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Abstract

In the first part of this thesis we consider the cubic Schrödinger equation

 iut + ∆u = ±|u|2u, x ∈ T2
θ, t ∈ [−T, T ],

u(x, 0) = u0(x) ∈ Hs(T2
θ).

(1)

T is the time of existence of the solutions and T2
θ is the irrational torus given by R2/θ1Z× θ2Z for θ1, θ2 > 0

and θ1/θ2 irrational. Our main result is an improvement of the Strichartz estimates on irrational tori using

a counting argument by Huxley [43], which estimates the number of lattice points on ellipsoids. With this

Strichartz estimate, we obtain a local well-posedness result in Hs for s > 131
416 . We also use energy type

estimates to control the Hs norm of the solution and obtain improved growth bounds for higher order

Sobolev norms.

In the second and the third parts of this thesis, we study the Cauchy problem for the 1d periodic fractional

Schrödinger equation:  iut + (−∆)αu = ±|u|2u, x ∈ T, t ∈ R,

u(x, 0) = u0(x) ∈ Hs(T),
(2)

where α ∈ (1/2, 1). First, we prove a Strichartz type estimate for this equation. Using the arguments from

Chapter 3, this estimate implies local well-posedness in Hs for s > 1−α
2 . However, we prove local well-

posedness using direct Xs,b estimates. In addition, we show the existence of global-in-time infinite energy

solutions. We also show that the nonlinear evolution of the equation is smoother than the initial data. As

an important consequence of this smoothing estimate, we prove that there is global well-posedness in Hs for

s > 10α+1
12 . Finally, for the fractional Schrödinger equation, we define an invariant probability measure µ on

Hs for s < α− 1
2 , called a Gibbs measure. We define µ so that for any ε > 0 there is a set Ω ⊂ Hs such that

µ(Ωc) < ε and the equation is globally well-posed for initial data in Ω. We achieve this by showing that for

the initial data in Ω, the Hs norms of the solutions stay finite for all times. This fills the gap between the

local well-posedness and the global well-posedness range in almost sure sense for 1−α
2 < α− 1

2 , i.e. α > 2
3 .
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Chapter 1

Introduction

In this dissertation, we consider certain periodic cubic Schrödinger equations of the form:

 iut + Nu = ±|u|2u, x ∈ Ω, t ∈ [−T, T ],

u(x, 0) = u0(x) ∈ Hs(Ω),
(1.1)

where N is a certain Laplace or Laplace-type operator. In two dimensions, Ω is the irrational torus given by

R2/θ1Z× θ2Z when θ1, θ2 > 0 and θ1/θ2 is irrational. In one dimension, Ω is the regular torus.

Equation 1.1 belongs to a broader class of differential equations called dispersive equations. Dispersive

equations are characterized by the property that frequency-localized bumps propagate with a velocity de-

pending on the frequency, without changing their shapes. In general, on unbounded domains, the solution

decays over time and time averages get smoother. On bounded domains, there is no decay, but a more subtle

averaging effect occurs in the form of a Fourier restriction estimate.

In the following chapters, we answer several fundamental questions about periodic cubic Schrödinger

equations. For example, we determine whether there is a unique local (global) in time solution to the

equation which is continuous with respect to the initial data in certain subsets of Sobolev spaces. If so, we

say that the equation is locally (globally) well-posed.

When the equation is known to be globally well-posed on the Sobolev space Hs, we know that for all

times, the Hs norm of the solution remains finite. For such an equation, the natural question to ask is

how fast the norm grows in time. Using simple iteration arguments, one can generally prove that the norm

can grow at most exponentially. The question then becomes whether the Sobolev norm growth is actually

exponential: is it bounded by a polynomial or logarithmic function, or perhaps even by a constant?

When we try to prove well-posedness, restricting ourselves to a subset of Hs spaces is often necessary

due to the regularity loss incurred by estimating the solutions of the linear Schrödinger equation in Lebesgue

spaces other than L2. The estimates of this type are called Strichartz estimates. To overcome this problem,

we try to find local well-posedness of the equation in a subset of Hs which better incorporates the structure

of the equation. These spaces are known as Xs,b or Bourgain spaces, see (2.13). In the literature, we refer
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to well-posedness in Xs,b spaces as Hs well-posedness. Well-posedness in Hs spaces themselves we call

unconditional well-posedness. In this thesis, we consider only Hs well-posedness.

In the third chapter of the dissertation, using a contraction argument, we prove that the 2d periodic

Schrödinger equation, where N is the Laplace operator ∆ on irrational tori, is locally well-posed on Hs for

s > 131
416 . We also prove a polynomial in time upper bound on the Sobolev norm of the global solutions. This

result, however, does not imply the global in time boundedness of the solutions, see [41].

This local well-posedness result heavily depends on the Strichartz estimates. On R2, these estimates are

byproducts of the decay estimates, but on periodic settings, since there is no decay in time, it is harder to

obtain them. In [7], Bourgain reduced the Strichartz estimates on the torus to a counting argument about

the number of lattice points on a circle. Using a similar argument and a theorem by Huxley [43], which

estimates the number of lattice points on an ellipse, we prove the Strichartz estimates on irrational tori with

131
832 derivative loss. After obtaining these estimates, we prove the bilinear Strichartz estimate, which controls

the product of two linear solutions. Then, with careful analysis on Xs,b norm of the frequency restrictions

of the solutions, we obtain the local well-posedness result. However, on irrational tori, it was expected that

Strichartz estimates exist without any derivative loss, as in the regular torus case. Indeed, Bourgain and

Demeter proved in [15]:

‖eit∆u0‖Lpt (I,Lpx(Tn−1
θ )) .ε N

n−1
2 −

n+1
p +ε|I|1/p‖u0‖L2

x(Tn−1
θ )

for each ε > 0, where p ≥ 2(n+1)
n−1 and supp û0 ⊂ [−N,N ]n−1. This proves the Strichartz estimates in full

generality up to ε derivative loss.

To prove the polynomial growth, we use energy type estimates, i.e., we estimate d
dt‖u(t)‖Hsx for a global

solution u of the equation. We estimate this term using the explicit form of the equation, estimates on the

frequency restrictions of the function, and Lemma (3.1.1), which was used by Bourgain in [9] to prove a

similar growth estimate for two dimensional Schrödinger equation on regular tori.

In the fourth and the fifth chapters we work on the 1d fractional Schrödinger equation, where N is the

fractional Laplacian (−∆)α for α ∈ (1/2, 1). In the fourth chapter we first prove a Strichartz estimate with

1−α
4 derivative loss, which by the arguments in Chapter 3 gives us local well-posedness in Hs for s > 1−α

2 .

However, instead of using the same methods, we use direct Xs,b estimates to run the contraction argument

and prove local well-posedness.

We know that there is mass and energy conservation for the solutions of the fractional Schrödinger

equation. This energy conservation gives us a global in time control over the Hα norm of the solution and
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thus global well-posedness in Hα whenever we have local well-posedness in Hα. However, with the lack

of a conservation law at the Hs level, we do not have a priori global well-posedness in Hs for s ∈ (0, α)

below the energy level Hα. In the second part of Chapter 4, we prove that the nonlinear evolution of the

equation is smoother than the initial data. Using this smoothing estimate and Bourgain’s high-low frequency

decomposition, we end this chapter by proving that the equation is globally well-posed in Hs for s > 10α+1
12 .

The high-low frequency decomposition method consists of estimating separately the evolution of the low

frequencies and of the high frequencies of the initial data in a (0, δ) interval. Then we iterate this solution as

many times as possible to reach any given, arbitrarily large time, where at every iteration step we feed the

smoother nonlinear evolution of the high frequency equation to the low frequency equation, as long as the

energy of the low frequency equation is controlled by its initial energy. Although the smoothing estimate

is crucial for the high-low frequency decomposition method, it has more applications in understanding the

dynamics of the equation like the existence of global attractors, see [35].

In the fifth chapter we use probabilistic arguments to understand the set of initial data for which the

local solutions cannot be extended to global ones. For that, instead of trying to understand the structure of

the set, we show that the set is actually negligible with respect to a weighted Gaussian measure, called the

Gibbs measure. This idea of looking at the probabilistic properties of the set of initial data was initiated

by Lebowitz, et. al. in [49]. In this chapter, using the Hamiltonian structure of the Schrödinger equation

and Zhidkov’s arguments in [67], we explicitly construct the invariant Gibbs probability measure on Hs for

s < α − 1
2 . Finally, using Bourgain’s arguments in [8] we prove that for almost any initial data in Hs with

respect to this measure, the solution is global. The main idea of the proof is to show that for almost any

initial data, the Hs norm of the solution stays finite and by the blow up alternative, see page 18, we conclude

that the solution has to be global. This approach depends on the delicate balance between the polynomial

dependence of the local well-posedness time on the Hs norm of the initial data, invariance of the measure,

and decay estimates on Gaussian measures.
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Chapter 2

Background and Tools

2.1 Basic Definitions and Estimates

In this thesis we will use (·)+ to denote (·)ε for all ε > 0 with implicit constants depending on ε and will use

the usual Japanese bracket notation, 〈x〉 = (1 + x2)1/2.

We will use A . B and A ∼ B to denote that there is a constant C > 0 such that A ≤ CB and

C−1B ≤ A ≤ CB respectively.

Definition 2.1.1. [5] Bessel potential (Js) and Riesz potential (Ds) are the operators defined as

Jsu = F−1
(
(1 + |ξ|2)s/2û

)
and Dsu = F−1

(
|ξ|sû

)
(2.1)

where the F−1 denotes the inverse Fourier transform.

Definition 2.1.2. A function f : Rn → C is called a Schwartz function if it is infinitely differentiable

and xµDγf ∈ L∞(Rn) for all nonnegative multiindices µ = (µ1, ..., µn) and γ = (γ1, ..., γn) such that

µi, γi ≥ 0 for i ∈ {1, ..., n}, where xµ = xµ1

1 ...xµnn and Dγf = dγn

dxγnn
... d

γ1

dx
γ1
1

f .

Definition 2.1.3. For a time interval I, the mixed Lebesgue space Lqt (I, L
r
x) is defined via the norm:

‖u‖Lqt (I,Lrx) =


(∫
I

‖u(t)‖qLrxdt
) 1
q

if q <∞

sup
I
‖u(t)‖Lrx if q =∞,

and the space Ct(I, L
r
x) is defined as the space of continuous functions u : I → Lrx.

Definition 2.1.4. Let (φn)n∈N be a sequence of C∞c , compactly supported C∞ functions, and let φ ∈ C∞c .

We say lim
n→∞

φn = φ in C∞c if

• there is a compact set K such that suppφn ∈ K, for all n, and

• all derivatives of φn converge uniformly to the corresponding derivative of φ.
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Definition 2.1.5. The space of distributions, D′, is the space of continuous linear functionals on C∞c .

From this definition, we see that if f is locally integrable, then f defines a distribution

Tf (φ) =

∫
Rn

fφdx,

for φ ∈ C∞c , which we will also denote as f .

Definition 2.1.6. For every multindex γ, one can define the distributional derivative, Dγf , of f as a

distribution by ∫
Rn

Dγfφdx = (−1)|γ|
∫
Rn

fDγφ,

for all φ ∈ C∞c .

Definition 2.1.7. The space S ′ is the space of tempered distributions on Rn, which means that S ′ is the

topological dual of S.

The Sobolev spaces are defined as follows:

Definition 2.1.8. For m ∈ N, the Sobolev space Wm,p is given by

Wm,p = {f ∈ Lp : Dγu ∈ Lp ∀γ multiindex such that |γ| ≤ m}

with the norm

‖u‖Wm,p =
∑
|γ|≤m

γ multiindex

‖Dαu‖Lp . (2.2)

For p = 2, we write Wm,2 = Hm, and since p = 2, we can characterize the Sobolev space using the

Fourier transform. Namely, given m ∈ N we can define

Hm = {u ∈ S ′ : (1 + |ξ|2)m/2û ∈ L2}

with the norm

‖u‖Hm = ‖(1 + |ξ|2)m/2û‖L2 (2.3)

where S ′ is the dual of Schwartz space. We are also going to denote by ‖u‖Ḣm = ‖|ξ|mû‖L2 the homogeneous

Sobolev norm. Note the requirement m ∈ N simply serves to make the definition consistent with the previous

one, and we can extend this definition to the noninteger real positive numbers. We can also extend it to

negative numbers by taking the dual of the positive indiced Sobolev spaces. For further details, see [5].
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For Sobolev space we have the following result.

Theorem 2.1.9 (Gagliardo-Nirenberg Inequality). Fix 1 ≤ q, r ≤ ∞ and m ∈ N. Then for u ∈ S(Rn),

‖Dju‖Lp . ‖Dmu‖λLr‖u‖1−λLq ,

where C = C(m,n, j, q, r, λ) and 1
p = j

n +
(

1
r −

m
n

)
λ+ 1−λ

q , and j
m ≤ λ ≤ 1.

For a proof, see [54].

We also have the following embedding result.

Theorem 2.1.10. Let m ≥ 1 be an integer and 1 ≤ p <∞. Then

(1) if 1/p−m/n > 0, then Wm,p(Rn) ↪→ Lq(Rn) with 1/q = 1/p−m/n,

(2) if 1/p−m/n = 0, then Wm,p(Rn) ↪→ Lq(Rn), for p ≤ q <∞,

(3) if 1/p−m/n < 0, then Wm,p(Rn) ↪→ L∞(Rn).

For a proof, see [2] and [5].

One also can consider the interpolation of these Sobolev spaces

Theorem 2.1.11. [5, Theorem 6.4.5] Let numbers s, s0, s1, p0, p1, θ be given, with 0 < θ < 1. In addition,

put,

s∗ = (1− θ)s0 + θs1,

1

p∗
=

1− θ
p0

+
θ

p1
.

Then for s0 6= s1 and 1 < p0, p1 <∞, we have

(W s0,p0 ,W s1,p1)[θ] = W s∗,p∗,

where (W s0,p0 ,W s1,p1)[θ] is the interpolation space of W s0,p0 and W s1,p1 of exponent θ, see [5, Definition

2.4.1].

Now, consider a compactly supported function ψ ∈ C∞c (Rn) such that supp(ψ) ⊂ Rn − {0} and∑∞
−∞ ψ(2−jx) = 1 and call ψj(ξ) = ψ(2−jξ); namely, consider a radial function φ ∈ C∞c (Rn) such that

φ(ξ) = 1 for |ξ| ≤ 1 and φ(ξ) = 0 for |ξ| ≥ 2,

6



then define ψ(ξ) = φ(ξ) − φ(2ξ), which satisfies the above conditions. Then if we define the operator

Pjf = F−1(ψj f̂), we have the following.

Theorem 2.1.12. [59, Theorem 8.3] For any 1 < p < ∞, the Littlewood-Paley square function, Sf =(∑
j |Pjf |2

) 1
2

, satisfies

‖f‖Lp ∼ ‖Sf‖Lp ,

for any f ∈ S.

For a proof, see [59].

Moreover, using the Littlewood-Paley theory, one can prove the fractional Leibniz rule.

Theorem 2.1.13. [45, Theorem A.8]

For 0 < s, s1, s2 < 1, s1 + s2 = s and Riesz transform Ds:

‖Ds(fg)− fDsg − gDsf‖LpxLqt ≤ C‖D
s1f‖Lp1x L

q1
t
‖Ds2g‖Lp2x L

q2
t
,

where 0 < p, p1, p2, q, q1, q2 < ∞, 1
p = 1

p1
+ 1

p2
and 1

q = 1
q1

+ 1
q2

. Moreover, for s1 = 0, the result holds for

q1 =∞.

For a proof, see [45].

We now include several standard definitions that will be used in the last chapter.

Definition 2.1.14. Let X be a nonempty set. Then a nonempty collection M of subsets of X is called an

algebra if it is closed under finite unions and complements. In other words, if X1, X2, ..., Xn ∈ M , then

∪nk=1Xk ∈ M , and if E ∈ M , then Ec ∈ M . An algebra that is closed under countable unions is called a

σ − algebra.

Definition 2.1.15. The smallest σ − algebra that contains a collection of sets B is called the σ − algebra

generated by B. The σ − algebra generated by open subsets of X is called the Borel σ − algebra.

Finally, we give the definition of a countably additive measure.

Definition 2.1.16. A countably additive measure µ on a σ − algebra A is a function µ : A → [0,∞] such

that

• µ(∅) = 0,

• If {An}∞1 is a sequence of disjoint sets in A, then µ(∪∞n=1An) =
∑∞
n=1 µ(An).

7



2.2 Strichartz Estimates and Xs,b Spaces

For the general Laplace-type operator (−N), defined on the Fourier side as ̂((−N)u
)

= h(ξ)û, if we define

the linear Schrödinger equation:  iut − (−N)u = 0,

u(x, 0) = u0(x) ∈ Hs(Rn),
(2.4)

we see that the solution u has the form S(t)u0 for all t. Here, S(t) is called the linear propagator of the

equation and is defined on the Fourier side as ̂(S(t)f)(t, ξ) = e−ith(ξ)f̂(ξ). We should mention that in

Chapter 3 resp. Chapters 4 and 5, we are going to use the Laplace operators −∆ resp. (−∆)α with the

multipliers h(m,n) = ((θ1m)2 + (θ2n)2), where θ1/θ2 is irrational resp. h(m) = |m|2α.

In the general case of (2.4), we will denote the linear propagator S(t) as eitN . Consider the cubic

Schrödinger equation,  iut − (−N)u = ±|u|2u,

u(x, 0) = u0(x) ∈ Hs(Rn).
(2.5)

We note that this equation enjoys mass and energy conservation,

M(t) =

∫
Rn
|u(t)|2 =

∫
Rn
|u0|2 = M(0) (2.6)

and

E(u)(t) =

∫
Rn

∣∣√−Nu(t, x)
∣∣2 ± 1

4

∫
Rn

∣∣u(t, x)
∣∣4 = E(u)(0) (2.7)

respectively, where
√
−N is defined on the Fourier side as

√
−Nu = F−1(h(ξ)

1
2 û(ξ)). Formally, we can prove

these conservation laws as follows: For the mass conservation, if we begin with H1-solutions, considering

H−1 −H1 duality product of (2.5) with 2u and integration by parts gives

2i〈ut, u〉−1,1 = −2(‖
√
−Nu‖2L2

x
)± 2

∫
Rn

|u|4dx.

Since the right hand side is real, we obtain the mass conservation on [0, T ). For the conservation of energy,

multiplying (2.5) by 2ūt and then taking real parts give 2Re ūt(−Nu) = |u|2(|u|2)t from which it follows that

0 =
d

dt

∫
Rn

(−Nu)ūdx±
∫
Rn

1

4
|u|4dx

=
d

dt

∫
Rn

|
√
−Nu|2dx± 1

4

∫
Rn

(|u|4)dx

 ,
8



by using integration by parts. These formal computations make sense for H2-solutions. By using continuous

dependence results, one can approximate L2 and H1-solutions with H1 and H2-solutions, respectively, to

obtain the necessary conservation laws.

By the Duhamel Principle, we know that the smooth solutions of (2.5) satisfy the integral equation

Φ(u)(t, x) = eitNu0(x)∓ i
∫ t

0

ei(t−t
′)N |u|2u(t′, x)dt. (2.8)

Since we want to prove local well-posedness, finding the fixed point of this integral operator in time

interval [0, T ] for T < 1 is equivalent to finding the fixed point of the integral equation

Φ(u)(t, x) = ψ(t)eitNu0(x)∓ iψ(t/T )

∫ t

0

ei(t−t
′)N |u|2u(t′, x)dt, (2.9)

where ψ(t) is a compactly supported C∞(R) function ψ such that ψ(t) = 1 for 0 ≤ t ≤ 1 and ψ(t) = 0 for

t ≤ −1 and t ≥ 2. Here we call the first term on the right hand side the linear evolution term, and the second

term the nonlinear evolution term. Thus, our main concern is to find the fixed point to the integral operator

in certain metric spaces. For this, we need to find ways to estimate the terms in the Duhamel formula. One

of the important estimates of the local and global well-posedness theory are the Strichartz estimates of the

form:

‖eitNu0‖LqtLrx . ‖u0‖Hs0x ,

for certain pairs of (q, r) and s0 ≥ 0. This estimate tells us that when we are trying to estimate the Lebesgue

norms of the solution, even for the linear evolution we may have some regularity loss.

On Rn, for the regular Schrödinger equation, i.e. for N = ∆, or equivalently h(ξ) = |ξ|2, we have the

following lemma.

Lemma 2.2.1. [22, Lemma 2.2.4] For all t 6= 0 and all u0 ∈ S(Rn), we have,

eit∆u0 = (4πit)−
n
2

∫
Rn
e
i|x−y|2

4t u0(y)dy,

which gives us the dispersion estimate,

‖eit∆u0‖L∞x ≤ (4πt)−
n
2 ‖u0‖L1

x
.

Using this lemma with ‖eit∆u0‖L2
x

= ‖u0‖L2 for all t ∈ R and interpolation, one can show the following.

Proposition 2.2.2. [22, Proposition 2.2.3] If p ∈ [2,∞] and t 6= 0, then eit∆ maps Lp
′
(Rn) continuously

9



to Lp(Rn) for 1
p + 1

p′ = 1, and

‖eit∆u0‖Lp(Rn) ≤ (4π|t|)−n( 1
2−

1
p )‖u0‖Lp′ (Rn) for all u0 ∈ Lp

′
(Rn).

For proofs, see [22].

Now we define an admissible pair.

Definition 2.2.3. A pair (q, r) is admissible in Rn if (q, r, n) 6= (2,∞, 2), and

2

q
= n

(1

2
− 1

r

)
,

and 2 ≤ r < ∞. We note that (∞, 2) is admissible, and will correspond to the L2, or mass conservation,

and so is important.

Using this definition, we can state the following.

Theorem 2.2.4. [Strichartz Estimates, [22]] If (q, r) is admissible, then the following properties hold.

• For every ϕ ∈ L2
x, the function t 7→ eit∆φ belongs to

Lqt (R, Lrx) ∩ Ct(R, L2
x).

Moreover, there exists a constant C such that

∥∥ei(.)∆ϕ∥∥
Lqt (R,Lrx)

≤ C‖ϕ‖L2
x
.

• Let I be an interval of R, J = Ī, and 0 ∈ J . If (γ, ρ) is an admissible pair and f ∈ Lγ
′

t (I, Lρ
′

x ),

then for every (q, r), the function t 7→
∫ t

0
ei(t−t

′)∆f(t′)dt′ for t ∈ I belongs to Lqt (R, Lrx) ∩ Ct(R, L2
x).

Furthermore, there exists a constant C depending on q,r,γ and ρ that is independent of I such that

∥∥∥∥∫ t

0

ei(t−t
′)∆f(t′)dt′

∥∥∥∥
Lqt (I,L

r
x)

≤ C‖f‖
Lγ
′
t (I,Lρ

′
x )
.

Again, see [22] for details.

These results have more importance in the Rn setting in the sense that Lemma 2.2.1 implies that

‖eit∆u0‖L∞ ≤ (4π|t|)−n2 ‖u0‖L1 ,
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which means that the solutions decay in time. But this is not true in the periodic setting. Thus, although

we wouldn’t expect to have a result as strong as Theorem 2.2.4 on the periodic setting, we can still prove

Strichartz estimates for certain pairs of (q, r).

In 1d, for the regular Schrödinger equation on the torus, i.e. for h(m) = m2, Bourgain showed

‖eit∆f‖L4
xL

4
t
. ‖f‖L2

x
.

This follows from the fact that ∀m ∈ Z, #{n ∈ Z : m2 − (n−m)2 = k, k . N2} ≤ 2. (See [7] and the proof

of Strichartz estimates in Chapter 3 for this counting argument.) This implies that the cubic Schrödinger

equation is locally well-posed in L4
tL

4
x for L2 initial data. In this case, the L2 conservation of the solution

implies that the local solutions are also global. Later Burq, et al. in [16] showed that the equation is ill-posed

in Hs for any s < 0, by showing that the initial data to solution map cannot be uniformly continuous. This

result was improved by Christ et al. in [25], where they showed that the solution map not only fails to be

uniformly continuous as a function in Hs but also as a function from C∞ to distributions.

In 2d, for the regular Schrödinger equation on torus, however, Bourgain showed using a similar counting

argument that ∀m ∈ Z2, #{n ∈ Z2 : |m|2 − |n −m|2 = k, for k . N2} ≤ N ε. This result was obtained

using the number theoretical argument that the number of divisors of a number of order N is at most of

order N ε. This counting argument gives us the Strichartz estimate

‖eit∆f‖L4
xL

4
t
. ‖f‖Hs0x (2.10)

for s0 > 0. Using this Strichartz estimate, Bourgain proved that the Schrödinger equation is locally well-

posed in Hs for s > 0.

Our main goal in Chapter 3 is to obtain the estimate (2.10) for some s0 ≥ 0, and find a fixed point to

the integral operator Φ in Hs for some s ≥ 0. Since the linear propagator is an isometry in Sobolev spaces,

to prove local well-posedness in Hs, we would not need to use this estimate in the linear evolution term in

the Duhamel formula. However, if we try to estimate the Hs norm of the nonlinear evolution term

∫ t

0

ei(t−t
′)N |u|2u(t′, x)dt′

heuristically, to be able to run the contraction argument, we would want to have estimates of the form

∥∥∥∥∫ t

0

ei(t−t
′)N |u|2u(t′, x)dt′

∥∥∥∥
Hsx

. T a‖u(t)‖3Hs (2.11)
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for some a > 0, where we would use Sobolev embeddings, Hölder inequality and Strichartz estimates. Since

we are going to use the Strichartz estimates, these heuristic estimates suggest that we look for local well-

posedness in Hs for s ≥ s0.

Thus, to prove local well-posedness in Hs, one needs to find the fixed point of the integral equation Φ in

a metric space of the form

DT = {u ∈ C([0, T ], Hs) : u(0, x) = u0(x) and ‖u‖L∞([0,T ],Hs) ≤ 2‖u0‖Hs},

with the metric d(u, v) = ‖u − v‖L∞([0,T ],Hs). However, it is quite hard to justify the heuristic estimates

(2.11) for any s > s0. Thus we are going to restrict ourselves to a subset of Hs which incorporates the

structure of the equation more explicitly.

If we take the Fourier transform of the equation (2.4) both in time and space, we see that the solutions

satisfies the equation

(τ + h(ξ))û(τ, ξ) = 0 (2.12)

for all (τ, ξ). This implies that on the Fourier side the solution of the linear Schrödinger equation is localized

around the hypersurface τ = −h(ξ). Of course this observation does not hold for the cubic Schrödinger

equation (2.5). Since the linear solutions are ‘good’ in the sense that they are global and preserve the

Sobolev norms of the initial data, it is reasonable to ask how much the solution of (2.5) deviates from the

solution of the linear equation. To account for this deviation, we will define the Bourgain space, Xs,b, as

the closure of the compactly supported smooth functions under the norm

‖u‖Xs,b = ‖〈ξ〉s〈τ + h(ξ)〉bû(τ, ξ)‖L2
τL

2
ξ(R×Rn), (2.13)

where the Fourier transform is taken in both space and time. As the definition is given in R × Rn, we can

also define the restriction of the Bourgain space on I × Rn for some time interval [0, T ] as

‖u‖Xs,bT = inf{‖f‖Xs,b : f ∈ Xs,b, f(t) = u(t) ∀t ∈ [0, T ]}. (2.14)

This norm (2.13) can be written in another form using the linear propagator and Bessel potentials in

time and space, Jt and Jx respectively, as

‖u‖Xs,b = ‖Jbt Jsxe−itNu(x, t)‖L2
t (R,L2

x) = ‖e−itNu‖HbtHsx , (2.15)
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or in terms of an iterated norm, as

‖u‖Xs,b = ‖e−ith(ξ)û(ξ, t)‖HbtL2
ξ(〈ξ〉2s)

, (2.16)

where the Fourier transform is taken in space. Here we first take the Hb
t norm and then take the weighted

L2
ξ norm with the weight 〈ξ〉2s.

From this definition, we have the equality,

‖u‖X0,0 = ‖u‖L2
tL

2
x
.

Moreover, by Sobolev embedding we have H
1
2 +(R)→ C(R), and this gives us the embedding,

Xs, 12 + → Ct(R, Hs
x),

see [64]. This embedding and the aforementioned observations suggest that Xs,b spaces may be more

appropriate to work with.

For these spaces, we can see that there is a trivial embedding

Xs′,b′ ⊂ Xs,b,

for s′ ≤ s and b′ ≤ b. Also from Parseval’s identity and Cauchy-Schwarz inequality we have the duality

relationship (
Xs,b

)∗
= X−s,−b.

These spaces behave well under interpolation in both indices s and b. One of the most problematic properties

of these spaces is that although they are invariant under translations in space and time, they are not invariant

under conjugation. This means even though a function u is in a Bourgain space Xs,b, this does not imply

that its conjugate ū is in that Bourgain space.

To find a fixed point of the integral equation (2.8), we use the Banach Fixed Point Theorem on the metric

space

BT = {u ∈ Xs,b : u(0, x) = u0(x) and ‖u‖Xs,bT ≤ 2C‖u0‖Hs},

with the metric d(u, v) = ‖u− v‖Xs,bT and get a contraction for sufficiently small T , where C is going to be

defined later.
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In this thesis, by local and global well-posedness we mean the following.

Definition 2.2.5. We say the equation (2.5) is locally well-posed in Hs if there exists a time TLWP =

TLWP (‖u0‖Hs) such that the solution exists, is unique in Xs,b
TLWP

⊂ C([0, TLWP ), Hs), and depends con-

tinuously on the initial data. We say that the the equation is globally well-posed when TLWP can be taken

arbitrarily large.

This means that for these Xs,b spaces we have to prove Strichartz-like estimates, namely estimates

concerning the solution operator and embeddings into spaces like Sobolev or Lebesgue spaces whose theories

are much more widely explored. Although the study of Xs,b spaces are well studied in the context of other

differential equations as well, in this thesis we will only focus on the estimates and embeddings closely related

to the Schrödinger equation.

Since Lp spaces are much easier to work with, to study nonlinear Schrödinger equations, one can make

use of the following estimates, proofs of which can be found in [39]. We use the following.

Proposition 2.2.6. For s ∈ R,

‖eitNφ‖Xs,bT ≤ C‖φ‖Hs , for −∞ < b <∞, (2.17)

‖u‖
X
s,−b1
T

≤ CT b1−b2−‖u‖
X
s,−b2
T

, for 0 ≤ b2 ≤ b1 < 1/2, and (2.18)∥∥∥∥∫ t

0

ei(t−t
′)Nu(t′)dt′

∥∥∥∥
Xs,bT

≤ CT 1−(b+b′)‖u‖
Xs,−b

′
T

, for 1/2 < b ≤ 1, 0 < b+ b′ < 1, (2.19)

where C is independent of T .

Proof. First we prove (2.17). To this end, take the compactly supported C∞(R) function ψ defined in (2.9).

Then we have

‖eitNφ‖Xs,bT ≤ ‖ψ(t/T )eitNφ‖Xs,b = ‖Jbt Jsxe−itN(ψ(t/T )eitNφ)‖L2(R,L2)

= ‖Jbt Jsx(ψ(t/T )φ)‖L2(R,L2)

≤ ‖Jbt ψ‖L2(R)‖Jsxφ‖L2(Rn) ≤ C‖φ‖Hs ,

which is (2.17).

Using the time localization, (2.18) would be shown if we could show

‖ψ(t/T )u‖Xs,−b1 ≤ CT
b1−b2−‖u‖Xs,−b2 . (2.20)
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By duality, it is enough to show

‖ψ(t/T )u‖Xs,b2 ≤ CT
b1−b2−‖u‖Xs,b1 . (2.21)

To prove (2.21), set f(x, t) = Jb1t J
s
xe
−itNu(x, t), so:

‖ψ(t/T )u‖Xs,b2 =
∥∥∥Jb2t (ψ(t/T )J−b1t f

)∥∥∥
L2(R,L2)

. (2.22)

Using (2.16) and setting Ĵ−b1t f = g, the inequality (2.18) will follow if we can show

‖ψ(t/T )g‖
H
b2
t (R)

≤ CT b1−b2−‖g‖
H
b1
t (R)

. (2.23)

By [45, Theorem 3.5], we have

‖ψ(t/T )g‖Ha(R) ≤ CT
1−2a‖g‖Ha(R), for 1/2 < a ≤ 1.

Since

‖ψ(t/T )g‖L2(R) ≤ C

(∫ 2T

−T
|g(t)|2dt

)1/2

≤ CT 1/2−1/q‖g‖Lq(R),

and by the Sobolev embedding theorem, ‖g‖Lq(R) ≤ C‖g‖Hb for 2 ≤ q <∞ and b = 1/2− 1/q, so

‖ψ(t/T )g‖L2(R) ≤ CT
b‖g‖Hb , 0 ≤ b < 1/2. (2.24)

For sufficiently small ε > 0 we let a = 1/2 + ε, b = (b1 − b2)(1 + 2ε)/(1− 2b2 + 2ε) and θ = 2b2/(1 + 2ε) and

interpolate between (2.2) and (2.24) to get

‖ψ(t/T )g‖Hb2 = ‖ψ(t/T )g‖Haθ(R) ≤ CT
θ(1−2a)+(1−θ)b‖g‖Haθ+b(1−θ)(R).

To prove (2.19) we are going to follow the arguments in [45]. We prove:

For b, b′ such that 0 ≤ b+ b′ < 1, 0 ≤ b′ < 1/2, we have

∥∥∥∥∫ t

0

ei(t−t
′)Ng(t′)dt′

∥∥∥∥
Xs,bT

. T 1−b−b′‖g‖
Xs,−b

′
T

,

for T ∈ [0, 1].

First note that, from the definition of the norm Xs,b, it is enough to bound ‖ψ(t/T )
∫ t

0
f(t′)dt′‖Hbt =
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‖ψ(t/T )
∫
χ[0,t]f(t′)dt′‖Hbt , where f(ξ, t′) = e−it

′h(ξ)ĝ(ξ, t′), and the Fourier transform is taken in space

variable.

For this term, from Parseval equality in time variable, we have,

∥∥ψ(t/T )

∫
χ[0,t]f(t′)dt′

∥∥
Hbt

=
∥∥ψ(t/T )

∫
eitτ−1

(iτ)
f̂(τ)dτ

∥∥
Hbt

≤
∥∥ψ(t/T )

∞∑
k=1

tk

k!

∫
|τ |T≤1

(iτ)k−1f̂(τ)dτ
∥∥
Hbt

+
∥∥ψ(t/T )

∫
|τ |T>1

eitτ (iτ)−1f̂(τ)dτ
∥∥
Hbt

+
∥∥ψ(t/T )

∫
|τ |T>1

(iτ)−1f̂(τ)dτ
∥∥
Hbt

= I + II + III.

For I, we compute

I =
∥∥ψ(t/T )

∞∑
k=1

tk

k!

∫
|τ |T≤1

(iτ)k−1f̂(τ)dτ
∥∥
Hbt

≤
∞∑
k=1

1

k!
‖tkψ(t/T )‖Hbt T

1−k‖f‖
H−b

′
t

( ∫
|τ |T≤1

〈τ〉2b
′)1/2

. T 1−(b+b′)‖f‖
H−b

′
t

since 0 < b′ < 1/2.

For II,

II =
∥∥ψ(t/T )

∫
|τ |T>1

eitτ (iτ)−1f̂(τ)dτ
∥∥
Hbt

≤ ‖ψ(t/T )‖Hbt ‖f‖H−b′t

( ∫
|τ |T>1

|τ |−2〈τ〉2b
′)1/2

. T 1−(b+b′)‖f‖
H−b

′
t
.

For the last term,

III =
∥∥ψ(t/T )

∫
|τ |T>1

(iτ)−1f̂(τ)dτ

︸ ︷︷ ︸
J

∥∥
Hbt

= ‖〈τ〉b(ψ̂(t/T ) ∗ Ĵ)‖L2

.
[
‖|τ |bψ̂(t/T )‖L1‖J‖L2 + ‖ψ̂(t/T )‖L1‖J‖Hbt

]
≤ T 1−(b+b′)‖f‖

H−b
′

t
,
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since

‖J‖Hbt ≤ ‖f‖H−b′t
sup
|τ |T>1

τ−1〈τ〉b+b
′
,

and

‖J‖L2 . T 1−b′‖f‖
H−b

′
t
.

Then the proof of (2.19) follows.

We now give an important corollary.

Corollary 2.2.7. For s ∈ R and sufficiently small ε > 0:

∥∥∥∥∫ t

0

ei(t−t
′)Nu(t′)dt′

∥∥∥∥
X
s,1/2+ε
T

≤ C‖u‖
X
s,−1/2+3ε
T

, (2.25)

where C is independent of T .

Proof. In (2.18) and (2.19), setting b = 1/2 + ε, b1 = 1/2− ε = −(b− 1) and b2 = 1/2− 3ε, we get

∥∥∥∥∫ t

0

ei(t−t
′)Nu(t′)dt′

∥∥∥∥
X
s,1/2+ε
T

≤ CT−ε‖u‖
X
s,−b1
T

≤ CT−εT b1−b2−ε‖u‖
X
s,−b2
T

≤ C‖u‖
X
s,−1/2+3ε
T

,

which is (2.25)

For further discussion on Xs,b spaces, consult [64].

We would also like to note that for the cubic Schrödinger equation (or more generally, when the nonlin-

earity is locally Lipschitz), to run the contraction argument it is enough to show estimates of the form

∥∥∥∫ t

0

ei(t−t
′)N(|u|2u)(t′)dt′

∥∥∥
Xs,bT

. T a‖u‖3
Xs,bT

on the nonlinear evolution term in the Duhamel formula for some a > 0. If we can show such an estimate

on the metric space

BT = {u ∈ Xs,b : u(0, x) = u0(x) and ‖u‖Xs,bT ≤ 2C‖u0‖Hs},
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where C = ‖Jbt ψ‖L2(R), with d(u, v) = ‖u− v‖Xs,bT , we see from Duhamel formula that, for u, v ∈ BT ,

u(t)− v(t) = e−itN(u0 − u0)∓ i
t∫

0

e−i(t−t
′)N
(
|u|2u(t′)− (|v|2v)(t′)

)
dt′ (2.26)

= ±i
t∫

0

e−i(t−t
′)N
(
(|u|2u)(t′)− (|v|2v)(t′)

)
dt′. (2.27)

Thus,

‖u− v‖Xs,bT ≤ T
a
(
‖u‖Xs,bT + ‖v‖Xs,bT

)2‖u− v‖Xs,bT ,

which, for u, v ∈ BT , and T sufficiently small gives us the contraction.

The continuous dependence also follows in a similar fashion: if φn → φ in Hs, and un and u are the

corresponding solutions, then again by Duhamel formula and Proposition 2.2.6 we have

‖un − u‖Xs,bT ≤ C‖φn − φ‖Hs + T a
(
‖u‖Xs,bT + ‖v‖Xs,bT

)2‖u− v‖Xs,bT .

Then for n large and T small enough so that un, u ∈ BT and T a
(
‖u‖Xs,bT + ‖v‖Xs,bT

)2 ≤ 1
2 , we get

‖un − u‖Xs,bT ≤ 2C‖φn − φ‖Hs ,

which means un → u in Xs,b
T . Hence, in the following chapters, we are going to omit proving the contraction

and continuous dependence explicitly and only give the trilinear estimates. We should also mention that,

from the arguments above, the local well-posedness time T depends on the Hs norm of the initial data as

T ∼
(

1
‖u0‖Hsx

) 1
a . Thus, if ‖u(T0)‖Hsx < A for some T0, then there exists a TA > 0 which only depends

on A such that the solution exists in [T0, T0 + TA). Now, if we have local well-posedness in [0, Tmax), but

not in [0, T ′) for T ′ > Tmax, and if lim
t→Tmax

‖u(t)‖Hsx = B < ∞, then we can pick a time T̃ such that

‖u(T̃ )‖Hsx < 3B/2 and Tmax − T3B/2 < T̃ . This gives us a contradiction since at time T̃ , we can iterate

the solution to time T̃ + T3B/2 > Tmax. Hence, for such Tmax, we have lim
t→Tmax

‖u(t)‖Hsx =∞, which is also

known as the blow up alternative. In particular, this tells us that if we can control the Hs
x norm of the

solution for all times, we will have a global solution.

For s > n
2 , the calculations are much easier. For s > 0, noting that 〈ξ〉s ≤ 22s

(
〈ξ − η〉s + 〈η〉s

)
for any

η ∈ Rn, we can prove the algebra property:

‖uv‖2Hs =

∫
Rn
〈ξ〉2s|ûv(ξ)|2dξ
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≤
∫
Rn

(∫
Rn
〈ξ〉2s|û(ξ − η)v̂(η)|dη

)2

dξ

.
∫
Rn

(∫
Rn
|〈ξ − η〉sû(ξ − η)v̂(η)|+ |û(ξ − η)〈η〉sv̂(η)|dη

)2

dξ

. ‖u‖2Hs‖v̂‖2L1 + ‖û‖2L1‖v‖2Hs

. ‖u‖2Hs‖v‖2Hs ,

by Young’s inequality and since

‖û‖L1 =

∫
Rn

〈ξ〉s

〈ξ〉s
|û(ξ)|dξ ≤ ‖〈ξ〉−s‖L2‖u‖Hs . ‖u‖Hs ,

for s > n
2 by the Cauchy-Schwarz inequality.

Using this algebra property of Hs we see that, on the metric space DT ,

‖Φ(u)‖L∞([0,T ],Hs) ≤ ‖eitNu0‖L∞([0,T ],Hs) + ‖
∫ t

0

ei(t−t
′)N(|u|2u)(t′)dt′‖L∞([0,T ],Hs)

≤ ‖u0‖Hs +

∫ t

0

‖ei(t−t
′)N(|u|2u)(t′)‖L∞([0,T ],Hs)dt

′

≤ ‖u0‖Hs +

∫ t

0

‖(|u|2u)(t′)‖L∞([0,T ],Hs)dt
′

≤ ‖u0‖Hs + T‖u‖3L∞([0,T ],Hs).

Similarly, we can show

d(u, v) = ‖u− v‖L∞([0,T ],Hs) ≤ T
(
‖u‖L∞([0,T ],Hs) + ‖v‖L∞([0,T ],Hs)

)2‖u− v‖L∞([0,T ],Hs).

With the arguments above this tells us that there is almost immediate local well-posedness for the Schrödinger

equation in Hs for s > n
2 , where the local well-posedness time depends on the Hs norm of the initial data

as TLWP ∼ 1
‖u0‖2Hs

.

In the following chapters we will state Proposition 2.2.6 in the relevant context without proofs, and we

will give more estimates on Bourgain spaces.
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Chapter 3

Local Well-posedness for 2-D
Schrödinger Equation on Irrational
Tori and Bounds on Sobolev Norms

3.1 Introduction

The equation we consider in this chapter is the cubic, Schrödinger equation on irrational tori, namely,

 iut + ∆u = ±|u|2u, x ∈ T2
θ, t ∈ [−T, T ],

u(x, 0) = u0(x) ∈ Hs(T2
θ).

(3.1)

T is the time of existence of the solutions and T2
θ is the irrational tori, R2/θ1Z× θ2Z for θ1, θ2 > 0 and

θ1/θ2 irrational. The equation is called focusing when the sign in front of the cubic term is negative and

defocusing, when positive.

The equation (3.1) posed T2, has been studied widely for its importance in the theory of differential

equations. For the defocusing equation, for any initial data in H1 there is global well-posedness and global

bounds on the Sobolev norm of the solution, see [7]. In addition there have been many results on the

well-posedness of (3.1) for both focusing and defocusing case for rough initial data (in Hs for s < 1) on two

dimensional torus, see [12], [18], [23], [28], [40], [60], [61], [63] and also on more general compact manifolds,

see [17], [68]. One of the main difficulties of the theory on general compact manifolds is that one has to use

spectral decomposition of the Laplace-Beltrami operator, as a generalization of the Fourier series. But since

the spectrum and the eigenfunctions of the operator on arbitrary compact manifold are less understood,

standard arguments on regular torus cannot be applied in their full generality. In [17], instead of using

Bourgain’s arguments, the authors used families of dispersive estimates on small time intervals depending

on the size of the frequencies of the data. This idea was used in the works of Bahouri-Chemin, see [4], and

Tataru, see [65], in the context of low regularity well-posedness of quasilinear wave equations. Later, Herr

in [42] considered the quintic Schrödinger equation on 3 d compact manifold M such that all geodesics are

simple and closed with a common minimal period. For this equation, he was able to prove certain Strichartz

estimates and local well-posedness in the energy space H1(M). Then the question would be whether a

similar result may hold for compact manifolds without a common minimal period for geodesics, and the
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simplest such manifolds are the irrational tori. In the following, we prove Strichartz estimates and the local

well-posedness in certain Hs spaces.

One of the main tools in proving local well-posedness is the aforementioned Strichartz estimates, i.e.

estimates of the form

‖eit∆f‖L4
tL

4
x(T×T2

θ) . ‖f‖H s0
2 (T2

θ)
, (3.2)

for some s0 ≥ 0 and f ∈ H
s0
2 (T2

θ). Our main focus in this paper will be on the improvement of this estimate

on irrational tori. As one can see for θ1 = θ2 = 1 we get the usual (flat) torus. Although the domain

resembles the flat torus, the tools used to prove (3.2) are fundamentally different. The reason behind this

difference is that the symbol of the Laplacian on flat torus at any (m,n)-level is m2 +n2 whereas the symbol

of it on a irrational torus is of the form (θ1m)2 + (θ2n)2. Thus the method of counting lattice points on a

circle to get (3.2) cannot be applied here. In 3-d, Bourgain [12], used bounds on the lp-norms on the number

of lattice points on the ellipsoid and Jarnick’s estimate [44] to get (3.2) with s0 = 1
3 . A slight modification

of his method in 2-d gives us a 1
4 -derivative loss in (3.2). But this result was already proven for not only

on irrational tori but also on any two dimensional compact manifold, see [17]. This remedy was overcome

in Catoire and Wang’s paper [23] using Jarnick’s estimate, see [44], in two dimensions without passing to

the lp-norms of the number of lattice points on ellipsoids. They obtained (3.2) with s0
2 = 1

6 . The first part

of this chapter will be consisted of our main result, improving (3.2) to s0
2 = 131

832 using a counting argument

of Huxley, [43]. In the second part of the chapter, using the theory of Bourgain spaces, we prove local

well-posedness for initial data in Hs, s > s0 and also polynomial bounds on the growth of the Sobolev norms

of the solution for the defocusing case. On 2-d flat tori, we should note that the local well-posedness theory

gives the exponential bound ‖u(t)‖Hs . C |t|, see [9]. Also in [9], Bourgain improved this exponential bound

with the polynomial bound ‖u(t)‖Hs . C〈t〉2(s−1)+ using the following polynomial estimate:

Lemma 3.1.1. If there exists a constant r ∈ (0, 1) and δ > 0 such that for any time t0 we have,

‖u(t0 + δ)‖2Hs ≤ ‖u(t0)‖2Hs + C‖u(t0)‖2−rHs ,

then we get

‖u(t)‖Hs . (1 + |t|) 1
r .

It suffices to prove this result for t being an integer multiple of δ and the rest follows from induction.

This result was later improved by Staffilani, see [62] to ‖u(t)‖Hs . C〈t〉(s−1)+. On 2-d irrational tori,

using Zhong’s arguments [68] and the lemma above, Catoire and Wang proved the norm bound ‖u(t)‖Hs .
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C〈t〉
(s−1)

1− 2
3

+
, see [23]. In this chapter we are going to improve the polynomial bound on 2-d irrational tori to

the exponent (s−1)
(1−131/416)+.

Recently, Bourgain and Demeter, in [15], proved the l2 decoupling conjecture for compact hypersurfaces

with positive definite second fundamental form. One of the main implications of this result is the full range

of the expected Strichartz estimates for both the flat and the irrational tori up to a factor of ε, i.e. the

Schrödinger equation on irrational tori is LWP in Hs for s > 0. In [46], Killip and Visan removed the ε

factor in the case of irrational tori except for the end-point Lp case.

We should also mention that the upper bounds on the growth of the Sobolev norms of the solutions does

not necessitate boundedness of these norms. In [41], authors proved that on Td for d ≥ 2, for s ∈ N, s ≥ 30,

there exist global solutions u(t, x) to the Schrödinger equation such that lim sup
t→∞

‖u(t)‖Hs =∞ although the

initial data has arbitrarily small Sobolev norms. However, the lower bounds on the growth of such norms

on irrational tori will not be discussed here.

3.2 Notation and Preliminaries

The linear propogator of the Schrödinger equation on the irrational tori will be denoted as eit∆, where it

is defined on the Fourier side as ̂(eit∆f)(m1,m2) = e−itQ(m1,m2)f̂(m1,m2), where Q(m1,m2) = (θ1m1)2 +

(θ2m2)2.

The corresponding Bourgain spaces Xs,b will be defined as the closure of compactly supported smooth

functions under the norm

‖u‖Xs,b=̇‖e−it∆u‖Hbt (R)Hsx(T2
θ) = ‖〈τ −Q(m,n)〉b〈|m|+ |n|〉sû(m,n, τ)‖L2

τ l
2
(m,n)

,

and the restricted norm will be given as

‖u‖Xs,bT =̇ inf(‖v‖Xs,b , for v = u on [0, T ]).

We also note that the equation has mass and energy conservations, namely,

M(u)(t) =

∫
T2
θ

|u(t, x)|2 = M(u)(0),

and,

E(u)(t) =
1

2

∫
T2
θ

|∇u(t, x)|2 ± 1

4

∫
T2
θ

|u(t, x)|4 = E(u)(0).
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Thus, for the defocusing equation, i.e. when the sign is plus, we have global bounds on the H1-norm of

the solution. This also says, for defocusing equation we have H1 global well-posedness.

Throughout the chapter, L2
tL

2
x will denote the space L2

tL
2
x(T × T2

θ). We will also use L2
tL

2
x([0, T ]) to

denote L2
tL

2
x([0, T ]× T2

θ), and same notation will be used for Sobolev spaces too.

For any operator D and positive number N , χ being the characteristic function, χDNu is defined to be

χD̂∈[N,2N ]u, i.e., the projection of u onto the frequency set where D̂ ∈ [N, 2N ].

Also, in this chapter we will use s0 = 131
416 .

3.3 Local well-posedness in Hs

In this section we are going to prove,

Theorem 3.3.1. The 2-d cubic Schrödinger equation (3.1) is locally well-posed for initial data u0 ∈ Hs
x for

s > s0.

Proof of Strichartz estimates

To be able to prove (3.2), we will use a counting argument by Huxley, [43]:

Theorem 3.3.2. For a, b, c ∈ R, let Q = Q(m,n) = am2 + bmn+ cn2 be a positive definite quadratic form,

where a > 0, D := 4ac− b2 > 0. For x large, we have

#{(m,n) ∈ Z2 : Q(m,n) ≤ x} =
2π√
D
x+R(x),

where R(x) ≤ xs0+.

Theorem 3.3.3. Let f ∈ L2
x such that supp(f̂) ∈ B(0, N), then

‖eit∆f‖L4
tL

4
x
. N (

s0
2 )+‖f‖L2

x
.

Proof.

‖eit∆f‖2L4
tL

4
x

= ‖(eit∆f)2‖L2
tL

2
x

=
∥∥∥[ ∑

m∈Z2

|
∑
n∈Z2

f̂(n)f̂(m− n)e−it(Q(n)+Q(m−n))|2
]1/2∥∥∥

L2
t

=
[ ∑
m∈Z2

∥∥ ∑
n∈Z2

f̂(n)f̂(m− n)e−it(Q(n)+Q(m−n))
∥∥2

L2
t

]1/2
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.
[ ∑
m∈Z2

[∑
k∈Z

(
∑

|Q(n)+Q(m−n)−k|≤1/2

|f̂(n)f̂(m− n)|)2
]]1/2

,

where, to pass to the last inequality we used:

Lemma 3.3.4.
∥∥∑

n e
itanbn

∥∥2

L2([0,1])
.
∑
j(
∑
|an−j|≤1/2 |bn|)2.

Proof. For any finite sum over n, write
∥∥∑

n e
itanbn

∥∥2

L2([0,1])
=
∥∥∑

j

∑
|an−j|≤1/2 e

itanbn
∥∥2

L2([0,1])
. Hence,

for a bump function φ s.t. φ(t) = 1 in [0, 1] we have

∥∥∥∑
n

bne
itan
∥∥∥2

L2[0,1]
≤

∥∥∥∑
n

bne
itanφ(t)

∥∥∥2

L2(R)

=
∥∥∥∑

n

bnφ̂(ξ − an)
∥∥∥2

L2(R)

.
∥∥∥∑

n

|bn|
1

〈ξ − an〉α
∥∥∥2

L2(R)

=
∥∥∥∑

j

∑
|an−j|≤1/2

|bn|
1

〈ξ − an〉α
∥∥∥2

L2(R)

.
∥∥∥∑

j

1

〈ξ − j〉α
∑

|an−j|≤1/2

|bn|
∥∥∥2

L2(R)

≤
∑
j

(
∑

|an−j|≤1/2

|bn|)2.

Here, to pass to the second line we used Plancherel’s equality. In the third line we used that the Fourier

transform of φ is a Schwartz function and decays faster than any polynomial, and thus we can choose an

α > 1. Also to pass to the last line we used Young’s inequality.

Then, write |Q(n) +Q(m−n)−k| ≤ 1/2 as |Q(2n−m) +Q(m)−2k| ≤ 1 and letting 2n ∈ m+Gl where

l = 2k −Q(m) and Gl = {a ∈ Z2 : |Q(a)− l| ≤ 1}, we get

‖eit∆f‖2L4
tL

4
x

.
[ ∑
m∈Z2

[∑
l∈Z
|
∑

2n∈m+Gl

f̂(n)f̂(m− n)|2
]]1/2

.
[ ∑
m∈Z2

[∑
l∈Z
|Gl|.|

∑
2n∈m+Gl

f̂(n)2f̂(m− n)2|1/2
]2]1/2

,

since Gl = {a ∈ Z2 : |Q(a)| ≤ l + 1} − {a ∈ Z2 : |Q(a)| < l − 1}, using Theorem 3.3.2, we get

|Gl| . ls0+,

and hence, using l . N2, we obtain,
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‖eit∆f‖2L4
tL

4
x

. Ns0+
[ ∑
m∈Z2

[∑
l∈Z
|
∑

2n∈m+Gl

f̂(n)2f̂(m− n)2|
]]1/2

,

. Ns0+
[ ∑
m∈Z2

∣∣( ∑
n∈Z2

f̂(n)2f̂(m− n)2
)∣∣]1/2,

. Ns0+‖f‖2L2
x
.

Therefore, the result.

Proof of Theorem 3.3.1

As mentioned above, to prove local well-posedness we use Bourgain spaces. Since Bourgain spaces behave

nicely under linear evolution, what we need to show is that the nonlinear part of the Duhamel formula also

behaves as nicely. For that we need:

Proposition 3.3.5. For b, b′ such that 0 ≤ b+ b′ < 1, 0 ≤ b′ < 1/2, then we have

∥∥∥ ∫ t

0

ei∆(t−t′)f(t′)dt′
∥∥∥
Xs,bT

. T 1−b−b′‖f‖
Xs,−b

′
T

,

for T ∈ [0, 1].

For the proof see chapter 1, Proposition 2.2.6. Hence, to be able to use the Banach Fixed Point Theorem,

we have to control the right hand side of the inequality in the appropriate Xs,b space. And since our

nonlinearity is cubic, that means have to show a trilinear estimate:

Proposition 3.3.6. For s > s0, there exists b, b′ satisfying the conditions of Proposition 3.3.5, such that,

‖u1u2u3‖Xs,−b′T

. ‖u1‖Xs,bT ‖u2‖Xs,bT ‖u3‖Xs,bT .

Hence, it is clear that once we prove Proposition 3.3.6, Theorem 3.3.1, i.e. the local well-posedness will

follow.

We will prove Proposition 3.3.6 using the duality argument

‖u1u2u3‖Xs,−b′T

= sup
(‖u4‖

X
−s,b′
T

=1)

∫ ∫
u1u2u3u4dxdt.

Hence, to prove Proposition 3.3.6, we will bound the integral on the right hand side of this equality by

‖u1‖Xs,bT ‖u2‖Xs,bT ‖u3‖Xs,bT .
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Proof. (Proof of Proposition 3.3.6)

We first need a fundamental bilinear Strichartz estimate:

Lemma 3.3.7. If u1, u2 ∈ L2
x s.t. supp(û1) ∈ B(0, N1) and supp(û2) ∈ B(0, N2) with N1 ≤ N2. Then we

have

‖eit∆u1e
it∆u2‖L2

tL
2
x
. Ns0+

1 ‖u1‖L2
x
‖u2‖L2

x
.

Proof. Let PI be the partition of Z2 into boxes I of size N1. We can decompose u2 as u2 =
∑
I u

(I)
2 =∑

I PIu2 and by Theorem 2.1.12, and that eit∆u1e
it∆u

(I)
2 = P5I(e

it∆u1e
it∆u

(I)
2 ), which follows from the

convolution property, we have,

∥∥eit∆u1e
it∆u2

∥∥
L2
tL

2
x
≤

∥∥∥∑
I

eit∆u1e
it∆u

(I)
2

∥∥∥
L2
tL

2
x

.
(∑

I

∥∥eit∆u1e
it∆u

(I)
2

∥∥2

L2
tL

2
x

)1/2

.
(∑

I

‖eit∆u1‖2L4
tL

4
x
‖eit∆u(I)

2 ‖2L4
tL

4
x

)1/2

. N
s0+
2

1 ‖u1‖L2
x

(∑
I

‖u(I)
2 ‖2L2

x

)1/2

. Ns0+
1 ‖u1‖L2

x
‖u2‖L2

x
.

Using this bilinear Strichartz estimate we can also prove:

Lemma 3.3.8. Let any u1, u2 ∈ X0,b such that the Fourier transforms of u1 and u2 are supported in

[N1, 2N1] and [N2, 2N2] respectively with N1 ≤ N2. Then we have,

‖u1u2‖L2
tL

2
x
. Ns0+

1 ‖u1‖X0,b‖u2‖X0,b . (3.3)

Proof. We take ũi(t, x) on R×R2
θ such that ũi(t, x) = ui(t, x) for (t, x) ∈ [0, 1]×T2

θ. For n ∈ Z2, Q(n) being

the symbol of Laplacian we have,

ui(t, x) =
1

(2π)3

∫ ∑
n∈Z2

ûi(τ, n)eitτeix.ndτ

=
1

(2π)3

∫ ∑
n∈Z2

ûi(τ, n)eitτeix.neitQ(n)e−itQ(n)dτ
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=
1

(2π)3

∫ ∑
n∈Z2

ûi(τ, n)eit(τ+Q(n))eix.ne−itQ(n)dτ

=
1

(2π)3

∫ ∑
n∈Z2

ûi(τ −Q(n), n)eitτeix.ne−itQ(n)dτ

=
1

(2π)

∫
eit∆v̂i(τ, x)eitτdτ,

by the definition of linear propagator, where v̂i(τ, x) = 1
(2π)2

∑
n∈Z2 ûi(τ −Q(n), n)eix.n. Thus,

∫ ∫
u1u2dxdt =

∫
eit(τ1+τ2)eit∆v̂1(τ1, x)eit∆v̂2(τ2, x)dτ1dτ2dtdx

=

∫
eit(τ1+τ2)eit∆v̂1(τ1, x)eit∆v̂2(τ2, x)dtdxdτ1dτ2

.
∫
Ns0+

1 ‖v̂1‖L2
x
‖v̂2‖L2

x
dτ1dτ2

= Ns0+
1

∫
‖v̂1‖L2

x
dτ1

∫
‖v̂2‖L2

x
dτ2,

and for each i we use,

∫
‖v̂i‖L2

x
dτi =

∫
〈τi〉b

〈τi〉b
‖v̂i‖L2

x
dτi

. (

∫
〈τi〉2b‖v̂i‖2L2

x
dτi)

1/2

= ‖ui‖X0,b .

and the result follows by taking the infimum of such ui’s.

Also, using embedding X0,(1/4)+ ⊂ L4
tL

2
x, which is obtained by interpolation between X0,b ⊂ L∞t L

2
x for

b > 1/2 and X0,0 = L2
tL

2
x, we see that,

‖u1u2‖L2
tL

2
x
≤ ‖u1‖L4

tL
∞
x
‖u2‖L4

tL
2
x

. N1‖u1‖L4
tL

2
x
‖u2‖L4

tL
2
x

. N1‖u1‖X0,(1/4)+‖u2‖X0,(1/4)+ . (3.4)

Now we can prove a crude interpolation between (3.3) and (3.4) and get:

Lemma 3.3.9. Let u1, u2 ∈ X0,b such that the Fourier transforms of u1 and u2 are supported in [N1, 2N1]

and [N2, 2N2] respectively with N1 ≤ N2. Then for s > s0 there exists b′ < 1/2 such that

‖u1u2‖L2
tL

2
x
. Ns

1‖u1‖X0,b′‖u2‖X0,b′ .
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Proof. We have,

‖u1u2‖L2
tL

2
x
. N1‖u1‖X0,(1/4)+‖u2‖X0,(1/4)+ , (3.5)

and we also have,

‖u1u2‖L2
tL

2
x
. Ns0+

1 ‖u1‖X0,b‖u2‖X0,b . (3.6)

Note that (3.5) ≤ N1‖u1‖X0,b‖u2‖X0,(1/4)+ . Then for fixed u1 interpolating between this result and (3.6),

we get,

‖u1u2‖L2
tL

2
x
. N s̃

1‖u1‖X0,b‖u2‖X0,b′ , (3.7)

for some s̃ ∈ [s0, s) and b′ < 1/2. Also note that (3.5) ≤ N1‖u1‖X0,(1/4)+‖u2‖X0,b′ . Thus, for fixed u2,

interpolating between this result and (3.7) we obtain,

‖u1u2‖L2
tL

2
x
. Ns

1‖u1‖X0,b′‖u2‖X0,b′ .

Thus we get that, if ui ∈ X0,b, i ∈ {1, 2, 3, 4} are functions s.t. their space Fourier transforms are

supported in [Ni, 2Ni] respectively with N1 ≤ N2 ≤ N3 ≤ N4 and s > s0, there exists b′ < 1/2 such that

∫ ∫
u1u2u3u4dxdt . ‖u1u3‖L2

tL
2
x
‖u2u4‖L2

tL
2
x

≤ (N1N2)s‖u1‖X0,b′‖u2‖X0,b′‖u3‖X0,b′‖u4‖X0,b′ .

We are almost ready to finish the proof of the proposition. All we need now is to guarantee the existence

of b, b′ which satisfy the conditions of Proposition 3.3.5. But for that we need better estimates on the

restrictions of functions on the eigenspaces of the Laplacian. Let ℘k be the projection onto the ek, the

eigenspace of Laplacian corresponding to the eigenvalue µk. Also for each ek we see that µkek = −∆ek

which implies that

µkêk(m1,m2) = ((θ1m1)2 + (θ2m2)2)êk(m1,m2),

hence, êk’s are supported on µk = (θ1m1)2 + (θ2m2)2 = Q(m1,m2) i.e. they are supported on µsk =

|Q(m1,m2)|2s. This gives that

µskek = (
√
−∆)2sek.

Since ‖℘ku‖L2
x
≤ ‖u‖L2

x
and that ek’s form an orthonormal basis, we can define Sobolev space Hs, with the

norm, ‖u‖2Hs =
∑
k〈µk〉s‖℘ku‖

2
L2 which we will be using later in the chapter.
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Also we see that since θ1/θ2 is irrational, if µk = (θ1m1)2 + (θ2m2)2 = (θ1n1)2 + (θ2n2)2 we have

(m1,m2) = (±n1,±n2), which means, for any such µk, we have four eigenfunctions (eix.(±m1,±m2)) and ℘ku

is the the restriction of u to the eigenspace generated by these eigenfunctions.

Now if we consider the integrals of the form

A =

∫
eix.(m1,m2)eix.(n1,n2)eix.(j1,j2)eix.(l1,l2)amanajaldx,

we see that A = 0 if (m1 + n1 + j1 + l1,m2 + n2 + j2 + l2) 6= 0. Thus if |m1| > 4max(|n1|, |j1|, |l1|) or

|m2| > 4max(|n2|, |j2|, |l2|), then A = 0. This says that, if µ
1/2
k4

> 8µ
1/2
ki

for i = {1, 2, 3}, then

∫
℘k1

(u1)℘k2
(u2)℘k3

(u3)℘k4
(u4)dx = 0,

and we will use this observation in our estimates.

Now we can show the existence of 1/4 < b′ < 1/2 < b s.t. for every s > s0,

‖u1u2u3‖Xs,−b′T

. ‖u1‖Xs,bT ‖u2‖Xs,bT ‖u3‖Xs,bT ,

which will finish the proof of local well-posedness.

As we mentioned before, we will bound, |
∫
u1u2u3u4dxdt|. To do so, it is enough to bound this integral

for ui = χ
√
−∆

Ni
ui, where Ni is a dyadic integer. Let without loss of generality that N1 ≤ N2 ≤ N3 and let

s′ ∈ (s0, s) then for the range N4 ≤ 8N3,

∣∣∣ ∫ u1u2u3u4dxdt
∣∣∣ . (N1N2)s

′
‖u1‖X0,b′

T

‖u2‖X0,b′
T

‖u3‖X0,b′
T

‖u4‖X0,b′
T

= (N1N2)s
′−s(N4/N3)sNs

1‖u1‖X0,b′
T

Ns
2‖u2‖X0,b′

T

Ns
3‖u3‖X0,b′

T

N−s4 ‖u4‖X0,b′
T

. (N1N2)s
′−s(N4/N3)s‖u1‖Xs,b′T

‖u2‖Xs,b′T

‖u3‖Xs,b′T

‖u4‖X−s,b′T

.

Hence, for the range of the frequencies, write N4 = 2nN3 for n ≤ 3 and then we have

∣∣∣ ∫ u1u2u3u4dxdt
∣∣∣ . (N1N2)s

′−s2ns‖u1‖Xs,b′T

‖u2‖Xs,b′T

‖u3‖Xs,b′T

‖u4‖X−s,b′T

= (N1N2)s
′−s2ns‖u1‖Xs,b′T

‖u2‖Xs,b′T

‖χ
√
−∆

N42−nu3‖Xs,b′T

‖χ
√
−∆

N4
u4‖X−s,b′T

,
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and summing in N1, N2, N4 and n ≤ 3 we get

∣∣∣ ∫ u1u2u3u4dxdt
∣∣∣ .

∑
n≤3

∑
N1

∑
N2

(N1N2)s
′−s2ns‖u1‖Xs,b′T

‖u2‖Xs,b′T

(
∑
N4

‖χ
√
−∆

N42−nu3‖2
Xs,b

′
T

)1/2(
∑
N4

‖χ
√
−∆

N4
u4‖2

X−s,b
′

T

)1/2

. ‖u1‖Xs,b′T

‖u2‖Xs,b′T

‖u3‖Xs,b′T

‖u4‖X−s,b′T

,

where we used the Hs-orthogonality of the operators χ
√
−∆

N , for N dyadic integers. And for the range

8N3 ≤ N4, we use the observation above and get |
∫
u1u2u3u4dxdt| = 0. Thus the Proposition (3.3.6) follows

and hence Theorem 3.3.1.

3.4 Growth of Sobolev norms

In this section we are going to prove,

Theorem 3.4.1. For s ≥ 1, let u(t, x) be the solution to the defocusing cubic Schrödinger equation (3.1).

Then for any time t, we have,

‖u(t, x)‖Hsx ≤ C〈t〉
(s−1)+
(1−s0) ‖u0‖Hsx .

Proof of Theorem 3.4.1

The proof of the theorem will mainly follow Bourgain’s arguments in [9], i.e. we will use Lemma 3.1.1. For

that, first we need to observe that for s > 1, in the proof of Proposition 3.3.6 if we take u1 = u2 = u3 = u

and s′ = 1−, redoing the calculations we get

‖u|u|2‖
Xs,−b

′
T

. ‖u‖Xs,bT ‖u‖
2
X1,b
T

.

This says, we can choose the local well-posedness interval depending only on ‖u(0)‖H1 . Thus we can find

T0 > 0 such that, for any time τ ≥ 0 the solution exists for t ∈ [τ, τ + T0]. Now we need to find r ∈ (0, 1)

such that for any t ∈ [τ, τ + T0],

‖u(t)‖Hsx ≤ ‖u(τ)‖Hsx + C‖u(τ)‖1−rHsx
. (3.8)
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Since L2
x-norm of the solution is conserved, it is enough to show this estimate in Ḣs

x. Without loss of

generality we can take τ = 0. Since

‖u(t)‖2
Ḣsx
− ‖u(0)‖2

Ḣsx
=

∫ t

0

d

dt′
‖u(t′)‖2

Ḣsx
dt′,

if we show that, for t ∈ [0, T0] we have,

∫ t

0

d

dt′
‖u(t′)‖2

Ḣsx
dt′ . ‖u‖Hs‖u‖Hs−σ ,

for some s− 1 ≥ σ > 0, writing Hs−σ as the interpolation space between H1 and Hs we will obtain,

‖u(t)‖2
Ḣsx
− ‖u(0)‖2

Ḣsx
. ‖u‖Hs‖u‖

(s−σ−1)
(s−1)

Hs ,

which is the estimate we want, where the implicit constant also depends on ‖u‖H1 . For σ > s − 1, H1

embeds into Hs−σ and the result becomes obvious. Now assume s ∈ N,

∫ t

0

d

dt′
‖u(t′)‖2

Ḣsx
dt′ =

∫ t

0

d

dt′
‖Dsu(t′)‖2L2

x
dt′

= 2Re

∫ t

0

∫
T 2
θ

d

dt′
Dsu(t′)Dsu(t′)dxdt′,

and using the expression for ut, we get,

∫ t

0

d

dt′
‖u(t′)‖2

Ḣsx
dt′ = 2Im

∫ t

0

∫
T 2
θ

DsuDs(|u|2u)dxdt′

= 4Im

∫ t

0

∫
T 2
θ

|Dsu|2|u|2dxdt′ + 2Im

∫ t

0

∫
T 2
θ

(Dsu)2u2dxdt′

+2Im

∫ t

0

∫
T 2
θ

∑
|α|=s
αi 6=s

Dsu∂α1u∂α2u∂α3udxdt′

= 2Im

∫ t

0

∫
T 2
θ

(Dsu)2u2dxdt′ + 2Im

∫ t

0

∫
T 2
θ

∑
|α|=s
αi 6=s

Dsu∂α1u∂α2u∂α3udxdt′

= I + II.

Second term is easier to estimate. For any multiindex |α| = s such that αi 6= s for any i, using duality

and Proposition (3.3.6), we have,
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II . ‖Dsu‖
X
−s0−,b
T0

‖∂α1u∂α2u∂α3u‖
X
s0+,−b
T0

. ‖u‖
X
s−s0−,b
T0

‖∂α1u‖
X
s0+,b

T0

‖∂α2u‖
X
s0+,b

T0

‖∂α3u‖
X
s0+,b

T0

. ‖u‖
X
s−s0−,b
T0

‖u‖
X
s0+α1+,b

T0

‖u‖
X
s0+α2+,b

T0

‖u‖
X
s0+α3+,b

T0

.

For 1 ≤ αi ≤ s − 1, using interpolation and the fact that ‖u‖X1,b
T0

is bounded, which follows from the

local theory, we get,

II . ‖u‖
s−s0−1−
s−1

Xs,bT0

‖u‖
s0+α1−1+

s−1

Xs,bT0

‖u‖
s0+α2−1+

s−1

Xs,bT0

‖u‖
s0+α3−1+

s−1

Xs,bT0

.

If for some i ∈ {1, 2, 3}, αi = 0, say α3 = 0, using ‖u‖
X
s0+,b

T0

≤ ‖u‖X1,b
T0

we get,

II . ‖u‖
s−s0−1−
s−1

Xs,bT0

‖u‖
s0+α1−1+

s−1

Xs,bT0

‖u‖
s0+α2−1+

s−1

Xs,bT0

. (3.9)

Thus we get the desired bound using ‖u‖Xs,bT0
. ‖u(0)‖Hs in the local well-posedness interval.

The term I is harder to deal with since the highest order derivatives acts on u. The main problem here

is that, because of the term (Dsu)2 in the integrand we expect to have a bound of the form II . ‖u‖2
Xs,bT0

which is not useful. To remedy that problem, we will try to get

II . ‖u‖Xs,bT0
‖u‖Xs−σ,bT0

‖u‖X1,b
T0

‖u‖X1,b
T0

, (3.10)

for some σ > 0 to be determined. In the following estimates we will mainly follow Zhong’s arguments in

[68].

Let Dsu = u1 = u2, u3 = u4 = u, and ui =
∑
j χ
√
−∆

N(i,j)
ui =

∑
j u

j
i where N(i,j)’s are dyadic integers.

Then

|II| ≤
∑
N

|II(N)| =
∑
N

∣∣∣ ∫
T2
θ

∫
[0,T0]

uj1u
k
2u

m
3 u

n
4

∣∣∣.
Since we need to get an estimate of the form (3.10), we should gain some derivative in the estimate of

II(N). For the terms N(1,j) > 8(N(2,k) +N(3,m) +N(4,n)), we again see that II(N) = 0. Hence we have to

focus on the terms where N(1,j) < 8(N(2,k) +N(3,m) +N(4,n)).

Assume N(1,j) < 8(N(2,k) + N(3,m) + N(4,n)), and thus, N(1,j) . max(N(2,k), N(3,m), N(4,n)). Since u2

has full s-derivative, we will estimate II using the interaction between frequency projections of u2 with u3

and u4. We consider two cases; N(2,k) < 4N(3,m) or N(2,k) < 4N(4,n) as case one and N(2,k) ≥ 4N(3,m) and

N(2,k) ≥ 4N(4,n) as case two.
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Case 1: N(2,k) < 4N(3,m) or N(2,k) < 4N(4,n). This case gives a control over the N(2,k) term and is easier

to handle. Without loss of generality we can assume, N(2,k) < 4N(3,m) and N(4,n) & 1. Hence by Lemma

3.3.7,

II(N) ≤ ‖uj1um3 ‖L2
tL

2
x([0,T0])‖uk2un4‖L2

tL
2
x([0,T0])

. min(N(1,j), N(3,m))
s0+min(N(2,k), N(4,n))

s0+‖uj1‖X0,b
T0

‖uk2‖X0,b
T0

‖um3 ‖X0,b
T0

‖un4‖X0,b
T0

. (N(3,m)N(4,n))
s0+‖uj1‖X0,b

T0

‖uk2‖X0,b
T0

‖um3 ‖X0,b
T0

‖un4‖X0,b
T0

. (N(3,m)N(4,n))
s0−1+‖uj1‖X0,b

T0

‖uk2‖X0,b
T0

‖um3 ‖X1,b
T0

‖un4‖X1,b
T0

. (N(1,j)N(2,k)N(3,m)N(4,n))
−N+

(1,j)N
+
(2,k)(N(3,m)N(4,n))

(s0−1)+

×‖uj1‖X0,b
T0

‖uk2‖X0,b
T0

‖um3 ‖X1,b
T0

‖un4‖X1,b
T0

,

. (N(1,j)N(2,k)N(3,m)N(4,n))
−N+

(2,k)(N(3,m)N(4,n))
(s0−1)+

×‖uj1‖X0,b
T0

‖uk2‖X0,b
T0

‖um3 ‖X1,b
T0

‖un4‖X1,b
T0

,

and given N(2,k) < 4N(3,m) we see,

II(N) . (N(1,j)N(2,k)N(3,m)N(4,n))
−N

((s0−1))+
2,k ‖uj1‖X0,b

T0

‖uk2‖X0,b
T0

‖um3 ‖X1,b
T0

‖un4‖X1,b
T0

. (N(1,j)N(2,k)N(3,m)N(4,n))
−‖uj1‖X0,b

T0

‖uk2‖X((s0−1))+,b

T0

‖um3 ‖X1,b
T0

‖un4‖X1,b
T0

,

which gives the desired result for σ = (1− s0)+.

Case 2: N(2,k) ≥ 4N(3,m) and N(2,k) ≥ 4N(4,n). Recall that since N(3,m) ≤ 1/4N(2,k) and N(4,m) ≤

1/4N(2,k), we have, N(1,j) ≤ 12N(2,k), in which case we define,

uj,j
′

i =
∑

(N(i,j)≤〈µk〉1/2≤2N(i,j))

∫
(L(i,j′)≤〈µk+τ〉≤2L(i,j′))

eitτ℘̂kui(τ)dτ, (3.11)

for L(i,j′) dyadic integers, where µk’s being the eigenvalues of Laplacian and ℘ku being the projection of u

on the eigenspace corresponding to µk Then we have,

II(N) ≤
∑
L

∣∣∣ ∫ uj,j
′

1 uk,k
′

2 um,m
′

3 un,n
′

4 dxdt
∣∣∣

≤
∑
L

∣∣∣ ∫
{
∑4
i=1 τi=0}

û1
j,j′
û2
k,k′

û3
m,m′

û4
n,n′

dxdτ
∣∣∣

=
∑
L

II(N,L),
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where the Fourier transform is with respect to time only and L = (L(1,j′), L(2,k′), L(3,m′), L(4,n′)). Thus we

need to estimate II(N,L) for each L. Since we are concerned with the derivative gain for u2 in the estimate

of II(N), for each L we need to use the relation between L-terms and N(2,k). For that we consider two cases

again; |τ3| ≤ 1/3N2
(2,k) and |τ4| ≤ 1/3N2

(2,k) as case one, and |τ3| > 1/3N2
(2,k) or |τ4| > 1/3N2

(2,k) as case two.

Case 1: |τ3| ≤ 1/3N2
(2,k) and |τ4| ≤ 1/3N2

(2,k). For this case, using the decomposition (3.11) we get,

|µk1 + τ1|+ |µk2 + τ2| ≥ |µk1 + τ1 + µk2 + τ2|

≥ |µk1 + µk2 | − |τ1 + τ2|

≥ µk2 − |τ1 + τ2|

= µk2 − |τ3 + τ4|

& N2
(2,k),

and thus, L(1,j′) + L(2,k′) & N2
(2,k), which also gives max{L(1,j′), L(2,k′)} & N2

(2,k). So we get,

II(N,L) ≤ ‖uj,j
′

1 ‖L4
tL

2
x
‖uk,k

′

2 ‖L4
tL

2
x
‖um,m

′

3 ‖L4
tL
∞
x
‖un,n

′

4 ‖L4
tL
∞
x
,

then by Sobolev embedding we get,

II(N,L) . (N(3,m)N(4,n))‖uj,j
′

1 ‖L4
tL

2
x
‖uk,k

′

2 ‖L4
tL

2
x
‖um,m

′

3 ‖L4
tL

2
x
‖un,n

′

4 ‖L4
tL

2
x
,

and using X0,1/4+ ⊂ L4
tL

2
x, we obtain,

II(N,L) . (N(3,m)N(4,n))‖uj,j
′

1 ‖X0,1/4+‖uk,k
′

2 ‖X0,1/4+‖um,m
′

3 ‖X0,1/4+‖un,n
′

4 ‖X0,1/4+

. ‖uj,j
′

1 ‖X0,1/4+‖uk,k
′

2 ‖X0,1/4+‖um,m
′

3 ‖X1,1/4+‖un,n
′

4 ‖X1,1/4+

.
1

(L(1,j′)L(2,k′)L(3,m′)L(4,n′))b−1/4− ‖u
j,j′

1 ‖X0,b‖uk,k
′

2 ‖X0,b‖um,m
′

3 ‖X1,b‖un,n
′

4 ‖X1,b

.
N

2(1/4−b+)
2,k

L+
(1,j′)L

+
(2,k′)(L(3,m′)L(4,n′))b−1/4− ‖u

j,j′

1 ‖X0,b‖uk,k
′

2 ‖X0,b‖um,m
′

3 ‖X1,b‖un,n
′

4 ‖X1,b

.
1

L+
(1,j′)L

+
(2,k′)(L(3,m′)L(4,n′))b−1/4− ‖u

j,j′

1 ‖X0,b‖uk,k
′

2 ‖X2(1/4−b+),b‖um,m
′

3 ‖X1,b‖un,n
′

4 ‖X1,b

.
1

L+
(1,j′)L

+
(2,k′)(L(3,m′)L(4,n′))b−1/4− ‖u1‖X0,b‖u2‖X2(1/4−b+),b‖u3‖X1,b‖u4‖X1,b

.
(N(1,j)N(2,k)N(3,m)N(4,n))

−

L+
(1,j′)L

+
(2,k′)(L(3,m′)L(4,n′))b−1/4− (N1,jN3,mN4,n)+‖u1‖X0,b‖u2‖X2(1/4−b+),b‖u3‖X1,b‖u4‖X1,b
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.
(N(1,j)N(2,k)N(3,m)N(4,n))

−

L+
(1,j′)L

+
(2,k′)(L(3,m′)L(4,n′))b−1/4− (N2,k)+‖u1‖X0,b‖u2‖X2(1/4−b+),b‖u3‖X1,b‖u4‖X1,b

.
(N(1,j)N(2,k)N(3,m)N(4,n))

−

L+
(1,j′)L

+
(2,k′)(L(3,m′)L(4,n′))b−1/4− ‖u1‖X0,b‖u2‖X2(1/4−b+),b‖u3‖X1,b‖u4‖X1,b

.
(N(1,j)N(2,k)N(3,m)N(4,n))

−

L+
(1,j′)L

+
(2,k′)(L(3,m′)L(4,n′))b−1/4− ‖u1‖X0,b‖u2‖X2(1/4−b+),b‖u3‖X1,b‖u4‖X1,b .

Since the summand is summable in L’s and N ’s, we get the result for σ = 2(b − 1/4)−. Now we are left

with the last case,

Case 2: |τ3| > 1/3N2
(2,k) or |τ4| > 1/3N2

(2,k). Again, without loss of generality, we will only focus on

|τ3| > 1/3N2
(2,k). In this case we have

|τ3 + µk3 | ≥ ||τ3| − |µk3 || ≥ 1/3N2
(2,k) − 4N2

(3,m) ≥ 1/3N2
(2,k) − 1/4N2

(2,k) = 1/12N2
(2,k),

which says L(3,m) & N2
(2,k) and redoing the previous calculations, we obtain

II(N,L) .
1

(L(1,j′)L(2,k′)L(3,m′)L(4,n′))b−1/4− ‖u
j,j′

1 ‖X0,b‖uk,k
′

2 ‖X0,b‖um,m
′

3 ‖X1,b‖un,n
′

4 ‖X1,b

.
N

2(1/4−b)+
(2,k)

(L(1,j′)L(2,k′)L(4,n′))b−1/4−L
+
(3,m′)‖u

j,j′

1 ‖X0,b‖uk,k
′

2 ‖X0,b‖um,m
′

3 ‖X1,b‖un,n
′

4 ‖X1,b

.
(N(1,j)N(2,k)N(3,m)N(4,n))

−

(L(1,j′)L(2,k′)L(4,n′))b−1/4− L
+
(3,m′)N

2(1/4−b+)
(2,k) ‖uj,j

′

1 ‖X0,b‖uk,k
′

2 ‖X0,b‖um,m
′

3 ‖X1,b‖un,n
′

4 ‖X1,b

.
(N(1,j)N(2,k)N(3,m)N(4,n)−

(L(1,j′)L(2,k′)L(4,n′))
b−1/4−

‖uj,j
′

1 ‖X0,b‖uk,k
′

2 ‖X2(1/4−b+),b‖um,m
′

3 ‖X1,b‖un,n
′

4 ‖X1,b

.
(N(1,j)N(2,k)N(3,m)N(4,n))

−

(L(1,j′)L(2,k′)L(4,n′))b−1/4− ‖u1‖X0,b‖u2‖X2(1/4−b+),b‖u3‖X1,b‖u4‖X1,b ,

again the result follows for σ = 2(b − 1/4)−. Thus we have finished estimating II and therefore Theorem

3.4.1.

This result will appear in the Communications in Pure and Applied Analysis, see [29].
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Chapter 4

Existence and Uniqueness theory for
the fractional Schrödinger equation
on the torus

4.1 Introduction

In this chapter, we study a fractional semilinear Schrödinger type equation with periodic boundary condi-

tions,

 iut + (−∆)αu = ±|u|2u, x ∈ T, t ∈ R,

u(x, 0) = u0(x) ∈ Hs(T),
(4.1)

where α ∈ (1/2, 1). The equation is called defocusing when the sign in front of the nonlinearity is a minus

and focusing when the sign is a plus.

Posed on the real line the equation has appeared at a formal level in many recent articles, see [47] and the

references therein. For example it is a basic model equation in the theory of fractional quantum mechanics

introduced by Laskin, [48]. A rigorous derivation of the equation can be found in [47] starting from a

family of models describing charge transport in bio polymers like the DNA. The starting point is a discrete

nonlinear Schrödinger equation with general lattice interactions. Equation (4.1) with α ∈ ( 1
2 , 1) appears

as the continuum limit of the long-range interactions between quantum particles on the lattice. Whereas,

allowing only the short-range interactions (e.g. neighboring particle interactions) the authors obtain the

standard Schrödinger equation (α = 1) which is completely integrable, see [1].

In this chapter we study the periodic problem mainly for two reasons. First due to the lack of strong

dispersion the mathematical theory for the fractional Schrödinger equations are less developed than the

cubic nonlinear Schrödinger equation (NLS). Secondly when we consider periodic boundary conditions the

analysis becomes harder, for any dispersion relation, since the dispersive character of the equation can only

be exploited after employing averaging arguments and a careful analysis of the resonant set of frequencies,

[34].

The local and global well-posedness for the periodic NLS was established by Bourgain in [7]. He used

number theoretic arguments to obtain periodic Strichartz estimates along with a new scale of spaces adapted
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to the dispersive relation of the linear group. More precisely he proved the existence and uniqueness of local-

in-time strong L2(T) solutions. Since it is known that smooth solutions of the NLS satisfy mass conservation

M(u)(t) =

∫
T
|u(t, x)|2 = M(u)(0),

Bourgain’s result showed the existence of global-in-time strong L2(T) solutions in the focusing and defocusing

case. The L2 theorem of Bourgain is sharp since as it was shown in [16], the solution operator is not uniformly

continuous on Hs(T) for s < 0.

The local well-posedness for the fractional NLS on the real line was recently studied in [26]. The authors

showed that the equation is locally well-posed in Hs(R), for s ≥ 1−α
2 . They also proved that the solution

operator fails to be uniformly continuous in time for s < 1−α
2 . Since the periodic case is less dispersive, we

expect the range s ≥ 1−α
2 to be the optimal range for the local theory also in the periodic case.

In this chapter we obtain the following results for the fractional NLS. We first establish a Strichartz

estimate that reads as follows

‖eit(−∆)αf‖L4
t∈TL

4
x∈T

. ‖f‖Hs(T),

for s > 1−α
4 . To use this estimate and prove local well-posedness of the equation one has to overcome the

derivative loss on the right hand side of the inequality. In principle this can be done by the method in

[23] and [29] which gives local well-posedness in the Hs(T) level, for s > 1−α
2 . However, since the proof in

[23] and [29] is quite involved, we choose to establish the local theory by obtaining trilinear Xs,b estimates

directly. Then a standard iteration finishes the proof without any further analysis. We remark that for

classical solutions in Hs(T), s > 1
2 , local theory in the space C([0, T ];Hs(T)) is known. The proof is the

same both on the real line and on the torus and it is based on the Banach algebra property of the Sobolev

spaces for s > 1
2 . Moreover the length of the local interval of existence is lower bounded by 1

‖u0‖2Hs(T)
, see

chapter 1. To lower the regularity of the local existence theory and to prove the smoothing estimate of

section 5 we have to reprove the local theory in the Xs,b spaces. In this case the solution is controlled on

the larger Xs,b norm, since Xs,b
T ∈ C([0, T ];Hs(T)) for any b > 1

2 , and thus the length of the interval of

existence is smaller. In our case for s > 1
2 it is lower bounded by 1

‖u0‖4+Hs(T)
.

We note that in addition to the conservation of mass, smooth solutions of (4.1) satisfy energy conservation

E(u)(t) =
1

2

∫
T

∣∣|∇|αu(t, x)
∣∣2 ∓ 1

4

∫
T

∣∣u(t, x)
∣∣4 = E(u)(0).

Here E is also called the Hamiltonian of the equation. Note that the local theory in Hα level with the
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conservation of mass and energy imply the existence of global in time energy solutions since mass and

energy conservation give global control over the Hα norm of the solution. For the defocusing case however,

since there is a minus in the Hamiltonian, we don’t have the the a priori Hα norm control of the solution.

But still we have the Gagliardo-Nirenberg inequality,

‖u‖4L4 . ‖|∇|αu‖
1
α

L2‖u‖
4− 1

α

L2

which controls the potential energy via the kinetic energy ‖|∇|αu‖L2 . Then even for the focusing case one

has,

E(u)(t) =
1

2
‖|∇|αu(t, x)‖2L2

x
− 1

4
‖u(t, x)‖4L4

x
=

1

2
‖|∇|αu0(x)‖2L2

x
− 1

4
‖u0(x)‖4L4

x
= E(0),

which implies,

‖|∇|αu(t, x)‖2L2
x
≤ 1

2
‖u(t, x)‖4L4

x
+ ‖|∇|αu0(x)‖2L2

x

. ‖|∇|αu(t, x)‖
1
α

L2
x
‖u(t, x)‖4−

1
α

L2
x

+ ‖|∇|αu0(x)‖L2
x

. ‖|∇|αu(t, x)‖
1
α

L2
x
‖u0(x)‖4−

1
α

L2
x

+ ‖|∇|αu0(x)‖L2
x
.

This tells us that one can then control the Sobolev norm of the solution for all times since 1
α < 2.

In the second part of this chapter we use the high-low frequency decomposition of Bourgain, [11], to prove

global solutions below the energy level. Bourgain’s method consists of estimating separately the evolution

of the low frequencies and of the high frequencies of the initial data. The low frequency part is smooth and

thus by conservation of energy globally defined. The difference equation which is high frequency has small

norm. By using smoothing estimates this decomposition can be iterated as long as the norm of the nonlinear

part is controlled by the initial energy of the smooth part. As a byproduct of the method one obtains that

the nonlinear part of the solution is actually smoother than the linear propagator and stays always in the

energy space. Moreover the global solutions satisfy polynomial-in-time bounds. We summarize the results

in the following two theorems:

Theorem 4.1.1. For any α ∈ ( 1
2 , 1), and any b > 1

2 sufficiently close to 1
2 , the equation (4.1) is locally

well-posed in the space Xs,b
T ⊂ C([0, T ];Hs(T)) for any s > 1−α

2 , where T = T (‖u0‖Hs(T)). Moreover, for

s > 1
2 the local existence time T & ‖u0‖−4−

Hs(T).

Theorem 4.1.2. For any α ∈ ( 1
2 , 1), the equation (4.1) is globally well-posed in Hs(T) for any s > 10α+1

12 .

Moreover,

u(t)− eit(−∆)α±iQtu0 ∈ Hα(T)
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for all times, where Q = 1
π‖u0‖22.

Remark. We will prove Theorem 4.1.2 only for the defocusing case. As we mentioned in our introductory

remarks, we can also control the Hα norm of the solution by Gagliardo-Nirenberg inequality in the focusing

case. Once we have the control of the norm in terms of the initial energy, the proof of the theorem follows

along the same lines. In particular we obtain the same global well-posedness results with the same global-

in-time bounds for the focusing problem.

Remark. We also have to mention that the smoothing estimates give further information about the long

time dynamics of dispersive equations, in particular the existence of global attractors (for the dissipative

variants of these equations). The intuition is that the system eventually will be attracted to a compact

invariant set that has a finite dimension. For infinite dimensional systems, this is the problem of the

existence and uniqueness of the global attractor for the associated PDE. As was explained in [35], to obtain

the global attractor, it is enough to prove global smoothing estimates for the dissipative equation.

This chapter is organized as follows. In section 2 we introduce our notation and define the spaces that the

iteration will take place. In addition we state two elementary lemmas that we use in proving the Strichartz

estimates and the multilinear estimates. Section 3 contains the proof of the Strichartz estimate. It is obtained

by a careful analysis of the resonant terms and non resonant interacting terms. Section 4 contains the local

well-posedness theory for the model equation. We prove multilinear estimates in the Xs,b spaces defined in

section 2. In section 5 we prove the main smoothing estimate of this paper. The reader should notice that

the estimate is sharp within the tools used and for α = 1 it coincides with the smoothing estimate for the

NLS that was recently obtained in [36]. Finally in section 6 we use the established local theory and the

smoothing estimate to prove global well-posedness for infinite energy solutions. As a final remark we note

that our global-in-time results are not optimal.

4.2 Notation and Preliminaries

In the next two chapters we are going to use the same notation.

First of all recall that for s ≥ 0, Hs(T) is defined as a subspace of L2 via the norm

‖f‖Hs(T) :=

√∑
k∈Z
〈k〉2s|f̂(k)|2,
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where f̂(k) = 1
2π

∫ 2π

0
f(x)e−ikxdx are the Fourier coefficients of f . Plancherel’s theorem takes the form

∑
k∈Z
|f̂(k)|2 =

1

2π

∫ 2π

0

|f(x)|2dx.

We denote the linear propagator of the fractional Schrödinger equation as eit(−∆)α , where it is defined on

the Fourier side as ̂(eit(−∆)αf)(n) = eitn
2α

f̂(n). Similarly, |∇|α is defined as ̂|∇|αf)(n) = nαf̂(n). We also

use (·)+ to denote (·)ε for all ε > 0 with implicit constants depending on ε.

The corresponding Bourgain spaces, Xs,b, will be defined as the closure of compactly supported smooth

functions under the norm

‖u‖Xs,b=̇‖e−it(−∆)αu‖Hbt (R)Hsx(T) = ‖〈τ − |n|2α〉b〈n〉sû(n, τ)‖L2
τ l

2
n
,

and the restricted norm will be given as

‖u‖Xs,bT =̇ inf(‖v‖Xs,b , for v = u on [0, T ]).

We close this section by presenting two elementary lemmas that will be used repeatedly.

Lemma 4.2.1. a) If β ≥ γ ≥ 0 and β + γ > 1, then

∑
n

1

〈n− k1〉β〈n− k2〉γ
. 〈k1 − k2〉−γφβ(k1 − k2),

and ∫
R

1

〈τ − k1〉β〈τ − k2〉γ
d τ . 〈k1 − k2〉−γφβ(k1 − k2),

where

φβ(k) :=
∑
|n|≤|k|

1

〈n〉β
∼


1, β > 1,

log(1 + 〈k〉), β = 1,

〈k〉1−β , β < 1.

b) For β ∈ (0, 1], we have ∫
R

dτ

〈τ + ρ1〉β〈τ + ρ2〉
.

1

〈ρ1 − ρ2〉β−
. (4.2)

c) If β > 1/2, then ∑
n

1

〈n2 + c1n+ c2〉β
. 1, (4.3)

where the implicit constant is independent of c1 and c2.
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Proof. [35, Appendix] Denoting m = k2 − k1, we can rewrite the sum in part a) as

∑
n

1

〈n〉β〈n−m〉γ
.

For |n| < |m|/2, we can estimate the sum by

∑
|n|<|m|/2

1

〈n〉β〈m〉γ
≤ 〈m〉−γφβ(m).

For |n| > 2|m|, we can estimate by

∑
|n|>2|m|

1

〈n〉β+γ
. 〈m〉1−β−γ . 〈m〉−γφβ(m).

For |n| ∼ |m|, we have

∑
|n|∼|m|

1

〈m〉β〈n−m〉γ
. 〈m〉−βφγ(m) . 〈m〉−γφβ(m).

The last inequality follows from the definition of φβ and the hypothesis β > γ.

The part b) follows from part a). For part c), write

|n2 + c1n+ c2| = |(n+ z1)(n+ z2)| ≥ |n+ x1||n+ x2|,

where xi is the real part of zi. The contribution of the terms |n+ x1| < 1 or |n+ x2| < 1 is . 1. Therefore,

we estimate the sum in part c) by

∑
n

1

〈n2 + c1n+ c2〉β
. 1 +

∑
n

1

〈n+ x1〉β〈n+ x2〉β
. 1

by part a).

Lemma 4.2.2. Fix α ∈ (1/2, 1). For n, j, k ∈ Z, we have

g(j, k, n) := |(n+ k)2α − (n+ j + k)2α + (n+ j)2α − n2α| & |k||j|
(|k|+ |j|+ |n|)2−2α

,

where the implicit constant depends on α.
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Proof. Let fc(x) = (x+ c)2α − (x− c)2α. We have

g(j, k, n) =
∣∣f j

2
(n+

j

2
)− f j

2
(n+ k +

j

2
)
∣∣.

We claim that

f ′c(x) &
|c|

max(|c|, |x|)2−2α
.

Using the claim, we have by the mean value theorem (for j, k 6= 0)

g(j, k, n) =
∣∣f j

2
(n+

j

2
)− f j

2
(n+ k +

j

2
)
∣∣ & |k||j| min

γ∈(n+ j
2 ,n+k+ j

2 )

1

max( |j|2 , |γ|)2−2α

&
|k||j|

(|k|+ |j|+ |n|)2−2α
.

It remains to prove the claim. Since fc is odd, and j 6= 0, it suffices to consider x ≥ 0 and c & 1. We have

f ′c(x) = 2α
[
(x+ c)2(α−1)|x+ c| − (x− c)2(α−1)|x− c|

]
.

We consider three cases:

Case 1. 0 ≤ x ≤ c⇒ f ′c(x) = 2α
[
(x+ c)2α−1 + (x− c)2α−1

]
. Thus

f ′c(x) & c2α−1.

Case 2. c ≤ x . c⇒ f ′c(x) = 2α
[
(x+ c)2α−1 − (x− c)2α−1

]
. Then we get

f ′c(x) & c2α−1
((x
c

+ 1
)2α−1 −

(x
c
− 1
)2α−1

)
& c2α−1.

Case 3. x� c⇒ f ′c(x) = 2α
[
(x+ c)2α−1 − (x− c)2α−1

]
. Then we have

f ′c(x) = 2αx2α−1
((

1 +
c

x

)2α−1 −
(
1− c

x

)2α−1
)
∼ x2α−1 c

x
= x2α−2c.

Hence, in all cases we have f ′c(x) & |c|
max(|c|,|x|)2−2α .
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4.3 Strichartz Estimates

Theorem 4.3.1. ‖eit(−∆)αf‖L4
t∈TL

4
x∈T

. ‖f‖Hs for s > 1−α
4 .

Proof. Notice that in this proof we can always take s < 1
4 . Calling g = 〈∇〉sf , and denoting ĝ(k) by gk, we

write

‖eit(−∆)αf‖4L4
tL

4
x

=

∫ 2π

0

∫ 2π

0

∑
k1,k2,k3,k4

eit(k
2α
1 −k

2α
2 +k2α3 −k

2α
4 )eix(k1−k2+k3−k4)gk1gk2gk3gk4

〈k1〉s〈k2〉s〈k3〉s〈k4〉s
dxdt

=

∫ 2π

0

∑
k1−k2+k3−k4=0

eit(k
2α
1 −k

2α
2 +k2α3 −k

2α
4 )gk1gk2gk3gk4

〈k1〉s〈k2〉s〈k3〉s〈k4〉s
dt

.
∑

k1−k2+k3−k4=0

|gk1 ||gk2 ||gk3 ||gk4 |
〈k1〉s〈k2〉s〈k3〉s〈k4〉s

1

max(1, |k2α
1 − k2α

2 + k2α
3 − k2α

4 |)

Renaming the variables as k1 = n+ j, k2 = n+ k + j, k3 = n+ k, and k4 = n, and using Lemma 4.2.2, we

get

‖eit(−∆)αf‖4L4
tL

4
x
.
∑
n,k,j

|gn||gn+j ||gn+k||gn+k+j |
〈n〉s〈n+ k〉s〈n+ j〉s〈n+ k + j〉s

1

max
(
1, |kj|

(|k|+|j|+|n|)2−2α

)
:= I + II

where I contains the terms with |kj| � (|k|+ |j|+ |n|)2−2α and II contains the remaining terms.

First note that the summation set in I does not contain any terms with both n = 0 and |kj| 6= 0 since

α ∈ (1/2, 1). Also noting that if kj 6= 0, then

|kj| � (|k|+ |j|+ |n|)2−2α . |k|2−2α + |j|2−2α + |n|2−2α . |kj|+ |n|2−2α,

since α ∈ (1/2, 1). We can thus write

I .
∑
n,k,j

0<|kj|.|n|2−2α

|gn||gn+j ||gn+k||gn+k+j |
〈n〉s〈n+ k〉s〈n+ j〉s〈n+ k + j〉s

+
∑
j,n

|gn|2|gn+j |2 +
∑
k,n

|gn|2|gn+k|2.

The last two sums are equal to ‖g‖4L2 . We estimate the first sum by Cauchy-Schwarz inequality to get

.
( ∑
n,k,j

|gn+j |2|gn+k|2|gn+k+j |2
)1/2( ∑

n,k,j

0<|kj|.|n|2−2α

|gn|2

〈n〉2s〈n+ k〉2s〈n+ j〉2s〈n+ k + j〉2s
)1/2
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. ‖g‖4L2 sup
n

( ∑
k,j

0<|kj|.|n|2−2α

1

〈n〉2s〈n+ k〉2s〈n+ j〉2s〈n+ k + j〉2s
)1/2

.

The condition on the sum implies, except for finitely many n’s, that |k| � |n| and |j| � |n|. Therefore

∑
k,j

0<|kj|.|n|2−2α

1

〈n〉2s〈n+ k〉2s〈n+ j〉2s〈n+ k + j〉2s

.
1

〈n〉8s
∑

0<|kj|.|n|2−2α

1 . 〈n〉2−2α−8slog〈n〉 . 1

provided that s > 1−α
4 .

For the second sum we have,

II .
∑
n,k,j

|kj|&|n|2−2α

|gn||gn+j ||gn+k||gn+k+j |(|n|+ |k|+ |j|)2−2α

〈n〉s〈n+ k〉s〈n+ j〉s〈n+ k + j〉s|kj|
.

Using the symmetry in k and j, we have

II .
∑
n,k,j

|kj|&|n|2−2α, |k|≥|j|

|gn||gn+j ||gn+k||gn+k+j |(|n|+ |k|)2−2α

〈n〉s〈n+ k〉s〈n+ j〉s〈n+ k + j〉s|kj|
.

To estimate the sum we consider three frequency regions, |k| ∼ |n|, |k| � |n|, and |k| � |n|.

Region 1. |k| ∼ |n|. In this region, using Cauchy Schwarz inequality as above, it suffices to show that the

sum ∑
|k|≥|j|
|k|∼|n|

(|n|+ |k|)4−4α

〈n〉2s〈n+ k〉2s〈n+ j〉2s〈n+ k + j〉2sk2j2

is bounded in n. We bound this by

∑
|k|≥|j|
|k|∼|n|

|n|2−4α−2s

〈n+ k〉2s〈n+ j〉2s〈n+ k + j〉2sj2
.

Using the inequality

〈m+ j〉〈j〉 & 〈m〉,

44



and recalling that s < 1
4 , we obtain

.
∑
|k|≥|j|
|k|∼|n|

|n|2−4α−4s

〈n+ k〉4sj2−4s
. 〈n〉2−4α−4s+1−4s.

Here we first summed in j and then in k. The sum is bounded in n provided that s > 3−4α
8 .

Region 2. |k| � |n|. As in Region 1, it suffices to show that the sum

∑
|j|≤|k|�|n|
|kj|&|n|2−2α

|n|4−4α

〈n〉2s〈n+ k〉2s〈n+ j〉2s〈n+ k + j〉2sk2j2
∼

∑
|j|≤|k|�|n|
|kj|&|n|2−2α

|n|4−4α−8s

k2j2

is bounded in n. To this end, notice that

∑
|j|≤|k|�|n|
|kj|&|n|2−2α

|n|4−4α−8s

k2j2
.

∑
|j|≤|k|�|n|

|n|4−4α−8s

|j||k|〈n〉2−2α
. sup

n
|n|2−2α−8s log(|n|)2,

which is finite provided that s > 1−α
4 .

Region 3. |k| � |n|. In this region we bound the sum by Cauchy Schwarz inequality as follows:

∑
|j|≤|k|, |n|�|k|
|kj|&|n|2−2α

|gn||gn+j ||gn+k+j ||gn+k||k|2−2α

〈n〉s〈n+ k〉s〈n+ j〉s〈n+ k + j〉s|kj|

.
( ∑
n,k,j

|gn|2|gn+j |2|gn+k+j |2
)1/2( ∑

|j|≤|k|, |n|�|k|

|gn+k|2|k|4−4α

〈n〉2s〈n+ k〉2s〈n+ j〉2s〈n+ k + j〉2sk2j2

)1/2

. ‖g‖3L2

( ∑
|j|≤|k|, |n|�|k|

|gn+k|2|k|2−4α−2s

〈n〉2s〈n+ j〉2s〈n+ k + j〉2sj2

)1/2

.

Estimating the j sum in parenthesis as in Region 1, we have

.
∑
|n|�|k|

|gn+k|2|k|2−4α−2s

〈n〉4s〈n+ k〉2s
.

∑
|n|�|k|

|gn+k|2|k|2−4α−4s

〈n〉4s
.
∑
n,k

|gn+k|2|k|1−2α−4s〈n〉1−2α−4s.

We estimate this by Cauchy Schwarz

[∑
n,k

|gn+k|2|k|2−4α−8s
] 1

2
[∑
n,k

|gn+k|2〈n〉2−4α−8s
] 1

2

. ‖g‖2L2 ,

provided that 2− 4α− 8s < −1, i.e. s > 3
8 −

α
2 . In the last inequality we summed in n and k separately.
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Thus, for s > max( 1−α
4 , 3−4α

8 ) = 1−α
4 , for α > 1

2 , we obtain the Strichartz estimates.

4.4 Local well-posedness via the Xs,b method

We will prove Theorem 4.1.1 for the defocusing equation by obtaining multilinear estimates in Xs,b spaces.

With the change of variable u(x, t) → u(x, t)eiQt in the equation (4.1), where Q = 1
π‖u0‖22, we obtain the

equation

iut + (−∆)αu+ |u|2u−Qu = 0, t ∈ R, x ∈ T,

with initial data in u0 ∈ Hs(T), s > 0.

Note the following identity which follows from Plancherel’s theorem:

|̂u|2u(k) =
∑
k1,k2

û(k1)û(k2)û(k − k1 + k2)

=
1

π
‖u‖22û(k)− |û(k)|2û(k) +

∑
k1 6=k,k2 6=k1

û(k1)û(k2)û(k − k1 + k2)

=: Qû(k) + ρ̂(u)(k) + R̂(u)(k). (4.4)

Using this in the Duhamel’s formula, we have

u(t) = eit(−∆)αu0(x)− i
∫ t

0

ei(−∆)α(t−t′)(ρ(u) +R(u))dt′.

By standard iteration techniques, it suffices to obtain an estimate of the form:

∥∥∥∫ t

0

ei(−∆)α(t−t′)(ρ(u) +R(u))dt′
∥∥∥
Xs,bT

. T δ‖u‖3
Xs,bT

,

for s > 1−α
2 and for some b > 1

2 , δ > 0.

To prove this estimate and obtain a lower bound for the local existence time we need the following lemma:

Lemma 4.4.1. [38] For b, b′ such that 0 ≤ b+ b′ < 1, 0 ≤ b′ < 1/2, then we have

∥∥∥∫ t

0

ei(−∆)α(t−τ)f(τ)dτ
∥∥∥
Xs,bT

. T 1−b−b′‖f‖
Xs,−b

′
T

,

for T ∈ [0, 1].
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Proposition 4.4.2. Let α ∈ ( 1
2 , 1) and s > 1−α

2 , then for b > 1/2 we have,

∥∥ρ(u) +R(u)
∥∥
Xs,−b′

. ‖u‖3Xs,b ,

provided that b′ < 1
2 is sufficiently close to 1

2 . Moreover, for s > 1
2 we can take b′ = 0.

As we remarked in the introduction, in the case that s > 1
2 , the condition b′ = 0 implies the existence of

the local solution in [0, δ] as long as δ
1
2−‖u0‖2Hs(T) ∼ 1. This bound although sub-optimal, it is necessary

for the proof of the global well-posedness below the energy space that we establish in section 6.

Proof. We present the proof for R(u). The proof for ρ(u) is easier and in what follows it corresponds to the

terms given by j = k = 0.

First note that

∥∥R(u)
∥∥
Xs,−b′

=
∥∥∥∫

τ1−τ2+τ3=τ

∑
k1−k2+k3=n
k1 6=n,k2

û(τ1, k1)û(τ2, k2)û(τ3, k3)〈n〉s

〈τ − n2α〉b′
∥∥∥
L2
τ l

2
n

,

By a duality argument and denoting |û(τ, n)|〈n〉s〈τ − n2α〉b = v(τ, n), we get

∥∥R(u)
∥∥
Xs,−b′

≤ sup
‖g‖L2

τ l
2
n

=1

∫
τ1−τ2+τ3−τ=0

∑
k1−k2+k3−n=0

k1 6=n,k2

〈n〉sv(τ1, k1)v(τ2, k2)v(τ3, k3)g(τ, n)

〈k1〉s〈k2〉s〈k3〉s〈τ − n2α〉b′

× 1

〈τ1 − k2α
1 〉b〈τ2 − k2α

2 〉b〈τ3 − k2α
3 〉b

,

and thus, by Cauchy-Schwarz and then integrating in τ variables as in [35], we have

∥∥R(u)
∥∥2

Xs,−b′
≤ ‖v‖6L2

τ l
2
n

sup
τ,n

∫
τ1−τ2+τ3=τ

∑
k1−k2+k3=n
k1 6=n,k2

〈n〉2s

〈k1〉2s〈k2〉2s〈k3〉2s〈τ − n2α〉2b′

× 1

〈τ1 − k2α
1 〉2b〈τ2 − k2α

2 〉2b〈τ3 − k2α
3 〉2b

.

. ‖u‖6Xs,b sup
n

∑
k1−k2+k3=n
k1 6=n,k2

〈n〉2s

〈k1〉2s〈k2〉2s〈k3〉2s〈k2α
1 − k2α

2 + k2α
3 − n2α〉2b′

.

Hence, we need to show that

Mn =
∑

k1−k2+k3=n
k1 6=n,k2

〈n〉2s

〈k1〉2s〈k2〉2s〈k3〉2s〈k2α
1 − k2α

2 + k2α
3 − n2α〉2b′

,

is bounded in n. Renaming the variables as k1 = n+ j, k2 = n+ k+ j, k3 = n+ k, and using Lemma 4.2.2,
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we get

Mn .
∑
j,k 6=0

〈n〉2s

〈n+ j〉2s〈n+ k + j〉2s〈n+ k〉2s max
(
1, |kj|2b′

(|k|+|j|+|n|)4(1−α)b′

)
:= I + II

where I contains the terms with |kj| � (|k|+ |j|+ |n|)2−2α and II contains the remaining terms. Here we

note that Mn is bounded in n for b′ = 0 in the case s > 1
2 . From now on we consider the range 1−α

2 < s ≤ 1
2 ,

and take b′ = 1
2−. To estimate I, as in the proof of Theorem 4.3.1, we write

I .
∑

0<|kj|.|n|2−2α

〈n〉2s

〈n+ k〉2s〈n+ k + j〉2s〈n+ j〉2s
. 〈n〉2−2α−4s log(〈n〉),

which is bounded provided that s > 1−α
2 . Similarly,

II .
∑

|kj|&|n|2−2α

〈n〉2s(|k|+ |j|+ |n|)2(1−α)

〈n+ k〉2s〈n+ k + j〉2s〈n+ j〉2s|kj|1−

.
∑

|kj|&|n|2−2α

|k|≥|j|

〈n〉2s(|k|+ |n|)2(1−α)

〈n+ k〉2s〈n+ k + j〉2s〈n+ j〉2s|kj|1−
.

Second line follows from the kj symmetry of the sum. To estimate the sum we consider three regions:

Region 1. |k| � |n|. The sum is

.
∑
|k|≥|j|
|k|�|n|

〈n〉2s|k|2(1−α)−2s−1+

〈n+ j〉2s〈n+ k + j〉2s|j|1−
.

Note that for 1
2 ≥ s >

1−α
2 , we can bound it by

.
∑
|k|≥|j|
|k|�|n|

〈n〉2s|k|2(1−α)−4s+

〈n+ j〉2s|k|1−2s+〈n+ k + j〉2s|j|1−

.
∑
|k|≥|j|
|k|�|n|

〈n〉2(1−α)−2s+

〈n+ j〉2s|k|1−2s+〈n+ k + j〉2s|j|1−

.
∑
j

〈n〉2(1−α)−2s+

〈n+ j〉2s|j|1−
. 〈n〉2(1−α)−4s+

which is bounded in n. In the k and j sums we used Lemma 4.2.1.
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Region 2. |k| ∼ |n|. In this region we have the bound

.
∑
|k|≥|j|
|k|∼|n|

〈n〉2s+1−2α+

〈n+ j〉2s〈n+ k〉2s〈n+ k + j〉2s|j|1−

.
∑
j

〈n〉2s+1−2α+A

〈n+ j〉2s|j|1−
,

where A = |j|1−4s if 4s > 1, A = |n|1−4s if 4s < 1 and A = log(|n|) if 4s = 1. Then, by considering these

cases separately and using Lemma 4.2.1 in the j sums, one obtains boundedness in n for s > 1−α
2 and α > 1

2 .

Region 3. |k| � |n|. We have the bound

.
∑

|j|≤|k|�|n|

〈n〉−4s+2−2α

|kj|1−
. 〈n〉−4s+2−2α+,

which is bounded in n.

4.5 A smoothing estimate

We first note that

‖ρ(u)‖Hs+c =

√∑
k

|û(k)|6〈k〉2s+2c . ‖u‖3Hs , (4.5)

for 0 ≤ c ≤ 2s, which implies that the contribution of ρ(u) to the Duhamel formula is smoother than u. One

can also obtain the same level of smoothing in Xs,b spaces: For c ≤ 2s

‖ρ(u)‖
Xs+c,−

1
2
+ . ‖u‖3

Xs,
1
2
+
.

To prove the same for the non resonant terms R(u) we have the following proposition:

Proposition 4.5.1. For s > 1−α
2 and c < min(α− 1

2 , 2s+ α− 1) , we have

‖R(u)‖
Xs+c,−

1
2
+ . ‖u‖3

Xs,
1
2
+
.
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Proof. Repeating the steps in the proof of Proposition 4.4.2, it suffices to prove that

M(n) =
∑
kj 6=0

〈n〉2s+2c

〈n+ j〉2s〈n+ k〉2s〈n+ j + k〉2s〈 |kj|
(|n|+|k|+|j|)2−2α 〉1−

is bounded in n.

For the terms with 0 < |kj| . |n|2−2α, since |k|, |j| � |n|, we have the bound

.
∑

0<|kj|.|n|2−2α

〈n〉−4s+2c . 〈n〉−4s+2c+2−2α log(n),

which is bounded provided that c < 2s+ α− 1.

For the remaining terms, we have to consider the cases s > 1/2 and s ≤ 1/2 separately. Again by

symmetry in j and k, it is enough to consider |k| ≥ |j|.

Case 1. s > 1/2. As before, we will consider three regions:

Region 1.1. |k| � |n|. Then we have

.
∑

|k|≥|j|>0
|k|�|n|

〈n〉2s+2c|k|1−2α−2s+

〈n+ j〉2s〈n+ k + j〉2s|j|1−

.
∑
j

|k|�|n|

〈n〉2c+1−2α+

〈n+ j〉2s〈n+ k + j〉2s|j|1−

.
∑
j

〈n〉2c+1−2α+

〈n+ j〉2s〈j〉1−
. 〈n〉2c−2α+,

which is bounded for c < α. In the forth inequality we used Lemma 4.2.1.

Region 1.2. |k| ∼ |n|. In this region we have,

.
∑

|k|≥|j|>0
|k|∼|n|

〈n〉2c+2s+1−2α+

〈n+ k〉2s〈n+ j〉2s〈n+ j + k〉2s|j|1−
.

∑
|k|≥|j|>0
|k|∼|n|

〈n〉2c+1−2α+

〈n+ k〉2s|j|1−
. 〈n〉2c+1−2α+

for c < α− 1
2 .

Region 1.3. |k| � |n|. We have

.
∑

|k|≥|j|>0
|k|�|n|

〈n〉−4s+2c+2−2α+

|kj|1−
. 〈n〉2c−4s+2−2α+,

which is bounded for c < 2s+ α− 1. This finishes the case s > 1/2.
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Case 2. 1−α
2 < s ≤ 1/2.

Region 2.1. |k| � |n|. As in the proof of Proposition 4.4.2, we have

.
∑

|k|≥|j|>0
|k|�|n|

〈n〉2s+2c−4s+2−2α+

〈n+ j〉2s〈n+ k + j〉2s|k|1−2s+|j|1−
. 〈n〉2c−4s+2−2α+

which is bounded for c < 2s+ α− 1.

Region 2.2. |k| ∼ |n|. In this region we have,

.
∑

|k|≥|j|>0
|k|∼|n|

〈n〉2s+2c+1−2α+

〈n+ j〉2s〈n+ k〉2s〈n+ k + j〉2s|j|1−
.
∑
j

〈n〉2s+2c+1−2α+A

〈n+ j〉2s|j|1−
,

where A = 〈j〉1−4s for 1
4 ≤ s ≤

1
2 , and A = 〈n〉1−4s for 0 < s < 1

4 . Hence,

. 〈n〉2c+1−2α+ for s ≥ 1

4
,

. 〈n〉2c−4s+2−2α+ for 0 < s <
1

4
,

which is bounded for c < 2s+ α− 1 when s ∈ (0, 1
4 ) and c < α− 1

2 when s ≥ 1
4 .

Region 2.3. |k| � |n|. We have,

.
∑

|k|≥|j|>0
|k|�|n|

〈n〉2c+2−2α−4s+

|kj|1−
. 〈n〉2c+2−2α−4s+

which is bounded for c < 2s+ α− 1.

Hence, for all s, collecting the results we get the proposition.

This implies that (see [36] for more details):

Theorem 4.5.2. For α ∈ ( 1
2 , 1), s > 1−α

2 and c < min(2s+ α− 1, α− 1
2 ) we have

‖u(t)− eit(−∆)α−iQtu0‖Hs+c . ‖u0‖3Hs

for t < T , where T is the local existence time.
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We finish this section by noting that if we define the multilinear versions of ρ and R via

̂ρ(u, v, w)(k) = û(k)v̂(k)ŵ(k), ̂R(u, v, w)(k) =
∑

k1 6=k,k2 6=k1

û(k1)v̂(k2)ŵ(k − k1 + k2),

then the assertions of Proposition 4.4.2 and Proposition 4.5.1 remain valid.

4.6 Global Well-posedness via High-Low Frequency

Decomposition

From the local theory along with energy and mass conservation, the existence of global solutions in Hα

follows easily. In this case, one can control the Hα norm and apply the local theory with a uniform in

time step to reach any time. In this section we use Bourgain’s high-low frequency decomposition together

with the smoothing estimate from the previous section to obtain global well-posedness for initial data with

infinite energy.

Proof of Theorem 4.1.2. Fix s ∈ ( 1
2 , α). With the change of variable u(x, t)→ u(x, t)eiQt in equation (4.1),

where Q = 1
π‖u0‖22, we obtain the equation

iut + (−∆)αu+ |u|2u−Qu = 0, t ∈ R, x ∈ T,

with initial data in u0 ∈ Hs(T). In what follows, the implicit constants will depend on ‖u0‖Hs . We fix N

large and decompose the equation into two equations, u = v + w:

 ivt + (−∆)αv + |v|2v −Qv = 0,

v(x, 0) = PNu0(x)=̇Φ0,
(4.6)

and  iwt + (−∆)αw + |v + w|2(v + w)−Qw − |v|2v = 0,

w(x, 0) = u0(x)− Φ0=̇Ψ0,
(4.7)

where PN is the projection onto the frequencies |n| ≤ N .

First note that ‖Φ0‖Hα . Nα−s. Moreover, by the local existence theory we presented in Hα and Hs

levels, noting that α > s > 1
2 , we have for δ ∼ N−4(α−s)

‖v‖Xα,bδ
. ‖Φ0‖Hα . Nα−s, ‖v‖Xs,bδ . ‖Φ0‖Hs . 1.
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Since equation (4.6) enjoys the same energy conservation, we have

E(v(t)) = E(Φ0) . N2α−2s

by the Gagliardo-Nirenberg inequality.

Now pick an s0 < s to be determined later. Note that ‖Ψ0‖Hs0 . Ns0−s. The local existence for w

equation follows similarly by the multilinear estimates from the previous sections with the same δ as above

(since the norm of w is small). We thus have

‖w‖
X
s0,b

δ

. ‖Ψ0‖Hs0 . Ns0−s, ‖w‖Xs,bδ . ‖Ψ0‖Hs . 1.

Now using the decomposition (4.4) for the nonlinearity N := |v + w|2(v + w) − Qw − |v|2v in (4.7) we

have (with u = v + w)

N = Qu−Qw − 1

π
‖v‖2L2v + ρ(u)− ρ(v) +R(u)−R(v)

=
1

π

(
‖u0‖22 − ‖Φ0‖2L2

)
v + ρ(u)− ρ(v) +R(u)−R(v).

Using the multilinear smoothing estimate and the multilinearity of ρ and R, we have

‖N‖
X
α,− 1

2
+

δ

.
∣∣‖u0‖22 − ‖Φ0‖2L2

∣∣‖v‖
X
α,− 1

2
+

δ

+ ‖w‖3
X
s0,b

δ

+ ‖w‖
X
s0,b

δ

‖v‖2
X
s0,b

δ

,

for α− s0 < min(2s0 + α− 1, α− 1
2 ), in particular for s0 >

1
2 .

Ignoring the support condition of Φ0 and Ψ0, we have

∣∣‖u0‖22 − ‖Φ0‖2L2

∣∣ . ‖Ψ0‖L2 + ‖Ψ0‖2L2 . N−s.

Therefore, we obtain

‖N‖
X
α,− 1

2
+

δ

. N−sδ1−‖v‖Xα,bδ
+ ‖w‖3

X
s0,b

δ

+ ‖w‖
X
s0,b

δ

‖v‖2
Xα,bδ

. N−sδ1−Nα−s +N3(s0−s) +Ns0−sN2(α−s) . N2α+s0−3s.
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Taking t1 = δ, we write

u(t1) = w(t1) + v(t1) = eit1(−∆)α+iP t1Ψ0 + w1(t1) + v(t1).

By the bound on N and Duhamel’s formula, we have

‖w1(t1)‖Hα . N2α+s0−3s.

We repeat this process by decomposing u(t1) = Φ1 + Ψ1, where

Ψ1 = eit1(−∆)α+iP t1Ψ0, Φ1 = w1(t1) + v(t1).

Since eit1(−∆)α+iP t1 is unitary, Ψ1 satisfies all the properties of Ψ0. To control the Hα norm of Φ1, we note

E(Φ1) = E(Φ1)− E(v(t1)) + E(v(t1)) = E(w1(t1) + v(t1))− E(v(t1)) + E(Φ0),

where the second equality follows from the conservation of the Hamiltonian.

Note that∣∣E(f + g)− E(f)
∣∣ . ∣∣‖|∇|α(f + g)‖22 − ‖|∇|αf‖22

∣∣+

∫ ∣∣|f + g|4 − |f |4
∣∣

. ‖g‖2Hα + ‖g‖Hα‖f‖Hα +

∫
|g|
(
|f |3 + |g|3

)
. ‖g‖2Hα + ‖g‖Hα‖f‖Hα + ‖g‖4

H
1
4
+

+ ‖g‖
H

1
4
+‖f‖3

H
1
4
+

. ‖g‖2Hα + ‖g‖Hα‖f‖Hα + ‖g‖4Hα + ‖g‖Hα‖f‖3Hα .

Using this for f = v(t1) and g = w1(t1), we obtain

E(w1(t1) + v(t1))− E(v(t1)) . N2α+s0−3sN3(α−s) = N5α+s0−6s.

To reach time T we have to iterate this process T
δ times. To bound the Hamiltonian at time T by a constant

multiple of the initial value, we need

N5α+s0−6sT

δ
= TN9α+s0−10s

to be . N2α−2s. This holds for s > 7α
8 + 1

16 by taking s0 = 1
2+ and N sufficiently large.

The calculation above can be improved by interpolating between Hα and L2 to bound the H
1
4 + norms.
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For example, by Duhamel’s formula and Minkowski inequality, we have

‖w1(t1)‖L2 .
∫ t1

0

‖N‖L2dt.

The worst term in N is of the form |v2w| which can be bounded as follows

δ
1
2 ‖v‖2L4

tL
4
x
‖w‖L∞t L∞x . δ

1
2 ‖v‖2L4

tL
4
x
‖w‖

X
s0,b

δ

. δE(v)
1
2 ‖w‖

X
s0,b

δ

. δNα+s0−2s.

After, T
δ steps, the L2 norm remains . Nα+s0−2s . 1, for s > α

2 + 1
4 . Therefore the L2 norm of the low

frequency part also remains . 1.

E(w1(t1) + v(t1))− E(v(t1)) . N2α+s0−3sNα−s +N (1− 1
4α )(α+s0−2s)N

2α+s0−3s
4α N

3(α−s)
4α N+

. N3α+ 1
2−4s+ +Nα+ 3

2−2s− s
α+ . N3α+ 1

2−4s+.

After T
δ steps we get the bound TN7α+ 1

2−8s+. This term is less than similar the initial energy of the high

frequency part which is of order N2α−2s for s > 5α
6 + 1

12 . We can then iterate our result to reach any time

T by sending N to infinity.

This result will appear in Advance Lectures in Mathematics, edited by S. T. Yau, K. Liu and Lizhen Ji,

see [30].
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Chapter 5

Almost Sure Global Well-posedness
for Fractional Cubic Schrödinger
equation on torus

5.1 Preliminaries

In this chapter we use a probabilistic approach to the cubic periodic fractional Schrödinger equation. To be

able to do that we first need to recall some definitions and theorems on Hamiltonian systems.

Definition 5.1.1 (cf. [3]). A functional Φ is called differentiable if Φ(γ + h) − Φ(γ) = F + R, where F

depends linearly on h, and R(h, γ) = o(h) in the sense that, for |h| < ε and |dh/dt| < ε, we have |R|/ε→ 0

as ε→ 0. The linear part of the increment, F (h), is called the differential.

It can be showed that whenever this differential is defined, it is unique.

Theorem 5.1.2 (cf. [3]). The functional Φ(γ) =
∫ t1
t0
L(x, ẋ, t)dt for γ = x(t) is differentiable, and its

derivative is given by the formula

F (h) =

∫ t1

t0

[∂L
∂x
− d

dt

∂L

∂ẋ

]
hdt+

(∂L
∂ẋ

h
)∣∣∣∣t1
t0

.

For proof see [3].

One can also consider the ε-variations of the extrema to get a motivation for the differential. For

that take a path γ on which the functional Φ has a local extremum. Then if we define a new functional

Φh,ε(γ) = Φ(γ + εh), then for any h, a smooth curve, the functional Φh,ε becomes a function on ε with a

local extremum at ε = 0. Then taking the derivatives with respect to ε at 0 and differentiation by parts, one

gets the differential again. The following definitions and theorems also make more sense with this remark in

mind.

Definition 5.1.3 (cf. [3]). An extremal of a differentiable functional Φ is a curve γ such that F (h) = 0 for

all curves h.

Theorem 5.1.4 (cf. [3]). The curve γ = x(t) is an extremal of the functional Φ(γ) =
∫ t1
t0
L(x, ẋ, t)dt on the
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space of curves passing through the points x(t0) = x0 and x(t1) = x1, if and only if

∂L

∂x
− d

dt

∂L

∂ẋ
= 0,

along the curve γ.

Again, for the proof, see [3].

Definition 5.1.5 (cf. [3]). The equation

∂L

∂x
− d

dt

∂L

∂ẋ
= 0

is called the Euler-Lagrange equation for the functional Φ

Now , if we look at Newton’s equation for dynamics,

d

dt
(miṙi) +

∂U

∂ri
= 0 (5.1)

Hamilton’s principle for least action says that:

Theorem 5.1.6 (cf. [3]). Motions of the system (5.1) coincide with the extremals of the functional

Φ(γ) =

∫ t1

t0

Ldt,

where L = T − U is the difference between the kinetic and the potential energy.

Proof follows directly from the Euler-Lagrange equations. We can also define the Euler-Lagrange equa-

tions in n dimensions simply looking at the Euler-Lagrange equations in each variables.

Definition 5.1.7 (cf. [3]). Here, for x = (x1, ...., xn), we call L(x, ẋ, t) = T − U the Lagrangian function

and ∂L
∂xi
− d

dt
∂L
∂ẋi

= 0 the Lagrange’s equations.

Definition 5.1.8 (cf. [3]). Let y = f(x) be a convex function, f ′′(x) > 0. The Legendre transformation

of the function f is a new function g of a new variable p, which is constructed as follows. We draw the

graph of f in the x, y plane. Let p be a given number. Consider the straight line y = px. We take the point

x = x(p) at which the curve is farthest from the straight line in the vertical direction: for each p, the function

px− f(x) = F (p, x) has a maximum with respect to x at the point x(p). Now we define g(p) = F (p, x(p)).

The point x(p) is defined by the extremal condition ∂F/∂x = 0, i.e., f ′(x) = p. Since f in convex, the

point x(p) is unique.
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We consider the system of Lagrange’s equations, ṗ = ∂L
∂q , where p = ∂L

∂q̇ , with a given Lagrangian function

L : Rn × Rn × R→ R, which we will assume to be convex with respect to the second argument q̇.

Then we have,

Theorem 5.1.9 (cf. [3]). The system of Lagrange’s equations is equivalent to the system of 2n first order

equations called Hamilton’s equations

ṗ = −∂H
∂q

,

q̇ =
∂H

∂p
,

where H(p, q, t) = pq̇ − L(p, q̇, t) is the Legendre transform of the Lagrangian function viewed as a function

of q̇.

For the proof, see [3].

Then for L = T − U as before we have that the Hamiltonian is the total energy H = T + U . One of

the most important properties of the Hamiltonian is that if the Hamiltonian doesn’t depend on t explicitly,

then it is constant in time. Thus in particular, if the Hamiltonian is the energy, then if the energy doesn’t

depend on t explicitly, then energy is conserved.

For the Hamiltonians that does not depend on time, i.e., H = H(p, q), we define the Hamiltonian flow

as follows:

Definition 5.1.10 (cf. [3]). The 2n dimensional space with coordinates p1, p2, ....., pn; q1, q2, ........, qn is

called the phase space and the Hamiltonian flow is the one parameter group of transformations of the phase

space

S(t) : (p(0), q(0)) 7→ (p(t), q(t)),

were p(t) and q(t) are the solutions of the Hamilton’s system of equations.

Then we have,

Theorem 5.1.11 (Liouville’s Theorem). The Hamiltonian flow preserves volume, i.e., for any region D we

have,

V ol(S(t)D) = V ol(D).

Again, for the proof, see [3].

Definition 5.1.12. A measure, µ is called an invariant measure with respect to the Hamiltonian if µ

preserves volumes under the Hamiltonian flow, i.e., for any region D,

µ(S(t)D) = µ(D).

58



Unfortunately, not all the Hamiltonian systems are finite dimensional. For example, the fractional

Schrödinger equation  iut + (−∆)αu = ±|u|2u,

u(x, 0) = u0(x)
(5.2)

is an infinite dimensional Hamiltonian system with the Hamiltonian

H(u)(t) =
1

2

∫
T

∣∣|∇|αu(t, x)
∣∣2 ∓ 1

4

∫
T

∣∣u(t, x)
∣∣4.

Although our arguments so far have been given in the finite dimensional case, at least formally, one

would expect to have the same arguments in the infinite dimensional case as well. Of course, passing from

the finite dimensional case to the infinite dimensional case requires careful limiting arguments. For more

information, consult [24].

Hamiltonian systems appear in the formulation of almost every dynamical laws of physics, such as

planetary systems, interaction of quantum fields, hydrodynamics of perfect fluid, general relativity and

many more. For example, the linear wave equation

∂2u

∂t2
= ∆u

has the kinetic energy K = 1
2

∫
Rn(u̇)2dx, and the potential energy V = 1

2

∫
Rn(∇u)2dx. Thus, the equation is

a Hamiltonian equation with the Hamiltonian being the total energy H(u, u̇) = K+V =
∫
Rn

1
2 (u̇)2+(∇u)2dx.

(See [24, Chapter 2.1] for more information and the Hamiltonian structure of the nonlinear wave equation.)

In this context, invariant measures are important tools in understanding the dynamics of the system, since

it allows us to use other theories like ergodic theory to understand the behavior of sets with positive measure

under the Hamiltonian flow. For example, for the measure µ, the Poincaré recurrence theorem states that if

St is a measure preserving map, then every set E with positive measure has to intersect itself eventually, on

a set of positive measure. More precisely, ∀E with µ(E) > 0, there exists n ∈ N such that µ(E ∩ Snt E) > 0.

For more examples, see [3]. Invariant measures also have important applications in fields like statistical

and quantum mechanics. There have also been many studies on the construction of invariant measures for

dynamical systems generated by nonlinear differential equations. For example, see [6], [8], [10], [50], [51] and

references in Zhidkov’s book, [67].

In the next chapter we work with the Schrödinger equation (3.1) and define and invariant measure using

the Hamiltonian structure of it.
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5.2 Introduction

For equation (4.1) with α = 1 Bourgain, in [7], proved periodic Strichartz estimates and showed L2 local

and global well-posedness for the cubic Schrödinger equation. In [16], Burq, Gerard and Tzvetkov noted

that this result is sharp since the solution operator is not uniformly continuous on Hs for s < 0.

The fractional Schrödinger equation on real line was recently studied in [26]. For α ∈ (1/2, 1), the

equation is less dispersive, so one would not expect to be able to get local well-posedness on L2 level.

Indeed, they proved that there is local well-posedness on Hs for s ≥ 1−α
2 . They also showed that the

solution operator fails to be uniformly continuous in time for s < 1−α
2 .

After obtaining the local and global well-posedness results in chapter 2, the natural question that arises

is how much we can push the global well-posedness range. For example, the cubic periodic Schrödinger

equation (α = 1) in 1-d is locally well-posed in L2, see [7], and with the mass conservation, we know that the

equation is globally well-posed. That is, conservation laws on the local well-posedness level may give rise to

global well-posedness. But then, one can ask whether we can show that the equation is globally well-posed

whenever it is locally well-posed. Although when there is no conservation laws on the local well-posedness

level, it is not trivial that the statement is true, we can still make sense of the question in a different way.

The idea relies on the intuition that the set of ’bad’ initial data, where the solutions of the equation with

those initial data, may have arbitrarily large norm, should be negligible. This approach of looking at the

problem in an ’almost sure’ sense originated from the work of Lebowitz, Rose and Speer, [49]. They were

trying to understand the general behavior of a system containing a large number of particles by looking at

the values of the observables by taking averages over certain probability distributions containing only a few

parameters like particle density, temperature, etc., instead of looking at the individual initial value problems.

In classical or quantum mechanics, the Gibbs probability distribution for finding a system consisting of N

particles in a compact spatial region Ω is a set of microscopic states dXN is given by

µ(dXN ) = Z−1
N e−βH(XN )dXN ,

where H is the Hamiltonian, β is the reciprocal temperature and ZN is the normalizing constant. Then one

can take the limit as N → ∞, |Ω| → ∞ and N/|Ω| → C < ∞, where |Ω| is the volume of Ω and obtain a

well-defined measure on the resulting infinite dimensional phase space. With this in mind, one can construct

appropriate Gibbs measures on Sobolev spaces and proved some basic properties of these measures.
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Later, Bourgain. in [8], proved that the Schrödinger equation with power nonlinearity,

 iut −∆u = −|u|p−2u, x ∈ [0, 2π], t ∈ R,

u(x, 0) = u0(x) ∈ Hs([0, 2π]),
(5.3)

where 4 < p ≤ 6 is locally well-posed in Hs with s > 0. But for 0 < s < 1 there is no conservation law

which would easily allow us to extend the local solutions to global ones. He used the idea of Lebowitz, Rose

and Speer to construct a probability measure, also known as the Gibbs measure, on Hs for s < 1
2 which

is invariant under the solution flow. Then he showed that for any ε > 0, there is global in time Hs norm

bounds on the solutions with the initial data in Hs up to a set of measure less than ε, i.e. the equation is

almost surely globally well-posed in Hs for 0 < s < 1
2 .

The idea of the Gibbs measures and almost sure global well-posedness later have been used to prove

similar results for different equations by [13], [14], [19], [27], [52], [56], [57], [58] and many others. Moreover

the probabilistic methods have been applied successfully to other equations whether they are dispersive or

not. In the latter category the Navier-Stokes equation serves as an example, see [21], [20], [32], [33], [53], for

which local well-posedness cannot be proven via contraction arguments. This tells us that the probabilistic

methods are not only useful to prove that the local solutions are global almost surely, but also useful to

show that we can talk about local well-posedness in a probabilistic way, even when there is no deterministic

local well-posedness.

Our main result the third chapter is the explicit construction of Gibbs measure for 1-d fractional periodic

cubic Schrödinger equation and the proof of almost sure global well-posedness. More precisely, we define an

invariant probability measure µ on Hs, for s < α − 1
2 such that for any ε > 0 we can find a set Ω ⊂ Hs

satisfying µ(Ωc) < ε and the solution to the equation (3.1) exists globally for all initial data in Ω.

For that, we are going to truncate the equation (3.1), and use the idea of invariant measures on finite

dimensional Hamiltonian systems. Namely, if we look at the equation,

 iuNt + (−∆)αuN = ±PN |uN |2uN ,

uN (x, 0) = PNu0(x)
(5.4)

where PN is the projection operator onto the first N frequencies, we see that (5.4) is a finite dimensional

Hamiltonian system, since

du

dt
= −i ∂

∂ū
H,

61



with the Hamiltonian,

HN (u)(t) =
1

2

∑
n≤N

∣∣|n|αun(t)
∣∣2 ∓ 1

4

∫
T
|
∑
n≤N

einxun(t)|4,

where ū = (un)|n|≤N and un is the nth Fourier coefficient of u. Then, by Liouville’s theorem, we know that

the Lebesgue measure
∏
|n|≤N dûn is invariant under the Hamiltonian flow. Thus, by the conservation of

the Hamiltonian and the invariance of the Lebesgue measure under the flow, we see that the finite measure,

dµN = e−HN (u)
∏
|n|≤N

dun,

is invariant under the solution operator, call it S(t).

We see that equation (4.1) is an infinite dimensional Hamiltonian system on the Fourier side with the

Hamiltonian,

H(u(t)) =
1

2

∑
n

∣∣|n|αûn(t)
∣∣2 ∓ 1

4

∫
T
|
∑
n

einxûn(t)|4 = H(u0),

Then we define the limiting measure µ on Hs as,

dµ = e−H(u)
∏
n

dûn = e−
1
2

∑
n

∣∣|n|αûn(t)
∣∣2± 1

4

∫
T |

∑
n e

inxûn(t)|4
∏
n

dûn,

and show that the measure µ is indeed the weak limit of µN .

To construct this measure µ on appropriate Hs spaces, we use the theory of Gaussian measures on Hilbert

spaces following Zhidkov’s arguments in [67], and first define,

dw = e−
1
2

∑
n

∣∣|n|αûn(t)
∣∣2 ∏

n

dûn.

Then we show that the measure µ is absolutely continuous with respect to the Gaussian measure w under

certain conditions and finish the proof of almost sure global well-posedness by constructing the set Ω ⊂ Hs

as stated above. For the second part we will mainly use Bourgain’s arguments in [8].

5.3 Almost Sure Global Well-posedness

The main result of this chapter is,

Theorem 5.3.1. For 1−α
2 < s < α − 1

2 and ε > 0, there exists an invariant probability measure µ on Hs
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such that the equation (3.1) is globally well-posed for any initial data u0 ∈ Ω ⊂ Hs such that µ(Ωc) < ε with,

‖u(t)‖Hs .
(

log
(1 + |t|

ε

))s+
.

As we mentioned above, in the proof of this theorem, we first define the finite dimensional measures µN ,

which are invariant under the solution operator of the truncated equation (5.4), and we define µ as the weak

limit of these measures. But then we have to show how the equation (4.1) and the truncated equation (5.4)

are related, namely

Lemma 5.3.2. Let A ∈ R and u0 ∈ Hs be such that ‖u0‖Hs < A, and assume that the solution, uN , of

(5.4) satisfies ‖uN (t)‖Hs < A for t ≤ T. Then the equation (4.1) is well-posed in [0, T ] and moreover, for

any 1−α
2 < s′ < s, we have,

‖u(t)− uN (t)‖Hs′ ≤ e
C1(1+A)C2TNs′−s, (5.5)

where C1 and C2 independent of s.

Proof.

u(t)− uN (t) = e−it(−∆)α(u0 − PNu0) + i

t∫
0

e−i(t−τ)(−∆)α
(
|u|2u(τ)− PN (|uN |2uN )(τ)

)
dτ,

and, taking the L∞([0, T ];Hs′) norms of both sides for b > 1
2 , since Xs′,b ⊂ L∞([0, T ], Hs′) for b > 1

2 , we

get,

‖u− uN‖L∞([0,T ],Hs′ ) ≤
∥∥u0 − PNu0

∥∥
Hs′

+
∥∥ t∫

0

e−i(t−τ)(−∆)α
(
|u|2u(τ)− PN (|uN |2uN )(τ)

)
dτ
∥∥
Xs′,b

≤ ‖u0 − PNu0‖Hs′ + (TLWP )1−b−b′∥∥|u|2u− PN |uN |2uN∥∥Xs′,b′
≤ (TLWP )1−b−b′

(∥∥|u|2u− PN (|u|2u)
∥∥
Xs′,b′

+
∥∥PN(|u|2u− |uN |2uN)∥∥Xs′,b′)

+‖u0 − u0,N‖Hs′

≤ I + II + III,

for b′ < 1
2 such that b+ b′ < 1.

The term III is easier to estimate,

III =
∥∥ ∑
|n|>N

einx(̂u0)n
∥∥
Hs′
≤ Ns′−s‖u0‖Hs ≤ Ns′−sA.
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For the term I, we first observe that PN
(
|v|2v

)
= |v|2v for v = PN

3
u, from the convolution property of

frequency restriction. Then we write,

I ≤
∥∥|u|2u− PN (|v|2v)

∥∥
Xs′,b′

+
∥∥PN (|v|2v − |u|2u)

∥∥
Xs′,b′

=
∥∥|u|2u− |v|2v∥∥

Xs′,b′
+
∥∥PN (|v|2v − |u|2u)

∥∥
Xs′,b′

= I1 + I2 ≤ 2I1,

Estimating term I1 usingXs,b estimates and local well-posedness theory, see Lemma 4.4.1 and Proposition

4.4.2 of the previous chapter, we see that,

I1 . (TLWP )1−b−b′(‖u‖Xs′,b + ‖v‖Xs′,b
)2‖u− v‖Xs′,b

. (TLWP )1−b−b′A2‖u− PN
3
u‖Xs′,b

. (TLWP )1−b−b′A2‖u0 − PN
3
u0‖Hs′

. (TLWP )1−b−b′A3Ns′−s.

Thus we get,

I . (TLWP )1−b−b′A3Ns′−s.

Similarly, for the second term we have,

II . (TLWP )1−b−b′(‖u‖Xs′,b + ‖uN‖Xs′,b
)2‖u− uN‖Xs′,b . (TLWP )1−b−b′A2‖u− uN‖Xs′,b ,

and collecting all the terms, we get,

‖u− uN‖Xs′,b ≤ CNs′−sA+ C2(TLWP )1−b−b′A2‖u− uN‖Xs′,b

+C1(TLWP )1−b−b′A3Ns′−s,

≤ CANs′−s +
1

2
‖u− uN‖Xs′,b

≤ 2CANs′−s.

for TLWP small enough independent of N, s and s′. Repeating this argument, since the implicit constant

C can be taken independent of TLWP and N , we see that at any TLWP time, because of the Banach Fixed
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Point argument, the norm at most doubles and thus, at time T we get,

‖u− uN‖Hs′ . 2
T

TLWP CANs′−s ∼ eC
′(1+A)δTANs′−s,

which gives the result.

Now, we define a probability measure on Hs using the Hamiltonian. For that we will mainly follow

Zhidkov’s arguments, see [67].

5.3.1 Construction of the Measure on Hs:

First we will fix the notation that we will use for the rest of the chapter. Let F = (−∆)α−s on Hs. We

see that F has the orthonormal eigenfunctions en = einx/〈n〉s in Hs with the eigenvalues |n|2α−2s. We also

denote un = (u, en)Hs .

Definition 5.3.3. A set M ⊂ Hs is called cylindrical if there exists an integer k ≥ 1 such that,

M = {u ∈ Hs : [u−k, . . . , u−2, u−1, u1, u2, . . . , uk] ∈ D},

for a Borel set D ⊂ R2k.

We denote by A, the algebra containing all such cylindrical sets. Then we define the additive normalized

measure w on the algebra A as follows: For M ⊂ A, cylindrical,

w(M) = (2π)−k
k∏
|n|=1

|n|α−s
∫
D

e−
1
2

∑k
n=1 |n|

2α−2s|un|2
k∏
|n|=1

dun.

By the definition of the cylindrical sets, we see that for any r > 0 and a ∈ Hs, the closed ball Br(a) can

be written as Br(a) =
∞⋂
n=0

Mn, where Mn’s are the cylindrical sets defined as,

Mn = {x ∈ Hs :
∑
|k|≤n

(x− a)n ≤ r2},

belongs to A. Thus since A contains arbitrary closed balls, the minimal σ − algebra A containing A is the

Borel σ − algebra. Although the measure is additive by definition, it doesn’t necessarily follow that it is

countably additive. Indeed,

Theorem 5.3.4. The Gaussian measure w is countably additive on A if and only if
∑
n |n|2s−2α <∞, i.e.

s < α− 1
2 .
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Proof. (cf. [67]) Let
∑
n |n|2s−2α <∞. Wel first show that for any ε > 0, there exists a compact set Kε ⊂ Hs

with w(M) < ε for any cylindrical set M such that M ∩Kε = ∅.

Let bn = |n|ε̃ such that a =
∑
n |n|2s−2α+ε̃ < ∞. Then for an arbitrary R > 0 take the cylindrical sets

of the form,

M =
{
u ∈ Hs : [u−k, . . . , u−2, u−1, u1, . . . , uk] ∈ D, where

k∑
|n|=1

|n|ε̃u2
n > R2

}
.

Then we see that,

w(M) = (2π)−k
k∏
|n|=1

|n|α−s
∫
∑k
n=1 |n|ε̃u2

n>R
2

e−
1
2

∑k
n=1 |n|

2α−2s|un|2
k∏
|n|=1

dun

≤ (2π)−k
k∏
|n|=1

|n|α−s
∫
Rn

k∑
n=1

( |n|ε̃
R2

u2
n

)
e−

1
2

∑k
n=1 |n|

2α−2s|un|2
k∏
|n|=1

dun

≤ R−2
∑
n

|n|2s−2α+ε̃

= aR−2, (5.6)

here, to pass to the third line we used integration by parts with f = −un
|n|2α−2s and dg =

−|n|2α−2sune
− 1

2 |n|
2α−2su2

ndun. Then, for R >
√

a
ε , we have w(M) < ε.

Hence, if we take Kε = {u ∈ Hs :
∑
n |n|ε̃u2

n ≤ R2}, we get the desired compact set.

Now let A1 ⊃ A2 ⊃ . . . ⊃ Am ⊃ . . . be a sequence of cylindrical sets in Hs such that
⋂∞
m=1Am = ∅.

Then for any ε > 0 there exists closed cylindrical sets Cm ⊂ Am for all m such that w(Am/Cm) < ε2−m−2.

Let Dm =
⋂m
k=1 Ck. Then w(Am/Dm) ≤ w(

⋃m
k=1(Ak/Ck)) < ε/2. Let Em = Dm ∩ Kε/2, then Em’s are

compact with Em ⊂ Am and w(Am/Em) < ε. Since
⋂
mAm = ∅,

⋂
mEm = ∅, and since (Em) is a nested

sequence of compact sets, we see that Em = ∅ for all m > m0 for some m0 ∈ N.

Hence, w(Am) < w(Em) + ε < ε, for all m > m0. Thus w(Am)→ 0, i.e. w is countably additive.

For the converse, assume w is countably additive and also
∑
n |n|2s−2α = ∞, i.e. s ≥ α − 1

2 . Then

consider two cases,

Case 1: (s ≤ α). In this case we see that |n|2s−2α ≤ 1 for any n. Consider the cylindrical sets of the

form,

Mk =
{
u ∈ Hs :

∣∣ k∑
|n|=1

u2
n − λk

∣∣ < 2
√
λk

}
,

where λk =
∑k
|n|=1 |n|2s−2α.
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Then we have,

w(M c
k) = w(

{
u ∈ Hs :

∣∣ k∑
|n|=1

(u2
n)− λk)

∣∣ ≥ 2
√
λk

}
)

≤
∫
R2n

(∑k
|n|=1(u2

n)− λk
)2

4λk
e−

1
2

∑k
|n|=1 |n|

2α−2s|un|2
k∏
|n|=1

dun

=
1

4λk

∫
R2n

(( k∑
|n|=1

u2
n

)2 − 2
( k∑
|n|=1

u2
n

)
λk + λ2

k

)
e−

1
2

∑k
|n|=1 |n|

2α−2s|un|2
k∏
|n|=1

dun

=
1

4λk

((
λ2
k + 2

k∑
|n|=1

|n|4s−4α
)
− 2λk.λk + λ2

k

)

≤ 1

2

∑k
|n|=1 |n|4s−4α

λk

≤ 1

2
,

where, to pass from the third line to the fourth line we used integration by parts. Since λk → ∞ as

k → ∞, there exist balls Bλk−2
√
λk

(0) of arbitrarily large radii with w(Bλk−2
√
λk

(0)) ≤ w(M c
k) ≤ 1

2 , which

contradicts with the countably additivity of w.

Case 2: (s > α). In this case, for each n ≥ 1, consider the cylindrical set

Mk = {u ∈ Hs : |ui| ≤ k, |i| = 1, 2, ..., ak},

where ak > 0 is an integer. Then by a change of variables, we have,

w(Mk) = (2π)−ak
ak∏
|n|=1

(∫ k|n|α−s

−k|n|α−s
e−

1
2 |un|

2

dun

)
≤

[
(2π)−1

∫ k

−k
e−

1
2 |x|

2

dx
]ak

,

since s > α. By choosing ak large enough, we can take w(Mk) ≤ 2−k−1 for each k and that ak → ∞ as

k → ∞. Then since
⋃∞
k=1Mk = Hs and w(Hs) = 1, since Hs is a cylindrical set with full measure. But

then w(
⋃∞
k=1Mk) ≤

∑∞
k=1 w(Mk) ≤ 1

2 , which is a contradiction. Hence the theorem follows.

Since this construction gives us a Gaussian measure, we now have to check whether the measure is

singular, i.e., we have to check whether it assigns positive measures to balls with positive radius.

Proposition 5.3.5. For s < α− 1
2 , u ∈ Hs and r > 0 we have, w(Br(u)) > 0.

Proof. [66]

67



We have seen that Br(u) =
⋂∞
k=1Mk where Mk = {x ∈ Hs :

∑
|n|≤k |x − a|2n ≤ r2}. Then from the

construction above, it follows that w(Br(u)) = lim
k→∞

w(Mk). Now, fix k0 > 0 such that
∑∞
|n|=k0+1 λn <

r2

16

and
∑∞
|n|=k0+1 an <

r2

16 . Then taking k > k0 + 1 we get,

w(Mk) = (2π)
k
2

∏
|n|≤k

λ
− 1

2
n

∫
Fk

e
− 1

2

( ∑
|n|≤k

λ−1
n x2

n

)
dx(−k)....dxk

≥ C(2π)−
k−k0

2

k∏
|n|=k0+1

λ
− 1

2
n

∫
F 1
k

e
− 1

2

( n∑
|n|=k0+1

λ−1
n z2n

)
dz(−k)...dz(−k0−1)dz(k0+1)....dzk,

where C is independent of k,

Fk = {y = (y(−k), ....., yk) ∈ R2k :
∑
|n|≤k

|yn − an|2 ≤ r2}

and

F 1
k = {y = (y(−k), ...., y(−k0−1), yk0+1, ....., yk) ∈ R2(k−k0) :

∑
k0+1≤|n|≤k

|yn − an|2 ≤
r2

4
},

which is true since

{y ∈ R2k :
∑
|n|≤k0

|yn − an|2 ≤
r2

4
} ∩ {y ∈ R2k :

∑
k0+1≤|n|≤k

|yn − an|2 ≤
r2

4
} ⊂ Fk.

Then, because of the choice of k0, we have

{z = (z(−k), ..., z(−k0−1), z(k0+1), ..., zk) :
∑

k0+1≤|n|≤k

z2
n ≤

r2

16
} ⊂ F 1

k .

Using this, we can further bound w(Mk) from below by,

C(2π)−
k−k0

2

k∏
|n|=k0+1

λ
− 1

2
n

∫
∑

k0+1≤|n|≤k
z2n≤ r

2

16

e
− 1

2

( k∑
|n|=k0+1

λ−1
n z2n

)
dz(−k)...dz(−k0−1)dz(k0+1)....dzk.

Then a similar calculation to (5.6) shows that w
(
(Mk)) & 1− 16

r2

∞∑
|n|=k0+1

λn & 1, which ends the proof.

Now we define the sequence of finite dimensional measures (wk) as follows: For any fixed k ≥ 1, we take

the σ−algebra, Ak, of cylindrical sets inHs of the formMk = {u ∈ Hs : [u−k, . . . , u−2, u−1, u1, . . . , uk] ∈ D},
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for some Borel set D ⊂ R2k. Then,

wk(Mk) = (2π)−k
k∏
|n|=1

|n|α−s
∫
D

e−
1
2

∑k
|n|=1 |n|

2α−2s|un|2
k∏
|n|=1

dun.

Hence we get the sequence of finite dimensional, countably additive measures wk on the σ−algebra Ak. We

can also extend these measures to the σ − algebra A in Hs, by setting,

wk(A) = wk(A ∩Hs
k), for A ∈ A,

where Hs
k = span(e−k, . . . , e−1, e1, . . . , ek).

To justify this extension it is enough to show that A ∩Hs
k is a Borel subset of Hs

k for A ∈ A. Assume

it is not the case. Then, there exists A ∈ A such that A ∩ Hs
k /∈ Ak. Then, A1

k = {C ∈ Hs : c =

A ∩Hs
kfor someA ∈ A} is a σ − algebra and A1

k ⊂ Ak, and A1
k 6= Ak by definition. Now consider the see

A1 of all Borel subsets A of Hs such that A ∩Hs
k ∈ A1

k. Then we see that A1 is a σ − algebra in Hs such

that A1 ( A. Since A1 contains all open and closed subsets of Hs, it must contain the minimal σ− algebra

containing all the open subsets of Hs, i.e. it has to contain the Borel σ−algebra A, which is a contradiction.

Thus A ∩Hs
k is a Borel subset of Hs

k for A ∈ A and we can extend the measures wk.

The immediate question is whether or not the infinite dimensional Gaussian measure w and the finite

measures wk are related and the answer is,

Proposition 5.3.6. The sequence wk converge weakly to the measure w on Hs for s < α− 1
2 as k →∞.

Proof. (cf. [67]) First, recall that a sequence of measures υm is said to converge to a measure υ weakly on

Hs if and only if for any continuous bounded functional φ on Hs,

∫
φ(u)dυm(u)→

∫
φ(u)dυ(u).

Also recall that any ε > 0, if we take Kε ⊂ Hs as in the Theorem (5.3.4), we see that w(Kε) > 1 − ε and

moreover, wm(Kε) > 1 − ε for all n ≥ 1. Now let φ be an arbitrary continuous bounded functional on Hs

with B = supu∈Hs φ(u). Then for any ε > 0 there exists δ = δ(ε) > 0 such that

|φ(u)− φ(v)| < ε for any u ∈ Kε and v ∈ Hs satisfying ‖u− v‖Hs < δ. (5.7)
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For any m, call Km = Kε ∩Hs
m. Then by the definition of the measures wm on A, we see that,

∣∣∣ ∫
Hs

φ(u)dwm(u)−
∫
Km

φ(u)dwm(u)
∣∣∣ < εB, (5.8)

for any m ≥ 1. Define,

Km,ε = {v ∈ Hs : v = v1 + v2, v1 ∈ Hs
m, v⊥2 ∈ Hs

m, ‖v2‖Hs <
δ

2
, dist(v1,Km) <

δ

2
}.

Then, Kε ⊂ Km,ε for all sufficiently large m’s. Thus, for m large enough,

∣∣∣ ∫
Hs

φ(u)dwm(u)−
∫
Km,ε

φ(u)dwm(u)
∣∣∣ < εB. (5.9)

We now define the measure w⊥m on (Hs
m)⊥ as follows:

For a cylindrical set

M⊥ = {u ∈ (Hs
m)⊥ : [u−m−k, . . . , u−m−2, u−m−1, um+1, um+2, . . . , um+k] ∈ F},

where F ⊂ R2k is a Borel set, and,

w⊥m(M⊥) = (2π)−k
m+k∏
|n|=m+1

|n|α−s
∫
F

e
− 1

2

∑m+k
|n|=m+1

|n|2α−2s|un|2
m+k∏
|n|=m+1

dun.

then we see that w⊥m is a probability measure on (Hs
m)⊥ and w = wm ⊗ w⊥m.

Thus we get,

∫
Km,ε

φ(u)dw(u) =

∫
um∈Km,ε

dwm(um)

∫
u⊥m∈K⊥m,ε(um)

φ(um + u⊥m)dw⊥m(u⊥m), (5.10)

where, K⊥m,ε(um) = Km,ε ∩ {u ∈ Hs : u = um + y, y ∈ (Hs
m)⊥}. Then by (5.7),

∫
Km,ε

φ(u)dw(u) =

∫
um∈Km,ε

dwm(um)

∫
u⊥m∈K⊥m,ε(um)

(
φ(um + u⊥m)− φ(um)

)
+ φ(um)dw⊥m(u⊥m)

≤ Cε+

∫
um∈Km,ε

φ(um)dwm(um),

for C independent of m and ε.
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Hence, ∫
Km,ε

φ(u)dw(u)−
∫
um∈Km,ε

φ(um)dwm(um) ≤ Cε. (5.11)

Therefore, combining (5.8), (5.9) and (5.11), we get the result.

Now, we show that the measure µ is absolutely continuous with respect to the Gaussian measure w.

Recall that,

dµN = (2π)−N
N∏
|n|=1

|n|α−se−
1
2

∑
|n|≤N

∣∣|n|α−sun(t)
∣∣2− γ4 ∫

T |
∑
|n|≤N

einx

〈n〉s un(t)|4du0

∏
1≤|n|≤N

dun

= e−
γ
4

∫
T |

∑
|n|≤N

einx

〈n〉s un(t)|4(2π)−N
N∏
|n|=1

|n|α−se−
1
2

∑
0<|n|≤N |n|

2α−2s|un(t)|2du0

∏
1≤|n|≤N

dun,

and thus, µN is a weighted Gaussian measure.

For the defocusing NLS, since

|u0|2 ≤
∫
T
|u|2 .

(∫
T
|u(t)|4

) 1
2

,

we have, ∫
u0∈C

e−
1
4

∫
T |

∑
n
einx

〈n〉s un(t)|4du0 .
∫
u0∈C

e−
1
4 |u0|4du0 . C,

uniformly in N . Thus, instead of working with the full measure µN it is enough to work with the measure

wN , which is also known as the Wiener measure.

For the focusing NLS, though, we don’t have an a priori control over the weight e
1
4

∫
T |

∑
n≤N einxûn(t)|4 .

We can overcome this problem by using a lemma of Lebovitz et al., see [49], which applies an L2 cut-off to

the set of initial data, namely,

Lemma 5.3.7. e
1
4

∫
|
∑

1≤|n|≤N einxûn(t)|4χ{‖u‖L2≤B} ∈ L1(dwN ) uniformly in N , for all B <∞.

Proof. (cf. [57, 55])

∫
e

1
4

∫
|
∑

1≤|n|≤N einxûn(t)|4χ{‖u‖L2≤B}dw =

∫
(
∫
|

N∑
|n|=1

einxûn(t)|4≤K)

e
1
4

∫
|
∑

1≤|n|≤N einxûn(t)|4χ{‖u‖L2≤B}dw

+

∞∑
i=0

∫
(
∫
|

N∑
|n|=1

einxûn(t)|4∈(2iK,2i+1K])

e
1
4

∫
|
∑

1≤|n|≤N einxûn(t)|4χ{‖u‖L2≤B}dw

≤ e 1
4K

4

+

∞∑
i=0

e
1
4 (2i+1K)4w({(

∫
|

N∑
|n|=1

einxûn(t)|4 > 2iK, ‖u‖L2 < B}).

71



Now to estimate the second term on the right hand side, choose N0 dyadic, to be specified later. Now

call Ni = N0.2
i and let ai be such that

∑
i ai = 1

2 .

Then,

w({(‖u‖L4 > K, ‖u‖L2 < B}) ≤
∞∑
i=1

w({(‖P{|n|∼Ni}u‖L4 > aiK}),

and since by Sobolev embedding we have,

‖P{|n|∼Ni}u‖L4 . N
1
4
i ‖P{|n|∼Ni}u‖L2 ,

we see that,

w({(‖u‖L4 > K, ‖u‖L2 < B}) ≤
∞∑
i=1

w({‖P{|n|∼Ni}u‖L4 > aiK})

≤
∞∑
i=1

w({‖P{|n|∼Ni}u‖L2 & aiN
− 1

4
i K}).

Letting ai = CN ε
0N
−ε
i and N0 such that K ∼ N

1
4

0 B, i.e.N0 ∼ K4B−4, we get,

w({(‖u‖L4 > K, ‖u‖L2 < B}) ≤
∞∑
i=1

w
(
{
( ∑
|n|∼Ni

|ûn|2
) 1

2 & aiN
− 1

4
i K}

)

∼
∞∑
i=1

w
(
{
( ∑
|n|∼Ni

|un|2
) 1

2 & aiN
− 1

4 +s
i K}

)
,

and by the estimation of the tail of the Gaussian measure, (cf. (5.14)), we have,

w({(‖u‖L4 > K, ‖u‖L2 < B}) .
∞∑
i=1

e−
1
4a

2
iN

(2α−2s)+2s− 1
2

i K2

≤
∞∑
i=1

e−
1
4N

2ε
0 N

2α− 1
2
−2ε

i K2

≤
∞∑
i=1

e−
1
4N

2α− 1
2

0 2(2α− 1
2
−2ε)iK2

≤ e−
1
4K

2N
2α− 1

2
0

∼ e−
1
4K

2+4(2α− 1
2
)B2−4s

. (5.12)

and collecting terms, we obtain,
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∫
e

1
4

∫
|u|4χ{‖u‖L2≤B}dw ≤ e

1
4K

4

+

∞∑
i=0

e
1
4 (2i+1K)4w({(‖u‖L4 > 2iK, ‖u‖L2 < B})

≤ e
1
4K

4

+

∞∑
i=0

e
1
4 (2i+1K)4e−

1
4 (2iK)2+4(2α− 1

2
)B2−8α

< ∞,

since α > 1
2 , which proves the lemma.

Moreover, observe that for ‖u‖L2 < B, we get |u0|2 ≤
∑
n
|un|2
〈n〉2s ≤ B2. Hence, L2 cut off also restricts

u0 to the ball {u0 ∈ C : |u0| ≤ B}, uniformly in N . Therefore, combining these two results, we get that the

measure µN is a weighted Gaussian measure with weight being uniformly in L1 with respect to the Gaussian

measure.

By the construction of the Gaussian measure, we see that for any compact set E ⊂ Hs, we have,

wN (E ∩Hs
N )→ w(E).

Thus, using the result above we get,

µN (E ∩Hs
N )→ µ(E).

Proof. (Proof of Theorem (5.3.1)) For the proof of the theorem and the invariance of the measure µ, we

follow Bourgain’s arguments in [8]. First, for any ε we will construct the sets ΩN ⊂ Hs such that µN (ΩcN ) < ε

and,

‖uN (t)‖Hs .
(

log
(1 + |t|

ε

)) 1
2

. (5.13)

For that, we fix a large time T and let [−TLWP , TLWP ] be the local well-posedness interval for the equation

(3.1). Then consider the set

ΩK = {u ∈ Hs
N : ‖u‖Hs ≤ K},

where, again, Hs
N = span{en : |n| ≤ N}. We see that,

wN ((ΩK)c) = (2π)−
N
2

N∏
|n|=1

|n|α−s
∫

{u∈HsN :‖u‖Hs>K}

e−
1
2

∑N
|n|=1 |n|

2α−2s|un|2
N∏
|n|=1

dun.

= (2π)−
N
2

N∏
|n|=1

|n|α−s
∫

{u∈HsN :
∑
|n|≤N |un|2>K2}

e−
1
2

∑N
|n|=1 |n|

2α−2s|un|2
N∏
|n|=1

dun.
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= (2π)−
N
2

∫
{
∑
|n|≤N

|vn|2

〈n〉2α−2s>K
2}

e−
1
2

∑N
|n|=1 |vn|

2
N∏
|n|=1

dvn.

≤ (2π)−
N
2

∫
{
∑
|n|≤N |vn|2>K2}

e−
1
2

∑N
|n|=1 |vn|

2
N∏
|n|=1

dvn

= (2π)−
N
2

∫
S2N

∞∫
K

r2N−1e−
1
2 r

2

drdS2N

= (2π)−
N
2

∫
S2N

∞∫
K

r r2N−2e−ε(r−ε)−
1
2 ε

2︸ ︷︷ ︸
≤C

e−
1
2 (r−ε)2drdS2N

. (2π)−
N
2

∫
S2N

∞∫
K

re−
1
2 (r−ε)2drdS2N

. (2π)−
N
2

∫
S2N

∞∫
K

(r − ε)e− 1
2 (r−ε)2drdS2N

≤ e−
1
2 (K−ε)2 . e−

1
4K

2

, (5.14)

for ε small enough. Thus, µN ((ΩK)c) . e−
1
4K

2

.

Since µN is invariant under the solution operator, SN of the truncated equation, if we define the set,

Ω′N = ΩK ∩ S−1
N (ΩK) ∩ S−2

N (ΩK) ∩ . . . ∩ S
− T
TLWP

N (ΩK),

Ω′N satisfies the property, µN ((Ω′N )c) ≤ T
TLWP

µN ((ΩK)c) < TKθe−
1
4K

2

, since the local well-posedness

interval [−TLWP , TLWP ] depends polynomially on the Hs norm of the initial data because of the Lemma

4.4.1, Proposition 4.4.2 and the contraction argument given in the first chapter. Thus if we pick K =(
(4 + 2θ) log

(
T
ε

)) 1
2

, for ε small we get,

µN ((Ω′N )c) < ε,

and by the construction of the set Ω′N we have,

‖uN (t)‖Hs .
(

log
(T
ε

)) 1
2

,

for all |t| < T . Moreover, if we take Tj = 2j and εj = ε
2j+1 , and construct ΩN,j ’s, we see that ΩN =

⋂∞
j=1 ΩN,j ,

satisfies (5.13).
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Also by the approximation lemma (5.5), we see that for any s′ < s we have,

‖u(t)‖Hs′ < 2A ≤ Cs′
(

log
(T
ε

)) 1
2

.

Again by taking an increasing sequence of times, we get,

‖u(t)‖Hs′ ≤ Cs′
(

log
(1 + |t|

ε

)) 1
2

. (5.15)

Hence, if we intersect this result with an increasing sequence of s < α − 1
2 , and taking Ω =

⋂
N

ΩN where

(ΩN )s are defined as above with µN (ΩcN ) < ε
2N

, we get that µ(Ω) < ε and that the solutions to the equation

(3.1) has the norm growth bound,

‖u(t)‖Hs ≤ Cs
(

log
(1 + |t|

ε

)) 1
2

,

for initial data u0 ∈ Ω. Moreover, interpolating this bound with,

‖u(t)‖L2 = ‖u0‖L2 ,

we have,

‖u(t)‖Hs ≤ C
(

log
(1 + |t|

ε

))s+
,

which proves theorem (5.3.1).

5.3.2 Invariance of µ Under the Solution Flow

Let K be a compact set and Bε denote the ε ball in Hs. Let S be the flow map for the equation (3.1) and

SN be the flow map for the equation (5.4). Then by the weak convergence of the measure,

µ(S(K) +Bε) = lim
N→∞

µN
(
(S(K) +Bε) ∩Hs

N

)
.

Also by the uniform convergence of the solutions of (5.4) to (3.1) in Hs1 for any s1 < s, we get,

SN (PNK) ⊂ S(K) +Bε/2,
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for N ≥ N0 sufficiently large. Then for ε1 small enough,

SN
(
(K +Bε1) ∩Hs

N

)
⊂ SN (PNK) +Bε/2 ⊂ S(K) +Bε.

Hence,

µN
(
SN
(
(K +Bε1) ∩Hs

N

))
≤ µN

(
S(K) +Bε

)
,

and by the invariance of µN , we get,

µN
(
(K +Bε1) ∩Hs

N

)
≤ µN

(
S(K) +Bε

)
,

and letting N →∞, by the convergence of the measures µN to µ,

µ(K) ≤ µ(K +Bε1) ≤ µ(S(K) +Bε),

which say, by the arbitrariness of ε, that µ(K) ≤ µ(S(K)), and by the time reversibility, we also have the

inverse inequality and, thus,

µ(K) = µ(S(K)),

which gives the invariance of µ under the solution operator.

This chapter is going to appear in Canadian Mathematical Bulletin, see [31].
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