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Abstract

Search and information retrieval technologies have significantly transformed the way people

seek information and acquire knowledge from the internet. To further improve the search

accuracy and usability of the current-generation search engines, one of the most impor-

tant research challenges is for a search engine to accurately understand a user’s intent or

information need underlying the query.

This thesis presents a systematic study of query understanding. In this thesis I have

proposed a conceptual framework where there are different levels of query understanding.

And these levels of query understanding have natural logical dependency. After that, I will

present my studies on addressing important research questions in this framework.

First, as a major type of query alteration, I addressed the query spelling correction

problem by modelling all major types of spelling errors with a generalized Hidden Markov

Model. Second, query segmentation is the most important type of query linguistic signals.

I proposed a probabilistic model to identify the query segmentations using clickthrough

data. Third, synonym finding is an important challenge for semantic annotation of queries.

I proposed a compact clustering framework to mine entity attribute synonyms for a set

of inputs jointly with multiple information sources. And finally, in the dynamic query

understanding, I introduced the horizontal skipping bias which is unique to the query auto-

completion process (QAC). I then proposed a novel two-dimensional click model for modeling

the QAC process with emphasis on such behavior.
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Chapter 1

Introduction

Search and information retrieval technologies have significantly transformed the way people

seek information and acquire knowledge from the internet. The effectiveness of Web search

engines such as Google, Bing and Yahoo significantly affects the quality of our life and

our productivity. To further improve the search accuracy and usability of the current-

generation search engines, one of the most important research challenges is for a search engine

to accurately understand the user’s intent or information need behind a query. Accurate

understanding of the user issued queries also enables new types of applications that help the

user make decision and finish tasks directly, resulting in great increase of productivity.

However, accurate query understanding is not an easy task due to the following chal-

lenges. First, a query usually contains misspelling or mis-use of words, which leads to a gap

between the ideal query in a user’s mind and the ill-formed query received by the search

engine. Second, The linguistic structure of a query is never explicitly observed. A user query

is usually short and ambiguous. It often has no standard grammar or has idiosyncratic gram-

mar. Further, there is usually no capitalization and punctuation in a query. Thus the lack

of linguistic and structure makes it hard to infer the semantics of a query by adopting the

traditional Natural Language Processing techniques. Third, the intention of a user query is

very difficult to infer in some complex situations. One example is partial query. The user

would ask the search engine for suggesting the query completion dynamically in real time

giving a short prefix.

To systematically improve query intent understanding, I propose a conceptual framework

where there are different levels of query understanding. In this framework, the highest level
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of query understanding means knowing precisely the user’s interests, the complete linguistic

and semantic structure of the query, and the temporal/spatial constraints. In the ideal case, a

query can be transformed into an equivalent SQL-like structural query that rigorously defines

all aspects of the user’s intention. Information retrieval with such a query representation will

be similar to searching against the web database with structural query, and can thus be much

more accurate than the current retrieval paradigm which depends on the bag-of-word query

representation. However, we may not always be able to infer such a deep understanding of a

query accurately, thus lower levels of query understanding would also be required to improve

robustness. These levels of query intent understanding are listed as follows:

• Query Alteration. Queries issued by users usually contain errors and mis-used word-

s/phrases. Although a user might have a clear intent in her mind, inferring the query

s intent in this case becomes difficult because of the edit distance or vocabulary gap

between the user’s ideal query and the query issued to the search engine. Query refor-

mulation is to automatically find alternative forms of a query that eliminate or reduce

such gap. Effective query reformulation can help improving information retrieval in

two ways. First, it can help inferring the user’s intent even if the query is ill-formed.

Second, retrieval models can be enhanced by transforming the query to its top reformu-

lations. There are several types of query alterations, including query spelling correction

which is to transfer a misspelled query into the correct form, query expansion which to

expand the original query by adding related terms so as to make the query intent more

evident, and query rewriting which is to transform the original query into a new form

that is more representative. Note that on this level of query intent understanding, a

user query is represented by bag of words. This query representation has been proved

to be very effective for ad-hoc retrieval where relevant documents are returned to a

key-word based query.

• Latent Query Linguistic Signal Discovery. Different from well-formed Natu-
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ral Language texts, web search queries are characterized by lack of explicit linguistic

structures such as quotation, capitalization, punctuation and standard grammar. This

level of query intent understanding aims at discovering the latent linguistic signals

like segmentation (phrase boundary), part-of-speech tagging, capitalization etc. of a

user query. Successful discovery of latent query linguistic signals can help improve the

ad-hoc retrieval. For example, query segmentation can reduce the number of candi-

date terms to score where terms are generalized to phrases instead of individual words.

It will also improve the scoring function by leveraging the proximity constraint in a

segmentation. Furthermore, This level of query intent understanding builds the foun-

dation for deeper level understanding and representation of query intent – semantic

understanding and interpretation of queries.

• Semantic Annotation of Queries. The bag-of-words query representation has been

a great success in document retrieval where relevant documents are returned to the

query. However, as the search has been expanded to many other types of application-

s, bag-of-words representation is not sufficient to support the requirements of these

applications. One such application is entity search. Nowadays the web contains a

wealth of structured data, such as various entity databases, web tables, etc. There is a

growing trend in search engines to match unstructured user queries to these structured

data sources. In the entity-centric search, schema annotation of queries is required to

match the schema of the structured data sources. Another application is to present

direct answer and facts to queries. Examples include the instant answer box of modern

web search engines, and the computational knowledge engines like Wolfram Alpha. In

order to understand the intention of the user and judge whether a direct answer should

be triggered, the query has to be transferred to semantic components. And these com-

ponents are further precessed and matched against the knowledge bases. This level

of query intent understanding goes beyond the bag-of-words representation. It aims

3



at deciphering the semantic structure of queries, that is the meaning of every piece of

query segment and their relation. It involves tasks such as target type classification

which is to infer the category/domain of the query, name entity and attribute recogni-

tion and disambiguation, schema matching to a catalog which is to match a query to

predefined catalog schema like product tables, semantic role labelling in queries etc.

• Dynamic Understanding and Representation of Queries. In the above levels of

query understanding, it is assumed that we have the whole query in advance. However

in some application scenarios this assumption may not hold. For example, in the

application of query auto-completion, the objective is to predict user’s preferred query

based on partial query prefix dynamically in real time. Because only very limited

information is exposed from the partial query, other contextual information such as

user’s short and long term behavior must be taken into account to predict the real user

information need. In this case, to understand and represent user’s intent dynamically

given partial query may need to take into account contextual information such as the

user query history, user’s short term interaction with search engine, external knowledge

from other knowledge bases etc.

In this thesis, I will present several studies that I have conducted on addressing important

research questions for advancing different levels of query understanding. First, as a major

type of query reformulation, I addressed the query spelling correction problem by modelling

all major types of spelling errors with a generalized Hidden Markov Model [56]. Subsequently

a Latent Structural SVM model was proposed to model the same problem [30]. Second,

query segmentation is the most important type of query linguistic signals. I proposed a

probabilistic model to identify the query segmentations using clickthrough data [57]. Third,

synonym finding is an important challenge for semantic annotation of queries. I proposed a

compact clustering framework to mine entity attribute synonyms for a set of inputs jointly

with multiple information sources [59]. Subsequently I applied a similar clustering framework
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to detect synonymous query templates for attribute intents [58]. Finally, in the direction

of dynamic understanding and representation of queries, I introduced a new kind of user

behavior called “Horizontal Skipping Bias”, which is unique to the query auto-completion

process. I then proposed a two-dimensional click model to model the query auto-completion

process. My researches in this thesis are summarized as follows.

• Query Spelling Correction by a Generalized Hidden Markov Model. Queries

issued by web search engine users usually contain errors. Inferring the query’s intent in

this case becomes difficult. As an important type of query alteration, query correction

aims at transforming the potentially misspelled query into its correct form. Existing

methods in the literature have two major drawbacks. First, they are unable to handle

important types of spelling errors, such as concatenation and splitting. Second, they

usually employ a heuristic filtering step to select a working set of top-K candidates for

final scoring, leading to non-optimal predictions. In [56] I addressed both limitations by

proposing a novel generalized Hidden Markov Model with discriminative training that

can not only handle all the major types of spelling errors in a single unified framework,

but also efficiently evaluate all the candidate corrections to ensure the finding of a

globally optimal correction. I had also built a query speller system called CloudSpeller

[55], which won the second place in the Microsoft Speller Challenge [4].

• Query Segmentation using Clicktrhough. One difficulty toward deeper level

query intent understanding is that web search query is usually lack of explicit lin-

guistic signals such as quotation, capitalization, punctuation and standard grammar.

Successful detection of such latent query linguistic signals can help improve the retrieval

performance. I addressed the identification of the most important type of query lin-

guistic signals – query segmentation. Existing segmentation models either use labeled

data to predict the segmentation boundaries, for which the training data is expensive

to collect, or employ unsupervised strategy only based on a large text corpus, which
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might be inaccurate because of the lack of relevant information. To address these limi-

tations, in [57] I proposed a probabilistic model to exploit click-through data for query

segmentation. I further studied how to properly interpret the segmentation results and

utilize them to improve retrieval accuracy. Specifically, I proposed an integrated lan-

guage model based on the standard bigram language model to utilize the probabilistic

structure obtained through query segmentation.

• Entity Attribute Synonyms Mining. If the query and structured data sources

are all written in well-formed texts, the task of semantic annotation of queries is

manageable. However a big challenge of query semantic annotation is to handle the

variation of text expression. Users may use many different alternative forms of the

same entity when they input a query. For example, people usually issue “LOTR

show time” instead of “lord of the rings show time” as typing the short form of the

entity is more convenient. Discovering such alternative surface forms of entities and

attributes is crucial for improving query semantic annotation thus advancing the query

intent understanding and retrieval. However, most previous approaches only focused

on utilizing a single feature, such as distributional similarity or query-entity clicks. In

addition, previous methods usually look for synonyms one entity at a time, ignoring

the information provided by the entire set of inputs. In [59] I proposed a compact

clustering framework to identify synonyms for a set of entity attributes jointly. Signals

from multiple sources of information are integrated for finding synonyms.

• Modeling Query Auto-completion by a Two-dimensional Click Model. No-

tice that the above levels of query understanding is static, meaning that we have to

know the entire query in advance. However in many scenarios it is not possible: the

users want to be assisted when they just give a tiny amount of query hint, which is

called dynamic query understanding. One example is to predict users intended queries

based on partial queries in the task of query auto-completion. For this purpose, in
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[54] I have introduced a new kind of user behavior called “Horizontal Skipping Bias”,

which is unique to the query auto-completion process. Based on this novel discovery,

Ive proposed a novel Two-Dimensional Click Model to model the users behavior in

QAC and the resulting relevance model significantly improves the relevance ranking in

QAC than most of the existing click models.

The rest of the proposal is organized as follows. In Chapter 2, I review the studies related

to this thesis. Chapter 3, 4, 5, and 6 present the approaches for Query Spelling Correc-

tion, Query Segmentation, Entity Attribute Synonyms Mining and Query Auto-Completion

respectively. Finally I will summarize my thesis works and point out some potential future

directions in Chapter 7.
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Chapter 2

Related Work

In this chapter, we review related work in existing literature on these topics: (1)Query

spelling correction and query reformulation; (2) Query segmentation; (3) Synonym mining;

(4) Query Auto-completion; (5) Query log and other resources.

2.1 Query Spelling Correction and Query

Reformulation

Query spelling correction has long been an important research topic [50]. Traditional spellers

focused on dealing with non-word errors caused by misspelling a known word as an invalid

word form. A common strategy at that time was to utilize a trusted lexicon and certain

distance measures, such as Levenshtein distance [52]. The size of lexicon in traditional

spellers is usually small due to the high cost of manual construction of lexicon. Consequently,

many valid word forms such as human names and neologisms are rarely included in the

lexicon. Later, statistical generative models were introduced for spelling correction, in which

the error model and n-gram language model are identified as two critical components. Brill

and Moore demonstrated that a better statistical error model is crucial for improving a

speller’s accuracy [17]. But building such an error model requires a large set of manually

annotated word correction pairs, which is expensive to obtain. Whitelaw et al. alleviated

this problem by leveraging the Web to automatically discover the misspelled/corrected word

pairs [97].

8



With the advent of the Web, the research on spelling correction has received much more

attention, particularly on the correction of search engine queries. Many research challenges

are raised, which are non-existent in traditional settings of spelling correction. More specif-

ically, there are many more types of spelling errors in search queries, such as misspelling,

concatenation/splitting of query words, and misuse of legitimate yet inappropriate word-

s. Research in this direction includes utilizing large web corpora and query log [23, 27, 6],

training phrase-based error model from clickthrough data [82] and developing additional fea-

tures [32]. However, two important challenges are under addressed in these approaches, i.e.,

correcting splitting and concatenation errors, and ensuring complete search in the candidate

space to evaluate an effective scoring function.

Query spelling correction also shares similarities with many other NLP tasks, such as

speech recognition and machine translation. In many of these applications, HMM has been

found very useful [46, 89].

Query reformulation is a broader topic which naturally subsumes query spelling correc-

tion. Beside correcting the misspelled query, query reformulation also need to modify the

ineffective query so that it could be more suitable for the search intent. For this purpose,

many research topics have been studied. Query expansion expands the query with additional

terms to enrich the query formulation [99, 72, 68]. Other query reformulation methods intend

to replace the inappropriate query terms with effective keywords to bridge the vocabulary

gaps [95]. Particularly, there is research attempt [35] to use a unified model to do a broad

set of query refinements such as correction, segmentation and even stemming. However, it

treats query correction and splitting/merging as separate tasks, which is not true for real

world queries. Also, it has very limited ability for query correction. For example, it only

allows one letter difference in deletion/insertion/substitution errors.
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2.2 Query Segmentation

Query segmentation models have been studied in recent literature [43, 47, 15, 101, 84, 36].

Initially, the mutual information (MI) between adjacent words in a query is employed to

segment queries with a cutoff [43, 47].The major drawback of MI based methods is that they

are unable to detect multi-word or phrase based dependencies. Compared with MI based

models, supervised query segmentation approaches can achieve higher accuracies [15, 101].

For example, by considering every boundary between two consecutive query words as a binary

decision variable, Bersgma and Wang [15] trains the weights of a linear decision function with

a set of syntactic and shallow semantic features extracted from the labeled data. However,

its focus on noun phrase features may not be appropriate for the segmentation of web

queries. Furthermore, acquiring training labels demands a great deal of manual effort that

may not scale to the web. As another supervised learning approach, Yu and Shi [101] applies

conditional random fields to obtain good query segmentation performance. However, it relies

on field information features specific to databases, not available for general unstructured

web queries. Moreover, the evaluation was conducted only on synthetic data, which is less

desirable than real query data.

Tan and Peng [84] introduce a generative model in the unsupervised setting by adopting

n-gram frequency counts from a large text corpus and computing the segment scores via

expectation maximization (EM). It also utilizes Wikipedia as another term in the minimum

description length objective function. Similar probabilistic model is also proposed in [102],

but this model focuses in parsing noun phrases thus not generally applicable to web queries.

Our work is also related to the retrieval models that capture higher order dependencies

of query terms. There are several research attempts to incorporate term dependency in

query or document to retrieval models [65]. For example, some attempts have been made to

add proximity heuristics to the vector space model or generative query LM model [67, 86].

However these methods rely on heuristics, which is not a principled way of incorporating
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term dependency. More unified higher-order language models have been studied by Srikanth

et al. (Biterm LM) [81]. However, their assumption that every position is dependent is

too strong. In fact, the word dependency is stronger within a semantic unit than across

the unit, which is what we assume in our work. LM with query syntactics [33] assumes a

structure on the query, but they are too complex to estimate accurately. More important,

the query syntactic models usually take only the top (most likely) query structure in the

modeling process. However, it is more appropriate to assess the probability for all possible

segmentation if multiple structures have comparable probabilities to represent the query.

2.3 Synonym Mining

There is a rich body of work on the general topic of automatic synonym discovery. This re-

search topic can be divided into sub-areas, including finding word synonyms, entity/attribute

synonyms, and related query identification. Identifying word level synonyms from text is a

traditional topic in the NLP community. Such synonyms can be discovered using simple dic-

tionary based methods such as WordNet and Wikipedia redirects; distributional similarity

based methods [60, 61]; and approximate string matching approaches [69]. In this work, we

are interested in finding entity attribute synonyms, which usually have more domain context

than plain words.

Researchers have employed several similarity metrics to find synonyms from web data.

Such similarities include distributional similarity [60, 61], coclick similarity [24, 20], pointwise

mutual information [88], and co-occurrence statistics [11]. Unlike these works, our work

introduces a novel similarity metric called categorical pattern similarity for jointly finding

synonyms from a set of attributes.

Although several similarity metrics are introduced to find synonyms, most previous ap-

proaches use only a single metric in their model. [20] tries to combine multiple metrics,

however they manually choose a set of thresholds for individual metrics, which leads to a
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high precision but potentially low recall approach.

2.4 Query Auto-Completion

Query auto-completion is the search process of preferred queries given the issued prefix of a

user. Most of the existing works focus on relevance ranking. For this purpose, traditional

QAC engines rely on query popularity counts. However it’s impossible to return queries

matching a user’s specific preference such as location and freshness in time etc. Recent

QAC models employ learning-based strategy that incorporates several global and personal

features [10, 79]. But there is no consensus of how to optimally train the relevance model.

The QAC process is very personal in nature, so it’s almost impossible to obtain a labeled

dataset by third-party annotation. Existing methods use the clicks as a relevance surrogate,

and train a model trying to maximize the clicks. The straightforward way is to only utilize

the data in the last prefix, and use the skip-above as well as the skip-next hypothesis to

obtain a set of labels. Then we could use the learning-based algorithms to train a model

that linearly combines a set of features. Most recently [79] introduces a different strategy,

which exploits all suggested queries for all simulated prefixes of the clicked query. However,

this automatic labeling strategy might be problematic, since it may introduce many false

negative examples where the user skips looking down the list. If she had to examine the

list, she would have clicked a query. So there is a lot of uncertainty in the labeled examples

introduced by this method.

Besides relevance modeling, there are previous works addressing different aspects of QAC.

For example, [12, 38] studied the space efficiency of index for QAC. [96, 41] investigated the

efficient algorithms for QAC. [29] addressed the problem of suggesting query completions

even if the prefix is mis-spelled. And [8] studied the context-sensitive QAC for mobile search.

The QAC is a complex process where a user goes through a series of interactions with

the QAC engine before clicking on a query. Deciphering the user behavior in QAC is an
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interesting and challenging task. Despite of its importance, little research is done on this

direction, mainly because of the lack of suitable QAC log. It is in this work we first collect

a high-resolution QAC log and attempt to model the user behaviors.

Modeling the query auto-completion is closely related to Click Models. In the field of

document retrieval, the main purpose for modeling a user’s clicks is to infer the intrinsic

relevance between the query and document by explaining the positional bias. The position

bias assumption was first introduced by Granka et al. [34], stating that a document on

higher rank tends to attract more clicks. Richardson et al. [75] attempted to model the

true relevance of documents in lower positions by imposing a multiplicative factor. Later

examination hypothesis is formalized in [26], with a key assumption (Cascade Assumption)

that a user will click on a document if and only if that document has been examined and it

is relevant to the query. Later, several extensions were proposed, such as the User Browsing

Model (UBM) [31], Bayesian Browsing Model [62], General Click Model [105] and Dynamic

Bayesian Network model (DBN) [22]. Despite the abundance of click models, no existing

click models can directly apply to QAC without considerable modification. The click model

most similar to our work is [104], which models users’ clicks on a series of queries in a session.

However because of the main difference between QAC and document retrieval, our model

structure is very different from [104]. To the best of our knowledge, our work is the first

click model for modeling the QAC process.

2.5 Query Log and Other Resources

To better understand the query intents we have to leverage users’ short and long term

interaction with search engine. Such activities are usually recorded in query log. Query

log has been utilized for diverse applications such as query segmentation [15, 84], query

reformulation [44, 78], relevance ranking [74, 42, 5], query clustering [100] etc. Recently

modeled the long-term query logs using language models to improve the personalized search
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[85, 83]. Other types of large-scale resources can be also exploited to decipher the challenging

problem of query intent understanding. These resources include web ngram language model

[3], knowledge bases such as FreeBase and wikipedia, large-scale web page corpus such as

clueweb [1, 2].
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Chapter 3

Query Spelling Correction by a
Hidden Markov Model

3.1 Introduction

Queries issued by web search engine users usually contain errors and mis-used words/phrases.

Although a user might have a clear intent in her mind, inferring the querys intent in this

case becomes difficult because of the edit distance or vocabulary gap between the user’s ideal

query and the query issued to the search engine. Query reformulation is to automatically find

alternative forms of a query that eliminate or reduce such gap. Effective query reformulation

has been proved to be very effective in improving the performance of information retrieval.

There are several types of query reformulations, including query spelling correction, query

expansion, query rewriting etc. In this chapter we focus on an important type of query

reformulation – query spelling correction.

The ability to automatically correct potentially misspelled queries has become an indis-

pensable component of modern search engines. People make errors in spelling frequently.

Particularly, search engine users are more likely to commit misspellings in their queries as

they are in most scenarios exploring unfamiliar contents. Automatic spelling correction for

queries helps the search engine to better understand the users’ intents and can therefore im-

prove the quality of search experience. However, query spelling is not an easy task, especially

under the strict efficiency constraint. In Table 3.1 we summarize major types of misspellings

in real search engine queries. Users not only make typos on single words, (insertion, dele-

tion and substitution), but can also easily mess up with word boundaries (concatenation

and splitting). Moreover, different types of misspelling could be committed in the same
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query, making it even harder to correct. Unfortunately, no existing query spelling correction

Table 3.1: Major Types of Query Spelling Errors

Type Example Correction

In-Word
Insertion esspresso espresso
Deletion vollyball volleyball
Substitution comtemplate contemplate
Mis-use capital hill capitol hill

Cross-Word
Concatenation intermilan inter milan
Splitting power point powerpoint

approaches in the literature are able to correct all major types of errors, especially for cor-

recting splitting and concatenation errors. To the best of my knowledge, the only work that

can potentially address this problem is [35] in which a Conditional Random Field (CRF)

model is proposed to handle a broad set of query refinements. However, this work consid-

ers query correction and splitting/merging as different tasks, hence it is unable to correct

queries with mixed types of errors, such as substitution and splitting errors in one query. In

fact splitting and merging are two important error types in query spelling correction, and a

major research challenge of query spelling correction is to accurately correct all major types

of errors simultaneously.

Another major difficulty in automatic query spelling correction is the huge search space.

Theoretically, any sequence of characters could potentially be the correction of a misspelled

query. It is clearly intractable to enumerate and evaluate all possible sequences for the

purpose of finding the correct query. Thus a more feasible strategy is to search in a space

of all combinations of candidate words that are in a neighborhood of each query word based

on editing distance. The assumption is that a user’s spelling error of each single word is

unlikely too dramatic, thus the correction is most likely in the neighborhood by editing

distance. Unfortunately, even in this restricted space, the current approaches still cannot

enumerate and evaluate all the candidates because their scoring functions involve complex

features that are expensive to compute. As a result, a separate filtering step must first be
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used to prune the search space so that the final scoring can be done on a small working

set of candidates. Take [32] as a two-stage method example, in the first stage, a Viterbi or

A* search algorithm is used to generate a small set of most promising candidates, and in

the second stage different types of features of the candidates are computed and a ranker is

employed to score the candidates. However, this two-stage strategy has a major drawback in

computing the complete working set. Since the filtering stage uses a non-optimal objective

function to ensure efficiency, it is quite possible that the best candidate is filtered out in

the first stage, especially because we cannot afford a large working set since the correction

must be done online while a user is entering a query. The inability of searching the complete

space of candidates leads to non-optimal correction accuracy.

In this chapter, we propose a generalized Hidden Markov Model (gHMM) for query

spelling correction that can address deficiencies of the existing approaches discussed above.

The proposed gHMM can model all major types of spelling errors, thus enabling consid-

eration of multiple types of errors in query spelling correction. In the proposed gHMM,

the hidden states represent the correct forms of words, and the outcomes are the observed

(potentially) misspelled terms. In addition, each state is associated with a type, indicating

merging, splitting or in-word transformation operation. The proposed HMM is generalized

in the sense that it would allow adjustment of both emission probabilities and transition

probabilities to accommodate the non-optimal parameter estimation. Unfortunately, such

an extension of HMM makes it impossible to use a standard EM algorithm for parameter

estimation. To solve this problem, we propose a perceptron-based discriminative training

method to train the parameters in the HMM.

Moreover, a Viterbi-like search algorithm for top-K paths is designed to efficiently obtain

a small number of highly confident correction candidates. This algorithm can handle split-

ting/merging of multiple words. It takes into account major types of local features such as

error model, language model, and state type information. The error model is trained on a

large set of query correction pairs from the web. And web scale language model is obtained
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by leveraging the Microsoft Web N-gram service [3].

We conducted extensive evaluation on our proposed gHMM. For this purpose, we have

constructed a query correction dataset from real search logs, which has been made publicly

available. Experimental results verify that the gHMM can effectively correct all major types

of query spelling errors. It also reveal that the gHMM can run as efficient as the common

used noisy channel model, while it achieves much better results for obtaining the candidate

space of query corrections. Therefore, in addition to being used as standing alone query

correction module, the proposed gHMM can also be used as a more effective first-stage

filtering module to more effectively support any other complicated scoring functions such as

those using complex global features.

3.2 Problem Setup and Challenges

Formally, let Σ be the alphabet of a language and L ⊂ Σ+ be a large lexicon of the language.

We define the query spelling correction problem as:

Given a query q ∈ Σ+, generate top-K most effective corrections Y = (y1, y2, ..., yk) where

yi ∈ L+ is a candidate correction, and Y is sorted according to the probability of yi being

the correct spelling of the target query.

It is worth noting that from a search engine perspective, the ideal output Y ′ should

be sorted according to the probability of yi retrieving the most satisfying results in search.

However, in practice it is very difficult to measure the satisfaction as unlike in ad hoc retrieval

where the query is given in its correct form, here the real query is unknown. As a result,

different corrections could simply lead to queries with different meanings and it would be very

subjective to determine which query actually satisfies the user. In this work, we are mostly

concerned with the lexical and semantic correctness of queries with the assumption that

correction of mis-spelled query terms most likely would lead to improved retrieval accuracy.

The problem of query spelling correction is significantly harder than the traditional
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spelling correction. Previous researches show that approximately 10-15% of search queries

contain spelling errors [27]. First, it is difficult to cover all the different types of errors. The

spelling errors generally fall into one of the following four categories: (1) in-word transforma-

tion, e.g. insertion, deletion, misspelling of characters. This type of error is most frequent in

web queries, and it is not uncommon that up to 3 or 4 letters are misspelled; (2) mis-use of

valid word, e.g. “persian golf” → “persian gulf”. It is also a type of in-word tranformation

errors; (3) concatenation of multiple words, e.g. “unitedstatesofamerica” → “united states

of america”; (4) splitting a word into parts, e.g. “power point slides”→ “powerpoint slides”.

Among all these types, the splitting and concatenation errors are especially challenging to

correct. Indeed, no existing approaches in the academic literature can correct these two

types of errors. Yet, it’s important to correct all types of errors because users might commit

different types of errors or even commit these errors at the same time. A main goal of this

work is to develop a new HMM framework that can model and correct all major types of

errors including splitting and concatenation.

Second, it is difficult to ensure complete search of all the candidate space because the

candidate space is very large. The existing work addresses this challenge by using a two-

stage method, which searches for a small set of candidates with simple scoring functions and

do re-ranking on top of these candidates. Unfortunately, the simple scoring function used

in the first stage cannot ensure that the nominated candidate corrections in the first stage

always contain the best correction, thus no matter how effective the final scoring function

is, we may miss the best correction simply because of the use of two separate stages. In

this chapter, we address this challenge by developing a generalized HMM that can both be

efficiently scored to ensure complete search in the candidate space and accurately correct all

types of errors in a unified way.
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3.3 A Generalized HMM for Query Spelling

Correction

Our algorithm accepts a query as input, and then generates a small list of ranked corrections

as output by a generalized Hidden Markov Model (gHMM). It is trained by a discriminative

method with labeled spelling examples. Given a query, it scores candidate spelling correc-

tions in a one-stage fashion and outputs the top-K corrections, without using a re-ranking

strategy. Other components of our algorithm include a large clean lexicon, the error model

and the language model. In this section we will focus on the gHMM model structure, the

discriminative training of it, as well as the efficient computation of spelling corrections.

3.3.1 The gHMM Model Structure

We propose a generalized HMM Model to model the spelling correction problem. We call it a

generalized HMM because there are several important differences between it and the standard

HMM model which will be explained later. Without loss of generality, let an input query be

q = q[1:n] and a corresponding correction be y = y[1:m] where n,m are the length of the query

and correction, which might or might not be equal. Here we introduce hidden state sequence

z = z[1:n] = (s1, s2, ..., sn) in which z and q have the same length. An individual state si is

represented by a phrase corresponding to one or more terms in correction y[1:m]. Together the

phrase representing z is equal to y. Therefore, finding best-K corrections Y = (y1, y2, ..., yk)

is equivalent to finding best-K state sequences Z = (z1, z2, ..., zk). In addition, there is a

type t associated with each state, indicating the operation such as substitution, splitting,

merging etc. Also, in order to facilitate the merging state we introduce a NULL state. The

NULL state is represented by an empty string, and it doesn’t emit any phrase. There can

be multiple consecutive NULL states followed by a merging state. Table 3.2 summarizes the

state types and the spelling errors they correspond to. Having the hidden states defined,

the hypothesized process of observing a mis-spelled query is as follows:
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1. sample a state s1 and state type t1 from the state space Ω and the type set T ;

2. emit a word in q1, or empty string if the s1 is a NULL state according to the type

specific error model;

3. transit to s2 with type t2 according to the state transition distribution, and emit

another word, or multiple words in q[1:n] if s2 is a merging state;

4. continue until the whole (potentially) mis-spelled query q is observed.

Table 3.2: State Types in gHMM

State Type Operation Spelling Errors
Deletion Insertion

In-word Insertion Deletion
Transformation Substitution Substitution

Mis-use Transformation Word Mis-use
Merging Merge Multiple Splitting

Words
Splitting Split one Word Concatenation

to Multiple Words

Figure 3.1 illustrates our gHMM model with a concrete example. In this example, there

are three potential errors with different error types, e.g. “goverment” → “government”

(substitution), “home page” → “homepage” (splitting), “illinoisstate” → “illinois state”

(concatenation). The state path shown in Figure 3.1 is one of the state sequences that can

generate the query. Take state s3 for example, s3 is represented by phrase homepage. Since

s3 is a merging state, it emits a phrase home page with probability P (home page|homepage).

And s3 is transited from state s2 with probability P (s3|s2). With this model, we are able to

come up with arbitrary corrections instead of limiting ourselves to an incomprehensive set

of queries from query log. By simultaneously modeling the misspellings on word boundaries,

we are able to correct the query in a more integrated manner.
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sequence:

home page of illinoistate

Figure 3.1: Illustration of the gHMM Model

3.3.2 Generalization of HMM Scoring Function

For a standard HMM [73], let θ = {A,B, π} be the model parameters of the HMM, rep-

resenting the transition probability, emission probabilities and initial state probabilities re-

spectively. Given a list of query words q[1:n] (obtained by splitting empty spaces), the state

sequence z∗ = (s∗1, s
∗
2, ..., s

∗
n) that best explains q[1:n] can be calculated by:

z∗ = argmax
z
P (z|q[1:n], A,B, π) (3.1)

However, theoretically the phrase in a state can be chosen arbitrarily, so estimating {A,B, π}

is such a large space is almost impossible in the standard HMM framework. In order to over-

come this difficulty, the generalized Hidden Markov Model proposed in this work generalizes

the standard HMM as follows: (1) gHMM introduces state type for each state, which in-

dicates the correction operations and can reduce the search space effectively; (2) it adopts

feature functions to parameterize the measurement of probability of a state sequence given a

query. Such treatment can not only map the transition and emission probabilities to feature

functions with a small set of parameters, but can also add additional feature functions such

as the ones incorporating state type information. Another important benefit of the feature

function representation is that we can use discriminative training on the model with labeled
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spelling corrections, which will lead to a more accurate estimation of the parameters.

Formally, in our gHMM model, there is an one-to-one relationship between states in a

state sequence and words in the original query. For a given query q = q[1:n] and the sequence

of states z = (s1, s2, ..., sn), we define a context hi for every state in which an individual

correction decision is made. The context is defined as hi =< si−1, ti−1, si, ti, q[1:n] > where

si−1, ti−1, si, ti are the previous and current state and type decisions and q[1:n] are all query

words.

The generalized HMM model measures the probability of a state sequence by defining

feature vectors on the context-state pairs. A feature vector is a function that maps a context-

state pair to a d-dimensional vector. Each component of the feature vector is an arbitrary

function operated on (h, z). Particularly, in this study we define 2 kinds of feature vectors,

one is ϕj(si−1, ti−1, si, ti), j = 1...d, which measures the interdependency of adjacent states.

We can map this function to a kind of transition probability measurement. The other kind

of feature function, fk(si, ti, q[1:n]), k = 1...d′ measures the dependency of the state and its

observation. We can consider it as a kind of emission probability in the standard HMM

point of view. Such feature vector representation of HMM is introduced by Collins [25] and

successfully applied to the POS tagging problem.

Specifically, we have designed several feature functions as follows: we define a function

of ϕ(si−1, ti−1, si, ti) as

ϕ1(si−1, ti−1, si, ti) = logPLM(si|si−1, ti−1, ti) (3.2)

to measure the language model probabilities of two consecutive states. Where PLM(si|si−1)

is the bigram probability calculated by using Microsoft Web N-gram Service [3]. The com-

putation of PLM(si|si−1) may depend on the state types, such as in a merging state.

We have also defined a set of functions in the form of fk(si, ti, q[1:n]), which are dependent
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on the query words and state type, measuring the emission probability of a state. For

example, we define

f1(si, ti, q[1:n]) =

logPerr(si, qi) if qi is in-word transformed to si and qi /∈ Lexicon L

0 otherwise

(3.3)

as a function measuring the emission probability given the state type is in-word transfor-

mation and qi is out of dictionary. e.g. “goverment” → “government”. Perr(si, qi) is the

emission probability computed by an error model which measures the probability of mis-

typing “government” to “goverment”.

f2(si, ti, q[1:n]) =

logPerr(si, qi) if ti is splitting and qi ∈ Lexicon L

0 otherwise
(3.4)

to capture the emission probability if the state is of splitting type and qi is in dictionary.

e.g. “homepage” → “home page”.

f3(si, ti, q[1:n]) =

logPerr(s, qi) if ti is Mis-use and qi ∈ Lexicon L

0 otherwise
(3.5)

to get the emission probability if a valid word is transformed to another valid word.

Note that in Equation (3.3), (3.4), and (3.5), we use the same error model Perr(si, qi) (see

Section ?? for detail) to model the emission probabilities from merging, splitting errors etc.

in the same way as in-word transformation errors. However we assign different weights to the

transformation probabilities resulted from different error types via discriminative training
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on a set of labeled query-correction pairs.

Overall, we have designed a set of feature functions that are all relied on local depen-

dencies, ensuring that the top-K state sequences can be computed efficiently by Dynamic

Programming.

After establishing the feature vector representation, the log-probability of a state se-

quence and its corresponding types logP (z, t|q[1:n]) is proportional to:

Score(z, t) =
n∑

i=1

d∑
j=1

λjϕj(si−1, ti−1, si, ti) (3.6)

+
n∑

i=1

d′∑
k=1

µkfk(si, ti, q[1:n])

where λj, µk are the component coefficients needed to be estimated. And the best state

sequence can be found by:

z∗t∗ = argmax
z,t

Score(z, t) (3.7)

Note that the form of Score(z, t) is similar to the objective function of a Conditional

Random Field model [51], but with an important difference that there is no normalization

terms in our model. Such difference also enables the efficient search of top-K state sequences

(equivalent to top-K corrections) using Dynamic Programming, which will be introduced

shortly.

3.3.3 Discriminative Training

Motivated by ideas introduced in [25], we propose a perceptron algorithm to train the gH-

MM model. To the best of our knowledge, this is the first attempt to use discriminative
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approach to train a HMM on the problem of query spelling correction. Now we describe

how to estimate the parameters λj, µk from a set of <query, spelling correction> pairs. The

estimation procedure follows the perceptron learning framework. Take the λj for example.

We first set all the λj at random. For each query q, we search for the most likely state

sequence with types zi[1:ni]
, ti[1:ni]

using the current parameter settings. Such search process

is described in Algorithm 2 by setting K = 1. After that, if the best decoded sequence is

not correct, we update λj by simple addition: we promote the amount of λj by adding up

ϕj values computed between the query and labeled correction y′, and demote the amount of

λj by the sum of all ϕj values computed between the query and the top-ranked predictions.

We repeat this process for several iterations until converge. Finally in step 11 and 12, we

average all λo,ij in each iteration to get the final estimate of λj, where λ
o,i
j is the stored value

for the parameter λj after i’s training example is processed in iteration o. Similar procedures

can apply to µk. The detailed steps are listed in Algorithm 1. Note that in step 7 and 8

the feature functions ϕj(q
i, y′i, t′i) and fk(q

i, y′i, t′i) depend on unknown types t′i that are

inferred by computing the best word-level alignment between qi and y′i. This discriminative

training algorithm will converge after several iterations.

3.3.4 Query Correction Computation

Once the optimal parameters are obtained by the discriminative training procedure intro-

duced above, the final top-K corrections can be directly computed, avoiding the need for

a separate stage of candidate re-ranking. Because the feature functions are only relied on

local dependencies, it enables the efficient search of top-K corrections via Dynamic Program-

ming. This procedure involves three major steps: (1) candidate states generation; (2) score

function evaluation; (3) filtering.

At the first step, for each word in query q, we generate a set of state candidates with

types. The phrase representations in such states are in Lexicon L and within editing distance

δ from the query word. Then a set of state sequences are created by combining these states.
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Algorithm 1: Discriminative Training of gHMM

input : A set of ¡query, spelling correction¿ pairs
qi[1:ni]

, y′i[1:mi]
for i = 1...n

output: Optimal estimate of λ̂j, µ̂k, where j ∈ {1, ..., d}, k ∈ {1, ..., d′}

1 Init Set λ̂j, µ̂k to random numbers;
2 for o← 1 to O do
3 for i← 1 to n do

/* identify the best state sequence and the associated types of the

i’th query with the current parameters via Algorithm 2: */

4 zi[1:ni]
, ti[1:ni]

= argmaxu[1:ni]
,t[1:ni]

Score(u, t)

/* where u[1:ni] ∈ Sni , Sni is all possible state sequences given qi[1:ni]
*/

5 if zi[1:ni]
̸= y′i[1:mi]

then

6 update and store every λj, µk according to:

7 λj = λj +
∑ni

i=1 ϕj(q
i, y′i, t′i)−

∑ni
i=1 ϕj(q

i, zi, ti)
8 µk = µk +

∑ni
i=1 fk(q

i, y′i, t′i)−
∑ni

i=1 fk(q
i, zi, ti)

9 else
10 Do nothing

/* Average the final parameters by: */

11 λ̂j =
∑O

o=1

∑n
i=1 λ

o,i
j /nO, where j ∈ {1, ..., d}

12 µ̂k =
∑O

o=1

∑n
i=1 µ

o,i
k /nO, where k ∈ {1, ..., d′}

13 return parameters λ̂j, µ̂k;
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In addition, for each state sequence we have created, we also create another state sequence

by adding a NULL state at the end, facilitating a (potential) following merging state. It is

important to note that if the δ is too small, it will compromise the final results due to the

premature pruning of state sequences. In this work δ = 3 is chosen in order to introduce

adequate possible state sequences.

At the score function evaluation step, we update the scores for each state sequence

according to Eq. (3.6). The evaluation is different for sequence with different ending state

types. Firstly, for a sequence ending with a NULL state, we don’t evaluate the scoring

function. Instead, we only need to keep track of the state representation of its previous state.

Secondly, for a sequence ending with a merging state, it merges the previous one or more

consecutive NULL states. And the scoring function takes into account the information stored

in the previous NULL states. For instance, to ϕ1(si−1, ti−1 = NULL, si, ti = merging), we

have

ϕ1(si−1,NULL, si,merging) = logPLM(si−2|si) (3.8)

i.e. skipping the NULL state and pass the previous state representation to the merging

state. In this way, we can evaluate the scoring function in multiple consecutive NULL states

followed by a merging state, which enables the correction by merging multiple query words.

Thirdly, for a sequence ending with a splitting state, the score is accumulated by all bigrams

within the splitting state. For example,

ϕ1(si−1, ti−1, si, ti = splitting) (3.9)

= logPLM(w1|si−1) +
k−1∑
j=1

logPLM(wi+1|wi)

where si = w1w2...wk. On the other hand, the evaluation of fk(si, ti, q[1:n]) is easier because

it is not related to previous states. The error model from the state representation to the
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query word is used to calculate these functions.

At the final step, we filter most of the state sequences and only keep top-K best state

sequences in each position corresponding to each query word. In sum, we have proposed

and implemented an algorithm via Dynamic Programming (see Algorithm 2) for efficiently

computing top-K state sequences (corrections). If there are n words in a query, and the max-

imum number of candidate states for each query word is M , the computational complexity

for finding top-K corrections is O(n ·K ·M2).

Algorithm 2: Decoding Top-K Corrections

input : A query q[1:n], parameters λ⃗, µ⃗
output: top K state sequences with highest likelihood

/* Z[i, si]: top K state sequences for sub-query q[1:i] that ending with state

si. For each z ∈ Z[i, si], phrase denotes the representation and score
denotes the likelihood of z given q[1:i]. */

/* Z[i]: top state sequences for all Z[i, si]. */

1 Init Z[0] = {}
2 for i← 1 to n do

/* for term qi, get all candidate states */

3 S ← si, ∀si : edit dist(si, qi) ≤ δ, si has type si.type
4 for si ∈ S do
5 for z ∈ Z[i− 1] do
6 a← new state sequence
7 a.phrase← z.phrase ∪ {si}
8 update a.score according to si.type and Eq. (3.6), Eq. (3.8) and Eq. (3.9)
9 Z[i, si]← a

/* delay truncation for NULL states */

10 if si.type ̸= NULL and i ̸= n then
11 sort Z[i, si] by score
12 truncate Z[i, si] to size K

13 sort Z[n] by score
14 truncate Z[n] to size K
15 return Z[n];
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3.4 Experiments and Results

In order to test the effectiveness and efficiency of our proposed gHMM model, in this section

we conduct extensive experiments on two web query spelling datasets. We first introduce

the datasets, and describe the evaluation metrics we use for evaluation. Then we compare

our model with other baselines in terms of accuracy and runtime.

3.4.1 Dataset Preparation

The experiments are conducted on two query spelling correction datasets. One is the TREC

dataset based on the publicly available TREC queries (2008 Million Query Track). This

dataset contains 5892 queries and the corresponding corrections annotated by the MSR

Speller Challenge [4] organizers. There could be more than one plausible corrections for a

query. In this dataset only 5.3% of queries are judged as misspelled.

We have also annotated another dataset that contains 4926 MSN queries, where for each

query there is at most one correction. Three experts are involved in the annotation process.

For each query, we consult the speller from two major search engines (i.e. Google and Bing).

If they agree on the returned results (including the case if the query is just unchanged), we

take it as the corrected form of the input query. If the results are not the same from the

two, as least one human expert will manually annotate the most likely corrected form of the

query. Finally, about 13% of queries are judged as misspelled in this dataset, which is close

to the error rate of real web queries. This dataset is publicly available to all researchers.

We divide the TREC and MSN datasets into training and test sets evenly. Our gHMM

model as well as the baselines are trained on the training sets and finally evaluated on the

TREC test set containing 2947 queries and MSN test set containing 2421 queries.
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3.4.2 Evaluation Metrics

We evaluate our system based on the evaluation metrics proposed in Microsoft Speller Chal-

lenge [3], including expected precision, expected recall and expected F1 measure.

As used in previous discussions, q is a user query and Y (q) = (y1, y2, , yk) is the set

of system output with posterior probabilities P (yi|q). Let S(q) denote the set of plausible

spelling variations annotated by the human experts for q. Expected Precision is computed

as:

precision =
1

|Q|
∑
q∈Q

∑
y∈Y (q)

Ip(y, q)P (y|q) (3.10)

where Ip(y, q) = 1 if y ∈ S(q), and 0 otherwise. And expected recall is defined as:

recall =
1

|Q|
∑
q∈Q

∑
a∈S(q)

Ir(Y (q), a)/|S(q)| (3.11)

where Ir(Y (q), a) = 1 if a ∈ Y (q) for a ∈ S(q), and 0 otherwise. Expected F1 measure

can be computed as:

F1 =
2 · precision · recall
precision+ recall

(3.12)

3.4.3 Overall Effectiveness

We first investigate the overall effectiveness of the gHMM model. For suitable query spelling

correction baselines, especially approaches that can handle all types of query spelling errors,

we first considered using the CRF model proposed in [35]. This method aims at a broad

range of query refinements and hence might be also applicable to query correction. However,

we decided not to compare this model for the following reasons. Firstly, we communicated
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with the authors of [35] and knew that the program is un-reusable. Secondly, as mentioned

in Section 5.1 this work suffers from several drawbacks for query spelling correction: (1) it is

unable to correct queries with mixed types of errors, such as substitution and splitting errors

in one query, because the model treats query correction and splitting/merging as different

tasks; (2) this model only allows 1 character error for substitution/insertion/deletion. And

the error model is trained on the ¡query, correction¿ examples that only contain 1 character

error. Such design is over simplified for real-world queries, in which more than 1 character

errors are quite common. In fact, within the queries that contain spelling errors in the MSN

dataset, there are about 40.6% of them contain more than 1 character errors. Therefore it

is expected model in [35] will have in inferior performance

Because of the reasons stated above, the best baseline method that we can possibly

compare with is the system that achieved the best performance in Microsoft Speller Challenge

[63] (we call it Lueck-2011). This system relies on candidate corrections from third-party

toolkits such as hunspell and Microsoft Wrod Breaker Service [93] , and it re-ranks the

candidates by a simple noisy channel model. We communicated with the author and obtained

the corrections by running the Web API of this baseline approach. We also include a simple

baseline called Echo, which is just echoing the original query as the correction response with

posterior probability 1. It reflects the basic performance for a naive method. Experiments

are conducted on TREC and MSN datasets.

We report the results of all methods in Table 3.3. In this experiment up to top 10 correc-

tions are used in all approaches. The results in Table 3.3 indicate that gHMM outperforms

Lueck-2011 significantly on recall and F1 on the TREC dataset. Lueck-2011 has a small

advantage on precision, possibly due to the better handling the unchanged queries. On the

MSN dataset which is considered harder since it has more misspelled queries, gHMM also

achieves high precision of 0.910 and recall of 0.966, which are both significantly better than

that of the Lueck-2011 (0.896 and 0.921). On another important performance metric, which

measures the F1 on misspelled queries (F1 Mis), gHMM outperforms Lueck-2011 by a large
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margin (0.550 vs. 0.391 on TREC and 0.566 vs. 0.363 on MSN). These results demonstrate

that gHMM is very effective for handling all types of spelling errors in search queries overall.

Table 3.3: gHMM Compared to Baselines

Dataset Method Precision Recall F1 F1
Mis

Echo 0.949 0.876 0.911 N/A
TREC Lueck-2011 0.963 0.932 0.947 0.391

gHMM 0.960 0.976 0.968 0.550
Echo 0.869 0.869 0.869 N/A

MSN Lueck-2011 0.896 0.921 0.908 0.363
gHMM 0.910 0.966 0.937 0.566

3.4.4 Results by Error Types

Further, we also break down the results by error types that are manually classified so that

we can see more clearly the distribution of types of spelling errors and how well our gHMM

model addressing each type of errors. We present the results of this analysis in Table 3.4,

only with our model on both datasets. Top 40 corrections are used since it achieves the best

results. The breakdown results show that most queries are in the group of “no error”, which

are easier to handle than the other three types. As a result, the overall excellent performance

was mostly because the system performed very well on the “no error” group. Indeed, the

system has substantially lower precision on the queries with the other three types of errors.

The concatenation errors seem to be the hardest to correct, followed by the splitting errors,

and the in-word transformation errors (insertion, deletion and substitution, word mis-use)

seem to be relatively easier.

3.4.5 gHMM for Working Set Construction

Since the gHMM can efficiently search in the complete candidate space and compute the top-

K spelling corrections in a one-stage manner, it is very interesting to test its effectiveness for
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Table 3.4: Results by Spelling Error Type

Dataset Error Type % Queries Precision Recall F1
no error 94.9 0.990 0.982 0.986

TREC transformation 3.3 0.388 0.840 0.531
concatenation 1.3 0.348 0.877 0.498
splitting 0.5 0.500 0.792 0.613
no error 86.9 0.978 1.0 0.989

MSN transformation 11.1 0.493 0.762 0.599
concatenation 1.7 0.150 0.600 0.240
splitting 0.6 0.429 0.571 0.490

Note: % of queries might sum up to more than 100% since there might be multiple types of errors
in one query.

constructing a working set of candidate corrections to enable more complex scoring functions

to be used for spelling correction. For this purpose, we compare gHMM with the common

used noisy channel model, whose parameters, namely error model probabilities and bigram

language probabilities are estimated by the procedure mentioned in previous sections. We

use recall to measure the completeness of the constructed working set, because it represents

the percentage of true corrections given the number of predicted corrections. Table 3.5 shows

the recall according to different number of outputs. It indicates that the recall of gHMM

is steadily increasing by a larger number of outputs. By only outputting top-5 corrections,

gHMM reaches recall of 0.969 in TREC and 0.964 in MSN. In contrast, the noisy channel

model has a substantial gap in term of recall compared to gHMM. This result strongly

demonstrates the superior effectiveness of gHMM in constructing a more complete working

set of candidate corrections, which can be utilized by other re-ranking approaches which

could further improve the correction accuracy.

3.4.6 Efficiency

The runtime requirement of query correction is very stringent. Theoretically, the gHMM

with local feature functions can search top-K corrections efficiently by our proposed tok-K

Viterbi algorithm. Here we make a directly comparison between the runtime of gHMM and
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Table 3.5: gHMM vs. Noisy Channel Model on Recall

Dataset Method 1 5 10 20 40
TREC N-C 0.869 0.896 0.899 0.901 0.902

gHMM 0.887 0.969 0.976 0.981 0.983
MSN N-C 0.866 0.870 0.873 0.876 0.886

gHMM 0.920 0.964 0.966 0.9667 0.967

Note: N-C refers to the noisy channel model

a basic noisy channel that only needs to compute the error model probabilities and bigram

language probabilities. Such a basic model is also implemented with Viterbi algorithm. It is

run on a Windows server equipped with 2 Quad-core 64 bit 2.4 GHz CPUs and 8 GB RAM.

All necessary bigram language probabilities are crawled from Microsoft Web N-gram Service

and cached in local memory. We plot the runtime per query (in milliseconds) according to

the number of predicted corrections in Figure 3.2. According to Figure 3.2, the computation

of top-1 correction by gHMM is fast (34 ms) if the number of output is set to 1. It increases

as the number of output increases because the search space is increased. Interestingly, the

runtime of gHMM and the noisy channel model is of the same order of magnitude. This

empirical evidence confirms the theoretical result that top-K spelling corrections can be

computed efficiently via our proposed top-K Viterbi algorithm.

Figure 3.2: Runtime Comparison
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3.5 Conclusions and Future Works

In this chapter, we presented a novel generalized hidden Markov model (gHMM) for query

spelling correction that can address two major deficiencies of previous approaches to query

spelling correction, i.e., inability of handling all the major types of spelling errors, and

inability of searching efficiently in the complete candidate space. We have also proposed a

novel discriminative training method for the gHMM model which enables us to go beyond

regular HMM to incorporate useful local features for more effective query spelling correction.

Experiment results on two query correction datasets show that gHMM can effectively handle

all the major types of spelling errors and outperforms a state-of-the-art baseline by a large

margin.

Moreover, our generalized HMM, equipped with the discriminative training, scores the

query corrections directly and output a final ranked list of spelling corrections, without

needing a filtering stage to prune the candidate space as typically required by an existing

method. We have demonstrated that as an efficient one-stage approach, the proposed gHMM

can also be used as a filter to construct a more complete working set than the existing noisy

channel filter, making it possible to combine it with any complicated spelling correction

methods to further improve accuracy. In other words, the proposed gHMM model can serve

as a better candidate generation method in a two-stage framework where any sophisticated

and potentially more effective spelling correction method can be applied to re-rank the

generated candidates for more accurate corrections. In this work, we only focused on local

feature functions in order to ensure efficient evaluation of all the candidates in the search

space. However, some global features, such as the overall editing distance, frequency of the

query in a query log can be potentially utilized to further improve the correction accuracy.

How to add the global features to the gHMM model while still ensuring efficient search and

evaluation of all the candidates in the search space, is an interesting direction for future

work.
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Chapter 4

Query Segmentation Using
Clickthrough

4.1 Introduction

One difficulty toward deeper level query intent understanding is that web search query is

usually lack of explicit linguistic signals such as segmentation, capitalization, punctuation

and standard grammar. Successful detection of such latent query linguistic signals can help

improve the retrieval performance. In this chapter we focus on the identification of the most

important type of query linguistic signals – query segmentation.

Query segmentation is to separate the query words into disjoint and semantic meaning

segments. It is an important tasks in modern information retrieval. For example, accurate

query segmentation is the prerequisite for semantic retrieval models, phrase-based query

reformulation and automatic relevance feedback. Supervised techniques have been used to

solve the query segmentation problem in the past [15, 101]. However, they require lots of

segmentation labels which are expensive to collect. An unsupervised approach based on a

large text corpus and Wikipedia has been reported to achieve competitive performance [84];

but its accuracy without Wikipedia is still low, partly due to the lack of relevant information

about the query structure.

In a modern search engine, there is a large amount of relevant data in the form of click-

throughs. Such data reflects users’ implicit preference of documents, and can be leveraged to

infer the underlying segmentation of the queries. In this chapter, we propose a unsupervised

probabilistic model to exploit user clickthroughs for query segmentation. Model parameters

are estimated by an efficient EM algorithm. Segmentation results on a standard dataset
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demonstrate that our model significantly outperforms the EM model in [84] without the use

of Wikipedia. Additionally, by combining more data from external resources, such as the

Microsoft Web N-gram [94], our model can outperform state-of-the-art baselines.

One of the most important applications for query segmentation is to improve the retrieval

models by incorporating query segmentation. Most information retrieval techniques, such as

vector space models and language modeling approaches, rely on the bag-of-words assumption

that every query term is independent in the relevance computation. But this assumption

is over simplified; users have an order in mind when formulating queries to search for in-

formation. One of the reasons why bag-of-words based methods remain popular is because

data sparsity makes it harder to estimate models imposing term dependencies [18, 33, 81].

Successful query segmentation has a great potential to lead to better retrieval models that

can utilize higher-order term dependencies.

However, query segmentation is ambiguous in nature – the same query can be segment-

ed in different ways by different people. Although several methods for query segmentation

have been proposed, surprisingly little research has been performed to address the segmen-

tation ambiguity and incorporate this information into retrieval models. In this chapter,

we propose a query segmentation model that quantifies the uncertainty in segmentation by

probabilistically modeling the query and clicked document pairs. We further incorporate

the probabilistic query segmentation into a unified language model for information retrieval.

Experiments on a large web search dataset from a major commercial search engine show

that the integrated language model with query segmentation (QSLM) outperforms both the

BM25 model and other language models.

4.2 Problem Setup

The task of query segmentation is to separate the query words into disjoint segments so

that each segment maps to a semantic unit. Given a query Q = w1, w2, ..., wn of length
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n, a segmentation S = S1S2...SM of length M is consistent with the query Q if Sm =

wbmwbm+1...wbm+1−1 for 1 = b1 < b2 < ... < bM+1 = n + 1. We define B = b1, b2, ..., bM+1 as

the segmentation partition, independent of the actual query words, and Bn as the set of all

possible segmentation partitions consistent with any query of length n. There are a total of

2n−1 segmentation partitions in Bn. Note that given a query Q, the segmentation partition

B and the query segments S can be uniquely derived from each other.

Because query segmentation is potentially ambiguous, we are interested in assessing the

probability of a query segmentation under some probability distribution: P (S|θ). With

such a probabilistic model, we can then select those segmentations with high probabilities

and use them to construct models for information retrieval. For example, for the query

“bank of america online banking”, {[bank of america] [online banking ], 0.502}, {[bank of

america online banking ], 0.428} and {[bank of ] [america online] [banking ], 0.001} are all

valid segmentations, where brackets [] are used to indicate segment boundaries and the

number at the end is the probability of that particular segmentation. In this example, the

first two segmentations are likely segmentations with high probabilities, whereas the last one

is a rare segmentation, as reflected by the low probability. In the next section, we discuss

how to compute the probability P (S|Q) of a segmentation S given a query Q.

4.3 Query Segmentation

The search log in a modern search engine usually contains a lot of user clickthrough data,

where user-issued queries and corresponding clicked documents are recorded. This kind of

data contains rich information about users’ preferences for each query. By carefully modeling

the clickthroughs, we can assess the likelihood of a segmentation structure according to the

collective user behavior. Table 4.1 shows examples of the clicked documents for two real-

world queries from the search log. In these examples, although there are variations in the

query words and documents, the sub-sequence “bank of america” remains intact in all clicked
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documents. The evidence strongly suggests that “bank of america” should be a segment.

This observation motivates us to model the query segmentation using the query and clicked

document pairs, a previously unexplored idea.

Table 4.1: Examples of Query and Clicked Documents

Query Clicked document title
1. bank of america associate banking invest-

ments homepage
bank of america invesment 2. bank of america investment services inc

investments overview
3. bank of america associate banking invest-

ments banking services
...
1. bank of america credit cards contact

us overview
credit card bank of america 2. secured visa credit card from bank of

america
3. credit cards overview find the right

bank of america credit card for you
...

We now propose an unsupervised query segmentation model using user clickthroughs.

We first describe the model for generating queries and will later extend it to query-click

document pairs. The process of generating a query can be described as follows:

1. Pick a query length n under a length distribution.

2. Select a segmentation partition B ∈ Bn, according to a segmentation partition model

P (B|n, ψ).

3. Generate query segments Sm consistent with B, according to a segment unigram model

P (Sm|θ).

Recall that given a query Q of length n, the query segments S and the segmentation

partition B can be derived from each other. Thus, we can compute the probability of a

segmentation as:
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P (S|Q, θ, ψ) = P (B|Q,n, θ, ψ) (4.1)

=
P (Q|B, θ) · P (B|n, ψ)∑

B′∈Bn
P (Q|B′, θ) · P (B′|n, ψ)

,

P (Q|B, θ) =
M∏

m=1

P (Sm|θ) (4.2)

where P (Q|B, θ) is the probability of generating a query Q given segmentation partition B.

The P (B|n) can be estimated by an expectation maximization algorithm described in the

following section. However, in this work we set P (B|n) to a particular form by imposing an

infinite strong prior that penalizes longer segments:

P (B|n, ψ) =
∏M

m=1 P (|Sm(B)| |ψ)∑
B′∈Bn

∏M(B′)
m′=1 P (|Sm′(B′)| |ψ)

(4.3)

P (|Sm(B)| |ψ) = e−|Sm(B)|f (4.4)

where |Sm(B)| is the length of the mth segment specified by B, and f is a factor controlling

the segment length penalty. Note that the denominator is constant for a fixed length n. Since

the probability of a segmentation is the product of all segment probabilities P (Sm|θ) and

P (B|n, ϕ), such a segment length penalty is crucial to counter the bias for longer segments

as they result in fewer segments and hence fewer terms in the final product. This need for

segment length penalty is also discussed by Peng et. al in [71].

To extend the model to observed pairs of the query Q and the clicked document D, we

consider Q to be generated from an interpolated model, consisting of the global component

P (Sm|θ) and a document-specific component P (Sm|θD). Specifically, we redefine the query
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probability given a segmentation partition in Equation (4.2) as:

P (Q|B, θ, θD) ∝
M∏

m=1

P (Sm|θ)P (Sm|θD) (4.5)

Mathematically, this is equivalent to generating each query segment using a log-linear inter-

polation of the global and document-specific models. Figure 4.1 illustrates the segmentation

partition and the process of generating a query given the model.

n

B

Q

N

ψ

θ

n

B

Q

N

ψ

θ

bank of america   online banking

[bank of america]  [online banking]

[                         ]  [                       ]

Original Query

A Segmentation Partition

A Segmentation

D

Figure 4.1: The Generative Model of Segmentation. Left: the query segmentation partition;
middle: the process of generating a query Q; right: the process of generating query Q with
clicked document D

For P (Sm|θD), we employ a smoothed bigram language model trained from the document

D and interpolated with the global document collection statistics θC to model the probability

of Sm = wbmwbm+1...wbm+1−1:

P (Sm|θD) =
bm+1−1∏
l=bm

P (wl|wl−1, θD) (4.6)

=

bm+1−1∏
l=bm

[(1− λ)Pbi(wl|wl−1, θD)

+ λPbi(wl|wl−1, θC)]
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where

Pbi(wl|wl−1, θD) =
fD
wl−1wl

+ µD
fD
wl

|D|

fD
wl−1

+ µD

,

Pbi(wl|wl−1, θC) =
fC
wl−1wl

+ µC
fC
wl

|C|

fC
wl−1

+ µC

,

λ is the mixture weight, µC and µD are the bigram backoff weights, and fwl
, fwl−1wl

are the

n-gram counts in document D or corpus C.

Overall, we want to estimate θ̂ to maximize the log likelihood of observing all the query-

clicked document pairs in the dataset:

logP (Q|θ, θD) =
∑
l

log
∑

B∈Bnl

P (B|nl) (4.7)

·
Ml∏
m=1

[P (Sm(Ql)|θ) · P (Sm(Ql)|θDl
)]

With θ̂, we can compute the most probable segmentations for any query according to Equa-

tion (4.1).

4.3.1 Model Parameter Estimation by EM

Since the joint probability in Equation (4.7) involves the logarithm of a summation over

hidden variables B, there is no exact analytical solution for θ̂. However, we can apply the

expectation maximization (EM) algorithm to maximize the joint probability of all observed

data. In the E-step, we evaluate the posterior probability of a valid segmentation of Q given

the previous model parameter estimate θ(k−1):

P (B|Q, θ(k−1), θD, ψ) (4.8)

=
P (Q|B, θ(k−1), θD, ψ) · P (B|n, ψ)∑

B′∈Bn
P (Q|B′, θ(k−1), θD, ψ) · P (B′|n, ψ)
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where

P (Q|B, θ(k−1), θD, ψ) =
M∏

m=1

[P (Sm|θ(k−1)) · P (Sm|θD)]

In the M-step, we update the estimate of θ according to:

P (w1...wr|θ(k)) =
1

Z
·
∑
l

∑
B∈Bnl

[P (B|Ql, θ
(k−1), θD, ψ)· (4.9)

Ml∑
m=1

δ(Sm(B,Ql) = w1...wr)]

where Z is the normalization factor and δ() is an indicator function checking if segment Sm

is equal to n-gram w1...wr. For a query of n keywords, a naive computation for the M-step

requires summing of all 2n−1 possible segmentations, which is computationally impractical for

longer queries. Fortunately, it can be computed efficiently using the Baum-Welch algorithm

[13].

Here we introduce a graph representation for query segmentation. Given a query Q of

length n, all segmentations consistent with Q can be represented by a graph G with n + 1

nodes. Figure 4.2 illustrates a graph representation for two valid segmentations of the query

“bank of america online banking”. For a graph with n+1 nodes, there are a total of 2n−1 ways

to connect node 1 to node n+ 1, each corresponding to a valid segmentation. For example,

in the upper panel of Figure 4.2, there is a connection from node 1 to 4, corresponding to a

segmentation boundary between america and online. In this case, the arc from node 1 to 4

corresponds to the segment “bank of america”.

Using this graph representation, Equation (4.9) in the M-step can be rewritten as:

P (w1...wr|θ(k)) =
∑

l

∑
i

∑
j ξl(i, j) · δl(Si→j = w1...wr)∑

l

∑
i

∑
j ξl(i, j)

(4.10)

where ξ(i, j) = P (Si→j|Q, θ(k−1)) is the probability of the segment Sm represented by the
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Figure 4.2: Graph Representation of Segmentations

arc from node i to node j for the query Q, δ(Si→j = w1...wr) is an indicator function with

a value of 1 when Si→j = w1...wr and 0 otherwise.

In order to compute ξl(i, j), we introduce

α(i) = P (Q, i|θ(t−1)), the probability of observing the query Q from the beginning of the

graph to node i, and β(j) = P (Q|j, θ(t−1)), the probability of observing Q from node j to

the end of the graph:

α(i) =
∑
k:k<i

α(k) · P (Sk→i|θ(t−1)) · e−|Sk→i|f · PD(Sk→i),

β(j) =
∑
k:k>j

β(k) · P (Sj→k|θ(t−1)) · e−|Sj→k|f · PD(Sj→k),

ξl(i, j) = αl(i) · βl(j) · P (Si→j|θ(t−1)) · e−|Si→j |f · PDl
(Si→j)

with the initial condition αl(1) = 1, βl(n) = 1. Algorithm 3 summarizes the steps for es-

timating θ. For a set of queries with equal length, the computation complexity for each

iteration is O(Ln2), where L is the number of input query-document pairs and n is the num-

ber of words in each query. Once the optimal θ is obtained, the probability of a segmentation

P (S|Q, θ, ψ) can be computed by Equation (4.1).
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Algorithm 3: N-gram concept probability estimation

input : A set of query-clicked document pairs
O = {< Ql, Dl >}, l ∈ [1, N ]

output: Optimal estimate of θ = {P (Sm)}

1 Init P (Sm|θ(0))← Count(Sm)
Count(total Ngrams in query collection)

;

2 for t← 1 to T do
3 P (Sm|θ(t))← 0;
4 ξtotal ← 0;
5 for l← 1 to N do
6 Gl is a graph representing query Ql, with n+1 nodes; αl(1) = 1; βl(n+1) = 1;
7 for node i← 2 to n+ 1 do
8 αl(i)←

∑
k:k<i αl(k) · P (Sm|θ(t−1))·

9 e−|(Sk→i)|f · PDl
(Sk→i);

10 for node j ← n to 1 do
11 βl(j)←

∑
k:k>j βl(k) · P (Sj→k|θ(t−1))·

12 e−|Sj→k|f · PDl
(Sj→k);

13 for node i← 1 to n+ 1 do
14 for node j ← i+ 1 to n+ 1 do
15 ξl(i, j)← αl(i) · βl(j) · P (Si→j|θ(t−1))·
16 e−|Si→j |f · PDl

(Si→j);

17 P (Sm = Si→j|θ(t))←
18 P (Sm = Si→j|θ(t)) + ξl(i, j);
19 ξtotal ← ξtotal + ξl(i, j);

20 P (Sm|θ(t))← P (Sm|θ(t))
ξtotal

;

21 return θ = {P (Sm)};

46



4.3.2 Utilizing Other Resources

N-gram statistics from a very large scale of text resources can also be utilized to improve

query segmentation. In fact in [84], the biggest improvement in segmentation accuracy

is achieved by utilizing information from Wikipedia. In addition, [36] also reports a well-

performing naive query segmentation method using Google Web N-gram. Here we propose a

simple approach utilizing the Microsoft Web N-gram service. MS Web N-gram is essentially

a distribution of n-gram probability θ′ over the web. The probability of a segmentation given

Q is defined as:

P (B|Q, θ′, ψ′) ∝ P (Q|B, θ′, ψ′) · P (B|ψ′) (4.11)

=
M∏

m=1

P (Sm|θ′) · P (B|ψ′)

∝
M∏

m=1

P (Sm|θ′) · e−|Sm(B)|f ′

Furthermore, we can combine our query segmentation model with clickthrough and the

simple model with Web N-gram into an interpolated model:

logP (B|Q, θ, θ′, ψ, ψ′) =(1− ω) · logP (B|Q, θ, ψ) (4.12)

+ ω · logP (B|Q, θ′, ψ′)

we find the setting of ω = 0.5, f = 2.0, f ′ = 2.0 results in a model with good segmentation

accuracy.
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4.4 Segmentation Experiments

In this section we report the query segmentation results obtained by our model and other

baselines on two datasets. One is from a standard dataset established by previous research,

and the other is constructed by ourselves. We also conduct extensive analysis on several

aspects of the results.

4.4.1 Data Preparation and Evaluation Metrics

We use two sets of queries for evaluating the query segmentation models. The first set (Set

1) is a standard query segmentation dataset established by Bergsma and Wang [15], which

is also applied in [84]. In this dataset, annotator A, B, and C independently segmented 500

queries which are sampled from the AOL 2006 query log. Among these 500 human queries,

the 220 where the 3 judges agree are called the “Intersection” set.

The above segmentation dataset is focused on noun queries. But in this work we are also

interested in web queries. Therefore we prepare another set of 1,000 queries sampled from

the search log of a major commercial search engine, which we name the 1000-query dataset.

We invite three domain experts to segment the queries independently, employing the same

evaluation metrics as Set 1. Besides expert annotations, this dataset also has clickthrough

information and relevance judgments for the top documents, which is used by subsequent

experiments when comparing retrieval models.

To measure the segmentation effectiveness, we report results on three evaluation metrics.

(1) Query accuracy: the percentage of queries for which the predicted segmentation matches

the gold standard completely; (2) Classification accuracy: the ratio of correctly predicted

boundaries in between every two consecutive words; (3) Segment accuracy: how well the

predicted segments match the gold standard under the information retrieval measures of

precision, recall, and F-score.

As baseline, we include the three models in [84]: Mutual information, EM + corpus
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(query log), and EM + corpus + Wikipedia. We also include a method using Google Web

N-gram [36] and a simple model with MS Web N-gram, as defined in Section 4.3.2. Our

model + clickthrough and our model + clickthrough + MS Web N-gram are included in the

comparison. The parameters of our segmentation model is trained on a large set of search

log containing about 20 millions query-clicked document pairs.

4.4.2 Query Segmentation Results

Table 4.2 shows the results of our model as well as the baseline models on the standard

dataset. Columns 3 to 5 represent models without using external data source (basic models),

while columns 6 to 9 are models utilizing large external sources, such as Wikipedia and web-

scale n-gram (extended models). Among the basic models, our model performs the best

according to annotator A, C and the intersection of these annotators. These results are

significantly better than the corresponding results by the EM + corpus model in [84]. For

the result based on annotator B, our model is comparable to that of [84] (0.571 vs 0.573

on segment F score). For the extended models, simple model + MS Web N-gram performs

well, similar to the results for simple model with Google Web N-gram as reported in [36].

It indicates the positive impact of n-gram statistics on query segmentation. However, our

model, as well as EM model + Wikipedia in [84] outperforms the simple models consistently

in all annotators’ judgments; and our extended model performs better than that of [84]. For

example, in the intersection judgments, the F score of our model is 0.779, while model in

[84] is 0.774. Compared to the simple model + MS Web N-gram, whose intersection F score

is 0.728, our model achieves a 7.0% gain on the same measure. It suggests the effectiveness

of our model and the benefit from combining additional large scale N-gram statistics.
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Table 4.2: Segmentation Performance on the Standard Dataset
Annotator Measure MI [84] EM + Our Model Simple Model + [36] Simple Model + [84] EM + Our Model

Corpus MS Web N-gram Google Web N-gram + Corpus + MS Web
+Wiki N-gram

query accuracy 0.274 0.414 0.440 0.482 0.536 0.526 0.540
classify accuracy 0.693 0.762 0.776 0.782 0.807 0.810 0.803

A segment precision 0.469 0.562 0.598 0.645 0.665 0.657 0.669
segment recall 0.534 0.555 0.639 0.602 0.708 0.657 0.713
segment F 0.499 0.558 0.618 0.622 0.686 0.657 0.690
query accuracy 0.244 0.440 0.410 0.466 0.380 0.494 0.485
classify accuracy 0.634 0.774 0.750 0.777 0.752 0.802 0.776

B segment precision 0.408 0.568 0.521 0.568 0.519 0.623 0.591
segment recall 0.472 0.578 0.631 0.601 0.626 0.640 0.650
segment F 0.438 0.573 0.571 0.584 0.568 0.631 0.619
query accuracy 0.264 0.416 0.402 0.460 0.454 0.494 0.465
classify accuracy 0.666 0.759 0.756 0.772 0.772 0.796 0.803

C segment precision 0.451 0.558 0.548 0.597 0.581 0.634 0.624
segment recall 0.519 0.561 0.619 0.590 0.653 0.642 0.655
segment F 0.483 0.559 0.582 0.594 0.615 0.638 0.639
query accuracy 0.343 0.528 0.586 0.636 0.627 0.671 0.682
classify accuracy 0.728 0.815 0.842 0.847 0.851 0.871 0.855

Intersect segment precision 0.510 0.640 0.681 0.736 0.718 0.767 0.770
segment recall 0.550 0.650 0.747 0.721 0.778 0.782 0.788
segment F 0.530 0.645 0.713 0.728 0.746 0.774 0.779

4.4.3 Results on the 1000-query Dataset

We compare our query segmentation model with the simple model + MS Web N-gram on

the 1000-query dataset. Table 4.3 shows the segmentation results on the this set. Although

the simple segmentation model with web n-gram works very well in the standard dataset, it

performs inferior to our model in the 1000-query dataset. In 2 out of 3 annotator judgments,

our model outperforms the simple model. And in the intersection judgments our model also

works better than the simple model by 4.6%. Since this dataset is sampled from a set of web

search queries, results in this experiment indicate that our model fits web search queries,

whose characteristics are different from noun queries, better.

4.4.4 Effect of the Penalty Factor

The factor f in Equation (4.4), which controls how much penalty is given to a segment of

length |Sm|, is important to the our proposed model. We now investigate how the segmenta-

tion result changes according to different values of f . For this purpose, we re-run our model

(without web n-gram) on the standard dataset with f ranging from 1.5 to 3.0 in steps of

0.25. Figure 4.3 summarizes the results. There are common trends across annotator A, B, C

and their intersection. The F score increases when f increases from 1.5 to 2.0, and decreas-

es afterwards. It suggests that too little penalty (small f) favors long segments and hurts
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Table 4.3: Results on the 1000-query Dataset

Annotator Measure Our Model Simple Model +

MS Web N-gram

query accuracy 0.386 0.316
classify accuracy 0.631 0.538

A segment precision 0.434 0.368
segment recall 0.540 0.552
segment F 0.481 0.441

query accuracy 0.447 0.403
classify accuracy 0.690 0.619

B segment precision 0.533 0.476
segment recall 0.602 0.648
segment F 0.565 0.549

query accuracy 0.472 0.545
classify accuracy 0.703 0.749

C segment precision 0.670 0.693
segment recall 0.582 0.730
segment F 0.623 0.713

query accuracy 0.624 0.567
classify accuracy 0.761 0.642

Intersection segment precision 0.372 0.301
segment recall 0.405 0.395
segment F 0.388 0.342

segmentation accuracy, while too much penalty (big f) negatively impacts on the results

since it favors segments with very short length. It also indicates that a moderate penalty at

f = 2.0 is a reasonable choice for the proposed model.
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Figure 4.3: Query Segmentation Performance with Respect to Penalty Factor
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4.5 Integrated Language Model

In this section we will introduce the proposed integrated language model with query seg-

mentation (QSLM). We first motivate QSLM with an oracle experiment, then describe the

derivation of QSLM, and finally conduct extensive experiments on a large scale web search

dataset.

4.5.1 Oracle Ranker

To motivate the formulation of QSLM, we have carried out an intuitive and interesting

experiment. Given an oracle ranker, we let the ranker choose the bigram or unigram language

model for each query, whichever gives a better NDCG score. Table 4.4 lists the result of

the oracle ranker compared to other models. As such a simple oracle performs significantly

better than either the bigram or unigram language models, it suggests that it may be possible

to improve the search ranking if one can successfully emulate the behavior of the Oracle –

to accurately predict when to use a unigram model and when to use a bigram model. We

will show that query segmentation can help achieve a similar effect.

Table 4.4: Oracle Ranker
Method NDCG@1 NDCG@3 NDCG@10
BM25 0.3108 0.3358 0.3986
Unigram LM 0.3117 0.3366 0.3999
Bigram LM 0.3141 0.3380 0.3999
Oracle Ranker 0.3471 0.3628 0.4186

4.5.2 Integrated Language Model

Given a model for computing the probability of a segmentation S for a query Q, we can

exploit this information and develop a new retrieval model incorporating the query segmen-

tation structure. Note that the retrieval model proposed here is independent of the query
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segmentation technique. We start by formulating the integrated language model with query

segmentation based on the probabilistic ranking principle [76]. Specifically, we can rewrite

the probability that a document is relevant to a query as follows:

P (R = 1|Q,D)

=
∑
B

P (B|Q,D)P (R = 1|B,Q,D)

=
∑
B

P (B|Q,D)
P (Q|B,D,R = 1)P (R = 1|B,D)∑

r={0,1}P (Q|B,D,R=r)P (R=r|B,D)

=
∑
B

P (B|Q,D)

P (Q|B,D,R=1)
P (Q|B,D,R=0)

P (Q|B,D,R=1)
P (Q|B,D,R=0)

+ P (R=0|B,D)
P (R=1|B,D)

≡
∑
B

P (B|Q,D)
a

a+ b

where:

a =
P (Q|B,D,R = 1)

P (Q|B,D,R = 0)
, b =

P (R = 0|B,D)

P (R = 1|B,D)
.

As the query segmentation is performed independently of the document, P (B|Q,D) =

P (B|Q). Furthermore, when a document is irrelevant, we can approximate the query as

being generated from the background corpus statistics, independent of the document:

a ≈ P (Q|B,D,R=1)
P (Q|B,θC)

Finally, as the relevance of a document is independent of the segmentation partition without

knowing the query, we will assume that all document has an equal probability of being

relevant. Thus, we can approximate b as the average ratio of irrelevant to relevant documents

over a set of queries.

b ≈ P (R = 0)

P (R = 1)
≈

∑
Q

|Irrelevant(Q)|
|Relevant(Q)|
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In this work, we apply a language model approach to estimate the the probability ratio

a:

a ≈ P (Q|B,D,R = 1)

P (Q|B, θC)

=
M∏

m=1

P (Sm|D,R = 1)

P (Sm|θC)

=
M∏

m=1

P (wkm , ..., wkm+1−1|θD)
P (wkm , ..., wkm+1−1|θC)

=
M∏

m=1

km+1−1∏
i=km

P (wi|wi−1, θD)

P (wi|wi−1, θC)

For irrelevant documents, the query segments are generated from the an n-gram language

model trained from the background corpus. For relevant documents, the query segments are

modeled using a smoothed bigram model trained from the document, interpolated with the

background corpus. Specifically:

P (wi|wi−1, θC) =
fwi−1wi,C + µC

fwi,C

|C|

fwi−1,C + µC

, (4.13)

Pbi(wi|wi−1, θD) =
fwi−1wi,D + µD

fwi,D

|D|

fwi−1,D + µD

, (4.14)

P (wi|wi−1, θD) = (1− λ)Pbi(wi|wi−1, θD) + λP (wi|wi−1, θC) (4.15)

4.6 Retrieval Experiments

In this section we conduct a set of experiments for the QSLM model on the web search task.

The main reason why we did not carry out experiments on the TREC datasets is due to

the lack of clickthrough data for TREC queries, which is important to our study. In the
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following sections, we invest several variants of the model and discuss the choice in model

parameters.

4.6.1 Evaluation Metrics and Baselines

We evaluate the retrieval models on a large-scale real world dataset, containing 12,064 En-

glish queries sampled from the query log of a major commercial search engine. On average,

each query is associated with 74 web documents, with each query-document pair manually

assigned a relevance label on a 5-level scale: 0 means that the document D is detrimental to

query Q, 4 means that the document D is most relevant to Q. For comparison, we include 3

baseline models in the results: BM25 [77], unigram LM with Dirichlet smoothing [103], and

bigram LM as specified in Equation (4.15). In order to obtain the optimal parameters in our

model as well as in the baselines, we divide the whole dataset evenly into a training set and

a test set, each containing 6,032 queries, and estimate the parameters from the training set

using grid search, as proposed in [87]. The optimal parameters of the models are reported in

Table 4.5. Finally we also list the simple oracle results as reference. The performance of all

the retrieval models is measured by mean normalized discounted cumulative gain (NDCG)

[40] at truncation levels 1, 3, and 10. We list the dataset statistics in Figure 4.4 and report

detailed results of the retrieval models in Table 4.6.

Table 4.5: Optimal values of parameters

Model NDCG
Unigram LM µ = 2.702
Bigram LM µC = 425026, µD = 0.51, λ = 0.681
QSLM µC = 500213, µD = 0.50, λ = 0.90, b = 720

4.6.2 Retrieval Results

In Table 4.6, we report the results by query length. For short queries, there are few variations

in the segmentation. Thus, there is little room for improvement by exploiting segmentation
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Figure 4.4: Query Distribution in the Datasets

information. However, the effect of query segmentation is more pronounced when the query

contains 4 or more words, which we consider as a long query. In this case, the NDCGs of

BM25 and unigram LM are similar, both outperformed by the bigram LM. However, QSLM’s

performance (0.3419, 0.3539 and 0.4040) is significantly better than all other models at all

levels of NDCG truncation. In fact, we have conducted a paired t-test between QSLM

and the other models. At confidence level α = 0.01, the difference between QSLM and

BM25/unigram LM at all three levels of NDCG truncation is statistically significant. The

difference between QSLM and bigram LM at both NDCG@1 and NDCG@3 are significant.

4.7 Conclusions and Future Works

In this chapter we have proposed a novel unsupervised query segmentation model by jointly

modeling the query-clicked documents from the search log. Experimental results on two

datasets confirm the effectiveness of our model. Furthermore, we develop a unified language

model with query segmentation to improve the search ranking. The implicit relevance infor-

mation in the clickthrough data is the bridge between our query segmentation model and

QSLM. Thorough experiments on a large-scale web search dataset show that search rele-

vance can be improved by leveraging the query segmentations. As there is still a large gap

in retrieval performance between the oracle ranker and the QSLM model, we plan to further

refine the model to reduce gap in the future. Specifically, we would like to explore the use

of QSLM as features to other advanced retrieval models [65].
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Table 4.6: Results of IR Models on Web Search
Length #Queries Model NDCG@1 NDCG@3 NDCG@10

1 1012 BM25 0.2515 0.2773 0.3496
1 1012 Unigram LM 0.2515 0.2767 0.3497
1 1012 Bigram LM 0.2462 0.2737 0.3452
1 1012 QSLM 0.2462 0.2737 0.3452

2 1694 BM25 0.3125 0.3391 0.4068
2 1694 Unigram LM 0.3131 0.3393 0.4076
2 1694 Bigram LM 0.3132 0.3392 0.4074
2 1694 QSLM 0.3169 0.3404 0.4078
2 1694 Oracle Ranker 0.3488 0.3656 0.4266

3 1471 BM25 0.3273 0.3603 0.4226
3 1471 Unigram LM 0.3293 0.3607 0.4242
3 1471 Bigram LM 0.3322 0.3617 0.4244
3 1471 QSLM 0.3332 0.3619 0.4251
3 1471 Oracle Ranker 0.3657 0.3877 0.4423

>3 1855 BM25 0.3287 0.3454 0.3988
>3 1855 Unigram LM 0.3294 0.3476 0.4009
>3 1855 Bigram LM 0.3354 0.3500 0.4009
>3 1855 QSLM 0.3419 0.3539 0.4040
>3 1855 Oracle Ranker 0.3651 0.3752 0.4222
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Chapter 5

Mining Entity Attribute Synonyms
via Compact Clustering

5.1 Introduction

The bag-of-words query representation has been a great success in document retrieval. How-

ever, as the search has been expanded to many other types of applications, bag-of-words

representation is not sufficient to support the requirements of these applications. One such

application is entity search. Nowadays the web contains a wealth of structured data, such

as various entity databases, web tables, etc. There is a growing trend in search engines

to match unstructured user queries to these structured data sources. In the entity centric

search, schema annotation of queries is required to match the schema of the structured data

sources. Another application is to present direct answer and facts to queries. Examples

include the instant answer box of modern web search engines, and the computational knowl-

edge engine Wolfram Alpha. In order to understand the intention of the user and judge

whether a direct answer should be triggered, the query has to be transferred to semantic

components and these components are further precessed and matched against the knowledge

bases. This level of query intent understanding goes beyond the bag-of-words representation

of queries. It aims at deciphering the semantic structure of queries, that is the meaning

of every piece of query segment and their relation. It involves tasks such as target type

classification which is to infer the category/domain of the query, name entity and attribute

recognition and disambiguation, schema matching to a catalog which is to match a query to

predefined catalog schema like product catalog tables, semantic role labelling in queries etc.

If the query and structured data sources are all written in well-formed texts, the task of
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semantic annotation of queries is manageable. However a big challenge of query semantic

annotation is to handle the variation of texts. In entity search, user expressions of entities

often do not match the canonical specifications from the data providers. For example, in the

movie domain, the full title “the lord of the rings: the return of the king” can be specified

by users as “lotr 3”, “lotr: return of the king”, or “the return of the king”. For shoes,

people may describe the standard gender value “infant” as “baby” or “toddler”. Thus,

entity synonym identification, the discovery of alternative ways people describe entities, has

become a critical problem to bridge the above mentioned gap between data providers and

consumers. In this chapter we focus on the problem of mining entity attribute synonyms.

Traditionally, entity synonym research has focused on finding synonyms of named entities,

where the entity itself is completely specified by the referent string. Here we are interested

in finding synonyms of entity attribute values (also referred to as entity attribute synonyms

throughout this paper). While the attribute values can be entity mentions, they can also be

arbitrary strings (adjectives, verbs, etc). In fact, our problem definition is a generalization

of finding named entity synonyms, because the named entity expression is often just an

attribute of the entity. Fig. 5.1 illustrates an example of such general cases collected from a

product title and two user issued queries. Here “canon” is a named entity, but it also matches

the attribute digital-camera.brand. And “12.1 mega pixel” is an attribute value from the

same domain, but cannot be interpreted as a standalone entity. As seen in Fig. 5.1, there

are a lot of variations in describing the same attribute values. Successful identification of

their surface forms will enable better query intent understanding and better normalization

of products from different providers, etc.

In the case the attribute value itself is an entity mention, our problem setup is the

same as traditional entity synonym finding. Previous research has addressed the synonym

identification problem from multiple perspectives. For example, [28, 14] tried to reconcile

different references to the same database record. Other works identified alternative forms of

a query for web search by measuring query similarity [19, 45], query-document click-graphs
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Figure 5.1: Entity Attribute Value Variations

[7] and query-entity click-graphs [24]. For non-entity attribute values (arbitrary strings),

there are also research efforts from the Natural Language Processing community on finding

semantic synonyms based on distributional similarity [60, 61], syntactic patterns [37, 16] et.

al.

However, two major challenges remain. First, finding synonyms without context can not

handle semantic ambiguities. There are recent research attempts to identify synonyms with

additional context, such as paragraph context in [91]. But for structured database, such

information is not always readily available. Second, previous approaches usually focus on

utilizing a single signal, such as distributional similarity [60, 61], syntactic patterns [37, 16],

or query-entity clicks [24]. Some recent works explored two or more information sources

[66, 20]. However, the weights for combining these information sources are usually manually

tuned and largely based on experience.

In this chapter we focus on finding synonyms for a set of entity attribute values simultane-

ously. Our problem setup is a generalization of the entity synonym identification problem, in

which the input can be an entity mention or an arbitrary string. To address the deficiencies

of existing approaches discussed above, we propose a compact clustering model that enables

the integration of multiple heterogeneous information sources. Our main contributions are

summarized as follows:

• Joint synonym mining from a set of attribute values. Most previous synonym

identification methods search for synonyms one entity at a time. However, processing a
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set of entity attribute values simultaneously has several advantages. First, as the values

are from the same attribute, ie. movie.title or shoe.brand, they exhibit distinctive

contextual patterns within queries and documents. Mining such patterns allows us to

define a novel categorical pattern similarity function for addressing the semantic

ambiguity problem. Second, joint modeling of multiple attribute values also provides

prior knowledge about the relationship among candidates. For example, for entity

mention “lord of the rings 2”, “lord of the rings 3” could be identified as synonym

mistakenly. But if we learn synonyms from those two values jointly, this error could

be corrected easily because of the awareness of “lord of the rings 3”.

• Integrating multiple information sources. Synonym values generally exhibit

similarities in more than one aspect. Some synonym values only differ in a few char-

acters, due to spelling errors or morphological differences. Also, queries that differ

only in synonym values tend to have clicks on similar sets of documents. In addition,

synonym values generally have similar surrounding contexts within queries and doc-

uments. Among these signals, some are more important than others in determining

synonym relations. Furthermore, the relative importance of these signals also depends

on the domain: a feature that is crucial in the movie domain might be only marginal

in the camera domain. Therefore automatic determination of the weights of different

information sources is critical. In this work we propose to automatically learn these

weights via compact clustering – a novel clustering procedure that maximizes the

similarity of points within a cluster.

• Exploiting additional known information. Our compact clustering model can be

further enhanced by incorporating additional information. Such information is usually

noisy but cheap to get, containing information such as which objects tend to be similar

with each other or which objects should be far away from each other. We don’t model

such additional information as explicit constraints as in [90]. Instead, we extend our
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model to accommodate such information via a regularization framework.

5.2 Problem Definition

In our problem setup, the input consists of (1) a set of canonical entity attribute values

from a domain; (2) candidate synonyms of the canonical attribute values. And the output

is the true synonyms of this set of attribute values. As there are multiple interpretations

of “alternative expressions”, we focus on synonyms that convey the equivalent meaning of

the canonical value in the (implied) domain, including semantic alterations, abbreviations,

acronyms, permutations, spelling errors, etc. Fig. 5.2 illustrates the inputs and outputs.

For example, for the input “IBM”, the synonyms include “International Business Machines”,

“Big blue”, “IBM corporation” etc. In theory, the candidate synonyms can be any arbitrary

strings. Yet in practice, it is critical to reduce the search space of synonyms. In Section ??

we describe the process of finding the candidates in detail.

Formally, given a set of K semantically distinct values V = {v1, v2, ..., vK} from an

unspecified entity attribute, where each value v ∈ V is represented by a canonical string

expression, such as “5d mark iii” for camera.model. From a set of N candidate synonym

values X = {x1, . . . , xN}, we can define an oracle mapping F : X→ V ∪ {v0}, which assigns

each candidate value x to its unique canonical synonym value v, or if x is not a synonym

of any value in V, to the special background value v0. Note that we assume each candidate

synonym expression maps to at most one canonical value. Now, we can define the synonym

identification problem as follows:

Definition 1 : For each canonical attribute value v ∈ V, find the subset Xv = {x ∈

X|F(x) = v}, representing the set of synonym expressions for value v.

Note that for the set of input attribute values V, we have the following assumption:
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Assumption 1 : values in V should be semantically distinct and homogeneous.

This assumption is resonable in several application scenarios. For instance, for product

providers and online market places like eBay and Amazon, a set of distinct and homogeneous

canonical attribute values can be easily obtained from the product catalog. The homogeneous

assumption implies that the inputs are from the same domain, which can be leveraged for

mining their synonyms collectively.

Figure 5.2: Synonym Identification Architecture

5.3 Compact Clustering

As mentioned in the introduction, most previous synonym identification methods search for

synonyms one input at a time. However, such strategy have two major drawbacks. First,

without modeling the attribute values jointly, it’s very difficult to tackle the ambiguation

problem since the category context implied by a set of attribute values is lost. Second,
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this strategy doesn’t leverage the prior knowledge multiple attribute values bring to the

candidates, especially the should-link and should-not link constraints. In order to take

advantage of a set of canonical attribute values, we propose to identify synonyms of attribute

values by a clustering model with multiple similarity kernels called compact clustering . In

this model, attribute values X = {x1, x2, ..., xN} are modeled as data points. And points are

connected with others with similarity function f . Data points form clusters such that points

in the same cluster are considered synonyms. The canonical attribute values v1, v2, ..., vK

also belong to X, but they have hard assignments to their respective clusters. Fig. 5.2

illustrates the architecture of our proposed clustering framework.

Prior work took advantage of the properties of synonyms such as reflexivity, symmetry,

and similarity [60, 61, 20]. We further consider transitivity and compactness in our model.

This means that we choose a cluster assignment by considering a committee of points in a

cluster rather than a single medoid. Whereas previous methods have only a few similarity

features, we want to support arbitrary features. Thus, manual tuning of parameters is not

sufficient. Though there are existing works in similarity metric learning [98, 80, 9], we are

also interested in unsupervised techniques. Hence, we use the heuristic of compactness to

guide our parameter optimization. In this section we first define several similarity kernel

functions according to available information. Then we introduce a basic model by motivating

the concept of cluster compactness. By addressing the limitations of this model, we propose

several extensions that lead to the standard compact clustering model. Finally, we further

extend the standard model by leveraging additional noisy information.

5.3.1 Similarity Kernels

Any clustering framework has to define distance/similarity functions between data points.

Data points (attribute values) are related to each other in different aspects. For example, in

the domain of movie.title, two titles are similar if people click on the same set of documents

after querying for these titles. Two titles also are similar if they follow similar lexical
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distribution of the left and right contexts where they appear. In fact, there are heterogeneous

types of information that can be leveraged to infer the synonym relationship. Such resources

include query log, query-document clickthrough, anchor text, to name a few. Suppose

from information type t, the similarity of points xi and xj is defined as a similarity kernel

ft(xi, xj) ∈ [0, 1], and each type of similarity kernel is associated with a weight wt reflecting

its relative importance. , then the overall similarity/distance between xi and xj can be

defined by these similarity kernels. Since our basic model resembles the K-medoids clustering

[48], here we follow the nomenclature in the clustering literature and define the distance

between xi and xj as the combination of the similarity kernels with weights:

d(xi, xj) =
T∑
t=1

wα
t · dt(xi, xj) (5.1)

=
T∑
t=1

wα
t · (1− ft(xi, xj))

where ft(xi, xj) ∈ [0, 1] is the similarity kernel of xi and xj calculated based on evidence from

information source t ∈ {1, ..., T}. Likewise dt(xi, xj) = 1 − ft(xi, xj) ∈ [0, 1] is the distance

between xi and xj. α is a constant whose value is set to 2 in this work. And wt ≥ 0 are the

weights needed to be learned, following constraint:

T∑
t=1

wt = 1 (5.2)

The special choice of α is to make the optimal wt easier to solve under the above constraint,

as introduced in previous work [21]. In the following, we specifically define four similarity

kernels according to four types of information. Note that our framework is not restricted to

these kernels. In fact our model can support arbitrary number of similarities from different

information sources.

1. Categorical pattern similarity. This is a novel similarity kernel which leverages a

65



set of attribute values simultaneously. A key insight is that as the canonical values are

in the same category, they should share common lexical or semantic patterns. Table.

5.1 illustrates the pattern distribution over 50 attribute values from shoe.brand. These

patterns are found by extracting the left and right lexical context from a set of search

queries that contain these brand names. It clearly shows that the brand names are

much more likely to appear at the beginning of a query (#EMPTY# pattern on the

left); and the word “shoes” is also very frequent following the brand name. By mining

the context from the queries containing these attribute values, we are able to discover

categorical patterns, which would otherwise be impossible had we looked for synonyms

one attribute value at a time due to data sparseness. Specifically, given data points

xi, xj and the left and right categorical pattern distributions Ω̄l, Ω̄r derived from the

canonical attribute values, we define the categorical pattern similarity between xi and

xj as:

f1(xi, xj) = 1− |Jaccard(Ωi, Ω̄)− Jaccard(Ωj, Ω̄)| (5.3)

where Jaccard(Ωi, Ω̄) is the average Jaccard similarity of the left context and right

context between xi (Ωi,l,Ωi,r) and the category (Ω̄l, Ω̄r):

Jaccard(Ωi, Ω̄) =
1

2
·
(
||Ωi,l ∩ Ω̄l||
||Ωi,l ∪ Ω̄l||

+
||Ωi,r ∩ Ω̄r||
||Ωi,r ∪ Ω̄r||

)
(5.4)

Note that the categorical pattern similarity kernel is large only if both xi and xj share

similar context distributions with the categorical patterns, which is especially effective

for excluding the ambiguous candidate strings. For example, for the canonical value

“Apple” in the domain of IT companies (implied by inputs “Apple”, “IBM”, etc.), a

candidate “Apple fruit” will have very low categorical pattern similarity because this

candidate has very different query context.
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Table 5.1: Categorical Patterns in Shoe.brand

Left Patterns Count Right Patterns Count
#TOTAL# 4472 #TOTAL# 4472
1. #EMPTY# 3823 1. #EMPTY# 333
2. www 55 2. shoes 109
3. cheap 38 3. com 67
4. discount 35 4. boots 60
5. women 30 5. sandals 42
... ...

2. Coclick similarity. Two attribute values are similar if users click on similar docu-

ments when they issue queries containing the two attribute values (proxy queries). Let

the set of proxy queries of xi be Qi = {qi1, qi2, ..., qini
}. For each query qil , the users have

clicks on a set of documents, which is denoted as Φl = {ϕl
1, ϕ

l
2, ..., ϕ

l
M}, where M is the

total number of documents. And let the accumulation of these clicks be:

Φ =
∑
l

ϕl =

{∑
l

ϕl
1,
∑
l

ϕl
2, ...,

∑
l

ϕl
M

}
(5.5)

Then for points xi and xj, we define their coclick similarity as the cosine similarity of

Φi and Φj:

f2(xi, xj) =
Φi · Φj

||Φi|| · ||Φj||
(5.6)

3. Lexical context similarity. Under the distributional similarity assumption [64], two

strings will carry similar meaning if they share similar context. We observe that for

true synonyms, the two attribute values will share common left and right context in

web search queries. However this similarity is different from the categorical pattern

similarity in that the lexical context similarity is more specific to a particular attribute

value while the categorical pattern similarity is related to the patterns of a set of

values. Thus the categorical pattern similarity has more power in discriminating the

ambiguous attribute values. We define the lexical context similarity of xi and xj as

67



the Jaccard similarity of their left and right context:

f3(xi, xj) =
1

2
·
(
||Ωi,l ∩ Ωj,l||
||Ωi,l ∪ Ωj,l||

+
||Ωi,r ∩ Ωi,r||
||Ωi,r ∪ Ωj,r||

)
(5.7)

4. Pseudo document similarity. This similarity kernel has been successfully applied

to finding entity synonyms [20]. Here we first define what is a pseudo document. For

a real document, the title and body are not always easy to get. Thus we use the set

of queries having clicks on a document as its representation. And this set of queries

is called pseudo document. The Pseudo document similarity esentially measures the

similarity between two attribute values based on the number of co-occurrences in the

query-clicked pseudo document pairs. For example, for attribute values “IBM” and

“Big blue”, if query q contains “IBM”, and it has clicks on a set of pseudo documents

D. The percentage of D which contains “Big blue” measures how similar these two

values are. Please refer to [20] for more detail.

5.3.2 Basic Model

After defining the overall distance function and similarity kernels, we now describe the

formulation of the clustering model. As for a clustering model, we must specify the cluster

centers. For the attribute synonym finding problem it’s natural to nominate the canonical

attribute values as the cluster centers since they should be close to their synonyms. Moreover,

synonymous attribute values should be close with each other in a cluster and far away from

other clusters, which motivates our compact clustering. Formally, in the basic model we
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aim at minimizing the following objective function:

g0(R,Z,W ) (5.8)

=
K∑
k=1

N∑
i=1

ri,k · d(xi, zk) +
N∑
i=1

ri,0 · d(xi, z0)

=
K∑
k=1

N∑
i=1

T∑
t=1

ri,k · w2
t · dt(xi, zk) +

N∑
i=1

ri,0 · γ

subject to:



K∑
k=0

ri,k = 1, 1 ≤ i ≤ N

ri,k ∈ {0, 1}, 1 ≤ i ≤ N, 0 ≤ k ≤ K

wt ≥ 0,
T∑
t=1

wt = 1, 1 ≤ t ≤ T

(5.9)

The above objective function minimizes the sum of within-cluster dispersions. In Eq. (5.8),

the first term is the overall within-cluster distances of the normal clusters, and the second

term is the within-cluster distances in the background cluster. Such formulation is to make

the resulting clusters more compact. Note that in our model there is no need to represent

data points with explicit feature vectors, instead, we only require that d(xi, xj) ≥ 0 . The

notations of variables in the formula are listed below:

• d(xi, zk) is the overall distance function between xi and zk, as defined in Eq. (5.1);

• R is an N× (K+1) partition matrix, where N is the total number of points and K+1

is the number of clusters; ri,k ∈ {0, 1} is a binary variable; ri,k = 1 indicates object xi

is in kth cluster;
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• Z = {z0, z1, ..., zK} are the medoids of the clusters. In the basic model, the first K

medoids are fixed to the target attribute values {v1, v2, ..., vK} for which we look for

synonyms;

• W = {w1, w2, ..., wT} are the weights of different distance kernels;

• γ is a constant measuring the distance of x ∈ X to the background cluster.

Rationale of the objective function: The above objective function is similar to the

formulation of K-medoids[48]. The advantage of employing the K-medoids framework rather

than K-means is that the distance function between data points can be defined in arbitrary

form. However, there are important differences between our basic model and the K-medoids

model: firstly, the first K medoids in our model are fixed to the canonical attribute values,

assuming they are best representatives of these clusters. This also implies that there is

no need to update the medoids. Secondly, in our model the distance between points is a

weighted distance function, which is very different from the standard K-medoids model.

Such weights measure the relative contribution of the kernels, and they are estimated in an

unsupervised manner. Thirdly, in our model we add a background cluster in order to attract

the random points. And we assume that the distance of any point to the background cluster

is a constant. Although the basic compact clustering model can partition the data points

into synonym clusters, it suffers from the following limitations: (1) Using a single fixed

representative for a cluster may be problematic. First, the canonical value is not always

the most popular or most representative. It may have idiosyncrasies that are not shared by

other members of the cluster. Second, because the similarity features are noisy, if we only

compare a candidate against the canonical value, a noisy feature may bias it towards an

incorrect cluster. (2) Manually setting the constant γ is very difficult. Nominating a good γ

at the beginning is hard; and further, since the distance between data points depends on the

weights, it makes it even harder to choose the appropriate γ inside the algorithm. Therefore

a rough estimation of this constant is desirable. (3) No measurement of uncertainties of a
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point belonging to the background. We can adjust the precision/recall of our model via the

constant γ. However, as γ is hard to set manually, it’s beneficial to have another parameter

for setting the prior probability of a point belonging to background, so as to adjust the

operating point in the precision/recall curve.

5.3.3 Standard Model

Generally, limitation 1 can be addressed by employing a flexible representative or a small

set of representatives for each cluster. However it’s not desirable to have flexible medoids

since in our problem setup the canonical values are good representatives and it is more

robust to include them into the medoids. Therefore we propose to use a small subset of

points, including the canonical value, to form a new pseudo-medoid. The subset is viewed

as a committee that determines which other points belong to the cluster. A similar idea of

clustering with committees of points has been successfully applied to the document clustering

problem [70]. As the optimal solution for K-medoids cluster is NP-hard, we can only find

the local optimum of medoids by algorithms such as PAM [49]. However, this algorithm

takes O(m2) time to update a medoid where m is the number of points in a cluster, which is

inefficient. Also it doesn’t take the advantage of the canonical values. In our new proposal,

we form the new pseudo-medoid by including the L− 1 most similar values to the canonical

value as well as the canonical value itself. The advantage of this nearest neighbors approach is

that it forms a very compact pseudo-medoid around the canonical value efficiently (requiring

only O(m) time).

To address the limitation 2, we propose to randomly select µ proportion of points from

the background cluster, and estimate γ by taking the average of the distance from x to this

random subset. Results show that the final synonyms are stable with respect to different

setting of µ.

We address the limitation 3 by introducing a prior probability p that a given point

x belongs to the background cluster. If we further assume that x follows a uniform prior
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distribution for normal clusters, then the prior probability of x belonging to a normal cluster

is 1−p
K

.

Based on these new proposals, we present the standard compact clustering model by

minimizing the updated objective function:

g1(R,Z
′,W ) (5.10)

=
1− p
K

K∑
k=1

N∑
i=1

ri,k · d(xi, z′k) + p

N∑
i=1

ri,0 · d(xi, z0)

=
1− p
K

K∑
k=1

N∑
i=1

∑
xj∈z′k

T∑
t=1

1

|z′k|
· ri,k · w2

t · dt(xi, xj)

+ p

N∑
i=1

∑
xj∈A

T∑
t=1

1

|A|
ri,0 · w2

t · dt(xi, xj)

subject to Eq. (5.9). Where z′k is the pseudo-medoid, A is the subset of random points in the

background cluster, whose size is controlled by the parameter µ. And the prior probability

p is a tunable parameter. The standard compact clustering model aims at inducing more

compact clusters.

5.3.4 Solving the Standard Model

In the standard model there are three sets of unknown variables: R, Z ′ and W , which are

dependent on each other. There is no exact solution to solve all of them at the same time.

Instead we solve this optimization problem by iteratively solving the following minimization

problems:

1. Fix Z ′ = Ẑ ′ and W = Ŵ ; find the best R that minimizes g1(R, Ẑ ′, Ŵ )

2. Fix W = Ŵ and R = R̂; find the best medoids Z ′ that minimizes g1(R̂, Z
′, Ŵ )

3. Fix Z ′ = Ẑ ′ and R = R̂; solve the best parameters W that minimizes g1(R̂, Ẑ ′,W )
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Sub-problem 1 (cluster assignment) can be solved by:

 ri,k = 1 if d′(xi, z
′
k) ≤ d′(xi, z

′
l), 0 ≤ k, l ≤ K

ri,k = 0 otherwise
(5.11)

where  d′(xi, z
′
k) =

1− p
K
· d(xi, z′k) if k > 0

d′(xi, z
′
k) = p · d(xi, z′0) if k = 0

For sub-problem 2, we update the pseudo-medoids of first K clusters by including up to

the top L− 1 most similar values to the canonical value as well as the canonical value itself:

z′k ← vk ∪ {L− 1 nearest neighbors of vk in cluster k} (5.12)

For the background cluster, there is no need to calculate the updated medoid. We follow the

basic ideas from weighted K-means [21] to solve sub-problem 3. Because after fixing R

and Z ′, Eq. (5.10) is a convex quadratic function, we apply the Lagrange Multiplier method

and obtain a closed form solution to W as:

ŵt =
1∑T

j=1
Dt

Dj

(5.13)

where

Dt =
1− p
K

K∑
k=1

N∑
i=1

∑
xj∈z′k

1

|z′k|
· ri,k · w2

t · dt(xi, xj)

+ p
N∑
i=1

∑
xj∈A

1

|A|
ri,0 · w2

t · dt(xi, xj),
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and Dt ̸= 0 for 1 ≤ t ≤ T . Intuitively, a larger weight is assigned to a feature function which

makes the clusters more compact (with smaller sum of within-cluster dispersions).

The optimal allocation of points to clusters and the best distance kernel weights can

be found by iteratively solving the above sub-problems. This algorithm procedure assumes

that we have a set of candidate strings {x1, x2, ..., xN} as input. Here we describe how we

obtain this set of candidates efficiently. For the synonym identification problem, reducing

the search space is critical since the set of all potential candidates are all arbitrary strings.

In this work, we confine the search space using a large query log from a commercial search

engine. Given a set of canonical values V = {v1, v2, ..., vK}, we identify candidates as follows:

1. For each v ∈ V, get the top queries which contain the target canonical value v from

a compact Trie data structure [39]. For each query q in this set, get the top clicked

documents D. Then for each d in D, get the most clicked queries which also have clicks

on these documents. This process is basically a one-step forward-backward random

walk;

2. Once the set of coclicked queries have been found, we generate all n-grams from these

coclicked queries, and filter the n-grams with too low counts. The rest are maintained

as initial candidates;

3. For each similarity kernel, from the initial candidates we select the top M (M=100 in

this work) candidates with highest similarities to the canonical attribute value;

4. Merge all top candidates and remove duplicate ones to form the final candidates.

5.3.5 Incorporating Additional Information

So far, we have utilized the principle of compactness to learn attribute synonyms as well

as kernel weights W without requiring any additional labeled data beyond the canonical

values. In some situations, we may have some labeled synonym data. Ideally, a fair amount
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of labeled data can help boost the performance of the model. Yet such labeled data is often

difficult to collect, as domain knowledge is required to annotate synonyms. On the other

hand, there are other forms of labels, which are noisy but easier to collect. For the problem

of synonym identification, one source of such additional information is the Wikipedia redi-

rect. A redirect usually indicates synonymous or strong relationship between two strings.

However, a redirect may also provide incorrect synonyms, such as ones from another inter-

pretation of the canonical value. For instance, “Apple Fruit” and “Apple Computer Inc.”

both have redirects to “Apple”. However for the domain of computer companies, “Apple

Fruit” is not a synonym for “Apple”. Specifically the Wikipedia redirects provide synonym

evidence as follows:

• Q = {Qk}Kk=1, and for each target attribute vk:

Qk ={(xi, vk) — xi ∈ X, xi and vk have Wikipedia redirects that xi → vk}. Qk provides

a small subsets of points known to belong to the same cluster as vk;

We call this information the should-link constraints. In addition, because we are looking

for synonyms on a set of attribute values, these values together provide another form of

information: the should-not-link constraints:

• D = {Dk}Kk=1, for each target attribute vk:

Dk ={(xi, vk) — xi ∈ X, xi and vk should not be in the same cluster}.

The should-not-link constraints suggest that a canonical value and its lexical variants (i.e.

spelling variants) should not be in the same cluster as other canonical values. For example,

“nike” is not likely a synonym of “adidas” although they might share high coclick similarity.

With the additional information in the forms of Q and D, we propose the a-compact clus-

tering (compact clustering with additional information) model that extends the standard

model to include information from Q and D as regularization terms. With this extension,
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the objective function becomes:

g2(R,Z
′,W ) =g1(R,Z

′,W ) + γ1 ·
K∑
k=1

∑
xi∈Qk

d(xi, vk) (5.14)

− γ2 ·
K∑
k=1

∑
(xi,xj)∈Dk

d(xi, vk)

subject to Eq. (5.9). Where γ1 and γ2 are the coefficients of these regularization terms. This

new objective function tries to minimize the overall within cluster distances, minimize the

sum of dispersion contributed from pairs in Q, and maximize the sum of dispersion from

pairs in D. The a-compact cluster objective function is still convex as long as the coefficient

of W 2
t ≥ 0, so it has exact solution for W in sub-problem 3. We don’t go into the details of

solving the sub-problems since they are similar to the standard model.

5.4 Experiments and Results

We have conducted a series of experiments on datasets across multiple categories to test the

effectiveness of our proposed compact clustering model. We first make direct comparison

of our model to the baselines on the traditional setting that the attribute values are also

entities mentions. We then conduct another set of experiments on the setting that the

attribute values are arbitrary strings. After that, we will show results in cases where the

attribute values have ambiguous senses. Furthermore, we investigate the relative importance

of similarity kernels. Finally we discuss the sensitivity of our model when parameters change

and when additional noisy labels from Wikipedia are available.

5.4.1 Datasets

The datasets consist of two major parts, one is data sources from which the similarity

functions are computed; the other is the test attribute values and the corresponding labeled
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synonyms. Firstly, all of the similarity kernels are computed on a large query log and a

query-click log from Bing search engine. There are more than 100 millions unique queries in

the query log and about 600 millions query-clicked document pairs in the query-click log. All

these query and click logs are preprocessed and indexed in a compression trie data structure

[39]. so that the similarities can be computed efficiently. For the noisy labeled data, we

have collected all redirects from Wikipedia on January 2013. Secondly, in order to test

the proposed models, we have collected several attribute synonym datasets from multiple

categories (see Table 5.2). Specifically, 3 datasets are constructed to test the traditional

entity synonym finding. 3 other sets are selected to test the synonym identification where

the attribute values don’t look like entity mentions. Furthermore, we have collected a set of

ambiguous attribute values to discuss the challenging issue of ambiguity. Because obtaining

a set of ambiguous values from a single category is hard, we get the results from 5 datasets,

select 18 such ambiguous values and then label them.

Because it’s almost impossible to annotate all true synonyms of the selected attribute

values, we employ the TREC style pooling strategy to obtain the initial pool of candidate

ground-truths. We first choose 3 competing methods, then for each attribute value we select,

up to 50 best synonyms output from each approach are pooled. Domain experts are then

asked to label whether they are true synonyms by majority voting.

Table 5.2: Test Datasets
Type Dataset #Values #Labels %Positive

movie.title 50 3272 15.9
entity mentions shoe.brand 50 3370 17.2

doctor.specialty 50 2105 12.5
shoe.gender 5 96 19.8

arbitrary strings babyclothing.age 15 129 21.0
movie.genre 21 340 15.4
shoe.brand 6
movie.title 3
movie.genre 3

ambiguous values itcompany.name 3 410 16.8
insurance.provider 3
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5.4.2 Evaluation Metrics

We evaluate our system based on the evaluation metrics of expected precision, expected

recall and expected F1 measure. Specifically, for an canonical attribute value v ∈ V , O(v) =

{o1, o2, ..., oKv} is the set of synonym outputs in ranked order by similarity score. Let S(v)

denote the set of true synonyms annotated by the human experts for v. Expected precision

is computed as:

precision =
1

|V |
∑
v∈V

∑
o∈O(v)

Ip(o, v)/|O(v)|

where Ip(o, v) = 1 if o ∈ S(v), and 0 otherwise. Expected recall is defined as:

recall =
1

|V |
∑
v∈V

∑
x∈S(v)

Ir(O(v), x)/|S(v)|

where Ir(O(v), x) = 1 if x ∈ O(v) for x ∈ S(v), and 0 otherwise. The F1 measure can be

computed accordingly.

5.4.3 Baselines

1. Individual features. Individual features are included as baselines so as to reveal their

strength and weakness on identifying entity attribute synonyms both in the form of

entity mentions as well as arbitrary strings. Synonyms are identified by single attribute

value at a time. We try several settings and manually choose the best thresholds for

these feature functions.

2. Chakrabarti-2012. We also include a strong baseline proposed by Chakrabarti et.

al [20], which identifies entity synonyms by combining multiple similarity scores with

manually tuned thresholds. We consider it a state-of-the-art multi-feature, single value

at a time approach. For a fair comparison, this system works on the same set of query

log and clickthroughs as our approach for calculating similarities. We collect final

outputs in the form of an unordered list of synonyms for each input attribute value
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via the system interface provided by the authors of [20].

3. Clustering with Fixed Weights. In order to reveal the effectiveness of the kernel

weights learning, we add a baseline that uses the same clustering model, yet with

fixed (equal) kernel weights. This way of combining the weights are similar to that in

Chakrabarti-2012.

5.4.4 Entity Mentions

We first evaluate the performance of the compact clustering model on attribute values that

are also entity mentions. It is important to investigate our model’s performance on this

setting because it is a classical setting and a good model should at least be competitive in this

setting. Among the three test datasets, movie.title and shoe.brand are from popular domains

while doctor.specialty is from tail domain since the values such as “interventional cardiology”

are not common query terms. Table 5.3 shows the expected precision, recall, and F1 scores.

Firstly, the results show consistently across three datasets that using single feature doesn’t

achieve competitive results. Specifically, categorical pattern has somewhat good precision

but suffers from very low recall. pseudo document similarity is a relatively robust method

achieving balanced precision and recall. However it fails to get competitive performance

compared to methods combining multiple features such as Chakrabarti-2012 and our model.

Secondly, the Chakrabarti-2012 approach achieves relatively high on precision but low on

recall, confirming its precision orientated nature. Thirdly, learning synonyms jointly in our

clustering framework clearly demonstrates advantages: it achieves better F1 scores than

Chakrabarti-2012 across three datasets by simply fixing the weights to be all equal. Finally,

our proposed compact clustering model is consistently obtaining balanced precision and

recall, resulted in best F1 scores. It clearly outperforms the baseline of clustering with

fixed weights, showing the benefit of automatic weight learning. Moreover, its F1 score

also consistently outperforms Chakrabarti-2012. In fact, in two of the three datasets, the
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statistical T-Test indicates that there is statistically significant difference between our model

and Chakrabarti-2012 at confidence level p = 0.01. This reveals the effectiveness of our

proposed model that identifies synonyms jointly with kernel weights automatically tuned.

Table 5.3: Attribute Values as Entity Mentions

Dataset Method Precision Recall F1
categorical pattern 0.463 0.202 0.2811
coclick 0.381 0.405 0.393
lexical context 0.398 0.372 0.385
pseudo document 0.412 0.437 0.424

movie.title Chakrabarti-2012 0.706 0.400 0.470
clst. w. fixed weights 0.503 0.525 0.514
compact clustering 0.541 0.572 0.556∗

categorical pattern 0.455 0.258 0.329
coclick 0.425 0.446 0.435
lexical context 0.431 0.418 0.424
pseudo document 0.454 0.477 0.465

shoe.brand Chakrabarti-2012 0.762 0.470 0.545
clst. w. fixed weights 0.713 0.510 0.595
compact clustering 0.768 0.560 0.647∗

categorical pattern 0.398 0.19 0.257
coclick 0.359 0.337 0.348
lexical context 0.365 0.328 0.346
pseudo document 0.380 0.359 0.369

doctor.specialty Chakrabarti-2012 0.683 0.520 0.590
clst. w. fixed weights 0.665 0.543 0.598
compact clustering 0.673 0.558 0.610

Note: The F1 score marked by ∗ means it has statistically significant difference compared to
Chakrabarti-2012 at confidence level p = 0.01.

5.4.5 Arbitrary Strings

We then compare the results on attribute values that don’t look like entity mentions. Such

values include interesting instances like infant, women in shoe.gender, thriller in movie.genre,

2 year in babyclothing.age. We summarize the results in Table 5.4. As expected, categorical

pattern, pseudo document behave similarly as in the previous experiment, confirming using

them individually is not effective in both forms of attribute values. Also, the clustering with
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fixed weights performs slightly better than Chakrabarti-2012. Further, the compact cluster-

ing model achieves significantly better results than Chakrabarti-2012 across three datasets.

And the difference between our model and Chakrabarti-2012 is statistically significant. We

list some interesting cases that our proposed model identifies successfully but Chakrabarti-

2012 fails. For example, for infant, Chakrabarti-2012 identifies {newborns, neonates, baby,

infants etc.} as it’s synonyms; not only can our method identify all of them, but it also finds

more interesting synonyms such as {toddler, toddlers} which are more specific synonyms

in the domain of shoe.gender. And for thriller, Chakrabarti-2012 finds “michael jackson

thriller” as its synonym while compact cluster doesn’t. In fact, “michael jackson thriller” is

not the synonym of thriller in the particular domain of movie.genre. And our model identifies

“scary” as its synonym, which is more appropriate. The superior performance of compact

clustering might be due to two reasons: first is that we aggregate all referent strings of the

attribute value as proxies, therefore resulting in more robust estimate of similarity measures.

And second, the joint modeling of multiple attribute values from the same implied domain

effectively handles the ambiguity problem, which we will further discuss below.

5.4.6 Ambiguous Attribute Values

Ambiguous synonyms handling is important for finding domain specific synonyms. Here we

compare our model to Chakrabarti-2012 on a set of attribute values that are ambiguous.

They include {jordan, coach, lv} from shoe.brand, {app, sun, adobe} from itcompany.name,

{aarp, advantage, aim} from insurance.provider, {thriller} from movie.genre, {matrix} from

movie.title. Results on Table clearly indicate that compact clustering is much more effective

than Chakrabarti-2012 on handling ambiguous attribute values. Interestingly, the baseline

of clustering with fixed weights also significantly outperforms Chakrabarti-2012 in this case,

suggesting that joint modeling of multiple attribute values is particularly effective for am-

biguous synonyms handling.
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Table 5.4: Attribute Values as Arbitrary Strings

Dataset Method Precision Recall F1
categorical pattern 0.371 0.179 0.242
coclick 0.343 0.362 0.352
lexical context 0.360 0.336 0.348
pseudo document 0.370 0.400 0.384

shoe.gender Chakrabarti-2012 0.489 0.372 0.423
clst. w. fixed weights 0.485 0.502 0.493
compact clustering 0.500 0.550 0.524∗

categorical pattern 0.382 0.190 0.254
coclick 0.412 0.455 0.432
lexical context 0.462 0.421 0.441
pseudo document 0.401 0.544 0.462

babyclothing.age Chakrabarti-2012 0.592 0.380 0.463
clst. w. fixed weights 0.562 0.466 0.510
compact clustering 0.669 0.543 0.599∗

categorical pattern 0.355 0.140 0.201
coclick 0.325 0.355 0.340
lexical context 0.343 0.312 0.327
pseudo document 0.331 0.362 0.346

movie.genre Chakrabarti-2012 0.591 0.482 0.531
clst. w. fixed weights 0.580 0.554 0.567
compact clustering 0.594 0.588 0.591∗

Note: The F1 score marked by ∗ means it has statistically significant difference compared to
Chakrabarti-2012 at confidence level p = 0.01.

Table 5.5: Ambiguous Attribute Values

Method Precision Recall F1
Chakrabarti-2012 0.581 0.465 0.517
clst. w. fixed weights 0.613 0.574 0.593∗

compact clustering 0.677 0.582 0.626∗

Note: The F1 score marked by ∗ means it has statistically significant difference compared to
Chakrabarti-2012 at confidence level p = 0.01.

5.4.7 Contribution of Similarity Kernels

Our proposed model is able to learn the weights of similarity kernels. In this experiment

we look into the learnt weights to see whether they reflect the relative importance of the

similarity kernels. For this purpose, we have conducted the ablation test, in which we

remove one similarity kernel at a time and run the model. We also report the weights
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learnt without removing any kernels. Results on three domains are shown in Table 5.6. These

results indicate that pseudo document similarity seems to play relatively higher importance

than other kernels. For example, both in movie.title and doctor.specialty, it carries the

highest weights; and the F1 measures drop to the lowest when removing this kernel (the

lowest F1 is marked in bold). Interestingly, the categorical pattern similarity plays an

important role in shoe.brand. Note that in this domain there are more ambiguous inputs (6

values) than other domains, suggesting the importance of categorical pattern similarity for

disambiguation.

Table 5.6: Relative Importance of Similarity Kernels

Dataset W/F1 categorical coclick lexical pseudo
pattern context document

movie.title W 0.20 0.20 0.27 0.33
F1 0.505 0.510 0.489 0.464

shoe.brand W 0.29 0.16 0.25 0.3
F1 0.569 0.601 0.589 0.573

doctor.specialty W 0.13 0.22 0.30 0.35
F1 0.573 0.567 0.55 0.538

5.4.8 Adding Noisy Labeled Data

The following experiment aims at quantifying the improvement from utilizing additional

information with the a-compact clustering model over one without such information. In this

experiment we add Wikipedia redirects as a weak baseline in which the redirects are treated

as predictions. Due to the space limitation, we again only summarize the results on datasets

of the entity mentions in Table 5.7. As expected, the F1 measure of the a-compact clustering

model significantly outperforms Wikipedia redirects and Chakrabarti-2012 methods on these

datasets. Similarly, compared to the compact clustering model, the a-compact clustering

model achieves substantially better F1 on all datasets. These results demonstrate that the

a-compact clustering model effectively exploits the information from the additional noisy

signals.
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Table 5.7: a-Compact Clustering Model vs. Baselines

Dataset Method Prec Recall F1
Wikipedia redirects 0.847 0.178 0.294

movie.title Chakrabarti-2012 0.706 0.400 0.470
compact clust 0.541 0.572 0.556
a-compact clust 0.609 0.649 0.594∗

Wikipedia redirects 0.820 0.186 0.303
shoe.brand Chakrabarti-2012 0.762 0.470 0.545

compact clust 0.768 0.560 0.647
a-compact clust 0.802 0.686 0.712∗

Wikipedia redirects 0.790 0.22 0.344
doctor.specialty Chakrabarti-2012 0.683 0.52 0.590

compact clust 0.639 0.544 0.587
a-compact clust 0.685 0.621 0.651∗

Note: The F1 score marked by ∗ means it has statistically significant difference compared to
Chakrabarti-2012 at confidence level p = 0.01.

5.5 Conclusions and Future Works

For the problem of finding entity attribute synonyms, we propose a compact clustering

framework to simultaneously identify synonyms for a set of attribute values. In this frame-

work, multiple sources of information are integrated into a kernel function between attribute

values and synonyms are learned via unsupervised clustering. We have also proposed a novel

similarity kernel called Categorical Pattern Similarity, which has proven to be effective for

improving the performance of the compact clustering model. Furthermore, the clustering

performance can be enhanced by leveraging limited amount of additional information. Ex-

tensive experiments demonstrate the effectiveness of our clustering framework over previous

approaches for identifying entity attribute synonyms, both in the cases where they are entity

mentions or are arbitrary strings. We have also demonstrated the effectiveness of our model

for ambiguity handling for identifying domain specific synonyms.

Further, besides attribute value synonym identification, our unsupersived framework of

simultaneously modeling multiple inputs and integrating multiple kernels can be potentially

applied to other applications, such as looking for related queries, product recommendation,

question paraphrasing et. al..
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Chapter 6

Modeling Query Auto-completion by
a Two-dimensional Click Model

6.1 Introduction

The previous levels of query understanding mentioned in this thesis is somewhat static,

meaning that we have to know the entire query in advance. However in many scenarios this

is not possible: the users want to be assisted when they just give a tiny amount of query

hint, which is called dynamic query understanding. One example is to predict users intended

queries based on partial queries in the task of query auto-completion. In the chapter we focus

on modeling the query auto-completion.

Query auto-completion (QAC) is one of the most important components of a modern

web search engine which facilitates faster user query input by predicting the users’ intended

queries. It is offered by most of the search engines, e-commerce portals and major browsers.

With the prevalence of mobile devices, it becomes more critical because typing takes more

effort in mobile devices than in PCs. Previous studies addressed the QAC problem in

different perspectives, ranging from designing more efficient indexes and algorithms [12, 38,

96, 41], leveraging context in long term and short term query history [10], learning to combine

more personalized signals such as gender, age and location [79], suggesting queries from a

mis-spelled prefix [29].

The query auto-completion process starts when a user enters the first character into the

search box. After that, she goes through a series of interactions with the QAC engine until

she clicks on an intended query. Such interactions include examining the suggested results,

continuing to type, and clicking on a query in the list. Although previous approaches model
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the relevance ranking with many features, these models are usually only trained on the final

submitted queries, ignoring the entire user interactions from the first character she types to

the final query she has clicked.

One difficulty for improving the QAC quality is the lack of data about fine-grain user

interactions in QAC. Recent work has attempted to leverage all prefixes of a submitted

query [10, 79]. However the only available data is the submitted query; while the prefixes

are simulated from all possible prefixes of the query. Lack of associated information, such as

the suggested list, user typing speed and other real user interactions, prevents such methods

from further improving their performance.

For this purpose, we have collected a high-resolution QAC dataset from both PC and

mobile phones, in which each keystroke of a user and the system response are recorded. As

far as we know, this is the first dataset with this level of resolution specifically for QAC.

Extensive studies have already demonstrated the importance of query log for web document

retrieval [74, 42, 5, 44, 78]. Therefore, it is reasonable to believe this new kind of QAC

log could potentially enable a full spectrum of researches for QAC, such as user behavior

analysis, relevance ranking, interactive system design for QAC, just to name a few.

Given many possibilities for mining this new data, in this chapter we focus on leveraging

it for understanding users’ behavior in QAC. Specifically based on our QAC log, we have

observed a phenomenon that in QAC users frequently skip several suggestion lists, even

though such lists contain the final submitted query. The exact reason why this happens

and how frequent it happens is largely unknown. Besides, we also observed that most

of the clicked queries are concentrated at top positions. Better understanding of these

behaviors has a strong implication to the relevance modeling. For instance, we assume

that a user does not click a suggested query due to the lack of relevance; however the

skipping behavior complicates this hypothesis. So, if we know the positions where such

skipping behavior happens, we could improve the candidate ranking in QAC by taking into

account the examples in the positions where they are more likely to be examined. Despite
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its importance, little research has been done in explaining such behaviors.

The QAC process shares similarities with the web document retrieval: in QAC people

look for intended queries with a prefix, while in document retrieval people look for relevant

documents with a query. And in document retrieval, click models are widely used to model

the users’ examination and clicking behavior [75, 26, 31, 62, 105, 22]. Thus we could po-

tentially adopt an existing click model to shed light on the QAC user behavior. However,

there are major differences between the QAC process and document retrieval. For example,

in document retrieval a user usually examines one result page before she lands on a click,

while in QAC she usually types in a series of prefixes and examines multiple lists of sugges-

tions before landing on a click. Due to these differences, most current click models are not

applicable to the QAC problem without significant modification.

Therefore in this work we propose a novel two-dimensional click model for understanding

the user behaviors in QAC. This click model is consisted of a horizontal component that

captures the skipping behavior, a vertical component that depicts the vertical examination

bias, and a relevance model that reflects the intrinsic relevance between a prefix and a

suggested query.

We have performed a set of experiments on our QAC datasets from PC and mobile

phones. Results show that our proposed model can effectively model the user behavior in

QAC. The resulting relevance model significant improves the QAC performance over existing

click models. We also show that the learned knowledge about users’ behavior, especially the

probability of skipping a column of suggestion candidates, could serve as labeling information

to improve the performance of existing learning-based approaches. Furthermore, with the

learned model we demonstrated some interesting insights of the user behaviors in QAC on

both platforms.

We summarize our contributions as follows:

• We have collected the first set of high-resolution query log specific for the QAC process,

which could enable many studies on deeper understanding of QAC.
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• Based on the new QAC log, we analyze two important types of user behavior in QAC,

namely the horizontal skipping bias and vertical position bias. The horizontal skipping

bias is unique to QAC and is formally introduced here for the first time.

• We propose a novel Two-Dimensional Click Model to model these types of user be-

havior. Our model outperforms the state-of-the-art click models on relevance ranking.

We also utilize our model to derive interesting insights about the QAC user behavior

on PC and mobile devices.

6.2 Data and User Behavior Analysis

In this section we will introduce the high-resolution query log for QAC and the user behavior

analysis based on this new kind of data.

6.2.1 A High-Resolution QAC Log

As mentioned above, the QAC process is under-explored because there is no appropriate

dataset. Previous studies rely on search query log in which only the submitted query and

associated information are recorded. In order to analyze the subtle user behavior in a whole

QAC process we need to record system response and user interactions for each keystroke

leading to the final clicked query. With this motivation we have collected a large set of QAC

sessions with real user interactions from the Yahoo! search engine. This QAC log contains

millions sessions on PC and mobile phone platforms. The dataset in this study is a random

sample of the original QAC log dating from Nov. 2013 to Jan. 2014.

As illustrated in Table 6.1, the recorded information in each QAC session includes the

final clicked query, every keystroke a user has entered, timestamp of a keystroke, correspond-

ing top 10 suggested queries to a prefix, and the anonymous user ID. It also records the user’s

submitted query in previous session. Table 6.2 lists the basic statistics of the dataset stud-

ied in this work. In PC platform each session contains 11.80 prefixes in average; while the
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average clicked query length is 19.68, which is substantially larger than the average prefix

length, indicating the usefulness of QAC for facilitating faster user query input. We observe

similar statistics on the iPhone 5 platform, with lower average prefixes in one session (9.43),

suggesting that users rely even more on mobile devices where typing takes more effort.

Table 6.1: High-resolution QAC Log

Data Type Example

anonymized user id 9qtfnj195p5ta
session id rFzqRUgeurCd
time stamp 11/02/2013 23:02
prefix oba
final submitted query obama care
previous query charm and charlie’s
clicked URL https://www.healthcare.gov/
top 10 suggested queries obama care—obama—oba—

obamacare—obama approval rating—...

Table 6.2: Dataset Basic Statistics
Platform # Sessions Ave Prefixes Ave Clicked # Unique

Qry Len User IDs

PC 125,392 11.80 19.79 111,783
iPhone 5 31,227 9.43 16.98 17,331

Significance: With this QAC log, for the first time we have the opportunity to look

into the real user interactions at the level of every keystroke. Such high-resolution dataset,

when combined with traditional query log about user demographics and query history, could

enable many new researches on QAC. For example, we could potentially utilize all lists of

suggested queries to improve the QAC relevance ranking. Also, we could leverage this data

to get better understanding of user behavior in the QAC process.

6.2.2 QAC User Behavior Analysis

Given the new QAC log, there are many possibilities to mine valuable knowledge. In this

work we aim at leveraging the data for user behavior modeling in QAC. When a user clicks

on a suggested query with the help of a QAC engine, she undergoes a series of interactions
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Table 6.3: An Example of the Skipping Behavior
Prefix obamacar— ⇒ obamacare— ⇒ obamacare — ⇒ obamacare h—

q1 obamacare glitches obamacare glitches obamacare glitches obamacare healthcare bill
√

q2 obamacare obamacare obamacare healthcare bill
√

obamacare healthcare insurance
q3 obamacare healthcare bill

√
obamacare healthcare bill

√
obamacare facts obamacare health plan 2014

q4 obamacare facts obamacare facts obamacare rates 2014 obamacare hotline
q5 obamacare fines obamacare fines obamacare fines obamacare health exchanges

Note: query with a
√

mark is the final clicked query by the user.

with the QAC engine before she finally selects a preferred query. Such interactions are of

great value for improving the quality of the QAC service. In this section we conduct two

experiments to verify the need of modeling user behavior in QAC.

The first important user behavior in the QAC process is the skipping behavior. We have

observed that a user frequently skips several intermediate lists of candidates even though

these lists contain her final selected query. Table 6.3 illustrates this skipping behavior from

a real user-interaction sample. In this example, clearly the query obamacare healthcare bill is

preferred by the user. However, though this query is listed within top 3 positions in each of

the suggestion list, the user has skipped all but the last appearance. A plausible explanation

for the skipping behavior is that the user didn’t examine it due to some reasons, such as fast

typing speed, too deep to look up the query, etc.

We performed an experiment on the dataset described in Table 6.2 to verify how often the

skipping behavior happens. In this experiment we define that a skipping behavior happens

when the final clicked query is ranked within top 3 in the suggestion list of any of the prefixes

except the final prefix. Results in Table 6.4 show that this behavior is frequent: it happens in

60.7% of all sessions in PC platform. Further, this behavior is consistent in all session groups

with different final prefix length (57.6%, 64.8%, 59.1% and 60.2% respectively), indicating

its prevalence in all queries. This result suggests a common skipping behavior in the QAC

process. We observe very similar phenomenon in the iPhone 5 platform.

In another experiment, we investigated the vertical examination bias in QAC. Using

the same set of QAC sessions, we computed the distribution of clicks according to their

positions in the final suggestion list and the final prefix length. Figure 6.1 shows the 2-

dimensional click distribution on both PC and iPhone 5 platforms. Similar to the findings
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Table 6.4: Frequency of the Skipping Behavior

Category # Sessions % Sessions Having
Skipping Behavior

All Sessions 125,392 60.7%
Sess with FPL in [1, 5] 39,405 57.6%
Sess with FPL in [6, 10] 39,882 64.8%
Sess with FPL in [11, 15] 22,892 59.1%
Sess with FPL in [16, 50] 23,213 60.2%

Note: FPL means Final Prefix Length.

in the traditional click models, most of the clicks concentrate on top positions. In fact,

75.4% of clicks is located within the top 2 positions on PC and 77.5% on iPhone 5. Such

vertical positional bias suggests that we should boost the estimated relevance for queries

which are clicked at lower ranks. Compared to PC, the clicks on iPhone 5 distribute more

evenly with-in positions from 1 to 3. In addition, Figure 6.1 also indicates that most of the

clicks are located in prefix length ranging from 3 to 12 on both platforms. Interestingly, the

click probability at short prefix length (1 and 2) is very low, suggesting that users tend to

skip the suggested queries at the beginning.

Figure 6.1: Distribution of clicks. Red color corresponds to high click probability, while blue
corresponds to low click probability.

The reason why we focus on these two behaviors is their important implications to

relevance ranking. Recent research attempts to improve the relevance model by training on
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all simulated columns (lists) of suggestions [10, 79]. However, not all of columns are examined

by the users in reality. As a result, it might introduce many false negative examples that

hurt the performance. To validate this claim, we have conducted an experiment on our QAC

dataset from PC platform (see Section 6.4.1 for detailed description) in which we adopt the

same training strategy as [79]. For the learning-to-rank algorithm, we use the RankSVM

[42]. We also adopt very similar features as [79] (see Table 6.6). MostPopularCompletion

(MPC) is used as a baseline. Another baseline is to train RankSVM only by the last column

(suggestion list corresponding to the last prefix). In addition, we add the third baseline,

which is also RankSVM, but trained by last 2 columns. Same as [79], we evaluate MRR

across all columns where the final submitted query is within the candidates. Results in Table

6.5 indicate that training on all columns is inferior to the same model trained on last column.

And it is even worse than the MPC baseline. Interestingly, the same model trained on only

the last 2 columns achieves slightly better result than only using last column, suggesting

that adding more (useful) columns might be beneficial. We hypothesize that columns that

are likely to be examined are useful for training.

Table 6.5: A Pilot Experiment on Relevance Training

Method MRR@All
RankSVM - trained by all columns 0.436
RankSVM - trained by last column 0.514
RankSVM - trained by last 2 columns 0.518
MPC 0.447

6.3 Modeling Clicks in Query Auto-Completion

Based on the results of the above experiments, we demonstrate that the skipping behavior

and vertical click position bias are prevalent and important for improving QAC quality. How

to model these behaviors is a new research problem. Given the similarity between QAC and

document retrieval, first we sought to apply the existing click models to this problem. But
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we found most of these click models are not appropriate for the following reasons: (1) most

existing click models only model a single query at a time. But in QAC, a session contains a

series of prefixes that are correlated. (2) traditional click models are unable to model unseen

query-document pairs. However in our QAC log we observe that a large portion (67.4% in

PC and 60.5% in iPhone 5) of the prefix-query pairs are unseen. Therefore we propose a

new click model for QAC, with emphasis on modeling these two types of user behaviors. We

first formally define the assumptions on these two types of bias; then we will describe our

click model in detail. After that we will discuss the parameter estimation via Expectation

Maximization.

6.3.1 QAC Click Bias Assumptions

Here we define two basic assumptions for the QAC problem. One is to address the click bias

due to the skipping behavior, and the other is to address the click bias on vertical positions.

• SKIPPING BIAS ASSUMPTION: A query will not receive a click if the user

didn’t stop and examine the suggested list of queries, regardless of the relevance of the

query.

This assumption explains why there are no clicks to intermediate prefix even though a

relevant query is ranked at the top of the list.

• VERTICAL POSITION BIAS ASSUMPTION: A query on higher rank tends

to attract more clicks regardless of its relevance to the prefix.

Similar to the click modeling for document retrieval, this assumption explains why top

ranked queries receive more clicks even though they are not necessarily relevant to the given

prefix.
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Table 6.6: Features of the H, D and R Models

Category Feature Feature Group Description
CurrPosition Prefix Ratio of length between current prefix and the final prefix
IsWordBoundary Prefix Binary indicator, whether the end of current prefix is at word boundary

H Model NbSuggQueries Query Number of suggested queries
ContentSim Query Content similarity of suggested queries
TypingSpeed User Typing speed at this keystroke
QueryIntent User Whether the final submitted query is a navigational query

D Model Is@Depth d Query Binary indicators, whether the query candidate is at depth d, d = {1, ..., 10}
MPC Query Candidate frequency computed based on past popularity
TimeSense Query Candidate popularity measure in one day
GeoSense Query Candidate popularity measure at the city where the query is issued
QryHistFreq User The number of times the candidate is issued as query by the user in the past

R Model SameGenderFreq Demographics Candidate frequency over queries submitted by users of the same gender
SameGenderLikelihood Demographics SameGenderFreq normalized by MPC
SameAgeGroupFreq Demographics Candidate frequency over queries submitted by users of same age group
SameAgeGroupLikelihood Demographics SameAgeGroupFreq normalized by MPC

6.3.2 Model Formulation

Based on the assumptions defined above, in this section we propose a Two-Dimensional Click

Model (TDCM) to explain the observed clicks. This click model is consisted of a horizontal

model (H Model) that explains the skipping behavior, a vertical model (D Model) that de-

picts the vertical examination behavior, and a relevance model (R Model) that measures the

intrinsic relevance between the prefix and a suggested query. Figure 6.2 is a flowchart of user

interactions under the TDCM model. The user interacts with the QAC engine horizontally

and vertically according to the H, D and R models. Because in every QAC session, there

is no click before the user leaves the process, we employ the Cascade Model assumption [26]

that specifies the relations between the H, D and R models. We list the notations of TDCM

in Table 6.7. According to the TDCM, the generative process of observing a click in a QAC

session is described as follows (see Figure 6.2 also):

1. For a QAC session, let’s assume the user has entered several characters and she is

at prefix i, then she will decide whether to stop and look down to examine the list

of suggested queries at ith column. This whether-to-look-down event is governed by

a hidden random variable Hi, Hi = 1 means stop and examine, Hi = 0 means skip

and continue to type. The task of the horizontal model (H Model) is to estimate the

distribution of H: P (H).

2. Once the user decides to examine vertically, following the cascade model assumption
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she will examine one query at a time from top to bottom. The depth of the examination

is determined by another hidden random variable Di. Di = j means the user examines

the query at position j at ith column. While being equivalent to introducing a set

of binary variables at each depth, this formulation is more convenient in parameter

estimation. The task of the vertical model (D Model) is to estimate the distribution

of D: P (D).

3. If a query candidate is examined and it is relevant, according to the cascade model

assumption, the user will click it. The probability a query being relevant to the given

prefix is determined by the relevance model: P (Cij = 1|Hi = 1, Di ≥ j). The task of

the relevance model (R Model) is to estimate the distribution of P (Cij = 1|Hi, Di).

4. If the depth Di is reached and no relevant queries are found, she will go back to Step

1 and continue to type another character.

5. Once a click event happens, she will end the auto-completion session, which implies

there will never be more than one click observed in a session.

Table 6.7: Major Notations

Symbol Description

pi Prefix at ith column.
qi,j Query at position (i, j).
n Number of columns in a QAC session.
Hi Whether the user stops to examine the column i.
H A vector of variables: H = {H1...,Hn}.
Di Depth of examination at column i.
D D = {D1..., Dn}.
Ci,j Whether the query at (i, j) is clicked.
Ci A vector of variables: Ci = {Ci,1..., Ci,Mi}.
C The click matrix: C = {C1, ..., Cn}.
Mi # queries in the suggestion list at column i.
wH , wD, wR Feature weights of the H, D and R model.
xH , xD, xR Features of the H, D and R model.
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Figure 6.2: TDCM Flowchart

6.3.3 Click and Conditional Probabilities

Based on the above generative process, the probability of observing a click C in a session

can be formulated as:

P (C) =
∑
H,D

P (C,H,D) (6.1)

In TDCM, H = {H1..., Hn}, D = {D1..., Dn} are hidden variables. C = {C1, ..., Cn} is

the click observation matrix in which only one click is observed: Cn,J = 1, n is the number

of columns in the QAC session. Figure 6.3 depicts the relation between the hidden and

observed variables. According to the Cascade Model assumption and the real observations

of a QAC session, there is always only one click observed, which implies other columns don’t

receive any click:

Cn,J = 1⇔ {C1 = 0, ...Cn−1 = 0, Cn,J = 1, Cn,j = 0, j ̸= J},
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Figure 6.3: TDCM Model Structure

So:

P (Cn,J = 1) = P (C1 = 0, ...Cn−1 = 0, Cn,J = 1, Cn,j = 0, j ̸= J). (6.2)

Our model also follows a set of conditional probabilities:

P (Cij = 1|Hi = 0) = 0 (6.3)

P (Cij = 1|Hi = 1, Di < j) = 0 (6.4)

P (Cij = 0|Hi, Di) = 1− P (Cij = 1|Hi, Di) (6.5)

P (Di > d|qd : Cn,d = 1) = 0. (6.6)

The TDCM assumption 1 (SKIPPING BIAS ASSUMPTION) is modeled by 6.3 and 6.6.

The assumption 2 (VERTICAL POSITION BIAS ASSUMPTION) is modeled by 6.4 and

6.6. Equation 6.6 states that if a relevant query is ranked in depth d, the examination depth

at ith column must not exceed d.
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6.3.4 The Form of Distributions

Now we introduce the form of distributions for H,D and R model. Different from most of

the click models and similar to [92], we define the distributions via logistic functions:

P (Hi = 1) = σ(wH
T · xH), (6.7)

where σ(z) is a logistic function: σ(z) = 1
1+e−z .

So

P (Hi = 0) = 1− σ(wH
T · xH), (6.8)

Similarly, for Di, we have:

P (Di = j) =
ewD

T ·xDj∑Mi

l=1 e
wD

T ·xDl

, (6.9)

where j ∈ {1, ..,Mi}, Mi is the number of queries in the suggestion list at ith column.

And for the R model, we have:

P (Cij = 1|Hi = 1, Di ≥ j, θ) = σ(wR
T · xRi,j), (6.10)

P (Cij = 0|Hi, Di) = 1− P (Cij = 1|Hi, Di) (6.11)

In the above formulations, xH , xD, xR are features characterizing the H,D,R distribu-

tions. And θ = {wH , wD, wR} are the corresponding weights for the features. As stated in

[92], using this form of distribution has the advantage of incorporating more useful signals

from diverse sources. And it also make it feasible for predicting the unseen prefix-query

pairs.
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6.3.5 Features

Table 6.6 summarizes the features used in the H,D and R models. Specifically, for the H

model, we adopt these features for the following reasons. TypingSpeed : an expert user is less

likely to use QAC than an inexperienced user. CurrPosition: a user tend to examine the

queries at the end of typing. IsWordBoundary : a user is more likely to lookup queries at

word boundaries. NbSuggQueries : it’s more likely to be examined if the number of suggested

queries is small. ContentSim: a user may be more likely to examine the list if all queries

are coherent in content. QueryIntent : a user tends to skip the list more when searching for

navigational queries.

The feature for D model are the positions a query candidate is ranked. The purpose of

using this feature is that we want to use the D model to measure the pure vertical position

bias. Note that the form of D model allows us to incorporate more complex features in the

future.

For the R model, we have designed 8 features in total, reflecting diverse aspects of

the relevance model. It includes the query popularity counts, which is widely used in the

current search engines, the long term query history query counts, geo-location and time

related query frequencies, and 4 other demographics features. Similar features are reported

in [79], therefore comparing our model to that in [79] is meaningful.

6.3.6 Model Estimation via E-M Algorithm

In this section we discuss the estimation of model parameters θ = {wH , wD, wR}. A straight-

forward way is to take the log of Equation 6.1 and estimate θ by Maximum Likelihood.

However since Equation 6.1 involves the summation of the H and D vectors, the estimation

is quite complicated. Based on the form of distributions and the choice of features, we make

some independent assumption of variables at different columns in order to simplify the model

estimation:
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P (Hi|Hj, i ̸= j, θ) = P (Hi|θ) (6.12)

P (Di|Dj, i ̸= j, θ) = P (Di|θ) (6.13)

P (Ci|Hi, Di, Hj, Dj, i ̸= j, θ) = P (Ci|Hi, Di, θ) (6.14)

This assumption breaks the interdependency between columns. And the likelihood of

different columns are still related because they share common parameters. Under these

assumptions, the log likelihood of observing a click given the model parameters θ is:

logP (C|θ) =
n∑

i=1

log
∑
Hi,Di

P (Ci, Hi, Di|θ) (6.15)

Model parameters θ = {wH , wD, wR} can be estimated by maximizing Equation 6.15.

However, direct estimation of the model parameters θ is still hard because of the summation

inside the logarithm. Instead, we sought to maximize the lower bound of Equation 6.15:

logP (C|θ) =
n∑

i=1

log
∑
Hi,Di

P (Ci, Hi, Di|θ)

≥
n∑

i=1

∑
Hi,Di

P (Hi, Di|Ci, θ
old) · logP (Ci, Hi, Di|θ)

= Q(θ, θold) (6.16)

After fully formulating the Q function, model parameters can be updated iteratively by

the E-M algorithm. In the E step, we aim at calculating the posterior distribution:

P (Hi, Di|Ci, θ
old)

=
P (Ci|Hi = l, Di = j, θold) · P (Hi = l, Di = j|θold)∑1

l=0

∑Mi

j=1 P (Ci|Hi = l, Di = j, θold) · P (Hi = l, Di = j|θold)
(6.17)
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And in the M step, we maximize the expectation of the complete data probability in

Equation 6.16 by gradient descent. Since the forms of distributions in H,D,R are all convex,

the E-M algorithm is guaranteed to converge. And because each QAC session is independent,

the above E-M algorithm for parameter estimation can be easily expanded to the whole set

of sessions. Here we skip the detailed formulations due to the space limitation.

6.4 Experiments and Results

In this section, we conduct a series of experiments to validate our major claims on the

TDCM model. Firstly, due to the difference between document retrieval and QAC, we

claim that most of the existing click models are not effective in modeling the QAC. We

will compare our model with the state-of-the-art click models on the relevance modeling.

Besides testing on PC and iPhone 5 datasets, we also experiment on a random bucket

dataset which provides an unbiased evaluation of the relevance ranking. Secondly, as we

have mentioned, for training a QAC relevance model, previous studies either use the last

column as training data which might not have enough training cases, or use all columns as

training examples [79] which might introduce too much noise. We will demonstrate that

our model can be leveraged to improve existing learning-based methods by providing more

appropriate training examples. Further, we will investigate the vertical position bias via our

model on a side-by-side comparison of such bias on PC and iPhone 5 platforms. Finally we

discuss some interesting insights about the user behavior on both platforms.

6.4.1 Datasets and Metrics

We use the same datasets for evaluation as in user behavior analysis (Section 6.2.2). The

whole dataset is divided evenly into a training set and a test set. See Table 6.8 for detailed

statistics.

As reported in previous work [10, 79], manual labeling of relevance for QAC is very
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Table 6.8: Training and Test Sets

Platform Dataset # Sessions Ave Prefixes

All 125,392 11.80
PC Training 62,534 11.77

Test 62,858 11.83

iPhone 5 All 31,227 9.43
Training 15,394 9.46
Test 15,833 9.40

Random Bucket Test 21,154 16.15

difficult since it’s hard to find consensus between individuals on the preferred queries given

the same prefix. Instead a common practice of evaluating the QAC performance is to measure

the prediction accuracy of the users’ clicked queries [10]. In this work we adopt this evaluation

strategy. In addition, because the user clicks are a biased estimate of relevance, we also set

up a random bucket to collect clicks from a small portion of traffic during the same period.

In this random bucket, for every prefix top-10 ranked queries are randomly shuffled and

displayed to the users. By doing so, it reduces the vertical position bias and the collected

user clicks can be treated as the unbiased estimation of relevance of queries [53].

For evaluation metrics, we employ the Mean Reciprocal Rank (MRR) as the main mea-

surement of relevance. It is the standard practice in measuring QAC performance [10, 79].

Specifically, for a QAC session, the list of candidates are generated from a commercial search

engine and recorded in our dataset. Columns (suggested queries associated with a prefix) in

which the final submitted query does not appear among the top-10 candidates are removed

from the analysis. Then we compute the average MRR across all remaining columns. In

addition, we also report the MRR of the last column since this is the column where real user

click happens. Paired t-test is adopted for validating the statistical significance with p-value

cutoff 0.05.

For baselines, MostPopularCompletion (MPC) is used as a baseline. Despite its sim-

plicity, MPC has been reported as a very competitive baseline and widely used as a main

feature in the QAC engines [10, 79]. We also compare our approach to three state-of-the-art
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click models, including User Browsing Model (UBM)[31], Dynamic Bayesian Network model

(DBN) [22] and Bayesian Sequential State model (BSS) [92]. The UBM and DBN rely on

the counting of prefix-query pairs thus they are unable to predict unseen prefix-query pairs.

On the other hand BSS is a content-aware method and it can predict unseen prefix-query

pairs. We adopt the source code of these approaches from [92]. Since our model makes use

of all columns of data, to make a fair comparison, we train these click models on the last

column as well as all columns. All baselines and their description are listed in Table 6.9.

Table 6.9: Baselines for Comparison

Model Description Training Data

MPC Most Popular Completion no training is needed
UBM-last User Browsing Model last column
UBM-all User Browsing Model all columns
DBN-last Dynamic Bayesian Network model last column
DBN-all Dynamic Bayesian Network model all columns
BSS-last Bayesian Sequential State model last column
BSS-all Bayesian Sequential State model all columns
TDCM Our model all columns

6.4.2 Evaluating the Relevance Model

Normal Bucket test. We first investigate whether our click model has advantage over

existing click models on improving the QAC relevance ranking. For this purpose, we compare

our model to the MPC baseline and other click models on normal buckets from both PC and

iPhone 5 platforms. The results are summarized in Table 6.10. Firstly, counting-based click

models (UBM and DBN) are generally not effective for modeling the relevance in QAC. For

example, the UBM-last and DBN-last methods under-perform the MPC baseline on both PC

and iPhone 5 datasets. Although UBM-all DBN-all perform a little better than UBM-last

and DBN-last, training on all columns of data still doesn’t give an edge to these methods

over MPC baseline. This is not surprising because UBM and DBN rely on counting the

prefix-query pairs. However, in the dynamic environment of QAC, the percentage of unseen
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prefix-query pairs is large (67.4% in PC and 60.5% in iPhone 5 as observed in our datasets),

which is very different from that in document retrieval. Presumably, training on all columns

will add more seen prefix-query pairs, which leads to the improved MRR. However, since

these models are not designed to model the whole QAC process, they are unable to capture

useful signals in all columns and thus unable to improve the performance much.

In addition, the BSS model performs better then UBM and DBN. For example, when

trained on last column, it achieves 0.515 on MRR@All and 0.543 on MRR@Last on the

PC dataset, indicating its effectiveness of capturing relevance by content-based modeling

of relevance. One advantage of content-based modeling is that it’s able to interpolate the

relevance model to unseen prefix-query pairs, which is critical in QAC. But training on

all columns doesn’t boost its performance, suggesting the importance of modeling the user

behavior in the whole QAC process so as to filter out the noise. We also note that BSS is

not consistent on these two platforms: for example, it doesn’t work well in the iPhone 5

dataset (0.510 on MRR@All on 0.537 on MRR@Last by BSS-last).

On the other hand, our TDCM model achieves significant better results on both plat-

forms. For example it achieves 0.525 on MRR@All and 0.573 on MRR@Last on the PC

dataset. And on iPhone 5 dataset, it gets 0.580 on MRR@All and 0.668 on MRR@Last. All

of these results are statistically significant better than MPC. Compared to UBM and DBN,

our model overcomes their limitation by adopting the content-aware relevance model. And

compared to BSS, our model takes advantage of all columns of data by properly modeling

the user behavior in the whole QAC process, leading to much better and stable results on

both platforms.

Random Bucket test. Using normal traffic to evaluate the relevance model might be

biased because a model could be optimized by chasing the clicks rather than the intrinsic

relevance/utility. To make an unbiased evaluation we also test all the methods on a random

bucket dataset containing 21,154 QAC sessions. We summarize the results in Table 6.11.

Overall the MPC baseline performs worse than that in normal bucket. It’s expected because
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Table 6.10: Click Models Comparison on Normal Bucket

PC PC iPhone 5 iPhone 5
MRR@All MRR@Last MRR@All MRR@Last

MPC 0.447 0.534 0.542 0.646
UBM-last 0.416 0.449 0.409 0.432
UBM-all 0.445 0.452 0.431 0.432
DBN-last 0.418 0.437 0.405 0.427
DBN-all 0.454 0.442 0.435 0.423
BSS-last 0.515‡ 0.543 0.510 0.537
BSS-all 0.495 0.523 0.480 0.479
TDCM 0.525‡ 0.573‡ 0.580‡ 0.668‡

Note: ‡ indicates p-value¡0.05 compared to MPC

as the position bias is reduced, users have more chance to click on queries that are not the

most popular. Similarly, UBM and DBN models fail to outperform MPC baseline and the

BSS model achieves reasonable results compared to MPC. Again, our model achieves the

best results on both MRR@All (0.493) and MRR@Last (0.508) metrics, which is statistical

significant compared to MPC. These results are consistent with that observed in normal

traffic, confirming the superiority of our TDCM model on relevance modeling.

Table 6.11: Click Models Comparison on Random Bucket

MRR@All MRR@Last
MPC 0.429 0.485
UBM-last 0.381 0.402
UBM-all 0.397 0.393
DBN-last 0.373 0.391
DBN-all 0.388 0.391
BSS-last 0.471‡ 0.488
BSS-all 0.460 0.469
TDCM 0.493‡ 0.508‡

Note: ‡ indicates p-value¡0.05 compared to MPC
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6.4.3 Relevance Model Performance by Query Length

In order to investigate whether our model is robust in all sectors of queries, we break the

relevance results into 5 groups according to their clicked query length. MPC results are also

shown for comparison. Results in Figure 6.4 reveal that on both PC and iPhone 5 datasets,

our model’s performance decreases gradually as the submitted query length increases. There

is no abrupt drop of performance in a sector of queries, indicating that our model is robust

to queries with different length. In addition, the MPC baseline has similar trend as our

model. This common trend suggests the importance of the query popularity count because

the shorter queries generally have higher popularity counts. In the random bucket, the

MRR of our model drops when the query length increase, and starts to increase again when

the query length becomes larger. This trend suggests that in random bucket, MPC feature

becomes less important than in normal bucket; thus longer queries will still have good MRR

even though their MPC scores are smaller.

Figure 6.4: MRR Evaluation by Query Length. All sessions are aligned to groups based on
the submitted query length. Performance is measured by MRR@All

6.4.4 Validating the H Model: Automatic Labeling by TDCM

Another advantage of our model over existing click models is that we can utilize the learned

user behavior in QAC to enhance other learning-based methods. In the pilot experiment in

Section 6.2.2, we have shown that even though RankSVM is a state-of-the-art ranker, when
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trained by all columns, its performance doesn’t even beat MPC (-2.46% on MRR@All). The

reason is probably because although we are sure that a user has viewed and examined the

last column, it’s uncertain that she has viewed other columns; so the information in previous

columns is not reliable. The noise in all columns may outweigh the useful information they

bring about. So by simply training on all columns it is generally not effective. In this

experiment, we test whether the user examination behavior inferred by our model can be

used to improve other methods. In order to achieve this, we first run TDCM on the training

dataset, obtain all P (H) probabilities for each session. After that, we keep the columns with

high P (H = 1) (¿0.7). Finally we use these columns to train the corresponding models again.

The labeling criteria is simple: if the candidate equals the final submitted query, we label

it as positive, and other candidates are all labeled as negative. Results of this experiment

are shown in Figure 6.5. It is indicated that using this simple automatic labeling strategy,

RankSVM achieves better MRR@All across three datasets. For example, on PC dataset

RankSVM achieves 0.523 on MRR@All, compared to 0.514 by training on last column only.

Similar improvements are observed in iPhone 5 and Random Bucket. These results suggest

that the user behavior information inferred by our model can be applied to other models.

Particularly, the information whether a query has been examined is very useful for improving

other models’ performance.

6.4.5 Validating the D Model

Here we seek to evaluate the accuracy of the D model, that is the vertical examination

distribution. Intuitively the probability of examining a position should be correlated to

the clickthrough rate. In our feature instantiation, all features for the D model are vertical

positions. So it is possible to draw the distribution of D according to the feature weights wD,

which corresponds to the probability of examining a particular position. In this experiment

we run the TDCM model on both PC and iPhone 5 dataset, and draw the distribution along

with the real click through rate (CTR) in Figure 6.6. From Figure 6.6 we see that the shape
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Figure 6.5: Model Training on Selected Columns. Viewed columns: columns whose P (H =
1) > 0.7. Performance is measured by MRR@All

of the D model distribution is similar to the real CTR. Both distributions are very steep,

attracting more probabilities in top positions. Our estimation of the D model is a little

flatter than the real CTR. For example, on PC platform, at the top 1 position our model

estimates the examination probability to be 0.397, while the real CTR is 0.500. And in

the 2nd position we predict more probability (0.314) than the real CTR (0.254). Compared

to PC platform, in iPhone 5 platform both the real CTR and our estimated examination

distribution are flatter. This suggests an interesting conclusion that in mobile devices people

tend to examine deeper down the suggestion list.

Figure 6.6: The D distribution VS real CTR. Positions
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6.4.6 Understanding User Behavior via Feature Weights

An additional benefit of our proposed model is that the learned feature weights reveal the

influence of different factors on users’ behavior in the QAC process, which is not available in

most of the existing click models. To explore this, we list a subset of learned weights in Table

6.12. Although the absolute values of these weights don’t reflect exactly the importance of

features because scales of the features are different, we can still tell their relative importance

by comparing them on PC and iPhone 5 side by side.

Firstly, in the H model related features, TypingSpeed is the most important feature both

on PC and iPhone 5. TypingSpeed is reversely proportional to P (H) = 1. Interestingly, the

absolute weight of TypingSpeed is larger in PC than in iPhone 5, suggesting that people

tend to skip more when using QAC in PC because they type faster in PC. Another important

feature is IsWordBoundary. Intuitively it makes sense since people tend to stop and look

for query completions when they are typing at word boundaries. The QueryIntent feature

also plays a role, indicating that people tend to skip more when looking for navigational

queries; while they need more help from the QAC engine when they are seeking information

and uncertain how to formulate the queries.

Secondly, the features of the D model is examination probabilities. As mentioned in the

previous experiment, these probabilities are higher at top positions. In PC, the estimated

examination probabilities concentrate more on the 1st position. On iPhone 5 the 2nd and

3rd positions receive more examination probabilities than PC. This suggests that in mobile

devices people will look deeper down the suggestion list.

Thirdly, for the R model, people pay more attention on long query history in iPhone 5

than in PC. This might be because typing is harder in mobile devices; so people rely on

the QAC engine to store and retrieve their past queries. Another interesting finding is that

geo-location related signals and time-sense signals are both important, revealing that people

prefer location-relevant and fresh queries.
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Table 6.12: Feature Weights Learned by TDCM

wH TypingSpeed IsWordBoundary CurrPosition QueryIntent

-0.86 0.55 0.32 -0.20
wD Position@1 Position@2 Position@3

PC 0.397 0.314 0.152
wR MPC QryHistFreq GeoSense TimeSense

1.790 0.973 0.962 1.115

wH TypingSpeed IsWordBoundary CurrPosition QueryIntent

-0.57 0.50 0.20 -0.28
wD Position@1 Position@2 Position@3

iPhone 5 0.3782 0.334 0.171
wR MPC QryHistFreq GeoSense TimeSense

4.139 3.918 0.947 1.595

6.5 Conclusion and Future Work

The QAC problem is under-explored because of the lack of suitable query logs. In this work

we have collected a large set of QAC sessions with fine-grain user interaction information,

which enables us to analyze and model the user behavior in QAC. Based on two key observa-

tions, namely the horizontal skipping bias and vertical examination bias, we have proposed

a novel Two-Dimensional Click Model for modeling the QAC process. Extensive experi-

ments on our datasets demonstrated that our TDCM model can accurately explain the user

behavior in QAC. The resulting relevance model significantly outperforms all existing click

models. In addition, user behavior information learned by our model can be incorporated

into other learning-based methods to further improve their performance. Using our model,

we also discover some interesting user behavior on PC and mobile devices.

As the first click model for QAC, our TDCM model could be extended in several ways

in the future. For example, the independent assumption between different columns can be

relaxed to capture multi-column interdependency. In addition, more complex models can

replace the D model to better explain the vertical position bias.
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Chapter 7

Summary and Future Directions

Understanding a web search query is a significant task toward further improving the qual-

ity of current web search engines. However accurate query understanding is a non-trivial

task. This thesis is a systematic study of multi-level query understanding and represen-

tation. I proposed that the grand task of query understanding can be broken down to

multiple, logically dependent, levels of query understanding: (1) Query Alteration; (2) La-

tent Query Linguistic Signal Discovery; (3) Semantic Annotation of Queries; (4) Dynamic

Understanding and Representation of Queries. The logical dependency of these levels of

query understanding is evident. For example, query spelling correction, as an important for-

m of query alteration, affects the quality of all other levels of query understanding. And the

latent query linguistic signal discovery, such as detecting the query segmentation structure,

is a prerequisite of accurate query semantic annotation. In this thesis I addressed the most

important research questions in each level of query understanding and representation. The

contributions of this thesis are summarized as follows:

Query Spelling Correction by a Generalized Hidden Markov Model. Query

spelling correction is a crucial type of query alteration in modern search engines. Existing

methods in the literature for search query spelling correction have two major drawbacks.

First, they are unable to handle certain important types of spelling errors, such as concate-

nation and splitting. Second, they cannot efficiently evaluate all the candidate corrections

due to the complex form of their scoring functions, and a heuristic filtering step must be

applied to select a working set of top-K most promising candidates for final scoring, leading

to non-optimal predictions. We addressed both limitations and proposed a novel generalized
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Hidden Markov Model with discriminative training that can not only handle all the ma-

jor types of spelling errors, including splitting and concatenation errors, in a single unified

framework, but also efficiently evaluate all the candidate corrections to ensure the finding

of a globally optimal correction. Experiments on two query spelling correction datasets

demonstrate that the proposed generalized HMM is effective for correcting multiple types of

spelling errors. The results also show that it significantly outperforms the current approach

for generating top-K candidate corrections, making it a better first-stage filter to enable any

other complex spelling correction algorithm to have access to a better working set of can-

didate corrections as well as to cover splitting and concatenation errors, which no existing

method in academic literature can correct.

Query Segmentation using Clicktrhough. In Latent Query Linguistic Signal Dis-

covery, we focus on the problem of Query Segmentation. Existing segmentation models

either use labeled data to predict the segmentation boundaries, for which the training data

is expensive to collect, or employ unsupervised strategy only based on a large text corpus,

which might be inaccurate because of the lack of relevant information. In this work, I pro-

posed a probabilistic model to exploit click-through data for query segmentation. I further

proposed an integrated language model based on the standard bigram language model to

utilize the probabilistic structure obtained through query segmentation. The resulting lan-

guage model with query segmentation outperforms BM25, standard unigram and bigram

language models.

Entity Attribute Synonyms Mining. Discovering such alternative surface forms of

entities and attributes is crucial for improving query semantic annotation. In this work

we proposed a novel compact clustering framework to jointly identify synonyms for a set

of entities. The framework can integrate signals from multiple information sources into a

similarity function between attribute values. And the weights of these signals are optimized

in an unsupervised manner.

Modeling Query Auto-completion by a Two-dimensional Click Model. Query
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auto-completion is a typical type of dynamic query understanding in which the users want

to be assisted by giving dynamically changing short prefixes in real time. In this work, for

the first time we collected a high-resolution QAC query log that records every keystroke in a

QAC session. Based on this data, we discovered two user behaviors, namely the horizontal

skipping bias and vertical position bias which are crucial for relevance prediction in QAC.

Particularly the horizontal skipping bias was introduced for the first time; and it’s unique to

the query auto-completion process. In order to better explain them, we proposed a novel two-

dimensional click model for modeling the QAC process with emphasis on these behaviors.

Extensive experiments show that the resulting relevance model significantly improves the

relevance ranking in QAC than most of the existing click models.

Query understanding is a broad research area under active investigation, and the following

would be among the most interesting directions for further research:

• Understanding and Representation of Complex Queries. In some scenarios

query understanding is difficult when the user query is complex in meaning. One

scenario is the task query which is usually consisted of multiple steps in a logical or

timed order. For instance, a user may issue a query “learning about depression” in

order to finish a task of learning the disease of depression. In this case, information

about several aspects of the disease such as causes, symptom, treatment and recent

research advancement should be presented as results ordered by logical order. Likewise,

in another example, a user query is one of the series queries she issued in a long-term

task. In this case, knowing the whole spectrum of the user’s inaction of the search

engine in this long-term task can potentially improve the user’s satisfaction of the

returned results.

• Query Understanding in Mobile Search. Another emerging and interesting direc-

tion is understanding and representing user queries in mobile search. Mobile devices

are gradually surpassing PCs and becoming the major platform for information search

113



and browsing. The current search engines in mobile devices are mainly adopting the

successful models from that in PCs. However, because of the distinction of mobile

devices and PCs – for example the small screen size, the mobility, and the ecosystem

change – the user intents might be very different between mobile devices and PCs.

Thus, it is very interesting to investigate the query understanding the representation

in mobile search. For example, how can we dynamically represent and recommend

queries in ever changing locations and time? And how the limited screen size affects

the query spelling behaviors of mobile users? etc..
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[40] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir tech-
niques. ACM Trans. Inf. Syst., 20:422–446, October 2002.

[41] Shengyue Ji, Guoliang Li, Chen Li, and Jianhua Feng. Efficient interactive fuzzy
keyword search. In Proceedings of the 18th international conference on World wide
web, pages 371–380. ACM, 2009.

[42] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 133–142. ACM, 2002.

[43] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. Generating query
substitutions. In Proceedings of the 15th international conference on World Wide
Web, WWW ’06, pages 387–396, New York, NY, USA, 2006.

[44] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. Generating query
substitutions. In Proceedings of the 15th international conference on World Wide
Web, pages 387–396. ACM, 2006.

118



[45] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. Generating query
substitutions. In Proceedings of the 15th international conference on World Wide
Web, WWW ’06, pages 387–396, New York, NY, USA, 2006. ACM.

[46] Biing Hwang Juang and Laurence R Rabiner. Hidden markov models for speech recog-
nition. Technometrics, 33(3):251–272, 1991.

[47] T. Mikolajewski K. M. Risvik and P. Boros. Query segmentation for web search. In
Proceeding of the 12th international conference on World Wide Web, WWW ’03, 2003.

[48] L. Kaufman and P. Rousseeuw. Clustering by Means of Medoids. Reports of the
Faculty of Mathematics and Informatics. Delft University of Technology. Fac., Univ.,
1987.

[49] L. Kaufman and P.J. Rousseeuw. Finding groups in data: an introduction to cluster
analysis. Wiley series in probability and mathematical statistics: Applied probability
and statistics. Wiley, 1990.

[50] K. Kukich. Techniques for automatically correcting words in text. ACM computing
surveys, 24(4), 1992.

[51] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of the
18th International Conference on Machine Learning, pages 282–289, San Fransisco,
2001. Morgan Kaufmann.

[52] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.
1965.

[53] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased offline evaluation
of contextual-bandit-based news article recommendation algorithms. In Proceedings
of the fourth ACM international conference on Web search and data mining, pages
297–306. ACM, 2011.

[54] Yanen Li, Anlei Dong, Hongning Wang, Hongbo Deng, ChengXiang Zhai, and Y-
i Chang. A two-dimensional click model for query auto-completion. In Proceedings
of the 37th international ACM SIGIR conference on Research and development in
information retrieval. ACM, 2014.

[55] Yanen Li, Huizhong Duan, and ChengXiang Zhai. Cloudspeller: query spelling correc-
tion by using a unified hidden markov model with web-scale resources. In Proceedings
of the 21st international conference companion on World Wide Web, pages 561–562.
ACM, 2012.

[56] Yanen Li, Huizhong Duan, and ChengXiang Zhai. A generalized hidden markov model
with discriminative training for query spelling correction. In Proceedings of the 35th
international ACM SIGIR conference on Research and development in information
retrieval, pages 611–620. ACM, 2012.

119



[57] Yanen Li, Bo-Jun Paul Hsu, ChengXiang Zhai, and Kuansan Wang. Unsupervised
query segmentation using clickthrough for information retrieval. In Proceedings of the
34th international ACM SIGIR conference on Research and development in Informa-
tion Retrieval, SIGIR ’11, pages 285–294, New York, NY, USA, 2011. ACM.

[58] Yanen Li, Bo-June Paul Hsu, and ChengXiang Zhai. Unsupervised identification of
synonymous query intent templates for attribute intents. In Proceedings of the 22nd
ACM international conference on Conference on information & knowledge manage-
ment, pages 2029–2038. ACM, 2013.

[59] Yanen Li, Bo-June Paul Hsu, ChengXiang Zhai, and Kuansan Wang. Mining entity
attribute synonyms via compact clustering. In Proceedings of the 22nd ACM inter-
national conference on Conference on information & knowledge management, pages
867–872. ACM, 2013.

[60] Dekang Lin. Automatic retrieval and clustering of similar words. In Proceedings of
the 36th Annual Meeting of the Association for Computational Linguistics and 17th
International Conference on Computational Linguistics - Volume 2, ACL ’98, pages
768–774, Stroudsburg, PA, USA, 1998. Association for Computational Linguistics.

[61] Dekang Lin, Shaojun Zhao, Lijuan Qin, and Ming Zhou. Identifying synonyms a-
mong distributionally similar words. In Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI-2003), pages 1492–1493, 2003.

[62] Chao Liu, Fan Guo, and Christos Faloutsos. Bayesian browsing model: Exact inference
of document relevance from petabyte-scale data. ACM Trans. Knowl. Discov. Data,
4(4):19:1–19:26, October 2010.

[63] Gord Luec. A data-driven approach for correcting search quaries. In Spelling Alteration
for Web Search Workshop, July 2011.

[64] Scott Mcdonald and Michael Ramscar. Testing the distributional hypothesis: The
influence of context on judgements of semantic similarity. In In Proceedings of the
23rd Annual Conference of the Cognitive Science Society, pages 611–6, 2001.

[65] Donald Metzler and W. Bruce Croft. A markov random field model for term depen-
dencies. In Proceedings of the 28th annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’05, pages 472–479, New
York, NY, USA, 2005.

[66] Shachar Mirkin, Ido Dagan, and Maayan Geffet. Integrating pattern-based and dis-
tributional similarity methods for lexical entailment acquisition. In Proceedings of the
COLING/ACL on Main conference poster sessions, COLING-ACL ’06, pages 579–586,
Stroudsburg, PA, USA, 2006. Association for Computational Linguistics.

[67] G. Mishne and M. de Rijke. Boosting Web Retrieval through Query Operations. In In
Proc. 27th European Conference on Information Retrieval (ECIR ’05), pages 502–516,
2005.

120



[68] Mandar Mitra, Amit Singhal, and Chris Buckley. Improving automatic query ex-
pansion. In Proceedings of the 21st annual international ACM SIGIR conference on
Research and development in information retrieval, pages 206–214. ACM, 1998.

[69] Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput.
Surv., 33(1):31–88, March 2001.

[70] Patrick Pantel and Dekang Lin. Document clustering with committees. In In Proc. of
SIGIR02, pages 199–206. ACM Press, 2002.

[71] Fuchun Peng and Dale Schuurmans. Self-supervised chinese word segmentation. In
Proceedings of the 4th International Conference on Advances in Intelligent Data Anal-
ysis, IDA ’01, pages 238–247, London, UK, 2001. Springer-Verlag.

[72] Yonggang Qiu and Hans-Peter Frei. Concept based query expansion. In Proceedings
of the 16th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 160–169. ACM, 1993.

[73] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. In Proceedings of the IEEE, pages 257–286, 1989.

[74] Filip Radlinski and Thorsten Joachims. Query chains: learning to rank from implicit
feedback. In Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, pages 239–248. ACM, 2005.

[75] Matthew Richardson. Predicting clicks: Estimating the click-through rate for new ads.
In In Proceedings of the 16th International World Wide Web Conference (WWW-07,
pages 521–530. ACM Press, 2007.

[76] S. E. Robertson. The probability ranking principle in IR, pages 281–286. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[77] S. E. Robertson and S. Walker. Some simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In Proceedings of the 17th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval,
SIGIR ’94, pages 232–241, New York, NY, USA, 1994. Springer-Verlag New York, Inc.

[78] Mehran Sahami and Timothy D Heilman. A web-based kernel function for measuring
the similarity of short text snippets. In Proceedings of the 15th international conference
on World Wide Web, pages 377–386. ACM, 2006.

[79] Milad Shokouhi. Learning to personalize query auto-completion. In Proceedings of the
36th international ACM SIGIR conference on Research and development in informa-
tion retrieval, pages 103–112. ACM, 2013.

[80] Luo Si, Rong Jin, Steven C. H. Hoi, and Michael R. Lyu. Collaborative image retrieval
via regularized metric learning, 2006.

121



[81] Munirathnam Srikanth and Rohini Srihari. Biterm language models for document
retrieval. In Proceedings of the 25th annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’02, pages 425–426, New
York, NY, USA, 2002.

[82] Xu Sun, Jianfeng Gao, Daniel Micol, and Chris Quirk. Learning phrase-based spelling
error models from clickthrough data. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, ACL ’10, pages 266–274, Stroudsburg,
PA, USA, 2010. Association for Computational Linguistics.

[83] Bin Tan, Yuanhua Lv, and ChengXiang Zhai. Mining long-lasting exploratory user
interests from search history. In Proceedings of the 21st ACM international conference
on Information and knowledge management, pages 1477–1481. ACM, 2012.

[84] Bin Tan and Fuchun Peng. Unsupervised query segmentation using generative language
models and wikipedia. In Proceeding of the 17th international conference on World
Wide Web, WWW ’08, pages 347–356, New York, NY, USA, 2008. ACM.

[85] Bin Tan, Xuehua Shen, and ChengXiang Zhai. Mining long-term search history to
improve search accuracy. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 718–723. ACM, 2006.

[86] Tao Tao and ChengXiang Zhai. An exploration of proximity measures in information
retrieval. In SIGIR ’07, pages 295–302, New York, NY, USA, 2007.

[87] Michael Taylor, Hugo Zaragoza, Nick Craswell, Stephen Robertson, and Chris Burges.
Optimisation methods for ranking functions with multiple parameters. In Proceedings
of the 15th ACM international conference on Information and knowledge management,
CIKM ’06, pages 585–593, New York, NY, USA, 2006. ACM.

[88] Peter D. Turney. Mining the web for synonyms: Pmi-ir versus lsa on toefl. In Proceed-
ings of the 12th European Conference on Machine Learning, EMCL ’01, pages 491–502,
London, UK, UK, 2001. Springer-Verlag.

[89] Stephan Vogel, Hermann Ney, and Christoph Tillmann. Hmm-based word alignment
in statistical translation. In Proceedings of the 16th conference on Computational
linguistics-Volume 2, pages 836–841. Association for Computational Linguistics, 1996.

[90] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained k-means
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