer 

binding protein (bEBP) or an activator of σ
54

-dependent transcription. YhbH of E. amylovora is 

annotated as a σ
54 

modulation protein (Smits et al., 2010). Deletion of each of these three genes 

(rpoN, hrpS and yhbH) in E. amylovora resulted in non-pathogenic phenotype on immature pear 

fruits and apple shoots, with a dramatic decrease in hrpL and other T3SS gene expression 

(Ancona et al., 2014). Transcription mediated by σ
54

 is different from other transcription 

initiation mechanisms in that the σ
54

-RNAP holoenzyme forms a transcriptionally silent closed 

complex and requires energy input to promote transcription initiation (Bush and Dixon, 2012). In 

order to form an open complex during σ
54

-dependent transcription, bEBPs must bind to upstream 

activator sequences (UASs) and couple ATP hydrolysis to remodeling of the σ
54

-RNAP 

holoenzyme (Bush and Dixon, 2012). Since the binding site of bEBPs (UAS) is generally located 

80 to 150 bp upstream of the transcription start site, integration host factors (IHFs) are often 

required to enhance interactions of bEBP with the σ
54

-RNAP
 
holoenzyme during this transition 

process (Claverie-Martin and Magasanik, 1992; Huo et al., 2006). 
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IHF is one of the most abundant nucleoid-associated proteins (NAPs) found in Gram-

negative bacteria. NAPs are generally referred to small DNA-binding proteins of bacteria that are 

capable of controlling nucleoid structure and gene expression via DNA looping, bending, 

wrapping or bridging (Dillon and Dorman, 2010). IHF is about 11 kDa in size and predominantly 

exists in a heterodimeric form composed of IHFα and IHFβ subunits (encoded by the ihfA and 

ihfB genes, respectively) (Swinger and Rice, 2004). IHF binds to DNA at the highly conserved 

sequence, (A/T)ATCAANNNNTT(A/G) (Yang and Nash, 1995; Murtin et al., 1998) and results 

in DNA bending up to 160˚ to 180˚ (Rice et al., 1996; Lorenz et al., 1999; Teter et al., 2000). IHF 

is first reported as a factor for the site-specific recombination of bacteriophage-λ in Escherichia 

coli (Miller et al., 1979; Miller and Friedman, 1980) and has since been found to be involved in 

several DNA-dependent processes, including DNA replication, maintenance of nucloeid 

structure and transcription regulation (Bramhill and Kornberg, 1988; Hwang and Kornberg, 1992; 

Santero et al., 1992; Macchi et al., 2003). Intracellular abundance of IHFs changes under 

different growing phases and reaches peak levels when cells enter stationary phase in E. coli 

(Ditto et al., 1994). This indicates that IHF function also can influence growth kinetics of 

bacteria. 

 

The requirement of IHF as a transcription regulator for full virulence has been described 

in various bacterial species. Transcription of the invasion-specific genes, such as virB and virF, 

was activated by IHFs in Shigella flexneri (Porter and Dorman, 1997). Expression of the major 

virulence genes responsible for epithelial cell invasion and systemic infection of the mouse was 

largely dependent on IHFs in Salmonella enteric serovar Typhimurium (Mangan et al., 2006). 

For hrpL and other hrp-T3SS gene expression, the presence of IHFs greatly induced the 



28 

transcriptional activity of the hrpL promoter in Pseudomonas syringae, (Jovanovic et al., 2011). 

The hrpL transcription of Pectobacterium carotovorum ssp. carotovorum was also barely 

detected in the E. coli ihf mutant strains (Chatterjee et al., 2002). However, the role of IHFs in E. 

amylovora virulence is still unknown. 

 

The aim of this study was to determine the role of IHFs in E. amylovora virulence. We 

showed that IHFs positively regulate hrpL and other T3SS gene expression and thus virulence. 

Our results also indicated that IHFs are required for growth and regulates swarming motility. 

 

2.3 Materials and methods 

2.3.1 Bacterial strains and growth conditions 

The bacterial strains used in this study are listed in Table 2.1. Luria–Bertani (LB) 

medium was used for the routine culture of E. amylovora and E. coli strains. Bacteria were also 

grown in M9 minimal medium (M9MM) [12.8 g Na2HPO4.7H2O, 3.0 g KH2PO4, 0.5 g NaCl, 1 g 

NH4Cl, 0.24 g MgSO4 and 0.011 g CaCl2] supplemented with 0.4 % glucose or hrp-inducing 

minimal medium (HMM) [1 g (NH4)2SO4, 0.246 g MgCl2.6H2O, 0.099 g NaCl, 8.708 g K2HPO4, 

6.804 g KH2PO4] containing 10 mM galactose as indicated in each experiment. When required, 

antibiotics were added to the medium at the following concentrations: 10 μg/ml chloramphenicol 

(Cm), 100 μg/ml ampicillin (Ap) and 20 μg/ml kanamycin (Km). 

 

2.3.2 DNA manipulation and the construction of plasmids 

Plasmid DNA purification, PCR amplification of genes, isolation of fragments from 

agarose gels, cloning, restriction enzyme digestion and T4 DNA ligation were performed using 
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standard molecular procedures (Sambrook and Russel, 2001). DNA sequencing was performed 

at the Keck Center for Functional and Comparative Genomics at the University of Illinois at 

Urbana-Champaign.  

 

2.3.3 Construction of E. amylovora mutants by Lambda-Red recombinase cloning 

The ihfA and ihfB mutants of E. amylovora were generated using the λ phage 

recombinase method, as described previously (Datsenko and Wanner, 2000; Zhao et al., 2009). 

Briefly, E. amylovora Ea1189 carrying pDK46 were grown overnight at 28 °C and reinoculated 

into fresh LB broth containing 0.1% arabinose. After growth to exponential phase OD600 = 0.8, 

cells were harvested by centrifugation at 4000 rpm for 10 min, made competent by washing with 

cold sterile water and stored at -80 °C. Recombination fragments consisting of Cm resistance 

gene (Cm
r
) with its own promoter, flanked by a 50-nucleotide homology arm, were generated by 

PCR from pKD32 plasmid as a template and transformed into the competent cells by 

electroporation. Primer pairs (ihfA-F,-R and ihfB-F,-R) were used to amplify Cm
r 

gene 

fragments from pKD32 for the generation of ihfA and ihfB mutants, respectively. Transformants 

were selected on LB plates supplemented with Ap and Cm, and the mutant construction was 

confirmed by PCR amplification from internal region of Cm
r 
gene to the external region of the 

target gene. The majority of the coding region of each gene in the resulting mutants was replaced 

by the marker gene, except for the first and last 50 nucleotides. The ihfA and ihfB mutants were 

designated as ΔihfA and ΔihfB, respectively. The primers used for mutant construction and 

mutant confirmation are listed in Table 2.2 
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2.3.4 Cloning ihf genes for complementation of ihf mutants 

For complementation of the mutants, the regulatory and coding sequences of ihfA and 

ihfB genes were amplified by PCR from the E. amylovora Ea1189 strain using primer pairs ihfA-

CoF, -CoR and ihfB-CoF, -CoR, respectively. The PCR fragments were cloned into high-copy-

number pGEM
®
 T-easy vector (Promega, Madison, WI, USA) through A-T ligation according to 

the manufacturer’s instruction. Briefly, the PCR products were ligated into the pGEM
®
 T-easy 

vector at a 3:1 insert:vector molar ratio in a reaction mixture containing 2X Rapid Ligation 

Buffer, T4 DNA ligase and water, followed by incubation for 1 h at room temperature. The final 

plasmids were designated pIhfA and pIhfB, respectively, and transformed into the mutant strain 

by electroporation. Transformants were selected on LB plates supplemented with Ap and Cm. 

The primers used for mutant complementation are listed in Table 2.2.  

 

2.3.5 Bacterial growth 

To measure bacterial growth, overnight cultures of E. amylovora WT, mutants and 

complementation strains were harvested by centrifugation at 4000 rpm for 10 min and washed 

twice with 0.5X phosphate-buffered saline (PBS). After the final wash, the bacterial pellet was 

resuspended in fresh medium to be tested and adjusted to OD600 = 0.01 for LB and OD600 = 0.2 

for M9MM and HMM. Bacterial strains were grown at 18°C (HMM) or 28 °C (LB and M9MM) 

with 250 rpm agitation, and aliquots of the culture were taken at different time points during 

growth. The bacterial growth rate for each strain was determined by measuring OD600. The 

experiments were repeated at least twice.  
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2.3.6 Virulence assay and population assay on immature pear fruits 

Overnight cultures of E. amylovora WT, mutants and complementation strains were 

harvested by centrifugation at 4000 rpm for 10 min, resuspended in PBS to OD600 = 0.1 and then 

diluted 100-times (OD600 = 0.001). Immature Bartlett pear fruits (Pyrus communis L. cv. Bartlett) 

were used for virulence assays, while immature Asian pear fruits were used for population assays. 

Pears were surface-sterilized with 10% bleach for 10 min and rinsed with sterile distilled water. 

After air dried, pears were pricked with a sterile needle, inoculated with 2 μl of cell suspensions 

for each strain and incubated in a humidified chamber at 28 °C. Symptoms were recorded at 4 

and 8 days post-inoculation in virulence assays. For bacterial population studies, the pear tissues 

surrounding the inoculation site was excised using a no. 4 cork borer and homogenized in 1 ml of 

PBS. Bacterial growth from 0 to 3 days post-inoculation was monitored by dilution-plating on 

LB medium supplemented with appropriate antibiotics. For each strain tested, fruits were 

assayed in triplicate, and the experiments were repeated at least twice. 

 

2.3.7 Hypersensitive response assay on tobacco 

Bacterial strains grown overnight in LB medium with appropriate antibiotics were 

harvested by centrifugation at 4000 rpm for 10 min and resuspended in PBS to OD600 = 0.1. 

Eight-week old tobacco (Nicotiana tobacum) leaves were infiltrated with bacterial suspension 

using needleless syringe and kept in a humidified chamber at 28 °C. HR symptoms were 

recorded at 24 h post-infiltration. The experiments were repeated at least twice. 
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2.3.8 Motility assay 

The motility of each strain was quantitatively determined by measuring diameters on the 

motility agar plates (10 g tryptone, 5 g NaCl, 2.5 g agar per l L) as previously described (Zhao et 

al., 2009b). Briefly, overnight cultures of E. amylovora WT, mutants and complementation 

strains were harvested by centrifugation at 4000 rpm for 10 min, washed with PBS and 

resuspended in PBS to OD600 = 1. Bacterial cells were then plated onto the center of agar plates, 

and diameters were determined at 24 and 48 h post-inoculation. The experiments were repeated 

at least twice.  

 

2.3.9 RNA isolation 

To isolate RNA for in vitro T3SS gene expression, bacterial cultures grown in LB 

medium with appropriate antibiotics were harvested by centrifugation at 4000 rpm for 10 min 

and washed twice with PBS. Bacterial cells were resuspeded in HMM to OD600 = 0.2 and 

incubated at 18 °C with 250 rpm agitation. After 6 h in HMM, 4 ml of RNA protect reagent 

(Qiagen, Hilden, Germany) was added to 2 ml of bacterial cell cultures to avoid RNA 

degradation. For in vivo T3SS gene expression, overnight bacterial cultures were harvested by 

centrifugation at 4000 rpm for 10 min and resuspended in PBS OD600 = 0.2 to 0.3. Immature 

Bartlett pear fruits (Pyrus communis L. cv. Bartlett) were surface-sterilized with 10% bleach for 

10 min and rinsed with sterile distilled water. After air dried, pears were cut in half and 

inoculated with bacterial suspension. Bacterial cells were incubated in a moist chamber at 28 °C 

for 6 h and collected by washing pear surfaces with a solution containing 2 ml RNA protect 

reagent (Qiagen) and 1 ml water. Cells collected for both in vivo and in vitro T3SS gene 

expression were then harvested by centrifugation at 4000 rpm for 10 min. RNA was extracted 



33 

using the RNeasy Mini kit (Qiagen), following which the eluted total RNA was DNase-treated 

using Turbo DNA-free
TM

 (Ambion, Austin, TX, USA) according to the manufacturer’s 

instructions, respectively. Quality and quantity of the RNA was assessed using a Nano-Drop 

ND-100 spectrophotometer (Nano-Drop Technologies; Wilmington, DE, USA).  

 

2.3.10 Quantitative real-time PCR (qRT-PCR) 

Reverse transcription for cDNA synthesis was performed using Superscript®  VILO
TM

 

cDNA synthesis kit (Invitrogen, Carlsbad, CA, USA) on 1 μg of total RNA according to the 

manufacturer’s instruction. The 100 ng of reverse transcription product was used for qRT-PCR 

analysis in a total volume of 25 μl containing 12.5 μl Power SYBR® Green PCR master mix 

(Applied Biosystems, Foster City, CA, USA), primers of selected genes (500nM) and water. The 

primers for qRT-PCR were designated using Primer3 software and listed in Table 2.2. Negative 

controls were also set up by substituting cDNA with water. The qRT-PCR amplification was 

carried out in duplicate in MicroAmp®  Fast Optical 96-Well plates with Optical Adhesive Films 

on StepOnePlus Real Time PCR System (Applied Biosystems). The qRT-PCR program was 

50 °C for 2 min, 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min, 

and a final dissociation curve analysis step from 65 to 95 °C. Gene expression levels were 

analyzed using the relative quantification (ΔΔCt) method, and a 16S rDNA (rrsA) gene was used 

as an endogenous control to normalize gene expression data. A P value was calculated based on 

a moderated t-test to measure the significance associated with each relative quantification value. 

Variations were considered to be statistically significant when P < 0.05. The experiments were 

repeated at least twice using three biological replicates. 
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2.4 Results 

2.4.1 Generation of ihf mutants and effect of ihf mutation on bacterial growth 

To study the function of IHFs in E. amylovora, ihfA and ihfB knockout mutants were 

generated using the λ-Red cloning (Zhao et al., 2009a). Despite repeated attempts, we were 

unable to construct a double mutant lacking both ihfA and ihfB genes for unknown reasons. In 

order to assess whether IHFs of E. amylovora play a role in bacterial growth, two mutants and 

their complementation strains were tested for their abilities to grow in three different liquid 

media (LB medium, M9MM and HMM) and compared with Ea1189 wild-type (WT) stain. Both 

ihfA and ihfB mutants initially grew much slower in LB medium than that of WT, but reached 

maximum population as WT at 24 h post inoculation (Figure 2.1A). However, no significant 

growth difference was observed between WT and mutants in both M9MM and HMM media 

(Figure 2.1B, C). Complementation strains showed similar growth patterns as WT in all three 

conditions. These results indicate that the absence of either IHF subunit does not affect E. 

amylovora growth in nutrient limitation conditions, but slow growth under nutrient rich 

conditions, suggesting that IHF heterodimer might be required for the rapid growth of E. 

amylovora under favorable conditions.  

 

2.4.2 Mutations in ihfA and ihfB render E. amylovora nonpathogenic 

To determine the role of IHFs in E. amylovora virulence, WT, ihfA and ihfB mutants and 

their corresponding complementation strains were inoculated on immature pear fruits, and 

disease development was assessed for 8 days post inoculation (DPI) (Figure 2.2). The WT strain 

elicited water soaking symptoms on pears at 2 DPI. Necrotic lesions appeared with bacterial 

ooze formation at the inoculation sites after 4 days, and the necrotic areas turned black and 
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covered almost the whole pear fruits after 8 days. However, no disease symptoms were observed 

for both ihfA and ihfB mutants on immature pear fruits during 8 DPI. The virulence of the 

mutants on immature pear fruits was partially recovered in the complementation strains (Figure 

2.2). These results indicate that ihfA and ihfB genes are required for E. amylovora virulence. 

 

Bacterial growths of WT, mutant and complementation strains in immature pear fruits 

were also quantitatively determined for 3 DPI (Figure 2.3). Bacterial number of WT increased up 

to 1 x 10
9
 CFU/g after 3 days, and complementation strains showed comparable levels of growth 

as WT following inoculation. However, the number of viable ihfA and ihfB mutant cells 

maintained at initial inoculum level or slightly decreased to 5 x 10
3
 CFU/g tissue throughout the 

incubation period, which represents a six log difference. This indicates that both IHFα and IHFβ 

subunits are required for E. amylovora to colonize and grow on immature pear fruits. 

 

2.4.3 IHF positively regulates the expression of hrpL and other T3SS genes 

We next examined how deletions of ihfA and ihfB genes affect hrpL and other T3SS 

gene expression using qRT-PCR. Under both in vitro and in vivo conditions, no expression of 

ihfA and ihfB genes was detected in the corresponding mutants (Figure 2.4A, B). However, 

expression of ihfA was increased about 3- and 15-fold in ihfB mutant than that in WT in vitro and 

in vivo, respectively; whereas expression of ihfB remained the same in both ihfA mutant and WT, 

suggesting a potential negative autoregulation of ihfA transcription by IHFαβ heterodimer or 

IHFββ homodimer in E. amylovora.  
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Expression of T3SS genes, including dspE, hrpA, hrpN and hrpL, was barely detectable 

in the two mutants in vitro (Figure 2.4C); whereas mutations in ihfA and ihfB genes also affected 

expression of rpoN, yhbH and hrpS. Expression of hrpS was about 5-fold lower in the two 

mutants as compared to WT, while expression of rpoN and yhbH was slightly higher. Overall 

pattern of T3SS genes in pear was similar to those observed under in vitro conditions (Figure 

2.4D). The two mutants exhibited reduced expression of T3SS (dspE, hrpA, hrpN and hrpL) and 

hrpS genes, while expression of rpoN and yhbH genes was slightly increased. These results 

further demonstrated that IHFs act as a positive regulator of T3SS in E. amylovora via the 

activation of hrpL transcription. Furthermore, IHFs may also act as a positive regulator of hrpS 

expression. 

 

2.4.4 Mutations in ihfA and ihfB did not affect hypersensitive response (HR) in tobacco 

 

To test the ability to elicit HR in non-host plants, tobacco leaves were infiltrated with 

cell suspensions of WT, ihfA and ihfB mutants and their complementation strains and assessed 

for HR development after 24 h post infiltration (Figure 2.5). As expected, both WT and mutant 

complementation strains elicited HR on tobacco leaves, while the negative controls, hrpL and 

hrpS mutants, failed to produce any visible HR after 24 h. To our surprise, ihfA and ihfB mutants 

were still able to induce HR. These were unexpected results given that the two mutants exhibited 

a significant decrease in the expression of hrpL and other T3SS genes. It is possible that an 

unknown mechanism of T3SS gene regulation exist during incompatible host-pathogen 

interaction. It is also possible that basal level of hrpL transcription may occur in the absence of 

either IHF subunit, leading to functional T3SS activation that is sufficient to elicit HR on tobacco 

leaves, but not enough to cause disease on host immature pear fruits.  
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2.4.5 IHF negatively regulates motility in E. amylovora by activating expression of  

rsmB/csrB 

We also assessed bacterial motility for WT, mutant and complementation strains. Both 

ihfA and ihfB mutants exhibited a hypermotile phenotype with a lower density than that of the 

WT (Figure 2.6). The moving distances were 18 mm and 35 mm for both mutants and 9 mm and 

29 mm for WT strain at 24 h and 48 h following inoculation, respectively. Complementation 

strains returned to normal motility as the WT with a moving distance of about 9 mm and 25 mm 

at 24 h and 48 h, respectively. These results indicate that IHFα and IHFβ negatively regulate 

motility in E. amylovora.  

 

Given that the RNA-binding protein CsrA/RsmA positively regulates motility, and the 

non-coding small RNA csrB/rsmB negatively controls motility (Ancona and Zhao, 2013), we 

then determined whether the expression of csrA/rsmA and csrB/rsmB is dependent upon IHF 

(Figure 2.7). No significant change in csrA/rsmA expression was observed, however expression 

of csrB/rsmB was barely detectable in ihfA and ihfB mutants, indicating that IHFα and IHFβ are 

required for csrB/rsmB expression and may control motility through regulating its expression.  

 

2.5 Discussion 

Bacterial chromosomal DNA is highly compacted but organized for genetic activity by 

small nucleoid-associated proteins (NAPs). The abilities of NAP to remodel nucleoid structure 

allow not only the alteration in global gene expression, but also the fine tuning of specific gene 

expression under various conditions (Luijsterburg et al., 2008). NAPs, including IHFs have been 

described to modulate gene expression for survival and adaptation to changing environments in 



38 

many animal and plant pathogenic bacteria (Porter and Dorman, 1997; Chatterjee et al., 2002; 

Mangan et al., 2006; Stonehouse et al., 2008; Jovanovic et al., 2011). In this study, we, for the 

first time, demonstrated that IHFs are required for σ
54

-dependent hrpL and other T3SS gene 

expression as well as virulence in E. amylovora.  

 

The hrp-T3SS deletion mutant of E. amylovora fails to grow and cause disease on 

immature pear fruits (Zhao et al., 2009a), indicating that expression of T3SS is essential for 

virulence of E. amylovora. The current model of T3SS regulation in E. amylovora suggests that 

hrpL transcription is activated by RpoN (σ
54

), HrpS and YhbH (Ancona et al., 2014). Here, we 

showed that IHFs also positively control the hrpL transcription. Both ihfA and ihfB mutants 

failed to fully activate the expression of hrpL and other T3SS genes, thus failed to grow and 

cause disease on immature pear fruits. The consensus IHF binding site is also present at the hrpL 

promoter region. These findings suggest that IHF-induced DNA bending at the upstream region 

of the hrpL promoter enhances the interaction between HrpS and the σ
54

-RNAP holoenzyme 

during the σ
54

-dependent hrpL transcription. Therefore, IHFs are required for the sigma factor 

cascade that activates T3SS in E. amylovora (Ancona et al., 2014).  

 

Furthermore, our results also revealed that mutations in ihfA and ihfB genes lead to about 

5-fold decrease in hrpS expression, suggesting that IHF may function as a positive regulator of 

hrpS expression. HrpS, as a member of the AAA
+
 (ATPases associated with various cellular 

activities) family of proteins, plays a central role in responding to external stimuli and 

controlling T3SS gene expression in E. amylovora (Wei et al., 2000). Unlike other bEBPs, HrpS 

lacks an N-terminal regulatory domain, which regulates the activity of the central AAA+ domain 
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in response to cellular signals. In Pseudomonas syringae, a trans acting protein HrpV is found to 

interfere with the HrpS activity via protein-protein interaction, leading to reduced hrpL 

expression (Schumacher et al., 2006; Jovanovic et al., 2011). Despite having hrpV gene, the 

regulation of HrpS activity via HrpV has not been reported in E. amylovora. On the other hand, 

in Pantoea stewartii, multiple environmental cues are sensed and integrated by HrpX (sensor 

kinase) and HrpY (response regulator) two-component signal transduction system (TCST), 

leading to HrpY-dependent expression of hrpS (Merighi et al., 2003). An IHF binding site 

presents at the hrpS promoter region of P. stewartii, suggesting that IHF may be important for 

activating hrpS expression (Merighi et al., 2006). E. amylovora also contains HrpXY system and 

shares a similar hrp-inducing condition, such as low pH and low concentration of ammonium 

ions and certain carbon sources (Wei et al., 1992b; Merighi et al., 2003). However, E. amylovora 

HrpXY system may not control the expression of hrpL or hrpS gene as previously reported (Zhao 

et al., 2009b). The consensus IHF binding site is also not present at the hrpS promoter region of 

E. amylovora. Therefore, more work needs to be done to reveal the mechanisms underlying hrpS 

regulation in E. amylovora.  

 

Previous studies of IHFs showed that IHF expression changes under different growing 

phases and is controlled by various regulatory mechanisms, such as RpoS, ppGpp and 

autoregulation (Aviv et al., 1994; Ditto et al., 1994; Ali Azam et al., 1999). Expression of both 

ihfA and ihfB genes in Escherichia coli is shown to be regulated by a negative autoregulation 

(Aviv et al., 1994). In contrast, we found a potential negative autoregulation only in ihfA gene 

expression. The consensus IHF binding site was also identified only at the ihfA promoter region 

(data not shown). Additionally, under nutrient-rich condition, deletion of ihfA and ihfB genes in E. 
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amylovora reduced bacterial growth, while no changes in growth rate were observed in ihfA and 

ihfB mutants of Salmonella enterica (Mangan et al., 2006). Together, these results suggest that 

IHFs of E. amylovora have different regulation mechanisms and functions when compared to 

that of other Enterobacteriacae members. 

 

Flagellar motility has been considered as one of the important virulence factors of E. 

amylovora during its invasion of apple flowers and seedlings (Zhao et al., 2009b; Wang et al., 

2010). Consistent with the findings from other bacteria, motility of E. amylovora have been 

found to be regulated in a complicated manner by several TCSTs and small regulatory RNAs 

(Zhao et al., 2009b; Ancona and Zhao, 2013; Li et al., 2014). In this study, we show that IHFs are 

also involved in controlling motility as negative regulators. ihfA and ihfB mutants had a 

hypermotile phenotype and presented a similar swarming pattern as observed in the gacS/gacA 

and rsmB/csrB mutant (Ancona and Zhao, 2013; Li et al., 2014). GacS/GacA system is a TCST 

that acts as a global regulator in γ-proteobacteria, while rsmB/csrB is a small regulatory RNA 

that binds to RsmA/CsrA (RNA binding protein) and regulates its activity (Lapouge et al., 2008). 

The activated GacA can positively regulate the transcription of rsmB/csrB, resulting in the 

inhibition of translational regulator function of RsmA/CsrA (Hyytiäinen et al., 2001; Weilbacher 

et al., 2003; Kay et al., 2005; Brencic et al., 2009). It has been reported that the expression of 

FlhDC, the master regulator of flagella biosynthesis, is regulated by this Gac/Rsm/Csr pathway 

through which RsmA/CsrA enhances the stability and translation of flhDC mRNA (Wei et al., 

2001). In E. amylovora, rsmB/csrB expression was abolished in ihfA and ihfB mutants, and the 

consensus IHF binding site is present in the rsmB/csrB promoter. Therefore, the increased 

motility of ihf mutants may result from the reduced rsmB/csrB expression.  
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In summary, IHFs, as global regulator of several DNA-dependent processes, are 

essential for E. amylovora virulence on host plants. Our results indicate that various virulence 

traits in E. amylovora, including bacterial growth, T3SS and motility, are regulated by IHFs. We 

have provided undeniable evidence that σ
54

-dependent hrpL gene expression requires IHFs, 

therefore the transcription of other hrp-T3SS genes is also under positive control of IHFs. 
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2.6 Tables 

Table 2.1 Bacterial strains and plasmids used in this study 

Strains, plasmids,  Relevant characters* Reference source 
   

Strains   

 Erwinia amylovora   

  Ea1189 Wild-type, isolated from apple Burse et al., (2004) 

ΔihfA ihfA::Cm; Cm
R
-insertional mutant of ihfA of  

Ea 1189, Cm
R
 

This study 

ΔihfB ihfB::Cm; Cm
R
-insertional mutant of ihfB of  

Ea 1189, Cm
R
 

This study 

ΔhrpL hrpL::Km; Km
R
-insertional mutant of hrpL of Ea 1189, Km

R
 Ancona et al.,  

(2014) 

ΔhrpS hrpS::Km; Km
R
-insertional mutant of hrpS of Ea 1189, Km

R
 Ancona et al., 

(2014) 

Escherichia coli   

  DH10B F
-
 mcrA Δ(mrr-hsdRMS-mcrBC) Φ80/acZ 

ΔM15 ΔlacX74 recA1 endA1 araΔ139 Δ(ara, leu)7697 galU 

galK λ-rpsL (Str
R
) nupG 

Invitrogen, 

Carlsbad,  

CA, USA 

Plasmids   

pKD46 Ap
R
, PBAD gam bet exo pSC101 oriTS Datsenko and  

Wanner (2000) 

 pKD32 Cm
R
, FRT cat FRT PS1 PS2 oriR6K rgbN Datsenko and  

Wanner (2000) 

 pGEM
®
 T-easy ApR, PCR cloning vector Promega 

 pIhfA 1.060-kb PCR fragment containing ihfA gene in pGEM
®
 T-easy This study 

 pIhfB 1.113-kb PCR fragment containing ihfB gene in pGEM
®
 T-easy This study 

   

 

*Cm
R
, Km

R
, Ap

R
, chloramphenicol, kanamycin and ampicilln resistance, respectively. 
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Table 2.2 Primers used in this study 

Primer Sequences (5’- 3’) 

Primers for mutation  

ihfA F 
ATGGCGCTTACAAAAGCTGAAATGTCTGAATACCTGTTTGAAAAGCTCGGC

GATTGTGTAGGCTGGAGCT 

ihfA R 
TTAATCTTCTTTTGGCGTGGCGTTCTCGACCCGGCTTTTGAGTTTCTGGCATT

CCGGGGATCCGTCGACC 

ihfB F 
ATGACCAAGTCAGAACTGATTGAGAGGCTTGCAGGCCAGCAATCTCATATC

GATTGTGTAGGCTGGAGCT 

ihfB R 
TCAGCCGCCGTATATATTGGCGCGATCGCGCAGCTCTTTTCCGGGCTTGAAT

TCCGGGGATCCGTCGACC 

ihfA C1 GTACCGTGGTAAGGGCGTAA 

ihfA C2 AAGCAAAAACCAGACGGATG 

ihfB C1 CGTTGTCAGCCTGTCTGTTC 

ihfB C2 ATGATGAGCGCAACACCATA 

Cm1 TTATACGCAAGGCGACAAGG 

Cm2 GATCTTCCGTCACAGGTAGG 

Primers for RT-PCR  

16S1 CCTCCAAGTCGACATCGTTT 

16S2 TGTAGCGGTGAAATGCGTAG 

ihfA-rt1 TTTTGAAGAAGTGCGTCGTG 

ihfA-rt2 TTGAGTTTCTGGCCTGGTCT 

ihfB-rt1 CGTTGAGGATGCGGTAAAAG 

ihfB-rt2 CTCCACTTTGTCACCCGTCT 

dspE-rt1 TCCAGCGAGGGCATAATACT 

dspE-rt2 ACAACCGTACCCTGCAAAAC 

hrpL-rt1 TTAAGGCAATGCCAAACACC 

hrpL-rt2 GACGCGTGCATCATTTTATT 

hrpN-rt1 GCTTTTGCCCATGATTTGTC 

hrpN-rt2 CAACCCGTTCTTTCGTCAAT 

hrpA-rt1 GAGTCCATTTTGCCATCCAG 

hrpA-rt2 TGGCAGGCAGTTCACTTACA 

rpoN-rt1 AAGCGGTACTGAAACGGGTA 

rpoN-rt2 GCATCAGACTGCGAAAATCA 

yhbH-rt1 GCGCGAGTTTGTTACCACTA 

yhbH-rt2 ATCGCCGCGTACATATCTTT 

hrpS-rt1 AATGCTACGCGTGCTGGAAA 

hrpS-rt2 AACAATGGCGTTTGCGTTGC 

Primers for cloning  

ihfA com F ACA GCG CAA TGA GGA GCA CT 

ihfB com F AGAAAGGCGACGAAATCGCA 
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2.7 Figures 

 

 

 

A         B 

  
 

C 

 
 

 

 

Figure 2.1 Growth curves of E. amylovora wild-type (WT), ihf mutants and 

complementation strains of the ihf mutants. The growth of bacterial strains (OD600) was 

monitored at different time points. (A) Growth curves in LB media at 28°C. (B) Growth curves 

in M9 minimal media at 28°C. (C) Growth curves in hrp-inducing medium at 18°C. Data points 

represent the means of three replicates ± standard errors. Similar results were obtained in a 

second independent experiment. 
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Figure 2.2 Pathogenicity tests of E. amylovora wild-type (WT), ihf mutants and 

complementation strains of the ihf mutants on immature pears. Symptoms caused by WT, 

ihfA, ihfB mutants and complementation strains of ihfA (pIhfA), ihfB (pIhfB) mutants. DPI, days 

post-inoculation.  

 

 

 
 

Figure 2.3 Growth of E. amylovora wild-type (WT), ihf mutants and complementation 

strains of the ihf mutants during infection of immature pears. The growth of bacterial strains 

was monitored at 0, 1, 2 and 3 days after inoculation. Data points represent the means of three 

replicates ± standard errors. Similar results were obtained in a second independent experiment. 
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A                                B 

   
C 

 
D 

 
 

 

Figure 2.4 Expression of selected genes in vivo and in vitro by quantitative real-time reverse 

transcription-polymerase chain reaction (qRT-PCR). (A) Relative gene expression of ihfA 

and ihfB genes in ihfA and ihfB mutant strains compared with WT inoculated onto immature pear 

fruits at 6 h. (B) Relative gene expression of ihfA and ihfB genes in ihfA and ihfB mutant strains 

compared with WT grown in hrp-inducing medium at 18°C at 6 h. (C) Relative gene expression 

of three T3SS genes and hrpL, rpoN, yhbH and hrpS genes in ihfA and ihfB mutant strains 

compared with WT grown in hrp-inducing medium at 18°C at 6 h. (D) Relative gene expression 

of three type III secretion (T3SS) genes (dspE, hrpA, hrpN) and hrpL, rpoN, yhbH and hrpS 

genes in ihfA and ihfB mutant strains compared with the wild-type (WT) inoculated onto 

immature pear fruits at 6 h. The relative fold change of each gene was derived from the 

comparison of mutant strains versus WT control. The 16S rDNA (rrsA) gene was used as an 

endogenous control. The values of the relative fold change were the means of three replicates. 

The experiments were repeated at least twice with similar results. Error bars indicate standard 

deviation. 
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Figure 2.5 Hypersensitive response (HR) assay of E. amylovora wild-type (WT), ihf mutants 

and complementation strains of the ihf mutants on tobacco leaves. Eight-week-old tobacco 

leaves were infiltrated with WT, mutant strains and complementation strains with cell 

suspensions at an optical density at 600 nm (OD600) of 0.1, 1, WT Ea1189; 2, ihfA; 3, ihfB; 4, 

hrpS; 5, hrpL; 6, hrpL (pHrpL); 7, hrpS (pHrpS); 8, ihfB (pIhfB); 9, ihfA (pIhfA); 10, phosphate-

buffured saline (PBS). 
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A           B 

   
 

Figure 2.6 Motility assay of E. amylovora wild-type (WT), ihf mutants and 

complementation strains of the ihf mutants. Bacterial strains (OD600=1.0) were spotted at the 

center of the motility plate (0.25% agar) and incubated at 28°C. (A) Comparison of the moving 

distances of WT, ihfA, ihfB mutants and complementation strains. Diameters of the circle around 

the inoculation site (mm) were measured 24h and 48h post inoculation. (B) Comparison of WT, 

ihfA, ihfB mutants and complementation strains on the motility plate. Pictures were taken at 48 h 

post-inoculation. 

 

 

Figure 2.7 Expression of selected genes in vivo by quantitative real-time reverse 

transcription-polymerase chain reaction (qRT-PCR). Relative gene expression of rsmA/csrA 

and rsmB/csrB genes in ihfA and ihfB mutant strains compared with the wild-type (WT) 

inoculated onto immature pear fruits at 6 h. The relative fold change of each gene was derived 

from the comparison of mutant strains versus WT control. The 16S rDNA (rrsA) gene was used 

as an endogenous control. The values of the relative fold change were the means of three 

replicates. The experiments were repeated at least twice with similar results. Error bars indicate 

standard deviation. 

 

 



49 

CHAPTER 3 

 

CHARACTERIZATION OF ENHANCER BINDING PROTEIN HrpS IN REGULATING 

TYPE III SECRETION SYSTEM GENE EXPRESSION IN Erwinia amylovora 

 

3.1 Abstract 

The bacterial enhancer binding protein (bEBP) HrpS plays a central role in regulating 

T3SS gene expression by activating the transcription of hrpL gene in Erwinia amylovora. Upon 

binding to upstream activator sequence (UAS) at the hrpL promoter, HrpS interacts with the σ
54

-

RNA polymerase holoenzyme through conserved GAYTGA motif, which allows the initiation of 

hrpL transcription. However, where HrpS binds to the promoter of hrpL and what is the role of 

the conserved GAYTGA motif in regulating hrpL and other T3SS gene expression remain 

elusive. In this study, our goals were to identify the HrpS binding site and to characterize the role 

of conserved GAYTGA motif of HrpS in transcription activation of hrpL in E. amylovora. First, 

eight 5’ deletion constructs of hrpL promoter fused to a promoter-less gfp were made, and 

promoter activities were measured by flow cytometry. The results of promoter screening 

suggested a potential region for HrpS binding. Second, complementation of hrpL mutant using 

twelve constructs containing hrpL gene and various lengths of hrpL promoter further delineated 

the UAS region for HrpS binding. Bioinformatic analysis of this region revealed a dyad 

symmetry sequence between -141 to -122 nt (AT-N-TGCAA-N4-TTGCA-N-AT), which is 

characteristic for bEBP binding. Third, site-directed mutation analyses and quantitative real 

time-PCR (qRT-PCR) assays demonstrated that the complete-dyad symmetry sequence was all 

required for T3SS gene expression and complementation of hrpL mutant. Finally, electrophoretic 

mobility shift assay (EMSA) with purified truncated HrpS protein containing its DNA binding 

domain further verified that HrpS binds to this sequence, indicating that hrpL promoter from -
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141 to -122 is the HrpS binding site. In addition, results from site-directed mutagenesis analyses 

of the conserved GAYTGA motif of HrpS showed that Y100F substitution did not affect the 

function of HrpS, whereas Y100A and Y101A mutations completely abolished HrpS activity. 

These results suggest that tyrosine and phenylalanine can compensate functionally for each other 

in the GAYTGA motif of HrpS in E. amylovora. 

 

3.2 Introduction 

Erwinia amylovora is the causal agent of fire blight on apples and pears, causing annual 

economic losses of over 100 million dollars in pome fruit industry in the United States alone 

(Khan et al., 2012). Trees infected by E. amylovora typically show wilting and water soaking 

symptoms followed by a blackened and scorched appearance in leaves and twigs. As a member 

of the family Enterobacteriaceae, E. amylovora shares some common characteristics with many 

important animal pathogens, such as Escherichia coli, and is also closely related to several plant-

associated bacteria, such as Pectobacterium and Pantoea. Like many other Gram-negative plant 

pathogenic bacteria, the hypersensitive response and pathogenicity (hrp)-type III secretion 

system (T3SS) is one of the major pathogenicity factors in E. amylovora. The hrp-T3SS 

functions in delivering effectors into eukaryotic cells, which eventually interferes with host 

defense mechanisms and cellular metabolism during pathogenesis (Alfano and Collmer, 2004; 

Büttner and Bonas, 2006).  

 

Structural, functional and regulatory components of the hrp-T3SS of E. amylovora are 

encoded in a cluster of genes, known as the Hrp pathogenicity island (PAI) (Oh et al., 2005). 

Molecular genetic studies of E. amylovora have demonstrated that expression of hrp-T3SS genes 
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is regulated by HrpL, one of the exocytoplasmic functions (ECF) subfamily of sigma factors 

(Shen and Keen, 1993; Wei and Beer, 1995; Chatterjee et al., 2002). The promoter region of 

genes encoding known components of T3SS possesses the hrp box (GGAACC-N16-CCACNNA) 

where HrpL can bind and direct RNA polymerase (RNAP) for transcription initiation (McNally 

et al., 2012). In E. amylovora, hrpL transcription is activated by RpoN, HrpS, YhbH and IHFα/β 

(Ancona et al., 2014; this study). RpoN (σ
54

), an alternative sigma factor 54, directs RNAP to 

consensus -24 (GG) and -12 (TGC) promoter regions. The σ
54

-RNAP holoenzyme forms a 

highly stable, closed complex with DNA that is unable to spontaneously isomerize into an open 

complex (Buck et al., 2000; Guo et al., 2000). To initiate transcription, specific bacterial 

enhancer binding proteins (bEBPs) must be present to remodel the σ
54

-RNAP holoenzyme, and 

HrpS serves as a bEBP in hrpL transcription (Wei et al., 2000; Cannon et al., 2001). YhbH is 

annotated as σ
54

 modulation protein, but the exact mechanism of action in activating hrpL 

transcription is still unclear (Smits et al., 2010; Ancona et al., 2014).  

 

bEBPs are members of AAA
+
 (ATPase associated with various cellular activities) family 

of proteins which can couple chemical energy derived from nucleotide hydrolysis to a 

mechanical action (Wang, 2004). To activate σ
54

-depdendent transcription, the closed complex 

must be remodeled via σ
54 

contact and DNA melting, and the σ
54

-RNAP holoenzyme must be 

relocated near the transcription start site (Bush and Dixon, 2012). This can be met through the 

AAA
+
 domain responsible for ATP hydrolysis and σ

54
 contact (Bordes et al., 2003). The AAA

+
 

domain of bEBPs is also implicated in oligomerzation so that hexameric or hetameric bEBPs can 

have increased ATPase activity (Wikström et al., 2001). bEBPs contain several structurally 

conserved motifs within the AAA
+
 domain, including the GAFTGA (Bush and Dixon, 2012). 
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The surface-exposed loop of the GAFTGA motif enables bEBPs to interact with σ
54

, leading to 

conformational changes in the AAA
+
 domain and substrates remodeling upon ATP hydrolysis 

(Lew and Gralla, 2002; Zhang et al., 2002; Bordes et al., 2003; Rappas et al., 2005). All six 

residues of the GAFTGA motif are essentially required for full transcription activity, and the 

threonine residue is shown to directly interact with σ
54

 (Chaney et al., 2001; Dago et al., 2007). 

However, it has been reported that about 7% of the annotated bEBPs contain tyrosine instead of 

phenylalanine residue in the GAFTGA motif, including HrpS proteins in E. amylovora (Figure 

3.1) and Pseudomonas syringae pv. tomato DC3000 (Zhang et al., 2009). A recent report showed 

that substitution of tyrosine (Y) with phenylalanine (F) in the GAYTGA motif of HrpS in P. 

syringae pv. tomato DC3000 increased hrpL promoter activity by about 1.5-fold (Jovanovic et al., 

2011). This led us to ask whether a tyrosine to phenylalanine substitution in the GAYTGA motif 

of HrpS in E. amylovora will also affect hrpL expression. 

 

In addition to the AAA
+
 domain, bEBPs also have the N-terminal regulatory domain and 

the C-terminal DNA binding domain. The regulatory domain is responsible for controlling the 

AAA
+
 domain activity in response to environmental signals (Schumacher et al., 2006). To 

perceive and respond to specific conditions, various signal transduction intermediates, including 

phosphoryl group, ligands and antiactivator proteins, are shown to be targeted to the regulatory 

domain (Bush and Dixon, 2012). bEBPs lacking this domain, such as HrpS (Figure 3.1), regulate 

their activity mainly through protein-protein interaction. In P. syringae, HrpS forms 

heterohexamer complex with HrpR to activate hrpL transcription, but HrpV can inhibit the 

oligomerization via direct interaction with HrpS (Hutcheson et al., 2001; Jovanovic et al., 2011). 

On the other hand, the DNA binding domain of bEBPs recognizes specific upstream activator 
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sequence (UAS) near the σ
54

-dependent promoter by a helix-turn-helix (HTH) motif (Studholme 

and Dixon, 2003). All UASs are shown to have dyad symmetry sequence as inactive state of 

bEBPs binds to DNA in a dimeric form (Bush and Dixon, 2012). DNA-bound bEBPs can 

promote oligomerization and also contribute to maintain their hexameric or heptameric 

arrangements (Austin and Dixon, 1992; Pérez-Martín and de Lorenzo, 1996; De Carlo et al., 

2006). Since UAS is commonly located at 80 to 150 bp upstream of transcription start site, 

interactions between the σ
54

-RNAP holoenzyme and bEBPs are often achieved by the integration 

host factor (IHF)-induced DNA bending (Claverie-Martin and Magasanik, 1992; Huo et al., 

2006). However, the binding site for HrpS is still unknown. 

 

The goals of this study were to identify the HrpS binding site of E. amylovora on the 

hrpL promoter region and to examine the role of the conserved tyrosine residue of the GAYTGA 

motif in HrpS.  

 

3.3 Materials and methods 

3.3.1 Bacterial strains and growth conditions 

The bacterial strains used in this study are listed in Table 2.1. Luria–Bertani (LB) 

medium was used for the routine culture of E. amylovora and E. coli strains. Bacteria were also 

grown in M9 minimal medium (M9MM) [12.8 g Na2HPO4.7H2O, 3.0 g KH2PO4, 0.5 g NaCl, 1 g 

NH4Cl, 0.24 g MgSO4 and 0.011 g CaCl2] supplemented with 0.4 % glucose or hrp-inducing 

minimal medium (HMM) [1 g (NH4)2SO4, 0.246 g MgCl2.6H2O, 0.099 g NaCl, 8.708 g K2HPO4, 

6.804 g KH2PO4] containing 10 mM galactose as indicated in each experiment. When required,                                                                                                                 
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antibiotics were added to the medium at the following concentrations: 10 μg/ml chloramphenicol 

(Cm), 100 μg/ml ampicillin (Ap) and 20 μg/ml kanamycin (Km).  

 

3.3.2 DNA manipulation and the construction of plasmids 

Plasmid DNA purification, PCR amplification of genes, isolation of fragments from 

agarose gels, cloning, restriction enzyme digestion and T4 DNA ligation were performed using 

standard molecular procedures (Sambrook and Russel, 2001). DNA sequencing was performed 

at the Keck Center for Functional and Comparative Genomics at the University of Illinois at 

Urbana-Champaign.  

 

3.3.3 GFP reporter assays by flow cytometry 

Overnight cultures of E. amylovora Ea273 strains carrying different gfp-promoter fusion 

plasmids were harvested and washed with PBS. The bacterial suspensions were re-inoculated 

into HMM and incubated at 18 °C for 18h. GFP intensities were measured by the BD 

FACSCanto flow cytometer (BD Bioscience, San Jose, CA, USA) and analyzed by flow 

cytometry software FCS Express V3 (De Novo Sofware, Los Angeles, CA, USA). The 

experiments were repeated at least twice.  

 

3.3.4 Virulence assay on immature pear fruits  

Overnight cultures of E. amylovora WT, mutants and complementation strains were 

harvested by centrifugation at 4000 rpm for 10 min, resuspended in PBS to OD600 = 0.1 and then 

diluted 100-fold (OD600 = 0.001). Immature Bartlett pears (Pyrus communis L. cv. Bartlett) were 

surface-sterilized with 10% bleach for 10 min and rinsed with sterile distilled water. After dried, 
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pears were pricked with a sterile needle, inoculated with 2 μl of cell suspensions for each strain 

and incubated in a humidified chamber at 28 °C. Symptoms were recorded at 4 and 8 days post-

inoculation. For each strain tested, pears were assayed in triplicate, and the experiments were 

repeated at least twice.  

 

3.3.5 Virulence assay on apple shoots 

Overnight cultures of E. amylovora WT, mutants and complementation strains were 

harvested by centrifugation at 4000 rpm for 10 min, resuspended in PBS to OD600 = 0.1. About 

22 to 25 cm length of young ‘Gala’ apple shoots were pricked with a sterile needle, inoculated 

with 5 μl of cell suspensions for each strain. Plants were kept at 25 °C and 16 h light photoperiod 

in a greenhouse. The length of the necrotic symptom from the inoculation site was measured at 8 

days post-inoculation, and the average value was considered as the disease severity. For each 

strain tested, 6 or 7 shoots were assayed, and the experiments were repeated at least twice.  

 

3.3.6 Hypersensitive response (HR) assay on tobacco 

Bacterial strains grown overnight in LB medium with appropriate antibiotics were 

harvested by centrifugation at 4000 rpm for 10 min and resuspended in PBS to OD600 = 0.1. 

Eight-week old tobacco (Nicotiana tobacum) leaves were infiltrated with bacterial suspension 

using needleless syringe and kept in a humidified chamber at 28 °C. HR symptoms were 

recorded at 24 h post-infiltration. The experiments were repeated at least twice. 
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3.3.7 RNA isolation 

To isolate RNA for in vitro T3SS gene expression, bacterial cultures grown in LB 

medium with appropriate antibiotics were harvested by centrifugation at 4000 rpm for 10 min 

and washed twice with PBS. The bacterial cells were resuspended in HMM to OD600 = 0.2 and 

incubated at 18 °C with 250 rpm agitation. After 6 h in HMM, 4 ml of RNA protect reagent 

(Qiagen, Hilden, Germany) was added to 2 ml of bacterial cell cultures to avoid RNA 

degradation. For in vivo T3SS gene expression, overnight bacterial cultures were harvested by 

centrifugation at 4000 rpm for 10 min and resuspended in PBS OD600 = 0.2 to 0.3. Immature 

Bartlett pear fruits (Pyrus communis L. cv. Bartlett) were surface-sterilized with 10% bleach for 

10 min and rinsed with sterile distilled water. After dried, pears were cut in half and inoculated 

with bacterial suspension. The bacterial cells were incubated in a moist chamber at 28 °C for 6 h 

and collected by washing pear surfaces with a solution containing 2 ml RNA protect reagent 

(Qiagen) and 1 ml water. Cells collected for both in vivo and in vitro T3SS gene expression were 

then harvested by centrifugation at 4000 rpm for 10 min. RNA was extracted using the RNeasy 

Mini kit (Qiagen), following which the eluted total RNA was DNase-treated using Turbo DNA-

free
TM

 (Ambion, Austin, TX, USA) according to the manufacturer’s instructions, respectively. 

Quality and quantity of the RNA was assessed using a Nano-Drop ND-100 spectrophotometer 

(Nano-Drop Technologies; Wilmington, DE, USA).  

 

3.3.8 Quantitative real-time PCR (qRT-PCR) 

Reverse transcription for cDNA synthesis was performed using Superscript®  VILO
TM

 

cDNA synthesis kit (Invitrogen, Carlsbad, CA, USA) on 1 μg of total RNA according to the 

manufacturer’s instruction. The 100 ng of reverse transcription product was used for qRT-PCR 
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analysis in a total volume of 25 μl containing 12.5 μl Power SYBR® Green PCR master mix 

(Applied Biosystems, Foster City, CA, USA), primers of selected genes (500nM) and water. The 

primers for qRT-PCR were designated using Primer3 software and listed in Table 3.2. Negative 

controls were also set up by substituting cDNA with water. The qRT-PCR amplification was 

carried out in duplicate in MicroAmp®  Fast Optical 96-Well plates with Optical Adhesive Films 

on StepOnePlus Real Time PCR System (Applied Biosystems). The qRT-PCR program was 

50 °C for 2 min, 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min, 

and a final dissociation curve analysis step from 65 to 95 °C. Gene expression levels were 

analyzed using the relative quantification (ΔΔCt) method, and a 16S rDNA (rrsA) gene was used 

as an endogenous control to normalize gene expression data. A P value was calculated based on 

a moderated t-test to measure the significance associated with each relative quantification value. 

Variations were considered to be statistically significant when P < 0.05. The experiments were 

repeated at least twice using three different biological replicates. 

 

3.3.9 Site-directed mutagenesis 

Site-directed mutagenesis of the HrpS binding site on the upstream sequence of the hrpL 

promoter and the GAYTGA motif of HrpS was carried out using the QuickChange XL site-

directed mutagenesis kit (Stratagene, La Jolla, CA, USA). Briefly, the mutagenic primers 

containing the desired mutation in the middle were prepared between 25 and 45 bp in length with 

a melting temperature over 78 °C. Complementation constructs to be mutated were PCR 

amplified with 10X reaction buffer, forward and reverse primers, dNPT mix, Quick solution, 

PfuTurbo DNA polymerase, and ddH2O. PCR amplification was carried out at 95 °C for 1 min, 

followed by 18 cycles of 95 °C for 50 s, 60 °C for 50 s, and 68 °C for proper time dependent on 



58 

the plasmid length, and a final extension step at 68 °C for 7 min. To remove nonmutated, 

parental DNA template, the reaction was treated with the Dpn I restriction enzyme at 37 °C for 1 

h. The Dpn I-treated DNA was transformed into XL10-Gold ultracompetent cells by heat pulse 

in a 42 °C water bath for 30 s. Transformants were selected on LB plates supplemented with 

appropriate antibiotics. Finally, mutations were confirmed by sequencing, and the mutated 

complementation constructs were transformed into appropriate mutant strains. 

 

3.3.10 Cloning for HrpS protein overexpression 

Since overexpression of E. amylovora full-length HrpS protein led to formation of 

insoluble aggregates (inclusion bodies) in E. coli BL21 (DE3) strain, truncated HrpS250-325 

proteins containing only the DNA binding domain was expressed and purified. The 

corresponding part of hrpS gene (748 to 975 nt) was amplified using the primer pairs containing 

NdeI and XhoI restriction site (Table 3.2) and cloned into pET28a expression vector (Novagen, 

Madison, WI, USA). The final plasmid was designated pHrpS250-325-His and introduced into the 

E. coli BL21 (DE3) strain which carries the gene for T7 RNA polymerase under control of the 

IPTG (isopropyl-PD-thiogalactopyranoside)-inducible lacUV-5 promoter. To confirm 

overexpression of the truncated protein, 1 ml overnight culture was inoculated into 9 ml of fresh 

LB broth containing 50 μg/ml Km and grown at 37 °C for 2 h. The culture was then divided into 

two aliquots, one of which was induced by IPTG (0.1 mM), and incubated for growth at 37 °C. 

After approximately 6 h, bacterial cells from 500 μl of each culture were harvested by 

centrifugation at 12,000 rpm for 1 min. Cell pellet was then resuspended in the Laemmli buffer 

containing β-mercaptoethanol, boiled for 5 min and analyzed by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) using 0.75 mm, 10% resolving gel [375 mM 
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TRIS pH 8.8, 10% (w/v) acrylamide, 0.1% (w/v) SDS, 0.1% (w/v) APS, 1 μl/ml TEMED] and 5% 

stacking gel [375 mM TRIS pH 8.8, 5% (w/v) acrylamide, 0.1% (w/v) SDS, 0.1% (w/v) APS, 1 

μl/ml TEMED]. To visualize proteins separated by SDS-PAGE, the gel was stained with 

Coomassie blue [25% (w/v) Coomassie Brilliant Blue R, 50% (v/v) methanol, 7.5% (v/v) acetic 

acid and ddH2O] for 2 h and then destained overnight with destaining solution [60% (v/v) 

methanol, 20% (v/v) acetic acid and ddH2O]. 

 

3.3.11 Purification of truncated HrpS protein 

Five milliliters of E. coli BL21 (DE3) strain carrying protein overexpression vector was 

grown overnight and inoculated into 500 ml of fresh LB media containing 50 μg/ml Km. After 2-

3 h growth at 18 °C, protein overexpression was induced by IPTG (0.1 mM) and incubated for 

growth at 18 °C with 250 rpm agitation overnight. Cells were harvested by centrifugation at 

5000 rpm for 10 min, washed once with cell wash buffer (50mM MOPS, 150mM NaCl), and 

resuspended [1:10 ratio (w/v)] in cell wash buffer. The cell suspensions were frozen at -80 °C 

until further use. Thawed cell suspensions were treated with 250 μg/ml lysozyme (Promega) for 

30 min and cooled to 4 °C on ice for at least 30 min. Cells were further treated with Halt
TM

 

protease inhibitor cocktail EDTA-free (1X, Thermo Scientific, Rockford, IL, USA), NaCl (300 

mM) and imidazole (60 mM), followed by sonication in an ice-water bath. The cell lysates were 

centrifuged at 35,000 g for 20 min to remove cell debris, and Ni-NTA agarose resin (Qiagen) 

was added to the supernatants. Columns were washed before use with equilibration/wash buffer 

(50 mM MOPS, 300 mM NaCl, 60 mM imidazole). Proteins in the supernatant were allowed to 

bind to the resin at 4 °C for 10 min with gentle rocking, and centrifuged at 1000 rpm for 2 min to 

remove cell debris. After one more wash with equilibration/wash buffer, the proteins were eluted 
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with elution buffer (50 mM MOPS, 300 mM NaCl, 500 mM imidazole) and dialyzed overnight 

against buffer containing 20 mM MOPS and 1 mM DTT. Protein concentration was measured 

using Invitrogen Qubit protein assays. 

 

3.3.12 Electrophoretic mobility shift assay (EMSA) 

Complementary oligonucleotides comprising the HrpS-binding site from the hrpL 

promoter region of E. amylovora (Table 3.2) were 3’ biotinylated using the biotin 3’ end DNA 

labeling kit (Pierce, Rockford, IL, USA). Briefly, 50 μl reaction with 100 nM oligonucleotides 

were incubated with 1X TdT reaction buffer, 0.5 μM Biotin-11-UTP and 0.2 U/μl of TdT at 

37 °C for 30 min. Reaction mixtures were then mixed with 2.5 μl of 0.2 M EDTA and 50 μl of 

24:1 (v/v) chloroform:isoamyl alcohol, and the acqueous phases were stored at -20 °C for further 

use. For annealing, equal amounts of the end-labeled, complementary oligonucleotides were 

mixed together, denatured at 100 °C for 1 min and incubated at room temperature for 1 h before 

use. The lightshift
®
 chemiluminescent EMSA kit (Pierce) was used for protein-DNA binding 

assays. Increasing amount of HrpS250-325 (0 to 2.05 μM) was added in reaction volumes of 10 μl 

containing 20 fmol of labeled oligonucleotides, 1X binding buffer, 50 ng/μl Poly(dI∙dC), 0.5mM 

MgCl2, 0.1% Nonidet P-40, 0.05 mg/ml BSA, and 5% glycerol. Reaction mixtures were 

incubated at room temperature for 20 min, mixed with 2.5 μl of 5X loading buffer and resolved 

into a 6% native polyacrylamide gel in 0.5X TBE buffer (44.5 mM Tris-base, 44.5 mM Boric 

acid and 1 mM EDTA). Resolved binding reactions were transferred to a positively charged 

nylon membrane and cross-linked using UV-light cross-linking instrument at 120 mJ/cm
2
 for 1 

min. The chemiluminescent signals were developed according to the manufacturer’s instructions 
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and visualized using ImageQuant LAS 4010 CCD camera (GE Healthcare, Piscataway, NJ, 

USA). 

 

3.4 Results 

3.4.1 Upstream sequence from -153 to -104 nt of the hrpL promoter contains potential HrpS 

binding site 

In σ
54

-dependent transcription, most bEBPs have been shown to bind at UAS located 80 

to 150 bp upstream of the transcription start site (Bush and Dixon, 2012). Based on these 

previous observations, nine different constructs containing different length of the hrpL promoter 

(within -398 to +86 nt) fused to a promoter-less gfp were made, and promoter activity was 

determined by flow cytometry (Figure 3.2A). Constructs containing the hrpL promoter up to 

position -128 nt in Ea273 (pZW2-1 to 2-4) exhibited basal levels of GFP intensity as compared 

to vector control, whereas constructs containing the hrpL promoter region within position -153 nt 

in Ea273 (pZW2-5 to 2-9) led to a significant increase of GFP intensity, suggesting that the hrpL 

promoter region spanning -153 to -104 nt is required for HrpS binding and activation of hrpL 

expression. In addition, there was also about 10% increase in GFP intensity between Ea273 

(pZW2-6) and Ea273 (pZW2-7), suggesting presence of an unknown factor with a potential role 

in activating hrpL expression at the region between -215 and -153 nt of the hrpL promoter.  

 

3.4.2 The dyad symmetry sequence between -141 and -121 is required for virulence 

To verify the results obtained by reporter gene-based promoter activity and further 

delineation of the potential binding site, various 5’-deletion constructs of the hrpL gene were 

generated (Figure 3.3) and transformed into Ea1189 hrpL mutant. Furthermore, bioinformatic 
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analysis between -153 to -104 nt of the hrpL promoter, a 14 bp dyad symmetry sequence (AT-N-

TGCAA-N4-TGCAA-N-AT) spanning -141 to -122 nt of the hrpL promoter was identified. 

Since most bEBPs bind to the dyad symmetry sequence, three additional hrpL constructs were 

generated, which contain the hrpL promoter sequence from -121 nt (pHrpL-4), -131 nt (pHrpL-6) 

and -141 nt (pHrpL-7). These constructs contain no, half and full-dyad symmetry sequence, 

respectively. The hrpL mutant complemented with different constructs was first tested for 

virulence on immature pear fruits (Figure 3.4). Pear fruits infected by hrpL (pHrpL) showed 

water soaking symptoms at 2 days, necrotic lesions with visible bacterial ooze at 4 days, and 

black lesions covering almost the entire surface of pear fruits at 8 days post inoculation (DPI). 

Similar disease severity was observed for hrpL mutant complemented with constructs with half- 

or full-dyad symmetry sequence (pHrpL-5 to 11), whereas no disease was observed for hrpL 

mutant complemented with hrpL constructs without the dyad symmetry sequence (pHrpL-1 to 3). 

Interestingly, construct pHrpL-4, which does not contain the dyad symmetry sequence, could 

still partially complement hrpL mutant and result in reduced disease. 

 

Virulence assays were also carried out on apple shoots for the hrpL mutant 

complemented with different constructs (Figure 3.5, Table 3.3). Visible necrosis around the 

inoculated site was observed for hrpL mutant complemented with full length of promoter 

construct (pHrpL) at 3 DPI, and its length of necrotic lesion reached 18.25 ± 2.40 cm at 7 DPI. 

As expected, no disease symptoms were observed for hrpL (pHrpL-1 to 3), whereas similar 

disease severity was observed for hrpL (pHrpL-8 to 11) as compared to hrpL (pHrpL). The 

length of necrotic lesions were slightly reduced for hrpL (pHrpL-7) (14.38 ± 1.60 cm) and about 

half for hrpL (pHrpL-5, 6) (10.50 ± 0.87 cm, 9.88 ± 2.06 cm, respectively) as compared to hrpL 
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(pHrpL). Similar to results with immature pear fruit, construct pHrpL-4 could partially rescue the 

hrpL mutant, but the length of necrotic lesion was greatly reduced (2.04 ± 0.50 cm) at 7 DPI.  

 

Furthermore, the hrpL mutant complemented with selected six constructs (pHrpL-3 to 8) 

was also tested for their ability to elicit HR on tobacco leaves (Figure 3.6). Consistent with 

disease causing ability, hrpL mutant complemented with pHrpL and pHrpL-7 and 8 induced 

strong HR, while hrpL complemented with pHrpL-3 did not result in any HR at 24 h post 

infiltration. A gradual weak HR was observed for hrpL mutant complemented with pHrpL-4, 5 

and 6 construct, respectively. 

 

Together, these results indicate that the complete dyad symmetry sequence of the hrpL 

promoter is critical for full virulence of E. amylovora. However, it seems that construct 

containing half of the dyad symmetry sequence is sufficient to complement hrpL mutant and 

cause disease. In addition, our results suggest that hrpL promoter region spanning -121 to -104 nt 

may also influence either HrpS binding or an unknown factor involved in the activation of hrpL 

transcription. This region contains an 10-bp mirror sequence (TTTGG-N-GGTTT) (Figure 3.8A). 

 

3.4.3 The dyad symmetry sequence is required for hrpL and other T3SS gene expression 

To further evaluate the role of the dyad symmetry sequence in the hrpL promoter for 

T3SS gene expression, the relative expression of hrpL and hrpA genes was determined by qRT-

PCR. Consistent with the above virulence assays, expression of hrpL gene in hrpL mutant 

complemented with pHrpL-7 and 8 was similar to or higher than that of hrpL complemented 

with pHrpL in both in vitro and in vivo conditions (Figure 3.7A, B). Whereas expression of hrpL 
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gene was about 5- to 10-fold and 25- to 50-fold lower in hrpL (pHrpL-6) and hrpL (pHrpL-4) 

strains, respectively. The hrpL expression was barely detected in hrpL (pHrpL-3) and hrpL 

(pWSK29). The overall pattern of hrpA expression was similar to that of hrpL expression, except 

that expression of hrpA was about 2.5- to 5-fold and 10- to 20-fold lower in hrpL (pHrpL-4) and 

hrpL (pHrpL-6), respectively. These results indicate that the dyad symmetry sequence of the 

hrpL promoter is essential for full activation of hrpL and other T3SS gene expression. Since 

expression of hrpL and hrpA genes was not completely off in hrpL (pHrpL-4), further suggesting 

that the 10-bp mirror sequence may also play a role in hrpL activation.  

 

3.4.4 Nucleotide substitution of the dyad symmetry sequence further affects hrpL gene 

expression and virulence 

To further analyze the role of the dyad symmetry sequence and the mirror sequence of 

the hrpL promoter in activating hrpL, site-directed mutagenesis was used to generate nucleotide 

substitution mutant constructs. The first construct (pHrpL-Mut1) contained one base substitution 

at each side of the dyad symmetry sequence of the hrpL promoter in pHrpL (Figure 3.8B). 

Disease symptoms on immature pear fruits by hrpL (pHrpL-Mut1) were comparable to that 

caused by hrpL (pHrpL) (Figure 3.9). However, expression of hrpL and hrpA genes was about 3 

to 5-fold lower (Figure 3.10A, 3.11A).  

 

The other three mutant constructs (pHrpL6-Mut2, 3, 4) were derived from pHrpL-6 and 

contained three, two and one base substitution(s) at the half-dyad symmetry sequence, 

respectively (Figure 3.8B). Significantly reduced necrotic lesions on immature pear fruits was 

observed for hrpL complemented with all three mutant constructs (Figure 3.9). Expression of 
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hrpL and hrpA in hrpL (pHrpL6-Mut2) was about 5- and 10-fold lower compared to hrpL 

(pHrpL-6) strain in vitro and in vivo, respectively (Figure 3.10B, 3.11B). Whereas expression of 

hrpL and hrpA in hrpL (pHrpL6-Mut3) and hrpL (pHrpL6-Mut4) strains also exhibited 2.5- to 5-

fold and 1.5- to 2.5-fold decrease, respectively. These results suggest that these nucleotides are 

all important for hrpL activation. 

 

On the other hand, construct pHrpL4-Mut5 was derived from pHrpL-4 with base 

substitutions at the mirror sequence. Bacterial virulence and T3SS gene expression of hrpL 

complemented with this construct appeared to be not affected by the mutations as compared to 

hrpL (pHrpL-4) strain (Figure 3.9, 3.10C, 3.11C). These results suggest that the mirror sequence 

may not be required for hrpL activation. 

 

3.4.5 HrpS binds to the dyad symmetry sequence in the hrpL promoter 

In order to determine that HrpS protein indeed binds to the dyad symmetry sequence, 

full-length HrpS protein was overexpressed in E. coli. However, we found that the full length of 

E. amylovora HrpS protein formed inclusion bodies upon overexpression in E. coli BL21 (DE3) 

strain. The pellet containing inclusion bodies were solubilized by treating with high 

concentration of urea (8M); however our attempts to refold the denatured protein by stepwise 

dialysis with less concentration of urea were unsuccessful. Therefore, a truncated HrpS protein 

containing only the DNA binding domain (HrpS250-325) was overexpressed and purified for our 

subsequent EMSA assay. 

 

 



66 

To assess specific binding to truncated HrpS250-325 protein to the dyad symmetry 

sequence, two different 26-bp probes containing the original dyad symmetry sequence and the 

mutated version of the dyad symmetry sequence were subject to EMSA (Figure 3.12A). EMSA 

results showed that HrpS250-325 bound to the original sequence in a concentration-dependent 

manner, while no shift was observed for the mutated sequence (Figure 3.12B), suggesting that 

the helix-turn-helix DNA binding motif of HrpS appears to have specific binding affinity for the 

dyad symmetry sequence of the hrpL promoter.  

 

3.4.6 Y100F substitution in the GAYTGA motif did not affect the function of HrpS 

Previous reports in P. syringae pv. tomato DC3000 showed that a single amino acid 

substitution from tyrosine to phenylalanine within the conserved GAYTGA motif of HrpS led to 

50% increase in the hrpL promoter activity as compared to WT (Jovanovic et al., 2011). To 

investigate whether similar substitution within the GAYTGA motif of E. amylovora HrpS will 

result in similar change in hrpL transcription and virulence, three mutant variants (Y100F, 

Y100A and T101A) were constructed and introduced into Ea1189 hrpS mutant. Virulence assay 

on immature pear fruits indicated that hrpS (pHrpS (Y100F)) and hrpS (pHrpS) strains were 

equally virulent (Figure 3.14), whereas no disease symptoms were observed for hrpS (pHrpS 

(Y100A)) and hrpS (pHrpS (T101A)). Consistently, hrpS (pHrpS (Y100F)) strain induced strong 

HR on tobacco leaves as hrpS (pHrpS) strain, while hrpS (pHrpS (Y100A)) and hrpS (pHrpS 

(T101A)) strains could not induce any HR (Figure 3.15). Furthermore, although expression of 

hrpS gene was similar in hrpS (pHrpS (Y100F), (Y100A), (T101A)) and hrpS (pHrpS) strains, 

expression of hrpL and hrpA was abolished in hrpS (pHrpS (Y100A), (T101A)) strains, but not  
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affected in hrpS (pHrpS (Y100F)) strain. These results suggest that Y100F substitution in 

GAYTGA motif did not affect the function of HrpS in E. amylovora. 

 

3.5 Discussion  

In many plant pathogenic bacteria, T3SS plays a central role in colonization and 

infection of their host plants. T3SS-secreted effector proteins have been found to impede host 

immunity, thus enabling pathogens to overcome host defense barriers and establish successful 

infection (Alfano and Collmer, 2004). Therefore, comprehensively understanding the function 

and regulation of T3SS is key to the study of plant-bacterium interactions (Büttner and Bonas, 

2006). Based on the current model of T3SS regulation, HrpS acts as a positive regulator of σ
54

-

dependent hrpL transcription in Pseudomonas sp., Erwinia sp. and the Pectobacterium sp. 

(Grimm et al., 1995; Wei et al., 2000; Chatterjee et al., 2002; Yap et al., 2005; Ancona et al., 

2014). In this study, we further characterized HrpS of E. amylovora in regulating T3SS gene 

expression, especially its transcription activation activity of hrpL gene.  

 

We, for the first time, identified and determined the binding site for HrpS in plant 

pathogenic bacteria. A 14-bp sequence (AT-N-TGCAA-N4-TTGCA-N-AT) exhibits nearly 

perfect dyad symmetry, which is the characteristic binding sequence for many bEBPs. To further 

confirm our results, the hrpL promoter sequences from related plant pathogenic enterobacteria 

were compared. We found that Pectobacterium astrosepticum also contains an 14-bp dyad 

symmetry sequence (N-ATTGCAA-N4-TTGCAAT-N) at -139 to 120 nt region, Dickeya dadantii 

contains a 10-bp dyad symmetry sequence (N3-TGCAA-N4-TTGCA-N3) at -141 to -122 nt 

region, and Pantoea stewartii contains an 10-bp dyad symmetry sequence (N3-TGCAA-N4-
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TTGCA-N3) at -136 to -117 nt region (Figure 3.13). Interestingly, all four contain common dyad 

symmetry sequence (TGCAA-N4-TTGCA), suggesting that this region probably is the most 

important part for HrpS binding. Consistently, mutations at the center region of the dyad 

symmetry sequence (hrpL (pHrpL6-Mut2)) had much stronger effect on hrpL transcription than 

mutations at the border region of the sequence (hrpL (pHrpL6-Mut3)). However, this dyad 

symmetry sequence is not present in the hrpL promoter of P. syringae, indicating that the 

binding site of HrpS is different in P. syringae. Unlike Erwinia, Dickeya, Pantoea and 

Pectobacterium, in which HrpS forms homohexameric complex to activate σ
54

-dependent 

transcription, HrpS of P. syringae is reported to form a heterohexamer via interaction with HrpR, 

another bEBP (Hutcheson et al., 2001). Although hrpR and hrpS genes of P. syringae are 

believed to arise from gene duplication events, they share about 60% sequence identity and 75% 

sequence similarity to each other (Jovanovic et al., 2011), presumably leading to having a non-

dyad symmetry binding sequence on the hrpL promoter. More research is needed to determine 

the binding site for HrpR/HrpS in P. syringae. 

 

Next to the dyad symmetry sequence, we also found an unusual mirror sequence 

(TTTGG-N-GGTTT) at -121 to -111 nt region of the hrpL promoter. Our results showed that the 

activation of hrpL transcription and a functional T3SS can still be detected in hrpL (pHrpL-4), in 

which the construct contains the mirror sequence, but not the dyad symmetry sequence, while 

activation of hrpL transcription was completely abolished in the hrpL (pHrpL-3), in which the 

construct does not contain both the dyad symmetry and the mirror sequences. However, mutation 

in right end of the mirror sequence did not affect T3SS gene expression. There are at least two 

possibilities for the role of the mirror sequence in the regulation of hrpL transcription. One is that 
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the mirror sequence may contribute to the regulation via formation of intramolecular triplex 

structure of DNA. Under specific conditions, such as the supercoiled DNAs and in the presence 

of multivalent cations, the homopurine-homopyrimidine mirror sequence in the DNA duplex 

may allow one strand to fold back onto the duplex, forming the DNA triplexes called H-DNA 

(Mirkin et al.; Htun and Dahlberg, 1988; Kohwi and Kohwi-Shigematsu, 1988; Floris et al., 

1999). Triplex configuration of DNA is often found in sites upstream the promoter and involved 

in several DNA-dependent processes, including transcriptional regulation (Buske et al., 2011). 

However, the hrpL promoter of E. amylovora contains relatively short mirror sequence (11 bp), 

therefore it is less likely to form triplexes (Collier and Wells, 1990). The other possibility is that 

the mirror sequence may be a site for binding of an unknown regulator. A comparison between 

hrpL promoter sequences of E. amylovora and other plant enterobacteria showed that the mirror 

sequence appears to be unique in E. amylovora. In Pectobacterium, Dickeya and Pantoea, hrpS 

gene expression is controlled by HrpX/HrpY two component system, whereas in E. amylovora, 

expression of hrpS is not controlled by HrpX/HrpY (Zhao et al., 2009b). Further analysis of the 

mirror sequence may provide clues as what the role of this sequence will be. 

 

The conserved GAFTGA motif is a bEBP-specific structural feature within AAA
+
 

domain. The importance of the GAFTGA motif for the activation of σ
54

-dependent transcription 

has been demonstrated through amino acid substitution analyses on several different bEBPs 

(Bush and Dixon, 2012). All six residues of the GAFTGA motif are essential for full bEBP 

activity, and mutation in phenylalanine residue has been shown to adversely affect ATPase 

activity, σ
54

 contact and oligomerization of bEBPs (Wang et al., 1997; Wikström et al., 2001; 

Bordes et al., 2003; Zhang et al., 2009). However, in about 7% of the annotated bEBPs, 
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including HrpS, tyrosine is shown to replace with phenylalanine residue within the GAFTGA 

motif (Zhang et al., 2009). Although both tyrosine and phenylalanine share similar aromatic ring 

structure, substitution of phenylalanine with tyrosine within GAFTGA motif of NifA and PspF 

results in a significant decrease in bEBP activity in transcriptional activation (González et al., 

1998; Zhang et al., 2009). On the other hand, substitution of tyrosine with phenylalanine in 

GAYTGA motif of HrpS in P. syringae pv. tomato DC3000 instead increased its activity by 1.5-

fold (Jovanovic et al., 2011). In this study, we showed that substitution of tyrosine with 

phenylalanine within the GAYTGA motif of HrpS has no effect on its function in E. amylovora. 

We suspect this variation might have occurred due to either random natural selection or other 

regulatory purposes. 

 

Extrapolating from the function of bEBPs, HrpS plays a central role in linking the 

detection of environmental cues and the activation of T3SS. A comprehensive characterization of 

HrpS might be key for understanding how E. amylovora activates σ
54

-dependent hrpL 

transcription during pathogenesis. Our future work will focus on the molecular mechanisms 

underlying the regulation of hrpS gene expression as well as HrpS protein stability. It has been 

reported that Lon protease of P. syringae down-regulates T3SS gene expression by degrading 

HrpR protein (Lan et al., 2007; Ortiz-Martín et al., 2010). In addition, up-regulation of hrpS 

expression was observed in the slyA mutant of D. dadantii (Zou et al., 2012), while a down-

regulation of hrpS expression was observed in the hrpL, ihfA and ihfB mutants of E. amylovora 

(Ancona et al., 2014; this study). Bioinformatics and transcriptomic profiling will be our next 

step in fully characterizing HrpS function. 
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3.6 Tables 

Table 3.1 Bacterial strains and plasmids used in this study 

Strains, plasmids Relevant characters* Reference source 
   

Strains   

 Erwinia amylovora   

Ea1189 Wild-type, isolated from apple Burse et al., (2004) 

Ea273 Wild-type, isolated from apple Wang et al., (2010) 

   ΔhrpL hrpL::Km; Km
R
-insertional mutant of hrpL of Ea 1189, Km

R
 Ancona et al.,  

(2014) 

ΔhrpS hrpS::Km; Km
R
-insertional mutant of hrpS of Ea 1189, Km

R
 Ancona et al., 

(2014) 

 Escherichia coli   

DH10B F
-
 mcrA Δ(mrr-hsdRMS-mcrBC) Φ80/acZ ΔM15 ΔlacX74  

recA1 endA1 araΔ139 Δ(ara, leu)7697 galU galK λ-rpsL (Str
R
)  

nupG 

Invitrogen, 

Carlsbad,  

CA, USA 

XL10-Gold Tet
R
 Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44  

thi-1 recA1 gyrA96 relA1 lac Hte [F  ́proAB lacI
q
ZΔM15 Tn10  

(Tet
R
) Amy Cam

R
] 

Applied Biosystems, 

Foster City, CA, 

USA 

BL21 (DE3) F
–
 ompT hsdSB (rB

–
 mB

–
) gal dcm (DE3) Novagen, San  

Diego, CA, USA 

Plasmids   

pFPV25 Ap
R
, GFP based promoter trap vector containing a promoter- 

less gfpmut3a gene 

Valdivia and  

Falkow, (1997) 

pWSK29 Ap
R
, cloning vector, low copy number Wang and Kushner 

(1991) 

pET28a(+) Km
R
, T7 expression vector carrying an N-terminal His-Tag/ 

thrombin/T7 Tag coniguration plus an optional C-terminal His-

Tag sequence 

Novagen, San  

Diego, CA, USA 

pZW2 608 bp DNA fragment containing promoter sequence of hrpL 

gene (-398-+210) in pFPV25 

Wang et al., (2010) 

 pZW2-1 144 bp DNA fragment containing promoter sequence of hrpL 

gene (-58-+86) in pFPV25 

This study 

 pZW2-2 180 bp DNA fragment containing promoter sequence of hrpL 

gene (-94-+86) in pFPV25 

This study 

 pZW2-3 190 bp DNA fragment containing promoter sequence of hrpL 

gene (-104-+86) in pFPV25 

This study 

 pZW2-4 214 bp DNA fragment containing promoter sequence of hrpL 

gene (-128-+86) in pFPV25 

This study 

 pZW2-5 239 bp DNA fragment containing promoter sequence of hrpL 

gene (-153-+86) in pFPV25 

This study 

 pZW2-6 263 bp DNA fragment containing promoter sequence of hrpL 

gene (-177-+86) in pFPV25 

This study 

 pZW2-7 301 bp DNA fragment containing promoter sequence of hrpL 

gene (-215-+86) in pFPV25 

This study 

 pZW2-8 350 bp DNA fragment containing promoter sequence of hrpL 

gene (-264-+86) in pFPV25 

This study 

 pHrpL 1.317 kb DNA fragment containing hrpL gene (-398-+919) in 

pWSK29 

Ancona et al.,  

(2014) 

 pHrpL-1 977 bp DNA fragment containing hrpL gene (-58-+919) in 

pWSK29 

This study 

 pHrpL-2 1.013 kb DNA fragment containing hrpL gene (-94-+919) in 

pWSK29 

This study 
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Table 3.1 (Cont.) 

pHrpL-3 1.023 kb DNA fragment containing hrpL gene (-104-+919) in 

pWSK29 

This study 

 pHrpL-4 1.040 kb DNA fragment containing hrpL gene (-121-+919) in 

pWSK29 

This study 

 pHrpL-5 1.047 kb DNA fragment containing hrpL gene (-128-+919) in 

pWSK29 

This study 

 pHrpL-6 1.050 kb DNA fragment containing hrpL gene (-131-+919) in 

pWSK29 

This study 

 pHrpL-7 1.060 kb DNA fragment containing hrpL gene (-141-+919) in 

pWSK29 

This study 

 pHrpL-8 1.072 kb DNA fragment containing hrpL gene (-153-+919) in 

pWSK29 

This study 

 pHrpL-9 1.096 kb DNA fragment containing hrpL gene (-177-+919) in 

pWSK29 

This study 

 pHrpL-10 1.134 kb DNA fragment containing hrpL gene (-215-+919) in 

pWSK29 

This study 

 pHrpL-11 1.183 kb DNA fragment containing hrpL gene (-264-+919) in 

pWSK29 

This study 

 pHrpL-Mut1 1.317 kb DNA fragment containing hrpL gene (-398-+919) with  

site-directed mutations at position -135 (A→C) and -127 

(G→A) in pWSK29 

This study 

pHrpL6-Mut2 1.050 kb DNA fragment containing hrpL gene (-131-+919) with 

a site-directed mutation at position from -128 to -126 

(TGC→CAT) in pWSK29 

This study 

pHrpL6-Mut3 1.050 kb DNA fragment containing hrpL gene (-131-+919) with 

a site-directed mutation at position from -124 to -122 

(AAT→CCC) in pWSK29 

This study 

pHrpL6-Mut4 1.050 kb DNA fragment containing hrpL gene (-131-+919) with 

a site-directed mutation at position -127 (G→A) in pWSK29 

This study 

pHrpL4-Mut5 1.040 kb DNA fragment containing hrpL gene (-121-+919) with 

a site-directed mutation at position from -115 to -113 

(GGT→AAC) in pWSK29 

This study 

pHrpS 1.81 kb DNA fragment containing hrpS gene in pWSK29 Ancona et al.,  

(2014) 

 pHrpS (Y100F) 1.81 kb DNA fragment containing hrpS gene with a  

site-directed mutation (Tyrosine100Phenylalanine) in pWSK29 

This study 

 pHrpS (Y100A) 1.81 kb DNA fragment containing hrpS gene with a  

site-directed mutation (Tyrosine100Alanine) in pWSK29 

This study 

 pHrpS (T101A) 1.81 kb DNA fragment containing hrpS gene with a 

site-directed mutation (Threonine101Alanine) in pWSK29 

This study 

 pHrpS250-325-His 238-bp PCR fragment containing hrpS gene in pET28a This study 
   

 

*Km
R
, Ap

R
, kanamycin and ampicilln resistance, respectively. 
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Table 3.2 Primers used in this study 

Primer Sequences (5’- 3’) 

Primers for cloning of 5’ deletion constructs 

hrpL-gfp1 AGTTGAATTCGTTATCAGTGTGTTATGTGAT (EcoRI) 

hrpL-gfp2 AGTTGAATTCGCCAGAAATTGCGACAATTT (EcoRI) 

hrpL-gfp3 AGTTGAATTCGCAACAAGTTGCCAGAAATTGC (EcoRI) 

hrpL-gfp4 AGTTGAATTCTGCAAATTTTGGCGGTTTAT (EcoRI) 

hrpL-gfp5 AGTTGAATTCGTCGCCAGCGACATATGCAAC (EcoRI) 

hrpL-gfp6 AGTTGAATTCCTGGCCATGCCGCTGTTAAA (EcoRI) 

hrpL-gfp7 AGTTGAATTCCAGTTGTCATTGTGTGGTGCGA (EcoRI) 

hrpL-gfp8 AGTTGAATTCGGGTAAAACGGGAGCAATTT (EcoRI) 

hrpL-gfp9 TCGAGGATCCTCGTTGACCGATGTTGATTC (BamHI) 

hrpL-121 AGTTGAATTCTTTGGCGGTTTATCCTGGCA (EcoRI) 

hrpL-131 AGTTGAATTCTATTGCAAATTTTGGCGGTT (EcoRI) 

hrpL-141 AGTTGAATTCATATGCAACTTATTGCAAAT (EcoRI) 

hrpL com R AGTAGAGCTCCGACACGCACATGTTCAACA (SacI) 

Primers for RT-PCR  

rpoD-rt1 CCTCCAAGTCGACATCGTTT 

rpoD-rt2 TGTAGCGGTGAAATGCGTAG 

hrpL-rt1 TTAAGGCAATGCCAAACACC 

hrpL-rt2 GACGCGTGCATCATTTTATT 

hrpA-rt1 GAGTCCATTTTGCCATCCAG 

hrpA-rt2 TGGCAGGCAGTTCACTTACA 

hrpS-rt1 AATGCTACGCGTGCTGGAAA 

hrpS-rt2 AACAATGGCGTTTGCGTTGC 

Primers for site-directed mutagenesis 

hrpL mut1 F AGCGACATATGCCACTTATTACAAATTTTGGCGGTTTATCC 

hrpL mut1 R GGATAAACCGCCAAAATTTGTAATAAGTGGCATATGTCGCT 

hrpL mut2 F CGATAAGCTTGATATCGAATTCTATCATAAATTTTGGCGGTTTATCCTGGCAA 

hrpL mut2 R TTGCCAGGATAAACCGCCAAAATTTATGATAGAATTCGATATCAAGCTTATCG 

hrpL mut3 F AAGCTTGATATCGAATTCTATTACAAATTTTGGCGGTTTATCCTG 

hrpL mut3 R AAGCTTGATATCGAATTCTATTACAAATTTTGGCGGTTTATCCTG 

hrpL mut4 F CTTGATATCGAATTCTATTGCACCCTTTGGCGGTTTATCCTGGCAAC 

hrpL mut4 R GTTGCCAGGATAAACCGCCAAAGGGTGCAATAGAATTCGATATCAAG 

hrpL mut5 F GCTTGATATCGAATTCTTTGGCAACTTATCCTGGCAACAAGTTGCCA 

hrpL mut5 R TGGCAACTTGTTGCCAGGATAAGTTGCCAAAGAATTCGATATCAAGC 

hrpS Y100F F CATTAATAATGGTGCTTTTACCGGTGCCGGGCAGG 

hrpS Y100F R CCTGCCCGGCACCGGTAAAAGCACCATTATTAATG 

hrpS Y100A F CATTAATAATGGTGCTGCTACCGGTGCCGGGCAG 

hrpS Y100A R CTGCCCGGCACCGGTAGCAGCACCATTATTAATG 

hrpS T101A F AATAATGGTGCTTATGCCGGTGCCGGGCAGG 

hrpS T101A R CCTGCCCGGCACCGGCATAAGCACCATTATT 

Primers for cloning of protein expression constructs 
hrpS 250-325 F CAGCCATATGTTCGTACTGGGCCTACCGCC (NdeI) 

hrpS 250-325 R GATCCTCGAGCTACTGAGCAATAACCCGAC (XhoI) 

Primers for EMSA  

 HrpS-WT F GACATATGCAACTTATTGCAAATTTT 

 HrpS-WT R AAAATTTGCAATAAGTTGCATATGTC 

 HrpS-Mut F GACATTTTTTACTTATCCCCCATTTT 

 HrpS-Mut R AAAATGGGGGATAAGTAAAAAATGTC 
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Table 3.3 Disease severity of E. amylovora wild-type (WT) strain and 13 complementation 

strains of the hrpL mutant on apple shoots 
 

Strain Necrosis (cm)* 

WT 15.5 ± 1.47 

ΔhrpL (pHrpL) 

ΔhrpL (pHrpL-11) 

ΔhrpL (pHrpL-10) 

ΔhrpL (pHrpL-9) 

ΔhrpL (pHrpL-8) 

ΔhrpL (pHrpL-7) 

ΔhrpL (pHrpL-6) 

ΔhrpL (pHrpL-5) 

ΔhrpL (pHrpL-4) 

ΔhrpL (pHrpL-3) 

18.25 ± 2.40 

19.67 ± 3.79 

16.63 ± 2.32 

18.67 ± 1.75 

19.10 ± 1.29 

14.38 ± 1.60 

9.88 ± 2.06 

10.50 ± 0.87 

2.04 ± 0.50 

0 

ΔhrpL (pHrpL-2) 0 

ΔhrpL (pHrpL-1) 0 

ΔhrpL (pWSK29) 0 

PBS 0 

 

*Mean of severity index from 6-7 inoculated shoots ± standard deviation seven days post inoculation 
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3.7 Figures 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.1 Domain organization of HrpS protein of E. amylovora. Bacterial enhancer binding 

protein (bEBP) HrpS consists of two domains (central (C) and DNA-binding (D) domain). The 

GAYTGA motif is located at position 98 to 103 within the C domain. The D domain contributes 

to binding to the upstream activator sequence (UAS) via an helix-turn-helix (HTH) motif located 

at position 274 to 312.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



76 

 

A 

 
 

 

B 

 
 

 

Figure 3.2 Schematic diagram of gfp reporter gene with various lengths of hrpL upstream 

regions in pFPV25 and GFP activity of E. amylovora carrying each construct. (A) DNA 

sequence of the hrpL upstream sequence. The IHF binding site is underlined, and the sigma 

factor 54 (σ
54

) binding site is double underlined. The transcription start site is indicated with an 

asterisk, and the start codon is indicated in red. (B) Series of deletion of hrpL promoter-gfp 

fusion constructs were transformed into Erwinia amylovora Ea273 wild-type. Bacterial strains 

were grown in hrp-inducing medium at 18°C for 18 h, and GFP activity of each strain was 

measured by flow cytometry. Numbers represent GFP activity means of three replicates ± 

standard errors. The experiment was repeated at least twice with similar results.  
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Figure 3.3 Schematic diagram of hrpL gene with various lengths of hrpL upstream regions 

in pWSK29. Series of hrpL gene constructs under the control of different lengths of hrpL 

promoter were generated and transformed into E. amylovora Ea1189 hrpL mutant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



78 

 

 

 

 

 
 

Figure 3.4 Pathogenicity tests of E. amylovora wild-type (WT) and 13 different 

complementation strains of the hrpL mutant on immature pears. Symptoms caused by WT 

and 13 different complementation strains of the hrpL mutant. The hrpL (pWSK29) was used as a 

negative control, 1, WT Ea1189; 2, hrpL (pHrpL-1); 3, hrpL (pHrpL-2); 4, hrpL (pHrpL-3); 5, 

hrpL (pHrpL-4); 6, hrpL (pHrpL-5); 7, hrpL (pHrpL-6); 8, hrpL (pHrpL-7); 9, hrpL (pHrpL-8); 

10, hrpL (pHrpL-9); 11, hrpL (pHrpL-10); 12, hrpL (pHrpL-11); 13, hrpL (pHrpL); 14, hrpL 

(pWSK29), DPI, days post-inoculation.  
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Figure 3.5 Pathogenicity tests of E. amylovora wild-type (WT) and 13 different 

complementation strains of the hrpL mutant on apple shoots. Symptoms caused by WT and 

13 different complementation strains of the hrpL mutants at 7 days post-inoculation. The hrpL 

(pWSK29) was used as a negative control, 1, WT Ea1189; 2, hrpL (pHrpL-1); 3, hrpL (pHrpL-2); 

4, hrpL (pHrpL-3); 5, hrpL (pHrpL-4); 6, hrpL (pHrpL-5); 7, hrpL (pHrpL-6); 8, hrpL (pHrpL-7); 

9, hrpL (pHrpL-8); 10, hrpL (pHrpL-9); 11, hrpL (pHrpL-10); 12, hrpL (pHrpL-11); 13, hrpL 

(pHrpL); 14, hrpL (pWSK29); 15. PBS. 
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Figure 3.6 Hypersensitive response (HR) assay of E. amylovora wild-type (WT) and seven 

selected complementation strains of the hrpL mutant on tobacco leaves. Eight-week-old 

tobacco leaves were infiltrated with wild-type, mutant strain and complementation strains with 

cell suspensions at an optical density at 600 nm (OD600) of 0.1, 1, WT Ea1189; 2, hrpL (pHrpL-

3); 3, hrpL (pHrpL-4); 4, hrpL (pHrpL-5); 5, hrpL (pHrpL-6); 6, hrpL (pHrpL-7); 7, hrpL 

(pHrpL-8); 8, hrpL (pHrpL); 9, hrpL (pWSK29); 10, PBS. 
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Figure 3.7 Expression of hrpL and hrpA genes in vivo and in vitro by quantitative real-time 

reverse transcription-polymerase chain reaction (qRT-PCR). (A) Relative gene expression of 

hrpL and hrpA genes in five selected complementation strains of the hrpL mutant (pHrpL-3, 4, 6, 

7 and 8) as compared with the full hrpL complementation strain (pHrpL) grown in hrp-inducing 

medium at 18°C at 6 h. (B) Relative gene expression of hrpL and hrpA genes in five selected 

complementation strains of the hrpL mutants (pHrpL-3, 4, 6, 7 and 8) as compared with the full 

hrpL complementation strain (pHrpL) inoculated onto immature pear fruits at 6 h. The relative 

fold change of each gene was derived from the comparison versus pHrpL. The hrpL (pWSK29) 

was used as a negative control, and the rpoD gene was used as an endogenous control. The 

values of the relative fold change were the means of three replicates. The experiments were 

repeated at least twice with similar results. Error bars indicate standard deviation. 
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Figure 3.8 Mutational analysis of potential HrpS binding site. (A) The HrpS binding site 

(double underlined) is located at -141 to -122 upstream of the hrpL transcription start site. Mirror 

sequence (underlined) is located at -121 to -111 in the hrpL promoter region. (B) Schematic 

diagram of mutated constructs for the analysis of the potential HrpS binding site and the mirror 

sequence. Mut1, Mut2 to Mut4, and Mut5 were generated using pHrpL, pHrpL-6, and pHrpL-4 

constructs, respectively. Mutated nucleotides are indicated in red.  

 

 

 
 

Figure 3.9 Pathogenicity tests of E. amylovora wild-type (WT) and five complementation 

strains of the hrpL mutant on immature pears. Symptoms caused by WT and five 

complementation strains of the hrpL mutants. The hrpL (pWSK29) was used as a negative 

control, 1, WT Ea1189; 2, hrpL (pHrpL-Mut1); 3, hrpL (pHrpL6-Mut2); 4, hrpL (pHrpL6-Mut3); 

5, hrpL (pHrpL6-Mut4); 6, hrpL (pHrpL4-Mut5); 7, hrpL (pHrpL); 8, hrpL (pWSK29), DPI, 

days post-inoculation.  
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Figure 3.10 Expression of hrpL and hrpA genes in vitro by quantitative real-time reverse 

transcription-polymerase chain reaction (qRT-PCR). (A) Relative gene expression of hrpL 

and hrpA genes in hrpL mutants (pHrpL-Mut1) as compared with the hrpL (pHrpL) grown in 

hrp-inducing medium (HMM) at 18°C at 6 h. (B) Relative gene expression of hrpL and hrpA 

genes in hrpL mutants (pHrpL6-Mut2, 3, 4) as compared with the hrpL (pHrpL-6) grown in 

HMM at 18°C at 6 h. (C) Relative gene expression of hrpL and hrpA genes in hrpL mutants 

(pHrpL4-Mut5) as compared with the hrpL (pHrpL-4) grown in HMM at 18°C at 6 h. The 

relative fold change of each gene was derived from the comparison versus pHrpL. The hrpL 

(pWSK29) was used as a negative control, and the rpoD gene was used as an endogenous control. 

The values of the relative fold change were the means of three replicates. The experiments were 

repeated at least twice with similar results. Error bars indicate standard deviation.  
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Figure 3.11 Expression of hrpL and hrpA genes in vivo by quantitative real-time reverse 

transcription-polymerase chain reaction (qRT-PCR). (A) Relative gene expression of hrpL 

and hrpA genes in hrpL mutants (pHrpL-Mut1) as compared with the ΔhrpL (pHrpL) inoculated 

onto immature pear fruits at 6 h. (B) Relative gene expression of hrpL and hrpA genes in hrpL 

mutants (pHrpL6-Mut2, 3, 4) as compared with the ΔhrpL (pHrpL-6) inoculated onto immature 

pear fruits at 6 h. (C) Relative gene expression of hrpL and hrpA genes in hrpL mutants 

(pHrpL4-Mut5) as compared with the hrpL (pHrpL-4) inoculated onto immature pear fruits at 6 

h. The relative fold change of each gene was derived from the comparison versus pHrpL. The 

hrpL (pWSK29) was used as a negative control, and the rpoD gene was used as an endogenous 

control. The values of the relative fold change were the means of three replicates. The 

experiments were repeated at least twice with similar results. Error bars indicate standard 

deviation. 
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Figure 3.12 Electrophoretic mobility shift assay (EMSA) using truncated HrpS250-325 protein. 
(A) The 26 bp of the hrpL promoter region (-144 to -119 nt) containing the HrpS binding site 

(HrpS-WT) and mutations of the HrpS binding site (HrpS-Mut) was tested for binding to 

HrpS250-325. The HrpS binding site is underlined, and mutated nucleotides are indicated in red. (B) 

The unshifted DNA (free probe) and the protein-DNA complex (HrpS250-325 bound probe) are 

indicated by arrows. The concentration of purified HrpS250-325 is indicated above each lane.  

 

 

 

 

 

 
 

 

Figure 3.13 Sequence alignment of the dyad symmetry sequence on the hrpL promoter 

region in Erwinia amylovora, Pectobacterium atrosepticum, Dickeya dadantii and Pantoea 

stewartii. Dyad symmetry sequences are indicated in red.  
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Figure 3.14 Pathogenicity tests of E. amylovora wild-type (WT), hrpS mutant and hrpS 

mutants complemented with different hrpS constructs on immature pears. Symptoms 

caused by WT, hrpS (pHrpS), hrpS (pHrpS (Y100F)), hrpS (pHrpS (Y100A)), hrpS (pHrpS 

(T101A)) and hrpS mutant. DPI, days post-inoculation.  

 

 

 

 

 
 

Figure 3.15 Hypersensitive response (HR) assay of E. amylovora wild-type (WT), hrpS 

mutant and hrpS mutant complemented with different hrpS constructs on tobacco leaves. 
Eight-week-old tobacco leaves were infiltrated with wild-type, hrpS mutant and different 

complementation strains with cell suspensions at an optical density at 600 nm (OD600) of 0.1, 1, 

WT Ea1189; 2, hrpS (pHrpS (Y100F)); 3, hrpS (pHrpS (Y100A)); 4, hrpS (pHrpS (T101A)); 5, 

hrpS (pHrpS); 6, hrpS; 7, PBS. 
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Figure 3.16 Expression of hrpL and hrpA genes in vivo and in vitro by quantitative real-time 

reverse transcription-polymerase chain reaction (qRT-PCR). (A) Relative gene expression of 

hrpS, hrpL and hrpA genes in three different complementation strains of the hrpS mutants 

(pHrpS-Y100F, Y100A and T101A) as compared with the hrpS complementation strain (pHrpS) 

inoculated onto immature pear fruits at 6 h. (B) Relative gene expression of hrpS, hrpL and hrpA 

genes in three different complementation strains of the hrpS mutants (pHrpS (Y100F), pHrpS 

(Y100A), pHrpS (T101A)) as compared with the hrpS complementation strain (pHrpS) grown in 

hrp-inducing medium at 18°C at 6 h. The relative fold change of each gene was derived from the 

comparison versus pHrpS. The hrpS was used as a negative control, and the rpoD gene was used 

as an endogenous control. The values of the relative fold change were the means of three 

replicates. The experiments were repeated at least twice with similar results. Error bars indicate 

standard deviation. 
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