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Abstract

In the first part of this thesis we consider the cubic Schrédinger equation

iug + Au = +ulPu, z €T3, tel[-T,T), )
u(z,0) = ug(z) € H*(T?).

T is the time of existence of the solutions and Tg is the irrational torus given by R? /017 x 657 for 01,05 > 0
and 61 /05 irrational. Our main result is an improvement of the Strichartz estimates on irrational tori using

a counting argument by Huxley [43], which estimates the number of lattice points on ellipsoids. With this

Strichartz estimate, we obtain a local well-posedness result in H® for s > %é. We also use energy type

estimates to control the H® norm of the solution and obtain improved growth bounds for higher order
Sobolev norms.

In the second and the third parts of this thesis, we study the Cauchy problem for the 1d periodic fractional
Schrédinger equation:

iug + (—A)%u = £jul?u, x €T, tER, @
u(,0) = uo(z) € HA(T),

where a € (1/2,1). First, we prove a Strichartz type estimate for this equation. Using the arguments from

l—«o

5. However, we prove local well-

Chapter 3, this estimate implies local well-posedness in H?® for s >
posedness using direct X estimates. In addition, we show the existence of global-in-time infinite energy
solutions. We also show that the nonlinear evolution of the equation is smoother than the initial data. As
an important consequence of this smoothing estimate, we prove that there is global well-posedness in H*® for
s> %. Finally, for the fractional Schrédinger equation, we define an invariant probability measure p on
H? for s < a— %, called a Gibbs measure. We define u so that for any € > 0 there is a set 2 C H? such that
1(Q°) < € and the equation is globally well-posed for initial data in £2. We achieve this by showing that for

the initial data in €2, the H® norms of the solutions stay finite for all times. This fills the gap between the

1

local well-posedness and the global well-posedness range in almost sure sense for PTQ <a-—j3,le a> %

ii



To my parents, Ayten and Metin Demirbas for their love and support.

iii



Acknowledgements

I would like to express my deepest gratitude to my advisers Prof. Burak Erdogan and Assoc. Prof.
Nikolaos Tzirakis who guided me and supported me endlessly. Without their knowledge and encouragement,
this study would not have been successful.

I would also like to thank Professor Marius Junge and Prof. Jared Bronski for their participation in my
thesis committee, their comments were most valuable in the completion of this dissertation.

I would like to thank the Mathematics Department for giving me the chance to be at University of Illinois
and I would like to thank all my professors for the knowledge and inspiration they give. I would also like to
thank Professor Gigliola Staffilani for bringing to my attention the work of Huxley.

I would also like to thank Lucia Black, Elizabeth Simpson, Caglar Uyanik, and many more for their
support and friendship. I would also like to thank my lovely wife, Elyse Yeager for showing me that there
is beauty in everything and her parents, Lenore and Tom Yeager for accepting me to their family with open
arms.

I would also like to thank Rebecca Ginsburg and Lance Pittman for giving me the opportunity to teach
at Danville Correctional Center, it has been a wonderful experience. Also I would like to thank the GEO,
Graduate Employees’ Organization and everyone there for their good work in making this university a better
place for graduate students.

I am deeply thankful to my family for their endless patience, help and support throughout my education.

Without their love, I couldn’t have been where I am now.

v



Table of Contents

Chapter 1 Introduction . . . . . . . . . @ i i i i i i i ittt i it ittt e et e

Chapter 2 Background and Tools . . . . . . . . . . i i i i i i i i ittt ettt et e e e
2.1 Basic Definitions and Estimates . . . . . . . . . . . ...
2.2 Strichartz Estimates and X% Spaces . . . . . . . .. ... ...

Chapter 3 Local Well-posedness for 2-D Schrodinger Equation on Irrational Tori and

Bounds on Sobolev NOIrms . . . . . . i i i i i e e e e e e e e e e e e e e e e e e e e e
3.1 Introduction . . . . . . . . . .o
3.2 Notation and Preliminaries . . . . . . . . . . . . . .
3.3 Local well-posedness in H® . . . . . . . . . . e
3.4 Growth of Sobolev norms . . . . . . . . . .. e e

Chapter 4 Existence and Uniqueness theory for the fractional Schrédinger equation on

the torus . . . . . o L e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
4.1 Introduction . . . . . . . . . L L e e e
4.2 Notation and Preliminaries . . . . . . . . . . . . . e
4.3 Strichartz Estimates . . . . . . . . . . L
4.4 Local well-posedness via the X*® method . . . . .. .. ... ... ... .. .. .. .. ....
4.5 A smoothing estimate . . . . . . . .. L
4.6 Global Well-posedness via High-Low Frequency Decomposition . . . .. ... ... ... ...
Chapter 5 Almost Sure Global Well-posedness for Fractional Cubic Schrodinger equa-
tion on torus . . . . L L L e e e e e e e e e e e e e e e e e e e e e e e e e e e e
5.1 Preliminaries . . . . . . . . L e e e e
5.2 Introduction . . . . . . . . . . e e
5.3 Almost Sure Global Well-posedness . . . . . . . . . . . . . . . . e
5.3.1 Construction of the Measure on H®: . . . . . . . .. ... ... ... ... ...
5.3.2 Invariance of g Under the Solution Flow . . . . . . ... ... ... ... ... ....
References . . . . . . i i i i i i i i e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e



Chapter 1

Introduction

In this dissertation, we consider certain periodic cubic Schrodinger equations of the form:

iug + Au=EluPu, zeQ, te[-T1], (1.1)
u(z,0) = uo(x) € H*(Q),

where A is a certain Laplace or Laplace-type operator. In two dimensions, €2 is the irrational torus given by
R2 /017 x 027 when 01,05 > 0 and 6 /0, is irrational. In one dimension, (2 is the regular torus.

Equation 1.1 belongs to a broader class of differential equations called dispersive equations. Dispersive
equations are characterized by the property that frequency-localized bumps propagate with a velocity de-
pending on the frequency, without changing their shapes. In general, on unbounded domains, the solution
decays over time and time averages get smoother. On bounded domains, there is no decay, but a more subtle
averaging effect occurs in the form of a Fourier restriction estimate.

In the following chapters, we answer several fundamental questions about periodic cubic Schrodinger
equations. For example, we determine whether there is a unique local (global) in time solution to the
equation which is continuous with respect to the initial data in certain subsets of Sobolev spaces. If so, we
say that the equation is locally (globally) well-posed.

When the equation is known to be globally well-posed on the Sobolev space H?®, we know that for all
times, the H® norm of the solution remains finite. For such an equation, the natural question to ask is
how fast the norm grows in time. Using simple iteration arguments, one can generally prove that the norm
can grow at most exponentially. The question then becomes whether the Sobolev norm growth is actually
exponential: is it bounded by a polynomial or logarithmic function, or perhaps even by a constant?

When we try to prove well-posedness, restricting ourselves to a subset of H® spaces is often necessary
due to the regularity loss incurred by estimating the solutions of the linear Schrédinger equation in Lebesgue
spaces other than L2. The estimates of this type are called Strichartz estimates. To overcome this problem,
we try to find local well-posedness of the equation in a subset of H® which better incorporates the structure

of the equation. These spaces are known as X*° or Bourgain spaces, see (2.13). In the literature, we refer



to well-posedness in X*® spaces as H*® well-posedness. Well-posedness in H*® spaces themselves we call
unconditional well-posedness. In this thesis, we consider only H?® well-posedness.

In the third chapter of the dissertation, using a contraction argument, we prove that the 2d periodic
Schrodinger equation, where A is the Laplace operator A on irrational tori, is locally well-posed on H* for
s> %é. We also prove a polynomial in time upper bound on the Sobolev norm of the global solutions. This
result, however, does not imply the global in time boundedness of the solutions, see [41].

This local well-posedness result heavily depends on the Strichartz estimates. On R2, these estimates are
byproducts of the decay estimates, but on periodic settings, since there is no decay in time, it is harder to
obtain them. In [7], Bourgain reduced the Strichartz estimates on the torus to a counting argument about

the number of lattice points on a circle. Using a similar argument and a theorem by Huxley [43], which

estimates the number of lattice points on an ellipse, we prove the Strichartz estimates on irrational tori with

131

535 derivative loss. After obtaining these estimates, we prove the bilinear Strichartz estimate, which controls

the product of two linear solutions. Then, with careful analysis on X*® norm of the frequency restrictions
of the solutions, we obtain the local well-posedness result. However, on irrational tori, it was expected that
Strichartz estimates exist without any derivative loss, as in the regular torus case. Indeed, Bourgain and

Demeter proved in [15]:

A n=-1l_ntl
e ol s, ppemg=ryy Se N7 =7 M ol )

for each € > 0, where p > % and supp uo C [—N, N]*~!. This proves the Strichartz estimates in full
generality up to e derivative loss.

To prove the polynomial growth, we use energy type estimates, i.e., we estimate %Hu(t)” g for a global
solution u of the equation. We estimate this term using the explicit form of the equation, estimates on the
frequency restrictions of the function, and Lemma (3.1.1), which was used by Bourgain in [9] to prove a
similar growth estimate for two dimensional Schrédinger equation on regular tori.

In the fourth and the fifth chapters we work on the 1d fractional Schrodinger equation, where A is the
fractional Laplacian (—A)® for o € (1/2,1). In the fourth chapter we first prove a Strichartz estimate with
1_TO‘ derivative loss, which by the arguments in Chapter 3 gives us local well-posedness in H® for s > 1_Ta
However, instead of using the same methods, we use direct X*® estimates to run the contraction argument
and prove local well-posedness.

We know that there is mass and energy conservation for the solutions of the fractional Schrodinger

equation. This energy conservation gives us a global in time control over the H* norm of the solution and



thus global well-posedness in H* whenever we have local well-posedness in H*. However, with the lack
of a conservation law at the H?® level, we do not have a priori global well-posedness in H® for s € (0, @)
below the energy level H*. In the second part of Chapter 4, we prove that the nonlinear evolution of the
equation is smoother than the initial data. Using this smoothing estimate and Bourgain’s high-low frequency
decomposition, we end this chapter by proving that the equation is globally well-posed in H® for s > %.
The high-low frequency decomposition method consists of estimating separately the evolution of the low
frequencies and of the high frequencies of the initial data in a (0, J) interval. Then we iterate this solution as
many times as possible to reach any given, arbitrarily large time, where at every iteration step we feed the
smoother nonlinear evolution of the high frequency equation to the low frequency equation, as long as the
energy of the low frequency equation is controlled by its initial energy. Although the smoothing estimate
is crucial for the high-low frequency decomposition method, it has more applications in understanding the
dynamics of the equation like the existence of global attractors, see [35].

In the fifth chapter we use probabilistic arguments to understand the set of initial data for which the
local solutions cannot be extended to global ones. For that, instead of trying to understand the structure of
the set, we show that the set is actually negligible with respect to a weighted Gaussian measure, called the
Gibbs measure. This idea of looking at the probabilistic properties of the set of initial data was initiated
by Lebowitz, et. al. in [49]. In this chapter, using the Hamiltonian structure of the Schrédinger equation
and Zhidkov’s arguments in [67], we explicitly construct the invariant Gibbs probability measure on H*® for
s<a-— % Finally, using Bourgain’s arguments in [8] we prove that for almost any initial data in H® with
respect to this measure, the solution is global. The main idea of the proof is to show that for almost any
initial data, the H® norm of the solution stays finite and by the blow up alternative, see page 18, we conclude
that the solution has to be global. This approach depends on the delicate balance between the polynomial
dependence of the local well-posedness time on the H® norm of the initial data, invariance of the measure,

and decay estimates on Gaussian measures.



Chapter 2

Background and Tools

2.1 Basic Definitions and Estimates

In this thesis we will use (-)* to denote (-)¢ for all € > 0 with implicit constants depending on € and will use
the usual Japanese bracket notation, (z) = (1 + 22)/2.
We will use A < B and A ~ B to denote that there is a constant C' > 0 such that A < CB and

C~'B < A < OB respectively.

Definition 2.1.1. [5] Bessel potential (J*) and Riesz potential (D?®) are the operators defined as
Jou=F (14 [¢)*a) and D*u=F'(|¢*a) (2.1)

where the F~1 denotes the inverse Fourier transform.

Definition 2.1.2. A function f : R® — C is called a Schwartz function if it is infinitely differentiable
and D7V f € L*®(R™) for all nonnegative multisndices pp = (p1, ..., fin) and v = (Y1,...,n) Such that

i, vi >0 for i€ {1,..,n}, where z* = ¥ ..xtn and DVf = 47 47

dx)™ "d.r;’l :

Definition 2.1.3. For a time interval I, the mized Lebesgue space Li(I, L") is defined via the norm:

1
(Sl dt)* ifq < oc
||UHL;?(I,L;) = g
sup [u(t)lz; ¥ g = oo,

and the space Cy(I, L") is defined as the space of continuous functions w: 1 — L.

Definition 2.1.4. Let (¢n)nen be a sequence of C°, compactly supported C™ functions, and let ¢ € C°.

We say lim ¢, = ¢ in CF if
n—oo
e there is a compact set K such that supp ¢, € K, for all n, and

e all derivatives of ¢, converge uniformly to the corresponding derivative of ¢.

4



Definition 2.1.5. The space of distributions, D', is the space of continuous linear functionals on C°.

From this definition, we see that if f is locally integrable, then f defines a distribution
7;6) = [ fodz,
R’!‘L

for ¢ € C2°, which we will also denote as f.

Definition 2.1.6. For every multindex 7y, one can define the distributional derivative, DV f, of f as a

distribution by

[ psode = -0 [ r070,

Rn R™

for all p € C°.
Definition 2.1.7. The space S’ is the space of tempered distributions on R™, which means that S’ is the
topological dual of S.

The Sobolev spaces are defined as follows:

Definition 2.1.8. For m € N, the Sobolev space WP is given by
WmP ={feLP:D"ue LP Vy multitndex such that |vy| <m}

with the norm

lulwms = [D%u| > (2.2)
[v|<m
~ multiindex

For p = 2, we write W™?2 = H™, and since p = 2, we can characterize the Sobolev space using the

Fourier transform. Namely, given m € N we can define
H™ ={ued8 : 1+ % e L}

with the norm

lallzzm = [1(1 + [€1%)™ /0 12 (2.3)

where S’ is the dual of Schwartz space. We are also going to denote by |[u[ gm = [||£|™ ]| 2 the homogeneous
Sobolev norm. Note the requirement m € N simply serves to make the definition consistent with the previous
one, and we can extend this definition to the noninteger real positive numbers. We can also extend it to

negative numbers by taking the dual of the positive indiced Sobolev spaces. For further details, see [5].

5



For Sobolev space we have the following result.

Theorem 2.1.9 (Gagliardo-Nirenberg Inequality). Fiz 1 < g,7 < 0o and m € N. Then for u € S(R"),
D7l o S 1D ull 2o llullza?,

where C' = C(m,n,j,q,7,\) and 1% = % + (% - %)/\—l— =2 and

For a proof, see [54].

We also have the following embedding result.
Theorem 2.1.10. Let m > 1 be an integer and 1 < p < co. Then
(1) if 1/p —m/n >0, then W™P(R") < LI(R") with 1/q=1/p—m/n,
(2) if 1/p —m/n =0, then W™P(R™) — LI(R"), for p < q < oo,
(3) if 1/p—m/n <0, then W™P(R™) — L>®(R"™).

For a proof, see [2] and [5].

One also can consider the interpolation of these Sobolev spaces

Theorem 2.1.11. [5, Theorem 6.4.5] Let numbers s, so, $1,Po,P1,0 be given, with 0 < 8 < 1. In addition,

put,

sx = (1—0)sg+ 0s1,
1-6 6

[ — + —.

p* Po b1

Then for sg # s1 and 1 < pg,p1 < 00, we have

(Wso,pg , WS1,P1)[0] — I/Vs*,p*7

where (W*oPo WSLP1) g s the interpolation space of W*0P0 and WPt of exponent 0, see [5, Definition

2.4.1].

Now, consider a compactly supported function ¢ € C(R™) such that supp(¢)) € R™ — {0} and
S (279x) =1 and call 1;(§) = ¥(277€); namely, consider a radial function ¢ € C°(R™) such that

¢(§) =1 for [{] <1 and ¢(§) = 0 for [¢] > 2,



then define (&) = ¢(§) — #(2€), which satisfies the above conditions. Then if we define the operator

~

Pjf = F~ (1, f), we have the following.

Theorem 2.1.12. [59, Theorem 8.3] For any 1 < p < oo, the Littlewood-Paley square function, Sf =

(Zj |ij|2>§, satisfies
[fllze ~ IS Fl e

forany f € S.

For a proof, see [59].

Moreover, using the Littlewood-Paley theory, one can prove the fractional Leibniz rule.

Theorem 2.1.13. [45, Theorem A.8]

For 0 < s,s1,s82 <1, s1 4+ s2 = s and Riesz transform D?:
1D*(fg) — fD*9 — gD* fllrzra < C||D* fl| o1 par | D* g| pp2 2,

where 0 < P,D1,P2,49,41,42 < 00 i=-1 + L and - =

1 1 _
v =t i = ot Moreover, for s; = 0, the result holds for

q1 = 0.

For a proof, see [45].

We now include several standard definitions that will be used in the last chapter.

Definition 2.1.14. Let X be a nonempty set. Then a nonempty collection M of subsets of X is called an
algebra if it is closed under finite unions and complements. In other words, if X1, Xo,..., X, € M, then
UR_1Xr € M, and if E € M, then E¢ € M. An algebra that is closed under countable unions is called a

o — algebra.

Definition 2.1.15. The smallest o — algebra that contains a collection of sets B is called the o — algebra

generated by B. The o — algebra generated by open subsets of X is called the Borel o — algebra.
Finally, we give the definition of a countably additive measure.

Definition 2.1.16. A countably additive measure i on a o — algebra A is a function p: A — [0,00] such

that

e u(0) =0,

o If {A,}{° is a sequence of disjoint sets in A, then p(US21A,) = > 07 u(Ay).



2.2 Strichartz Estimates and X*’ Spaces

—

For the general Laplace-type operator (—A), defined on the Fourier side as ((—A)u) = h(&)u, if we define

the linear Schrodinger equation:

iuy — (—A)u =0,

() o1

u(z,0) = uo(z) € H*(R™),
we see that the solution w has the form S(¢)ug for all ¢. Here, S(t) is called the linear propagator of the
equation and is defined on the Fourier side as (S/(t)\f)(t,5) = ¢ () f(¢). We should mention that in
Chapter 3 resp. Chapters 4 and 5, we are going to use the Laplace operators —A resp. (—A)* with the
multipliers h(m,n) = ((01m)? + (f2n)?), where 6, /605 is irrational resp. h(m) = |m|??.

In the general case of (2.4), we will denote the linear propagator S(t) as e'*A. Consider the cubic

Schrédinger equation,

iug — (—A)u = £|ul?u,
(2.5)
u(z,0) = up(x) € HS(R™).

We note that this equation enjoys mass and energy conservation,

MO = [ 1P = [ P = m0) (26)

and
4

E(u)(t):/n| 4u(t,z)|2¢i/n lu(t,z)|” = E(u)(0) (2.7)

respectively, where \/—A is defined on the Fourier side as /—Au = F _l(h(f)%ﬁ(g )). Formally, we can prove
these conservation laws as follows: For the mass conservation, if we begin with H!'-solutions, considering

H~! — H! duality product of (2.5) with 2u and integration by parts gives
2ifu, )11 = ~2(VRul}) 22 [ ful‘da,
Rn

Since the right hand side is real, we obtain the mass conservation on [0, 7). For the conservation of energy,

multiplying (2.5) by 2@; and then taking real parts give 2Re ii;(—Au) = |u|?(Ju|?); from which it follows that

1
0 (—Au)ﬁdz:ﬁ:/1|u|4d$

Rn R

T dt

d 1
== /|\/—Au|2dmi1/(|u|4)dsc )

Rn



by using integration by parts. These formal computations make sense for H2-solutions. By using continuous
dependence results, one can approximate L? and H'-solutions with H' and HZ2-solutions, respectively, to
obtain the necessary conservation laws.

By the Duhamel Principle, we know that the smooth solutions of (2.5) satisfy the integral equation
. t . ’
®(u)(t, ) = e ug(z) Fi / A |y 2 (!, x)dt. (2.8)
0

Since we want to prove local well-posedness, finding the fixed point of this integral operator in time

interval [0,T] for T' < 1 is equivalent to finding the fixed point of the integral equation

O(u)(t,x) = Y(t)e S ug(z) T iw(t/T)/O e Ay 2t ) dt, (2.9)

where 1(t) is a compactly supported C*°(R) function ¢ such that (t) =1 for 0 <¢ < 1 and 9(¢) = 0 for
t < —1 and ¢t > 2. Here we call the first term on the right hand side the linear evolution term, and the second
term the nonlinear evolution term. Thus, our main concern is to find the fixed point to the integral operator
in certain metric spaces. For this, we need to find ways to estimate the terms in the Duhamel formula. One
of the important estimates of the local and global well-posedness theory are the Strichartz estimates of the
form:

itA

lle UO”L;IL; S HUOHH;CM

for certain pairs of (¢, r) and sy > 0. This estimate tells us that when we are trying to estimate the Lebesgue
norms of the solution, even for the linear evolution we may have some regularity loss.
On R, for the regular Schrédinger equation, i.e. for A = A, or equivalently h(¢) = |£]?, we have the

following lemma.

Lemma 2.2.1. [22, Lemma 2.2.4] For allt # 0 and all ug € S(R™), we have,

_ iz—y|?
e’muo:(élm't)*?/ e T ug(y)dy,

n

which gives us the dispersion estimate,

A uollzz < (4mt)™ uollzy.

Using this lemma with ||e“Au0||L§ = ||Jugl|z2 for all t € R and interpolation, one can show the following.
Proposition 2.2.2. /22, Proposition 2.2.3] If p € [2,00] and t # 0, then e®® maps L (R™) continuously

9



to LP(R™) for % + 1% =1, and

; _n(i_1 / n
e Aol Lo zny < (@4mft]) ™27 Jug || s gy for all uo € L' (R™),
For proofs, see [22].
Now we define an admissible pair.

Definition 2.2.3. A pair (q,r) is admissible in R™ if (¢,r,n) # (2,00,2), and

and 2 < r < co. We note that (c0,2) is admissible, and will correspond to the L2, or mass conservation,

and so is important.
Using this definition, we can state the following.

Theorem 2.2.4. [Strichartz Estimates, [22]] If (q,7) is admissible, then the following properties hold.

e For every ¢ € L2, the function t — e ¢ belongs to
LI(R, L) N Cy(R, L2).

Moreover, there exists a constant C such that
Hei(.)ASOHLf(R,L;) < Clellz:-

o Let I be an interval of R, J = I, and 0 € J. If (v,p) is an admissible pair and f € LZ/ (I, Lgl),
then for every (q,r), the function t — fot A F (N dt! for t € I belongs to LY(R, L7) N Cy(R, L2).

Furthermore, there exists a constant C' depending on q,r,y and p that is independent of I such that

t
/ ei(t—t’)Af(t/)dt/

0

< Clfll

Ly (1,18
L(I,Ly) )

Again, see [22] for details.

These results have more importance in the R" setting in the sense that Lemma 2.2.1 implies that
le"* P uo | e < (47 t)) ™% o] 1,

10



which means that the solutions decay in time. But this is not true in the periodic setting. Thus, although
we wouldn’t expect to have a result as strong as Theorem 2.2.4 on the periodic setting, we can still prove
Strichartz estimates for certain pairs of (g, r).

In 1d, for the regular Schrédinger equation on the torus, i.e. for h(m) = m?, Bourgain showed

||€itAf||LgL;% S ||f||Lg-

This follows from the fact that Vm € Z, #{n € Z : m? — (n —m)? = k,k < N?} < 2. (See [7] and the proof
of Strichartz estimates in Chapter 3 for this counting argument.) This implies that the cubic Schrodinger
equation is locally well-posed in L{L2 for L? initial data. In this case, the L? conservation of the solution
implies that the local solutions are also global. Later Burq, et al. in [16] showed that the equation is ill-posed
in H? for any s < 0, by showing that the initial data to solution map cannot be uniformly continuous. This
result was improved by Christ et al. in [25], where they showed that the solution map not only fails to be
uniformly continuous as a function in H?® but also as a function from C*° to distributions.

In 2d, for the regular Schrédinger equation on torus, however, Bourgain showed using a similar counting
argument that Vm € Z2, #{n € Z? : |/m|?> — |n — m|?> = k, for k < N2} < N¢. This result was obtained
using the number theoretical argument that the number of divisors of a number of order N is at most of

order N€. This counting argument gives us the Strichartz estimate

1€ Fllars S 1z (2.10)

for so > 0. Using this Strichartz estimate, Bourgain proved that the Schrodinger equation is locally well-
posed in H® for s > 0.

Our main goal in Chapter 3 is to obtain the estimate (2.10) for some sg > 0, and find a fixed point to
the integral operator ® in H?® for some s > 0. Since the linear propagator is an isometry in Sobolev spaces,
to prove local well-posedness in H?, we would not need to use this estimate in the linear evolution term in

the Duhamel formula. However, if we try to estimate the H*® norm of the nonlinear evolution term
t . ’
/ ez(t—t )A \u|2u(t’, l‘)dt/
0

heuristically, to be able to run the contraction argument, we would want to have estimates of the form

< Tfu(t)ll3- (2.11)

t
/ e A Pyt z)dt!

0
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for some a > 0, where we would use Sobolev embeddings, Holder inequality and Strichartz estimates. Since
we are going to use the Strichartz estimates, these heuristic estimates suggest that we look for local well-
posedness in H® for s > sq.

Thus, to prove local well-posedness in H*, one needs to find the fixed point of the integral equation ® in

a metric space of the form
Dy ={u e C([0,T], H?) : u(0,2) = uo(z) and ||ul|pe(o,1),5°) < 2luollm:},

with the metric d(u,v) = ||[u — v/ (jo,7],55). However, it is quite hard to justify the heuristic estimates
(2.11) for any s > so. Thus we are going to restrict ourselves to a subset of H® which incorporates the
structure of the equation more explicitly.

If we take the Fourier transform of the equation (2.4) both in time and space, we see that the solutions
satisfies the equation

(t+h(§))u(r,&) =0 (2.12)

for all (7,&). This implies that on the Fourier side the solution of the linear Schrédinger equation is localized
around the hypersurface 7 = —h(£). Of course this observation does not hold for the cubic Schrédinger
equation (2.5). Since the linear solutions are ‘good’ in the sense that they are global and preserve the
Sobolev norms of the initial data, it is reasonable to ask how much the solution of (2.5) deviates from the
solution of the linear equation. To account for this deviation, we will define the Bourgain space, X*?, as

the closure of the compactly supported smooth functions under the norm

lullxs0 = [1€€)*(T + (€))A(T, )l L2 L2 (RxRn) (2.13)

where the Fourier transform is taken in both space and time. As the definition is given in R x R™, we can

also define the restriction of the Bourgain space on I x R™ for some time interval [0, 7] as
lull 0 = E{ fllcew  f € Xap, f(E) = u(t) Ve [0,T]} (2.14)

This norm (2.13) can be written in another form using the linear propagator and Bessel potentials in

time and space, J; and J, respectively, as

—itA

lull xow = 177 Tz * ul@, )| 2,2y = le™ " ull gy ag. (2.15)

12



or in terms of an iterated norm, as

1wl xs0 = ||@7ith(€)ﬂ(fat)”HfL@((g)zs)a (2.16)

where the Fourier transform is taken in space. Here we first take the H? norm and then take the weighted
LZ norm with the weight (£)*.

From this definition, we have the equality,
[ullxo0 = llullLzr2-
Moreover, by Sobolev embedding we have Hz*(R) — C(R), and this gives us the embedding,
X%2t o Cu(R, HY),

see [64]. This embedding and the aforementioned observations suggest that X*° spaces may be more
appropriate to work with.

For these spaces, we can see that there is a trivial embedding
Xs/,b' c Xs,b

for s/ < s and b < b. Also from Parseval’s identity and Cauchy-Schwarz inequality we have the duality
relationship

(Xs,b)* — X_S’_b.

These spaces behave well under interpolation in both indices s and b. One of the most problematic properties
of these spaces is that although they are invariant under translations in space and time, they are not invariant
under conjugation. This means even though a function u is in a Bourgain space X, this does not imply
that its conjugate @ is in that Bourgain space.

To find a fixed point of the integral equation (2.8), we use the Banach Fixed Point Theorem on the metric
space

Br ={uc X0 . u(0,2) =up(xz) and HUHX;b < 2C|\uo|| g5 }s

with the metric d(u,v) = [Ju — v| v+ and get a contraction for sufficiently small 7', where C' is going to be
T

defined later.
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In this thesis, by local and global well-posedness we mean the following.

Definition 2.2.5. We say the equation (2.5) is locally well-posed in H?® if there exists a time Trwp =
Trwe(||uol|gs) such that the solution exists, is unique in X;pr C C([0,Tcwp), H?), and depends con-
tinuously on the initial data. We say that the the equation is globally well-posed when Tpwp can be taken

arbitrarily large.

This means that for these X*° spaces we have to prove Strichartz-like estimates, namely estimates
concerning the solution operator and embeddings into spaces like Sobolev or Lebesgue spaces whose theories
are much more widely explored. Although the study of X*? spaces are well studied in the context of other
differential equations as well, in this thesis we will only focus on the estimates and embeddings closely related
to the Schrodinger equation.

Since LP spaces are much easier to work with, to study nonlinear Schrodinger equations, one can make

use of the following estimates, proofs of which can be found in [39]. We use the following.

Proposition 2.2.6. For s € R,

||€itA¢||X;,b < C|l¢llgs, for —oo<b< oo, (2.17)
[[wll o.-01 < C’Tbl_bQ_HuHXs,sz, for 0<by<b; <1/2, and (2.18)
T T
t
‘ / Ay () dt! <CT Oyl o, for 1/2<b<1, 0<b+b <1, (2.19)
0 X;,b T

where C is independent of T.

Proof. First we prove (2.17). To this end, take the compactly supported C*°(R) function ¢ defined in (2.9).

Then we have

e @l oo < 9/ T Dl xo0 = I T3 (9 (t/T)e™ 6) 2w, 12)
= |J2 (W (t/T)D) || L2 (r, 12y

< NPl 2@y 150 L2rny < Cll@l e,

which is (2.17).

Using the time localization, (2.18) would be shown if we could show

[t/ Tl o0 < CT" 727 ] 02 (2.20)
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By duality, it is enough to show

19t/ Tull s < CT %27 |lul| xou0n (2.21)

To prove (2.21), set f(x,t) = J' Jse it y(z, t), so:

— bz —b1
It/ Tl e = |82 (0TI F)| L (2.22)
Using (2.16) and setting Jt_blf = g, the inequality (2.18) will follow if we can show
||¢(t/T)9||Hfz (R) < CTb17b27 ”g”Hfl (R)" (223)
By [45, Theorem 3.5], we have
19/ T)l oy < CT > Ngll ey, for 1/2<a<1.
Since
oT 1/2
[ @/T)gll 2@y < C (/T |g(t)2dt> < CTl/zfl/q”g”Lq(R)’
and by the Sobolev embedding theorem, ||g||zs®) < C|lg||ge for 2 < ¢ < oo and b=1/2 —1/q, so
l(t/T)gll 2y < CT llgllme, 0 <D< 1/2. (2.24)

For sufficiently small € > 0 we let a = 1/2+¢€, b = (by — b2)(1 + 2¢)/(1 — 2by + 2¢) and 6 = 2b3/(1 + 2¢) and

interpolate between (2.2) and (2.24) to get

1t/ T)gll e = 10/ TGl rao gy < CT 2O g prasioi—o ).

To prove (2.19) we are going to follow the arguments in [45]. We prove:

For b,V such that 0 <b+b' < 1,0 <?¥ < 1/2, we have

First note that, from the definition of the norm X*° it is enough to bound |[4(¢/T) fot )t gy =

t
/ ei(t—t')Ag(tl)dt/
0

Y N N4
ST gl

T

for T € [0,1].

15



[¥(t/T) | xj0.0f(t")dt"|| v, where f(€,t') = e~ Wh&G(e, 1), and the Fourier transform is taken in space
variable.

For this term, from Parseval equality in time variable, we have,

[0/T) [ xonf @)ty = ot/ | @;7; Frydr|

< ||1/) t/T) Z / sz 1f dTHH”JF||1/’ t/T) / eitT( . 1f dTHHb
\7'|T<1 7> 1
o) [ i,
|7|T>1
= I+I1I+1I1I
For I, we compute
o k—1
I = H?ﬁ(t/T) il / (i7) f dTHHb
=L rr<a
o0 1 ,
= Zghﬁ’“w t/T) | T k|\f||H o ( / ()2 )12
! I7|T<1

< TR f| L since 0 < b < 1/2.

For 11,
I = Hw(t/T) / eitT(Z'T)_lf(T)dTHHf
7| T>1
_ '\ 1/2
< 10/ g [ 720
7| T>1
< Tl*(ber’)HfHHf_b,

For the last term,

mr = |e/1) [ ) oy = 10 G < Dlos
7| T>1
J
S [P @/ T e ez + 1@/ T) 2 1)
<

1= (b+b") Hf”H—b’a
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since

_ ’
1M p < U Fll gy sup 7= H7)PHP,
| T>1

and

P el s

Then the proof of (2.19) follows. O
We now give an important corollary.

Corollary 2.2.7. For s € R and sufficiently small € > 0:

t
/ ez‘(t—t’)A u(t’)dt’

0

S CHUHX;,fl/Zﬁ»Se, (225)

X;,1/2+5
where C'is independent of T.

Proof. In (2.18) and (2.19), setting b=1/2+¢, b =1/2 —e=—(b—1) and by = 1/2 — 3¢, we get

t
/ ei(t—t’)A u(t’)dt’
0

< COT ¢ op, < QT €T1—b2—¢ _
givane O lln <€ el .0

S CHU||X;,71/2+35,

which is (2.25) O

For further discussion on X*? spaces, consult [64].
We would also like to note that for the cubic Schréodinger equation (or more generally, when the nonlin-

earity is locally Lipschitz), to run the contraction argument it is enough to show estimates of the form

t
H / ei(tft’)A (\u|2u)(t’)dt’
0

S T3

b
S,b ~Y Xsa
X7 T

on the nonlinear evolution term in the Duhamel formula for some a > 0. If we can show such an estimate

on the metric space

Br ={u¢ X5b . u(0,2) =up(xz) and HU”X;,b < 2C|\uo|| g5 }s
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where C' = || JPY| 12w), with d(u,v) = |lu — U||X;,b, we see from Duhamel formula that, for u,v € Br,

t

u(t) —v(t) = e "™ (ug — o) Fi / e R (uPu(t') — (|oo)(¢)) dt (2.26)
0

= 4 / e A (JuPu) (') — (Jo]?o)(t'))dt'. (2.27)
0

Thus,

2
= vl gz < Tl o+ olz) = ] o

which, for u,v € By, and T sufficiently small gives us the contraction.
The continuous dependence also follows in a similar fashion: if ¢, — ¢ in H®, and w,, and u are the

corresponding solutions, then again by Duhamel formula and Proposition 2.2.6 we have
2
i — tll s < Clln — Blaze + T (el gz + oyl — ol
Then for n large and 7' small enough so that u,,u € By and T (|Ju/| ys.» + HU||Xs,b)2 <1, we get
T T
Jin = ull gz < 2C ] — Dl

which means u,, — u in X:sp’b. Hence, in the following chapters, we are going to omit proving the contraction
and continuous dependence explicitly and only give the trilinear estimates. We should also mention that,
from the arguments above, the local well-posedness time T" depends on the H® norm of the initial data as
T ~ (m)% Thus, if |u(Ty)||a; < A for some T, then there exists a T4 > 0 which only depends
on A such that the solution exists in [Ty, Tp + T4). Now, if we have local well-posedness in [0, Tynqz), but
not in [0,7") for T" > Tpaz, and if tJiIEar lu(t)|zs = B < oo, then we can pick a time T such that
HU(T)HHL < 3B/2 and Typar — Tapj2 < T. This gives us a contradiction since at time 7', we can iterate
the solution to time T + Ts55/2 > Tmae- Hence, for such T,q., we have t_}ijgﬁﬂ lu(t)||zrs = oo, which is also
known as the blow up alternative. In particular, this tells us that if we can control the H; norm of the
solution for all times, we will have a global solution.

For s > %, the calculations are much easier. For s > 0, noting that (£)* < 22¢((¢ —n)* + (n)*) for any

n € R™, we can prove the algebra property:

A ORI GIR
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< [ ([ @@ - watnldn) a

~ o~ ~ G A~ 2
s [ ([ 1=t = ot + fats = mn)onldn) de
S Nl 003 + 0 ol
S Nl ol

by Young’s inequality and since

falle = | EE©1dE < 1) oalllle $ e

for s > 3 by the Cauchy-Schwarz inequality.

Using this algebra property of H® we see that, on the metric space Dr,

t
|l e qorrirry < Nl uollzo (o, + | / O (ulPu) (¢t o o,10)
t
< Jluollas + /O &7 (ula) (¢) o< (10,79, 15t
t
< Juolla + / I ala0) ()| ot 710y
< ol are + Tl o 21,110

Similarly, we can show

2
d(u,v) = [[u— vl peo (o1, m5) < T(ull Lo o,r1,m5) + 10l Lo 0,71, 55)) It — | oo (0,77, 15

With the arguments above this tells us that there is almost immediate local well-posedness for the Schrodinger

n

5, where the local well-posedness time depends on the H*® norm of the initial data

equation in H? for s >
1
as TLWP ~ W
In the following chapters we will state Proposition 2.2.6 in the relevant context without proofs, and we

will give more estimates on Bourgain spaces.
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Chapter 3

Local Well-posedness for 2-D
Schrodinger Equation on Irrational
Tori and Bounds on Sobolev Norms

3.1 Introduction

The equation we consider in this chapter is the cubic, Schrodinger equation on irrational tori, namely,

iug + Au = +uPu, z€T2, te[-T,T),
(3.1)

u(z,0) = ug(z) € H(T3).
T is the time of existence of the solutions and ']I% is the irrational tori, R?/61Z x 057 for 61,05 > 0 and
01/605 irrational. The equation is called focusing when the sign in front of the cubic term is negative and
defocusing, when positive.

The equation (3.1) posed T?, has been studied widely for its importance in the theory of differential
equations. For the defocusing equation, for any initial data in H' there is global well-posedness and global
bounds on the Sobolev norm of the solution, see [7]. In addition there have been many results on the
well-posedness of (3.1) for both focusing and defocusing case for rough initial data (in H*® for s < 1) on two
dimensional torus, see [12], [18], [23], [28], [40], [60], [61], [63] and also on more general compact manifolds,
see [17], [68]. One of the main difficulties of the theory on general compact manifolds is that one has to use
spectral decomposition of the Laplace-Beltrami operator, as a generalization of the Fourier series. But since
the spectrum and the eigenfunctions of the operator on arbitrary compact manifold are less understood,
standard arguments on regular torus cannot be applied in their full generality. In [17], instead of using
Bourgain’s arguments, the authors used families of dispersive estimates on small time intervals depending
on the size of the frequencies of the data. This idea was used in the works of Bahouri-Chemin, see [4], and
Tataru, see [65], in the context of low regularity well-posedness of quasilinear wave equations. Later, Herr
in [42] considered the quintic Schrodinger equation on 3 d compact manifold M such that all geodesics are
simple and closed with a common minimal period. For this equation, he was able to prove certain Strichartz
estimates and local well-posedness in the energy space H!(M). Then the question would be whether a

similar result may hold for compact manifolds without a common minimal period for geodesics, and the
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simplest such manifolds are the irrational tori. In the following, we prove Strichartz estimates and the local
well-posedness in certain H® spaces.
One of the main tools in proving local well-posedness is the aforementioned Strichartz estimates, i.e.

estimates of the form

||6itAf||LfL§(T><'JI‘§) S ”f”HSTO(’]I‘g)’ (3.2)

for some sy > 0 and f € H? (T2). Our main focus in this paper will be on the improvement of this estimate
on irrational tori. As one can see for §; = 03 = 1 we get the usual (flat) torus. Although the domain
resembles the flat torus, the tools used to prove (3.2) are fundamentally different. The reason behind this
difference is that the symbol of the Laplacian on flat torus at any (m,n)-level is m? +n? whereas the symbol
of it on a irrational torus is of the form (6;m)? + (fn)?. Thus the method of counting lattice points on a
circle to get (3.2) cannot be applied here. In 3-d, Bourgain [12], used bounds on the [P-norms on the number
of lattice points on the ellipsoid and Jarnick’s estimate [44] to get (3.2) with so = . A slight modification
of his method in 2-d gives us a %—derivative loss in (3.2). But this result was already proven for not only
on irrational tori but also on any two dimensional compact manifold, see [17]. This remedy was overcome
in Catoire and Wang’s paper [23] using Jarnick’s estimate, see [44], in two dimensions without passing to
the [P-norms of the number of lattice points on ellipsoids. They obtained (3.2) with % = % The first part
20 = 131

= 55 using a counting argument

of this chapter will be consisted of our main result, improving (3.2) to 33

of Huxley, [43]. In the second part of the chapter, using the theory of Bourgain spaces, we prove local
well-posedness for initial data in H®, s > s¢ and also polynomial bounds on the growth of the Sobolev norms
of the solution for the defocusing case. On 2-d flat tori, we should note that the local well-posedness theory
gives the exponential bound |[u(t)||zs < CM, see [9]. Also in [9], Bourgain improved this exponential bound

with the polynomial bound ||u(t)||grs < C(t)2(~D+ using the following polynomial estimate:

Lemma 3.1.1. If there exists a constant r € (0,1) and 6 > 0 such that for any time to we have,
luto + )17 < Iluto) 7 + Cllulto)IF"

then we get

lu@®)llms < Q1+ [t)7.

It suffices to prove this result for ¢ being an integer multiple of § and the rest follows from induction.
This result was later improved by Staffilani, see [62] to ||u(t)|zs < C(t)*=D+. On 2-d irrational tori,

using Zhong’s arguments [68] and the lemma above, Catoire and Wang proved the norm bound ||u(t)||ms <
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(s=1)
C(t) =35 ', see [23]. In this chapter we are going to improve the polynomial bound on 2-d irrational tori to

the exponent %4’.

Recently, Bourgain and Demeter, in [15], proved the I? decoupling conjecture for compact hypersurfaces
with positive definite second fundamental form. One of the main implications of this result is the full range
of the expected Strichartz estimates for both the flat and the irrational tori up to a factor of ¢, i.e. the
Schrodinger equation on irrational tori is LWP in H® for s > 0. In [46], Killip and Visan removed the €
factor in the case of irrational tori except for the end-point LP case.

We should also mention that the upper bounds on the growth of the Sobolev norms of the solutions does
not necessitate boundedness of these norms. In [41], authors proved that on T¢ for d > 2, for s € N, s > 30,
there exist global solutions u(t, z) to the Schrédinger equation such that liin sup ||u(t)|| g= = oo although the

—00

initial data has arbitrarily small Sobolev norms. However, the lower bounds on the growth of such norms

on irrational tori will not be discussed here.

3.2 Notation and Preliminaries

The linear propogator of the Schrédinger equation on the irrational tori will be denoted as e, where it
is defined on the Fourier side as (EA\f)(ml,mg) = e itQm1Lm2) f(m) my), where Q(my, ma) = (f1my)? +
(Bamz)?.

The corresponding Bourgain spaces X*? will be defined as the closure of compactly supported smooth
functions under the norm
—itA

ull p @y sz (rz) = I = Q(m,n))? (jml + [nf)*a(m, n, 7)| 122

T (m, n)

[ul[x-0=[le
and the restricted norm will be given as
||u||X;,biinf(Hv||Xs,b, for v=won [0,T]).
We also note that the equation has mass and energy conservations, namely,

M (u)(t) = - lu(t, x)|* = M(u)(0),

/|Vutx|2 /|ut9; E(u)(0).
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Thus, for the defocusing equation, i.e. when the sign is plus, we have global bounds on the H'-norm of
the solution. This also says, for defocusing equation we have H! global well-posedness.

Throughout the chapter, L?L2? will denote the space L7L2(T x T2). We will also use L7L2([0,T]) to
denote L?L2([0,T] x T%), and same notation will be used for Sobolev spaces too.

For any operator D and positive number N, X being the characteristic function, yXu is defined to be

X e[, 2z i.e., the projection of u onto the frequency set where De [N, 2N].

131

Also, in this chapter we will use so = 375-

3.3 Local well-posedness in H*

In this section we are going to prove,

Theorem 3.3.1. The 2-d cubic Schridinger equation (3.1) is locally well-posed for initial data ug € HE for
S > Sp.

Proof of Strichartz estimates

To be able to prove (3.2), we will use a counting argument by Huxley, [43]:

Theorem 3.3.2. For a,b,c € R, let Q = Q(m,n) = am? +bmn + cn? be a positive definite quadratic form,
where a > 0, D := 4ac — b*> > 0. For x large, we have

#{(m,n) € 22 : Q(m,n) < v} = —=z + R(z),

where R(z) < x0T,

Theorem 3.3.3. Let f € L2 such that supp(f) € B(0,N), then
e fllzars S N fllza-
Proof.

I Baps = 12 ) zee

H [ Z | Z f(n)‘}/c\(m — n)e—it(Q(n)-‘rQ(m—n))|2] 1/2‘

meZ2 neZ?

meZ?2 neZ?

L?

]1/2
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[T Y Fmimen) "

mez2  keZ |Q(n)+Q(m—n)—k|<1/2
where, to pass to the last inequality we used:
- 2
Lemma 3.3.4. H Yon eztanb”HL%[O,l]) N Zﬂz‘an,ﬂgyz |bn ).

Proof. For any finite sum over n, write || >, e““"aniz([oJD = || D5 2lan—il<1/2 eitan b”Hiz([O,l])’ Hence,

for a bump function ¢ s.t. ¢(¢) =1 in [0,1] we have

2 2
bn ita, < bn itan t ‘
H; ¢ 2[0,1] ; e elt) L2(R)
b,\ 2
= Z n¢(€_an) L2(R)
n
1 2
< by |————
~ anl |<£—an>“ L2(R)
1 2
=12 X Il
e iy (& T IE®
SIS = = owdl;
S Sy
< >0 > b

J o lan—jI<1/2

Here, to pass to the second line we used Plancherel’s equality. In the third line we used that the Fourier
transform of ¢ is a Schwartz function and decays faster than any polynomial, and thus we can choose an

a > 1. Also to pass to the last line we used Young’s inequality. O

Then, write |Q(n)+Q(m—n) —k| < 1/2 as |Q(2n —m) + Q(m) —2k| < 1 and letting 2n € m + G| where
I =2k—Q(m) and G; = {a € Z? : |Q(a) — 1| < 1}, we get

[ f2, s [N Y fmfem-n?]"
meZ2 leZ 2nem+G,
< [T X fmim-ne?]

meZ2 €L 2nem+G,

since Gy ={a € Z*? : |Q(a)| <1+ 1} — {a € Z? : |Q(a)| < I — 1}, using Theorem 3.3.2, we get

|Gy| S 1o,

and hence, using [ < N2, we obtain,
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) . . 1/2
le 2 s S NI Y fmrfm -]
meZ2 I€EZ 2nem+Gy
. . 1/2
< N feem )]
meZ?2 neZ?
S NI
Therefore, the result. O

Proof of Theorem 3.3.1

As mentioned above, to prove local well-posedness we use Bourgain spaces. Since Bourgain spaces behave
nicely under linear evolution, what we need to show is that the nonlinear part of the Duhamel formula also

behaves as nicely. For that we need:

Proposition 3.3.5. For b,b' such that 0 <b+b' <1, 0<¥b < 1/2, then we have

ST N e

s,b N i
X7 T

t
H/ eiA(t—t’)f(t/)dt/

0
for T €[0,1].

For the proof see chapter 1, Proposition 2.2.6. Hence, to be able to use the Banach Fixed Point Theorem,
we have to control the right hand side of the inequality in the appropriate X*° space. And since our

nonlinearity is cubic, that means have to show a trilinear estimate:

Proposition 3.3.6. For s > sq, there exists b,V satisfying the conditions of Proposition 3.3.5, such that,

rts®sl] o S il s ol o sl

Hence, it is clear that once we prove Proposition 3.3.6, Theorem 3.3.1, i.e. the local well-posedness will
follow.

We will prove Proposition 3.3.6 using the duality argument

||u1uQu73||X;_b/ = sup //uluQU3U4dxdt.
—s,b’zl)
T

(uall

Hence, to prove Proposition 3.3.6, we will bound the integral on the right hand side of this equality by
llunll o luall 0 llusll s e
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Proof. (Proof of Proposition 3.3.6)

We first need a fundamental bilinear Strichartz estimate:

Lemma 3.3.7. If uj,us € L2 s.t. supp(ur) € B(0,N1) and supp(uz) € B(0, N3) with Ny < Na. Then we
have

e ur e ug| p2re S Ny [lua |2 gl L2

Proof. Let P; be the partition of Z? into boxes I of size N;. We can decompose uy as uy = > I ug) =

> ; Prus and by Theorem 2.1.12, and that eitAypeitAull) = Py (eitBuret®ull), which follows from the

convolution property, we have,

HeitAuleitAquLng < HZeitAuleitAuéI)‘LzLQ
I t T
. , 9 1/2
S (Tl dme |2, )
I :
, o 1/2
S (e rumly e a1, )
I
oot (2, )
< N g (3 1us13)
I

S NPT fluallzz flualze-

Using this bilinear Strichartz estimate we can also prove:

Lemma 3.3.8. Let any uy,us € X% such that the Fourier transforms of uy and us are supported in

[N1,2N;] and [N2, 2Ns| respectively with Ny < No. Then we have,
lurug |22 S Ny (||| xo. [lug xo.. (3.3)

Proof. We take 1;(t, ) on R x RZ such that ; (¢, z) = u;(t, z) for (t,z) € [0,1] x T2. For n € Z?, Q(n) being

the symbol of Laplacian we have,

1 L
wi(t,z) = 7(2703/2 @;(1,n)e" e "dr

nez?
1 . . .
— (2/”)3 / Z 11\1'(7', n)ethemc.neth(n)e—th(n)dT
nez?
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1 / " it(t+Q(n)) jiz.n _—itQ(n)
- 3 Z w;(T,n)e RER r
(27T) nez?
- ﬁ/ Z w;(T — Q(n),n)emem-"e—itQ(n)dT
( W) nez?
1 PtA A~ itT
= om ) O BmmeTT
T

by the definition of linear propagator, where 0;(7,z) = ﬁ > neze Ui(T — Q(n),n)e™™ ™. Thus,

//uluzdwdt = /e“(“+72)6im171(71,x)eim@(ﬁ,x)dﬁdedtdx
= / et(T1H72) it A (71, gc)e“AUAg(Tg7 x)dtdzdridrs
S [ NG 2 dndre

= 3t [Nl [ 18]

and for each i we use,

=

Jalszin = [ Tl
< / () 2|63 2 i) 12

= luillxoe-

—~

and the result follows by taking the infimum of such u;’s. O

Also, using embedding X%(1/49+ ¢ L}L?, which is obtained by interpolation between X% c L$°L2 for

x)

b>1/2 and X%° = L2L2, we see that,

A

HU1U2||L‘;‘L§ > HU1\|L§L;°HU2||L§L§

S Niflurllpace uzllzaze

A

Ny lur] xo.ara+ [|uzll xo.a/a+- (3.4)

Now we can prove a crude interpolation between (3.3) and (3.4) and get:

Lemma 3.3.9. Let uq,us € X% such that the Fourier transforms of uy and us are supported in [N1,2N1]

and [Nz, 2Ns)] respectively with Ny < Na. Then for s > sq there exists b/ < 1/2 such that

luruzllzzrz < N7 llwallxow [zl xow -
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Proof. We have,

luruzllLzrz S Nulluallxo.aros [luzll xo.a/a+, (3.5)

and we also have,

lurvalrzrz S Ny lluall o uz] o (3.6)

Note that (3.5) < Ny |luy||xo.s ||tz xo.a/4+. Then for fixed u; interpolating between this result and (3.6),
we get,

luruallpzre S Nillusll xos luzll xou, (3.7)

for some § € [sg,s) and b’ < 1/2. Also note that (3.5) < Np||u1llxo.a/0+||uzl xo.rr- Thus, for fixed ug,

interpolating between this result and (3.7) we obtain,

luruzllpzrz < N7 lluallxow [zl o -

O

Thus we get that, if u; € X% i € {1,2,3,4} are functions s.t. their space Fourier transforms are

supported in [Ny, 2V;] respectively with N1 < Ny < N3 < Ny and s > s, there exists &' < 1/2 such that

/ / wTusTadedt S Jurus| g2 e ustall 22

IN

(N1N2)? [luz || xo [[uall xo.or lus]| xo.0r [[wall 0.0

We are almost ready to finish the proof of the proposition. All we need now is to guarantee the existence
of b,b" which satisfy the conditions of Proposition 3.3.5. But for that we need better estimates on the
restrictions of functions on the eigenspaces of the Laplacian. Let {, be the projection onto the ey, the
eigenspace of Laplacian corresponding to the eigenvalue uy. Also for each e we see that uper = —Aeg
which implies that

prer(mi,ma) = ((1m1)? + (62mz)?)éx(m1, ma),

hence, €’s are supported on up = (f1m1)? + (fams)?

= Q(m1,mz) ile. they are supported on uj =
|Q(m1,m2)|?*. This gives that

pier = (V—=24)"e.

Since |9, ullz2 < [|lullz2 and that eg’s form an orthonormal basis, we can define Sobolev space H*, with the

norm, [ull. =3, (k)| §2,ull3. which we will be using later in the chapter.
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Also we see that since 6 /60y is irrational, if p = (01m1)? + (fam2)? = (61n1)? + (f2n2)? we have
(m1,ms) = (£n1, £ny), which means, for any such i, we have four eigenfunctions (e (£m1:£m2)) and (, u
is the the restriction of u to the eigenspace generated by these eigenfunctions.

Now if we consider the integrals of the form
A= /ew(mlxm2)ei$~(”1»”Z)Gim'(jl’j2)e”'(ll’b)amanajald:z:,

we see that A = 0 if (my +ny + j1 + l1,ma + ng + jo + 1) # 0. Thus if |mq| > dmax(|ny|, |j1], |l1]) or

|ma| > dmax(|na|, |j2], |l2]), then A = 0. This says that, if uiﬁz > 8u,1€/2 for i = {1,2,3}, then

7

/ph(ul)pkg (u2)pk3 (u3)@k4 (ug)dz =0,

and we will use this observation in our estimates.

Now we can show the existence of 1/4 < b’ < 1/2 < b s.t. for every s > s,

urtatsi] v S il oo Nzl o sl

which will finish the proof of local well-posedness.
As we mentioned before, we will bound, | [ ujusuzuadzdt|. To do so, it is enough to bound this integral
XN, 8

for u; = u;, where N; is a dyadic integer. Let without loss of generality that N; < Ny < N3 and let

s" € (80, 8) then for the range Ny < 8N3,

’/’U,1UQ’LL3’U,4dCL'dt 5 (NlNQ)S/H’LLlHX%b/H’U,Q”X;,b/||U3||X2,b/‘|U4||X%,b/

= (NiN2)* (N3 /Na)* NE | e N3 2] o N3 s o N ]

0,b/
X

A

’
N1N5)® 7%(Ny4/N3)?® B s s bl
(N1N2)* =% (Na/N3)*[[un | oo 1zl oo sl o lftial oo

Hence, for the range of the frequencies, write Ny = 2" N3 for n < 3 and then we have

‘/U1U2U3U4d$dt S (N1N2)S/752n8||ul||x;b'HquX;,b'||U3||X;‘b'||u4||x;s,b'

J —semns V—A V—A
= (]Vlj\fg)é 62%””1”)(;)5’HU2HX;7V||XN427HU3HX;»5’HXN4 u4||X;S=b’>
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and summing in N1, No, Ny and n < 3 we get

’
’/U1U2U3U4df£dt‘ < ZZZ(N1N2)S 2™ un || s (w2l o0
n<3 N, Na T T
V=A V=A
O IXXamnusle o) 2O N Suall—en)?
Ny T Ny T
S luall o lluzll o llusll oo lluall g oo

where we used the H*-orthogonality of the operators XX, ~& for N dyadic integers. And for the range
8N;3 < Ny, we use the observation above and get | [ ujustzuadzdt| = 0. Thus the Proposition (3.3.6) follows
and hence Theorem 3.3.1. O

3.4 Growth of Sobolev norms

In this section we are going to prove,

Theorem 3.4.1. For s > 1, let u(t,x) be the solution to the defocusing cubic Schrédinger equation (3.1).
Then for any time t, we have,
(s=1)+
l[u(t, z)l| gy < C(t) =07 [Juo|| ;-
Proof of Theorem 3.4.1

The proof of the theorem will mainly follow Bourgain’s arguments in [9], i.e. we will use Lemma 3.1.1. For
that, first we need to observe that for s > 1, in the proof of Proposition 3.3.6 if we take u; = us = uz = u

and s’ = 1—, redoing the calculations we get
el [l s v S llullggellel%se-

This says, we can choose the local well-posedness interval depending only on ||«(0)||g:1. Thus we can find
Ty > 0 such that, for any time 7 > 0 the solution exists for ¢ € [r,7 + Ty]. Now we need to find r € (0,1)

such that for any ¢ € [7,7 + Tp,

lu()llzz; < llu(m)llz; + Cllu(r) 5" (3-8)
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Since L2-norm of the solution is conserved, it is enough to show this estimate in Hj Without loss of

generality we can take 7 = 0. Since

t
d
Iy, = WOy, = [ ()1, ar.

if we show that, for ¢ € [0,Tp] we have,

t
d
Aaﬂww%wswm

u||H5*"7

for some s — 1 > o > 0, writing H*~° as the interpolation space between H' and H*® we will obtain,

g—

(s—o—1)
(@)%, = luO)IF, < llullmllull 7

which is the estimate we want, where the implicit constant also depends on |ju||gi. For ¢ > s — 1, H*

embeds into H*~? and the result becomes obvious. Now assume s € N,

fdMUPM-deWNQW
o dt’ N L

= 2Re// —DS Su(t')dzdt',
T2

and using the expression for u;, we get,

t
4y
| gt ar

2Im / DTD* ([ul?u)dwdt’
T2
4Im/ / | D3u|?|ul*dzdt’ +2Im/ (D*1)*u?dxdt’
T2

—|—2Im/ / DSﬂaulﬂaaz ud**udzdt’
T2

ler]=s

a;F#s
QIm/ (D%u) 2wl dzdt! —|—21m/ / Z D*ud“ ud*2ud“ udxdt’
T2 T? (o=
gy Fs

I+11.

Second term is easier to estimate. For any multiindex |a| = s such that a; # s for any 7, using duality

and Proposition (3.3.6), we have,
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I 5 D%l 0 s |00 ud T T s

A

- 10 g 1020l 10l

< ||'LLHX;O—SO—,IJ|‘U||X;g+a1+,b||U|‘X;(0)+a2+,bHU||X;(()]+«13+,!7.

For 1 < a; < s — 1, using interpolation and the fact that [jul| 1.+ is bounded, which follows from the
To

local theory, we get,

s—sp—1— sgtaqg—1+ sgtag—1+ sptagz—1+
—1 s — s—1 s—1
ISl lullgs ™l ™ Ml
0 0 0 0

If for some i € {1,2,3}, a; = 0, say az = 0, using [[u| yso+.s < [Jufl 10 We get,
Ty Ty

s—sg—1— sgtay—1+ sgtag—1+
5 —1 — 5—1
0 9 9

Thus we get the desired bound using ||u|| y=+» < ||u(0)| g+ in the local well-posedness interval.
To

The term I is harder to deal with since the highest order derivatives acts on w. The main problem here

is that, because of the term (D*%)? in the integrand we expect to have a bound of the form IT < ||u)|?

X0
which is not useful. To remedy that problem, we will try to get
115 Nl o ol ool sl 1 (3.10)

for some o > 0 to be determined. In the following estimates we will mainly follow Zhong’s arguments in
[68].
s— _ o _ o o Vv —=A - 7 0 . .
Let D0 = up = uo, uz = ug = u, and u; = Zj )(N(ij)uz = Zj u; where N(; ;y’s are dyadic integers.

Then

|mgz|n(1v)|zz‘/ / Wukuran].
N N JT5 /(0,0

Since we need to get an estimate of the form (3.10), we should gain some derivative in the estimate of
II(N). For the terms Ny jy > 8(N(2,x) + N3,m) + Na,n)), We again see that I7(N) = 0. Hence we have to
focus on the terms where N ;) < 8(N2k) + N3,m) + Nean))-

Assume N1 ;) < 8(Nez,k) + Ngm) + Nayny), and thus, N ;) S maz(Ne k), N3,m), Nan)). Since ug
has full s-derivative, we will estimate IT using the interaction between frequency projections of us with ug
and u4. We consider two cases; N(g k) < 4N(3,m) or N k) < 4Ny ) as case one and Nz 1) > 4N(3,,) and

Na.k) = 4Ny ) as case two.

32



Case 1: Ng 1) < 4N(3,m) or N(g ) < 4N(4,y). This case gives a control over the N3 1y term and is easier
to handle. Without loss of generality we can assume, N(a ) < 4N(3,,,) and N4 ,) 2 1. Hence by Lemma

3.3.7,

II(N) < ||U]1U§n||LfL2(0To])||U2U4HL2L2 ([0,To])
< min(Na gy, Vs i (N Neoy) ™ s g I8 ool ool o
0 0 0 0

so+ i k m n

S (NamyNum)™ ||U{||ngb|\u2||xgbb\\ug ngé)b||u4||xgob
so—1+ j k m n

S (NamNeam)™ g bl s 10 s g

S (N Neawm Nam Neany) NG 5 NG o (N m) Nam) 7D
><||u{||X%)bHu’§|\Xo,b\|u§”||X1‘b||uZ||X1,b,

< (N NewNEm Nam) NG o (Nem N, ny) 07T

Xl a5 o N g g

and given Nz 1) < 4N(3 ) We see,

- —1))+ j m n
II(N) S (NN Nom Neam) " N3G oo b | oo l[ug [ cno gl a0
0 0 0 0
S WNainNewNeEm Namn)~ ||'U/{||X%Jb||U12€||X;(050—1))+,b||Ugn||X;6b||U2“X;bb,

which gives the desired result for ¢ = (1 — sg)+.
Case 2: Ny = 4N,y and N(g ) > 4N(4 ). Recall that since N3,y < 1/4N(27k) and Ny ;) <

1/4:N(27k)7 we have, N j) < 12N(3 ), in which case we define,

wld = > / O (1) dr, (3.11)

(N <) 2S2NG3) - (L oy <{ui+7)<2L 1))

for L; -y dyadic integers, where yy’s being the eigenvalues of Laplacian and {0, u being the projection of u

on the eigenspace corresponding to pur Then we have,

II(N)

IN

Z’/ 7,3 kk mm ’nldl'dt

G e b ey i
E’ uy’ ug  usz 0 ug 0 dxdr
L
{3, =0}

= Y II(N,L),

IN
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where the Fourier transform is with respect to time only and L = (L1 jry, L(2,k7), L(3,m’), L(4yn/)). Thus we
need to estimate II(N, L) for each L. Since we are concerned with the derivative gain for us in the estimate
of II(N), for each L we need to use the relation between L-terms and N(s ). For that we consider two cases
again; |13] < 1/3N(22,k) and |7y| < 1/3N(227k) as case one, and |73| > 1/3N(22’k) or |t4| > 1/3N(227k) as case two.

Case 1: |r3| < 1/3N(22’k) and |7y| < 1/3N(22,k). For this case, using the decomposition (3.11) we get,

|y + 7]+ [y + 72| > gy, + 71 F pk, + T2
>y k| = T+ T
> ik, — |71+ T2
= [k, — |73+ T4
2 N(Qz,ky

and thus, L1 jiy + Lok 2 Né)k), which also gives max{L jy, Lo )} 2 N(22,k)' So we get,
II(N, L) < ad? gz ™ e ™ o pee ™ N pa e
then by Sobolev embedding we get,
TI(N, L) S (N myNewm)le? W 2 b ™ | o ™™ 1 o o V™ Nl e

and using X*/4+ ¢ LL2, we obtain,

i , ,
II(N,L) S (NaumyNeaua) e o ras 5™ [xosae ™ o sas 5™ | ousas
< j’j/ k’k’ m,m/ n,n'
S fJug? || oz |ug™ || xo.1/ar [Jug s a/at [Jug™ || x11/as
1 ) ) /
< R 50,0 uk7k N umm™ |X11b|un,n o
S TTao oz I sl xoalla™ sl ™ |
N2(1/4=b+)
S T e s et o ™ oo ™™ scn o™ oo
Ly in Lo (Lsmn Liagny)
S T el o ™ Wcaaasa-ooo g™ o ™l
Ly in Lo (Lsmn Liany)
S . o s e sl ns sl
———— [|u1]|xo0.b |[|U2|| x201/4—b+)b || U3 || x 1.0 || U4 || x 1.0
~ L L ey (L L )P
N1 i N2k N3 N4 -
S ( ( 7]) ( 2 ) ( 77I’L) ( ;n)) (lejN3’mN4vn)+HUJl”X"*b||u2||X2(1/4—b+)vb||USHX1,bHU4||X1,b

T+ “1ja-
L{1 jn Lo (Lamny Lian) P14
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(N, New Nem Nam) ™

. Ly oy Dy (L mny Liann) ) =14
< _ WaypNewNemNam)
- L(+ D) (2k')(L(3m’)L( H)o /A=
< _ WapNewNemNam)”

L<+ )L(2 1% )(L(3 mn L) P4~

Since the summand is summable in L’s and N’s, we get the result for o = 2(b — 1/4)—

with the last case,
Case 2: 3] > 1/3N? (k) OF |Tal > 1/3N(2k

|73] > 1/3N? (2,5)- In this case we have

73 4 b | > ||73] = s || > 1/3NE, i,

- 4N(237m) >1 /3N(227k) -

(N2) *llua | xoolluzllxaasa-oe o usllx s sl xo.e
[[uall oo [zl xzaramver o[zl xoel[wallxre

[uallxovl[uzll xzc/amvollusllx e lual xe.

. Now we are left

Again, without loss of generality, we will only focus on

1/4N(22,k) = 1/12N(22,k)a

which says L3 ;) 2 Né k) and redoing the previous calculations, we obtain

1 . ’
II(N,L) < TasnLom LamLa ))b_1/4_|\uj£] o llub™ o g™ [lxcro luf™ | xao
7.7, s ’ ’m/ ,n/
N21/4-b)+
(2,k) 3" kK m,m’ n,n’
S TaoLaw b7 L iyl Ixo llug™ xo lug™™ e lug™ | x 10
(N, jy Ny NamyNam )~ 2(1/4—b4)y 5.’ kb mym/ nn'
S (L 1J L iy Lany)™ 1/4— E,m’)N(2(7k/) )”“]17] |00 llug™ [Ixon [lug™™ lIxvollugy™ [[x10
j ’ ’
(Nl N2kN3m 4n) m,m’ n,n’
S Bl xou g e amemallug ™ e ™ e
(1,3") (2K ) Ly, )01/ 4
(N New NemNan) -
S Ty Lo Lin )tV [t ll xo.e [[uz | x2c/a—vers lusll x 1o |luall x10,

again the result follows for o = 2(b —1/4)—
3.4.1.

. Thus we have finished estimating I and therefore Theorem

This result will appear in the Communications in Pure and Applied Analysis, see [29].
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Chapter 4

Existence and Uniqueness theory for
the fractional Schrodinger equation
on the torus

4.1 Introduction

In this chapter, we study a fractional semilinear Schrédinger type equation with periodic boundary condi-

tions,

iug + (—A)%u = £jul?u, v €T, teR,
(4.1)
u(z,0) = ug(z) € H¥(T),

where « € (1/2,1). The equation is called defocusing when the sign in front of the nonlinearity is a minus
and focusing when the sign is a plus.

Posed on the real line the equation has appeared at a formal level in many recent articles, see [47] and the
references therein. For example it is a basic model equation in the theory of fractional quantum mechanics
introduced by Laskin, [48]. A rigorous derivation of the equation can be found in [47] starting from a
family of models describing charge transport in bio polymers like the DNA. The starting point is a discrete
nonlinear Schrédinger equation with general lattice interactions. Equation (4.1) with « € (%, 1) appears
as the continuum limit of the long-range interactions between quantum particles on the lattice. Whereas,
allowing only the short-range interactions (e.g. neighboring particle interactions) the authors obtain the
standard Schrodinger equation (o = 1) which is completely integrable, see [1].

In this chapter we study the periodic problem mainly for two reasons. First due to the lack of strong
dispersion the mathematical theory for the fractional Schrodinger equations are less developed than the
cubic nonlinear Schrédinger equation (NLS). Secondly when we consider periodic boundary conditions the
analysis becomes harder, for any dispersion relation, since the dispersive character of the equation can only
be exploited after employing averaging arguments and a careful analysis of the resonant set of frequencies,
[34].

The local and global well-posedness for the periodic NLS was established by Bourgain in [7]. He used

number theoretic arguments to obtain periodic Strichartz estimates along with a new scale of spaces adapted
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to the dispersive relation of the linear group. More precisely he proved the existence and uniqueness of local-

in-time strong L?(T) solutions. Since it is known that smooth solutions of the NLS satisfy mass conservation

Mw@:AMwW:Mw@,

Bourgain’s result showed the existence of global-in-time strong L?(T) solutions in the focusing and defocusing
case. The L? theorem of Bourgain is sharp since as it was shown in [16], the solution operator is not uniformly
continuous on H?*(T) for s < 0.

The local well-posedness for the fractional NLS on the real line was recently studied in [26]. The authors
showed that the equation is locally well-posed in H*(R), for s > 1*70‘ They also proved that the solution
operator fails to be uniformly continuous in time for s < 1*70‘ Since the periodic case is less dispersive, we
expect the range s > 1*7"‘ to be the optimal range for the local theory also in the periodic case.

In this chapter we obtain the following results for the fractional NLS. We first establish a Strichartz

estimate that reads as follows

||€it(_A) fHLfeTrLiewr S" HfHHS(T)’

for s > PTQ. To use this estimate and prove local well-posedness of the equation one has to overcome the
derivative loss on the right hand side of the inequality. In principle this can be done by the method in
(23] and [29] which gives local well-posedness in the H*(T) level, for s > 152. However, since the proof in
[23] and [29] is quite involved, we choose to establish the local theory by obtaining trilinear X*° estimates
directly. Then a standard iteration finishes the proof without any further analysis. We remark that for
classical solutions in H*(T), s > 3, local theory in the space C([0,T]; H*(T)) is known. The proof is the
same both on the real line and on the torus and it is based on the Banach algebra property of the Sobolev
spaces for s > % Moreover the length of the local interval of existence is lower bounded by m, see
chapter 1. To lower the regularity of the local existence theory and to prove the smoothing estimate of

section 5 we have to reprove the local theory in the X*? spaces. In this case the solution is controlled on

the larger X*° norm, since X%’b € C([0,T); H*(T)) for any b > 3, and thus the length of the interval of

existence is smaller. In our case for s > % it is lower bounded by W
0

HS(T)

We note that in addition to the conservation of mass, smooth solutions of (4.1) satisfy energy conservation

B@®) =5 [I9Futof 7 7 [ Jutta)]' = @)

Here FE is also called the Hamiltonian of the equation. Note that the local theory in H® level with the
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conservation of mass and energy imply the existence of global in time energy solutions since mass and
energy conservation give global control over the H® norm of the solution. For the defocusing case however,
since there is a minus in the Hamiltonian, we don’t have the the a priori H* norm control of the solution.

But still we have the Gagliardo-Nirenberg inequality,
1 41
lullzs S MVl Za llull 2 ©
which controls the potential energy via the kinetic energy |||V|“u||z2z. Then even for the focusing case one
has,
1

1o 1 1
E@)(#) = 3 IVI*ut2)|7z = Jlut o)1 = SHIVI*uo(@)lIZz = flluo@)lzs = B(0),

which implies,

1
IV ut 2)l7: < Sllutt2)lIzs + [1V]1*uo ()17
1 41
S VISt D)l lult @)l = + 1V uo(2) ]2
1 41
S VISt 2) 2 lluo (@)l L2 = + [[[V]*uo(@)l| 2.

This tells us that one can then control the Sobolev norm of the solution for all times since i < 2.

In the second part of this chapter we use the high-low frequency decomposition of Bourgain, [11], to prove
global solutions below the energy level. Bourgain’s method consists of estimating separately the evolution
of the low frequencies and of the high frequencies of the initial data. The low frequency part is smooth and
thus by conservation of energy globally defined. The difference equation which is high frequency has small
norm. By using smoothing estimates this decomposition can be iterated as long as the norm of the nonlinear
part is controlled by the initial energy of the smooth part. As a byproduct of the method one obtains that
the nonlinear part of the solution is actually smoother than the linear propagator and stays always in the
energy space. Moreover the global solutions satisfy polynomial-in-time bounds. We summarize the results

in the following two theorems:

Theorem 4.1.1. For any o € (%, 1), and any b > % sufficiently close to %, the equation (4.1) is locally

well-posed in the space X;’b C C([0,T); H¥(T)) for any s > 15, where T = T(||ug|| gr=(r)). Moreover, for

s> 1 the local existence time T 2 HUOHIZ’%(_T)'

Theorem 4.1.2. For any o € (%, 1), the equation (4.1) is globally well-posed in H*(T) for any s > %.

Moreover,

u(t) _ 6iit(fA)“:i:iQt,UJO c HOL(T)
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Jor all times, where Q = X ||uo||3.

Remark. We will prove Theorem 4.1.2 only for the defocusing case. As we mentioned in our introductory
remarks, we can also control the H® norm of the solution by Gagliardo-Nirenberg inequality in the focusing
case. Once we have the control of the norm in terms of the initial energy, the proof of the theorem follows
along the same lines. In particular we obtain the same global well-posedness results with the same global-

in-time bounds for the focusing problem.

Remark. We also have to mention that the smoothing estimates give further information about the long
time dynamics of dispersive equations, in particular the existence of global attractors (for the dissipative
variants of these equations). The intuition is that the system eventually will be attracted to a compact
invariant set that has a finite dimension. For infinite dimensional systems, this is the problem of the
existence and uniqueness of the global attractor for the associated PDE. As was explained in [35], to obtain

the global attractor, it is enough to prove global smoothing estimates for the dissipative equation.

This chapter is organized as follows. In section 2 we introduce our notation and define the spaces that the
iteration will take place. In addition we state two elementary lemmas that we use in proving the Strichartz
estimates and the multilinear estimates. Section 3 contains the proof of the Strichartz estimate. It is obtained
by a careful analysis of the resonant terms and non resonant interacting terms. Section 4 contains the local
well-posedness theory for the model equation. We prove multilinear estimates in the X*° spaces defined in
section 2. In section 5 we prove the main smoothing estimate of this paper. The reader should notice that
the estimate is sharp within the tools used and for a = 1 it coincides with the smoothing estimate for the
NLS that was recently obtained in [36]. Finally in section 6 we use the established local theory and the
smoothing estimate to prove global well-posedness for infinite energy solutions. As a final remark we note

that our global-in-time results are not optimal.

4.2 Notation and Preliminaries

In the next two chapters we are going to use the same notation.

First of all recall that for s > 0, H*(T) is defined as a subspace of L? via the norm

UF e cmy = [ D (k2| (R)I2,

keZ
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where f(k) =L fozﬂ f(x)e~*dz are the Fourier coefficients of f. Plancherel’s theorem takes the form

s

G ! /Owlf(a:)|2dx.

2
keZ

We denote the linear propagator of the fractional Schrodinger equation as e®(=2)"  where it is defined on

the Fourier side as (e®(—=2)* f)(n) = eitn®® f(n) Similarly, |V|* is defined as |V/|°7)(n) = no‘f(n) We also
use (1)1 to denote (-)¢ for all € > 0 with implicit constants depending on e.
The corresponding Bourgain spaces, X*°, will be defined as the closure of compactly supported smooth

functions under the norm

A ull gy gy gy = I = [P ) (0, 7 2z,

[[ul| xs0=le”
and the restricted norm will be given as

[ull g0 =nf([[0] xe0, for v=wuon [0,T]).

We close this section by presenting two elementary lemmas that will be used repeatedly.

Lemma 4.2.1. o) If 8 >~v >0 and B+~ > 1, then

Z {n— k1>’81<n — ko) S (k1 = k2) "7 op(k1 — ka),

and
1
/R TRy Ty T S ke (ke — K),
where
1, 6>1,
1
pp(k) = Z W ~ 9 log(1+4(k)), B=1,
n|<
[n| <[k <k>1_5’ sl
b) For B € (0,1], we have
dr 1
<
/R T )P+ p2) ~ (pr— )P (4.2)
c) If B> 1/2, then
1
Zn: 2t anta)? S (4.3)

where the implicit constant is independent of ¢c1 and co.
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Proof. [35, Appendix| Denoting m = kg — k1, we can rewrite the sum in part a) as

1
2 (n)?(n —m)"

n

For |n| < |m|/2, we can estimate the sum by

For |n| ~ |m|, we have

S g S ()6 (m) S ) 0sm)

[n|~|m|

The last inequality follows from the definition of ¢g and the hypothesis 5 > ~.

The part b) follows from part a). For part c), write
n® + cin+ o] = |(n+ 2z1)(n+ 22)| > [n + z1]ln + 22,

where z; is the real part of z;. The contribution of the terms |n + z1| < 1 or |[n + x| < 1 is < 1. Therefore,

we estimate the sum in part c¢) by

1 1
= S 1+ <1
; (n2+cin+cl)B ™ TZL (n+z1)P(n+x2)P ~
by part a). O

Lemma 4.2.2. Fiz o € (1/2,1). For n,j, k € Z, we have

|1]]

9(G, k,n) == |(n+k)** = (n+j+k)**+ (n+j)** —n** 2 : —,
Urkom) =] D

where the implicit constant depends on .
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Proof. Let f.(x) = (x + ¢)** — (x — ¢)?>*. We have

9 k) = |y 0+ D) = Fytnt kD)

We claim that
||

fe(@) 2

max(|cl, [x])2 2

Using the claim, we have by the mean value theorem (for j, k # 0)

, J J : . 1
9. kn) = |fy(n+ ) = fy(ntk+2)[ 2 [kllj]  min T
2 2 2 2 ve(n+intk+d) max('g, [y])2 2
LilFl

~ (kL + 15+ nf)? 2

It remains to prove the claim. Since f. is odd, and j # 0, it suffices to consider > 0 and ¢ 2 1. We have

fiz) = 2af(x+c)* Dz +¢| — (z — ¢)*@ D]z —f].

c

We consider three cases:

Case 1. 0 <z < c= fli(x) =2a[(z + c)** ' + (z — ¢)**!]. Thus

Case 3. 2> ¢ = fl(z) = 2a[(z + ¢)**™! — (z — ¢)**7!]. Then we have

f/(l‘) — 20zx2a_1((1 + %)Za—l _ (1 _ E)Za—l) ~ an—lE — .TQQ_QC.

C

le

Hence, in all cases we have f/(z) > (e =
,
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4.3 Strichartz Estimates

Theorem 4.3.1. |[e"*(=2)" f|| 4 LS lles fors > 43

te’ﬂ' xE

Proof. Notice that in this proof we can always take s < %. Calling g = (V)* f, and denoting g(k) by gx, we

write

T T i 2 1.2a 20 p2a ix _ _ _ _
||ezt( A)afHL‘lL‘l — /2 /2 ¢ HRT RS kT ok )6 (k1 —ka+hs k4)gk1gkzgk39k4 drxdt
>N ) (k) () ()
:/ Z R N g G0k, G
0 (k1)®(ka)® (k3)®(ka)®

k1 —ko+ks—ks=0

< Z |gk1||gk2||gk3”gk4| 1
~ (k1)® (ka)* (ks)® (ka)* max(L, [k2* — k3* + k3* — k3%|)

k1—ko+kz—ks=0

Renaming the variables as k1 =n+j, ko =n+k +j, ks =n+ k, and ky = n, and using Lemma 4.2.2, we

get

. “ . . 1
”ezt(—A) f”im < Z = |9n||9n+JH9n+k||9n+k+J|

stn+k)s(n+7)5(n+k+j)° max (1 L)

n,k,j  ([kl+s1+In])2 2

=T+11

where I contains the terms with |kj| < (|k| + || + |n|)?72* and I contains the remaining terms.
First note that the summation set in I does not contain any terms with both n = 0 and |kj| # 0 since

a € (1/2,1). Also noting that if kj # 0, then
[kl < (k] + 171 + )72 S RT3+ P72 + P72 < kgl + [nf> 72,

since a € (1/2,1). We can thus write

|9n| |9n+ '||gn+k \ |gn+k+
I's Y v E w2l gn4i | + E o2 Gm k]2

n,k,j
0<|kj|SIn|2 2

The last two sums are equal to ||g||7.. We estimate the first sum by Cauchy-Schwarz inequality to get

> 2 3 |9n] 1/2

S ( |gn+j|2|gn+k|2|gn+k+]“2> ( n )

~ 5 5 — _

n,k,j 0<|k'|n<‘]T’j\2—2a <n> S<n + k> S<n +j> S<n +k +J> s
JISIn
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1 1/2

< 4, su ( ) .

sl 2 G R a ke
0<|kj|<In|2 2

The condition on the sum implies, except for finitely many n’s, that |k| < |n| and |j| < |n|. Therefore

1
kz: (n)?s(n + k)?*(n + j)?*(n + k + j)?
0<|kj|SIn|2—2e

1
S =5 Z 1< (n)*>72* log(n) <1
(% chgigimiz—2e

provided that s > 1?%.

For the second sum we have,

s Y 197 11gn 45119+ |gn -4k (Il + [F] + [3)* 72
T (n)*(n +k)*(n+j)*(n + k + 5)°|kj|
[kj|Z|n|2—2a

Using the symmetry in k and j, we have

ne Yy ol (nl + )2
~ (n)*(n+ K)o+ ) (n+ b+ ) TRj

n,k,j
[kjlZInl2=29, k| >]5]

To estimate the sum we consider three frequency regions, |k| ~ |n|, |k| < |n|, and |k| > |n|.

Region 1. |k| ~ |n|. In this region, using Cauchy Schwarz inequality as above, it suffices to show that the

sum
S (In| + [k)* e
= (P4 B> (n+ )% (n + k + ) k?5°
kl~Inl
is bounded in n. We bound this by
|n|2—4a—25
HZ‘:‘ (n+ k)2 (n+ )2 (n + k + j)*52
Ikl ~In]

Using the inequality

(m+5){J) 2 (m),
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and recalling that s < i, we obtain

< Z |n‘274a74s << >2 4da—4s+1—-4
< : < (n)*~ a—4s+1—4ds
[k| >3] <n—|—k‘>43]2_43
|k|~|n|

Here we first summed in j and then in k. The sum is bounded in n provided that s > %.

Region 2. |k| < |n|. As in Region 1, it suffices to show that the sum

Z |n|474a Z |n‘474o¢78s
2 2 2 251,22 22
1< IBl<]n| (m)?e(n + k)2*(n + 5)%(n + k + 5) >k 31<Ikl<n] k23
kil In 2 =2 [kj|ZIn|2 =20
is bounded in n. To this end, notice that
‘n|4—4(1—8$ |n|4—4a—88 2 208 )
Z sz S Z W < sup [nf*" " log(|n|)”,
1<kl <] n] 1< k| < |n] "

|kj|Z|n|2—2e

which is finite provided that s > 1770‘.

Region 3. |k| > |n|. In this region we bound the sum by Cauchy Schwarz inequality as follows:

|k|272a

Z |gn||gn+j||gn+k+j||gn+k|
o Ry gy (et k)|
[kjlZ|n|2—2e

1/2 [ el 12
S (X lalPlonssPlonsess?) (2 L )
~ " " " 2s 2s i\2s i\251.2 72
n,k,j 151<|kl, |nl<| k| (n)?*(n + k)?s(n+ j)*s(n+ k + j)*°k?j

2 2—4a—2s 1/2

Sholi=( > U P 2)/
~ s \2s \2s 4
ik g PR A AP (R A k)%

Estimating the j sum in parenthesis as in Region 1, we have

|274a72s |274a74s

Z ‘gn+k|2|k < Z |gn+k‘2|k < Z |g k‘2|k|172a745<n>172a745
TR R P L |
In|<|k| In|<|k| n,k

A

We estimate this by Cauchy Schwarz

1 1
[ lgmerPIRP2 5 [ gl < gl
n,k

n,k

provided that 2 —4a — 8s < —1,i.e. s> % — 5. In the last inequality we summed in n and k separately.
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Thus, for s > maav(leO‘7 3_840‘) = %, for a > %7 we obtain the Strichartz estimates.

4.4 Local well-posedness via the X*’ method

We will prove Theorem 4.1.1 for the defocusing equation by obtaining multilinear estimates in X** spaces.

With the change of variable u(z,t) — u(x,t)e’?" in the equation (4.1), where @ = L|lug||3, we obtain the

equation

iug + (—A)%u+ |[ulu—Qu=0, teR, 2T,

with initial data in ug € H*(T), s > 0.

Note the following identity which follows from Plancherel’s theorem:

[ulPutk) = 7 @(k)alka)atk — ki + ko)

k1,k2

1 ~ . ~ A
= ;HUH%U(‘?) —lak)Pak) + > alky)a(ke)u(k — ki + ko)
k1#k, ka#ky

Using this in the Duhamel’s formula, we have
; [e% t . (a1 ’
u(t) = et g (z) — i / AT (p(u) + R(uw))dt'.
0
By standard iteration techniques, it suffices to obtain an estimate of the form:

t
H / A=) (p(w) + R(u))dt!
0

9 3
X;’b S T ||u||X;,b7

fors>1fTaandforsomeb>%,5>0.

To prove this estimate and obtain a lower bound for the local existence time we need the following lemma:

Lemma 4.4.1. [38] For b,b" such that 0 < b+ <1,0<¥ <1/2, then we have

t
i(=2)" (t-7) H by /
H/o e f(r)dr it S T Hf”X;_b 7

for T €]0,1].
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Proposition 4.4.2. Let a € (1,1) and s > 152, then for b > 1/2 we have,

lo(u) + Rl .o S llullXsns
provided that b’ < % is sufficiently close to % Moreover, for s > % we can take b’ = 0.

As we remarked in the introduction, in the case that s > %, the condition b = 0 implies the existence of
the local solution in [0,4] as long as 5%_||u0||?qs () ~ 1. This bound although sub-optimal, it is necessary

for the proof of the global well-posedness below the energy space that we establish in section 6.

Proof. We present the proof for R(u). The proof for p(u) is easier and in what follows it corresponds to the
terms given by j =k = 0.

First note that

u(Ty, ky)u(ro, k2)u(rs, k3)(n)®
R(U) s, —b — H/ 7
H HX b . klil;szn <7- _ n2a>b
ki#n, ko

212’

By a duality argument and denoting |@(7,n)|(n)*(r — n?*)* = v(r,n), we get

(n)*v (11, k1)v(Te, k2)v(Ts, k3)g(T,n)
R(u)|| yo_py < sup / -
IRl lgll 212 =17 —motrs—7=0 kl_kz;,s_n:o (k1)* (k2)* (ks)* (T — n2e)®

ki#n ko
1
(11— k3*)0 (g — k3%)b (13 — k3*)®’

X

and thus, by Cauchy-Schwarz and then integrating in 7 variables as in [35], we have

2 6 <n>2s
Ru)|| e o < |v su / E 7
|| ( )HX b l ||Lazg T,}? S (k1)25 (k)25 (k3 )25 (T — n20)2b
k1#n,ko
" 1
(1 = R e — B (73 — KB}

2s
< Jfull6.. n) :
S llullxs.e sup Z (k1) 25 (la) 25 (s )25 (K20 — k2% + k20 — p2ony 2t/

T ky—ko+kz=n

ky#n,ko
Hence, we need to show that
M= ¥ a
n — /
k1—kot+kz=n <k1>25<k2>25<k3>25<k%a - k%a + k%a - n20¢>2b 7
k1#n, ko

is bounded in n. Renaming the variables as k1 = n+ j, ke =n+k+ 7, ks = n + k, and using Lemma 4.2.2,
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we get
<n>2s

k:, 2b/
o (n+ )25 (n+ k + §)2 (n + k)2 max (17 (\k|+lj\|+j|r‘b|)4<1*")b')

M, <

=1+1I

where I contains the terms with |kj| < (|k| + |j] + |n|)?72® and I contains the remaining terms. Here we

note that M, is bounded in n for ¥’ = 0 in the case s > l. From now on we consider the range 1_7“ <s<d 5

and take b’ = . To estimate I, as in the proof of Theorem 4.3.1, we write

<n>25 2-20—4
IS . o s S ()77 log((n),
0<kj§1|2‘2” (n 4 ke (nt k4 5% (n+ )

which is bounded provided that s > 1*7& Similarly,

s Y ()2 (1] + |31 + )20~

Y e (2R R G2 (0 )2k
> (n)* (k] + [n])>0—)
~ (n+k)?(n+k+5)%(n+j)kjl'

[kj|Z|n|2—2e
[k 2141

Second line follows from the kj symmetry of the sum. To estimate the sum we consider three regions:

Region 1. |k| > |n|. The sum is

<n>23‘k|2(1_0‘)_28_1+
Z (n+5)25(n+k+ 5%~

[k =151
[k[>|n]

<

Note that for % > 5> 1_7‘1, we can bound it by

< <n>25|k|2(17a)74s+
e ey T

k=141
[k[>|n|

< >2(1704)72s+
S 2 P R

[k[=]4]
[k[>|n|

2(1 a)—2s+ o1 A
Zﬁ S (n)?(me)mtet
= (n+7)*lil

which is bounded in n. In the £ and j sums we used Lemma 4.2.1.
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Region 2. |k| ~ |n|. In this region we have the bound

< <n>2s+172a+
S X T R

[k[=>15]
[E[~|n]|

n 2s+172a+A

()
S G

where A = |j|174% if 4s > 1, A = |n|'7** if 4s < 1 and A = log(|n|) if 4s = 1. Then, by considering these
cases separately and using Lemma 4.2.1 in the j sums, one obtains boundedness in n for s > :L_T" and a > %

Region 3. |k| < |n|. We have the bound

<n>—4s+2—2a dot2—2ad
< E AN S <n>_ STi—2a
~Y . 17 ~ b
si<imen

which is bounded in n. O

4.5 A smoothing estimate

We first note that

lo(w) | rose = \/Z [(k)[0 k)2 42e < lull3, (4.5)
k

for 0 < ¢ < 2s, which implies that the contribution of p(u) to the Duhamel formula is smoother than . One

can also obtain the same level of smoothing in X spaces: For ¢ < 2s

3

||p(u)||X5+c17%+ 5 ||u||Xs,%+ .

To prove the same for the non resonant terms R(u) we have the following proposition:

Proposition 4.5.1. For s > 1_70‘ and ¢ < min(a — %, 2s+a—1) , we have

IR v g+ S Ml g
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Proof. Repeating the steps in the proof of Proposition 4.4.2, it suffices to prove that

M(n) _ <n>25+20

kizo ()2 (n+k)*(n+j+ kV‘%WV‘

is bounded in n.

For the terms with 0 < |kj| < |n|?72, since |k|,|j| < |n|, we have the bound

S Z <7’L>74S+2c S <n>74s+2c+272a log(n),
0<|kj|<In|2—2e

which is bounded provided that ¢ < 2s + o — 1.

For the remaining terms, we have to consider the cases s > 1/2 and s < 1/2 separately. Again by
symmetry in j and k, it is enough to consider |k| > |j].
Case 1. s > 1/2. As before, we will consider three regions:

Region 1.1. |k| > |n|. Then we have

<n>2s+2c|k|1—2a—25+
2 (n+ )% (n+k+j)*[j]'~

|k|>17]>0
|k[>n|

N

<n>2c+1—2a+
Z (n+7)*(n+k+ j)*[j]*~

[k>n|
<n>2c+172o¢+

N

< < <n>2c72a+

)

which is bounded for ¢ < . In the forth inequality we used Lemma 4.2.1.

Region 1.2. |k| ~ |n|. In this region we have,

Z (n)2et2stl-2at Z (n)2eti—2at 2c4+1-2a+
S - - - < < (p)T
e (n+ k)2 (n+ j)* (n+j + k)**[j['~ oo (n + k)2s[j|1—

fore < a — %

Region 1.3. |k| < |n|. We have

<n> —4s542c+2—2a+

|kj|17 5 <n>20—4s+2—2a+,

S 2

[k]|>3]>0
[k

which is bounded for ¢ < 2s + o — 1. This finishes the case s > 1/2.
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Case 2. 1_7(’ <s<1/2

Region 2.1. |k| > |n|. As in the proof of Proposition 4.4.2, we have

Z <n>2s+2cf4s+2f2a+
(n+7)%(n+k+ j)2 k| =2+ 5]~

[k|=>15]>0
[k]>|n|

5 5 <n>2074s+272a+

which is bounded for ¢ < 2s + a — 1.

Region 2.2. |k| ~ |n|. In this region we have,

< >25+20+172a+ 25+2c+1 2a+A

\k\;>o< )% (n+ k)>*(n + k + 5)* 5] Zj: (n+ )24~
[E|~|n|

S

where A = (j)1 74 for 1 < s <1 and A= (n)'~* for 0 < s < 1. Hence,

1

< (n)2etizZot for s > T
1
< (p)Zemdst22at for 0 < s < —,

which is bounded for ¢ < 254+ a — 1 when s € (0,) and ¢ < a — 1 when s > 1.

Region 2.3. |k| < |n|. We have,

<n> 2c+2—2a—4s+

< 2

[k|=>15|>0
[kl<|n]

< 2c+2—2a—4s+
e~

which is bounded for ¢ < 2s + a — 1.
Hence, for all s, collecting the results we get the proposition.

This implies that (see [36] for more details):

Theorem 4.5.2. For a € (1,1), s> 5% and ¢ < min(2s + a — 1, — 3) we have
llu(t) — A"t prove S JuollFs

fort <T, where T is the local existence time.
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We finish this section by noting that if we define the multilinear versions of p and R via

p(u, v,w)(k) = G(kBR)B(K), Rluv,w)(k)= S @lka)oka)@(k — ki + ka),
k1#k,ka#ky

then the assertions of Proposition 4.4.2 and Proposition 4.5.1 remain valid.

4.6 Global Well-posedness via High-Low Frequency
Decomposition

From the local theory along with energy and mass conservation, the existence of global solutions in H®
follows easily. In this case, one can control the H® norm and apply the local theory with a uniform in
time step to reach any time. In this section we use Bourgain’s high-low frequency decomposition together
with the smoothing estimate from the previous section to obtain global well-posedness for initial data with

infinite energy.

Proof of Theorem 4.1.2. Fix s € (%, a). With the change of variable u(z,t) — u(x,t)e’?" in equation (4.1),

where @ = 1||ug||3, we obtain the equation
iug + (—A)*u + [ufPu —Qu=0, tcR, 2T,

with initial data in ug € H*(T). In what follows, the implicit constants will depend on ||ug||g=. We fix N
large and decompose the equation into two equations, © = v + w:
ivg + (—A)% + |[v]v — Qu =0,

(4.6)
v(z,0) = Pyug(z)=Po,

and
iwg + (=A)%w + v + w|? (v + w) — Qu — |v]?v =0,
w(z,0) = ug(x) — o=V,
where Py is the projection onto the frequencies |n| < N.
First note that |®g||ge < N7, Moreover, by the local existence theory we presented in H* and H*

levels, noting that a > s > %, we have for § ~ N—4a=5)

[l xor S N®Pollae SN2 lvllyse S [[Pollme S 1.
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Since equation (4.6) enjoys the same energy conservation, we have
E(v(t)) = E(®o) S N**7%

by the Gagliardo-Nirenberg inequality.

Now pick an sg < s to be determined later. Note that [|Ug|lgse < N% 5. The local existence for w

~

equation follows similarly by the multilinear estimates from the previous sections with the same § as above

(since the norm of w is small). We thus have
[wll 00 S [Wollmreo S N*72 lwllxer S [Wollae S 1.

Now using the decomposition (4.4) for the nonlinearity N := |v + w|?(v + w) — Qw — |v|?v in (4.7) we

have (with v = v + w)

N = Qu—Qu — ~ol[3v -+ plu) — p(v) + Rlw) ~ R(v)

(luoll3 = I@ollZ2)v + p(w) = p(v) + R(u) — R(v).

1
T
Using the multilinear smoothing estimate and the multilinearity of p and R, we have

IIN\IX;,_%+ < lluoll — ||‘I>o||2Lz|||v||X:,_%+ ol son + Tell o s 1011 05

for  — 9 < min(2sp + o — 1, — %), in particular for sg > %

Ignoring the support condition of ®y and ¥y, we have

[lluoll3 — [1®oll72| < 1%ollze + [ Woll7- < N7

~

Therefore, we obtain

2

||N||X§,7%+ SN oll o + ||w||§(§o,b Fllwll o0 lloly o

< N—sal—Noe—s + NS(so—s) + Nso—sNZ(a—s) < N20¢+80—3S.
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Taking t; = §, we write
u(ty) = w(ty) + v(ty) = e CA TG Loy (1) + v(ty).
By the bound on A/ and Duhamel’s formula, we have
[wi (t1) [ S NZOF075,
We repeat this process by decomposing u(t;) = @1 + ¥y, where

U, = eitl(fA)“jLiPn\I,O7 b, = w1(t1) —|—v(t1).

’L‘tl(fA)

Since e “+iPti s unitary, ¥, satisfies all the properties of ¥g. To control the H* norm of ®;, we note

E(®y) = E(®1) — E(v(t1)) + E(v(t1)) = E(wi(t1) + v(t1)) — E(v(t1)) + E(Po),
where the second equality follows from the conservation of the Hamiltonian.
Note that
|E(f +9) = EN] S IVIE(f + I3 = VI 3|+ / 1 +gl* =11
S gl + lglre 7l + [ 191157 + 1ol
< 2 4 3
S Mgllza + llglae Ll + gl 10 + gl 2 1]

1 1
Hit Hat

S lalle + lglle | fllere + gl ze + N9l mallflIFe-
Using this for f = v(t1) and g = wy(¢1), we obtain
Bluws (1) + v(t1)) — B(o(t)) § N0y 300) = ootsoor

To reach time T' we have to iterate this process % times. To bound the Hamiltonian at time 7" by a constant
multiple of the initial value, we need

N50¢+50765 Z —_ TN90¢+507105
6

to be < N2@725_ This holds for s > %a + 1—16 by taking s = %—&— and N sufficiently large.

The calculation above can be improved by interpolating between H* and L? to bound the H 1+ norms.
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For example, by Duhamel’s formula and Minkowski inequality, we have

t1
s (t)llz2 < / Il 2.
0

The worst term in A is of the form |v?w| which can be bounded as follows
1 1 1 -
020l S 0% N0l gl oo S OB @) o S SN+

After, % steps, the L? norm remains < N@t%0=25 < 1 for s > g+ i. Therefore the L? norm of the low

frequency part also remains < 1.

2a+sg—38s 3(a—s) +
4o

E(wi(ty) + v(t1)) — E(v(ty)) < N2 tso—3s ya—s o NO-gg)(atso=2s) N =550

3a+ s —4s+ at+3—2s—24 3a+ s —4s+
< N¥oth—dst | ya+-2s—i+ < nBatiodst

After % steps we get the bound T'N Ta+3—8s+  This term is less than similar the initial energy of the high
frequency part which is of order N2=25 for s > %‘”‘ + % We can then iterate our result to reach any time
T by sending N to infinity. O

This result will appear in Advance Lectures in Mathematics, edited by S. T. Yau, K. Liu and Lizhen Ji,

see [30].
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Chapter 5

Almost Sure Global Well-posedness
for Fractional Cubic Schrodinger
equation on torus

5.1 Preliminaries

In this chapter we use a probabilistic approach to the cubic periodic fractional Schrédinger equation. To be

able to do that we first need to recall some definitions and theorems on Hamiltonian systems.

Definition 5.1.1 (cf. [3]). A functional ® is called differentiable if ®(y + h) — ®(y) = F + R, where F
depends linearly on h, and R(h,7v) = o(h) in the sense that, for |h| < € and |dh/dt| < €, we have |R|/e — 0

as € — 0. The linear part of the increment, F(h), is called the differential.
It can be showed that whenever this differential is defined, it is unique.

Theorem 5.1.2 (cf. [3]). The functional ®(y) = ft

1
to

L(z,&,t)dt for v = xz(t) is differentiable, and its

deriwative is given by the formula

t1

ro= [ (5 el (577)

to

For proof see [3].

One can also consider the e-variations of the extrema to get a motivation for the differential. For
that take a path v on which the functional ® has a local extremum. Then if we define a new functional
Dy, () = ®(y + €h), then for any h, a smooth curve, the functional ®; . becomes a function on ¢ with a
local extremum at € = 0. Then taking the derivatives with respect to € at 0 and differentiation by parts, one
gets the differential again. The following definitions and theorems also make more sense with this remark in

mind.

Definition 5.1.3 (cf. [3]). An extremal of a differentiable functional ® is a curve y such that F(h) =0 for

all curves h.

Theorem 5.1.4 (cf. [3]). The curve v = z(t) is an extremal of the functional ®(y) = fttol L(x,2,t)dt on the
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space of curves passing through the points x(ty) = xo and z(t1) = 21, if and only if

oL _dor_
dr dt 0z ’
along the curve 7.
Again, for the proof, see [3].
Definition 5.1.5 (cf. [3]). The equation
oL doL _
Ox dt 0%
is called the Euler-Lagrange equation for the functional ®
Now , if we look at Newton’s equation for dynamics,
%(mzri)—i—% =0 (5.1)

Hamilton’s principle for least action says that:

Theorem 5.1.6 (cf. [3]). Motions of the system (5.1) coincide with the extremals of the functional

o) = [ " Lt

to
where L =T — U 1is the difference between the kinetic and the potential energy.

Proof follows directly from the Euler-Lagrange equations. We can also define the Euler-Lagrange equa-
tions in n dimensions simply looking at the Euler-Lagrange equations in each variables.

Definition 5.1.7 (cf. [3]). Here, for x = (x1,....,x,), we call L(z,&,t) =T — U the Lagrangian function

oL _ d L _ ; .
and oo —dioe =0 the Lagrange’s equations.

Definition 5.1.8 (cf. [3]). Let y = f(x) be a convex function, f”(x) > 0. The Legendre transformation
of the function f is a new function g of a new variable p, which is constructed as follows. We draw the
graph of f in the x,y plane. Let p be a given number. Consider the straight line y = px. We take the point
x = z(p) at which the curve is farthest from the straight line in the vertical direction: for each p, the function
px — f(x) = F(p,x) has a mazimum with respect to x at the point x(p). Now we define g(p) = F(p, z(p)).
The point x(p) is defined by the extremal condition OF /0x = 0, i.e., f'(x) = p. Since f in convex, the

point x(p) is unique.
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We consider the system of Lagrange’s equations, p = %’ where p = %’ with a given Lagrangian function
L:R™ xR®” x R — R, which we will assume to be convex with respect to the second argument 4.

Then we have,

Theorem 5.1.9 (cf. [3]). The system of Lagrange’s equations is equivalent to the system of 2n first order

equations called Hamilton’s equations

,_ o
p= aq;
_on
q = apv

where H(p,q,t) = p¢ — L(p, ¢,1) is the Legendre transform of the Lagrangian function viewed as a function
of q.

For the proof, see [3].

Then for L =T — U as before we have that the Hamiltonian is the total energy H = T + U. One of
the most important properties of the Hamiltonian is that if the Hamiltonian doesn’t depend on t explicitly,
then it is constant in time. Thus in particular, if the Hamiltonian is the energy, then if the energy doesn’t
depend on t explicitly, then energy is conserved.

For the Hamiltonians that does not depend on time, i.e., H = H(p, q), we define the Hamiltonian flow

as follows:

Definition 5.1.10 (cf. [3]). The 2n dimensional space with coordinates p1,pa,.....,Pn; q1y 2y «oeeen . Qn 18
called the phase space and the Hamiltonian flow is the one parameter group of transformations of the phase

space

S(t) = (p(0),4(0)) = (p(t), q(t)),

were p(t) and q(t) are the solutions of the Hamilton’s system of equations.
Then we have,

Theorem 5.1.11 (Liouville’s Theorem). The Hamiltonian flow preserves volume, i.e., for any region D we

have,
Vol(S(t)D) = Vol(D).

Again, for the proof, see [3].

Definition 5.1.12. A measure, u is called an invariant measure with respect to the Hamiltonian if p

preserves volumes under the Hamiltonian flow, i.e., for any region D,



Unfortunately, not all the Hamiltonian systems are finite dimensional. For example, the fractional

Schrodinger equation

iug + (—A)%u = +|ul?u, (5.2)
u(x,0) = ug(x)

is an infinite dimensional Hamiltonian system with the Hamiltonian

70 = 5 [ I9Fueof 7 7 [ Juo)f

Although our arguments so far have been given in the finite dimensional case, at least formally, one
would expect to have the same arguments in the infinite dimensional case as well. Of course, passing from
the finite dimensional case to the infinite dimensional case requires careful limiting arguments. For more
information, consult [24].

Hamiltonian systems appear in the formulation of almost every dynamical laws of physics, such as
planetary systems, interaction of quantum fields, hydrodynamics of perfect fluid, general relativity and
many more. For example, the linear wave equation

0%y

o~ A

has the kinetic energy K = % f]R" (11)?dx, and the potential energy V = % fR" (Vu)?dx. Thus, the equation is
a Hamiltonian equation with the Hamiltonian being the total energy H (u,u) = K+V =[5, 3(1)*+(Vu)?dx.
(See [24, Chapter 2.1] for more information and the Hamiltonian structure of the nonlinear wave equation.)
In this context, invariant measures are important tools in understanding the dynamics of the system, since
it allows us to use other theories like ergodic theory to understand the behavior of sets with positive measure
under the Hamiltonian flow. For example, for the measure pu, the Poincaré recurrence theorem states that if
S; is a measure preserving map, then every set E with positive measure has to intersect itself eventually, on
a set of positive measure. More precisely, VE with u(E) > 0, there exists n € N such that u(E N SPE) > 0.
For more examples, see [3]. Invariant measures also have important applications in fields like statistical
and quantum mechanics. There have also been many studies on the construction of invariant measures for
dynamical systems generated by nonlinear differential equations. For example, see [6], [8], [10], [50], [51] and
references in Zhidkov’s book, [67].

In the next chapter we work with the Schrodinger equation (3.1) and define and invariant measure using

the Hamiltonian structure of it.
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5.2 Introduction

For equation (4.1) with o = 1 Bourgain, in [7], proved periodic Strichartz estimates and showed L? local
and global well-posedness for the cubic Schrédinger equation. In [16], Burq, Gerard and Tzvetkov noted
that this result is sharp since the solution operator is not uniformly continuous on H*® for s < 0.

The fractional Schrédinger equation on real line was recently studied in [26]. For a € (1/2,1), the
equation is less dispersive, so one would not expect to be able to get local well-posedness on L? level.
Indeed, they proved that there is local well-posedness on H® for s > 1_TO‘ They also showed that the

e
- -

solution operator fails to be uniformly continuous in time for s <

After obtaining the local and global well-posedness results in chapter 2, the natural question that arises
is how much we can push the global well-posedness range. For example, the cubic periodic Schrodinger
equation (o« = 1) in 1-d is locally well-posed in L?, see [7], and with the mass conservation, we know that the
equation is globally well-posed. That is, conservation laws on the local well-posedness level may give rise to
global well-posedness. But then, one can ask whether we can show that the equation is globally well-posed
whenever it is locally well-posed. Although when there is no conservation laws on the local well-posedness
level, it is not trivial that the statement is true, we can still make sense of the question in a different way.
The idea relies on the intuition that the set of 'bad’ initial data, where the solutions of the equation with
those initial data, may have arbitrarily large norm, should be negligible. This approach of looking at the
problem in an ’almost sure’ sense originated from the work of Lebowitz, Rose and Speer, [49]. They were
trying to understand the general behavior of a system containing a large number of particles by looking at
the values of the observables by taking averages over certain probability distributions containing only a few
parameters like particle density, temperature, etc., instead of looking at the individual initial value problems.

In classical or quantum mechanics, the Gibbs probability distribution for finding a system consisting of N

particles in a compact spatial region €2 is a set of microscopic states dX y is given by
p(dXn) = Zyte PHEN GX

where H is the Hamiltonian, 3 is the reciprocal temperature and Zy is the normalizing constant. Then one
can take the limit as N — oo, |[2] = oo and N/|Q)] — C < oo, where 2] is the volume of © and obtain a
well-defined measure on the resulting infinite dimensional phase space. With this in mind, one can construct

appropriate Gibbs measures on Sobolev spaces and proved some basic properties of these measures.
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Later, Bourgain. in [8], proved that the Schrodinger equation with power nonlinearity,

iug — Au= —|ulP?u, z€0,2n], tER,
(5.3)
u(z,0) = ug(x) € H5([0, 27]),

where 4 < p < 6 is locally well-posed in H® with s > 0. But for 0 < s < 1 there is no conservation law
which would easily allow us to extend the local solutions to global ones. He used the idea of Lebowitz, Rose
and Speer to construct a probability measure, also known as the Gibbs measure, on H® for s < % which
is invariant under the solution flow. Then he showed that for any ¢ > 0, there is global in time H® norm
bounds on the solutions with the initial data in H® up to a set of measure less than ¢, i.e. the equation is
almost surely globally well-posed in H® for 0 < s < %

The idea of the Gibbs measures and almost sure global well-posedness later have been used to prove
similar results for different equations by [13], [14], [19], [27], [52], [56], [57], [58] and many others. Moreover
the probabilistic methods have been applied successfully to other equations whether they are dispersive or
not. In the latter category the Navier-Stokes equation serves as an example, see [21], [20], [32], [33], [53], for
which local well-posedness cannot be proven via contraction arguments. This tells us that the probabilistic
methods are not only useful to prove that the local solutions are global almost surely, but also useful to
show that we can talk about local well-posedness in a probabilistic way, even when there is no deterministic
local well-posedness.

Our main result the third chapter is the explicit construction of Gibbs measure for 1-d fractional periodic

cubic Schrodinger equation and the proof of almost sure global well-posedness. More precisely, we define an

1

5 such that for any € > 0 we can find a set  C H®

invariant probability measure p on H®, for s < a —
satisfying p(Q2°) < e and the solution to the equation (3.1) exists globally for all initial data in Q.
For that, we are going to truncate the equation (3.1), and use the idea of invariant measures on finite
dimensional Hamiltonian systems. Namely, if we look at the equation,
iull + (—A)uN = £ PyulN|2ul,

(5.4)
uN (z,0) = Pyuo(z)

where Py is the projection operator onto the first N frequencies, we see that (5.4) is a finite dimensional

Hamiltonian system, since
du .0

pri
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with the Hamiltonian,

Ay(@(®) =5 3 Infu @ 57 [ 13 emul

n<N n<N

where @ = (un)|n|<ny and u,, is the nth Fourier coefficient of u. Then, by Liouville’s theorem, we know that
the Lebesgue measure H|n\ < dty, is invariant under the Hamiltonian flow. Thus, by the conservation of

the Hamiltonian and the invariance of the Lebesgue measure under the flow, we see that the finite measure,

d,LLN :eiHN(u) H duy,
[n|<N

is invariant under the solution operator, call it S(t).
We see that equation (4.1) is an infinite dimensional Hamiltonian system on the Fourier side with the

Hamiltonian,

A(®) = 5 3w 1 [ 132 et = ).

Then we define the limiting measure g on H® as,
1 al N 2 1 inz N4
du:eiH(“)Hd@:e_EZn"M u”(t)| ilf'u"zne Un (t)] Hdﬂ;,

and show that the measure p is indeed the weak limit of .
To construct this measure p on appropriate H® spaces, we use the theory of Gaussian measures on Hilbert

spaces following Zhidkov’s arguments in [67], and first define,
1 a2
dw = =% T I w @) I1 4.

Then we show that the measure p is absolutely continuous with respect to the Gaussian measure w under
certain conditions and finish the proof of almost sure global well-posedness by constructing the set 2 C H®

as stated above. For the second part we will mainly use Bourgain’s arguments in [8].

5.3 Almost Sure Global Well-posedness

The main result of this chapter is,

Theorem 5.3.1. For 1_70‘ <s<a-— % and € > 0, there exists an invariant probability measure p on H?
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such that the equation (3.1) is globally well-posed for any initial data ug € Q C H® such that 1(Q°) < e with,

14 ¢\ st
u(®)l2: S (1og (—))

As we mentioned above, in the proof of this theorem, we first define the finite dimensional measures py,
which are invariant under the solution operator of the truncated equation (5.4), and we define p as the weak
limit of these measures. But then we have to show how the equation (4.1) and the truncated equation (5.4)

are related, namely

Lemma 5.3.2. Let A € R and ug € H® be such that ||ug||lg- < A, and assume that the solution, uy, of
(5.4) satisfies ||lun(t)||gs < A for t <T. Then the equation (4.1) is well-posed in [0,T] and moreover, for
any 1_70‘ < s’ < s, we have,

||u(t) _ UN(t)HHs’ < 601(1+A)02TNSI—S’ (55)
where Cy and Cy independent of s.

Proof.
t
u(t) —un(t) = e A (ug — Pyug) + i / e N ER (Ju)2u(r) — Py (Ju® Pu™) (1)) dr,
0

and, taking the L ([0,T]; H*) norms of both sides for b > 1, since X0 ¢ L>°([0,T], H) for b > 1, we

get,
t
e = unll o oy mery < o = Prvuof s + | / DA (ufPu(r) — Py ([N Pu™ ) (1)) dr | o
0
< luo — Prvuoll e + (Towe) =7 |[JulPu — Prlu™ Pu™ || o
< (Tpwp)' ™" (H\“F“ = Py (Julw)| g + || P (Jul*u — |“N\2“N)||XSW>
+lluo — uo,n |l grer
< I+ 11411

for v < % such that b+’ < 1.

The term 11 is easier to estimate,

L= S €™ (uo),|| o < N**|luo)lm- < N¥ A,
In|>N
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For the term I, we first observe that Py (|v|*v) = |v|?v for v = Pyu, from the convolution property of

frequency restriction. Then we write,

~
IN

|||u\2u — PN(\v|QU)||XS,,b, + ||PN(|U\21J - |U|2U)HX5/,M
- H|u\2u — |v|2vHX5/1b/ + HPN(|’U|2U — \u|2u)HXa,,yb,

= L+, <26,

Estimating term I; using X*® estimates and local well-posedness theory, see Lemma 4.4.1 and Proposition

4.4.2 of the previous chapter, we see that,

b 2
L S (Towp)'™" b/(HuHXﬂ/vb+||UI|XS’J’) |u— vl xere

< (Towp)' "V A% - Pyulxo
/

S (Towe) 7" A% |lug — Py uol| g

5 (TLWP)lfbfb'ASNslfs.

Thus we get,
I S (TLWP)lfbfb’ABNs’fs.

Similarly, for the second term we have,

—b—b 2 —b—b"
1T S (Tewp)' ™" (lull s + 6™l xr0) " llu = u™ o S (Tewp)' =70 A2flu = u | xor,

~

and collecting all the terms, we get,

lu—unlxesn < CNT A+ Co(Towp) ™7 A2 u — u®|| s

+Cy (TLWP)lfbfb’ A3Ns'7s’

IN

, 1
CAN®=* 4 < [lu— ¥ s

< 2CAN® s,

for Trwp small enough independent of N,s and s’. Repeating this argument, since the implicit constant

C can be taken independent of Trwp and N, we see that at any Tpwp time, because of the Banach Fixed
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Point argument, the norm at most doubles and thus, at time T" we get,
T ’ ’ ’
[ — un |l gy < 2TEwr CANS = ~ € AFAT g &' =5,

which gives the result. O

Now, we define a probability measure on H® using the Hamiltonian. For that we will mainly follow

Zhidkov’s arguments, see [67].

5.3.1 Construction of the Measure on H°:

First we will fix the notation that we will use for the rest of the chapter. Let F' = (—A)*° on H*. We
see that F' has the orthonormal eigenfunctions e, = ¢™*/(n)* in H® with the eigenvalues |n|?*~25. We also

denote u, = (u,en)Hs.

Definition 5.3.3. A set M C H?® is called cylindrical if there exists an integer k > 1 such that,
M={ueH®: [u_g,...,u_o,u_1,u1,us,...,u;] € D},

for a Borel set D C R2*.

We denote by A, the algebra containing all such cylindrical sets. Then we define the additive normalized

measure w on the algebra A as follows: For M C A, cylindrical,

k k
w(M) = 20)* I ‘n|a75/ e E S0P el TT

D

[n|=1 |n|=1

By the definition of the cylindrical sets, we see that for any r > 0 and a € H?®, the closed ball B,.(a) can
be written as B.(a) = (| M,, where M,,’s are the cylindrical sets defined as,

n=0

M, ={xeH®: Z (x —a), <r?},
[k|<n
belongs to A. Thus since A contains arbitrary closed balls, the minimal o — algebra A containing A is the
Borel 0 — algebra. Although the measure is additive by definition, it doesn’t necessarily follow that it is
countably additive. Indeed,

Theorem 5.3.4. The Gaussian measure w is countably additive on A if and only if 3, |n|**72* < oo, i.e.

1
s<oz—§.
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Proof. (cf. [67]) Let >, |n|?*72% < oo. Wel first show that for any € > 0, there exists a compact set K, C H®
with w(M) < e for any cylindrical set M such that M N K, = 0.
Let b, = |n|® such that a = > |n|[**72"€ < co. Then for an arbitrary R > 0 take the cylindrical sets

of the form,
k
M = {u €EH®: [u_g,...,u_9,u_1,uy,...,ux] € D, where Z In|u? > RQ}.
In|=1
Then we see that,

k k
'UJ(M) = (27.‘-)71c H |n|a75/ 67%22:1 ‘n‘2a72slun|2 H dun

k €2 2
In|=1 Yono1 In[fuZ >R |n|=1

k k : k
(271_)71@ H |n|ozfs/ Z(%ui)67525:1 n2% =22 |u,, |2 H du,,

<
In|=1 n=1 In|=1
< R72 Z |n|2372a+€
n
= aR7?, (5.6)
here, to pass to the third line we used integration by parts with f = M}% and dg =

—%|n\2°"25 2

—|n|?* =25 ue “nduy,. Then, for R > /%, we have w(M) < e.

Hence, if we take K. = {u € H*: Y |n|°u2 < R?}, we get the desired compact set.

Now let A1 D As D ... D A,, D ... be a sequence of cylindrical sets in H® such that ﬂfno:l A, = 0.
Then for any € > 0 there exists closed cylindrical sets C,, C A,, for all m such that w(A,,/C,,) < e27™2.
Let D, = (yey Ck. Then w(Ap/Dy) < w(lUp, (Ax/Cr)) < €/2. Let Ep, = Dy, N K)o, then E,,’s are
compact with E,, C Ay, and w(4,,/E,,) < €. Since (,, Am =0, (,, Em = 0, and since (E,,) is a nested
sequence of compact sets, we see that E,, = ) for all m > mg for some mq € N.

Hence, w(Ap,) < w(Ey,) + € < ¢, for all m > mg. Thus w(A4,,) — 0, i.e. w is countably additive.

1

2572 = o0, i.e. s > a — 3. Then

For the converse, assume w is countably additive and also ) |n
consider two cases,
Case 1: (s < «). In this case we see that |n|?*72% < 1 for any n. Consider the cylindrical sets of the

form,

k
MkZ{UEHsZ| Zui—)\k’<2m}a

In|=1

where A\, = Zfﬂlzl |n|?s—2,
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Then we have,

w(Mg) = {uEHS ‘Z - )l >2\F}

In|=1
(§:|\ ((uh) = Ak) L sk 2am2s), 12 o
< n -2 E|n\=1 In [unl d
= /Rzn g € 1|_I1 Un
= ( : - Z)A )\2> _%Zﬁ |=1 |n‘2a723|un‘2 - d
= 4>\k o z_: z_: Uy, P L€ 11 Uy,
= In|=1 |n|=1
_ 1 2 4s—4a 2
_ %((Aﬁ?;—%'nl ) = 22 A + A7)
4s—4a
o 1 Shy
- 2 Ak
1
<
- 2

where, to pass from the third line to the fourth line we used integration by parts. Since Ay — oo as
k — oo, there exist balls By, , 5-(0) of arbitrarily large radii with w(B,, 5 /5:(0)) < w(My) < 1, which
contradicts with the countably additivity of w.

Case 2: (s > «). In this case, for each n > 1, consider the cylindrical set
My = {u € H*: |’LLZ| <k, |’L| =1,2, ...,ak},

where a; > 0 is an integer. Then by a change of variables, we have,

ak kln[o7s
wMp) = 2m) [ / emilvdu, )

|n|=1 —kln|o=s
k aj
[(277)_1/ e_%lw‘rzdx} k,
—k

since s > a. By choosing a large enough, we can take w(My) < 271 for each k and that a; — oo as

IN

k — oco. Then since | Jpo; M), = H® and w(H*) = 1, since H* is a cylindrical set with full measure. But

then w(Upe, Mi) < > 5o w(My) < 1, which is a contradiction. Hence the theorem follows. O

Since this construction gives us a Gaussian measure, we now have to check whether the measure is

singular, i.e., we have to check whether it assigns positive measures to balls with positive radius.

Proposition 5.3.5. For s <a— 3, u € H* and r > 0 we have, w(B,(u)) > 0.
Proof. [66]
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We have seen that B, (u) = (N My where My, = {x € H* : Dinj<k 1T — al2 < r?}. Then from the
construction above, it follows that w(B,(u)) = klingo w(My). Now, fix kg > 0 such that Zm:kgﬂ An < ’{—Z

and erlzko-i-l an < 71"—2 Then taking k > ko + 1 we get,

k _1 7% > )‘;lxi)
w(Mg) = (2m)2 H>\n2/ e Inl<k dx(_gy....dzy,
In|<k B
Y B aa)
> C(Qﬂ')_kzko H /\;%/ e * N niSRo+1 dZ(,k)...dZ(,kO,l)dZ(kO+1)....dzk,
In|=ko+1 Py

where C' is independent of k,
Fr={y = (Y(—kys s tp) ER Y~ |y — > <17}
In|<k

and

2
_ T
Bl =Ly = (Y—k)s s Y—ho—1)s Yko+1s -vees Yk) € R2(k—ko) E [Yn — anl|® < Z}’
ko+1<In|<k

which is true since

2 2
{y e R?* . Z \yn—an|2gz}ﬁ{y€R2k: Z |yn—an|2§Z}CFk.
In|<ko ko+1<|n|<k

Then, because of the choice of kg, we have

2
r
{Z = (Z(—k)a~~->Z(—ko—1)>z(ko+1)a ...,Zk) : Z 2’2 < —} - Fkl

"~ 16
ko+1<|n|<k
Using this, we can further bound w(M}) from below by,
k—kg b _1 _%( i Aglzi)
C2m)” 2 H An 2 / e Inl=ko+1 dz(—p)--d2(—go—1)dZ(ky+1)----d2k-
[n|=ko+1 L2 <12
n—16

ko+1<In| <k

o0
Then a similar calculation to (5.6) shows that w((My)) 21— > A, 2 1, which ends the proof.
|n‘:k}0+1
O

Now we define the sequence of finite dimensional measures (wy,) as follows: For any fixed k > 1, we take

the o—algebra, Ay, of cylindrical sets in H® of the form My, = {u € H® : [u_g,...,u_9,u_1,u1,...,ux] € D},
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for some Borel set D C R?*. Then,

k k
wi (M) = (2m)7F H |n|a_s/ e= 3 Llnj=r NP7 un? H duy,.

D

In|=1 In|=1

Hence we get the sequence of finite dimensional, countably additive measures wy on the o — algebra Ay. We

can also extend these measures to the o — algebra A in H®, by setting,
wi(A) = wi (AN H}), for A€ A,

where Hj = span(e_g,...,e_1,€e1,...,€x).

To justify this extension it is enough to show that AN H} is a Borel subset of H} for A € A. Assume
it is not the case. Then, there exists A € A such that AN H ¢ Ay. Then, AL = {C € H* : ¢ =
AN Hifor someA € A} is a o — algebra and A} C A, and A}, # Ay by definition. Now consider the see
A of all Borel subsets A of H* such that AN H; € A}. Then we see that A' is a 0 — algebra in H® such
that A C A. Since A! contains all open and closed subsets of H®, it must contain the minimal o — algebra
containing all the open subsets of H*, i.e. it has to contain the Borel o — algebra A, which is a contradiction.
Thus A N Hj is a Borel subset of Hj for A € A and we can extend the measures wy.

The immediate question is whether or not the infinite dimensional Gaussian measure w and the finite

measures wy are related and the answer is,
Proposition 5.3.6. The sequence wy, converge weakly to the measure w on H® for s < a — L as k — oc.

2

Proof. (cf. [67]) First, recall that a sequence of measures v, is said to converge to a measure v weakly on

H?# if and only if for any continuous bounded functional ¢ on H?,

/(b(u)dvm(u) — /gb(u)dv(u).

Also recall that any e > 0, if we take K. C H® as in the Theorem (5.3.4), we see that w(K,.) > 1 — € and
moreover, Wy, (K¢) > 1 — € for all n > 1. Now let ¢ be an arbitrary continuous bounded functional on H*

with B = sup,c s ¢(u). Then for any e > 0 there exists 6 = d(e) > 0 such that

|p(u) — d(v)| < e for any u e K, and v € H® satisfying ||u — v|| g < 4. (5.7)
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For any m, call K,,, = K. N HZ,. Then by the definition of the measures w,, on A, we see that,

(u)dwm(u)—/K d(u)dwy, (u)| < eB, (5.8)

Hs m

for any m > 1. Define,

1) 1)
Kpe={veH’:v=v1+uvy, v1€H,, ’UQL e H, |lvallgs < =, dist(vi, Km) < 5}

27

Then, K. C K, for all sufficiently large m’s. Thus, for m large enough,

(u)dwp, (u) —/ d(u)dwy, (u)| < eB. (5.9)

’ Hs Km,e

We now define the measure w;, on (Hg,)* as follows:

For a cylindrical set
1 _ syL .
M~ = {UE (Hm) : [u—m—ka---7u—m—27u—m—17um+17um+2a-~-aum+k] € F}a

where F' C R?* is a Borel set, and,

m+k 1 +k 2 2 2 m+k
e o2
wo, (M*) = (2m)7* || Inlo"s/e 2 Zfni=mea [N lunl || diy,.
In|l=m+1 F In|=m+1

then we see that w;- is a probability measure on (H2)* and w = w,, ® w.

Thus we get,
/ o(u)dw(u) = / dwm(um)/ (U + U ) dwik (uik), (5.10)
Ko, e U EKm e ut €KL (um)
where, K (um) = Kpe N {u € H® : u=up +y,y € (H3)*}. Then by (5.7),

= w. u u UL — u u ”LUJ_ 'Z,LJ_
/K  pmdu) = / ) / s o (@) o) + g )

IA

Ce + / O (U ) dwp, (Up,),
Um EKm e

for C' independent of m and e.
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Hence,

/ ¢>(U)dw(U)—/ G (tm ) dwy, (um) < Ce. (5.11)
K u

m,e mEKm,e

Therefore, combining (5.8), (5.9) and (5.11), we get the result. O

Now, we show that the measure p is absolutely continuous with respect to the Gaussian measure w.

Recall that,

duy = (2m)N H inje=se % Sinien [In" un @ =3 1 Snien 55500 OF g0 I dun
Inl=1 1<in <N
] N
— e_%f’ﬂ“zm,\gN %“n(ﬂﬁ(mﬂ—ﬁf H |n|a—56—%20<|n\§1\7|"\2a723|un(t)\2du0 H diy,,
Inl=1 1<In|<N

and thus, py is a weighted Gaussian measure.

wol? < [ 1?5 ([ mior)’,

1 einT 4 1 4
/ e 1 Jo 1 0 Gye un ()] dug < / e~ 1luol dug < C,
wo€C up€eC

uniformly in N. Thus, instead of working with the full measure py it is enough to work with the measure

For the defocusing NLS, since

we have,

wp, which is also known as the Wiener measure.
For the focusing NLS, though, we don’t have an a priori control over the weight i Jr1 Znen e un 0l
We can overcome this problem by using a lemma of Lebovitz et al., see [49], which applies an L? cut-off to

the set of initial data, namely,
D> e, (D) 1 ~ -
Lemma 5.3.7. et 1<|n|<N X{|lull 2 <B} € L' (dwn) uniformly in N, for all B < co.

Proof. (cf. [57, 55])

/e% S 1 1< in<n einzun(t)\‘lx{”u”ﬂSB}dw _ / e N1 g inien einzun(t)|4X{Hu”L2SB}dw
(/1 Zle””un( )4<K)
3 / et /I Xasimaw Oy oy cpydu
i=0 N J
(1 ‘ El einTy, (1)|*€(21 K211 K])
1p oo 1(21+1K)4 4 K 5
AP (1S e mlt > 2K, s < BY).
i=0 |n|=1
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Now to estimate the second term on the right hand side, choose Ny dyadic, to be specified later. Now

call N; = Np.2% and let a; be such that >, a; = L

2
Then,
w({([[ulls > K, lJull 2 < BY) <Y~ w{([|Pgaj~niyull e > aiK}),
i=1

and since by Sobolev embedding we have,
1
[ Pginj~niyullze S NI Pgnjonyulle,

we see that,

w({(lullzs > K, ul2 < BY) < > w{|[Pyajenyulles > a:iK})
=1
© _1
< D w{{|Pyaeniulle 2 aiN; TKY).
=1

1
Letting a; = CN§N; € and Ny such that K ~ N B, i.e.Ng ~ K*B~4, we get,

8

i=1 |n‘NNz
b 1

~ Su({( Y |un|2)52a1Nl_4+sK}>,
=1 [n|~N;

and by the estimation of the tail of the Gaussian measure, (cf. (5.14)), we have,

R (2a—28)+2s— 1

w{(lulps > K, lull g < BY) < Y e il K
1=1
< ie*%NéeN?""%’zeKz
- =1
< i efiN§a7%2(2“7%726)iK2
B =1
10272973
S e_ZK Ny

1 244(2a—1) p2—4s
-1k 2B

(5.12)

and collecting terms, we obtain,
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1 4 i1
/e4f|U\ Xl z<mydw < et +Ze4 O w({(full e > 2'K, Jul 12 < BY})
s 244(2 ) p2—
1 (9141 _ 1ot 0477 8a
< iK'y Z PHTIK) —1(2'K) B
< oo,
since o > %, which proves the lemma. O

|“n|2

Moreover, observe that for ||ul[r: < B, we get |uo|* < 37, 5 < B® Hence, L? cut off also restricts

ug to the ball {ug € C: |ug| < B}, uniformly in N. Therefore, combining these two results, we get that the
measure py is a weighted Gaussian measure with weight being uniformly in L' with respect to the Gaussian
measure.

By the construction of the Gaussian measure, we see that for any compact set E C H®, we have,
N(ENHY) = w(E).

Thus, using the result above we get,

N(ENHY) = p(E).

Proof. (Proof of Theorem (5.3.1)) For the proof of the theorem and the invariance of the measure p, we
follow Bourgain’s arguments in [8]. First, for any € we will construct the sets Qn C H® such that un(Q%) < e

and,

[N ()]s S (log (1 i |t|)>§ (5.13)

For that, we fix a large time T and let [—TrLwp, Trw p] be the local well-posedness interval for the equation
(3.1). Then consider the set

K —{ueHY: ||lu|g <K},

where, again, HY, = span{e,, : [n| < N}. We see that,

N
K\c _ - a—s [n|2928 |y, |2
V(@) = @0 F ] In) [ eiEha I v
In|=1 Hs - SK n|=1
{veH: lullgs>K}
N N
N 1N 200—2s 2
= 2 H |n‘a_s / 6_2Z\n|:1 In [unl H dun
n|=1 Hs - 25 K2 In|=1
{ue N'Z|n|§N‘u”| >K?}
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N
= (@)% / e 3 b= P T don.

op 2 2 Inf=1
{2)n<n yzamzs > K7}

N
< et [ it [ a,
X< lon?>K2} In|=1
= (277)_%//er_le_%"zdrdSQN
- ) /TTQN 20795 =309 gra Sy
SQN K _C
s e ¥ [ [red s,y
SQN K
5 %//T_Ge 3(r—e) d’I"dSQN
N K
< eHE=? < iR 5.14)

12
e"1K7,

A

for € small enough. Thus, uy ((2%)¢)

Since pp is invariant under the solution operator, Sy of the truncated equation, if we define the set,

Qy = QK N SHOQE) N SHQE) N ... 0SBV (QF),

Yy satisfies the property, un((Qy)¢) < un (5)¢) < TK% = 5K* | since the local well-posedness

— TLWP
interval [-Trwp, Trwp] depends polynomially on the H® norm of the initial data because of the Lemma
4.4.1, Proposition 4.4.2 and the contraction argument given in the first chapter. Thus if we pick K =

1

((4 + 20) log (%)) *, for € small we get,
N ((Q)%) <e

and by the construction of the set €y we have,

[ @)l 5 (108 (5)) .

for all [¢t| < T. Moreover, if we take T; = 27 and €; = 5%, and construct Qy ;’s, we see that Qn = ﬂjoil QN s

satisfies (5.13).
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Also by the approximation lemma (5.5), we see that for any s’ < s we have,

N

lu(@®)|l g <24 < Cy (log (T)>

©
Again by taking an increasing sequence of times, we get,

u(®ll o < Co (1o (FL)) . (5.15)

Hence, if we intersect this result with an increasing sequence of s < a — %, and taking Q = (Qx where
N

(2w )s are defined as above with pn(Q%,) < 5%, we get that 4(Q) < e and that the solutions to the equation

(3.1) has the norm growth bound,
L+ [t]\\ 2
Ju)lla- < € (1o (—)) "
for initial data ug € 2. Moreover, interpolating this bound with,
[u(®)llz> = lluollz2,

we have,

Ju(®)la- < ¢ (1oa (L)

which proves theorem (5.3.1). O

5.3.2 Invariance of i Under the Solution Flow

Let K be a compact set and B, denote the € ball in H®. Let S be the flow map for the equation (3.1) and

Sn be the flow map for the equation (5.4). Then by the weak convergence of the measure,
W(S(K) + B = Jim_ i ((S(K) + B) N HR).
Also by the uniform convergence of the solutions of (5.4) to (3.1) in H** for any s1 < s, we get,

SN(PNK) C S(K) +BE/2,

(0]



for N > Ny sufficiently large. Then for €; small enough,

Sn((K + Be,) NHy) € Sy(PvK) + B.js C S(K) + Be.

Hence,

N (Sn (K + Be,) NHY)) < pn (S(K) + Be),

and by the invariance of puy, we get,

un ((K + Be,) NHY) < pn (S(K) + Be),

and letting N — oo, by the convergence of the measures uy to p,

p(K) < p(K + Be,) < p(S(K) + Be),

which say, by the arbitrariness of €, that pu(K) < p(S(K)), and by the time reversibility, we also have the

inverse inequality and, thus,

which gives the invariance of p under the solution operator.

This chapter is going to appear in Canadian Mathematical Bulletin, see [31].
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