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Abstract 

This thesis analyzes an example of a resource allocating fluid queuing system.  Fluid queuing models are 

widely used these days in describing the performance of network switches, routers and so on.  Some 

works focus on the description of fluid queue in terms of probability. However, in this thesis, we focus on 

finding the optimal control policy using simulation. Stochastic differential equations play an important 

role in the problem formulation and simulation.  We prove that strict mathematical expression of optimal 

control is hard to come up with when the controller is part of the stochastic differential equation. Thus, 

simulation is used to find optimal control for an example system, which is defined in the thesis. 
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1. Introduction 
Much literature about fluid queue systems is related to network analysis. According to [1], the 

performance evaluation of telecommunication and computer systems can be generalized to an infinite 

buffer fluid queue driven by a Markovian queue. There are several famous Markovian queue models, 

such as M/M/1, M/M/K/L, and M/PH/1/L. Moreover, much research has focused on the property and 

behavior of birth-death processes, [2]-[6] for example. However, these papers tend to go through the flow 

equation quite quickly and jump into the probability analysis. In this thesis, the system we are going to 

simulate is not only a queuing system; it is a queuing system with an input control which decides which 

queue the input is going to. The possibility analysis in the steady state is not enough for us to find the 

optimal control to minimize the cost. Brockett et al. [7] provide another way to analyze the fluid queuing 

system. We will use the stochastic differential equations first to describe the system, and then simulate it. 

Other papers about stochastic fluid queuing systems are [8],[9] and [10]. 

Let us move on to the system we are going to deal with in this thesis. A general model of these systems 

contains multiple queues and one input. The time intervals between the arrivals of the input are 

exponentially distributed with a rate  𝜆 . Each queue has its own processing rate  𝜇𝑖 . There is also a 

controller u, and it is used to decide which queue the arriving input is allocated to. Given this information, 

a stochastic differential equation can be established, and simulation showing the states of each queue over 

time, in other words the length of the queues over time, can be performed. Then we will choose a cost 

function which could be a function of u, the controller, and the length of the queues. The goal is to find a 

control policy which minimizes the cost function. We will try to use the knowledge of stochastic 

differential equations to prove that with the presence of the controller, u, in the differential equations, it is 

hard to solve for the optimal control explicitly. Then we will make a guess as to what the optimal 

controller would look like and use the simulation method to test the guess. 

This thesis is structured as follows. In chapter 2, some basic mathematical background about stochastic 

differential equations will be provided. We will also mention some basic ideas in dynamic programming 

to find the optimal control. In chapter 3, we will discuss the model we are going to simulate in detail; we 

will prove that the optimal control is hard to find using math derivation. An assumption of the optimal 

control will be made in this section as well. In chapter 4, we will present three sets of simulation results to 

prove the assumption we made in the previous section. 
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2. Mathematical Preliminaries 

2.1 Stochastic differential equation 

A Poisson counter is a simple process, but it is very powerful in describing stochastic processes. A 

Poisson counter is a non-decreasing process which takes on values of positive integers and the jump time 

between jumps is exponentially distributed according to some parameter λ. Combining the idea of Poisson 

counter with differential equations, we get a stochastic differential equation.  

Consider the following stochastic differential equation: 

 𝑑𝑥(𝑡) = 𝑓(𝑥)𝑑𝑡 + 𝑔(𝑥)𝑑𝑁𝑡 (2.1) 

 

where 𝑑𝑁𝑡 is a Poisson counter. Intuitively, the solution of (2.1) is: 

(a) On an interval where no jump is happening, x(t) is the solution to 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑡). 

(b) If there is a jump at time 𝑡1, then  𝑥(𝑡1
+) = 𝑥(𝑡1

−) + 𝑔(𝑥(𝑡1
−), 𝑡1). 

That is the solution to a stochastic differential equation in the sense of Ito. And equation (2.1) is also 

called a Poisson driven stochastic differential equation (PDSDE).  

For simple PDSDE, it is quite straightforward to write down the solution in the sense of Ito. However, 

when the equations become complicated and more Poisson counters get involved in the question, this 

solution gives us very little information about the behavior of the whole system. In order to solve this 

problem, the expectation rule is introduced so that we can find the expectation of x at the timet = τ. 

Consider a general PDSDE: 

 
𝑑𝑥 = 𝑓(𝑥)𝑑𝑡 + ∑ 𝑔𝑖(𝑥)𝑑𝑁𝑖

𝑛

𝑖=1

 
(2.2) 

If  𝜓 is a differentiable function, then 

 
𝑑𝜓(𝑥, 𝑡) =

𝜕𝜓

𝜕𝑡
𝑑𝑡 + 〈

𝑑𝜓

𝜕𝑥
, 𝑓(𝑡, 𝑥)〉 + ∑(𝜓(𝑡, 𝑥 + 𝑔𝑖(𝑥)) − 𝜓(𝑡, 𝑥))𝑑𝑁𝑖

𝑛

𝑖

 
(2.3) 

 

For example, given 
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𝑑𝑥 = −𝑥𝑑𝑡 + 𝑥𝑑𝑁 

Let 𝜓(𝑥) = 𝑥2; then, applying the Ito rule for 𝜓 gives: 

𝑑𝜓 = −2𝑥2𝑑𝑡 + ((𝑥 + 𝑥)2 − 𝑥2)𝑑𝑁 = −2𝑥2𝑑𝑡 + 3𝑥2𝑑𝑁 

With the application of Ito rule, the expectation of 𝑥(𝑡) is easy to find: 

 
𝑑𝔼𝑥 = 𝔼(𝑓(𝑥, 𝑡))𝑑𝑡 + ∑ 𝔼𝑔𝑖(𝑡, 𝑥(𝑡))

𝑛

𝑖

𝜆𝑖𝑑𝑡 
(2.4) 

where 𝜆𝑖 is the rate of the corresponding Poisson counter 𝑑𝑁𝑖. 

Furthermore with the expectation of x(t) and the Ito rule, the probability density function of x(t) can be 

found, which is called the Fokker-Plank equation. But we are not going to use it in this thesis. 

2.2 Optimization 

For a system which can be described as a PDSDE with a controller u, such as 

 𝑑𝑥 = (𝑓(𝑥, 𝑡))𝑑𝑡 + (𝑔(𝑥, 𝑢, 𝑡))𝑑𝑁 (2.5) 

With a cost function 

 
𝐽𝑡 = ∑[𝑐(𝑥𝑖, 𝑢𝑖, 𝑖)]

𝑛

𝑖=𝑡

 
(2.6) 

We want to find the controller 𝑢1, 𝑢2 … … , 𝑢𝑛 such that the expectation of cost is minimized. 

 
𝑖𝑛𝑓

𝑢1,𝑢2,𝑢3,……𝑢𝑛

𝔼 ∑[𝑐(𝑥𝑡 , 𝑢𝑡, 𝑡)]

𝑛

𝑡=0

 
(2.7) 

Given the PDSDE and the cost function, we can easily calculate the cost for a certain control we select by 

simulation using computers. We cannot guarantee that the control we have is optimal. We can also predict 

that for a system like (2.5) which has n jumps during a certain time period 𝑡𝑛, there will be infinite 

controls out there. Even for a system where u can only take a value between -1 and 1 (the kind of system 

we are going to simulate), there will still be 2ndifferent possible controllers. It is extremely hard to find 

the optimal u through simulations. For deterministic systems, knowledge of dynamic programming can be 

used to find the optimal control u recursively. 

Consider a discrete-time system 

 xt+1 = 𝑓(𝑥𝑡, 𝑢𝑡 , 𝑡) (2.8) 
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with a given initial condition 𝑥0 and a cost function 

 

𝐽 = ∑ 𝑐(𝑥𝑡 , 𝑢𝑡, 𝑡) + 𝐽𝑛(𝑥𝑛)

𝑡=𝑛−1

𝑡=0

 

(2.9) 

where 𝐽𝑛(𝑥𝑛) is considered as the terminal cost. Define 𝑉(𝑡, 𝑥) the optimal cost starting at time t from the 

state x. We call function V the value function.  

 

𝑉(𝑥, 𝑡) = 𝑖𝑛𝑓
𝑢𝑡,𝑢𝑡+1,…..𝑢𝑛

∑ 𝑐(𝑥𝑠, 𝑢𝑠, 𝑠) + 𝐽𝑛(𝑥𝑛)

𝑡=𝑛−1

𝑠=𝑡

 

(2.10) 

 
𝑉(𝑥, 𝑡) = 𝑖𝑛𝑓

𝑢𝑡

[𝑐(𝑥𝑡 , 𝑢𝑡 , 𝑡) + 𝑖𝑛𝑓
𝑢𝑡+1 ,𝑢𝑡+2 …..𝑢𝑛

[ ∑ 𝑐(𝑥𝑠, 𝑢𝑠,𝑠)

𝑛

𝑠=𝑡+1

+ 𝐽𝑛(𝑥𝑛)]] 
(2.11) 

After observation we can see that the second term of equation (2.11) is independent of 𝑢𝑡. Thus we can 

write the value function in a recursive form: 

 𝑉(𝑡, 𝑥) = 𝑖𝑛𝑓
𝑢

[𝑐(𝑥, 𝑢, 𝑡) + 𝑉(𝑎(𝑥, 𝑢, 𝑡), 𝑡 + 1)] (2.12) 

for 𝑡 < 𝑛 and a boundary condition 𝑉(𝑛, 𝑥) = 𝐽𝑛(𝑥). This equation is called the Bellman equation. 
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3. Problem Formulation 

3.1 Model and simulation basics 

The model we consider in this thesis is based on stochastic differential equations.  

 

 

Figure 3.1 Simple model of the system we are going to deal with. Suppose we have a packet come into the system with a 

rate 𝛌. We have controller u to decide which queue this packet is going to. For example, given 𝐮 ∈ [−𝟏, 𝟏], if u=1 the 

packet goes to queue 1 and if u=-1 the packet goes to queue 2. Queue 1 and queue 2 have processing rates  𝝁𝟏 𝐚𝐧𝐝 𝝁𝟐 

respectively.  

Consider the case in Figure 3.1 The coming package will go through a controller u and the controller will 

allocate the package to either queue 1 or queue 2 based on the current state. The behavior of the system 

can be written in PDSDE form: 

 𝑑𝑥1(𝑡) = 𝑓1(𝑥)𝑑𝑡 + 𝑔1(𝑢, 𝑥1, 𝑥2)𝑑𝑁 (3.1) 

 𝑑𝑥2(𝑡) = 𝑓2(𝑥)𝑑𝑡 + 𝑔2(𝑢, 𝑥1, 𝑥2)𝑑𝑁 (3.2) 

where 𝑥1 and 𝑥2 represent the length of queue 1 and queue 2 respectively. 𝑁(𝑡) is a Poisson counter with 

parameter λ. The cost function is a function of  𝑢, 𝑥1 and 𝑥2. 

Writing the system in PDSDE allows us to simulate the length of queues over time using Euler integration. 

We can use the computer to simulate the continuous process discretely by choosing very small time 

step Δt.  

To do the simulation: 

queue 1 

queue 2 

control u 
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1. An array Q is created using random number generator.  Each entry of Q records the jump time of 

the Poisson counter N(t). 

2. Between the jumps, we  find the change of the length of the queues as follows: 

 𝛥𝑥1(𝑡) = 𝑓1(𝑥)𝛥𝑡 if 𝑥1 > 0, 0 otherwise (3.3) 

 𝛥𝑥2(𝑡) = 𝑓2(𝑥)𝛥𝑡 if 𝑥2 > 0, 0 otherwise (3.4) 

3. At the jumps, the controller u is decided based on the current state, 𝑥1 and 𝑥2. In this case: 

 𝛥𝑥1(𝑡) = 1 if 𝑢 = 1, 0 otherwise (3.5) 

 𝛥𝑥2(𝑡) = 1 if 𝑢 = −1, 0 otherwise (3.6) 

4. Doing the simulation for a period of time can calculate the overall cost using the cost function. 

This simulation will be done several times with the same jump time under different control 

policies, and a curve showing cost vs. policies will be created. 

The major problem here is to quantitatively distinguish different policies so that we can create a plot 

according to different policies. If we think it through, the policies are the criteria to switch the controller, 

in this case to change u to 1 or to -1 and vice versa. Intuitively, if the cost function depends on the length 

of the queues, the policies should also depend on the length of the queues. Thus an assumption has been 

made here that the optimal policy which minimizes the cost function can be found as: 

 𝑢 = 1 if 𝛼𝑥1 > 𝑥2 (3.7) 

 𝑢 = −1 if 𝛼𝑥1 ≤ 𝑥2 (3.8) 

Different policies have different α values, and we can visualize the cost vs. different policies quite easily.  

3.2 Mathematical approach of an example of a simple model 

Consider the following system: 

 
𝑑𝑥1 = −𝜇1𝐼𝑥1

𝑑𝑡 +
𝑢 + 1

2
𝑑𝑁 

(3.9) 

 
𝑑𝑥2 = −𝜇2𝐼𝑥2

𝑑𝑡 +
−𝑢 + 1

2
𝑑𝑁 

(3.10) 

where 𝐼𝑥1
 and 𝐼𝑥2

 are the indicator functions, which equal to 1 when 𝑥1 or 𝑥2 is greater than zero and zero 

otherwise. When u=1 the input goes to 𝑥1and when u=-1 the input goes to 𝑥2 and dN is a Poisson counter 

with parameter 𝜆. We also define the cost function as: 
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𝐽𝑡 = ∫ 𝑐(𝑥1, 𝑥2)

∞

0

 
(3.11) 

where  

 𝑐(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2 (3.12) 

The expectation of the cost function can be expressed as the sum of the expectation of 𝑥1
2and 𝑥2

2. We use 

the Ito rule and expectation rule to find 𝔼𝑥1
2 and 𝔼𝑥2

2. 

Chose 𝜓 = 𝑥1
2 

 
𝑑𝑥1

2 = −2𝑥1𝜇1𝐼𝑥1
+

𝑢 + 1

2
𝑑𝑁 

(3.13) 

We can also find this relation for 𝑥2: 

 
𝑑𝑥2

2 = −2𝑥2𝜇2𝐼𝑥2
+

−𝑢 + 1

2
𝑑𝑁 

(3.14) 

Taking the expectation on both sides, 

 
𝑑𝔼𝑥1

2 = −2𝔼(𝑥1𝐼𝑥1
)𝜇1𝑑𝑡 +

𝔼(𝑢) + 1

2
𝜆𝑑𝑡 

(3.15) 

Note that 𝔼(𝑥1𝐼𝑥1
) = 𝔼(𝑥1). The next step is to find 𝔼(𝑥1). Taking the expectation on both sides of the 

original PDSDE, we have: 

 
𝑑𝔼𝑥1 = −𝔼(𝐼𝑥1

)𝜇1𝑑𝑡 +
𝔼(𝑢) + 1

2
𝜆𝑑𝑡 

(3.16) 

We have a term which contains 𝔼(𝐼𝑥1
). The expectation of the indicator function is the probability of 

𝑥1 > 0, P(x>0). There is another term that shows up in both the expectation of x1 and expectation of 

x1
2:  𝔼(𝑢). 𝔼(𝑢)is not something we can solve directly, since u is the controller we need to modify. Thus 

an explicit expression of the controller u is almost impossible to find.  

3.3 Simulation details 

Given the information we have from sections 3.1 and 3.2, we need to simplify the problem a little bit. We 

are going to find the relationship between the optimal α, the ratio between 𝑥1 and 𝑥2 when we switch the 

policies, and the ratio between the processing rates, 
𝜇1

𝜇2
. The simulation will be done using different cost 

functions. 

We also need to consider some constraints in this problem. First of all, both the processing rates, 𝜇1 

and 𝜇2, should be slower than the arriving rate 𝜆, because, in practice, if we have a system with a higher 
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processing rate than the arriving rate, there will be almost no cost for storage. However, this constraint 

may not apply to the system where the control is part of the cost function. For example, consider the 

following cost function: 

 c(x, u, t) = 𝑥1
2 + 𝑥2

2 + 10(1 + u)2 (3.17) 

This can be considered to mean that there is a difference in the transportation cost by choosing different 

storages (queues).  

The second constraint is that the sum of  𝜇1 and 𝜇2 should be greater than or equal to the arriving rate λ. If 

𝜇2 + 𝜇2 < 𝜆, the expectation of both 𝑥1 and 𝑥2 will go to infinity as the time goes to infinity. Intuitively, 

for a system like this, the optimal control will be the controller which sends the input to the shorter queue 

regardless of the processing rate. This is not an exciting model to talk about, and it will not be considered 

in this thesis. Also I am going to simulate a little bit of this kind of model to show that the policy, α more 

specifically, is a constant. 
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4. Simulations and Results 

We will deal with a system that looks exactly like Figure 3.1. The cost function is set to be: 

 𝑐(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2 (4.1) 

The behavior of the queues obeys the following PDSDE: 

 
𝑑𝑥1 = −𝜇1𝐼𝑥1

𝑑𝑡 +
𝑢 + 1

2
𝑑𝑁 

(4.2) 

 
𝑑𝑥2 = −𝜇2𝐼𝑥2

𝑑𝑡 +
−𝑢 + 1

2
𝑑𝑁 

(4.3) 

where 𝐼𝑥1
and 𝐼𝑥2

 are the indicator functions, which take the value of one if 𝑥1or 𝑥2 is greater than zero, 

zero otherwise. dN is a Poisson counter with parameter λ, and u is the controller which takes the values -1 

and 1. When u takes the value 1 the input goes to queue 1 and when u takes the value -1 the input goes to 

queue 2. We assume that the processing rate of queue 1 is greater than queue 2. It is obvious that the 

expectation of 𝑥1is greater than that of 𝑥2. Thus we set a policy such that: 

 IF αx1 > 𝑥2 

  u takes the value u=1 

 ELSE 

  u takes the value u=-1 

 END 

where α takes the value from 0 to 1, α ∈ (0,1]. 

4.1 Simulation set 1 

In this simulation set, we are going to show that if the combined processing rate of both queues is smaller 

than the arriving rate, the policy variable α will be a constant. 

We will set the arriving rate 𝜆 = 1 and we will do the trials listed in Table 4.1. 

Table 4.1  Set 1 Simulation Profile 

 𝜇1 𝜇2 

Trial 1 0.4 0.4 

Trial 2 0.5 0.3 

Trial 3 0.6  0.2 

Trial 4 0.7 0.1 

For all the trials, the run time has been set to 5000 and the time step is set to 0.01. We will track the cost 

for different α which takes the value from 0 to 2 with a step size of 0.01.  
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For the first trial we get a path of 𝑥1 and 𝑥2 that looks like Figure 4.1 and Figure 4.2. It shows that the 

length of the queue goes to infinity as the time goes to infinity. This implies that there the queues are not 

able to solve all the work that comes into the queue. This is definitely not a desirable system in real life. 

The paths of 𝑥1 and 𝑥2 have the same patterns of Figure 4.1 and Figure 4.2 for the other three trials. We 

are not going to show all the figures in this thesis.  

 

 

 

Figure 4.1 The length of queue 1 versus time for trial 1. Different curves show different behavior with different policies. 

The policy parameter 𝛂 takes the value from 0.01 to 2 with the step size 0.05. The uppermost curve corresponds to 

𝛂 = 𝟎. 𝟎𝟏 and the lowest curve corresponds to 𝛂 = 𝟐. 
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Figure 4.2 The length of queue 2 versus time for trial 1 with the same simulation specification as Figure 4.1. The 

uppermost curve corresponds to 𝛂 = 𝟐 and the lowest curve corresponds to 𝛂 = 𝟎. 𝟎𝟏. 

However, we still want to show what kind of policy gives us the lowest cost for this kind of system. 

Figure 4.3 shows the relationships between the policy α and the cost for different trials. 



12 
 

 

Figure 4.3 Graph of the overall cost 𝚺𝐭(𝒙𝟏
𝟐 + 𝒙𝟐

𝟐) versus the policy parameter 𝛂 for different trials (see Table 4.1). 

 

 

From Figure 4.3 we can tell that the lowest value of cost is achieved at α = 1 for all four trials. We can 

easily come up with the conclusion that for a system where the sum of the processing rates is lower than 

the arriving rate, 𝜇1 + 𝜇2 <  λ , the optimal control is achieved at α = 1, which is independent of the 

processing rates 𝜇1 and 𝜇2. 

4.2 Simulation set 2 

In this simulation set, we are going to do something more exciting; we will set the combined processing 

rate equal to the arriving rate. We will do the trials listed in Table 4.2. 
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Table 4.2 Set 2 Simulation Profile 

 𝜇1 𝜇2 

Trial 1 0.55 0.45 

Trial 2 0.6  0.4 

Trial 3 0.65 0.35 

Trial 4 0.7 0.3 

Trial 5 0.75 0.25 

Trial 6 0.8 0.2 

Trial 7 0.85 0.15 

Trial 8 0.9 0.1 

Trial 9 0.95 0.05 

 

 

 

For all the trials, the run time has been set to 5000 and the time step is set to 0.01. We will track the cost 

for different α which takes the value from 0 to 1 with a step size of 0.01. Since the processing rate of 

queue 1 is always greater than or equal to the processing rate of queue 2, we assume the length of queue 1 

is greater than or equal to the length of queue 2. 

As in the previous simulation set, we are going to show how the queue length changes over time. For trial 

1, it is shown in Figure 4.4 (for 𝑥1) and Figure 4.5 (for 𝑥2). We can tell from the graphs that the queue 

length is fluctuating around some point as time goes on. Although the expectation of the queue length is 

changed along different policies, we can at least conclude that the queue length will not explode as time 

goes to infinity. 
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Figure 4.4 Length of queue 1 vs time for different 𝛂, 𝛌 = 𝟏 𝛍𝟏 = 𝟎. 𝟓𝟓 𝐚𝐧𝐝 𝝁𝟐 = 𝟎, 𝟒𝟓. 

 

Figure 4.5 Length of queue 2 vs time for different 𝛂, 𝛌 = 𝟏 𝛍𝟏 = 𝟎. 𝟓𝟓 𝐚𝐧𝐝 𝝁𝟐 = 𝟎, 𝟒𝟓. 
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Now we will show how the optimal control strategy changes as the ratio between the processing rates of 

the queues changes. Figure 4.6 is a graph of cost versus α  for different trials. We can read the α value for 

the lowest cost from the graph. The simulation is down five times for each trial and the α reads as shown 

in Table 4.3. 

Table 4.3 Optimal 𝛂 Readings for 5 Simulations of Set 2 

 1
st
 read 2

nd
 read 3

rd
 read 4

th
 read 5

th
 read average Ratio 

𝜇1

𝜇2
 

Trial 1 1 0.99 1 1 0.99 1 1.22 

Trial 2 0.94 0.99 0.98 0.98 0.99 0.98 1.5 

Trial 3 0.99 0.91 0.99 1 0.98 0.97 1.86 

Trial 4 0.91 0.95 0.77 0.89 0.99 0.90 2.33 

Trial 5 0.71 0.99 0.77 0.98 0.84 0.84 3 

Trial 6 0.85 0.98 0.77 0.66 0.95 0.84 4 

Trial 7 0.83 0.68 0.67 0.98 0.76 0.78 5.67 

Trial 8 0.72 0.92 0.98 0.91 0.88 0.88 9 

Trial 9 0.92 0.94 0.57 0.57 0.76 0.75 19 

 

  

Figure 4.6 Graph of the overall cost 𝚺𝐭(𝒙𝟏
𝟐 + 𝒙𝟐

𝟐) versus the policy parameter 𝛂 for different trials (see Table 4.2).  The 

graph is plotted beginning with 𝛂 = 𝟎. 𝟏 because the cost for those small 𝛂 values becomes so large that the rest of the 

graph is hard to read. 
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From Table 4.3 we can tell that the optimal α changes a lot even for a certain ratio of 𝜇1 and 𝜇2. However, 

a general decreasing trend can be observed as the ratio of 𝜇1 and 𝜇2 increases. Figure 4.7 can be plotted 

based on the data we have in Table 4.3. Figure 4.7 also shows a linear fitting of the curve.  

 

Figure 4.7 Curve of 𝛂 versus the ratio with a linear fitting. 

We can see from the curve that the first seven trials behave closer to a linear curve compared to the last 

two trials of data. The abnormal behavior of data in trial 6 most likely is because of the stochastic 

property of simulation.  

4.3 Simulation set 3 

In this simulation we will set the combination processing rate greater than the arriving rate, and as before 

we will set the 𝜇1 + 𝜇2 to be constant. We are going to do the sets of trials listed in Table 4.4. 
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Table 4.4 Set 3 Simulation Profile 

 𝜇1 𝜇2 

Trial 1 1.05 0.95 

Trial 2 1.10 0.90 

Trial 3 1.15 0.85 

Trial 4 1.20 0.80 

Trial 5 1.25 0.75 

Trial 6 1.30 0.70 

Trial 7 1.35 0.65 

Trial 8 1.40 0.60 

Trial 9 1.45 0.55 

 

As before, Figure 4.8 and Figure 4.9 show how the length of the queue changes over time. We can see 

that most of the time the queue length stays between 0 and 1.  

  

Figure 4.8 Length of queue 1 vs. time for different 𝛂, 𝛌 = 𝟏 𝛍𝟏 = 𝟏. 𝟎𝟓 𝐚𝐧𝐝 𝝁𝟐 = 𝟎. 𝟗𝟓. 
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Figure 4.9 Length of queue 1 vs. time for different 𝛂, 𝛌 = 𝟏 𝛍𝟏 = 𝟏. 𝟎𝟓 𝐚𝐧𝐝 𝝁𝟐 = 𝟎. 𝟗𝟓. 

 

 

In Figure 4.10 we put all the nine trials together to see how the policy affects the overall cost of the 

system for different processing rate combinations. 

As with simulation set 2, we will do this simulation 5 times and read the α values corresponding to the 

lowest costs. 
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Figure 4.10 Overall cost 𝚺𝐭(𝒙𝟏
𝟐 + 𝒙𝟐

𝟐) versus the policy parameter 𝛂 for different trials (see Table 4.4). Since we are 

simulating a stochastic system, the curve show here is just one example to give a demonstration of how the curve 𝛂 versus 

cost looks. 

Table 4.5 Optimal 𝛂 Readings for 5 Simulations of Set 3 

 1
st
 read 2

nd
 read 3

rd
 read 4

th
 read 5

th
 read average Ratio 

𝜇1

𝜇2
 

Trial 1 0.97 0.97 0.94 0.94 0.95 0.954 1.105 

Trial 2 0.88 0.89 0.87 0.84 0.92 0.88 1.22 

Trial 3 0.89 0.89 0.86 0.91 0.81 0.872 1.353 

Trial 4 0.88 0.90 0.83 0.86 0.88 0.87 1.5 

Trial 5 0.89 0.84 0.87 0.87 0.88 0.87 1.667 

Trial 6 0.66 0.68 0.66 0.62 0.63 0.65 1.857 

Trial 7 0.60 0.65 0.70 0.63 0.63 0.642 2.077 

Trial 8 0.56 0.57 0.60 0.56 0.57 0.572 2.333 

Trial 9 0.53 0.54 0.53 0.55 0.52 0.534 2.6364 

 

Figure 4.11 is based on Table 4.5. The linear function we get is 𝛼 = −0.29 ∗ (
𝜇1

𝜇2
) + 1.3. This time the 

linear fitting looks more convincing compared to the fitting we did in the previous chapter. If  
𝜇1

𝜇2
= 1, it 

means queue 1 and queue 2 process at the same rate. Intuitively, the optimal cost point is achieved when 

the input is sent to the shorter queue, which means α = 1. The solution our linear equation gives us is 

1.01, which is 1% off, and it can be considered quite accurate. Moreover, let us try 
μ1

μ2
=3; using our 

equation we get 𝛼 = 0.43 as our optimal control policy.  For simulation we set 𝜇1 = 1.5 and 𝜇2 = 0.5. 
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After 5 simulations we get an average value of optimal 𝛼 = 0.45. The error is about 5%. This is still quite 

an accurate estimation considering the system is a stochastic process. However, if we try 
μ1

μ2
= 4, the 

estimated value by the linear approximation is 0.14 but the simulated result gives us a value of α around 

0.37, which means this linear approximation is only applicable for a certain range.   

 

Figure 4.11 Curve of 𝛂 versus the ratio with a linear fitting of the data from Table 5. 
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5. Conclusion and Future Work 
We have proved that even for a very simple resource allocating fluid queuing system (described in 

chapter 3). It is hard to explicitly write down a mathematical expression for a controller to minimize 

certain cost functions. We decided to find an expression of the controller by simulating the system. We 

choose the control switch policy to be a function of 𝛼. To keep the problem simple we use 𝛼𝑥1 < 𝑥2 as 

our control policy. Then we assume that the optimal control policy parameter α might have a linear 

relationship with the ratio of the processing rates of the two different queues. A simple example analysis 

shows that there is a linear relationship. However, this linear relationship only exists for some range of  
μ1

μ2
 

when the combined processing rate is greater than input rate (𝜇1 + 𝜇2 > 𝜆). 

There is a lot we can do to improve the result we get here. From the mathematical perspective, a strict 

mathematical proof to show the linear relationship between α and cost can be made. On the other hand, 

because it is a stochastic system, we always want to do as many simulations as possible to eliminate the 

random factors during the simulation. Moreover, more simulations can be done. In this thesis, we only 

simulate one specific model with one specific cost function.  More simulations can be done to find the 

optimal control policy for a more general model. 
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