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Abstract

Migration is one of the main forces shaping our society as we know it. Focusing on the

determinants of migration and its in�uence on local communities, this dissertation consists of

three chapters. Chapter 1 provides a brief introduction to the thesis, covering the motivation

for the research, the methodologies used, and policy implications.

Chapter 2 estimates the impact of education on two key outcomes: migration probability

and distance. Migration greatly a¤ects the regional economy, and hence, the out-migration

of highly educated workers has raised serious concerns for regional development. The OLS

estimator indicates a small but positive e¤ect of education on both outcomes, which is similar

to other studies. However, using compulsory schooling law changes as an instrumental variable,

the 2SLS estimator suggests that education increases migration distance but decreases the

probability to migrate. To guide the analysis, this paper expands the basic migration model

to include distance as another element in people�s decisions. The intuition is that by searching

broader distances, people could obtain higher expected incomes, but must also pay higher costs.

The overall e¤ect of education on migration is determined by the trade-o¤ between the cost

and bene�ts of migrating longer distances.

Chapter 3 estimates the in�uence of immigration on local housing prices. Housing price is

crucial to people�s well-being, as it not only a¤ects their living conditions, but also a¤ects home-

owners�investment values. Both the OLS and 2SLS results suggest that on average immigration

has a slight positive e¤ect on housing prices. However, if we use quantile regression, we observe

quite signi�cant but heterogeneous e¤ects of di¤erent neighborhoods. For census tracts with

expensive housing, immigrants increase housing prices. For census tracts with cheap housing,
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immigrants reduce housing prices. Lower housing prices make housing more a¤ordable for ten-

ants, but reduces homeowners�total wealth. We also look at possible sources of heterogeneity

from both the supply side and demand side. In poor neighborhoods, for example, immigrants

might drive natives to neighborhoods with better amenities while increasing housing supply in

the area, hence reducing housing prices.
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Chapter 1

Introduction

Migration is one of the main forces shaping today�s society. History has shown that migration is

not only important for the transfer of manpower, but also important for the subsequent transfer

of culture and skill, hence providing the knowledge and innovation needed for global growth.

In the past decade, for example, China experienced what was probably the most extensive

internal migration in human history. By 2011, more than 158 million rural workers left their

hometown to work in factories in east coast cities. They provide the essential workforce for

the development of the Chinese manufacturing industry and have changed the modern world

economy as a whole. Migration has also provoked intense debates about social justice, equality,

and political reform in China. Since migration has a great impact on both the regions of origin

and destination, this dissertation focuses particularly on the determinants of migration and its

in�uences on the destination society.

The second chapter uses the U.S. Compulsory Schooling Law changes as an instrumental

variable to study the impact of education on two migration outcomes: the likelihood to migrate

and how far to migrate within the U.S. in the early 20th century. My analysis indicates that
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education reduces people�s likelihood to migrate out of their birth states, but leads them to

reside in states that are farther away if they decide to move.

The reason why I am interested in this topic is that the out-migration of highly-skilled

workers has long been considered detrimental to regional development, as suggested in the

�Brain Drain�literature. If more schooling makes people more likely to move out of the region,

then the local education policy might have a limited e¤ect on regional development and equality.

To correctly evaluate the return to local educational investment and to determine its optimal

level, we need to understand how it would a¤ect individuals�migration behavior. Thus, in my

job market paper, I focus on estimating the impact of education on both migration likelihood

and distance.

Since the goal of the paper is to estimate the causal impact of education, a credible iden-

ti�cation strategy is key. It is well known that education is correlated with many personal

characteristics, which might also a¤ect migration. Such factors include people�s motivation,

health, social networks, and abilities among others. In this paper, I use Compulsory School-

ing Law changes in the early 20th century as an instrument to isolate the e¤ect of education

from those factors. In the past century, the U.S. experienced a series of changes in compulsory

schooling law legislation. These changes are exogenous to individual characteristics and had a

signi�cant e¤ect on people�s education outcomes. Hence, they are widely used as instruments

when studying the impact of education.

While OLS estimators suggest a positive correlation between education and migration, 2SLS

estimators indicate a di¤erent story. First, contrary to OLS, 2SLS estimator suggests that

one year of schooling decreases the probability of migrating out of one�s birth state by 6.6%.

This results challenge the conventional view that education would necessarily increase one�s
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likelihood to migrate, as suggested in the �Brain Drain� literature. Second, similar to OLS,

2SLS estimator implies that an additional year of schooling in�uences people to migrate to a

state that is 23.3% farther. To the best of my knowledge, this paper is the �rst to estimate this

causal relationship.

To correctly identify the coe¢ cients, I include a comprehensive set of controls in the econo-

metric model. Except personal characteristics such as one�s age, square of age and gender, I also

included two sets of �xed e¤ects. First, I include cohort �xed e¤ect to control for nation-wide

shocks that a¤ect all states similarly. Second, I include birth state �xed e¤ects to control for

state speci�c amenities such as the weather, the size and the location of the states. Adding

state-speci�c time variant variables are important to separate the e¤ect of improved education

from other state trends. Hence I also include linear birth state trends and state-level charac-

teristics, such as state average annual wage in the manufacturing industry and the percentage

of urban population.

To guide the empirical analysis, I include distance as another element in people�s migration

decisions. Distance is an important aspect of migration. It provides a useful proxy for migration

cost, and it determines the range of the spillover e¤ect (that is, the range within which local

education policies could a¤ect neighboring communities). My assumption is that before migra-

tion, people have to choose a distance within which they will search for jobs. This searching

distance determines their expected migration distance as well as their expected income. This is

because if people search in a wider radius, they will �nd more job opportunities lead to a higher

expected income. However, they must also pay higher costs. If schooling changes people�s

searching distance, people with di¤erent education levels would be facing di¤erent migration

costs. Hence, they might have di¤erent likelihoods to migrate. By adding a simple component,
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this model is able to generate both positive and negative selection of migrants with respect to

education in a more generalized way.

The main conclusion of this paper is that education does have a signi�cant impact on

migration outcomes. The conceptual framework suggests that the negative impact of education

on migration probability indicates a high marginal cost of migration distance. This paper

contributes to the literature in three ways. First, to design sustainable policies and reduce

regional inequality, we need to understand what factors cause people to move. If increased

education causes more talented people to stay, policies investing in education might have a

larger e¤ect on local development due to this overlooked channel. Second, understanding the

determinants of migration is important if we are to treat the selection bias it causes. Third,

when evaluating the overall e¤ect of education at the individual level, we should also consider

its in�uence on geographic mobility, which o¤ers people wider range of location and job choices,

allowing them to reside in suitable neighborhoods and to move to better opportunities after a

local economic downturn.

In the third chapter, I use instrumental quantile estimation to study how immigration a¤ects

housing prices. The housing market is crucial to people�s well-being. Expenses on housing not

only a¤ect living conditions, but also a¤ect homeowners�investment values. Only recently, did

researchers start to analyze how immigration a¤ects the price of this particular commodity

(Saiz (2003); Saiz & Wachter (2011)). However, most of the studies focus on the average

e¤ect, overlooking the fact that di¤erent neighborhoods could react to immigration di¤erently.

Immigrants may a¤ect neighborhoods in multiple ways. For example, they can increase cultural

diversity, which could drive up local housing demand or change local crime rates and local

average education levels. The local amenity externality can either bring housing price up or
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down depending on both the characteristics of the immigrants and local communities. Since

di¤erent neighborhoods attract di¤erent immigrants, the induced housing price changes should

not be the same. We thus analyze the neighborhood heterogeneous impacts of immigration on

housing price. Speci�cally, in this paper, we use quantile regression, introduced in Koenker and

Bassett (1978), to analyze how immigration a¤ects di¤erent types of neighborhoods di¤erently

when it comes to the housing market. In other words, we not only ask the question, "Does

immigration matter?", but also consider the question, "For whom does immigration matter?"

Though the average e¤ect of immigration is to increase housing prices, quantile regression

suggests quite heterogeneous e¤ects of di¤erent areas. The OLS estimation suggests that the

share of immigrants in the neighborhood has little e¤ect on the housing price, while the 2SLS

estimation suggests that a 1% increase in the share of immigrants increases housing prices by

0.2%. However, the quantile regression suggests that the impacts of immigrants are quite dif-

ferent for di¤erent neighborhoods, hence looking at the average e¤ect alone will lead to a vastly

underestimated e¤ect. For example, at the 20th percentile of the housing price distribution, a

1% increase in the share of immigrants will lead to a 1.3% decrease in housing prices. Whereas

at the 80th percentile of the housing price distribution, a 1% increase in the share of immigrants

will increase the housing prices by 1%. This result suggests that when we discuss immigration

policy, we have to keep in mind that it might a¤ect di¤erent sub-populations quite di¤erently.

We need to �rst understand who bene�ts from policy changes and who pays the cost, then

decide the best policy to improve the overall welfare. The results of immigrants�heterogeneous

e¤ects make homogeneous immigration policy inappropriate. This paper can then provide new

guidelines for policy makers to better regulate immigrants.
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Chapter 2

How is Immigration A¤ected by

Education

2.1 Introduction

Education is a surprisingly strong predictor of migration. People with more education migrate

more frequently and move longer distances (Todaro (1980); Lucas (1997); Greenwood (1997)).

This relationship is of particular interest to policy makers, since the out-migration of highly

educated workers has long been considered detrimental for regional development. To correctly

evaluate the return to local educational policy, it is necessary to determine how it would a¤ect

di¤erent individual outcomes, including their likelihood to migrate and how far they move.

However, we know relatively little about the causal e¤ects of education on migration, even less

about the mechanisms behind it.

To identify the impact of education, this paper utilizes Compulsory Schooling Law (CSL)

changes in the early 20th century to disentangle the e¤ect of education from other confound-
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ing factors. The U.S. experienced a series of changes in compulsory schooling law legislation

in the past century. These changes are widely used as instruments when studying the im-

pact of education, due to their exogeneity to individual characteristics and their signi�cant

e¤ects on personal education outcomes (Lleras-Muney (2005); Oreopoulos (2006); Pischke and

Von Wachter (2008); Mazumder (2011)). The �rst-stage F-statistics suggests that the CSL

changes have su¢ cient power to consistently estimate the e¤ect of education. The second-stage

results indicates that more education increases people�s migration distance if they decide to

move, but reduces their mobility.

The empirical evidence suggests that education does have a positive impact on migration

distance. To the best of my knowledge, this paper is the �rst to estimate this causal relationship.

Both OLS and 2SLS suggest a positive impact of education, though 2SLS increases the estimated

e¤ect of education by a factor of ten (2.1% v.s. 23.3%). The 2SLS estimator implies that an

additional year of schooling raises migration distance by 23.3% for individuals who migrate.

This e¤ect is relatively large, indicating that one year of education causes people to move an

extra 162 miles, which is roughly the distance between New York City and Boston.

The 2SLS estimator also suggests that education decreases people�s probability of migration,

which is the opposite of what OLS suggests. Estimators in the literature vary (Malamud and

Wozniak (2012); Machin et al. (2012); McHenry (2013)). The negative e¤ect suggested by the

2SLS estimator in this paper is consistent with the results in McHenry (2013)1. However, when

using people�s draft avoidance behavior during the Vietnam War as an instrument, Malamud

and Wozniak (2012) �nd that education increases people�s migration probability. The di¤erence

1McHenry (2013) focuses on migration probability only. It uses CSLs as IV but focuses on di¤erent cohorts.
Its main results are not robust after including state trends.
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might indicate di¤erent local average treatment e¤ects at di¤erent education levels, since the

Vietnam War draft mainly a¤ected college education, while the compulsory schooling laws

mainly a¤ected primary and high school education.

To guide the empirical analysis, this paper augments the conceptual framework to include

migration distance. Distance is an important part of migration decisions (Schwartz (1973);

Magrini and Lemistre (2013)), but is rarely incorporated into the migration model. To demon-

strate how education might a¤ect migration, this paper assumes people simultaneously choose

whether to migrate and how far to search for jobs. Before migration, I assume people have

to choose a distance within which they will search for jobs and migrate. If they search in a

wider range, they have a higher likelihood of �nding better jobs, but they must pay higher

costs. People with di¤erent education levels search in di¤erent distances, and hence face di¤er-

ent relocation costs. The costs they face will in return a¤ect their likelihood to migrate. The

model shows that the trade-o¤ between the gain of migrating longer distances and the cost of it

are important in determining the overall e¤ect of education on migration. By adding a simple

component, this model is able to generate both positive and negative selection of migrants with

respect to education without assuming di¤erent wage distributions in di¤erent locations as in

Borjas (1999).

This paper contributes to the literature studying the determinants of migration. Migration

usually poses a strong in�uence on the local development at both the destination and source

areas. To design sustainable policies and reduce regional inequality, we need to understand what

factors cause people to move. If increased education causes more talented people to stay, policies

investing in education might have a larger e¤ect on local development due to this overlooked

channel. Also, understanding the determinants of migration is important if we are to treat the
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selection bias it causes. For example, Dahl (2002) suggests that to correctly estimate the return

to education, one needs to compensate individual�s likelihood to migrate. This essentially means

estimating migration probability based on people�s observable characteristics.

This study also contributes to the literature examining the impact of education. My results

suggest that education does have a signi�cant impact on migration. Therefore, when evaluating

the overall e¤ect of education at the individual level, we should also consider its in�uence on

geographic mobility, which o¤ers people wider range of location and job choices, allows them

to reside in suitable neighborhoods, and allows them to move to better opportunities after a

local economic downturn (Bound and Holzer (2000)).

Developing world could bene�t from analyzing historical data in the U.S.. In the early 20th

century, the U.S. shared a lot of similarities with modern developing countries. For example, in

1940, the urbanization rate in the U.S. was 56.5%2, which is very similar to the rate of 52.6% in

China in 20123. Also, in 1940, more than 30.3% of American worked in the service industry and

23.4% worked in the manufacturing industry. Those numbers are 36.1% and 30.3% in China in

20124. The out-migration of highly educated workers, which could loosely referred to as "brain

drain," have raised serious concern for developing regions. The negative causal impact observed

in this study suggests that under certain conditions, local educational programs could encourage

more highly educated workers to stay and may be more bene�cial to local development than

people originally believed.

2Data from china.org.cn
3Data from US Census, 1940
4Data from Ministry of human resources and social security of the People�s Republic of China
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2.2 Adding Distance to the Conceptual Framework

To guide the empirical analysis, I augment a simple conceptual framework to include distance

as another choice variable. When considering migration, people are usually faced with two

decisions: whether to migrate and where to migrate. I simplify the second decision as the

choice of how far to migrate. The model shows that the trade-o¤ between the gain of migrating

a long distance and the cost of it is important in determining the overall e¤ect of education on

migration.

In most basic migration models, the only decision people make is whether to migrate after

calculating the utility gain from migration (Borjas (1987), (1999); Chiquiar and Hanson (2005)).

In Borjas (1987), the decision to migrate is further simpli�ed by comparing the expected income

at the current state and the destination state. Assume at current state 0 , an individual faces

the following income:

!0 = �0 + �0E; (2.1)

where !0 is total income, �0 is base income, �0 is return to education, and E is the education

level. If he migrates to destination state 1, he faces a new income !1, and must pay the cost of

migration �c. The individual will decide to move if the net gain from migration (f) is positive,

de�ned as following:

f = !1 � !0 � �c: (2.2)

In reality, people not only decide whether to migrate or not, but also decide where to mi-
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grate. Migration and destination decisions are usually made simultaneously. It is unlikely that

someone would pack up the whole house without knowing where he is heading. To incorporate

the location choice into the model, I simpli�ed the geography of destination states using its

distance from the current state (D). This is essentially assuming that states with di¤erent

distances are di¤erent destination choices, since they may represent totally di¤erent cultures,

job opportunities and accessibility to social networks and information.

In the augmented model, I assume migration cost is an increasing function of distance, since

it has long been considered a serious deterrence to migration in economics literature. Greenwood

(1975) summarized three types of cost that could be proxied by distance. First of all, distance

directly determines the transportation cost of migration. Secondly, distance directly links to

the psychic cost of migration, such as being far away from family members or losing one�s

social network. Lastly, when distance increases, the availability of information decreases and

uncertainty increases. People face higher costs if they want to obtain job information from

states far away. Based on these reasons, I assume the migration cost is an increasing function

of distance with a constant marginal cost,

�c = �cD:

In the model, I also assume future income is positively correlated with distance. One

apparent advantage of migrating a longer distance is that people can reach out to outside labor

markets and hence have more location choices and job opportunities. More job opportunities

entail a better matching quality of �nal employment and higher future wages. Consider a

simple scenario in which forward looking workers are searching for new jobs and their expected
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migration distance is determined by their searching radius. If they look for jobs in nearby

regions only, their expected income increase might be small since there might be limited jobs

available. However, if they look for jobs in a broader region, their expected income increase

should be higher because now they are exposed to more opportunities. Therefore, their expected

incomes should be positively correlated with their expected migration distance.

At the same time, people with di¤erent education levels might be facing di¤erent job dis-

tributions, such as di¤erent average incomes and di¤erent income variations. For example,

less-educated workers might �nd that jobs are quite similar regardless of where they locate.

Hence their marginal return to researching distance might be lower than the highly-educated

workers. In this paper, I use �(E) to capture the e¤ect of education on future income. Based

on the above rationale, I assume the expected wage after migration is a function of distance

and their own education; speci�cally,

!1 = D
��(E);

where � > 0. In other words, I assume that the more people venture out of their current

locations and look for jobs, the higher the potential future wages are. The marginal return to

searching distance MRD = @!1
@D = �D��1�(E) is di¤erent for people with di¤erent education

levels. When @�
@E > 0; MRD increases as education level increases. When @�

@E < 0;MRD

decreases as education increases.

In incorporating the cost and wage structure, the gain from migration could be rewritten

as the following:
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f = D�(�(E))� (�0 + �0E)� �cD: (2.3)

The optimal distance is chosen by analyzing the cost bene�t trade-o¤ of distance. The �rst

order condition of Equation (2.3) with respect to D requires that the marginal cost (�c) is equal

to the marginal bene�t (�D��1�) at the optimal distance. Solving for the optimal distance

gives

D� = [�=�c � �(E)]1=(1��):

When 0 < � < 1; the second order condition is satis�ed and the optimal distance exists. Taking

the derivative of D� w.r.t. E, we can see that when @�
@E > 0; education increases optimal

distance; when @�
@E < 0;education decreases optimal distance. Recall that

@�
@E determines how

MRD changes when education level changes. The model implies that if less-educated workers

face a lower MRD due to reasons such as a more homogeneous labor market, they will search

and migrate a shorter distance. However, if they face a higherMRD, they will migrate a longer

distance.

Knowing their optimal distance D� if they search and move, potential migrants will chose

whether to migrate or not based on their net gain of migration, f(D�): The e¤ect of their

own education on migration bene�t @f(D�)
@E is determined by the structure of migration cost

and return to distance. Recall that the optimal distance is D� = [�=�c � �(E)]1=(1��): After

plugging D� into Equation (2.3), we obtain the function of net gain of migration f(D�). The

�rst derivative of f(D�) with respect to education determines how education a¤ects people�s

decisions to migrate. Taking the derivative of the bene�t function with respect to education
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level could yield the marginal e¤ect of education, which is

@f(D�)

@E
= (

��

�
)

�
1��

@�

@E
� �0:

In most scenarios, the education groups that have higher return to searching distance will

migrate further and also more frequently. However, in some special cases, such as when @�
@E > 0

and when the marginal cost is su¢ ciently large, @f(D
�)

@E could be negative while @D
�

@E is positive,

indicating that highly-educated workers migrate longer distances but are less likely to move.

An example might help elucidate the mechanisms for the special case. Consider a computer

developer and a construction worker. Assume that the o¤ered incomes vary more for the

developer than for the construction worker in di¤erent locations. Therefore, the developer has a

higher incentive to conduct a nation-wide, sometimes even global, search before she switches job

and migrates. Now knowing the long-distance searching cost and migration cost, the developer

might not want to migrate frequently. On the other hand, the construction worker is more likely

to look for jobs in nearby regions. Since he does not need to pay the long-distance searching

and migration cost, he might migrate more frequently.

2.3 Data and Variables

The analysis in this section mainly relies on the Integrated Public Use Microdata Survey

(IPUMS) by the U.S. Census from 1940-1960. Data with missing values are omitted. Co-

horts were chosen such that the CSL reform has a great in�uence on their education outcome.

In the sample, the highest age is set to be 60 to reduce the bias caused by mortality. The sam-

ples were also restricted to people aged 25 or above to reduce the bias due to people re-locating
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to �nish their education in di¤erent schools.

In the baseline study, this paper only includes the white sample for two reasons. First,

according to Lleras-Muney (2002), CSLs have a similar e¤ect on white males and females, but

have no e¤ect on blacks. Secondly, blacks showed a drastically di¤erent migration pattern in

the early 20th century, which is commonly referred to as the Great Migration. Driven by harsh

segregationist laws, many blacks migrated from the rural south to the urban north during that

period, which is di¤erent than the whites. However, when all races are included, the results are

robust, only change slightly.

The present study focuses on migration between states, since the between-state movements

is more likely to be driven by employment opportunities or wage di¤erences (Niedomysl (2011)).

Also, only lifetime migration is observable in the census by comparing people�s birth states and

resident states during the survey. The variable of migration status is de�ned as a binary variable,

equal to 1 if state of birth is di¤erent from the state of residence at the census year, and equal

to 0 otherwise. (For simplicity, migration only refers to residing out of birth states hereinafter.)

The individual characteristic variables used in this analysis, such as age, sex, education, state

of birth and state of residence are directly extracted from the IPUMS.

In this paper, migration distance is proxied by the distance between birth state popula-

tion center and resident state population center. The distance is calculated using an accurate

ellipsoidal model of the Earth. The longitude of state population centers are obtained from

the Census Bureau. Since migrating to Hawaii and Alaska might show di¤erent patterns than

other U.S. states, this study excludes those individuals for simplicity. However, including the

two states will not change the results since only small amount of the population live there.

Table (2.1) and Table (2.2) list the summary statistics of the data. The sample average
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years of schooling is 10.2 years. Around 31% of the total population migrated at least once.

For those who migrated, the average migration distance is 694 miles, proximately the distance

between Chicago and New York City.

Table 2.1: Summary Statistics

Variable Obs Mean Std. Dev. Min Max
Education (year) 634,656 10.2 3.3 0 18

Migration Distance (km) 196,795 694.4 642 29 3031.7
Migration Status 634,656 0.31 0.46 0 1

Female 634,656 0.5 0.5 0 1
Age 634,656 39.4 8.8 25 59

Note: Included cohort born between 1901 and 1925, white population.
Data Source: Integrated Public Use Microdata Survey 1940-1960, U.S. Census Bureau

Since samples exposed to di¤erent CSL levels are very unequal (Table (2.2)), I divide CSLs

into 4 broad categories to be more balanced. The 4 categories are: 1) Low CSL (with 0,

4 and 5 years of CSL, constituting 5.7% of total sample); 2) CSL=6 (with 6 years of CSL,

31.13%); 3) CSL=7 (with 7 years of CSL, 46.96%); and 4) High CSL (with 8, 9 and 10 years

of CSL, 16.20%). As shown in Table (2.2), a majority of the states have compulsory schooling

requirement at either 6 or 7 years of education. The categorical CSL de�ned here will be used

as an alternative IV in the estimation, to supplement the results using linear CSL.

2.4 Identi�cation Strategy and Speci�cation

The main goal of the present study is to estimate the e¤ect of education on a person�s migration

distance and probability. There is a long-standing belief that education is correlated with

many characteristics which also a¤ect migration, such as motivation, health, social networks,

or abilities. If a highly motivated individual is more likely to �nish school, and to accept jobs
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Table 2.2: Summary Statistics of Compulsory Schooling Law

Compulsory Schooling Law (yr) Frequency Percentage (%)
CSL=0 7,929 1.28
CSL=4 17,927 2.88
CSL=5 7,405 1.19
CSL=6 190,282 30.62
CSL=7 295,241 47.51
CSL=8 54,597 8.79
CSL=9 19,541 3.14
CSL=10 28,541 4.59

Note: Included cohort born between 1901 and 1925, white population.
Data Source: Integrated Public Use Microdata Survey 1940-1960, U.S. Census Bureau

that require relocation, one might suspect that the OLS is biased and will overestimate the

e¤ect of education. Reverse causality is another issue that can not be addressed by OLS. If

families move to seek better education for their children, OLS will overestimate the impact of

education. Lastly, measurement error in schooling might also introduce bias when using OLS.

But according to Angrist and Krueger (1991), the bias is relatively small. The present study

proposes to use exogenous education variation that is caused by Compulsory Schooling Law

(CSL) reform in the U.S. from 1915 to 1939 to control for these issues.

In this paper, I use state-level CSL changes from 1915 to 1939 as an instrument to study

how education a¤ects migration behavior. The �rst CSL in the U.S. was passed in 1852 by the

Massachusetts General court in an attempt to transform education from a moral obligation into

a legal requirement. At the time, CSL requirements were mostly symbolic, lacking enforcement

mechanisms. Between 1900 and 1930, many states started enforcing the law more rigorously,

i.e. establishing attendance o¢ ces and institutionalizing school census to record students�ed-

ucation progress. At the same time, CSLs themselves were also changed from simple schooling

requirements into complex legal systems which also include child labor regulations. As a result,
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CSLs were more strictly followed during this period (Katz (1976)). After 1940, the importance

of CSLs were reduced since average education level increased steadily, hence the number of stu-

dents who would drop out school if without CSLs reduced (Edwards (1978)). In addition, the

reform of CSL was mainly driven by social forces at the time of passage, and hence were mostly

independent of state-wide economic conditions. These factors make CSL reforms a valid IV

for this time period due to its impact on child schooling and its independence from individual

characteristics.

The CSL variables are constructed following Lleras-Muney (2005). In the early 20th century,

child labor laws and compulsory schooling laws often were not coordinated (Lleras-Muney

(2002)). Lleras-Muney (2002) suggest that CSLs a¤ected schooling through three major aspects

of these laws: the age at which a child had to enter school (enterage), the age at which a child

could get a work permit to leave school and work (workage) and whether a state required a

child with a work permit to �nish the schooling requirement by studying part-time. When

the school entrance age and the work permit age were enforced following CSL, the di¤erence

between these two ages represents the years that a child had to attend school. Following these

studies, the CSL variable is calculated by combining the age at which a child had to enter school

and the age required for a work permit, de�ned as CSL = workage � enterage. Currently,

most states require all students to start school at age 7 and permit them to work when older

than 16, so the e¤ective compulsory schooling would be 16� 7 = 9 years.

Based on the variables de�ned above, this paper estimates the following 2SLS model. The

econometric speci�cation is as following:
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log(D)i = �+ Ei� +Xi� +Hs�+ 
t + �c + bs + trends + ui; (2.4)

mi = �+ Ei� +Xi� +Hs�+ 
t + �c + bs + trends + ui; (2.5)

with �rst stage speci�ed as below:

Ei = �+ CSLcs � � +Xi�+Hs�+ 
t + �c + bs + trends + �i; (2.6)

In the equations above, log(D)i is the log migration distance measured in kilometers; mi

is the migration status dummy of an individual i: equal to 1 if i�s birth state s is di¤erent

from his resident state in census year t, and equal to 0 otherwise. The completed schooling

years are represented by Ei. Its coe¢ cient � is the center of estimation. Variable CSLcs is the

compulsory schooling requirement when a given individual is 14 years old for cohort c born in

state s, which serves as the excluded instrument. Vector Xi are individual characteristics which

are exogenous to unobservables at the individual level. Here I include gender, age and square

of age. Since the Census data from various waves are being pooled together, it is necessary to

include census year dummies 
t. Cohort �xed e¤ect �c is also included to control for nation-

wide shocks that a¤ect all states similarly. I also include birth state �xed e¤ects bs to control for

state speci�c amenities. A state with pleasant weather or beautiful landscapes might attract

more highly educated people. Failing to control for state amenities might cause a spurious

correlation between education and migration.

Adding state-speci�c time variant variables are important to separate the e¤ect of improved
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education from other state trends. Many state-wide changes were occurring at the same time

with CSL increase and schooling improvement. One may argue that the e¤ects of increased

schooling on migration could simply re�ect the impact of those omitted state-level shocks. For

example, a prospering economy could both make education more a¤ordable to local govern-

ments and make the labor market more attractive and decrease out-migration simultaneously.

Omitting this confounding factor would underestimate the e¤ect of education on migration.

This model includes two sets of variables trends and Hs for this purposes. Variables trends are

linear birth state trends, constructed by using birth state dummies multiplied by birth year.

Hs are state-level characteristics at individual i�s birth state at age 14, which are non-linear

and time variant.

State-wide characteristic Hs are chosen to control state-wide economic and labor market

conditions that might a¤ect education and migration together. The variables include average

annual wage in the manufacturing industry, percentage of manufacturing employment of the

total population, average value of a farm per acre, number of doctors per capita, state expen-

ditures on education, the number of school buildings per acre, percentage of foreign born white

population, percentage of black population, and percentage of urban population. Each cohort

is matched with their birth-state characteristics including CSLs at the year when the cohort

reached age 14, as it is the lowest common drop out age across states. However, the results

show that excluding those variables does not a¤ect the main conclusion.
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2.5 OLS results

This section reports the OLS estimation results, which serve as the benchmark for comparison

with the IV results. The OLS results are consistent with previous literature, suggesting that

one additional year of education is associated with a 2.1% increase of migration distance and a

1.8% increase of the probability to migrate. These results are very robust when using di¤erent

subsamples.

Part 1 of Table (2.4) reports the results using log migration distance as a dependent variable.

The econometric model used for OLS estimation is summarized by Equation (2.4). Using

the entire white population, the results suggest one additional year of schooling will increase

travelling distance by 2.1%. The mean migration distance in this period is 694 miles. A 2.1%

increase indicates an extra 14 miles of moving distance, which is a quite small e¤ect.

Part 2 of Table (2.4) analyzes how education a¤ects the probability to migrate following

Equation (2.5). The estimated coe¢ cient of education is positive, statistically signi�cant and

robust to di¤erent sample choices and speci�cations. When use the entire white sample, the

marginal e¤ect of education on migration is 1.8%, implying that one extra year of education

will increase the likelihood of migration by 1.8%. Since the mean migration rate for the entire

sample is only 32.5%, an 1.8% increase is not trivial. This e¤ect is consistent with many other

studies on both size and direction (Todaro (1980); Greenwood (1997)).

The OLS speci�cation is robust to di¤erent speci�cations and subsamples. Table (2.4) in-

cludes estimation results using three main subsamples. First of all, the Dust Bowl was a major

weather disaster that drove a large amount of the farm population to move in the 1930s. Col-

umn (2) reports the results excluding the main Dust Bowl-a¤ected states (Oklahoma, Kansas,
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Colorado and New Mexico). Secondly, since CSLs mainly a¤ect people with less education,

column (3) reports the results using only people with less than 12 years of schooling. Thirdly,

even though the First and Second World War did not happen on the American homeland,

they may have in�uenced internal migration through the draft. Column (4) shows the results

with only male non-veterans. All above subsamples return very similar results. Table (2.5) re-

ports estimation using di¤erent speci�cations. The estimator barely changed at all when using

di¤erent trends or state characteristics.

2.6 The E¤ect of Compulsory Schooling Laws on Education

2.6.1 Visual Evidence: The Survival Function of Schooling

Figure (2-1) not only provides visual evidence of the �rst stage regression results, but also

provides some insight into how CSLs a¤ect educational distribution. Following Acemoglu and

Angrist (2001), each line displays the survival function of education under a particular CSL

minus the baseline distribution. The survival function of education is de�ned as 1-Cumulative

Distribution Function (SF = 1�CDF ). The baseline distribution is the survival function when

there was Low CSL, denoted as SFCSL=0;4;5. Intuitively, each line represents the di¤erence

between the rate of surviving certain grades when subject to a particular CSL and Low CSL.

For example, CSL=6 is de�ned as SFCSL=6 � SFCSL=0;4;5. On line CSL=6, point (7, 13.2%)

means compared with people subject to Low CSL, people subject to 6 years of CSL are 13.2%

more likely to �nish at least 7 years of education. Intuitively, the lines display the di¤erence

between groups a¤ected by di¤erent CSLs. Each point on the line represents the probability of

completing grades higher than grades on the x-axis compared with baseline distribution.

22



Figure 2-1: Survival Function of Education by Severity of Compulsory Schooling Law
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Note: Each line represents the survival function of education distribution under di¤erent
Compulsory schooling law (CSL) compared with baseline distribution. The points on
each line represent the probability of complete grades higher than grades on x-axis
compared with when expose to low CSL requirement. CSLs are calculated at birth
state-level when individual is 14. Survival function of education is equal to 1-Cumulative
Distribution Function (SF = 1�CDF ). Baseline distribution is survival function when
there was low CSL, de�ned as SFCSL=0;4;5. The line CSL6 represents SFCSL=6 �
SFCSL=0;4;5. The line High CSL is SFCSL>7 � SFCSL=0;4;5.
Data Source: Integrated Public Use Microdata Survey 1940-1960, U.S. Census Bureau

There are two features of the graph that support the choice of using CSL change as IV.

First of all, the survival rate of any grade increases with increased CSL. All the lines are above

0, meaning those who are exposed to CSL are more likely to survive any level of schooling than

those who are exposed to less than 6 years of CSL. Also, the lines are monotonically shifting

up as CSLs increase. For example, CSL=7 is signi�cantly above the CSL=6 line, especially

between 4-12 grades, even though they have similar shapes. This implies that people living
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in areas with 7 years of CSL requirement were much more likely to complete grade 4-12 than

those who live in areas with 6 years of CSL. Overall, �gure (2-1) demonstrates that the higher

the CSL, the higher the probability of completing certain grades. This observation is consistent

with the �rst stage result in table (2.3) when using broad CSL categories.

The second feature is that the survival rate di¤erence increases as schooling increases, then

drops drastically after grade 12. The trend implies that the main impact of CSL was on

people�s middle- and high-school education. Also, the �gure suggests the problem of omitted

variables such as macroeconomics conditions or preferences for schooling across states might

not be correlated with CSL. The reason for this is that if they are highly correlated, since those

omitted variables are also correlated with the likelihood of college education, then a stricter

CSL should be associated with a higher chance of �nishing collage. That is not the case here

since the impact of CSLs on schooling dropped sharply after grade 12.

2.6.2 The Impact of Compulsory Schooling Laws on State Education

To show the association between state level education and the change of CSLs, Figure (2-2)

plots changes in state average education between cohorts born in 1901 and 1925 against the

changes in CSLs between 1915 and 1939. The dash line is the �tted line of the entire sample,

with a slope of 0.07. The positive slope implies a positive e¤ect of CSLs on education. The

solid line is the �tted line that excludes states with CSLs that increased more than 7 years,

with a slope of 0.113. Those states are mainly southern states with less educated people. The

solid line also slopes upward but is steeper than the dash line. The slope di¤erence indicates

that the excluded southern states �atten the slope, with a large increase of CSLs but only a

moderate increase of education. If we treat states with more than 7 years of CSL increment
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as outliers and drop them, we will observe an even larger e¤ect of CSLs on education, which

indicates that the positive e¤ect of CSLs is not driven by some particular states.

Figure 2-2: The Impact of CSL Change on Education Improvement: Cohort 1901-1925
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Notes: The change of state average education is calculated using cohorts born in 1901
and 1925. The changes of CSLs are between 1915 and 1939. Sample contain only white
population and states that experienced CSL changes. The dash line is the �tted line of
the entire sample. The solid line is the �tted line of the subsample that excludes states
with CSLs that increased more than 7 years.
Data Source: Integrated Public Use Microdata Survey 1940-1960, U.S. Census Bureau

2.6.3 First Stage: The E¤ect of Compulsory Schooling Laws on Education

Consistent with visual evidence in Figure (2-1) and Figure (2-2), the OLS estimator suggests

that CSLs do have a statistically signi�cant in�uence on educational attainment. Table (2.3)

summarizes the �rst stage results following Equation (2.6). The coe¢ cient of interest is the

e¤ect of CSLs, which is positive, statistically signi�cant, robust to di¤erent sample choices

and relatively small. Using the entire white sample, the results indicate that one extra year
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of compulsory schooling requirement when a person was 14 would increase that person�s total

schooling by 0.027 years. Lleras-Muney (2005) estimated the impact of CSLs on education

to be 0.046, which is also positive but with twice the magnitude. The results di¤er because

the present study includes more control variables, i.e. age and race dummies, and uses birth

state trends instead of regional trends. Since each region contains several states, using regional

trends might not be able to separate state-speci�c developments from the CSL increments, and

hence would overestimate the e¤ect. Using state trends and adding the additional controls

signi�cantly reduces the magnitude but re�ects a cleaner e¤ect of CSLs. In addition to OLS

results discussed above, the �rst stage F-statistics are all statistically signi�cant, rejecting the

weak IV assumption. This result could alleviate concerns that states passed CSLs when they

were no longer binding, or states did not enforce them strictly. If that were the case, the

weak correlation between CSLs and completed schooling years would lead to an inconsistent

estimation in the second stage.

2.7 The Impact of Education on Migration

2.7.1 The Impact of Education on Migration Distance

This section presents the empirical results, suggesting that education increases people�s migra-

tion distance. The reduced form results indicate a direct positive correlation between CSLs

and distance. The 2SLS estimator suggests the marginal e¤ect of education is to increase dis-

tance by 23%. The positive impact of education could be consistently observed using various

speci�cations and subsamples.
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Reduced Form Estimation

Figure 2-3: E¤ect of Compulsory Schooling Law on Migration Distance
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Notes: Figure is drawn using the white sample born between 1901 and 1925 in the U.S.,
who lived outside of their birth state. Dots are average log migration distance for each
CSL with the e¤ect of cohort, birth state and birth state trend taken out. The solid
line is the �tted line of the entire sample.
Data Source: Integrated Public Use Microdata Survey 1940-1960, U.S. Census Bureau

The reduced form estimators in Table (2.3) suggest that one extra year of compulsory

schooling requirement is associated with 3% greater migration distance when use the white

migrants born between 1901 and 1925 in the U.S. as the sample. The �tted line in Figure (2-3)

is the visual display of the association, which slopes upward after controlling for cohort, birth

state and birth state trend e¤ects. When using categorical CSL as IV, the omitted category is

CSL that require less than 6 years of education. Compared with this, CSL that require 7 years

of education or above increase people�s migration distance. The only exception are CSLs that

require 6 years of education, which reduce migration distance by 9.5%. The negative e¤ect is

mostly driven by the migrants subject to 5 years of CSL. Since those migrants only constitute

1.19% of the total sample, their greater average distance might be an outlier (Table (2.2)).
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2SLS Results

Both OLS and 2SLS results in Table (2.4) show that education increases migration distance.

However, 2SLS results indicate an impact that is 10 times larger (0.233 v.s. 0.021), suggesting

that an additional year of schooling increases migration distance by 23.3% for individuals who

migrated. This e¤ect is quite large. Since the average migration distance is 694 miles, a 23.3%

increment means moving an additional 162 miles, which is roughly the distance between New

York City and Boston.

This paper also uses a di¤erent speci�cation of CSLs to test the robustness of the results. As

discussed before, CSLs are divided into four broad categories: Low CSL (CSL=0, 4, 5), CSL=6,

CSL=7, and High CSL (CSL=8, 9, 10). When using these categorical dummy variables as IV,

the results are very similar to the baseline results (column (6)). The magnitude of the e¤ect

decreases slightly, from 23.3% to 21.8%, and the standard deviation also decreases which leads

to a tighter estimation.

Additionally, Table (2.4) reports three robustness tests results using di¤erent subsamples.

Excluding the main Dust Bowl-a¤ected states decreases the estimated e¤ect slightly, from 23.3%

to 17%, indicating that education has a larger impact on those states. Other robustness tests,

such as excluding the sample with more than 12 years of education or excluding females and

veterans, consistently suggest a positive e¤ect of education on migration distance. Though not

reported in the main table, excluding California residents also suggests a positive impact. Based

on total in�ow of migrants, California is the most popular destination state in the U.S. before

1940. It attracted more than twice the number of migrants as the second popular state New

York. Approximately 3.6 million migrants reside in California in 1940, which constitutes 15.4%
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of total migrants in the U.S.. Due to its specialty, a robustness test is done by excluding all

the California residents, and the estimated impact is positive but not statistically signi�cant.

Based on the conceptual framework, the positive impact of education on distance indicates

an increasing return to distance when people become more educated. One possible reason is

that jobs for highly-educated workers are more disperse than jobs for less-educated workers,

hence searching a longer distance is more bene�cial for the highly-educated workers. If the

marginal cost of distance is similar for both types of workers, then the highly-educated workers

would migrate longer distances on average.

2.7.2 The Impact of Education on Probability of Migration

This section shows that education decreases people�s probability of migration and makes them

more stable when using CSL as IV. 2SLS results suggest that one additional year of schooling

decreases the migration probability by 6.6%. The result is robust under di¤erent speci�cations

and using di¤erent subsamples.

Reduced Form Estimation

Table (2.3) displays the reduced form estimation and suggests that one extra year of CSL

requirement decreases the probability of migration by 0.2% (column (5)). The �tted line in

Figure (2-4) visually displays the negative correlation, which slopes downward after controlling

for cohort, birth states, and birth state trends. The results using CSL categories as explanatory

variables suggest that CSLs are negatively correlated with migration probability only when

states require 7 years of schooling or above. Figure (2-4) suggests that this is mostly because

individuals subject to 4 years of CSL have low probability of migration.
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Figure 2-4: E¤ect of Compulsory Schooling Law on Probability of Migration
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Notes: Figure is drawn using the entire whites sample born between 1901 and 1925 in
the U.S.. Dots are average probability of migration for each CSL with cohort, birth
state and birth state trend e¤ects taken out. Solid line is the �tted line.
Data Source: Integrated Public Use Microdata Survey 1940-1960, U.S. Census Bureau

2SLS Results

When comparing OLS and 2SLS results in Table (2.4), the coe¢ cients not only have di¤erent

magnitudes but also have opposite signs. The baseline includes the entire white sample. The

OLS estimator shows 1 more year of education is associated with a 1.8% higher probability of

migration (column (5)). In contrast, the 2SLS estimator indicates that one additional year of

education decreases the probability of migration by 6.6%. When using categorical CSL as IV,

results are very similar, showing that the marginal e¤ect of education is -7.4% (column (6)). If

we focus on the population with less than 12 years of education, the di¤erence between OLS

and 2SLS is slightly larger. The OLS estimator suggests the correlation is 1.4%, while the 2SLS

estimator suggests the e¤ect is -7.2%. According to the conceptual framework, the estimated

negative impact suggests there might be a substantial marginal cost of migration distance,
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Figure 2-5: E¤ect of Compulsory Schooling Law on Probability of Migration:By States
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Notes: Figure is drawn using the entire whites sample born between 1901 and 1925 in
the U.S.. Dots are average probability of migration against the change of compulsory
schooling laws for each states. Solid line is the �tted line.
Data Source: Integrated Public Use Microdata Survey 1940-1960, U.S. Census Bureau

especially considering the poor transportation and communication system in the early 20th

century.

To see whether the results are driven by particular events during 1915-1960, two robustness

tests are done. First, weather disasters like Dust Bowls have large impacts on poor and low ed-

ucated people, hence they might cause a negative correlation between education and migration.

After excluding main Dust Bowl a¤ected states, the estimator is still negative, only changed

slightly, from -6.6% to -6.3% (column (7)). This indicates that the disaster induced migration

could not explain why lower educated people are more likely to move. Secondly, veterans are

usually more mobile than non-veterans. In the data, they are also more educated on average.

Restricting the sample to only men who are non-veterans, the OLS result is almost identical.

However, since the sample size is greatly reduced by more than 60%, the 2SLS result is no
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longer signi�cant (column (9)). However, the point estimator is still negative and very close to

the baseline results.

Is the Impact of Education U-shaped?

Since Figure (2-1) implies that CSLs mainly a¤ect people with 12 years of education or under,

it is natural to ask whether the di¤erence between OLS and IV estimation simply re�ect the

di¤erence between average treatment e¤ect and local treatment e¤ect. Imagine when the impact

of education is "U-shaped," decreasing at �rst then increasing when education increases. If this

is the case, it is possible that OLS estimation with a large portion of a highly educated sample

shows a positive e¤ect of education on migration, since the average treatment e¤ect could be

positive due to the upward sloping area. And when using CSL as IV, 2SLS results, which

estimate the local treatment e¤ect, are negative due to the downward sloping area at the low

end of education distribution.

Figure (2-6) suggests that the di¤erence between average treatment e¤ect and local treat-

ment e¤ect could not explain the observed di¤erence between OLS and IV estimation. Figure

(2-6) is drawn with the coe¢ cients obtained from OLS estimation of Equation (2.5) using cat-

egorical years of education as explanatory variables instead of total years of education. The

omitted variable is the dummy variable representing no formal schooling, which serve as base-

line e¤ect. The coe¢ cients of other categorical schooling years imply how achieving certain

years of education changes the probability of migration compared with no education at all. The

estimated coe¢ cients are plotted in Figure (2-6), which shows clearly that people with higher

education level are always more likely to migrate when using OLS. The only exception is when

people increase their schooling from 3 to 4 years, their migration likelihood decreases by 0.002,
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however, this di¤erence is statistically insigni�cant. In conclusion, the di¤erence between OLS

and 2SLS is consistent using di¤erent subsamples, and is not caused by local treatment e¤ect.

Figure 2-6: E¤ect of Categorical Education on Migration: OLS Estimation

Note: This �gure displays the coe¢ cients of categorical education attainment from
OLS estimation of Equation (2.5) using categorical schooling instead of total years of
education as Ei.
Data Source: IPUMS 1940-1960, U.S. Census Bureau

2.7.3 Alternative Speci�cation

Recently, several papers have pointed out that including a location speci�c time trend will

drastically alter the results when using state schooling requirement change as IV. Because when

using CSL as an IV, the identi�cation is from the variation of policy changes within the state

which a¤ect di¤erent cohorts. As state policy, compulsory schooling reforms might coincide with

other locational trends such as the change of economic or labor market conditions, and other

social reforms. Hence, it is important to include location speci�c time trends to separate the

e¤ect of increased schooling requirements from birth place trends. Mazumder (2008) suggests
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that ignoring state trends tends to overestimate the impact of education on health outcomes,

and hence, causal interpretation of the results is unwarranted. Stephens and Yang (2014) also

suggest that including regional time trend will eliminate some observed e¤ects or alter the

sign of the e¤ect of education on personal outcomes. The reason why adding time trends will

change the results drastically remains unclear. Their suggestion is to split the sample and test

the robustness of the results. Although not reported in the table, the main results hold when

all the southern states are excluded as a robustness test.

The results in this paper suggest that using detailed time trends is important when using

CSL as an IV, but has limited in�uence on the OLS results. Table (2.5) reports the estimation

results when di¤erent birth place trends speci�cations are used. The estimated e¤ects of educa-

tion on migration outcomes are almost identical under di¤erent speci�cations when using OLS

estimation. On the other hand, the point estimators using 2SLS suggest that location trends

signi�cantly a¤ect the estimated e¤ect of education. The di¤erent e¤ects of locational trends

when using OLS and 2SLS might indicate that the locational trend is particularly important

to identify the e¤ect of CSLs in the �rst stage. Regional trends show no particular power in

improving the identi�cation of the impact of education, suggesting that it is not able to fully

separate the in�uence of state development.

While it is not reported in the main table, analysis has also been done using samples that

are younger than 18. The OLS estimators are statistically signi�cant at 1% level, suggesting

that 1 year of education is associated with a 0.9% higher probability to migrate and a 4.2%

longer migration distance if they decided to move. The 2SLS estimators are much less precise

due to the restricted sample size. None of the estimator is statistically signi�cant at 10% level,

but the sign of the point estimator is consistent as before, suggesting that education causes
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people to migrate further away from their birth place, but reduces their likelihood to move5.

The results suggest that we could not rule out the possibility that families migrate for better

education since a higher CSL reduces the migration likelihood for those who were under 18.

2.8 Using Quarter of Birth as Instrument Variables

This section presents results when using quarter of birth as an alternative IV to estimate

the e¤ect of education on migration. This identi�cation strategy is well-founded and easy to

understand. Angrist and Krueger (1991) were the �rst to point out that seasons of birth are

related to education attainment due to the school starting age policy and compulsory schooling

laws. Most school districts require a child to have turned 6 years of age by January 1st of the

year in which she/he enters school. Hence, individuals who are born at the beginning of the

year start school slightly older than those born at the end of the year. Most states also require

students to remain in school until they turn 16 or 17. Those who are born in the early months

of the year could legally leave school with less education since they are older compared with

other students in the same grade. After establishing the impact of birth date on schooling,

Angrist and Krueger (1991) then utilized the education variation caused by birth date as an IV

to identify the e¤ect of schooling on future earnings.

Since then, many studies have been done to discuss the validity of the method. One main

critique of the original method is that one�s quarter of birth is only weakly correlated with

their education outcomes (Bound et al. (1995)). It is well known that when the instruments

are weakly correlated with the endogenous variable, 2SLS can be severely biased (Rothen-

5The point estimator and variance of the e¤ect of education is 77.3% and 0.883 when using migration distance
as dependent variable; and -4.8% and 0.135 when using migration probability as dependent variable.
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berg (1984)). Staiger and Stock (1997) suggests that limited information maximum likelihood

(LIML) estimation is less biased than 2SLS in the existence of weak instrument, particularly

when there is only one endogenous variable. Anderson and Rubin (1949) proposed a test of

structural parameters (the AR test) that has the correct size under a wide variety of violations

of the standard assumptions of IV regression, including under weak instrument conditions. In

this section, I present estimation results from OLS, 2SLS and LIML results, using AR test as

a robustness test when using LIML estimation.

The main speci�cation, which directly follows Angrist and Krueger (1991), is presented in

the following equations:

Ei = Xi� +
P
c Yic�c +

P
c

P
j YicQij�jc + ui

mig_outcomesi = Xi� +
P
c Yic�c + Ei� + �i

In the above equations, Ei is education of individual i measured in years. Qij are dummy

variables indicating whether the individual was born in quarter j (j = 1; 2; 3): Fixed e¤ect for

the �rst quarter of birth Qi0 is used as the baseline and is thus omitted in the regression. Yic

are dummy variables indicating whether the individual was born in year c (c = 1; :::; 10). Xi are

vector of covariates including age (detailed to quarters), square of age and gender, cohort �xed

e¤ect, state �xed e¤ect and state trends. �jc is the �xed e¤ect of being born in year c and

quarter j compared with being born in year c but in the �rst quarter. Instead of assuming

a similar e¤ect of quarter of birth for all cohorts, this speci�cation allows the e¤ect to di¤er
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among the cohorts, and hence more �exible.

Using quarter of birth as an IV, the results in Table (2.6) are di¤erent compared with using

CSL to estimate the e¤ect of education on people�s probability of migration. There could be

several reasons behind this. First of all, weak IV might bias the results when using quarter of

birth even though LIML is used and Anderson Rubin test is done. Secondly, as a state policy,

CSL not only a¤ects education at the individual level, but also a¤ect education at the state

level. Increased average education at the state level might also increase state amenities, hence

encouraging people to stay. On the contrary, quarter of birth will not have that e¤ect.

2.9 Discussion

The main conclusion of this paper is that education does have a signi�cant impact on migration

outcomes. Compared with other studies, the OLS results are quite similar, which indicate that

one additional year of education is associated with a 1.8% higher probability to migrate and

2.1% greater distance of that migration (Greenwood (1997)). Using state CSL reforms as an

IV, this paper suggests the causal impact of education on migration distance is 23.3%, which

is in the same direction but much larger than the OLS results. However, using the same

IV, this paper also reports a negative point estimator of the impact of education on migration

probability, which suggests that the marginal e¤ect of schooling is to reduce people�s probability

to migrate by 6.6%. These results are similar to McHenry�s (2013), in which negative impact

of education on both lifetime and 5 year migration probability is reported using a similar

identi�cation. However, other studies suggest di¤erent e¤ects using various identi�cations.

For example, Malamud and Wozniak (2012) reports that an additional year of postsecondary
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schooling increases probability of migration by around 9%, using variation in college attainment

due to draft-avoidance behavior during the Vietnam War. One main di¤erence between this

study and theirs is that the reforms used here a¤ect primarily the lower part of the educational

distribution, while the draft-avoidance in their paper mainly a¤ects college education. This

could be one of the reasons why our results di¤er.

The drastic di¤erence between OLS and 2SLS result shows that it is important to treat

endogenous unobservables when study the e¤ect of education, since omitted variables such

as ability could lead to largely biased results. For example, assume that compared with low

educated worker, the social network of high educated worker makes it easier for them to �nd

new jobs, but also result in a higher loss if they move away from their network. If this is

the case, then the unobserved social network will increase the chance of migration but reduce

their incentive to move far away. Without controlling it, OLS will overestimate the e¤ect of

education on migration but underestimate the e¤ect of education on distance.

Several policy implications may be derived from the results. First of all, the e¤ect of a local

educational program on migration is theoretically indeterminate, and the results question the

conventional idea that more education would necessarily lead to more out-migration of highly-

educated workers, which is loosely referred to as "brain drain" (Beine et al. (2001)). This

paper suggests that under certain conditions, education could make people more stable. At the

state level, to determine the optimal investment on education, the government should consider

how it would a¤ect local economy. Knowing the migration e¤ect of education would allow us

to accurately estimate the return of education program. Secondly, the ability to migrate to

a suitable location with better job o¤ers and neighborhood amenities is essential for people�s

well-being. When evaluating the overall e¤ect of education at the individual level, we should
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also consider its in�uence on geographic mobility. The results suggest that more education

leads to a broader migration distance hence more location choices.

The policy implications should be viewed with caution. First of all, as pointed out by Im-

bens and Angrist (1994), the e¤ect estimated using IV are a local average treatment e¤ect,

which represents the e¤ect on the binding population only. Those who are pushed into more

education by compulsory schooling laws might be di¤erent than the whole population. Second,

the cohorts studied in this paper are historical cohorts in the early 20th century, which resem-

ble the developing world more than the modern developed world. To draw inference for the

developed world, more recent instrument variables are needed.

To improve our understanding of the decision making process of migration, more research

need to be done. This paper mainly focuses at the individual level. The model suggests that

the negative impact of education on migration probability indicates a high marginal cost of

migration distance. However, this paper could not rule out other potential mechanisms. For

example, state CSL reforms not only a¤ect individual schooling, but also a¤ect the average

education level in a state. An improved average education level might make a state more

attractive to highly educated workers, hence making them more stable. This group e¤ect

could be regarded as one of the external e¤ects of education, which are essentially inseparables

when using state policy as IV. Since CSL reform binds a relatively small portion of the total

population, this paper chose to focus on individual e¤ect and overlook the general equilibrium

e¤ect.
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Table 2.3: The E¤ect of CSLs:First Stage and Reduced Form Results

First Stage Reduced Form
Dependent Variable: Schooling Years Log Migration Distance Migration Probability

(1) (2) (3) (4) (5) (6)
Linear Categ. Linear Categ. Linear Categ.

CSL requirement 0.027*** 0.030*** -0.002**
(0.006) (0.002) (0.001)

CSL=6 0.088*** -0.095*** 0.001
(0.030) (0.010) (0.004)

CSL=7 0.128*** 0.055*** -0.008*
(0.032) (0.010) (0.005)

High CSL 0.187*** 0.099*** -0.010*
(0.037) (0.011) (0.005)

Constant Yes Yes Yes Yes Yes Yes
Individual Characteristics Yes Yes Yes Yes Yes Yes

State-level Controls Yes Yes No No No No
Birthyear Dummy Yes Yes No No No No

Birth State Dummy Yes Yes No No No No
Census Year Dummy Yes Yes No No No No
State Dummy*Cohort Yes Yes No No No No

F Statistics for Weak IV 34.976 90.388
N 634656 634656 196795 196795 634656 634656

Standard errors in parentheses
* p<0.10; ** p<0.05; *** p<0.01

Note: The �rst and second columns present the �rst stage estimation following Equation (2.6) using
CSL and CSL categories. The remaining columns present the reduced form estimation with migration
distance and probability as dependent variables. In those columns, the control variables are gender, age
and age squared. All estimations use the white sample born between 1901 and 1925.
Data Source: Integrated Public Use Microdata Survey, 1940-1960, U.S. Census Bureau
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Table 2.5: Results using Alternative Speci�cation of State Trend

Speci�cation: State Regional No No State Cohort*Region
Trend Trend Trend Characteristic Fixed e¤ect

Migration Distance

OLS
Education (yr) 0.021*** 0.021*** 0.021*** 0.022*** 0.021***

(0.001) (0.001) (0.001) (0.001) (0.001)
2SLS

Education (yr) 0.233* 0.093 0.092 0.038 -0.024
(0.127) (0.060) (0.060) (0.053) (0.720)

N 196795 196795 196795 196795 196795
Migration Probability

OLS
Education (yr) 0.018*** 0.018*** 0.018*** 0.018*** 0.018***

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
2SLS

Education (yr) -0.066* -0.028 -0.045** -0.163*** -0.003
(0.035) (0.020) (0.022) (0.050) (0.018)

N 634656 634656 634656 634656 634656
Included Control Variables:

Cohort
Fixed E¤ect Yes Yes Yes Yes No

State
Characteristics Yes Yes Yes No Yes

Note: This table presents the OLS and 2SLS estimation results following Equation (2.4) and Equation
(2.5), with �rst stage estimation following Equation (2.6). Though not reported in detail, all of the
estimations include constant, age, age square, gender, birth state dummies and census wave dummies.
This table use sample contains the white population born between 1901 and 1925 in the U.S.. When
using log migration distance as dependent variable, only individuals who have migrated are included.
Column (StateTrend) includes linear time trend of each state, which is used in previous sections. Column
(Regional Trend) uses time trends of 4 census region. Column (No Trend) doesn�t contain any location
variable time trend. Column (No State Characteristics) uses state linear trend but doesn�t contain
state-wide variables such as average annual wage in the manufacturing industry, percent of manufacture
employment of total population, etc. Column (Cohort*Region Fixed E¤ect) drops cohort �xed e¤ect,
but add region speci�c cohort �xed e¤ect, allows cohort �xed e¤ect to di¤er at di¤erent regions.
Data Source: Integrated Public Use Microdata Survey, 1940-1960, U.S. Census Bureau
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Chapter 3

The Heterogeneous E¤ect of

Immigration on Housing Price

3.1 Introduction

Housing price is crucial to people�s well-being. It not only a¤ects their living conditions, but

also a¤ects the homeowners�wealth. Only recently, did researchers begin to analyze how immi-

gration a¤ects the price of this particular commodity (Saiz (2003); Saiz and Wachter (2011)).

However, those studies are mostly focused on the average e¤ect, ignoring existing neighborhood

heterogeneity. In this paper, we propose to use quantile regression to analyze how immigration

a¤ects di¤erent types of neighborhoods in the housing market. In other words, we not only

ask the question, "Does immigration matter?", but we also ask the question, "For whom does

immigration matter?" (Eide and Showalter (1998)).

Previous literature analyzing immigration impacts has focused mainly on the displacement

e¤ects in the labor market. Kerr and Kerr (2011) provide a comprehensive survey of recent
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empirical studies on the economic impact of immigration. Using U.S. data, many studies

(Card (1990); Altonji and Card (1991); Longhi et al (2006); Peri (2007)) �nd that both the

wage and employment displacement e¤ects are very small when using various identi�cation

strategies. More recent studies also attempt to estimate how immigrants a¤ect the prices of

various commodities. Saiz (2003, 2007) are the �rst to show that US housing prices rise with

immigration at the city level. On the other hand, Saiz and Wachter (2011) pointed out that

U.S. housing prices decrease with immigration at the census tract level. These di¤erent results

show that there is large spatial heterogeneities within a city, and simply estimating the average

e¤ect will overlook the most interesting within-city dynamics. To analyze the neighborhood

heterogeneous e¤ect of immigration directly, we use quantile regression.

The obvious advantages of using quantile regression is that it can estimate the e¤ect of

immigration on the whole conditional distribution of housing price, and it is less a¤ected by

outliers. Using ordinary least square (OLS) and instrumental variable (IV) estimation, the

results suggest that immigrants have a very limited e¤ect on the local housing prices on average.

However, both quantile regression (QR) and the two stage quantile regression (2SQR) suggest

that at both higher and lower tails of the housing price distribution, immigrants have signi�cant

and heterogeneous e¤ects on the housing price. For example, when using the pull e¤ect of

existing immigrants as an IV, the 2SQR suggests that a 1% increase of foreign-born in the

neighborhood will increase the housing price by 1% at the 80th percentile while decreasing

the housing price by 1.3% at the 20th percentile. This paper also looks at potential channels

through which immigrants a¤ect housing prices in di¤erent neighborhoods. The results suggest

that neighborhoods react di¤erently when immigrants move in at both the demand and supply

side of the housing market.
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The welfare implications of our results are complicated. A decrease in housing price implies

that the housing is more a¤ordable for renters, but it also means homeowners are losing their

wealth. As pointed out in the previous literature, people who are more likely to be credit-

constrained and older homeowners, who are likely to be �trading down�on their housing stock,

are the ones whose daily consumption is mostly a¤ected by housing price changes (Calomiris

et al (2012)). Hence, the adverse e¤ect that immigrants have on poor neighborhoods could

potentially bring about large negative welfare implications.

3.2 Data

The empirical analysis in this paper is based on the decennial Neighborhood Change Database

from 1970 to 2000, which contains housing price and demographic information at the census

tract level. Census tract is a small geographic unit, with a population of less than 4000 on

average. In comparison, the more commonly used Metropolitan Statistical Area (MSA) has

more than a 0.9 million population on average. Using MSA as the unit of analysis could

uncover the average e¤ect of immigration at the city level, but would overlook interesting

changes happening within a city. Using census tract instead will allow us to look inside each

MSA and understand the e¤ects of immigration on di¤erent neighborhoods within a city.

The Neighborhood Change Database allows us to access the decennial U.S. Census data

with the geographic boundaries normalized to the 2010 boundaries. With the census tract

boundaries normalized, we are able to study how neighborhoods evolve over time within the

same boundary de�nition, and hence makes the historic comparison more accurate. Note that

some areas, especially some rural areas, were not tracted in 1970 and 1980. Hence no data is
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available for those years. Speci�cally, around 40% of the 2010 census tracts are missing for 1970

and 24% are missing in 1980. Those census tracts, along with the ones with zero population

or zero housing prices are dropped from the analysis. We did not include data from year 2010

census to avoid the subprime mortgage crisis which started in 2007; even though it is available.

All MSAs are included in this analysis, unlike Saiz and Wachter (2011), who only included

the MSAs with substantial immigration population. The MSAs that have low immigrant pop-

ulation could still have neighborhoods that are heavily a¤ected by immigrants. Hence, they

should be included in our study. Summary statistics in Table (3.1) show that the average

in�ation adjusted housing price has increased almost seven times in three decades, from 22.2

thousands in 1970 to 155 thousands in 2000. At the same time, the average foreign-born popula-

tion more than tripled, indicating a positive time trend for both housing price and immigration.

Among all the foreign born populations, the proportion with Mexican origin increased more

than three times.

3.3 Quantile Regression and Heterogeneity

3.3.1 OLS and IV

Studies analyzing the immigration e¤ects have primarily relied on estimation approaches such

as Ordinary Least Squares (OLS) or Instrumental Variables (IV), which estimate the average

e¤ects of immigration on neighborhood housing prices. While less robust, understanding how

immigration a¤ects neighborhoods on average could still provide a useful insights. Hence,

we start our analysis with conventional OLS and IV estimation as a benchmark. The OLS

estimation is speci�ed as below:
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� log(price)it = �+ �1�imm_shareit�1 + Tract
0
it�2 + Y eart +MSAi + �it: (3.1)

where � log(price)it is the change of log housing price for census tract i from period t�1 to

t. Taking the �rst di¤erence of the housing price eliminates census tract �xed e¤ects, controlling

for time invariant factors such as the climate, history or location of the census track. To control

for reverse causality issue, lagged change of immigration population is used, which is de�ned as

�immi_shareit�1; the change of immigrant population between t� 2 and t� 1 divided by the

total population in that census tract at t � 1. The coe¢ cient �1 is the parameter of interest.

A positive value would imply that neighborhoods that are becoming more immigrant dense are

the same ones that experience faster housing value appreciation. An alternative way would be

to use the total immigrant population as an independent variable, which could reveal the overall

e¤ect of the in�ow of immigrants, including both the e¤ect from a changing population and

changing neighborhood demographics. By using the share of immigrants instead of the total

immigrant population, we will be able to focus on the e¤ect of the change of racial composition,

which is more important to understanding the unique in�uence of immigrants.

Year �xed e¤ect Y eart is included to control for national events that a¤ect all regions

simultaneously. Since di¤erent regions might experience drastically di¤erent housing market

conditions, Metropolitan Statistical Area �xed e¤ect MSAi is included. Hence, we can focus

on the e¤ect of immigration within each MSA. We also include a complex set of variables

Tractit to control for housing and demographic characteristics of a census tract, such as average

rooms, kitchen or plumb facilities, average housing tenure, average education level and average
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household income.

Reverse causality and omitted variables are two main concerns when using OLS to estimate

the causal e¤ect of immigration on housing prices. First of all, housing prices might be one of

the factors that a¤ect immigrants�location choice. A neighborhood with cheaper housing could

potentially attract more immigrants, who, on average, have a lower skill level. Although using

lagged immigration variable could partially control this issue, immigrants could still anticipate

future housing prices while chosing where they want to reside. Secondly, omitted variables such

as the change of neighborhood amenities could a¤ect both the immigrants�location choice and

the local housing price; and hence bias the relevant coe¢ cients. While taking �rst di¤erence in

housing price should eliminate the e¤ect of time invariant census tract characteristics, it may

not control for di¤erent trends. This means that it may still be an issue to identify the e¤ect

of immigration.

� log(price)it = �+ �1�immi_shareit�1 + Tract
0
it�2 + Y eart + �it (3.2)

�immi_shareit�1 = �+ �1IV + Tract
0
it�2 + Y eart + �it

A common way to deal with the reverse causality and the omitted variable problem is by

using instrumental variables. An ideal instrument will have a signi�cant impact on housing

prices through its e¤ect on immigration population only. We can then implement two stage

least square estimation speci�ed in Equation (3.2) to identify the coe¢ cient correctly. Previous

literature suggests that immigrants tend to cluster in proximity of early immigrants enclaves

from the same source country (Bartel (1989); Card (2001)). This clustering tendency has more
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to do with their culture or language preferences than the neighborhood economic trends that

might cause endogenous problems. Hence, it could be used as an instrument to study the

impact of immigration. Since the Geolytics data does not contain detailed information about

the source country of the foreign born population, we use the pull e¤ect of the overall foreign

born as our instrument. Census tract is a very small geographic unit that contains less than

4000 residents on average, new immigrants might be attracted to the existing immigrants not

only in the speci�c census tract, but in the nearby regions as well. To capture the overall

geographic attraction of a census tract i; we use a simpli�ed version of the gravity equation

derived in Saiz and Wachter (2011):

Pullit =
county_imm_popct � tract_imm_popit

county_popct � tract_popit
: (3.3)

county_imm_popct is the total foreign born population and county_popct is the total popu-

lation in county c at time t: Similarly, tract_imm_popit is the total foreign born population

and tract_popit is the total population in census tract i at time t:Hence Pullit is the share of

historical immigrants in the nearby areas, which summarizes the geographic attraction to new

immigrants of census tract i located in county c at time t. We use Pullit as the instrument

variable in Equation (3.2) to recover the causal impact of immigration.

3.3.2 Quantile and Two Stage Quantile Estimation

Neighborhoods at the census tract level show great heterogeneity in terms of racial composition,

economic development, and political atmosphere. Some of the heterogeneities are observable,

while others are not. Due to their di¤erences, neighborhoods might respond to immigration
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di¤erently. For example, the main residents of neighborhood with the cheapest housing might

be lower class workers, whose political view towards immigrants might be di¤erent from other

areas in general. If that is the case, then the mean e¤ect estimated using ordinary least squares

provides a rather poor estimate of the conditional mean for the poorest neighborhood in the

sample. The obvious advantages of using quantile regression is that it can estimate the e¤ect

of immigration on the whole conditional distribution of housing price, and it is less a¤ected by

outliers.

As described by Koenker and Bassett (1978), we specify the �th conditional quantile function

as Qy(� jx) = x0�(�) ; in which �(�) is estimated by solving:

Min
�2Rp

nX
i=1

�� (� log(price)it � �� �1�immi_shareit�1 � Tract0it�2 � Y eart): (3.4)

In the equation above, �� is the piecewise linear loss function:

�� (u) = u(� � I(u < 0)): (3.5)

The focus of this study is to see whether the e¤ect of immigration varies across di¤erent

quantiles, which require us to test whether �1(�) = e�1 for any � : To achieve this end, we
need to estimate the standard error of the coe¢ cients to test and construct con�dence intervals

comparing coe¢ cients describing di¤erent quantiles. It is well documented in literature that

using empirical quantile function to construct standard errors, as introduced in Koenker and

Bassett (1978), usually under-estimate the variance (Bucinsky (1995)). To construct robust

standard error, we use bootstrap methods in which both dependent and independent variables
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are re-sampled simultaneously.

To estimate the impact of immigration on the entire distribution of housing price while

treating the reverse causality and omitted variable issues, we will use two stage quantile regres-

sion methods following Portney and Chen (1996). Arias et al (2002) applied similar method to

estimate the return to education at di¤erent quantiles while addressing simultaneity and mea-

surement error biases. This estimator is essentially a quantile analog of two stage least squares

(2SLS) whose large sample properties were established in Powell (1983). The estimation is

done by �rst projecting the endogenous variable �immi_shareit on the matrix of exogenous

variables including the instrument Pullit, just like the �rst stage in 2SLS. The �rst stage OLS

projection will then replace �immi_shareit when solving the model speci�ed in Equation (3-

1). We also report the results using instrumental quantile regression introduced by Hansen and

Chernozhukov (2005, 2006).

3.4 Estimation Details and Empirical Results

3.4.1 OLS and IV

The �rst stage results in table (3.2) show that the existing immigrant population have a signif-

icant pull e¤ect on the new immigrants. Speci�cally, a census tract in a county that had a 1%

higher share of foreign born population 10 years ago will have a 0.8% higher share of foreign

born population at the present. The F-statistics in the �rst stage is 239.41, much higher than

the critical value of weak IV, suggesting that the instrument has enough power. The Durbin-

Hausman test rejected the exogenous consumption at 0.01 signi�cance level, con�rming that

endogeneity is an issue and a correct identi�cation strategy is necessary.
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Both OLS and 2SLS results in table (3.2) suggest that immigrants have a positive e¤ect on

housing prices at the census tract level. The results are obtained following Equation (3.1) and

Equation (3.2) respectively. The OLS results suggest that a 1 unit increase of the share of the

foreign born in the last period is associated with a 0.002 greater log value of the housing price,

which is an extremely small e¤ect. In percentage term, it suggests that a 1% increase of the

share of foreign born is associated with a 0.002 percent increase in the housing value. Since the

median home value in 2000 is only 155,000 dollars, the increase in the housing value is only 3

dollars.

On the other hand, the 2SLS estimate the coe¢ cient to be 0.096, which is a much more

substantial impact. It indicates that a 1% increase of the share of foreign born will increase

housing prices by 0.096 log value, which is equal to a 0.2% increase of the housing value. The

mean value of a single family house in 2000 is 155,000 dollars and the mean change of the share

of foreign born is around 0.08. Hence the average housing value appreciation due to immigrants

is around 2480 dollars. It is still a small e¤ect, but much more substantial compared with the

OLS results.

One possible reason for the di¤erence between OLS and 2SLS could be reverse causality. If

immigrants move into a poor neighborhood, which has a slower increase in housing price, then

OLS will underestimate the positive e¤ect of immigration. By disentangling the reverse causal

e¤ect, 2SLS would return a higher positive e¤ect.

Previous literature, such as Saiz (2003, 2007) and Ottaviano and Peri (2006), have sug-

gested that immigrants bring up housing value at the metropolitan level. However, within a

metropolitan area, Saiz (2011) suggests that a 1% increase of immigrant share decreases hous-

ing value by 1%. In that paper, Saiz assumes that neighborhoods that are located near the
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existing immigrant enclaves are more attractive to new immigrants. He then constructs the

instrument variable for each census tract, which is essentially a weighted neighborhood immi-

grant population using distance to that particular census tract as weights. Compared with our

approach, except in regard to di¤erent IV, Saiz (2011) also selects a di¤erent sample. His pa-

per only focuses on metropolitan areas and years for which the decennial change in immigrant

population is substantial (at least 5% of the MSA population). In this paper, since our goal is

to test whether di¤erent neighborhoods react to immigrants di¤erently, we included all census

tracts in all the available years to cover the whole spectrum. These could be the main reasons

why the results from our analysis are di¤erent from the ones by Saiz (2011).

3.4.2 Quantile and Instrumental Quantile Estimation

Using quantile regression, we observe signi�cant heterogeneity of immigrant�s e¤ect on housing

price. In the �rst part of Table (3.3), we estimate the quantile regression that speci�ed in

Equation (3-1) at the deciles from 0.1 to 0.9. Figure (3-1) presents the same results in a more

intuitive way. While the OLS suggests that on average immigrant have a positive e¤ect on

housing price, quantile regression suggests the e¤ect is quite di¤erent for di¤erent neighbor-

hoods. For census tracts with median to expensive housing, the quantile regression suggests a

similar e¤ect of immigrants both in its direction and size. For example, for census tracts with

the housing price at the median, a 1 unit increase in the share of foreign born in the last period

is associated with a 0.003 higher log value of the housing price, which is almost negligible. The

95% con�dence band is quite narrow around this area, suggesting that we have very precise

estimation at the upper end of the distribution.

On the other hand, quantile regression also suggests that for census tracts with very cheap
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housing, the share of foreign born population is negatively correlated with housing price and

the e¤ects are much more substantial. For example, for census tracts with the housing price

at the 10th percentile of the price distribution, a 1% increase of the share of foreign born in

last period is associated with a 0.3% lower housing price. Though the coe¢ cients are still

signi�cantly di¤erent from 0, the 95% con�dence interval is relatively wide, suggesting that

there is more noise at the lower end of the distribution.

Although it returns signi�cantly larger coe¢ cients, the two stage quantile regression shows

a similar pattern as the quantile regression. In the second column of Table (3.3), we report the

coe¢ cients of the two stage quantile regression speci�ed in Equation (3-1), replacing endogenous

variable immi_Inflowit with its projection on the matrix of exogenous variables including the

instrument Pullit , at the deciles from 0.1 to 0.9. Figure (3-2) graphs the coe¢ cients against

their quantiles, which shows a clearly rising trend across di¤erent points in the conditional

distribution of housing price. The �gure suggests that at the lower end of the distribution, the

e¤ect of increased share of foreign born in the neighborhood decrease housing price. However,

the e¤ect is positive for the 70th percentile and higher. For example, if the share of foreign

born increases by 1% in the census tract with housing price at the 80th percentile, the value of

log housing price will increase by 0.98, which is equal to an increase of 8% in the housing value.

The 95% con�dence interval bands are very narrow in Figure (3-2), suggesting a very precise

estimation.
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Figure 3-1: Immigrant In�ow and Housing Price Change: Quantile Regression
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Note: This �gure displays the coe¢ cients of immigrant in�ow on housing price change at
di¤erent quantile levels. Coe¢ cient estimates are on the vertical axis, while the quantile
index is on the horizontal axis. Coe¢ cients are obtained by solving Equation (3-1). The
dash lines are the 95% con�dent interval constructed using bootstrap method.
Data Source: Neighborhood Change Database (NCDB) Tract Data from 1970-2000,
GeoLytics.

3.5 Further Results: The Change Of Housing Supply

The obvious increasing pattern of the coe¢ cients of immigration along the quantiles suggests

that there are neighborhood heterogeneities that are not captured by census tract �xed e¤ect,

housing characteristics, or MSA trend. In a housing market, the equilibrium housing price is

determined by both the demand and supply. In this section, we look at the supply side stories in

search for reasons why neighborhoods react di¤erently to immigrants, using the Neighborhood

Change Database.

After immigrants move in, real estate developers might respond di¤erently in di¤erent neigh-

borhoods. A rising new housing supply might slow down housing prices and prevent it from

growing fast. Since the Neighborhood Change Database does not record housing supply changes

directly, we use the change of total housing unit between surveys to infer the new constructions.
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Figure 3-2: The E¤ect of Immigrant In�ow on Housing Price Change: Instrumental Variable
Quantile Regression
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Note: This �gure displays the e¤ect of immigrant in�ow on housing price change at
di¤erent quantile levels, using historical immigrant share in the county as an instru-
ment. Speci�cally, coe¢ cients are from two stage quantile regression that speci�ed in
Equation (3-1), replacing endogenous variable immi_Inflowit with its projection on
the matrix of exogenous variables including the instrument Pullit , at the deciles from
0.1 to 0.9. Coe¢ cient estimates are on the vertical axis, while the quantile index is
on the horizontal axis. The dash lines are the 95% con�dent interval calculated using
bootstrap.
Data Source: Neighborhood Change Database (NCDB) Tract Data from 1970-2000,
GeoLytics.

Since developers will try to build houses in neighborhoods with a prospering housing market,

and that those areas might be too expensive for new immigrants, reverse causality might be an

issue to identify the e¤ect of immigration on housing supply. We also use the pull e¤ect of the

existing immigrants in the county 20 years ago as an IV to control this issue.

We test the supply side neighborhood heterogeneity using the two stage quantile regres-

sion and report the results in Table (3.4) and Figure (3-3). The dependent variable here is

D log(NewHou sin git), which is the change of the log of the new housing supply, calculated by

taking di¤erence of the total housing unit between period t and t�1: Hence the results in Table

(3.4) and Figure (3-3) are similar to taking a di¤erence in di¤erence approach. The Figure
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(3-3) shows that the more active a neighborhood is in developing new houses, the less negative

impact immigrants have on new housing supplies. At the highest quantiles of the distribution

of new housing development, immigrants actually increase the new housing supply. Hence they

should slow down the rate of housing price increase. If poor neighborhoods happen to be those

that attract a lot of new development, then the supply side story could partially explain why

the impact of immigration on housing prices is increasing as neighborhoods get wealthier.

Figure 3-3: Immigration and Housing Supply Change: Instrumental Variable Quantile Regres-
sion
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Note: This �gure displays the e¤ect of immigrant in�ow on housing supply change at
di¤erent quantile levels, using historical immigrant share in the county as an instru-
ment. Coe¢ cient estimates are on the vertical axis, while the quantile index is on the
horizontal axis. The dash lines are the 95% con�dent interval.
Data Source: Neighborhood Change Database (NCDB) Tract Data from 1970-2000,
GeoLytics.

3.6 Conclusion

The �ndings in this article point to two substantive conclusions. First of all, on average,

the in�ows of new immigrants have a very limited in�uence on housing prices at census tract
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level. Using OLS, the e¤ect of a 1% increase of the share of immigrants has little e¤ect on

housing prices. Using 2SLS, the e¤ect is much more substantial but still small. On average,

an increase of 1% in the share of immigrants increases the housing prices by 0.2%. However,

if we look at the e¤ect more closely, we will notice that the impacts of immigrants are quite

di¤erent for di¤erent neighborhoods, and looking at the average e¤ect alone will lead to a vastly

underestimated e¤ect. Hence, our second conclusion is that there are signi�cant neighborhood

heterogeneous e¤ects at di¤erent points in the housing price conditional distribution when we

use quantile regression. For example, at the 20th percentile of the housing price distribution,

a 1% increase in the share of immigrants will lead to a 1.3% decrease in housing price. At the

80th percentile of the housing price distribution, a 1% increase of the share of immigrants will

increase housing prices by 1%. Both marginal e¤ects are much larger, but since the e¤ects in

some neighborhoods is negative and others are positive, the e¤ect is almost cancelled out when

taking the average.

In this paper, we also study the potential reasons behind the heterogeneity, from both the

demand side and supply side. Using two stage quantile regression, the results suggest that

neighborhoods could react quite di¤erently to immigrants moving in. Neighborhoods with a

less active real estate development market tend to build fewer houses after immigrants move in.

The slowed supply might slow down the housing price growth for those neighborhoods. These

di¤erences between neighborhoods could potentially explain why the e¤ects of immigrants are

heterogeneous amongst neighborhoods.

To design an immigration policy that improves the overall welfare of the country, we need

to understand who bene�ts from it and who pays the initial cost. We can then use other

social welfare policies to compensate those who are most negatively a¤ected by immigrants.
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The results in this paper suggest that the housing price in poor neighborhoods are negatively

a¤ected by immigrants, while housing prices in rich neighborhoods are positively a¤ected. In

other words, homeowners in poor neighborhoods are hurt by immigrants while homeowners in

rich neighborhoods bene�t from them. This di¤erence could have a large impact on households�

wealth and should be taken into consideration when debating immigration-related policies.
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Table 3.1: Summary Statistics by Year

Year = 1970
Variable Obs Mean Std. Dev. Min Max
Average Housing Price 44145 22227.99 68138.86 0 13300000
Total Population 73057 2026.15 2230.55 0 82584
Foreign Born Population 73057 119.60 252.99 0 8427
Population of Mexican Origin 73057 27.65 150.48 0 5932
White Population 73057 1759.68 2017.53 0 81163

Year = 1980

Variable Obs Mean Std. Dev. Min Max
Average Housing Price 59535 152012 2228354 0 20900000
Total Population 73057 2478.58 2109.07 0 89545
Foreign Born Population 73057 182.20 344.88 0 11087
Population of Mexican Origin 73057 105.61 388.50 0 8797
White Population 73057 2036.68 1893.14 0 76199

Year = 1990

Variable Obs Mean Std. Dev. Min Max
Average Housing Price 71798 109042.40 83560.32 14 1178614
Total Population 73057 3404.33 1835.78 0 98443
Foreign Born Population 73057 270.57 487.92 0 11927
Population of Mexican Origin 73057 183.33 544.13 0 13602
White Population 73057 2735.22 1724.42 0 73216

Year = 2000

Variable Obs Mean Std. Dev. Min Max
Average Housing Price 72114 155000.90 118078.90 216 1798581
Total Population 73057 3852.09 1932.13 0 101300
Foreign Born Population 73057 425.80 655.74 0 14636
Population of Mexican Origin 73057 282.05 680.09 0 15492
White Population 73057 2941.20 1805.31 0 70879

Note: This table shows the summary statistics by census year. The unit of analysis is
census tract. The housing price is in�ation adjusted average housing price, normalized
to 2000 dollars.
Data Source: Neighborhood Change Database [NCDB] Tract Data from 1970 to 2000,
GeoLytics.
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Table 3.2: Immigrant In�ow and Housing Price Change: OLS and 2SLS

OLS 2SLS
Second Stage First Stage

Lagged Change of Share of
Foreign Born Population 0.002*** 0.096***

(0.0007) (0.030)
Neighborhood Pull E¤ect 0.797***

(0.310)
P-Value of Durbin-Wu-Hausman test of Endogeneity 0.001
F-Statistics for excluded instrument 239.41
N 106304 106304 106304

Standard errors in parentheses
* p<0.10; ** p<0.05; *** p<0.01

Note: This table shows the coe¢ cients of immigrant in�ow on housing price following
Equation (3.1) and (3.2). For column (1) and (2), the dependent variable is the change
of log housing price in the census tract. For column (3), the dependent variable is
the change of share of foreign born population. Though not reported in the table, all
regression included time �xed e¤ect, MSA �xed e¤ect and census tract characteristics.
Data Source: Neighborhood Change Database [NCDB] Tract Data from 1970 to 2000,
GeoLytics.
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Table 3.3: Quantile Regression

Dependent Variable: First Di¤erence of Log Housing Price
Quantile Lagged Change of Share of Foreign Born

Quantile Regression 2 Stage Quantile IV Quantile
0.1 -0.035** -1.228*** -0.720

(0.015) (0.023) (0.676)
0.2 -0.019* -1.24*** -0.057

(0.011) (0.040) (0.070)
0.3 -0.001 -1.077*** 0.644

(0.008) (0.043) (0.473)
0.4 0.002 -0.866*** 0.832

(0.003) (0.034) (0.586)
0.5 0.003 -0.655*** 0.990

(0.001) (0.039) (0.688)
0.6 0.003*** -0.377*** 1.132

(0.001) (0.032) (0.795)
0.7 0.003*** 0.065 1.280

(0.001) (0.054) (0.933)
0.8 0.003*** 0.980*** 1.452

(0.001) (0.094) (1.145)
0.9 0.004** 2.775*** -0.058

(0.002) (0.068) (0.106)
N=106304

Standard errors in parentheses
* p<0.10; ** p<0.05; *** p<0.01

Note: This table shows the coe¢ cients of immigrant in�ow on housing price changes
at di¤erent quantile levels. In the �rst column, coe¢ cients are from quantile regression
obtained by solving Equation (3-1). In the second and third column, coe¢ cients are
from two stage quantile regression and instrumental quantile regression that speci�ed
in Equation (3-1), replacing endogenous variable immi_Inflowit with its projection
on the matrix of exogenous variables including the instrument Pullit , at the deciles
from 0.1 to 0.9. Though not reported in the table, all regression included time �xed
e¤ect, MSA �xed e¤ect and census tract characteristics. Robust standard errors are
calculated using bootstrap.
Data Source: Neighborhood Change Database [NCDB] Tract Data from 1970 to 2000,
GeoLytics.
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Table 3.4: Immigration and Housing Supply Change: Instrumental Variable Quantile Regres-
sion

Dependent Variable: The Change of Log Housing Supply Increament

q10 q20 q30 q40 q50
Immigrant In�ow -6.559*** -4.893*** -3.824*** -2.784*** -2.069***

(0.159) (0.133) (0.110) (0.082) (0.093)

q60 q70 q80 q95
-1.451*** -0.630*** 0.301*** 3.442***
(0.073) (0.061) (0.092) (0.263)

Note: This table displays the e¤ect of immigrant in�ow on housing supply change at
di¤erent quantile levels. Though not reported in the table, all regression included time
�xed e¤ect, MSA �xed e¤ect and census tract housing characteristics.
Data Source: Neighborhood Change Database (NCDB) Tract Data from 1970-2000,
GeoLytics.
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