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  ABSTRACT  

Microalgae biotechnologies have shown promise as tertiary wastewater treatment processes 

capable of reducing nitrogen and phosphorous to meet increasingly stringent regulatory limits 

and as producers of biofuel feedstock. During growth and respiration, microalgae excrete 

extracellular organic matter (EOM) as metabolic byproducts which have the potential to act as 

photosensitizers for the generation of reactive species, including singlet oxygen (1O2), hydroxyl 

radicals (•OH), and triplet excited dissolved organic matter (3DOM). These reactive species can 

play an essential role in the mineralization of dissolved organic matter, nutrient cycling and 

bioavailability, attenuation of toxic pollutants, and inactivation of pathogens. Recent studies 

observed enhanced transformation of organic micropollutants in UV and visible light irradiated 

algae suspensions where photogenerated 1O2 and •OH were detected. The photochemistry in 

EOM matrices is still largely unknown as well as the impacts of reactive species on cultivation 

including EOM mineralization, protective extracellular reactive species generation, and nutrient 

availability. This study reports on reactive species production in EOM solutions separated from 

pure batch cultures of Chlamydomonas reinhardtii under solar irradiation. Results show 

increasing steady-state levels of 3DOM, 1O2, and formation rates of •OH under sunlight 

irradiation as EOM levels increase with batch culture growth. Changes in reactive species levels 

were compared with changes in culture characteristics such as volatile suspended solids (VSS) 

and nutrient availability as well as EOM properties including dissolved organic carbon (DOC) 

and specific UV absorbance (SUVA). EOM-sensitized reactive species photogeneration in 

comparison to other DOM sources was also discussed along with implications for the fate of 

contaminants, EOM, and culture stability in photobioreactors. 
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CHAPTER 1: INTRODUCTION 

1.1 Extracellular photochemistry in phototrophic cultivation systems 

Photochemistry of the extracellular environment in algal cultivation systems is largely unknown. 

Algal technologies have shown promise as producers of algae feedstock for biofuel production  

(U.S. Department of Energy, 2010) as well as tertiary wastewater treatment processes capable of 

reducing nitrogen and phosphorous (McGriff Jr. and McKinney, 1972; Muñoz and Guieysse, 

2006; Oswald, 1991, 1995). Photoautotrophic algae cultivation designs vary from open ponds to 

closed photobioreactors (PBRs), all of which require light to drive photosynthesis (U.S. 

Department of Energy, 2010). While much is known about photosynthesis and the 

photochemical processes that occur inside of an algal cell (Minagawa, 2009), the photochemistry 

occurring outside of the cell in the extracellular water matrix is still mostly unknown, despite 

potential relevance to the stability of cultures, nutrient cycling, contaminant fate, and pathogen 

inactivation among other things. 

Of particular interest is the generation of photochemically produced reactive species which 

include the well-studied subset reactive oxygen species (ROS). In terrestrial dissolved organic 

matter (DOM), reactive species play important roles in DOM mineralization, persistent pollutant 

attenuation, pathogen inactivation, and nutrient bioavailabity (Buxton et al., 1988; Cory et al., 

2010; Davies-Colley et al., 1999; Foote, 1995; Gerecke et al., 2001; Loiselle et al., 2012; Scully 

Jr. and Hoigné, 1987; Zuo and Jones, 1997). Yet few studies have examined the photogeneration 

of reactive species in algal photobioreactor cultures which can contain dense biomass and high 

concentrations of algal organic matter (AOM) (de Godos et al., 2012); some studies have 

reported EOM levels as high as 70 mg/L as dissolved organic carbon during stationary phase 

(Pivokonsky et al., 2014). Reactive species play an important role driving many chemical 
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processes in sunlit natural waters (Foote, 1995) and may play analogous roles in cultivation 

systems, however this knowledge is unknown. The disconnect between reactive species 

quantification techniques which have been established and refined since the 1980s (Foote, 1995) 

and algal PBR design which has been discussed since the 1990s (Oswald, 1991, 1995) must 

converge to uncover a deeper understanding of photobioreactor photochemistry.  

1.2 The importance of photogenerated reactive species in algal systems 

Photochemically produced reactive species are transient intermediates with short lifetimes (e.g., 

microseconds or less) that are essential for a multitude of chemical processes in natural waters 

that promote ecosystem stability (Burns et al., 2012; Foote, 1995). The reactive species involved 

in these processes include singlet oxygen (1O2), hydroxyl radicals (•OH), superoxide (O2
•-), 

hydrogen peroxide (H2O2), and carbonate radicals (CO3
•-), and triplet excited dissolved organic 

matter (3DOM) (Burns et al., 2012; Foote, 1995; Grandbois et al., 2008; Leifer, 1988).  

Photogenerated reactive species play a role in carbon mineralization and can also convert 

biologically-inert higher molecular weight organic compounds into more easily metabolized 

fractions via oxidative cleavage reactions (Foote, 1995), leading to production of lower weight 

carboxylic acids, CO, and CO2 (Goldstone et al., 2002; Page et al., 2014; Zuo and Jones, 1997) 

(Cory et al., 2010; Loiselle et al., 2012; Peterson et al., 2012). 

Reactive species can also promote indirect photolysis and natural attenuation of toxic organic 

pollutants (Burns et al., 2012; Chen et al., 2009; Dalrymple et al., 2010; Halladja et al., 2007). Of 

the reactive species listed, •OH, 1O2, and 3DOM have been studied more closely for their ability 

to oxidize pollutants and inactivate pathogenic microorganisms (Buxton et al., 1988; Davies-

Colley et al., 1999; Halladja et al., 2007; Housari et al., 2010; Rosado-Lausell et al., 2013, 2013; 
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Scully Jr. and Hoigné, 1987; Timko et al., 2014). Hydroxyl radicals are the strongest oxidant in 

the above mentioned list and react unselectively with natural organic matter and many synthetic 

organic chemicals at rates approaching diffusion limitations  (Buxton et al., 1988). Singlet 

oxygen is more selective and reacts with furan, phenoxide anion, phenol, sulfur, and alkene 

functional groups present in many micropollutants (Mostafa and Rosario-Ortiz, 2013; Peterson et 

al., 2012; Scully Jr. and Hoigné, 1987). Reactions with some of the same functional groups leads 

to inactivation of many pathogens, including MS2 coliphage, enterococci, and fecal coliforms 

(Davies-Colley et al., 1999; Kohn and Nelson, 2007; Kohn et al., 2007; Mostafa and Rosario-

Ortiz, 2013; Romero et al., 2011). Like 1O2, 
3DOM is a selective oxidant; recent studies have 

shown the 3DOM photoproduction leads to oxidation of contaminants of emerging concern, 

including sulfa drugs and phenyl urea herbicides (Boreen et al., 2005; Dalrymple et al., 2010; 

Gerecke et al., 2001; Guerard et al., 2009). 

Reactive species are also crucial for making nutrients bioavailable in natural waters (Foote, 

1995). Reaction of DOM with •OH can release organic nitrogen and ammonia, making nitrogen 

available for microorganisms (Bushaw et al., 1996; Janssen et al., 2014). O2
•- exhibits both 

reducing and oxidizing potential and has been shown to play a prominent role in trace metal 

biogeochemical cycling in sunlit aquatic systems (Goldstone and Voelker, 2000; Petasne and 

Zika, 1987; Voelker et al., 2000).  

Not only is DOM a sensitizer for the reactive species discussed above, this same DOM source is 

a sink for several reactive species. For example, aromatic ketones and quinones, which are 

known precursors for 3DOM photogeneration, can also serve as quenchers for 3DOM (Wenk and 

Canonica, 2012). Similarly, one recent study found that DOM in arctic aquatic ecosystems was 

the dominant source and sink for •OH. Quantum yields for •OH quenching were 10 – 100-fold 
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greater than quantum yields for •OH production, suggesting a dominant quenching role in the 

arctic DOM systems investigated (Page et al., 2014). In contrast, aquatic DOM at 

environmentally relevant conditions is known to be primarily a source for 1O2 contributing 

negligible quenching (Cory et al., 2009; Mostafa and Rosario-Ortiz, 2013). 

Whereas the importance of photochemical reactions in natural extracellular aquatic systems has 

long been recognized, potentially equally important processes in EOM-rich algae cultivation 

systems remain largely unknown. Terrestrial DOM and algal organic matter are similar in water 

matrix composition. Photobioreactors contain inorganic constituents in media which are used by 

algal cells to sustain biomass growth including inorganic carbon, nitrogen, phosphorous, and 

trace metals (Andersen, 2005). Algae also produce metabolic excretions throughout growth 

(Henderson et al., 2008; Nguyen et al., 2005; Pivokonsky et al., 2014). Therefore, the 

extracellular organic matter (EOM) becomes the DOM source available for photochemical 

reactions in photobioreactors analogous to the terrestrial DOM sensitizers in natural waters.  

The photoreactivity of AOM has not been studied closely regardless of the clear parallel drawn 

between both natural waters and photobioreactors. And as a result, the impacts of reactive 

species on biomass yield or culture stability are not understood. Do reactive species play a 

significant role in mineralization, oxidizing organic compounds, and pathogen inactivation 

similar to natural waters? Is there an inhibiting or beneficial effect to culture growth? These are 

the important questions that must be addressed. Fortunately, much work has been done in DOM 

photochemistry and AOM characterization, so this knowledge can be leveraged together with 

targeted experimentation to gain a greater understanding of this unknown water matrix.  
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1.3 State of knowledge 

The steady-state concentrations of 1O2, •OH, and 3DOM in sunlit natural waters have been 

quantified using molecular probes (Canonica and Freiburghaus, 2001; Canonica et al., 1995; 

Foote, 1995; Grebel et al., 2011). Steady-state concentrations in natural waters were measured 

and typical values are as follows:  [1O2] = 10-13 – 10-12 M; [•OH] = 10-18 – 10-15 M; [3DOM] = 10-

15 – 10-13 M (Burns et al., 2012; Zepp et al., 1985a). 

Researchers have worked to elucidate the structural elements in terrestrial DOM sensitizers that 

are responsible for reactive species formation and quenching. Singlet oxygen has been shown to 

form after sensitization of aromatic ketone groups in natural organic matter (Golanoski et al., 

2012; Sharpless, 2012). Hydroxyl radicals are generated from electron and energy transfer 

reactions with 3DOM, although this pathway is not well understood (Page et al., 2014). And 

triplet excited state dissolved organic matter originates from sensitization of aromatic ketones, 

aldehydes and quinone functional groups (Canonica and Freiburghaus, 2001; Golanoski et al., 

2012; Janssen et al., 2014). In addition to identifying reactive species precursors, researchers 

have made efforts to use bulk terrestrial DOM characteristics such as absorbance, fluorescence, 

and DOC to identify key DOM characteristics and photosensitizing capabilities (Sharpless, 

2012).  

The effects of suspended organic matter particles on photochemical transformation of organic 

contaminants in natural waters inspired Zepp and coworkers to begin one of the first 

investigations linking microalgae to photochemical organic contaminant removal (Zepp and 

Schlotzhauer, 1983). The presence of green microalgae species including Chlamydomonas sp. 

and Chlorogonium sp. were found to enhance the removal of pesticides, herbicides, and other 
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organic pollutants compared to direct UV and visible light photolysis alone (Zepp and 

Schlotzhauer, 1983). More recent studies have built on the findings by Zepp and Schlotzhauer 

and showed that microalgae cell suspensions under UV and visible light also exhibit enhanced 

transformation of pharmaceuticals and personal care products (PPCPs) and other micropollutants 

(Ge et al., 2009; Wang et al., 2007). After detecting 1O2 and •OH in irradiated microalgae 

suspensions, researchers believe photochemically produced reactive species are a major 

contributor to enhanced contaminant transformation observed in these systems (Liu et al., 2004; 

Wang et al., 2007; Zhang et al., 2012). 

In recent years, there has also been an increased interest in characterizing AOM (Henderson et 

al., 2008; Li et al., 2012; Nguyen et al., 2005; Pivokonsky et al., 2014). To organize the different 

fractions of AOM, the material has been divided into three operationally defined categories: 

intracellular organic matter, extracellular organic matter, and cellular organic matter (Henderson 

et al., 2008; Pivokonsky et al., 2014). Intracellular organic matter (IOM) consists of the soluble 

organic matter inside of but not including the cell wall (Henderson et al., 2008). Extracellular 

organic matter (EOM) refers to the dissolved metabolic excretions of microalgae (Henderson et 

al., 2008; Li et al., 2012; Pivokonsky et al., 2014). Cellular organic matter (COM) has been 

defined as the cell wall and organelles, or the solid portion of algal cells (Pivokonsky et al., 

2014). Compositional changes in AOM from algal cultures when comparing exponential and 

stationary growth has been a common observation in these studies (Henderson et al., 2008; 

Nguyen et al., 2005; Pivokonsky et al., 2014). The motivation behind AOM characterization to 

date has been to understand the physical and chemical properties. The presence of AOM in 

drinking water sources is often seen as a nuisance material that creates taste and odor issues, 

increases coagulant demand, leads to greater membrane fouling, and produces disinfection 
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byproducts (Henderson et al., 2008; Li et al., 2012; Nguyen et al., 2005; Pivokonsky et al., 

2014). The connection to photoreactivity in algal cultivation systems has not been made. 

The development of DOM characterization and reactive species quantification techniques in 

terrestrial NOM has given researchers a set of tools that can be applied in a diverse array of 

organic matter present in engineered and natural systems such as wastewater organic matter, 

microbial derived organic matter from Antarctic lakes, and algal cell suspensions (Brown et al., 

2004; Dong and Rosario-Ortiz, 2012; Jasper and Sedlak, 2013; Liu et al., 2004; Niu et al., 2014; 

Quaranta et al., 2012; Ryan et al., 2011; Wang et al., 2007; Zhang et al., 2012). By using these 

tools, researchers were able to understand the photoreactivity of exotic organic matter sources 

and evaluate the reactive species generating performance in these systems. 

1.4 A gap in understanding 

Currently, only a few studies have proposed AOM sensitization as a reactive species generating 

pathway (Ge et al., 2009; de Godos et al., 2012; Liu et al., 2004; Peng et al., 2006; Zhang et al., 

2012). And even fewer studies have quantified reactive species in AOM solutions and only •OH 

and 1O2 were quantified (Liu et al., 2004; Wang et al., 2007; Zhang et al., 2012). So, the existing 

knowledge on AOM photoreactivity which we can directly apply to sunlit algae cultivation 

systems is lacking and needs to be addressed.  

Algal biotechnology has created an intersection between both the knowledge of AOM 

characterization and reactive species quantification, so both ideas must be applied to advance the 

quantitative understanding of the photochemistry inside photobioreactors. The advantage of 

utilizing methods from an established body of literature in DOM photochemistry is that it is 

possible to assess the reactive species generating performance of AOM by comparing findings to 
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those of terrestrial DOM. Therefore, DOM information should be used as a baseline for 

performance. Photoreactivity comparisons must then be traced back to the characteristics of each 

organic matter to distinguish differences in organic matter properties and attribute those 

differences to changes in reactive species production.  

AOM characteristics in photobioreactors are not static, and photoreactivity is expected to change 

throughout culture age. A deeper understanding of AOM photoreactivity requires analysis of 

AOM as it evolves throughout growth. Identifying factors such as water quality characteristics, 

culture growth, and growth stage which affect photoreactivty can further advance our 

understanding of reactive species generation in photobioreactors. For example, does the 

photosensitizing property of EOM produced at different growth stages differ? 

Only after quantifying production of reactive species in photobioreactors can we begin 

understand their potential influence on the fate of micropollutants, pathogens, and AOM itself in 

algal cultivations systems. Is AOM primarily a light absorber and defense mechanism that 

stabilizes growth, a quencher that prevents excessive oxidation of algal cells, a sensitizer that 

attacks harmful pollutants and pathogens via indirect photolysis? Improved quantitative 

understanding of extracellular photochemistry in PBRs can help to address these important 

questions. 

1.5 Integrating algal cultivation with photochemistry 

Since the questions posed above are broad and have uncertain outcome, the most pertinent 

information that must be obtained are the AOM derived reactive species levels produced by 

EOM photosensitization in photobioreactors. Therefore, reactive species concentrations and 

formation rates served as the quantitative measures of AOM photoreactivity in this study. 
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Efforts were focused around investigating the photogeneration of •OH, 3DOM, and 1O2 in 

sunlight-irradiated EOM. Chromophoric dissolved organic matter (CDOM), or DOM that has a 

brown/yellow color and absorbs light, is the basis for reactive species generation in terrestrial 

DOM (Blough and Zepp, 1996; Richard and Canonica, 2005; Zafiriou et al., 1984). EOM is the 

AOM most comparable with terrestrial DOM when considering all three fractions (IOM, EOM, 

and COM) since it is completely dissolved and also light-absorbing. Additionally, EOM is the 

most practical AOM to investigate since widely available organic matter characterization, 

reactive species quantification, and experimental techniques developed for DOM can be directly 

applied in EOM investigation. 

Specifically, experiments were conducted to measure photoproduction of •OH, 3DOM, and 1O2 

in simulated sunlight irradiated batches of EOM isolated from pure batch cultures of C. 

reinhardtii at different stages of growth. To the best of our knowledge, this is the first study 

investigating reactive species generation by EOM produced throughout exponential and 

stationary phase in engineered photobioreactor systems. •OH, 3DOM, and 1O2 were quantified 

using molecular probes benzene, 2,4,6-trimethyl phenol (TMP), and furfuryl alcohol (FFA) 

respectively. Changes in reactive species levels were compared with changes in culture 

characteristics such as volatile suspended solids (VSS) and nutrient availability as well as EOM 

properties, including dissolved organic carbon (DOC) and specific UV absorbance (SUVA). 

EOM-sensitized reactive species production was compared to Suwannee River Natural Organic 

Matter (SRNOM), a commonly studied terrestrial DOM isolate. This comparison enables 

translation of the developed body of knowledge from terrestrial DOM systems to dense cell 

microalgae processes.  



10 
 

CHAPTER 2: MATERIALS AND METHODS 

2.1 Chemical reagents 

All chemicals were used as received. Benzene (BZ; 99.8%, Sigma-Aldrich), 2,4,6-

trimethylphenol (TMP; 97%, Sigma-Aldrich), and furfuryl alcohol (FFA; 99%, Sigma-Aldrich) 

were used as molecular probes for quantifying reactive species. Media was prepared from NH4Cl 

(ACS Grade, Amresco), MgSO4•7H2O (≥ 99.5%, Fluka), CaCl2•H2O (≥ 99.5%, Fluka), K2HPO4 

(≥ 98%, Sigma-Aldrich), KH2PO4 (≥ 98%, Sigma-Aldrich), EDTA (≥ 99%, Sigma-Aldrich); 

(NH4)6Mo7O24•4H2O (ACS Grade, Acros Organics), Na2SeO3 (98%, Sigma-Aldrich), 

ZnSO4•7H2O (≥ 99%, Sigma-Aldrich), MnCl2•4H2O (99%, Sigma-Aldrich), Na2CO3 (≥ 99.95%, 

Sigma-Aldrich), FeCl3•6H2O (97%, Sigma-Aldrich), CuCl2•2H2O (≥ 99.5%, Sigma-Aldrich), 

and NaHCO3 (100%, Fisher Scientific). All pH and ionic strength adjustments were made using 

HCl (ACS Grade, Macron Fine Chemicals), NaOH (1 N Solution, Sigma-Aldrich), and NaCl 

(ACS Grade, Fisher Scientific). Suwannee River Natural Organic Matter (SRNOM) (reverse 

osmosis isolate) was obtained from the International Humic Substances Society and used as a 

representative example of terrestrial organic matter. Methanol (Fisher Scientific), acetonitrile 

(Macron Fine Chemicals), orthophosphoric acid (85%, Sigma-Aldrich), and acetic acid (≥ 

99.7%, Sigma-Aldrich) were used to prepare eluents for liquid chromatography analysis.  

2.2 Chlamydomonas reinhardtii cultivation and characterization 

Solutions containing Extracellular Organic Matter (EOM) were obtained from a pure culture of 

Chlamydomonas reinhardtii (#2243, UTEX). C. reinhardttii was grown in a 5 L photobioreactor 

constructed from PVC and acrylic sheets (37” × 12” × 1-3/8”; see Appendix A) and was placed 

in front of lit blue and red LEDs at a 24-hour incident light intensity of 237 μE/m2-s. Modified 

TAP media was used, omitting TRIS buffer and acetic acid to reduce DOC levels, with the 
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following composition (mM): NH4Cl (7.0), K2HPO4 (0.620), KH2PO4 (0.397), NaHCO3 (10), 

MgSO4•7H2O (0.406), CaCl2•2H2O (0.340), Na2CO3 (0.022), FeCl3•6H2O (0.020), EDTA-

Na2•2H2O (0.058), Na2SeO3 (0.1 μM), ZnSO4•7H2O (2.5 μM), MnCl2•4H2O (6 μM), 

CuCl2•2H2O (2 μM).  Mixing was achieved with an air pump and diffuser dispensing an air/CO2 

mixture into the reactor varying from 0.02 L/L-min at 5 L culture volume to 0.5 L/L-min at 0.1 L 

culture volume. The pH was maintained between 6.8 – 7.2 by injecting CO2(g) (99%) into the air 

stream through a solenoid valve (McMaster Carr) controlled by a pH controller (Eutech 

Instruments). All air-inlets and outlets were filtered using HEPA vent filters (Whatman) to 

maintain sterility. All reactor parts were sterilized before inoculation by either autoclaving or UV 

irradiation. 

2.3 Growth monitoring 

C. reinhardtii was grown in batch for 10 days, and growth was monitored throughout lag, 

exponential, and stationary phases. Mass concentrations of the culture were obtained using total 

suspended solids (TSS) and volatile suspended solids (VSS) analysis (Guest et al., 2013). Optical 

density was measured at 735 nm using a UV-vis spectrophotometer (DR/4000 U, HACH). 

Growth was initiated by inoculating 1% (v/v) inoculum into the 5 L reactor. The inoculum was 

obtained from a 500 mL C. reinhardtii batch reactor grown under the same cultivation 

conditions. The 5 L reactor was seeded when inoculum optical density at λ = 735 nm (A735) 

reached ~0.8. 

2.4 EOM isolation and characterization 

EOM isolation has been adapted by combining  two methods previously described (Henderson et 

al., 2008; Li et al., 2012). Approximately 600 mL of cell suspension was collected and 
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centrifuged (SORVALL RC 6+, Thermo Scientific) at 10,000 × g for 15 min at 20°C. 

Supernatant was then sequentially filtered through a 0.7 μm glass fiber membrane (Fisherbrand) 

and a 0.22 μm PES membrane (Steritop, Millipore). The PES filtrate is operationally defined as 

dissolved EOM and included media components (Henderson et al., 2008; Li et al., 2012; Nguyen 

et al., 2005; Pivokonsky et al., 2014). EOM solution was stored at 4 °C until used.  

DOC of the EOM solution was measured using a total organic carbon (TOC) analyzer (TOC-

VCPH, Shimadzu) using potassium hydrogen phthalate reference standard solution (Aqua 

Solutions). Alkalinity was measured by pH titration according to Standard Methods (Eaton et al., 

1995). Ammonia was measured using the phenate method (Eaton et al., 1995; Guest et al., 2013). 

Phosphate was measured using the ascorbic acid method (Eaton et al., 1995; Guest et al., 2013). 

UV-vis absorbance spectra of the EOM solution was collected from λ = 250 nm - 750 nm against 

a deionized water blank (Shimadzu UV-2550 Spectrophotometer). All EOM solution analyses 

were performed within 10 days of collection. 

2.5 Experimental setup and procedure for reactive species quantification 

Reactive species quantification experiments were performed using an Atlas Suntest XLS+ solar 

simulator equipped with a xenon lamp emitting irradiation filtered through a 310 nm glass cutoff 

filter (Atlas, Cat. 56052372). Reactors consisted of 50 mL glass beakers with black tape wrapped 

around the outer surface to limit unintended light reflection (Romero et al., 2011). A 280 nm 

longpass cutoff filter (FSQ-WG280) was placed on top of each beaker during experiments to 

limit evaporation and also allow penetration of the full radiation spectrum. 300 rpm mixing was 

achieved using a 12-point stir plate (Variomag). Capped borosilicate glass tubes (16 × 150 mm) 

(Kimax) served as the reactors for •OH production rate quantification experiments to limit 
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benzene volatilization (Dong and Rosario-Ortiz, 2012). All reactors were placed in a water bath 

inside of the solar simulator chamber and temperature was maintained at 25 °C during irradiation 

via a copper coil also placed inside the bath which was connected to an external temperature 

controller (Neslab RTE 7, Thermo Electron Corporation). Solar simulator light intensity was 

measured by spectroradiometer to be 361 ± 47 W/m2 (Spectrilight ILT950, International Light 

Technologies). The spectroradiometer sensor was placed at 12 positions corresponding to the 12-

points on the stirplate where reactors were placed. Light intensity was measured and the average 

of triplicate measurements was recorded (see appendix for details). 

•OH, 3DOM, and 1O2, were quantified using benzene (BZ), TMP, and FFA respectively. Two 

kinetic concepts were used to quantify the reactive species. The first order method was used to 

quantify 3DOM steady-state ([3DOM]ss) and 1O2 steady-state ([
1O2]ss) concentrations. The initial 

formation rate method was used to quantify •OH formation rates (R•OH) (see appendix). 

[3DOM]ss was obtained by measuring TMP decay, which reacts mainly with 3DOM (Canonica 

and Freiburghaus, 2001; Canonica et al., 1995). [1O2]ss was obtained by measuring FFA, which 

decays selectively with 1O2 reaction (Haag and Hoigne, 1986; Haag et al., 1984). R•OH was 

obtained by measuring production of phenol, a hydroxylation product of BZ (Dong and Rosario-

Ortiz, 2012; Dorfman et al., 2004). To maintain consistent probe concentrations in all 

experiments and to accommodate probe stock solution volumes, 90% (v/v) of EOM isolate 

solutions were added in all reactors. EOM water quality, including DOC and alkalinity, varied 

throughout C. reinhardtii growth which changed the reactor conditions in irradiation 

experiments; this dynamic water quality is described later. Initial probe concentrations were 

[TMP]o = 10 μM, [FFA]o = 10 μM, and [BZ]o = 1 mM. 3DOM experiments underwent a 4-hour 

irradiation period while •OH and 1O2 experiments were extended to 8 hours to provide more time 
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for additional probe degradation and product formation after reactive species interaction. 

Aliquots (1 mL) were collected throughout the irradiation experiments at regular intervals, and 

stored in 2 mL glass vials under darkness at 4 °C until analyzed. 

Terrestrial organic matter comparison experiments followed an identical reactor setup and 

experimental procedure as described above. Water quality parameters measured from EOM 

characterization in exponential phase dictated the water quality characteristics in the terrestrial 

organic matter surrogate matrix. Alkalinity, ionic strength, and pH were adjusted using NaHCO3, 

NaCl, and HCl/NaOH respectively. DOC in terrestrial organic matter matrices was provided by 

the addition of organic carbon from a SRNOM isolate. 

2.6 Analytical methods  

Phenol, 2,4,6-trimethylphenol, and furfuryl alcohol were measured using high performance 

liquid chromatography (HPLC) equipped with a photodiode array detector (SPD-M10Avp, 

Shimadzu).  Separation was achieved using a Spherisorb 5 μm ODS2 4.6 × 150 mm column with 

4.6 × 10 mm guard cartridge of the same material. Phenol production due to benzene reaction 

with •OH was analyzed at λ = 270 nm using a 35/65 mixture of acetonitrile and acetic acid 

aqueous solution (pH = 5). TMP was analyzed at λ = 277 nm using isocratic flow with a 60/40 

mixture of methanol and 10 mM orthophosphoric acid aqueous solution (pH = 2). Furfuryl 

alcohol was analyzed at λ = 214 nm using isocratic flow with a 20/80 mixture of acetonitrile and 

acetic acid aqueous solution (pH = 5).   
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CHAPTER 3: RESULTS AND DISCUSSION 

3.1 C. reinhardtii growth monitoring and EOM characterization 

 

Figure 1: C. reinhardtii growth monitored using volatile suspended solids (VSS) analysis 

and optical density at λ = 735 nm. 

Figure 1 shows C. reinhardtii growth proceeding through a lag, exponential, and stationary 

phase. The lag phase transitions into exponential phase at day 1. Exponential phase growth 

occurs from day 1 to 4 before approaching early stationary phase. Stationary growth begins on 

day 6 then plateaus through day 10. The decrease in VSS at day 10 likely results from poor 

mixing as the culture becomes denser in the photobioreactor.   
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Figure 2: EOM water quality characteristics throughout 10 day cultivation period.  
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Figure 2 shows that DOC increases linearly over time similarly to microalgae DOC production 

measured in other studies (Nguyen et al., 2005; Pivokonsky et al., 2014). The culture initially 

starts with ~ 8 mg C/L due to the organic carbon contribution from the 6.9 mg C/L of EDTA 

added to the TAP media (assumed to be negligibly bioavailable) and ~1.1 mg C/L contributed 

from EOM in the inoculum used to seed the reactor. PO4
3- and NH4

+ decrease as growth 

increases in the culture due to nutrient uptake. Initially, the main carbon source is EDTA, which 

inflates SUVA254 values to ~ 2.3 L / mg C-m due to formation of light absorbing chelation 

complexes with Fe3+ in the media. As extracellular materials becomes the dominant source of 

DOC, SUVA254 stabilizes at around 1 L / mg C-m, closer to the actual value for SUVA for EOM. 

SUVA254 below 2 L / mg C-m is considered a low value and typical of biologically derived 

organic matter with low aromatic content (Henderson et al., 2008). SUVA254 has also been 

known to decrease from exponential to stationary phase (Henderson et al., 2008; Pivokonsky et 

al., 2014). The EOM solution has a pH ~ 8 throughout culture growth. However, it should be 

mentioned that pH in EOM solutions is different from the pH maintained in the photobioreactor 

(pH = 6.81 – 7.16) since culture pH is regulated using a CO2 injection system, but not after 

supernatant separation. Alkalinity is dominated by the initial 10 mM NaHCO3
- added to the 

growth media, as displayed in Figure 2. After 3 days, the alkalinity and CT,CO3 stabilized at 3.7 

mM. The significant drop in alkalinity can be explained by HCO3
- uptake by C. reinhardtii 

throughout growth and stabilization upon reaching stationary phase where growth plateaus. 
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Figure 3: Optical and chemical properties of EOM solutions throughout C. reinhardii 

growth (A) UV-vis absorbance (B) E2/E3 ratios and SUVA at λ = 254 nm (C) Specific 

absorbance values for λ in the UV and visible spectrum. 
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Figure 3 (cont.) 

Figure 3A shows that EOM absorbance increases with increasing C. reinhardtii growth and 

increasing DOC allowing EOM to absorb light and participate in energy and electron transfer 

reactions inducing reactive species production (Richard and Canonica, 2005). Recent studies 

have investigated trends between optical properties such as E2/E3 ratios (absorbance at λ = 254 

nm divided by absorbance at λ = 365 nm) to reactive species production (Dalrymple et al., 2010). 

For example E2/E3, was negatively related to 1O2 quantum yields in natural DOM samples and 

terrestrial DOM isolates under the irradiation of a UVA mercury lamp (Dalrymple et al., 2010).  

Figure 3B shows that E2/E3 ratios decrease throughout growth. E2/E3 ratios are known to 

correlate with aromaticity (Peuravuori and Pihlaja, 1997). Additionally, SUVA254 (absorbance at 

λ = 254 nm divided by DOC in mg C/L) which also correlates with aromaticity, decreases 
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aromatic light-absorbing functional groups, but may be explained by the findings of AOM 
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characterization studies. For example, Henderson and coworkers saw that SUVA254 only 

captured humic/fulvic aromaticity and did not encompass tryptophan and other amino acid 

aromaticity (Henderson et al., 2008). Interestingly, Figure 3C shows that although SUVA254 may 

be decreasing throughout growth, absorbance normalized to DOC at wavelengths near λ = 400 

nm (SUVA400) increases with culture growth. Other EOM characterization techniques such as 

fluorescence excitation-emission matrices (EEMs) may provide additional insights into 

molecular properties of EOM that contribute to photoreactivity. 

3.2 Solar •OH generation  

 

Figure 4: Reactive oxygen species quantification throughout C. reinhardtii growth. •OH 

formation rates (R•OH) (pM/s = 10-12 M/s). Values corrected for light screening. 
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which produce •OH under sunlight irradiation (Gutteridge et al., 1990). Therefore, the Fe3+-

EDTA complexes may explain the high R•OH on day 0. The R•OH increases by ~15% from day 0 

to 1. The increase in R•OH from day 1 to 2 is also ~15%. Overall, there is over a 4-fold increase 

in R•OH after 10 days relative to the initial value. The data suggests that DOC from EOM is a 

sensitizer for •OH similarly to what has been shown for DOM in surface waters, DOM isolates, 

and wastewater (Dong and Rosario-Ortiz, 2012; Page et al., 2014).  

A recent study showed that bulk wastewater samples from secondary effluent have a higher R•OH 

than natural waters. R•OH in wastewater samples (DOC = 6 – 7 mg C/L) ranged from 0.76 × 10-10 

– 1.3 × 10-10 M/s with irradiance 71 W/m2 from 290 – 400 nm (Dong and Rosario-Ortiz, 2012). 

The authors suggested that an extrapolation to irradiance = 44 W/m2 from 290 – 400 nm (i.e., the 

irradiance of sunlight) is necessary to compare lab-scale R•OH  to sunlit natural water R•OH (Dong 

and Rosario-Ortiz, 2012; Hulstrom et al., 1985). After extrapolation, R•OH in wastewater  is 4.71 

× 10-11 – 8.05 × 10-11 M/s (Dong and Rosario-Ortiz, 2012). This is higher that the R•OH in natural 

waters where DOC = 0.3 – 5.16 mg C/L and R•OH  is 10-12 – 10-11 M/s (Dong and Rosario-Ortiz, 

2012; Nakatani et al., 2007; Vione et al., 2006). R•OH values in EOM using simulated sunlight are 

between 1.1 × 10-10 – 5.02 × 10-10 M/s at an irradiance ~ 36 W/m2 from 290 – 400 nm with DOC 

= 8.1 – 57.5 mg C/L. When we convert R•OH to sunlight irradiance, the R•OH range for EOM is 

1.34 × 10-10 – 6.14 × 10-10 M/s. In this same study by Dong and Rosario-Ortiz, R•OH contribution 

from nitrate in wastewater samples was subtracted from total production R•OH production to 

elucidate R•OH from wastewater effluent organic matter only (Dong and Rosario-Ortiz, 2012). If 

we modify the results we found in this study and subtract •OH production from day 0, believed 

to originate from Fe3+-EDTA complex sensitizers and inoculum DOC, the R•OH range becomes 0 

– 3.92 × 10-10 M/s. After the calculation, R•OH from C. reinhardtii EOM is higher than R•OH in 



22 
 

both natural waters and effluent organic matter (Dong and Rosario-Ortiz, 2012). However, the 

DOC in EOM solutions is 8 times greater than wastewater and 11 times greater than natural 

water DOC. In current research, the •OH photogenerating and micropollutant degrading 

properties of wastewater effluent and wetlands are being evaluated (Dong and Rosario-Ortiz, 

2012; Jasper and Sedlak, 2013; Ryan et al., 2011). Based on our results, we believe algal 

cultivation systems should also be evaluated for important processes such as micropollutant 

removal and pathogen inactivation due to •OH production that surpasses that of natural waters 

and wastewater secondary effluent. However, the conclusions we can obtain from these results 

are limited and a more complete investigation on EOM quenching properties is necessary which 

requires [•OH]ss quantification. Understanding •OH production alone is not sufficient and further 

work investigation •OH steady-state levels is needed. 
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3.3 Solar 3DOM generation 

 

Figure 5: Reactive species quantification throughout C. reinhardtii growth. 3DOM steady-

state concentrations ([3DOM]ss) (fM = 10-15 M). Values Corrected for light screening. 
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2014; Parker et al., 2013; Rosado-Lausell et al., 2013). As C. reinhardtii grows, EOM becomes 

the dominant source of DOM. Approximately after day 4 of cultivation (Figure 2A), measured 

[3DOM]ss values are assumed to be triplet excited states of extracellular organic matter (3EOM). 

The existence of 3EOM has been predicted by many authors but has not been measured until now 

(Ge et al., 2009; Liu et al., 2003; Peng et al., 2009; Wang et al., 2007). The [3DOM]ss throughout 

growth ranged from 3.19 × 10-15 – 2.06 × 10-14 M for EOM solutions with DOC = 8.1 – 57.5 mg 

C/L. Grebel et al. found that [3DOM]ss ranged from 4 × 10-16 – 9 × 10-16 M in SRNOM with 

DOC = 4 – 15 mg C/L (Grebel et al., 2011). Zepp and coworkers estimated [3DOM]ss produced 

from humic substances with A366 = 0.2 in sunlit water bodies to be 10-15 – 10-13 M (Zepp et al., 

1985a). For comparison, A366 = 0.2 corresponds to ~17 mg C/L for SRNOM. If we extrapolate 

solar simulator [3DOM]ss produced from EOM to sunlight irradiance (44 W/m2) (Hulstrom et al., 

1985), the [3DOM]ss range is 4.41 × 10-15 – 2.85 × 10-14 M. 3DOM levels photogenerated from 

EOM fall within the range of those found by Zepp et al. and are higher than those measured by 

Grebel et al. (Grebel et al., 2011; Zepp et al., 1985a). Although [3DOM]ss from EOM are 

comparable or slightly greater than reported values, the DOC needed to achieve such [3DOM]ss is 

much greater. When comparing maximum values, DOC from EOM solutions is over 3-fold 

greater than DOC from SRNOM in Grebel et al. and estimated humic acid DOC in Zepp et al. 

(Grebel et al., 2011; Zepp et al., 1985b). Additionally, it should be noted that the steady-state 

values calculated in this and other studies are not quite comparable due to the use of different 

probes. 

The sorbic acid probe used and developed by Grebel et al. reacts with 3DOM via energy transfer 

reactions (Grebel et al., 2011; Parker et al., 2013). In another study, Zepp and coworkers used 

1,3-pentadiene and 2,4-dimethyl furan as probes which react with 3DOM also exclusively 
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through energy transfer reactions (Zepp et al., 1985a). TMP however, reacts with 3DOM via 

electron transfer reactions (Dong and Rosario-Ortiz, 2012). Therefore, individual probes target 

different reactive properties of 3DOM (Grebel et al., 2011). Nonetheless, the pool of 3DOM 

detected by TMP is the same pool of 3DOM involved with 1O2 production (Halladja et al., 2007). 

A more direct comparison of our results can be made by a very recent study from Niu et al. 

where 3DOM was measured using TMP in wastewater and fulvic acid isolates using a solar 

simulator (Niu et al., 2014). To make comparisons, [3DOM]ss was estimated using the reported 

values for kapp,TMP
 and [1O2]ss provided in Niu et al. In wastewater hydrophobic and transphilic 

fractions, the [3DOM]ss averages were 8.7 × 10-15 M for 4 mg C/L and 1.1 × 10-14 M for 20 mg 

C/L. For fulvic isolates, the [3DOM]ss averages were 1.2 × 10-14 M for 4 mg C/L and 1.0 × 10-14 

M for 20 mg C/L. The [3DOM]ss produced from EOM solutions in this study were slightly higher 

but similar to [3DOM]ss measured in fulvic acid and wastewater isolates (Niu et al., 2014). 

However, the DOC needed to achieve these 3DOM levels in EOM solutions was almost 3-fold 

greater than the wastewater and fulvic acid isolate solutions in Niu et al. when comparing 

maximum DOC concentrations. Regardless, the conclusion from this discovery about 

comparable [3DOM]ss is that current knowledge about 3DOM oxidation of sulfa drugs and other 

PPCPs in natural waters and NOM isolates can be directly applied to algal cultivation systems.  
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3.4 Solar 1O2 generation 

 

Figure 6: Reactive oxygen species quantification throughout C. reinhardtii growth. 1O2 

steady-state concentrations ([1O2]ss) (fM = 10-15 M). Values corrected for light screening. 

Figure 6 shows that there is measurable [1O2]ss on day 0 which can be explained by EOM 

sensitizers originating from the inoculum. From day 0 to day 1, [1O2]ss does not significantly 

change since it is still within the standard deviation of day 0. From day 1 to day 2, there is more 

than a 5-fold increase in [1O2]ss. At day 10, there is over a 30-fold increase in [1O2]ss compared to 

day 0.  Because 1O2  originates from energy transfer reactions between 3DOM and ground-state 

or dissolved oxygen (3O2)  (Zepp et al., 1977), high [1O2]ss implies that sufficient 3DOM were 

formed to produce these measured 1O2 levels. This may explain the less dramatic increase in 

[3DOM]ss over culture growth compared with [1O2]ss (Figure 5); 3DOM is quenched by ground-

state O2 to produce the observed 1O2 levels. [1O2]ss increases from 4.80 × 10-15 – 1.52 × 10-13 M 

throughout 10 days of growth at irradiance ~36 W/m2 from 290 – 400 nm. In natural waters, 

[1O2]ss ranges from 10-13 – 10-12 M (Burns et al., 2012). Assuming the sunlight intensity is 44 

W/m2 in natural systems (Dong and Rosario-Ortiz, 2012; Hulstrom et al., 1985), an extrapolation 
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generated in EOM fall within the range of 1O2 expected in natural waters. An important 

conclusion from this result is that the knowledge of pathogen inactivation and micropollutant 

removal gained from previous studies in DOM from natural waters, wastewater, and NOM 

isolates can be applied to algal cultivation systems, supporting the need for further study in 

oxidation processes in biotechnology  (Davies-Colley et al., 1999; Kohn and Nelson, 2007; Kohn 

et al., 2007; Mostafa and Rosario-Ortiz, 2013; Peterson et al., 2012; Romero et al., 2011; Scully 

Jr. and Hoigné, 1987). 

3.5 Correlations between reactive species levels and EOM solution properties 

 

Figure 7: EOM sensitized reactive species levels and correlations with chemical and optical 

characteristics (A) DOC (B) SUVA254 (C) SUVA400 and (D) E2/E3.  

 

0

50

100

150

200

250

0

100

200

300

400

500

600

0 20 40 60

[1
O

2
] s

s
a
n

d
 [

3
D

O
M

] s
s
(f

M
)

R
•O

H
(p

M
/s

)

DOC (mg C/L)

Hydroxyl radical

Singlet oxgyen

Triplet excited DOM

A

E 



28 
 

 

 

 

Figure 7 (cont.) 
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Figure 7A shows that all the reactive species stead-state concentrations and production rates 

increase with increasing DOC. Previous studies have shown that there is a linear correlation 

between organic matter DOC and [1O2]ss. In a study by Kohn and coworkers, the slope of this 

trend was quantified for purified DOM isolates such as Fluka humic acid (FHA) (6.5 × 10-15 

mol1O2/mg NOM), Suwannee River humic acid (SRHA) (4 × 10-15 mol1O2/mg DOM), , Aldrich 

humic acid (AHA) (1.3 × 10-14 mol1O2/mg DOM), and Pony Lake fulvic acid (PFLA) (3.2 × 10-15 

mol1O2/mg DOM) (Kohn et al., 2007). The DOC-normalized [1O2] for EOM in this study was 3.2 

× 10-15 mol1O2/mg DOM which most closely resembles the value from PLFA. PLFA is isolated 

from an Antarctic saline pond where the organic matter source originates primarily from dense 

blooms of Chlamydomonas intermedia Chodat. PLFA is known as an autochthonous or 

microbially derived organic matter (Brown et al., 2004). Considering the DOM solutions in this 

study originates mainly from the EOM of a microorganism also in the Chlamydomonas genus, it 

makes sense that normalized 1O2 levels are so similar. Also, the data suggests terrestrially 

derived organic matter sources (FHA, SRHA, AHA) are better sensitizers for 1O2 than 

microbially derived sources (Kohn and Nelson, 2007). Results from this study also support this 

comparison and will be discussed further in Section 3.5. In another previous study, it was shown 

that [3DOM]ss quantified using the energy transfer probe (sorbic acid) and SRNOM DOC 

concentrations were positively correlated (Grebel et al., 2011). Similarly, the [3DOM]ss 

quantified in this study using the energy transfer probe (TMP) and EOM were positively 

correlated. R•OH in this study increase with increasing DOC and a similar trend was observed in a 

study where •OH formation rates were compared with DOC changes in several water bodies in 

the Arctic  (Page et al., 2014). 
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Figure 7B shows that increasing levels of reactive species increase with decreasing SUVA254, 

which is opposite of what has been shown in previous studies. One study found that SUVA254 in 

several DOM isolates and natural water samples had a positive correlation with TMP first-order 

decay rates and [1O2]ss (Rosado-Lausell et al., 2013).  Aromaticity is known to be positively 

correlated with reactive species production and also positively correlated with reactive species 

quenching (Rosado-Lausell et al., 2013; Wenk and Canonica, 2012). The unexpected inverse 

relationship between SUVA254 and [1O2]ss and [3DOM]ss in Figure 7B results from one of two 

possibilities. One is that the aromatic content which is responsible for reactive species sensitizing 

is not absorbed at λ = 254 nm, but at higher wavelengths such as aromatic amino acids like 

tryptophan (Henderson et al., 2008). Although SUVA254 and humic/fulvic type aromaticity is 

decreasing, biological aromaticity may follow an alternate trend with increasing DOC. For 

example, Figure 7C shows that reactive species increases with increasing SUVA400. In other 

words, the portion of DOC which absorbs light near λ = 400 nm becomes more prevalent with 

increasing growth where more reactive species are present and may be a better indicator for 

EOM photoreactivity. The second possibility for the inverse relationship between SUVA254 and 

reactive species levels is that the aromaticity is decreasing with increasing growth, and so 

aromatic quenchers for 3DOM at later stages of growth are at a minimum yielding higher 

[3DOM]ss (Wenk and Canonica, 2012). Because 1O2 forms from 3DOM, lower [1O2]ss would also 

be expected (Boreen et al., 2005). However, aromatic quenching of •OH does not play a role in 

the R•OH
 measurement. Excess benzene is added in for •OH reactions and is therefore the major 

scavenger for hydroxyl radicals outcompeting aromatic DOC (Vione et al., 2006).  

Decreasing E2/E3 ratios correlate with increasing reactive species levels. This trend contradicts 

what has been observed in DOM isolates from natural waters where increasing E2/E3 ratios 
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produce greater 1O2 quantum yields which are directly related with steady-state levels. E2/E3 

values have an inverse relationship with terrestrial DOM molecular weight; therefore, lower 

molecular weight compounds are better sensitizers for 1O2 (Dalrymple et al., 2010). In contrast, 

Figure 4C suggests that it is the higher molecular weight compounds in EOM that are better 

sensitizers for reactive species photogeneration. Previous research shows that there is a greater 

quantity and diversity of high molecular weight EOM for several species of green microalgae 

and cyanobacteria in stationary phase compared to exponential phase (Pivokonsky et al., 2014). 

So, it is reasonable to hypothesize that higher molecular weight EOM can be sensitizers for the 

reactive species generation. However, further study on this hypothesis is needed. A summary of 

the reactive species quantification data used for the discussion in Sections 3.2 – 3.5 is provided 

below in Figure 8 and Table 1 respectively.  

 

 

 

 

 

 

 

 



32 
 

 

 

 

Figure 8: Raw data for •OH, 3DOM, and 1O2 quantification. Phenol production by benzene 

hydroxylation with •OH was measured; 2,4,6-trimethyl phenol  and furfuryl alcohol decay 

due to reaction with 3DOM and 1O2, respectively, was measured. 
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Table 1: Summary of reactive oxygen species quantification throughout C. reinhardtii 

growth. 

Species [RS] Day 0 [RS] Day 1 [RS] Day 2 [RS] Day 10 

[3DOM] 

(fM) 
3.19 ± 0.58 2.67 ± 0.11 4.43 ± 0.23 20.63 ± 1.03 

[1O2] 

(fM) 
4.80 ± 1.02 3.90 ± 1.80 22.55 ± 3.39 151.56 ± 13.96 

R•OH 

(pM/s) 
109.89 ± 16.49 129.11 ± 4.75 147.75 ± 4.99 502.16 ± 25.71 

Values were corrected for light screening. Standard deviations were calculated from triplicates.  

EOM water quality was diluted by 90% to accommodate probe stock solution volume. Solution 

conditions: [DOC]Day 0 = 7.26 mg C/L; [DOC]Day 1 =  7.00 mg C/L; [DOC]Day 2 = 9.62 mg C/L; 

[DOC]Day 10 = 51.78 mg C/L. Total Carbonate (CT,CO3) varied for each sample.  [CT,CO3]Day 0 = 8.14 

mM; [CT,CO3]Day 1 = 8.88 mM; [CT,CO3]Day 2 = 5.38 mM; [CTCO3]Day 10 = 3.33 mM. pH fluctuated 

due to lack of buffer. pHInitial = 7.93 ± 0.08. pHFinal = 8.54 ± 0.33. RS = reactive species.  
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3.6 EOM vs. Terrestrial NOM  

Table 2: A comparison of 3DOM, 1O2, and •OH generation in EOM at exponential phase 

with generation in the terrestrial organic matter surrogate Suwannee River Natural 

Organic Matter (SRNOM). 

  EOM Matrix EOM Matrix Corrected SRNOM Matrix 

[3DOM] (fM) 9.2 ± 2.3 6.0 ± 2.3 8.4 ± 1.4 

[1O2] (fM) 27.1 ± 2.4 22.3 ± 2.6 46.4 ± 8.6 

R•OH (pM/s) 182.7 ± 15.6 72.9 ± 22.7 47.5 ± 6.0 

EOM Matrix sample harvested from time = 2.5 days representing late stationary phase. 

EOM water quality was diluted by 90% to accommodate space for probe stock solutions. 

EOM water quality was matched in SRNOM matrix using SRNOM isolate. DOCEOM = 

DOCEOM solution (14 mg C/L) - DOCMedia (7 mg C/L)= 7 mg C/L. Solution conditions: 

DOCSRNOM = 7 mg C/L; CT,CO3 = 2.9 mM. pHInitial = 8.39 ± 0.12; pHFinal = 8.76 ± 0.18. ISEOM ~ 

12.6 mM; ISSRNOM = 4 mM. RSEOM,corrected = RSEOM,day 2.5 - RSEOM,day 0 

Table 2 shows the comparisons between EOM in exponential phase and SRNOM. EOM and 

SRNOM solutions were normalized to 7 mg C/L. However, EOM solutions contained an 

additional 7 mg C/L of EDTA included in the growth media. To more accurately compare EOM 

reactive species levels with SRNOM values, day 0 reactive species levels which contained media 

sensitizers were subtracted from the total EOM reactive species levels. [3DOM]ss in EOM was 

similar to SRNOM levels, [1O2]ss in EOM was only 50% of the 1O2 generated in SRNOM, and 

the R•OH in EOM was comparable to SRNOM. This preliminary comparison suggests that when 

normalized to DOC, 3DOM levels and •OH production are similar between EOM and SRNOM. 

The data in Table 2 also suggests SRNOM is a stronger sensitizer for 1O2 than EOM and yields 

much higher [1O2]ss. However, because this comparison only compares EOM from late 

exponential growth phase with SRNOM, a more in depth comparison between EOM at lag, 

exponential, and stationary growth phases and SRNOM at equivalent DOC concentrations is 

needed before this conclusion can be made. 
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It has been shown that EOM in exponential and stationary phase have distinct structural 

compositions including proteinaceous content and molecular weight distribution (Henderson et 

al., 2008; Pivokonsky et al., 2014). Whether these compositional differences correspond to 

different reactive species photogeneration has yet to be determined. To further investigate the 

relationship between growth phase and photogenerated reactive species in EOM, reactive species 

levels should be measured throughout culture growth more frequently during the 10 day growth 

period to gain insight about the optimal cultivation time that contains maximum reactive species 

levels. Additionally, comparisons to terrestrial organic matter must be made to determine 

whether substantial increases in reactive species levels throughout algal growth are attributed 

only to an increase in DOC or if there is a property inherent to EOM at specific growth phases 

that promotes enhanced reactive species photogeneration and deviates from expected linear 

trends. Using SRNOM sensitizers also provides a comparison to photochemistry occurring in 

sunlit natural waters. Since EOM water quality parameters have already been characterized 

throughout growth in this study, equivalent solutions containing similar water quality with 

SRNOM as the terrestrial DOC source can be made to compare photoreactivity.  
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CHAPTER 4: CONCLUSIONS 

 There are significant increases in reactive species production (4-fold and up to 31-fold) in 

EOM solutions separated from a C. reinhardtii culture as biomass and DOC increased. 

Photoreactivity is enhanced throughout growth and further investigation is needed to 

optimize and improve the significant levels of reactive species in photobioreactors for 

tasks that may include pathogen and micropollutant removal. 

 After detecting the growth phase with maximum reactive species production, further 

investigation into the EOM characteristics responsible for the enhanced performance is 

necessary. The positive correlation between SUVA400 and reactive species levels shows 

that visible light absorbing organic matter may be important in reactive species 

production in EOM. Additionally, the inverse relationship between E2/E3 ratio and 

SUVA254 with reactive species levels suggests humic/fulvic aromaticity does not 

participate in increased reactive species production as in aquatic and terrestrial DOM. 

More verification is needed to support the conclusion that higher molecular weight EOM 

are sensitizers for reactive species. 

 A practical tool that can be obtained from this research is gaining the ability to easily 

measure bulk properties in EOM that can predict reactive species concentrations in 

cultivation systems, much like what has been done for 1O2 in NOM isolates (Dalrymple 

et al., 2010). However, a deeper understanding of mathematical modeling and more 

frequent sampling throughout C. reinhardtii growth and subsequent reactive species 

quantification and EOM characterization is required.  
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APPENDIX A 

A.1 Solar simulator characterization 

Solar simulator irradiance was characterized by measuring light intensity using a 

spectroradiometer in 12 positions inside the solar simulator chamber. The spectroradiometer 

sensor was placed at each location and light intensity was obtained and the average of triplicate 

measurements was taken. The chamber area was divided into 12 evenly spaced positions to 

spatially characterize lamp irradiation. The 12 positions correspond with reactor spacing and are 

displayed in Table A.1.  

Table A1: Top-down view of 12 reactor positions in the solar simulator chamber. The 

numbered squares represent evenly-spaced positions in the chamber where reactors are 

placed. 

1 2 3 4 

5 6 7 8 

9 10 11 12 

Front of Chamber 

Table A.2 shows the average irradiance at each respective position in the solar simulator 

chamber. The average irradiance of the entire chamber was 361.1 ± 47.3 W/m2 when the solar 

simulator was set to 400 W/m2. 
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Table A2: Average irradiance of 12 reactor positions in solar simulator. Grid corresponds 

with numbered positions in Table A.1. Irradiance units are W/m2 and were measured in 

triplicate. 

309.42 308.37 286.77 281.78 

382.85 390.35 390.49 372.97 

394.65 413.45 410.55 391.05 

Front of chamber 

The six locations with the highest average irradiation were chosen to provide maximum light 

intensity for three TMP triplicate (locations 6, 9, 10) and three FFA triplicate (locations 7, 11, 

12) experiments running simultaneously. The average irradiance of the six locations was 398.4 ± 

9.7 W/m2. Three borosilicate glass tubes used for benzene triplicate experiments were laid flat in 

the chamber evenly spaced with the bottom of tubes facing the front of the chamber. Assuming 

that the irradiance on the glass tubes is the average irradiance of locations 5 – 12, irradiance is 

393.29 ± 12.50 W/m2. 

A.2 Reactive species quantification 

In this study, we quantified steady-state concentrations of singlet oxygen (1O2), excited triplet 

dissolved organic matter (3DOM), and hydroxyl radical production rates (R•OH). Here we 

describe quantification methods in detail for each reactive species (RS) using the methods 

described by Foote et al. (Foote, 1995). The following reaction scheme helps define variables in 

the subsequent kinetic equations. 
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Figure A1: RS reaction scheme in water (Foote, 1995). 

RS are first photogenerated at a constant rate F. Then, the RS can pass through various reaction 

pathways: (1) unimolecular decay with first-order rate constant ku, (2) bimolecular reaction with 

other compounds Si in water with second-order rate constant kbi, (3) bimolecular self-reaction 

with second-order rate constant kbs, and (4) bimolecular reaction with probe P with second-order 

rate constant kp. RS self-reaction is negligible in natural waters and can be ignored. The 

relationship between all reactions can be described using the following equations. 

 𝑑[𝑅𝑆]

𝑑𝑡
= 𝐹 − [𝑅𝑆] (𝑘𝑢 + 𝑘𝑝[𝑃] +∑𝑘𝑏𝑖[𝑆𝑖]

𝑖

) 
(6) 

 𝑑[𝑃]

𝑑𝑡
= −𝑘𝑝[𝑅𝑆][𝑃] 

(7) 

After applying steady-state approximation (d[RS])/dt = 0) and rearranging equation 6, we 

obtain.  

 
[𝑅𝑆]𝑠𝑠 =

𝐹

𝑘𝑢 + 𝑘𝑝[𝑃] + ∑ 𝑘𝑏𝑖[𝑆𝑖]𝑖
 

(8) 

In this study, we quantified 1O2 and 3DOM using the first-order rate method and •OH using the 

initial formation rate method. The first-order method requires the use of probe concentrations 
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sufficiently low to leave [RS]ss unaffected (𝑘𝑝[𝑃] ≪ 𝑘𝑢 + ∑ 𝑘𝑏𝑖[𝑆𝑖]𝑖 ). The rate of probe loss is 

then proportional to P. 

 𝑑[𝑃]

𝑑𝑡
= −𝑘𝑎𝑝𝑝[𝑃] 

(9) 

 𝑘𝑎𝑝𝑝 = 𝑘𝑝[𝑅𝑆]𝑠𝑠 (10) 

Integrating equation 9, we obtain  

 
𝑙𝑛

[𝑃]

[𝑃]0
= −𝑘𝑎𝑝𝑝𝑡 

(11) 

kapp is obtained from the slope after plotting ln[P] /[𝑃]0⁡ versus time. If kp is known, then we can 

calculate [RS]ss using equation 10. 

A.2.1 Singlet oxygen 

Singlet oxygen requires the use of the first-order method. Furfuryl alcohol (FFA) reacts 

selectively with singlet oxygen and FFA decay can be measured over time. FFA decay is first-

order with respect to 1O2 and first order with respect to FFA making the reaction second order 

overall (Haag and Hoigne, 1986).  

 −𝑑[𝐹𝐹𝐴]

𝑑𝑡
= 𝑘 𝑂⁡

1
2,𝐹𝐹𝐴

[ 𝑂2][𝐹𝐹𝐴]⁡
1  

(12) 

 𝑘 𝑂2,𝐹𝐹𝐴⁡
1 = 1.2 × 10−8𝑀−1𝑠−1 (13) 

Equation 12 follows pseudo first-order kinetics if [FFA] is sufficiently low to leave [1O2]ss 

constant. Under these conditions we obtain the following equation. 
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 −𝑑[𝐹𝐹𝐴]

𝑑𝑡
= 𝑘𝑎𝑝𝑝[𝐹𝐹𝐴] 

(14) 

 𝑘𝑎𝑝𝑝 = 𝑘 𝑂⁡
1

2,𝐹𝐹𝐴
[ 𝑂2]⁡
1

𝑠𝑠 (15) 

In equation 14, kapp is the apparent first-order rate constant. Integrating equation 14, we obtain 

 
𝑙𝑛

[𝐹𝐹𝐴]

[𝐹𝐹𝐴]𝑜
= −𝑘𝑎𝑝𝑝𝑡 

(16) 

kapp is obtained from the slope after plotting 𝑙𝑛
[𝐹𝐹𝐴]

[𝐹𝐹𝐴]𝑜
 versus time. Dividing kapp by 𝑘 𝑂⁡

1
2,𝐹𝐹𝐴

 gives 

the steady-state singlet oxygen concentration. 

 
[ 𝑂⁡
1

2]𝑠𝑠 =
𝑘𝑎𝑝𝑝

𝑘 𝑂⁡1 2,𝐹𝐹𝐴
⁡ 

(17) 

A.2.2 Excited triplet dissolved organic matter 

Steady-state excited triplet dissolved organic matter (3DOM) quantification requires the use of 

the first-order method. 2,4,6-trimethyl phenol (TMP) decays in the presence of 3DOM and can 

also decay in the presence of 1O2. Side reactions with 1O2 were avoided by using TMP in its 

protonated form (pKa = 10.44; pH ~ 8), however we take into account potential 1O2 oxidation as 

a conservative measure. •OH can also oxidize TMP but this reaction was negligible in studies 

investigating irradiated humic acid and fulvic acid solutions (Canonica and Freiburghaus, 2001). 

Therefore, we assume that TMP is oxidized by 3DOM and 1O2 only. 

 −𝑑[𝑇𝑀𝑃]

𝑑𝑡
= 𝑘 𝐷𝑂𝑀,𝑇𝑀𝑃⁡

3 [ 𝐷𝑂𝑀]⁡
3 [𝑇𝑀𝑃] + 𝑘 𝑂2,𝑇𝑀𝑃⁡

1 [ 𝑂2][𝑇𝑀𝑃]⁡
1  

(18) 

After applying pseudo first-order kinetics to equation 18, we obtain the following. 
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 −𝑑[𝑇𝑀𝑃]

𝑑𝑡
= 𝑘𝑎𝑝𝑝[𝑇𝑀𝑃] 

(19) 

 𝑘𝑎𝑝𝑝 = 𝑘 𝐷𝑂𝑀,𝑇𝑀𝑃⁡
3 [ 𝐷𝑂𝑀]⁡

3
𝑠𝑠 + 𝑘 𝑂2,𝑇𝑀𝑃⁡

1 [ 𝑂2]⁡
1

𝑠𝑠 (20) 

Where k DOM,TMP⁡
3  is the second-order rate constant between 3DOM and TMP (k DOM,TMP⁡

3  = 3.4 

× 109 M-1s-1) and k O2,TMP⁡
1  is the second-order rate constant between 1O2 and TMP (k O2,TMP⁡

1  = 

6.2 × 107 M-1s-1) (Canonica et al., 1995; Tratnyek and Hoigné, 1994). We make the assumption 

that the 3DOM that react with TMP have a second-order rate constant that is the average of 

benzophenone and 3’-methoxy acetophenone, two model 3DOM sensitizers. Integrating equation 

19 we obtain the following. 

 
𝑙𝑛

[𝑇𝑀𝑃]

[𝑇𝑀𝑃]𝑜
= −𝑘𝑎𝑝𝑝𝑡 

(21) 

kapp is obtained from the slope after plotting ln
[TMP]

[TMP]o
 versus time. kapp, k DOM,TMP⁡

3 , k O2,TMP⁡
1 , and 

[1O2]ss are all known, so [3DOM]ss can be calculated as follows. 

 
[ 𝐷𝑂𝑀]⁡
3

𝑠𝑠 =
𝑘𝑎𝑝𝑝 − 𝑘 𝑂2,𝑇𝑀𝑃⁡

1 [ 𝑂2]⁡
1

𝑠𝑠

𝑘 𝐷𝑂𝑀,𝑇𝑀𝑃⁡
3

 
(22) 

A.2.3 Hydroxyl radical 

4-chlorobenzoic acid is a molecular probe commonly used for [•OH]ss quantification (Elovitz 

and von Gunten, 1999; Jasper and Sedlak, 2013). Negligible pCBA decay occurred in irradiated 

extracellular organic matter (EOM) solutions preventing [•OH]ss quantification. Instead, the 

presence of •OH was investigated by quantifying hydroxyl radical production rates (R•OH) using 

benzene as a molecular probe. Benzene reacts with •OH to yield a stable phenol product that can 

be measured over time (Vione et al., 2006). Benzene produced measurable concentrations of 
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phenol throughout irradiation for all samples in this study allowing for comparison. Below is the 

procedure used to quantify R•OH. 

From phenol measurements, we can obtain a phenol production rate ( 
d[phenol]

dt
). The second-

order rate constant between benzene and •OH is known (k•OH,benzene = 7.8 × 109M−1s−1) and 

benzene to phenol conversion efficiency is 0.85 (Dong and Rosario-Ortiz, 2012).  

 𝑑[𝑝ℎ𝑒𝑛𝑜𝑙]

𝑑𝑡
= 0.85 ∙ 𝑘•𝑂𝐻,𝑏𝑒𝑛𝑧𝑒𝑛𝑒[• 𝑂𝐻][𝑏𝑒𝑛𝑧𝑒𝑛𝑒] 

(23) 

Applying the steady-state approximation to •OH formation rates leads to the following equation. 

 𝑑[• 𝑂𝐻]

𝑑𝑡
= 0 = 𝑅•𝑂𝐻 − 𝑘•𝑂𝐻,𝑏𝑒𝑛𝑧𝑒𝑛𝑒[• 𝑂𝐻][𝑏𝑒𝑛𝑧𝑒𝑛𝑒] −∑𝑘•𝑂𝐻,𝑆𝑖[• 𝑂𝐻][𝑆𝑖]

⁡

𝑖

 
(24) 

Si scavenges •OH with second-order rate constant k•OH,Si. After rearranging equation 24 we 

obtain the following equation. 

 
[• 𝑂𝐻]𝑠𝑠 =

𝑅•𝑂𝐻

𝑘𝐵[𝑏𝑒𝑛𝑧𝑒𝑛𝑒] + ∑ 𝑘𝑆𝑖[𝑆𝑖]𝑖
 

(25) 

Substituting equation 25 into equation 23, we obtain the following. 

 𝑑[𝑝ℎ𝑒𝑛𝑜𝑙]

𝑑𝑡
= 0.85 ∙ 𝑘𝐵[• 𝑂𝐻][𝑏𝑒𝑛𝑧𝑒𝑛𝑒] =

0.85 ∙ 𝑘𝐵 ∙ 𝑅
•𝑂𝐻 ∙ [𝑏𝑒𝑛𝑧𝑒𝑛𝑒]

𝑘𝐵[𝑏𝑒𝑛𝑧𝑒𝑛𝑒] + ∑ 𝑘𝑆𝑖[𝑆𝑖]𝑖
 

(26) 

Utilizing a benzene concentration sufficiently high such that kB[benzene] ≫ ∑ kSi[Si]i , equation 

26 simplifies to. 

 
𝑅•𝑂𝐻 = 0.85 ∙

𝑑[𝑝ℎ𝑒𝑛𝑜𝑙]

𝑑𝑡
 

(27) 

So it is possible to obtain R•OH from the initial formation rate of phenol. 
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A.3 Light-Screening Correction Factor 

Steady-state singlet oxygen ([1O2]ss) and excited triplet dissolved organic matter ([3DOM]ss) 

concentrations and hydroxyl radical formation rates (R•OH) were corrected for light-screening 

effects. Here we provide the derivation for light screening correction factors as described by 

Grandbois et al. (Grandbois et al., 2008).  

Increasing dissolved organic matter (DOM) concentrations reduces quantified RS levels due to 

organic matter light screening, so RS must be corrected. The screening factor is a comparison of 

light intensity the surface of a solution with the average light intensity over a given solution 

thickness. The rate of light absorption for a thin solution (kobs,thin) is defined as  

 𝑘𝑜𝑏𝑠,𝑡ℎ𝑖𝑛 = 2.303∑𝛼𝜆𝐼𝜆
𝜆

 
(1) 

where λ is the wavelength, αλ is the absorption coefficient at given wavelength (cm-1), and Iλ is 

the surface irradiance at a given wavelength (W/m2 nm). The rate of light absorption for a 

solution (kobs,thick) with thickness z (cm) is defined as 

 𝑘𝑜𝑏𝑠,𝑡ℎ𝑖𝑐𝑘 = 2.303∑𝛼𝜆⟨𝐼𝜆⟩𝑧
𝜆

 
(2) 

where ⟨𝐼𝜆⟩𝑧 is the average irradiance over a thick solution with thickness z. ⟨𝐼𝜆⟩𝑧 is calculated by 

multiplying the surface irradiance Iλ by the light screening factor Sλ. 

 
𝑆𝜆 =

1 − 10−𝛼𝜆
⁡ 𝑧

2.303𝛼𝜆𝑧
 

(3) 

 
⟨𝐼𝜆⟩𝑧 = 𝐼𝜆𝑆𝜆 = 𝐼𝜆

1 − 10−𝛼𝜆
⁡ 𝑧

2.303𝛼𝜆𝑧
 

(4) 
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αλ was obtained using a spectrophotometer (Schwarzenbach et al., 2003). z was obtained by 

measuring the solution thickness in glass tubes for benzene experiments and beakers for TMP 

and FFA experiments. To obtain light screening correction factors (CF), we divide kobs,thin by 

kobs,thick. 

 
𝐶𝐹 =

𝑘𝑜𝑏𝑠,𝑡ℎ𝑖𝑛
𝑘𝑜𝑏𝑠,𝑡ℎ𝑖𝑐𝑘

=
∑ 𝛼𝜆𝐼𝜆𝜆

∑ 𝛼𝜆𝐼𝜆𝑆𝜆𝜆
 

(5) 

Corrected [RS]ss are obtained simply by multiplying measured [RS]ss by CF. Below is an 

example calculation for obtaining light-screening CFs as shown in Romero et al. where the 

derivation by Grandbois et al. was also used (Grandbois et al., 2008; Romero et al., 2011). 
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Table A3: Light-screening correction factor sample calculations. 

zTube (cm) 1.041 

   

kobs,thin kobs,thick 

zBeaker (cm) 2.699 

   

0.87 0.85 0.83 

        

Wavelength 

(nm) 

Irradiance (Iλ) 

(W/m2 nm) 

Abs. (αλ) 

Day 0 

EOM  

Sλ Tube Sλ Beaker αλ*Iλ 

αλ*Iλ*Sλ 

Tube 

αλ*Iλ*Sλ 

Beaker 

251 2.51 0.183 8.09E-01 5.97E-01 4.03E-04 3.26E-04 2.41E-04 

252 2.52 0.183 8.09E-01 5.97E-01 4.30E-04 3.48E-04 2.57E-04 

253 2.53 0.182 8.10E-01 5.99E-01 4.67E-04 3.79E-04 2.80E-04 

254 2.54 0.181 8.11E-01 6.00E-01 4.08E-04 3.31E-04 2.45E-04 

255 2.55 0.180 8.12E-01 6.02E-01 5.04E-04 4.09E-04 3.03E-04 

256 2.56 0.179 8.13E-01 6.03E-01 4.86E-04 3.95E-04 2.93E-04 

257 2.57 0.178 8.14E-01 6.05E-01 4.83E-04 3.93E-04 2.92E-04 

258 2.58 0.176 8.16E-01 6.08E-01 5.20E-04 4.24E-04 3.16E-04 

259 2.59 0.175 8.17E-01 6.09E-01 5.72E-04 4.67E-04 3.49E-04 

260 2.60 0.173 8.18E-01 6.13E-01 5.13E-04 4.20E-04 3.14E-04 

Irradiance was obtained using spectroradiometer and applying a 280 nm longpass filter. 

Absorbance was obtained using spectrophotometer. Actual spreadsheet contains calculations 

from wavelengths 250 – 750 nm. 
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A.4 Experimental data 

Table A4: RS quantification raw data for EOM vs. time and SRNOM comparison. 

  
FFA 

kapp (h-1) 

[1O2]ss 

(fM) 

TMP 

kapp (h-1) 

[3DOM]ss 

(fM) 

d[phenol]/dt 

(pM/s) 

R•OH 

(pM/s) 

DOC       

(mg C/L) 

EOM  

vs. 

time 

Day 0 

0.0025 5.8 0.0382 3.0 82.5 97.1 

7.26 0.0015 3.5 0.0298 2.4 81.2 95.5 

0.0019 4.5 0.0465 3.7 111.0 130.6 

Day 1 

0.0026 5.9 0.0309 2.5 106.8 125.7 

7.00 0.0016 3.6 0.0318 2.5 103.2 121.4 

0.0007 1.7 0.0340 2.7 112.8 132.7 

Day 2 

0.0090 20.8 0.0598 4.5 119.1 140.2 

9.62 0.0111 25.7 0.0563 4.2 121.4 142.8 

0.0077 17.9 0.0532 4.0 128.9 151.6 

Day 10 

0.0566 130.9 0.2384 17.3 407.9 479.9 

51.78 0.0527 122.1 0.2145 15.4 360.0 423.5 

0.0451 104.5 0.2226 16.0 389.6 458.3 

 EOM 

vs. 

SRNOM  

EOM 

0.0120 27.8 0.1148 8.9 170.1 200.2 

7 (EOM) 

12.9 (Total) 
0.0118 27.4 0.1454 11.4 139.7 164.4 

0.0099 22.8 0.0803 6.1 147.0 172.9 

SRNOM 

0.0187 43.3 0.1138 8.6 35.9 42.2 

7 
0.0203 46.9 0.1015 7.6 33.6 39.6 

0.0129 29.8 0.0785 5.7 44.8 52.7 
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A.5 Photobioreactor schematic 

               

Figure A2: Photobioreactor schematic (left) and photo (right). Figure provided by Jennifer 

Debellis. 


