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ABSTRACT

Multiple descriptions about the same entity from different sources will

inevitably result in data or information inconsistency. Among conflicting

pieces of information, which one is the most trustworthy? How to detect the

fraudulence of a rumor? Obviously, it is unrealistic to curate and validate

the trustworthiness of every piece of information because of the high cost of

human labeling and lack of experts. To find the truth of each entity, much

research work has shown that considering the quality of information providers

can improve the performance of data integration. Due to different quality

of data sources, it is hard to find a general solution that works for every

case. Therefore, we start from a general setting of truth analysis at first and

narrow down to two basic problems in data integration. We first propose

a general framework to deal with numerical data with flexibility of defining

loss function. Source quality is represented by a vector to model the source

credibility in different error interval. Then we propose a new method called

No Truth Truth Model(NTTM) to deal with truth existence problem in

low-quality data. Preliminary experiments on real stock data and slot filling

data show promising results.
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Chapter 1

Introduction

The websites offer information for us every day, becoming an essential part of

information sources for us. Not only the agencies with high reputation pub-

lish the news and reviews on their websites, but also informal websites and

other social interaction media (social networks, discussion forums, blogs).

Are all the information resources trustworthy? The answer probably is no.

There is a lot of incorrect information on the websites. It is hard for one

reader to identify whether a claim is true or not. Also, it is intractable for

the information providers to make sure that every piece of news is credible.

Besides, there are bad sources who spread rumors and intentionally modify

the truth. A report by [1] mentions that consumers in US have low trust in

information on the websites. Erroneous information and rumors would prop-

agate on the web according to [2]. Thus, verifying the truth is an important

and challenging problem.

On the other hand, data integration [3, 4, 5] have drawn people’s attention

for many years in all aspects of life. For example, when a patient is registered

in many hospitals, integration of the information of the patient may be very

helpful to the diagnosis of illness if treatment history is mapped correctly to

the same person. Recently, the automatic construction of knowledge base

have been paid more and more attention. Given a set of information re-

sources, integrating conflicting descriptions of entities is very challenging.

The most straightforward method is majority voting. It collects all the

facts describing one object, calculates the frequency of each type of facts,

and chooses the fact with the maximum number of votes as the truth. How-

ever, this method fails to consider the trustworthiness of sources. It tends to

provide false conclusions when multiple sources provide wrong facts about

the target object, while only a few high-quality sources give the correct in-
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formation. Therefore, majority voting, though simple and intuitive, often re-

sults in bad performance of accuracy and is intractable in many applications.

A better way to truth finding is to consider source quality. One basic in-

tuition is that if an answer is provided by more reliable sources, it is more

likely to be true. If one source is supported by many trustworthy answers, it

is prone to be reliable. Therefore, it is natural to infer the truth and source

quality together. It enables us to find truth and estimate source quality in an

unsupervised, or semi-supervised way, which is the most common situation

in truth finding problems.

Motivated by the need of obtaining high-quality information, truth find-

ing [6, 7, 8, 9, 10, 11, 12, 13, 14, 15] have been studied for a long time in

database community. Most of the previous work are focused on integrating

data in categorical value[16, 17, 18, 19]. But numerical data exists commonly

in data integration tasks, such as weather, stock price, flight price, age of a

person, etc. Recently [20] propose a Gaussian Truth Model (GTM) which

deals with real-valued data integration. In GTM, each claim is assumed to

follow a Gaussian distribution centered as latent truth with variance of each

source. Thus, source quality is represented by a single score–the variance

estimated from the inferred truth. But in reality, this assumption may not

hold. Therefore, we propose to define source quality as a vector. Each dimen-

sion of the vector identifies the accuracy of the source in the corresponding

error interval. Thus, it helps to increase the granularity of the representation

of source quality. Experiment on real stock data set shows the effectiveness

of our model.

Another problem we are interested in is that when the overall quality of

data is extremely low, how we can have a relatively good integration result.

If we still use a single source quality score to measure each source, such as

precision, integration output must be erroneous. For example, there are 18

related websites that provide birth place of famous people. There is one

person whose birth place is actually unavailable in public, but there are still

2 systems providing an answer to it. When people make a query about the

birth place of this person, the ideal output is to keep silent. We can calculate

a confidence score of each answer and set a threshold to decide whether we
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want to give out an answer or not. But the problems may be (1) It’s hard

to find a suitable threshold without supervision. (2)Even with weak super-

vision, it’s too bold to have a strong belief on that because of the bias of

limited training data. This problem becomes harder when correct answers

are only provided by a small portion of sources. Say if precision is the only

measure used to represent the source quality, and a large number of sources

provide answers for both people whose birth place is commonly known, and

the people whose birth place is unavailable, the judgment will be either to

keep silent to all queries, or to give out answer for every question. In re-

sult, the overall performance is either with high precision, low recall or with

high recall, low precision. In both cases, F1 measure is harmed seriously.

Therefore, we propose to have more types of source quality to measure the

performance of systems of different aspects. Error rate, miss rate and recall

for each system are introduced later. We fit the data into a probabilistic

graphical model and jointly estimate the source quality and the truth. Spe-

cial techniques to initialize the priors are discussed, too. Experiments on real

slot filling data set demonstrate the effectiveness of our method.

To summarize, our major contributions in this thesis are:

• Propose a general framework for numerical data integration and de-

fine a vector representation for source quality which could effectively

represent the performance of sources in different error intervals;

• To the best of our knowledge, we are the first to propose a method to

deal with such low-quality sources, whose F1 measure is around 30%

at best.

• Our method can automatically decide whether or not to integrate an-

swer instead of providing an integrated answer consistently across all

questions.

In the following chapters, we first present a literature review on truth anal-

ysis problems. In Chapter 3, we introduce a general truth finding framework

to integrate numerical data. In Chapter 4, we raise a new problem in truth

finding and propose a new model for low-quality data integration. In Chap-

ter 5, we implement our new models and test the effectiveness on two real
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data sets. Finally we make a conclusion of the thesis.
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Chapter 2

Literature Review

In this chapter, we make an overview of existing methods for the truth finding

problem. First in Section 2.1, we introduce the basic truth finding frame-

work and discuss their advantages as well as disadvantages. In Section 2.2,

some extensions under the same framework are introduced. Then in Section

2.3, we present existing probabilistic models, which are more adaptable and

have fewer parameters. Next, we discuss the copy detection and group de-

tection problem in Section 2.5 and Section 2.4, respectively. Finally, some

applications of truth finding methods are introduced in Section 2.6.

2.1 Basic Truth Finding Framework

In this section, we first introduce the basic truth finding framework. The

network of sources, facts and objects is represented as Figure 2.1. One source

provides multiple facts about multiple objects. One object is supported by

multiple facts. Some facts are true but some are not. Table 2.1 is an example

of this framework, where several websites provide the cast information for

different movies. Netflix1 asserts that Daniel Radcliffe and Emma Watson

are the actors of Harry Potter, which is true, but BadResources2 claims

that Brad Pitt plays a part in Harry Potter, which is false. Based on such

conflicting information, the goal of truth finding is to iteratively find out

whether one claim for the object is true and also infer the quality of the fact.

Let s denote a source, f denote a fact and o denote an object. In the

following, we give several definitions before introducing the truth finding

methods. We first define the trustworthiness of a source, denoted by t(s),

as the confidence of the facts provided by s. We then define the confidence

1www.netflix.com/
2www.badresources.com
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Table 2.1: An example of data conflicts between sources: Websites, Cast
and Movies

Source (Website) Fact (Cast) Object (Movie)

Netflix Daniel Radcliffe, Emma Watson Harry Potter
Netflix Johnny Depp Pirates 4
Hulu Daniel Radcliffe, Emma Watson Harry Potter
Hulu Johnny Depp Pirates 4

Badresources.com Brad Pitt Harry Potter
. . . . . . . . .

Figure 2.1: Basic Truth Finding Model summarized by [21].

p2

p1

p4

p3

f2

f1

f4

f3
o2

o1

Providers Facts Objects

Explorations 1
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Figure 2.2: Definitions of notations in TruthFinder

of a fact, denoted by t(f), is the probability that f is true. Given a raw

database of tuples (source, fact, object), our goal is to obtain truth value of

each object, and trustworthiness of each source.

Most of the existing truth finding models are unsupervised, due to the

limitation to obtain ground truth labels. A common practice is to iteratively

compute the trustworthiness of sources and the confidence of facts. Next, we

will introduce the intuition behind it.

2.1.1 TruthFinder

[16] propose an algorithm called TruthFinder. It originates from the idea that

if one fact is provided by many trustworthy sources, it is likely to be true;

however, if one fact is conflicting with other facts given by many trustworthy

sources, it tends to be false. On the other hand, if one source provides facts

with high confidence, it is highly credible; otherwise it is not. By iteratively

estimating the trustworthiness of sources and the confidence of facts, Truth

Finder can model the source quality to better infer the facts about the target

objects.

To introduce the details of Truth Finder, we first give the necessary no-

tations in Figure 2.2, and provide the definitions of Confidence of facts and

Trustworthiness of websites.

Definition 1 (Confidence of facts) The confidence of a fact f (denoted

by s(f)) is the probability of f being correct.
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Definition 2 (Trustworthiness of websites) The trustworthiness of a web

site w (denoted by t(w)) is the expected confidence of the facts provided by

w.

In Truth Finder, the connection between the above two definitions is given

by the following equation.

t(w) =

∑
f∈F (w) s(f)

|F (w)|
(2.1)

s(f) = 1−
∏

w∈W (f)

(1− t(w)) (2.2)

Equation 2.1 has an interpretation that the trustworthiness of a website

is the average confidence of the facts it provides; and Equation 2.2 is the

probability of a fact being true. These two equations build the connection

between t(w) and s(f), which can be solved in an iterative way.

Different facts of one object may be conflicting with each other, while they

could also support each other. Thus it brings another definition called im-

plication. The implication from fact f1 to f2 is denoted by imp(f1 → f2).

It is f1’s influence on f2’s confidence. imp(f1 → f2) is a value between −1

and 1. A positive value indicates f1 and f2 are positively correlated. While

a negative value means if f1 is correct, f2 is likely to be wrong.

The algorithm is shown in Algorithm 2.3. In line 3, the confidence of

fact is calculated as the multiplication of all the trustworthiness of sources

providing this fact. In line 6, it takes the impact between facts into consid-

eration, weighing the implication by parameter ρ. In line 9, the confidence

of fact is compensated by a parameter γ, which represents the compensation

for duplication between facts. In line 14, the trustworthiness of source is

computed by all the confidence of facts it provides. The algorithm continues

to calculate t(s) and s(f) until it converges, which is based on a threshold δ.

TruthFinder has several advantages over the naive Majority Voting strat-

egy, because it considers the source quality and the source quality with the

confidence of facts together. In empirical test, it has better performance

over majority voting in the book-author experiment. Besides, in terms of

the name abbreviation problem (i.e. Graeme Witt and G. Witt), it gives the

8



Figure 2.3: The basic algorithm proposed by [16].

1: Input: 1. Facts f provided by different providers related to ob-
jects o ∈ O. 2. Implications matrix imp.

2: Initialize t(p) to a value v ∀p, where 0 ≤ v ≤ 1.

3: while |normalize(tt)− normalize(tt−1)| ≥ δ do
4: for every fact f do
5: σ(f) = log(

∏
p∈P (f)(1− t(p)))

6: end for
7: for every fact f do
8: σ∗(f) = σ(f) + ρ

∑
o(f′)=o(f) σ(f

′)imp(f ′ → f)

9: end for
10: for every fact f do
11: s(f) = 1

1+eγσ
∗(f)

12: end for
13: for every provider p do

14: t(p) =

∑
f∈F (p) s(f)

|F (p)|
15: end for
16: end while
17: return t(p) and s(f) for every f and p

Explorations Volume

abbreviation less score than the full name. Therefore it defines the fact in dif-

ferent granularities. However, the effectiveness of [16] requires the following

four assumptions.

• Usually there is only one true fact for a property of an object.

• This true fact appears to be the same or similar on different sources.

• The false facts on different sources are less likely to be the same or

similar.

• In a certain domain, a source that provides mostly true facts for many

objects will likely provide true facts for other objects.

Because of the above assumptions, TruthFinder has the following disad-

vantages.

• Multiple-value fact It assumes that an object has only one true fact

instead of multiple facts. In fact, many objects have multiple facts.

For example, one movie could have 100 actors, while in TruthFinder,

we could only assign k actors (i.e. three principle actors) as the true

value. If a fact claims two actors or four actors, it would be masked

as a false fact since most of the trustworthy sources assert three actors

for this movie.

9



• Copy detection It assumes that the false facts on different sources are

less likely to be the same. However, copy among facts from different

sources happens frequently in the real world. Also in the later calcula-

tion of the confidence of facts, it uses the parameter γ to compensate

the source dependency. But for different facts, the intensity of copy is

likely to be different. Some sources are likely to copy from others while

the others tend to be the original authors.

• Domain Expert It assumes that a source providing true facts for

many objects will likely provide truth for other objects as well. But

in reality, sources excel in particular domains. Thus, clustering is not

applied in this scheme.

• Rumors It works only if most trustworthy sources provide the truth.

But in certain domains no expert exists, and rumors can spread across

the network. Thus, truth finding in heterogeneous network may help

to split out rumors.

• Parameters There are three parameters in the Truth Finder method,

which can be hard to tune in many truth finding applications.

2.2 Extensions of Basic TruthFinder

2.2.1 Alternatives of Propagation Functions

Since the basic truth finding algorithms have shortcomings, other fact find-

ing models, aiming to improve the basic algorithms, have been introduced.

[17] introduce several fact finders. They are in the same framework of Truth

Finder but different in the way of calculating the confidence of facts and the

trustworthiness of sources.

Sums Inspired by Hubs and Authorities[22], the authors in [17] treat

sources as hubs and claims as authorities. We change their notations to

make them more consistent with our earlier ones.

ti(w) =
∑

f∈F (w)

si−1(f) si(f) =
∑

w∈W (f)

ti(w) (2.3)

10



Here, the authors normalize si(f) and ti(w) to prevent overflow. The same

normalization trick is also applied to the following alternatives proposed by

the same authors.

Average·Log In TruthFinder method [16], the trustworthiness for a web-

site is the average of the confidence of facts it provides. The authors in [17]

claim these will overemphasize those sources with relatively few claims. So

they use the log of the number of claims provided by a particular source to

modulate the average.

ti(w) = log(|F (w)|)
∑

f∈F (w) s
i−1(f)

|F (w)|
(2.4)

Investment In this algorithm, the sources distribute their trustworthiness

equally among their claims, and the total belief in a claim grows according

to a nonlinear function. After each iteration, the sources are paid back

proportional to their investment.

si(f) = G

 ∑
w∈W (f)

ti(w)

|W (f)|

 (2.5)

ti+1(w) =
∑

f∈F (w)

si(f)

ti(w)
|F (w)|∑

r∈W (f)
ti(r)
|F (r)|

(2.6)

PooledInvestment The “investing” and “harvesting” processes remain the

same as Investment. Now we hope the total belief of facts for a particular

object remains the same, so we perform addition normalization procedure.

Denote H i(f) =
∑

w∈W (f)
ti(w)
|W (f)| , then

si(f) = H i(f) ∗ G(H i(f))∑
d∈Mf

H i(d)
(2.7)

where Mf represents the facts concerning o(f).
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2.2.2 Hardness of Facts

In [9], the authors introduce three ways to estimate the uncertainty as well

as the limited coverage of the claims. Cosine is based on the cosine similar-

ity measure which measures the similarity of the truth value and the value

given by one source. To estimate the truth value, they use simple averaging

method. 2-Estimates is a heuristic approach to estimate the truth values

of facts the error of sources together. It computes the trust score of truth

value and the probability of one source making errors iteratively with proper

normalization. 3-Estimate is an extension of 2-Estimate, which calculates

the difficulty of facts, i.e. the propensity of sources to be wrong on this fact.

Intuitively, one source will earn more credits when it correctly answers a dif-

ficult question than answering something trivial. It estimates truth of facts,

trust score of sources and hardness of facts iteratively.

2.2.3 Semi-supervised Fact Finding

Traditional fact finders are proposed in an unsupervised way. If false claims

spread by copying among sources and false information takes the majority

part, unsupervised methods are often ineffective. Thus, including some level

of supervision can help with the iterative process of calculating truth values

and source quality. [19] propose a semi-supervised approach called Semi-

Supervised Truth Finder(SSTF) to find the true values. The intuition of

SSTF is based on three principles: claims of the same source should have

similar confidence score; similar claims should have similar confidence score;

if two claims are conflicting, they cannot be both true. The claims and their

relationships are encoded into a graph. Each claim is modeled as the node

in the graph and the similarity between claims is models as the edge. If

two claims are provided by the same source, or they support each other,

the weight should be positive. If two claims are conflicting, the similarity

score should be negative. The weight is normalized to [−1, 1]. Then, truth

finding is equivalent to assign score to each fact that are consistent with the

relationships between nodes indicated by the graph edges.
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2.2.4 Generalized Fact Finding

In [18, 23] propose a generalized fact-finding framework, which allows to

incorporate prior knowledge such as prior confidence of sources or the at-

tributes of sources. Classical truth finders do not consider uncertainty in

the information extraction process. In their paper, they separately calculate

two types of uncertainty: wu for uncertainty in information extraction, wp

for source uncertainty. wσ is for the implicit assertion of similar claims of a

source and wg is for the implicit assertion of claims for the same object of

a source. Since these factors are orthogonal, they combine them together to

calculate final assertion weight:

w(w, f) = wu(w, f) ∗ wp(w, f) + wσ(w, f) + wg(w, f) (2.8)

And in the final step, they incorporate the assertion weight into the itera-

tion equation, e.g. Sums, Average·Log and Invest etc.

More generally, they propose a layered model which allows to add new

layers of groups or attributes to the existing bipartite graph of sources and

claims. The additional layer directly connects to the sources to form a 3-

layered graph.

2.3 Probabilistic Models for Truth Finding

In the previous section, we indicate that the basic truth finding algorithms

have some drawbacks. One of the shortcomings is that it has a large number

of parameters, which are tuned manually based on different dataset. Proba-

bilistic models help to solve this problem. Incorporating the prior probabil-

ity, these models succeed in automatically modeling the posterior probability

based on all observations. Because it makes fewer assumptions than basic

truth finding framework, its performance is often more stable and accurate.

2.3.1 Latent Truth Model

[15] introduce a probabilistic model called Latent Truth Model (LTM). The

principle of LTM is that, by considering the truth as a latent random variable,

13



it is feasible to model the source quality and the complete spectrum of errors

in a probabilistic framework. To illustrate LTM, we introduce the following

definitions.

Definition 3 DB = {row1, row2,
′ rowN} is the raw database. Each row is

a tuple (e, a, c), where e denotes the entity (object), a is the attribute, and c

is the source.

Definition 4 F = {f1, f2,′ fF} is the set of distinct facts selected from DB.

Each fact has an unique id, forming a tuple (idf , ef , af ).

Definition 5 C = {c1, c2,′ .cC} is the set of claims selected from DB. Each

claim is in the format of (idfc , sc, oc), where oc is the observation of the claim,

taking True or False

Definition 6 T = {t1, t2,′ tT} is the set of truths, which takes a Boolean

value of True or False. Each fact has a truth value, thus we denote the truth

associated with f as tf

In the basic framework model, the trustworthiness of a source is under the

assumption that there is one single truth for each entity. In fact, multiple

values can be true. For example, one movie could have 100 actors. Multiple

values of facts allow each actor to be considered as one truth. Even though

one source provides one fact, it is considered to be true if this fact provides

the correct actor for this movie. Also, the source quality providing one correct

actor could be evaluated by partly offering the correct fact.

Another drawback of the basic framework is that the evaluation of source

quality is based on a single parameter: whether one fact is true or not.

But in practice, sources may differ in its preference to provide information.

Under the assumption that one source could provide multiple facts for one

entity, sources behave differently. Some sources are prone to provide more

facts, while others are more conservative, likely to provide fewer correct facts.

This intuition brings about the idea of evaluating source quality by two-sided

measures. Table 2.2 shows the confusion matrix of source s.

Four derivative quality measures of source s are shown in Table 2.2. These

measures have their own advantages and disadvantages. Precision only con-

siders positive claims while ignoring negative claims. Accuracy takes both

the positive and negative claims, but it ignores the difference between two
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Table 2.2: Confusion Matrix of Source s

t=True t=False

o=True True Positives(TP) False Positive(FP)
o=False False Negative(FN) True Negative(TN)

different types of errors: false positive and false negative. Sensitivity and

Specificity consider the two different types of errors and could distinguish

the conservative sources from non-conservative sources, but using either of

them alone still cannot represent all the characteristics of a source. Thus, Bo

et al. propose a method to model the source quality by two-sided measures:

sensitivity and specificity.

Table 2.3: Four derivative quality measures of source s

Precision TP
TP+FP

Accuracy TP+TN
TP+TN+FN+FP

Sensitivity or Recall TP
TP+FN

Specificity TN
FP+TN

Figure 2.4 shows the structure of conditional dependence of LTM. The

following is the algorithm of LTM.

1. Modeling Priors For each source k, model its false positive rate φ0
k ∼

Beta(α0,1, α0,0), where α0,1 is the prior FP, and α0,0 is the prior TP.

Model its false negative rate φ1
k ∼ Beta(α{1,1}, α1,0). For each fact f ,

model its prior truth probability θf ∼ Beta(β1, β0), where β1 is the

prior true count, and β0 is the prior false count. β determines how likely

each fact is to be true. We can use a uniform prior if there is no prior

knowledge to the facts. Model its truth label tf ∼ Bernoulli(θf ).

The prior probability that tf is true is θf . For each claim c, model its

observation oc ∼ Bernoulli(θ
tf
sc )

2. MAP The complete likelihood of all observations, latent variables and
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unknown parameters is p(o, s, t, θ, φ0, φ1|α0, α1, β). The best estimation

is to get the maximum a posterior (MAP) for t:

t̂MAP =

arg max
t

∫∫∫
p(o, s, t, θ, φ0, φ1, α0, α1, β)dθdφ0dφ1

Figure 2.4: The structure of conditional dependence of LTM proposed by
[15]. S denotes source, F denotes fact and C denotes claim.

�

�

The Latent Truth Model makes the following contributions:

• Granularity of source quality It models the two-sided source qual-

ity, which makes LTM naturally support multiple values of facts for

one object and outperform other models which can only support one

truth for one object.

• Prior domain knowledge LTM incorporates the prior knowledge into

its modeling, thus is more flexible for different datasets.

2.3.2 Gaussian Truth Model

Algorithms discussed above all deal with categorical data, and the GTM

model in [20] is the first in the literature to deal with numerical truth.

The authors claim that due to the continuous nature, numerical data has a

more common and severe issue in data quality. Examples include presidential

election polls, census, and economic statistics to stock price predictions and

weather forecasts[20].
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Figure 2.5: Graphical model for GTM

The difference between numerical and categorical data brings new chal-

lenges. First, unlike categorical data, numerical data have inherent distance

or similarity. For example, if 50, 90 and 100 are observed for an object, it is

reasonable to believe the truth lie close to 90 or 100, rather than 50. Second,

in the numerical case, claims are not exactly right or wrong, but should get

credits according the distance from the truth. Of course, closer claim will

get more credits. Third, the consensus level among claims for each entity

should be a factor in estimating truth and source quality. Fourth, numerical

data can often have outliers. Some outliers may deviate very much from the

truth, which will great impact the truth finding.

To tackle these challenges, authors in [20] propose GTM model, which is

shown in figure 2.5. Next we will briefly introduce the generative story for

the GTM.

First, they use deviation σ2
s to model the quality of sources. Intuitively, the

smaller the deviation, the better the quality. In the paper, authors assume

σ2
s is drawn from a inverse Gamma distribution:

σ2
s ∼ Inv −Gamma(α, β)

⇒ p(σ2
s) = (σ2

s)
−α−1 exp{− β

σ2
s

}

The choice of the inverse Gamma distribution is because it’s the conjugate

prior for Gaussian distribution, and the MAP inference is much more effi-
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cient. If no addition information is available, the same parameter α, β can

be used for all sources.

Second, the latent truth µ is drawn from a Gaussian distribution with

mean µ0 and variance σ2
0:

µ ∼ N (µ0, σ
2
0) (2.9)

In the original paper [20], the authors first remove outliers and then do

normalization of the values provided for the same object. Since the focus

their work is on trust analysis, they simply use z-score to remove outliers.

After normalization, they set µ0 = 0 and σ2
0 = 1.

Finally, the value provided by sc for entity e is draw from a Gaussian

distribution with the µe as the mean and σ2
sc as the variance:

oc ∼ N (µe, σ
2
sc) (2.10)

So the joint distribution for all random variables is given as follows:

p(o, µ, σ|α, β, µ0, σ0) =∏
s∈S

p(σ2
s |α, β)

∏
e∈E

(
p(µe|µ0, σ

2
0)
∏
c∈Ce

p(oc|µe, σ2
e)

)
(2.11)

For inference on GTM, the authors use EM algorithm to compute the

truth µ and the variance σ2 in an iterative manner. By merit of Bayesian

approach, the authors claim their methods can work in incremental mode.

2.4 Truth Finding with Group Detection

2.4.1 Clustering-based Truth Finding

In the basic framework of truth finding, it does not consider the group effect

of objects. Each resource may excel in certain domains, or for certain group of

objects. Thus, group information helps to justify the truth of facts provided

by different sources. [24] propose a clustering-based truth finding algorithm.
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It assumes that objects can be clustered based on the trustworthiness of

sources, and thus performs truth finding in a way personalized to a particular

group of objects. Figure 2.6 shows the framework of the method.

Figure 2.6: Framework of clustering-based truth finding
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To compute the clustering of the objects, one can compute the trustwor-

thiness of source for each object. Then the algorithm clusters the objects

using the object-conditional trust (to(p), is computed as the confidence of

the fact offered by p for object o) vectors.

2.4.2 Generative Model of Multi-source Sensing

Though Latent Truth Model considers the two-sided source quality and sup-

ports multi-value truth, it does not consider the source dependency, which

may influence the sensitivity and specificity evaluation. [25] propose an algo-

rithm to infer the source dependency by detecting latent group labels among

sources together with source quality estimation and truth discovery. Depen-

dent sources are grouped and their credibility is dependent on different group

level. Figure 2.7 is the graphical model of the generative process of multi-

source sensing problem. For each source Sn, they draw its group assignment

gn from a stick breaking process. For each group Gl, they draw it group

reliability ul from a beta distribution. For each object Om, they draw its

true value tm from a uniform distribution. A object-specific group reliability

indicator rl,m is drawn from a Bernoulli distribution parameterized by group
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reliability ul. The model parameter πl,m of each group on a particular object

is drawn from the conjugate prior Hrl,m(tm) to the distribution of observed

claims F (πgn,m), which is dependent on the true value tm and object-specific

group reliability rl,m. Then, given the group assignment gn, each source gen-

erates its claim yn,m based on the corresponding distribution of observations

F (πgn,m). Latent group assignment, truth value and group reliability are

estimated by maximizing the observation likelihood. Variational inference is

applied to approximate the parameters.

Figure 2.7: Graphic model for multi-source sensing

2.5 Truth Finding with Copy Detection

Web technologies have enabled data sharing but also simplified illegal copy-

ing. The model of copying can be complex, one article can copy several

sources; some sources are copied several times by different articles; some

articles do not directly copy but rephrase paraphrase the words in certain ar-

ticles. There are growing needs for understanding these copying relationships

for business and legal uses. For the data management applications, it is also

important for data integration systems to track the copying relationships.
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Otherwise, it is difficult to resolve the conflicting data sources. The conflicts

can be between data sources, or between data and the real-world entity.

[7] is the first to consider the copy detection problem. The simple assump-

tion is that the truth provided by the majority of sources is more likely to be

true. However, simple voting methods are not enough. For example, when

a false value is spread through copying, the voting method became venera-

ble. They consider how to find true values from conflicting information when

there are a large number of sources, among which some may copy from oth-

ers. They present a novel approach that considers dependence between data

sources in truth discovery. They assume that if two data sources provide

a large number of common values, but many of which are rarely provided

by other sources, it is very likely that one copies from the other and these

values are wrong. They take the Bayesian analysis approach to decide the

dependence of copying. They show with experiment that they can discover

most of both copy-from-non-authority and copy-from-authority cases.

[8] propose a method of modeling copying between data in a dynamically

changing world to invalidate out-of-date data. Straightforward ways to re-

solve the conflicts created by time-varying information sources may lead to

noisy results. They propose a method to detect the true values and deter-

mining the copying relationship between sources when the update history of

the sources is known. The change of sources are considered when evaluating

the quality of the sources. Other metrics such as coverage, exactness and

freshness mentioned by previous work [7] are also taken into account. They

utilize the Hidden Markov Model to describe the copying behavior, including

moment it happens. Then they use the Bayesian model on the aggregated

data to decide the real value for a data item. Finally, they build the evolution

path of the true values.

[26] propose a method of detecting not only copying between a pair of

sources, but also the techniques in the presence of complex copying rela-

tionships. That is to say, the model of copying is not limited to one-to-one

copying. They propose techniques that discover global copying relationships

between a set of structured sources. First, they propose a detection method

that can identify the real sources between co-copying and transitive copying.
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Then they improve the techniques in [7] for detecting the copying direction

by taking different types of evidence and correlations between different data

items into account.

2.6 Applications of Truth Finding Algorithms

In this section, we will introduce some real applications of truth finding

algorithms to resolve conflicts between claims of information providers.

2.6.1 Ranking System

Truth finding can be used to merge several query results from different sources

in case of there is conflict between individual queries. For example, [11] pro-

pose a system to provide a result of web search for uses rather than letting

the user to analyze the truth themselves. Similar systems are also used in

question answering website like Quora3 for recommending the right answers

[27]. In crowd sourcing systems like Mechanical Turk4, truth finding and

copy detection are also useful for picking the most relevant work to user

queries [28, 29]. Truth finding systems take the importance and similarity

into account to rank the results. In the system [11] propose, the importance

of the answer within the web sources which contain the answers are consid-

ered. It not only recommends the best matched answer, it also reduces the

duplicated answers. It uses the frequency of answers as the metric. More

specifically, multiple answers on a same page decreases the credibility, mul-

tiple page with the same answer increases the credibility. Then the ranking

system ranks the independent answers as well as pointing out their web page

sources. The positions of the answer in the corresponding web page and the

their duplications are listed along the results. [11] uses the query results

from the major search engine. They only consider top-k pages, where k is

relatively small. However, the accuracy of the processed result is relatively

accurate, since the distribution of of the relevance decreases fast with the

duplicated results are eliminated and the relevant answers merged. Another

explanation is that the score of the lowly ranked results will be trivial for the

3www.quora.com/
4www.mturk.com/
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overall results.

[30] propose another truth finding method for web search. They take the

credibility of each web site. The basic assumption is that it is very likely the

result from the credible web site is credible. The iterative model of truth

finding is employed to find the correct answer. Their system also considers

only the top-k results from the major search engines and compute the scores

of the results. The facts considered by [11] is also considered here, i.e., the

duplication of the website and the data. It take these facts into accounts and

iteratively compute the best score.

[31] propose an algorithm to rank the websites under certain keywords

according to their popularity and influence. Similar to the the approach of

[11] and [30], it is based on the assumption that if certain piece of content

appears on more web pages, it is likely to have higher importance. Their

system further improves the assumption by considering the score of certain

sources in two parts. The first part is significance of the website itself, e.g.,

the number of visitors, the number of reports in the same field. The second

part is the score of the the specific page, i.e, the influences of this page among

all the pages. This assumption avoids the case where a credible website pro-

duces a report with less credibility. For example, a political review article

from a sport website is not considered important in this case. In the iterative

scheme, the initial values are set to the the significance of the source website.

Then in every step, the popularity of the pages are taken into consideration.

Then the score of the website is updated by the popularity. The result is

supposed to that the website with more popular pages are assigned more sig-

nificance, while the page on the more significant websites are assigned more

popularity. The convergence of this iterative method is proved in their work.

2.6.2 Data Validation

In sensor networks, the results collected are not always consistent with each

other. For example, due to the fault of sensors, the data collected may be

contaminated. Simple statistical methods such as averaging are not applica-
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ble here since it cannot identify the faulty sensor. [32] propose a fact finder in

participatory sensing networks. It is the first truth finding systems designed

for participatory sensors network data. Apollo extract shared participatory

sensing data from Twitter. Then it convert the source data into a common

representation of sources and claims. The clustering algorithm is performed

on the inputs according to the similarity of observations. The number of

claims are then reduced by a large portion. After clustering, it takes the

iterative procedure to evaluate the credibility of each sensing data. They

report that this validation procedure reduces significant amount of contami-

nated data.

[33] propose a data validation system for Twitter5. The basic assumption

is that most of the tweets can be trusted, while sometimes contaminated data

such as rumors and misinformation are propagated. Their system is based

on the detailed analysis to the credibility of the news propagated. Then they

propose a procedure for estimating the credibility of a certain tweet give a

group of tweets on the same topic. They evaluate the tweets data related

to certain topics and label the credibility results based on features extracted

from them. The features include user behavior, text features of the tweets,

and citation from outside resources. They try to assess the level of credibility

of the social network information based on these features. Their procedure

relies on the sociology concepts: the reactions of users from certain message

and the emotion conveyed by users, the level of certainty of users, the exter-

nal citations, and characteristics of the users propagating the information.

They assume that tweets with strong emotional terms are highly related to

non-credible information. Positive sentiment is more likely related to cred-

ible information. In the contrast, tweets with question marks or reference

to another user are less incredible. Other useful features include depth of

the re-tweets tree, presence of URLs, number of tweets by the corresponding

users, number of friends of the users.

5www.twitter.com
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2.6.3 Data Fusion

Data fusion aims to merge several data source into one in order to acceler-

ate the data management procedure. Applications such as enterprise data

managing [34], community data management [35] and scientific data shar-

ing [36]. However, conflicting data poses challenges for data fusion applica-

tions. For example, the same category of data from different sources may

be completely different because of errors, incompleteness or out-of-date. In

this case, classification between the right and wrong data as well as correct-

ing techniques are needed. [37] propose a novel method for this problem.

They come up with classification techniques with several conflict resolving

algorithms: conflict handling strategies, without resolution methods; con-

flict avoiding strategies, group-level resolution; conflict resolving strategies,

individual-level resolution. They take several conflict resolution algorithms

into account: the source accuracy method proposed by [16, 7]; the source

freshness method by [8]; the source dependency method by [2].

2.6.4 Recommendation System

Truth finding can be applied to recommending the most original and signifi-

cant news about a certain topic. For example, given the topic ”US Election”,

there are millions of pages on different websites. However, some of them are

rumors, and some of them are just irrelevant. Truth finding systems can

pick the news which are the most relevant and closest to the truth. [38]

propose a new truth finding model called Topic-oriented Website Evaluation

Model (TWEM). TWEM mainly consider the interdependency between dif-

ferent websites and news articles. The dependency includes copying, citation

and mutual support between news articles. TWEM also uses the popularity

measured by traditional methods as the reference, for example, the Alexa

Rank6. It also provide merging operation of two articles, i.e., as long as the

similarity of two articles exceeds certain threshold, they are merged into one

article. One of the two articles are considered super-article. Influence of the

super article is computed as the portion of the common parts between the

two articles. This is called merge-TWEM model.

6www.alexa.com/
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Another system is called Corroboration Trust [39]. Corroboration Trust

verify the credibility of certain news source by seeking more more than one

source. That is to say, it is based on evidence. The evidence includes but

are not limited to the news articles themselves. Other evidence information,

such as person, location, time and keywords, which are all extracted from the

news articles are considered. A news article is considered trustworthy if and

only if the evidences extracted from it are all trustworthy. Corroboration

Trust system extract the evidences of the articles using entity recognition

techniques [40]. Then the news articles are grouped together using topic

section and tracking [41]. In the case of paraphrasing certain words, it uses

dependency tree analysis [42] on the entities already discovered. After the

preprocessing steps, it then uses the extracted evidence and the clustered

articles to compute the score of credibility using the iterative scheme. The

basic assumption behind this model is that the articles are all dependent on

each other, especially in the way that they tell the same stories, but with

different forms. In this model, the credibility of an article is measured by its

currency, availability, information-to-noise ratio, authority, popularity and

cohesiveness.
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Chapter 3

A General Framework to Integrate Numerical
Data

In this chapter, we introduce a general framework to jointly estimate truth

for numerical data and source quality. We give an iterative solution, and

conduct experiments on real stock data.

3.1 Motivation

Different from categorical data, we need to consider the distances between

claims. For example, if two sources provide 9,895 and 10,000 respectively,

these values could both be true considering rounding. These two values

support each other to some extent, and thus we have a higher confidence

to say the latent truth is around 10,000 than observing only one of them.

Also, for numerical data, we cannot directly use the absolute distance. For

example, 9,895 and 10,000 seem to be closer than 1 and 5, even though they

have a larger absolute distance. This implies the necessity of normalization.

3.2 Problem Formulation

We assume that there are S sources denoted by {sj}, j = 1, ..., N , and Q

questions {qk}, k = 1, ..., Q each with a unique truth {µk}, k = 1, ..., Q. De-

note by oj,k the answer provided by source sj for question qk. Here the sources

are not required to answer all questions, and we do not allow for multiple

truths. Further, we denote all sources providing answers for question qk as

Src(qk), and the collection of questions answered by source sj as Q(sj). With

these notations, we can formally define trust analysis problem as follows.

Definition 7 Given all the the claims, denoted as O, provided by S sources
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for Q questions(objects), our goal is to find the truth {µk}, k = 1, ..., Q.

Here the sources can be websites or human workers, and questions can be

a particular attribute of an object. For example, websites may provide the

author information for a particular book, or the value of a particular stock;

a human may be asked whether an image contains sky. The claims can be

categorical or numerical, while previous work mainly focus on categorical

case.

3.3 A General Framework

It is commonly recognized that beyond majority voting, which treats every

source equally, we should consider source quality when utilizing collective

wisdom. Some sources may be more reliable than others, so they should

have a larger weight in deciding the latent truth.

We denote the source quality of sj as wj. We formalize our problem as

trying to find source quality {wj} and latent truth {µk} which maximize the

probability of all claims O. In addition, we assume the questions are inde-

pendent and the sources make decisions independently. Then we formulate

the model as follows:

max
{wj},{µk}

S∏
j=1

∏
k∈Q(sj)

P (oj,k|wj, µk). (3.1)

We still need to specify the form of the conditional probability. Intuitively,

if a source is more reliable, the probability that its claim is to the latent truth

is high. We capture this intuition by first partitioning the distance range

between the claim and the latent truth into L intervals {Il}, l = 1, ..L, and

define the source quality as

ws,l = P (dist(os, µ) ∈ Il),
L∑
l=1

ws,l = 1 (3.2)
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max
{wj},{µk}

S∏
j=1

∏
k∈Q(sj)

L∏
l=1

w
1{dist(oj,k,µk∈Il)}
s,l

s.t.
L∑
l=1

wj,l = 1 (3.3)

Thus, we give source quality an explicit meaning. The source quality wj is a

probability measure, which specifies the distribution of the distance between

claims of source and latent truth. If a source is more reliable, then this

distance tend to fall into intervals indicating small errors.

3.4 Iterative Solution

Once we define the distance function and intervals, our task is to find source

quality and truth, which maximize the likelihood of claims, namely maximum

likelihood estimation. We adopt the block coordinate descent method. In

the first step, we fix the truth and maximize Equation 3.3 with respect to

source quality. By simple calculus, we have

wj,l =

∑
k∈Q(sj)

1{dist(oj,k, µk)} ∈ Il∑
k∈Q(sj)

∑L
i=1 1{dist(oj,k, µk)} ∈ Ii

(3.4)

Here, wj,l is the probability of dist(oj,k, µk) falling into Il, which is empiri-

cally the number of occurrence that the distance between provided claim and

the latent truth falling into interval Il divided by the number of questions s

answers.

In the second step, we fix the source quality and maximize the objective

w.r.t the truth. Given source quality, each question decouples. So for each

question, we try find {µk} such that

max
∏

j∈Src(qj)

L∏
l=1

w1

j,l{dist(oj,k, µk)} ∈ Il (3.5)
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3.5 Truth Finding for Numerical Data

Most of the previous work focuses on categorical data, and Gaussian Truth

Model [20] is the only method in literature trying to integrate numerical

data. In this section, we start with analyzing special characteristics of nu-

merical data, and apply the framework to the numerical data. For example,

if two sources provide 9,895 and 10,000 respectively, these values could both

be true considering rounding. As aforementioned, these two values support

each other to some extent, and we would have a higher confidence to say

the latent truth is around 10,000 than only observing one of them. Also, for

numerical data, we cannot directly use the absolute distance. For example,

9,895 and 10000 seem closer than 1 and 5, even though they have a larger

absolute distance. This implies the necessity of normalization.

We propose a loss function as follows

L(µ̂, µ) =

{
|µ̂−µ|
α∗µ if |µ̂− µ| < α ∗ µ

1 otherwise
(3.6)

Here µ is the estimated truth, which is the output of trust analysis algorithm,

and µ is the latent truth. We use this kind of evaluation function instead

of absolute distance because we do not want to over-penalize. For example,

suppose a source provides 99 correct answers for 100 questions, however, for

the remaining last one question, its answer deviates infinitely from the truth.

If absolute distance is used, this source will receive infinite penalty, which is

not what we want. So in the proposed evaluation function, if the estimated

truth is beyond a certain interval of the latent truth (µ−α∗µ, µ+α∗µ), then

the loss will be 1. α is a user-defined parameter, indicating the tolerance for

a value to be considered close to the latent truth.

To apply the framework in Section 3.4, we need to define the interval parti-

tioning for source quality. One natural way of defining the distance function

is to use Equation 3.6. We can first partition R into 5 intervals: I1 = 0,

I2 = (0, 0.1], I3 = (0.1, 0.3], I4 = (0.3, 0.6], I5 = (0.6, 1].

An alternative distance function is introduced here. The evaluation func-

tion is symmetric at the latent truth µ, but we may want to distinguish
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those sources who tend to provide higher value than actual truth from those

constantly providing lower value. To this end, we propose an alternative

distance function together with a possible interval partition.

dist(os, µ) =
2

π
∗ atan(

os − µ
β ∗ µ

) (3.7)

This distance function changes faster around the latent truth, thus equal par-

tition of the range of distance function will lead to finer resolution around

the provided value.
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Chapter 4

Integrating Multiple Low-Quality Sources to
Discover Truth for Data Integration

4.1 Motivation

Previous work mostly focused on data in rather high quality. In the appli-

cation of Truth Finder[16] on book-author data set, the accuracy of sources

is around 90%. In the experiment of LTM[15] on book-author data set, the

false positive rate is very low (under 10%), and there are some high-quality

sources whose false positive rate is below 2%. Also, the recall of sources

ranges from 50% to 90%. Under this condition, most of the claims provided

by sources are correct, and source quality is a strong indicator of the cred-

ibility of provided claims. But in many tasks like the slot filling in natural

language processing, the performance of every single system is quite low. For

example, in the latest TAC-KBP slot filling task, the F1-measure of every

single system is about 30% with either low precision or low recall. Moreover,

there are many cases that truth value does not exist in any responses from

claims of all sources. For example, if a system is asked the question like

”What is the death date of Bill Gates?”, whose truth does not exist. Some

systems tend to provide an untrustworthy answer but some are prone to keep

silent. The ideal output of our truth finding model is to disagree with any

non-empty answers. In such circumstances, current algorithms cannot figure

out the truth correctly. The main reason is that previous methods overlook

the distinction between has-truth question with no-truth question.

Example 1 Table 4.1 shows a sample integrated raw data of slot filling

task. Each column represents the answers to a certain question provided by

13 systems. If an element is blank, it means the system does not provide

any answer to this question. There are totally 6 questions. For the first 4

questions, there are correct answers among all the candidates. For the last
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4, there is no correct answer to this question. In other words, we cannot

obtain the truth from current available claims provided by all systems. It

is natural in the slot filling task, because it is possible that there is no such

information in the corpus, or the useful information is stated so obscure that

no system could successfully extract it. In both cases, the ideal output of

our integration process should be correct answer if there is correct answer

in the candidate answer list, and no output when no system can extract the

answer.

Strategy 1

Majority voting easily fails in this example. If we only consider the first 4

questions, majority voting will have a correct judgment of question 1,3,4 and

have a random guess of question 2 because ‘Pakistan’ and ‘Afganistan’ both

have 2 voters. But if we move to the last 4 questions, majority voting will

randomly choose a candidate answer instead of refusing to answer it. Truth

Finder also suffers from this problem. Each candidate answer is given a score

normalized by all the candidate answers to one question. If we consider the

5th question, system 16 will be evaluated as a better system than system

10 because system 16 provides 2 correct answers while system 10 provide no

correct ones. According to the mechanism of Truth Finder, ‘Netherlands’

will be estimated as truth. But actually neither of these two is correct.

Strategy 2

An instant way to deal with the last 4 cases is to treat no-answer as an

empty claim equally as the other candidates. If a system refuses to provide

an answer, we can consider it providing an empty answer. Both majority

voting and source-quality-based method can be applied again. Both methods

can succeed in the last 4 questions, but will fail in the 2nd question, because

the majority claim of it will be ‘empty’.

To summarize, previous methods will fail in the case that both recall and

precision of each system is low. It results in a large number of empty re-

sponses as well as incorrect candidate answers. Thus, we propose a new

model called No-Truth Truth Model (NTTM) that can leverage the

empty response and erroneous answers is proposed in the next section.
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4.2 Problem Formulation

We now provide the details of our data model, and formally define the truth

mining problem with low-quality sources.

4.2.1 Data Model

Suppose for each question qi, i = {1, 2, ...,M}, each system sj, j = {1, 2, ..., N}
will return only one answer or refuse to answer this question. If a system

does not return one answer, we treat it as an “empty” answer. So for each

question qi, there are N answers {aij, j = 1, .., N} returned by N systems,

either a non-empty or an empty answer. There are Ni distinct non-empty

candidate answers {din, n = 1, 2, ..., Ni} (Ni ≤ N) . We use E to represent an

empty answer,and represent the truth of question qi as ti. There is only one

candidate answer to be the true answer to question qi. Thus, the input data

is in the format of triples (question, system, answer) where question serves

as a key entity we explore, system identifies from where the data originates

and answer is a piece of information extracted by the source as a solution to

the question.

Definition 8 Let E to denote an empty answer when a system refuses to

provide an answer to a question.

Definition 9 Let Q = {q1, ..., qM} be the set of distinct questions where M

is the total number of questions. Each question either has no truth or single

truth.

Definition 10 Let S = {s1, ..., sN} be the set of sources where N is the total

number of sources.

Definition 11 Let Di = {di1, ..., diNi
} be the set of distinct non-empty can-

didate answers to question qi where Ni is the number of distinct candidate

answers to question qi.

Definition 12 Let T = {t1, ..., tM} be the set of truth where each ti associ-

ated with a question qi can either takes one of the candidate answers provided

by sources or an empty value E.
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Definition 13 Let A = {a11, ..., aMN} be the set of candidate answers pro-

vided by all sources. Each candidate answer aij associated with qi and sj.

Each system sj will provide only one candidate answer to question qi. The

response can take either an empty or non-empty value.

4.2.2 Problem Definition

Now we define the problem of interest in this thesis. Given a set of candidate

answers aij for M questions provided by N systems, the goal is to (1) infer

the true answer ti to each question qi, and (2) estimate the quality of each

system.

The inference of truth is not independent of source quality. Source quality

indicates how reliable each system is for the questions. It can be used to

decide whether or to what extent to believe the claims given by systems.

Also, the correctness of a claim can help to determine the source quality.

In the next section, we will define the source quality in the No-Truth Truth

Model and explain why previous work are inadequate in the case of interest

in our thesis.

4.3 Source Quality

In last section, we have already discussed the limitation of precision, which is

the source quality score used in Truth Finder. It fails in the case when none

of the systems provide a correct claim. In this section, we will define three

types of quality scores and show that our algorithm can effectively estimate

the truth existence.

We have shown in Table 4.1 that previous methods fail when they overlook

the distinction between has-truth questions and no-truth questions. Thus, a

natural approach is try to estimate the truth existence and distinguish the

different performance of system in no-truth cases.

Table 4.2 shows the different system behaviors in has-truth and no-truth

cases. When the truth exists in candidate answers, a system may have three

types of behaviors: provide a candidate answer which is the truth (true
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positive); provide a candidate answer which is not the truth (false positive);

fails to provide a candidate answer (false negative). When truth of a question

does not exist, a system may have two types of behaviors: a. provide a

candidate answer (false positive); keep silence (true negative).

Table 4.2: System behaviors and corresponding source quality

Truth existence System behavior Category of behavior Source quality

Has-truth Empty answer False negative φ(1)

Wrong answer False positive φ(2)

Correct answer True positive φ(3)

No-truth Non-empty answer False positive φ(2)

Empty answer True negative φ(1) + φ(3)

To describe the different behaviors of system, we need to define multiple

source quality. Here we introduce three types of source quality to measure

the performance of each system sj. We assume the system performance is

consistent across all questions and all candidate answers. Later we will see

the necessity of these definitions in Table 4.1.

• Miss rate, φ
(1)
j = p(aij = E|ti = din), is the possibility of not providing

an answer when a question has a true answer.

• Error rate is φ
(2)
j = p(aij 6= din|ti = din) = p(aij 6= E|ti = E). Here

we assume the error rate of each system on has-truth questions and

no-truth questions is consistent. It is a reasonable assumption since

each system will not distinguish whether a question has truth or not

when it gives out an answer.

• Recall, φ
(3)
j = p(aij = din|ti = din), is the ability to provide a trustwor-

thy answer when a question has truth.

The relationship between these three source quality is that miss rate, er-

ror rate and recall sums up to 1, i.e.,

φ
(1)
j + φ

(2)
j + φ

(3)
j = 1. (4.1)

Then we may derive the probability that a system does not provide an

answer when true answer does not exist in all candidate answers, i.e. the

sum of recall and miss rate.
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p(aij = E|ti = E) =1− p(aij 6= E|ti = E)

= φ
(1)
j + φ

(3)
j (4.2)

The intuition behind Equation 4.2 is that when a system refuses to provide

an answer to a question, it may result from two reasons. One is that it

successfully makes the judgment that there is no true answer to be provided,

which is associated recall. The other reason is that all the system fails to

extract the correct answer, which is corresponding to the probability to make

mistakes, i.e. the error rate.

For a system with high miss rate, the system is prone to keep silent to

most of the questions, neither provide correct answers nor wrong answers.

For a system with high error rate, the system is likely to provide answer to

every question but few of them are correct. For a system with high recall,

the system is reliable and provides trustworthy answers. We can see that

our definition of source quality can model different behaviors or preference

of systems.

In Example 1, we can easily infer that system 9 is of high recall, system

10 and 12 are of high error rate and system 13 is of high miss rate.

Note that the ground truth labels are not given in the input. Instead,

we must infer the hidden truths by our new model and estimate the source

quality based on the inferred truth. But to evaluate the effectiveness of our

method, human annotated labels are used in the experiment.

4.4 Truth Model with Low-Quality Sources

We tackle the truth existence problem using Bayesian network framework.

Figure 4.1 is the graphical structure of our probabilistic model. Each node

represents a random variable. The shaded ones indicate the variables are

observed.
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Figure 4.1: Probability Graphical Model of the New Model

4.4.1 Prior Settings

Prior of source quality

For each source sj ∈ S, three types of quality miss rate φ
(1)
j , error rate φ

(2)
j and

recall φ
(3)
j is generated from a Dirichlet distribution with hyper-parameter

α = (α1, α2, α3). Later we will see that α serves as the pseudo count of

miss count, error count and correct count when estimating the corresponding

source quality.

(φ
(1)
j , φ

(2)
j , φ

(3)
j ) ∼ Dirichlet(α1, α2, α3) (4.3)

Prior of candidate answers

For each question qi, the probability that the truth is empty answer or each

candidate answer should sum up to 1.

p(ti = E) +

Ni∑
n=1

p(ti = din) = 1 (4.4)

For p(ti = E) and p(ti = din), which denote the probability that question qi

has no truth, and the probability that the truth of question qi equals to the

candidate answer din, respectively, we will discuss the initialization of them

in depth in Section 4.6.
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4.4.2 Model Description

To infer the truth of each question, we can formulate it as a Maximize Like-

lihood Estimation (MLE) problem, i.e. to maximize the joint probability of

source quality and observations by Equation 4.5. A set of latent variables

{ti} are introduced. Each observation is parameterized by latent truth ti and

generated by N systems. It is originated from the simple Bayesian rule and

is formulated as the combination of two mixing components: the has-truth

part and no-truth part. The likelihood function and its expansion given la-

tent truth is:

max
φ

p(A, s,φ|α)

=
M∏
i=1

p(Ai,·, s,φ|α)

=
M∏
i=1

[p(Ai,·, s|φ, ti 6= E)p(ti 6= E|φ) + p(Ai,·, s|φ, ti = E)p(ti = E|φ)] p(φ|α)

(4.5)

where the first mixing component is shown in Equation 4.6 and the second

one is shown in Equation 4.7. We assume the questions are independent

and the sources make decisions independently. So systems and sources are

decoupled with each other. Given the latent truth ti, the likelihood of the

observations is the multiplication of the source quality corresponds to the

answer provided by each system. 1{·} is an indicator function that serves as

a selector of corresponding source quality.
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p(Ai,·, s|ti 6= E,φ)

=

Ni∑
n=1

(
N∏
j=1

φ
(1)
j

1{aij=E}
φ
(2)
j

1{aij 6=din,aij 6=E}
(1− φ(1)

j − φ
(2)
j )

1{aij=din,aij 6=E}
)

∗ p(ti = din|ti 6= E) (4.6)

p(Ai,·, s|ti = E,φ)

=
N∏
j=1

φ
(2)
j

1{aij 6=E}
(1− φ(2)

j )
1{aij=E}

(4.7)

p(φ|α)

=C
N∏
j=1

φ
(1)
j

α1−1
φ
(2)
j

α2−1
(1− φ(1)

j − φ
(2)
j )

α3−1
(4.8)

Then our problem becomes: given a set of candidate answers A, candi-

date answer list d, prior p(tj = din), p(tj = E) and conjugate prior for

φ(1),φ(2),φ(3), we want to infer the parameters θ = {φ(1),φ(2),φ(3)} and es-

timate the posterior of true answers t.

4.5 Inference

Expectation-maximization (EM) algorithm is an iterative method for finding

maximum likelihood or maximum a posteriori estimates of parameters in sta-

tistical models. EM algorithm starts with randomly assigning values to all

the parameters to be estimated. It then iteratively alternates between two

steps, called the expectation step (E-step) and the maximization step (M-

step), respectively. In the E-step, it computes the expected likelihood for the

complete data(Q-function) where the expectation is taken. In the M-step, it

re-estimates all the parameters by maximizing the Q-function. This process

continues until the likelihood converges, i.e., reaching a local maximal.

Given the observed data, we use the Expectation-Maximization (EM) algo-

rithm to infer the parameters θ = {φ(1),φ(2),φ(3)} and estimate the posterior

of true answers t. Q(θ|θ(k)) is the expectation of complete-data log-likelihood.
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Q(θ|θ(k)) = Eθ(k) [lcd(θ)|A, s] (4.9)

E-step: For each question qi and each of its distinct candidate answer din,

we calculate the posterior probability of the question not having a truth γ
(k)
i

and the probability that the truth of the question equals to the candidate

answer din,γ
(k)
in , given observations and current estimation of system quality

γ
(k)
i =p(ti = E|φ(k),A, s)

=

∏N
j=1 φ

(2)
j

1{aij 6=E}
(1− φ(2)

j )
1{aij=E}

p(ti = E)

p(A, s|φ)
(4.10)

γ
(k)
in =p(ti = din, ti 6= E|φ(k),A, s)

=

∏N
j=1 φ

(1)
j

1{aij=E}
φ
(2)
j

1{aij 6=din,aij 6=E}
(1− φ(1)

j − φ
(2)
j )

1{aij=din,aij 6=E}

p(A, s|φ)

∗ p(ti = din, ti 6= E) (4.11)

M-step: for every source j, we re-estimate the system quality (φ
(1)
j , φ

(2)
j , φ

(3)
j )

by maximizing the expectation of the complete-data likelihood Q(θ|θ(k)).
Take derivatives of Equation 4.9 with respect to φ

(1)
j and φ

(2)
j , we can get:

0 =
∂Q(θ|θ(k))
∂φ

(1)
j

=
aj

φ
(1)
j

− bj

1− φ(1)
j − φ

(2)
j

(4.12)

0 =
∂Q(θ|θ(k))
∂φ

(2)
j

=
cj

φ
(2)
j

− dj

1− φ(2)
j

− bj

1− φ(1)
j − φ

(2)
j

(4.13)

where
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aj =
M∑
i=1

(1− γ(k)i )1{aij = E}+ α1 − 1 (4.14)

bj =
M∑
i=1

Ni∑
n=1

γ
(k)
in 1{aij = din, aij 6= E}+ α3 − 1 (4.15)

cj =
M∑
i=1

(
γ
(k)
i 1{aij 6= E}+

Ni∑
n=1

γ
(k)
in 1{aij 6= din, aij 6= E}

)
+ α2 − 1 (4.16)

dj =
M∑
i=1

γ
(k)
i 1{aij = E} (4.17)

⇒φ(1)
j =

aj
aj + bj

(1− φ(2)
j ) (4.18)

φ
(2)
j =

cj
aj + bj + cj + dj

(4.19)

φ
(3)
j = 1− φ(1)

j − φ
(2)
j =

bj
aj + bj

(1− φ(2)
j ) (4.20)

aj + bj + cj + dj = M + α1 + α2 + α3 − 3 (4.21)

The estimation of source quality of system j is shown in Equation 4.18

to 4.21. Equations 4.14 to 4.17 are the empirical counts of each cases weighted

by the probability of each case being true. Equation 4.14 is the weighted

count of errors that judge a has-truth question as no truth. Equation 4.15

is the weighted count of cases providing a correct answer. Equation 4.16

is the weighted count of making two types of errors: providing an answer

when there is no truth and giving an incorrect answer. Equation 4.17 is the

weighted count of making correct judgment for no-truth questions. These

weighted counts are added by corresponding pseudo counts originated from

prior of source quality. Thus, the prior of source quality serves as a smooth-

ing factor for source quality.

The estimation of posterior of correct answers are in Equation 4.10 and

Equation 4.11. The intuition behind these two equations is very clear. Equa-

tion 4.10 indicates that if a system with high error rate does not provide an

answer, or a system with low error rate keeps silent, this question is prone

to having no truth. Equation 4.11 shows that if a system with high recall
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provides this answer, or a system with high error rate does not claim it true,

then we know that this answer is likely to be the truth.

Equation 4.21 is the total number of questions plus the pseudo counts.

The error rate is the proportion of questions that a system make mistakes.

Note that the estimation of miss rate and recall is not the proportion of

its type of counts, but they separate the weighted count of Equation 4.17

proportional to their own counts. It makes sense because when a system

does not provide an answer to a question which is at last proved to have

no truth, it may come out of two reasons. One is that a high-recall system

searches all contents in the corpus and is very confident that there is no

correct answer to the question. The other is that a system of high miss rate

fails to recognize the answer in the corpus. We can hardly distinguish these

two cases, neither can we obtain the ground truth for it. Thus, making a

fair separation of this part of counts on miss rate and recall is a reasonable

solution in our case.

4.6 Prior Initialization

Truth Existence Initialization

We initialize the prior of truth existence(p(ti = E)) by features of a question.

For each question, there are two features that are useful to indicate the truth

existence: (1) The number of claims for each question (2) The number of the

majority claim. For example, for question 1, the claims are listed in Table 4.3.

In this example, the feature of question 1 is (9,4). The intuition behind this

initialization is that if a large number of systems provide an answer to a

certain question and the answers reach an agreement, for example, the votes

of answers have peaks rather than uniform distributed, then more likely the

question has correct answer within its candidate answers.

The clustering process can be conducted in either supervised or unsuper-

vised way. If we select a small number of questions and acquire the labels of

their truth existence, we may train a classifier on defined features to classify

questions left. But in most real cases, the labeling information is not known

in advance, or is expensive to obtain. Here we introduce an unsupervised

method to coarsely estimate the clustering. By using a Gaussian Mixture
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Question Claim Number of supporting systems

1 Afghanistan 4
1 Pakistan 2
1 Khost 1
1 Ghanzi 1
1 Iran 1

Table 4.3: Example of extracting features from claims

model (GMM), we can softly cluster questions into two groups: has-truth

cluster and no-truth cluster. We may use the posterior probability of each

question belonging to one cluster as the initialization score of truth existence.

Since GMM is an unsupervised method, we can consider it as a “relative clus-

tering”, where the clustering of questions is affected by the behaviors of the

other questions. In the experiment of next section, we can see the first ini-

tialization step can reach an accuracy of 0.81 in predicting cluster labels.

Note that the only requirement here is that we need one labeling question to

indicate which cluster is the has-truth cluster. The simplest way is to assume

that the question with most systems and largest number of votes belongs to

the has-truth cluster.

Figure 4.2 shows the ground truth of truth existence, where the red dots

indicate no-truth questions, while the blue dots represent has-truth ques-

tions. Clustering centers and variance are shown by ellipsoids. From the

result we can see that the dots around clustering centers have a high accu-

racy of being correctly labeled. For the ones that are given a biased prior

of truth existence, our mechanism in the new model can effectively rectify

the wrong judgment of truth existence. Figure 4.3 shows the accuracy of

clustering using a threshold of 0.5, where the blue dots suggest the questions

are correctly labeled while the red ones indicate wrong clustering.

Smoothing Factor. One problem with the initialization step is that the

posterior probability of clustering may be very small, which is close to 0,

or very large, which is close to 1. In this case, the prior judgment of truth

existence of a question may be too bold. For example, if we set the prior for

p(ti = E) = 10−5, then it is almost impossible for our new model to rectify

the prior judgment. So we introduce a smoothing factor δ to compensate this

bold judgment. Say we use posterior+ δ as truth existence prior of posterior
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Figure 4.2: Truth Existence Initialization

Figure 4.3: Accuracy of Initialization by GMM
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of GMM < 0.5− δ and posterior − δ if posterior > 0.5 + δ.

For the non-empty candidate answers, we use the state-of-art method to

initialize the prior for each answer. We set the prior for each candidate an-

swer proportionally to the number of occurrence of the answers.

Algorithm 1 presents the pseudo-code for implementing the inference al-

gorithm for NTTM.

Algorithm 1 EM Algorithm for NTTM inference

1: {Initialization of priors}
2: for all qi ∈ Q do
3: calculate feature vectors
4: Cluster qi by GMM
5: for all ti ∈ T do
6: p(ti = E) = p(qi = E|GMM)± δ
7: for all qi ∈ Q do
8: for all n = 1→ ni do
9: p(ti = din) = (1− p(ti = E))/|Ni|

10: {Initialization of sources}
11: for all sj ∈ S do
12: initialize (φ1

j)
(0), (φ2

j)
(0), (φ3

j)
(0)

13:

14: {EM Algorithm}
15: for k = 1→ K do
16: k ← k + 1
17: {E-Step}
18: for all qi ∈ Q do
19: for all n = 1→ ni do
20: compute γ

(k)
i and γ

(k)
in

21: {M-Step}
22: for sj ∈ S do
23: compute (φ1

j)
(0), (φ2

j)
(0), (φ3

j)
(0)

24: if
√∑3

l=1((φ
l
j)

(k) − (φlj)
(k−1))2 < ε then

25: Stop EM loop

Result on toy example We run our algorithm on Example 1 and our

model can correctly find all the correct answers. The source quality is listed in

Table 4.4. In intuition, claims provided by high-recall systems such as system

9 and system 8 in Table 4.1 are usually correct. Empty claims that provided
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by systems of low error rate are prone to be correct of no-truth question. Such

as the empty claim of to the 5th question. System 2,4,5,6,7,8,9,12,13,14,15

all provide empty claim. Only 4 and 12 are of high error rate, while the

others are of low error rate. Thus the 5th question will be judged as no truth

question by our model.

Table 4.4: Inferenced Source Quality of New Model

system miss rate error rate recall

SFV2013 02 0.5 0 0.5
SFV2013 04 0.63 0.38 0
SFV2013 05 0.38 0.25 0.38
SFV2013 06 0.5 0 0.5
SFV2013 07 0.5 0 0.5
SFV2013 08 0.25 0 0.75
SFV2013 09 0 0 1
SFV2013 10 0.13 0.88 0
SFV2013 12 0 0.88 0.13
SFV2013 13 0.88 0.13 0
SFV2013 14 0.5 0 0.5
SFV2013 15 0.5 0 0.5
SFV2013 16 0.25 0.25 0.5
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Chapter 5

Experiment

In this section we demonstrate the effectiveness of our model on real-world

data sets and compare it with state-of-art algorithms.

5.1 Experimental Setup

5.1.1 Data Set

We use the following real-world data sets to test the effectiveness of the two

proposed models: VQTM and NTTM.

Real Stock Price Data Set We use the stock dataset in [43], wherein

detailed description can be found. It contains 21 days stock data from 55

sources. We focus on Nasdaq-100 stock (100 largest stocks) each with 16

attributes, and we use the value provided by nasdaq.com as the latent truth.

So the task becomes that based on the information provided the other 54

sources, we try to find the truth for these stocks. This data set is used to

test our new model.

To measure the effectiveness of algorithms, we adopt the evaluation func-

tion given by Equation 3.6, and set α = 0.1.

Slot Filling Data Set This data is got from TAC-KPB 2013 slot filling

validation (SFV) task. In this task, each participating team is given a set

of questions and is supposed to return the answers(slot fillers) and evidence

sentences of the queries. This data set contains responses provided by 18

teams with 52 runs in all. There are 100 queries: 50 are about person and
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50 are about organization. Because our model is focused on the questions

that has only one correct answer, we select a subset of queries whose answer

type is single. Our data set contains 3913 claims from 18 slot filling systems.

There are 774 questions in total, within which 340 have a correct answer in

the claims provided by 18 systems. This data set is used to test our NTTM

model.

To evaluate the effectiveness of our model, we make use of the assessment

results of the data set by TAC-KBP conference. The original labeling con-

siders the correctness of both slot filler and evidence sentence. But in the

construction of knowledge base, we are more interested in slot filler itself

rather evidence sentence. Thus, we merge the conflicting judgment of the

assessment by TAC-KBP in this way: we label one answer as correct when

there is one assessor evaluates it as correct.

5.1.2 Environment

All the experiments presented were conducted on a laptop with 4 GB RAM,

2.4 GHz Intel Core i7 CPU, and OS X 10.8.5. Algorithms were implemented

in Python 2.7.

5.2 Performance

We compare the effectiveness of our new model with previous state-of-art

methods on the aforementioned data set. We briefly introduce them as fol-

lows, and provides the original paper here for reference.

5.2.1 Real Stock Data Set

• Median We treat the median of all claims as the latent truth.

• Gaussian Truth Model [20] This is the first work in the literature

dealing with numerical data. We choose the parameter which has the

best performance on the test part.
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Figure 5.1: Average loss per attribute

• New method 1 We use evaluation function as distance function 3.6,

and adopt unequal partitioning. We set α = 0.1 as in the evaluation

function.

• New method 2 We use an alternative distance function, and adopt

equal partition. We set β = 0.02, which is an approximation of the

evaluation function.

Table 5.1: Overall Loss of Stock Data

Median GTM New 1 New 2

Overall Loss 1387.6 1392.1 1066.7 1000.6

To check whether our representation of source quality is reasonable, we can

split data into training and testing part. For the training part, we reveal the

truth, and thus we can accurately estimate the proposed source quality. Then

we use the estimated source quality to find the truth on the testing part. If

the representation is good, then the algorithm will perform reasonably well

on the testing data. For the experiment on the stock data set, we use the

first 8 days’ data as training set, and the remain 13 days as testing set.

The overall penalty calculated by the evaluation Equation 3.6 is shown in

Table 5.1. And the average loss for each attribute is plotted in Figure 5.1.

We can see that our two methods can outperform the baseline (median) and
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GTM in terms of overall loss. For some attributes (e.g first 10 attributes in

Figure 5.1), the data quality is high, and all methods behave similarly. But

for the latter attributes, our methods can actually improve the performance.

These results indicate the effectiveness of our representation of source quality.

In our experiment, we split the dataset into training and testing part in

order to check whether the representation of source quality is good. In many

practical scenarios, golden standard is not available, or expensive to get.

So we need to address the unsupervised setting. Secondly, we have shown

that treating different attributes independently is better than putting all

attributes together. It might be interesting to explore the relationship among

source quality for different attributes.

5.2.2 Slot Filling Data Set

• Majority Voting For each question, we calculate the number of oc-

currence of each candidate answer provided by all sources. Here empty

claims are ignored in majority voting. The majority among candidate

answers to a certain question is considered as the estimated truth. In

tie cases, we randomly picked up one answer when several candidate

answers get the same count.

• TruthFinder[16] Consider only non-empty claim. For each non-empty

candidate answer, we calculate the score of its being correct with preci-

sion of sources. The precision of sources are computed by the estimated

score of each claim.

• No-Truth Truth Model For this data set, we run our new model

and obtain the 3 source quality defined in the previous section together

with estimated truth for each question.

Parameters for the Truth Finder is set as suggested in the original pa-

per. The initial precision of sources is set to be 0.7. The dampen fac-

tor λ = 0.3. For our new method, we set the prior for source quality as

(α1, α2, α3) = (2.0, 2.0, 2.0). We didn’t set a strong prior on source quality

because extra knowledge of sources is not available in our current data set.

But our model owns the capability to incorporate prior belief on the source
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quality. The smoothing factor δ = 0.01.

Table 5.2 shows the inference result of three methods. Result shows that

our new model outperform existing methods by 20% and about 40% relative

improvement in terms of F1 measure.

Table 5.2: Inference Result of Three Methods

Method #correct #provided Precision Recall F1

Majority Voting 289 774 0.373 0.85 0.519
TruthFinder 303 774 0.391 0.891 0.544

NTTM 240 293 0.819 0.706 0.758

5.3 Case Study of Source Quality Prediction

For slot filling data set, we are interested in the quality of source quality

prediction of NTTM. Here, Table 5.3 shows the MLE estimation and ground

truth of the source quality of 18 extraction systems. The ”ground truth”

source quality is obtained in the following way. We feed ground truth la-

bels of each question to the M-step to test the accuracy of our estimation of

source quality. It shows that the optimal solution of likelihood function is

very close to the ground truth.

5.4 Discussion

In the previous sections, we show some preliminary results. There remains

many interesting issues that are worth attention.

Smoothing of priors One interesting issue is to figure out a more flexible

way to smooth the initialization of truth existence. Current method is not

flexible to different data set. One option is to treat truth existence as a latent

random variable. It is assumed to be drawn from a prior and we would like

to infer the truth existence together with the inference of truth value and

source quality. And the output of GMM can be used as an initial value in

53



Table 5.3: Source Quality on Slot Filling Data

System Our Model Ground Truth

miss rate error rate recall miss rate error rate recall

SFV2013 01 0.73 0.03 0.24 0.74 0.03 0.23
SFV2013 02 0.61 0.04 0.35 0.65 0.04 0.3
SFV2013 03 0.8 0.07 0.12 0.83 0.05 0.12
SFV2013 04 0.5 0.41 0.09 0.47 0.42 0.11
SFV2013 05 0.3 0.11 0.59 0.37 0.1 0.53
SFV2013 06 0.5 0.3 0.2 0.52 0.28 0.2
SFV2013 07 0.59 0.05 0.36 0.58 0.09 0.33
SFV2013 08 0.38 0.13 0.49 0.42 0.13 0.45
SFV2013 09 0.34 0.2 0.46 0.39 0.2 0.4
SFV2013 10 0.33 0.63 0.04 0.32 0.63 0.05
SFV2013 11 0.7 0.15 0.16 0.71 0.14 0.14
SFV2013 12 0.26 0.69 0.05 0.25 0.66 0.09
SFV2013 13 0.5 0.24 0.25 0.53 0.24 0.23
SFV2013 14 0.88 0.06 0.06 0.93 0.01 0.06
SFV2013 15 0.28 0.18 0.55 0.32 0.18 0.5
SFV2013 16 0.65 0.14 0.21 0.66 0.13 0.21
SFV2013 17 0.69 0.17 0.14 0.72 0.12 0.16
SFV2013 18 0.43 0.08 0.49 0.46 0.07 0.48
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inference step.

Extension to Multiple truth Current model only focuses on single-truth

data. To deal with multiple-truth data with low-quality sources is an open

problem. We may extend our model to the multiple-truth cases.

Extension to Numerical truth Similar to multiple-truth data, we can try

to extend our model to deal with numerical data such as age of a person.

Semi-supervised or Active Learning in initialization step By bring-

ing a small amount of labels, we may have a better initial guess on truth

existence. Or we may be interested in dynamically obtaining the labels of

the question that on the boundary of the classifier.

From experiment perspective, more synthetic data sets can be created to

test the effectiveness of our method. Empty claims and no-truth questions

can be gradually added into the existing high-quality dataset. We can control

the distribution of the data to test under what circumstances, our model work

well and when it fails. Besides, convergence and scalability of our method

can be explored on real data set further, though we use a standard EM pro-

cess which has been proved efficiency and scalability in previous research.
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Chapter 6

Summary

In this thesis, we first have a general overview of literature in truth analysis

and crowd wisdom. Then we narrow down our problem to two challenging is-

sues in truth finding. The first problem we deal with is to integrate numerical

data. We propose a general optimization framework to allow free definition

of source quality. Source quality and truth are dependent on each other.

Then we define a vector representation of source quality for numerical data.

Interval partitioning is conducted on the normalized loss axis. Each dimen-

sion of source quality measures the unique performance in each loss interval.

We run our algorithm on real stock data set to evaluate the effectiveness.

Result shows that our algorithm can outperform the state-of-art methods.

The second problem we consider is to integrate multiple low-quality sources

to discover truth. By defining three types of source quality: miss rate, er-

ror rate and recall, source behaviors are well captured in low-quality data.

Theoretical analysis and experiments on real data set demonstrate the clear

advantage of our method over any previous methods. We also list some

remaining issues that may be interesting to explore.
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