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ABSTRACT

Automated regression testing is widely used in modern software development. Whenever a

developer pushes some changes to a repository, tests are run to check whether the changes

broke some functionality. When previously passing tests fail, the most recent changes are

typically suspected, and developers invest time and effort to debug those changes. Unfortu-

nately, new test failures may not be due to the latest changes but due to non-deterministic

tests, popularly called flaky tests, that can pass or fail even without changes to the code un-

der test. Many projects have such flaky tests, which can cause developers to lose confidence

in test results. Therefore, developers need techniques that can help them determine whether

a test failure is due to their latest changes and warrants their debugging, or whether it is

due to a flaky test that should be potentially debugged by someone else.

The most widely used technique for determining whether a test failure is due to a flaky

test is to rerun the failing test multiple times immediately after it fails: if some rerun does

pass, the test is definitely flaky, but if all reruns still fail, the status is unknown. This

thesis proposes three improvements to this basic technique: (1) postponing the reruns, (2)

rerunning in a new runtime environment (e.g., a new JVM for Java tests), and (3) intersecting

the test coverage with the latest changes. The thesis evaluates the cost of (1) and (2) and

evaluates the applicability of (3) on 15 projects with a total of 2715 test classes, 10 of which

contain previously known flaky tests. The results show that the proposed improvements are

highly applicable and would be able to determine that more failures are due to flaky tests

for the same or somewhat higher cost as rerunning failing tests immediately after failure.
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CHAPTER 1

Introduction

Automated regression testing is widely used in modern software development. Whenever a

developer pushes some changes to a repository, tests are run to check whether the changes

broke some functionality. If all the tests pass, the developer continues with development

and makes further changes. However, if some test fails, the developer needs to inspect more.

Ideally, every test failure would be due to the latest changes that the developer made, so the

developer could focus on debugging these changes.

Unfortunately, some test failures are not due to the latest changes at all but instead due

to non-deterministic tests, popularly called flaky tests, that can pass or fail even for the

same code under test. There are various sources of non-determinism which can cause tests

to be flaky; our recent study [1] of a sample of over 200 flaky tests from 51 Apache projects

showed that common sources include asynchronous communication, concurrency, test-order

dependency, GUI events, network, time dependency, resource leaks, and more. Flaky tests

are frequent (not only in Apache projects but in most large software) and can create big

problems in development, as described by several researchers and practitioners [1–11].

The key problem with flaky tests is that the developers cannot rely on the simple pass/fail

outcome of test runs to decide how to proceed with their development: when a test fails,

should the developer debug the failure or not? A test failure usually indicates some fault, not

necessarily in the code under test but potentially in the test code itself [12, 13]. However,

if the developer knows that the failure is due to a flaky test, the developer may decide

to not debug it, potentially reporting it to be debugged by someone else. In fact, if the

developer knows that the failure is definitely not due to the latest changes, the developer

could more confidently ignore the failure. Without that information, the developer could

spend substantial time debugging the failure only to find that it is an unrelated flaky test [11].
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It is important to not underestimate how even a small number of flaky tests can affect

the development process, as the proverbial “bad apple(s) spoiling the whole bunch”. For

example, consider a test suite with 10,000 tests of which only 10 are flaky. Further assume

that each flaky test can fail in just 0.1% of its runs, and that these failures are independent

(although we will discuss later that, for many tests, the failures for a test are not independent

but “bursty”). The chance of at least one flaky test failing in a run of the entire test suite

is about 1% (more precisely 1 − 0.99910), hence one in hundred test-suite runs would be

disturbed by some flaky test(s), although only one in thousand tests is flaky, and each can

fail in only one in thousand runs. For an example of more concrete numbers about failures,

the Google TAP system for regression testing had 1.6M test failures on average each day

during a 15-month period between 2013 and 2014, and flaky tests caused 73K out of those

1.6M failures (4.56%) [1].

As a result, developers need techniques that help them determine whether a test failure

is due to a flaky test or not. Currently, the most widely used technique is to rerun the

failing test multiple times immediately after it fails: if some rerun does pass, the test is

definitely flaky, but if all reruns still fail, the status is unknown. For example, several open-

source testing frameworks have annotations to require reruns upon failure (e.g., Android has

@FlakyTest [14], Jenkins has @RandomFail [15], and Spring has @Repeat [16]). The proprietary

Google TAP system also has the @flake annotation that requires a test to be rerun, by

default, up to three times upon failure [17, 18]. Even build systems offer such features, e.g.,

rerunFailingTestsCount was added in the recent Maven Surefire 2.18.1 [19]. (Chapter 7

discusses more about the existing systems and other related work.)

The number of reruns is influenced by a simple cost-benefit analysis. The cost of reruns

is that they take time, and if all reruns fail, that time is wasted, providing no additional

information. However, the benefit of reruns can be great: if some rerun passes, the test

failure is labeled to be due to a flaky test and helps the developer to decide how to proceed.

For this benefit, the developers are willing to pay the cost of reruns. A higher number of

reruns increases the chance to find more failures to be due to flaky tests, but a higher number

of reruns also increases the time that is wasted for test failures that do not stem from flaky

tests but from real faults.
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We propose several improvements to the basic technique of rerunning failing tests imme-

diately after failure. We will refer to this basic technique as Rerun. Our improvements are

motivated by two insights from our earlier study of flaky tests [1]. The first insight is that for

many (but not all) flaky tests, which we call bursty flaky tests, the failures of a bursty flaky

test t are not independent in time but rather occur nearby; in other words, if t fails once, t

is very likely to fail again if rerun immediately. We discuss examples in Chapter 2, but for

intuition, consider a flaky test that fails if some network service is down: if the service is

down at some point in time, it is likely to be down in the next point in time. Moreover, for

some bursty flaky tests, the failures depend on the program state: if t fails once, t is almost

guaranteed to fail again unless the state is changed. The second insight is that developers

can benefit not only from knowing whether a test is flaky or not but also whether the flaky

test is affected by the latest changes or not. Namely, if a test t passed in the previous code

revision and failed for the current revision, but the failed test execution does not depend on

any of the changes between the revisions, then the test is definitely flaky.

More precisely, we make the following contributions:

(1) Postpone: We propose to postpone (some) reruns of failing tests to the end of the

test-suite run. Rerunning a test somewhat later than it failed the first time can increase the

chance to properly label the test as a flaky test (especially for bursty flaky tests). Moreover,

at the end of the test-suite run, more information is available, e.g., the total number of

failures: if a large fraction of tests failed, it is more likely that the latest changes broke

something, so it may not be worthwhile to rerun the failing tests at all.

(2) Fork: We propose to rerun (some) failing tests in a new runtime environment to get

a different starting state. For example, many Java projects run all their tests in the same

Java Virtual Machine (JVM) [8]. However, a (bursty) flaky test that depends on the JVM

state [1,7–9] can repeatedly fail when run multiple times, whether immediately after the first

failure or at the end of the test-suite run. In contrast, running such a test in a new JVM can

find that it passes and is thus a flaky test with some test-order or state dependency [1,7,9].

(3) Intersect: We propose a novel, simple technique that can find both that a test

failure is due to a flaky test and that the failure does not depend on the latest code changes.

That additional information allows the developers to make a better informed decision about
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debugging the test failure. Without knowing that a failure depends on the latest changes, a

developer may make the wrong decision to ignore some failure for a flaky test, even if it is

actually affected by a change and may be failing due to some real fault.

(4) We evaluate the proposed extensions on 15 projects with a total of 2715 test classes,

10 of which contain previously known flaky tests. Specifically, we evaluate how the cost of

Postpone and Fork compares to the cost of Rerun. We also compare the cost of Fork

and Intersect, and evaluate how often Intersect can find that a test execution does not

depend on the latest code changes. Our results show that the proposed improvements are

highly applicable and can provide additional benefit for the same or somewhat higher cost

than rerunning failing tests immediately after they fail.
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CHAPTER 2

Examples of Flaky Tests

In this chapter, we show real examples of three types of flaky tests—non-bursty tests, bursty

tests that do not depend on state, and bursty tests that do depend on the state. We also

discuss how our proposed technique can be used to find different types of flaky tests, and

especially how intersecting coverage with the recent changes can help to determine that a

test failure is flaky.

2.1 Non-Bursty Flaky Test

Figure 2.1 shows a code snippet for an example non-bursty flaky test from Apache Hadoop.

This test is one of several tests from the class TestAuditLogs that were flaky. The test reads a

file created with the method DFSTestUtil.createFile(); the relevant snippet of code shows

that the file content is generated through the call to Random.nextBytes(), where the value

of every byte can be between -128 and 127 (inclusive). The test then reads these bytes as

unsigned integers, so the value can be between 0 and 255 (inclusive). However, the test

asserts that the first byte is strictly greater than 0. Hence, the test fails when the first byte

is 0. This test remained flaky over several revisions (since it was written in revision f4555669

until it was fixed in revision 06d635cd). At any of the revisions in between, the test had

1/256 chance of failure. (This is one of the very rare flaky tests where we can precisely

compute the chance of failure.)

Note that, for this example flaky test, the failures are completely independent (assuming

that the random number generator generates all byte values uniformly): if a test failed once,

it is not more or less likely to fail again if rerun immediately after the failure; the chance of

failure remains the same, 1/256. Therefore, a technique that simply reruns the failed test
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public class TestAuditLogs {

...

@Test

public void testAuditAllowed() throws Exception {

...

// calls DFSTestUtil.createFile to create the file

...

InputStream istream = userfs.open(file);

int val = istream.read(); // reads as unsigned

...

assertTrue("failed to read from file", val > 0);

}

...

}

public class DFSTestUil {

... createFile(...) {

...

byte[] toWrite = new byte[bufferLen];

Random rb = new Random(seed); // seed depends on time!

...

while (bytesToWrite>0) {

rb.nextBytes(toWrite);

...

out.write(toWrite, ...);

...

}

...

}

}

Figure 2.1: Code Snippet of an Example Non-Bursty Flaky Test

multiple times immediately after it fails has a very good chance to have the test pass and

thus find that this failure is due to a flaky test.

2.2 Bursty Flaky Test

There are many flaky tests whose failures are not independent, meaning that if the test fails

once, there is a high chance that it will fail again if it is rerun immediately. We call such

tests bursty. Figure 2.2 shows a code snippet for an example bursty flaky test from Apache
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public class TestWebHCatE2e {

...

// setup for the test class

@BeforeClass

public static void startWebHcatInMem() {

templetonServer = new Main(new String[] {"-D" + AppConfig.UNIT_TEST_MODE +

"=true"});

...

templetonServer.run();

...

}

...

}

public class Main {

public static final int DEFAULT_PORT = 8080;

...

public void run() {

int port = conf.getInt(AppConfig.PORT, DEFAULT_PORT);

try {

...

runServer(port);

System.out.println("templeton: listening on port " + port);

...

} catch (Exception e) {

System.err.println("templeton: Server failed to start: " + e.getMessage());

...

}

}

}

Figure 2.2: Code Snippet of an Example Bursty Flaky Test

Hive. This test is one of several tests from the class TestWebHCatE2e that were flaky. The

setup method for this test class starts a server (by creating an object of the class Main() and

later calling the method run() on it) on the default port, set to 8080. However, if this port

is in use, the server cannot be started, and the tests that try to connect to it fail.

Rerunning these failing tests immediately would probably not help in determining that

the failures are due to a flaky test, because the port is likely to be still in use immediately

after the tests fail. In other words, failures for a bursty flaky test usually come in “bursts”:

if a test fails once, it has a very high chance to fail again if run right away. However, if

7



public class TestRPCCompatibility {

...

@Test // Compatible new client & old server

public void testVersion2ClientVersion1Server() throws Exception {

... // no resetCache() here!

Version2Client client = new Version2Client();

...

assertEquals(3, client.echo(3));

}

...

@Test // equal version client and server

public void testVersion2ClientVersion2Server() throws Exception {

ProtocolSignature.resetCache();

...

Version2Client client = new Version2Client();

...

assertEquals(-3, client.echo(3));

}

...

}

Figure 2.3: Code Snippet of an Example State-Dependent Bursty Flaky Test

reruns are postponed to the end of the test-suite execution, there is a higher chance that the

test passes, in this example, the port could be freed.

While we discuss the intuition for the chance of failure and base the design of our technique

on that intuition, attempting to precisely measure the chances of failure (both the overall

chance of failure at any given time and also the conditional chance of failure assuming that

another failure happened within some time δ) would be rather challenging. In this example,

the chance of failure would depend on how the machine on which the tests are run is used,

what other tests or processes may be running in parallel, which of them also use the same

port number, how long they keep that port number, etc. We can artificially create scenarios

where the conditional chance is 0% (e.g., make the system release port 8080 as soon as some

test attempts to access it) or 100% (e.g., make the system always return that the port 8080

is in use after some tests attempts to access it). But the actual chance depends on the overall

system that is not under the control of the test code in this example.
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2.3 State-Dependent Bursty Flaky Test

Some flaky tests actually do depend on the state that is under the control of the test code.

The most common case is of tests that depend on the test order [7–9]. Figure 2.3 shows

a code snippet for an example flaky test of this category from Apache Hadoop. The test

testVersion2ClientVersion1Server (t1 for short) in the class TestRPCCompatibility became

flaky when another test testVersion2ClientVersion2Server (t2 for short) was added in

revision 1210208. Both tests t1 and t2 call the method echo() in Version2Client, which

transitively calls the ProtocolSignature class. This class keeps a cache that t1 requires to

be clear; however, when this test was written, it did not clear the cache before executing.

The test t2 that was added later clears the cache before executing, then pollutes this cache,

but does not clear it after executing. Hence, the test t1 passes if run before the test t2, but

t1 fails whenever it runs after t2. (Because t2 clears the cache before executing, it does not

fail whether it is run the first or the second.)

State-dependent flaky tests are generally bursty: when they fail once, there is a high

chance that they will fail on subsequent reruns. In fact, in this example, t1 is very likely to

fail when run after t2 in the same JVM, regardless of whether t1 is run immediately after its

first failure or at the end of the test-suite run. The only way for t1 to pass in the same JVM

is that another test, t3, is run in between the first failure of t1 and the subsequent rerun,

and this test t3 happens to clear the cache after executing. In contrast, rerunning t1 in a

new JVM creates a fresh state, with the clear cache, and t1 passes right away.

2.4 Benefits of Coverage Intersection

While some bursty flaky tests are much more likely to pass in a new JVM, not all bursty

flaky tests are like that. Let us again consider the example flaky test described in Section 2.2.

The test fails whenever the default port 8080 is in use; if the port remains in use when the

test is rerun, it will still fail, regardless of whether the test is rerun immediately after failing

(Rerun), at the end of the test-suite run (Postpone), or even in a new JVM (Fork).

However, our proposed technique can still determine in many cases that a test is flaky even

if it fails all the reruns.

9



For example, consider the changes that developers made to the Apache Hive repository

at revision f02a544d. The changes are to two classes in the code under test (org.apache.

hadoop.hive.ql.exec.FunctionRegistry and org.apache.hadoop.hive.ql.udf.generic.

GenericUDFBaseCompare) and to one test class (org.apache.hadoop.hive.ql.exec.

TestFunctionRegistry) in a module different from where the test class TestWebHCatE2e is.

However, when the developers make their changes and run1 TestWebHCatE2e, it would still

fail if port 8080 is in use, and even if the test is rerun, but the port remains in use during

reruns, TestWebHCatE2e would fail all the reruns.

The developer who is unaware that the test failure is due to a flaky test could spend

substantial time trying to debug how the latest changes affected the failures; after all,

TestWebHCatE2e passed in revision d23d8502 and failed just now in the next revision f02a544d,

so it could be that the changes indeed broke the test. Debugging would only reveal to the

developer that the failure is unrelated to the changes. Our technique automates that step;

when the failing test is rerun in a new JVM, our technique collects the coverage of what

the test executes: if the failing test does not depend on any change, then it cannot be fail-

ing because of changes and must be a flaky test. This example illustrates how intersecting

coverage and changes can help developers.

1We discuss in Chapter 7 the relationship with regression test selection that may not run all the tests.
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CHAPTER 3

Technique

We next describe our technique for detecting which test failures are due to flaky tests.

Figures 3.1 and 3.2 show the pseudo-code of the technique. Given some tests to run,

flakyDetector returns a set of tests that failed and a subset of those failures that are

due to flaky tests. The function also has several parameters that we discuss in Section 3.1.

We present our technique for tests run on a Java Virtual Machine (JVM), although the

technique is general and applies to any similar runtime environment, e.g., .NET CLR.

The first for loop corresponds to the existing Rerun technique that reruns failing tests

immediately after the failure to determine if they are flaky. The function rerun embodies

this simple technique: it takes a test t and an integer N, runs t up to N times, and if t

passes in one of those reruns, it is labeled flaky. For example, this exact functionality has

been recently included in the Maven Surefire Plugin (version 2.18.1) [19]. We propose three

improvements to this simple technique.

(1) Postpone: The second for loop postpones the rerun until the end of the test-suite

run. This loop can be skipped altogether if there are too many failures. Note that this rerun

of failed tests still uses the same JVM runtime environment. Also note that the user can

independently control the number of reruns performed immediately after the failure (C IMM)

and the number of reruns performed at the end of the test-suite run (C END). As discussed

earlier, postponing reruns until the end can find more flaky tests whose failures are bursty

(e.g., if a test depends on a network that is down): while these tests may not be detected as

flaky if they are rerun immediately, by the time the test is rerun later, the cause of failure

might be resolved (e.g., the network connection might be back up).

The cost of each postponed rerun is expected to be similar as the cost of the corresponding

immediate rerun, although in general postponed reruns could be more expensive (e.g., maybe
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the test depends on some server being set up, and the immediate rerun could reuse the server

from the immediate previous failure, whereas the postponed rerun needs to restart the server)

or less expensive (e.g., maybe the test initially failed when a lot of memory was used, and

by the end of the test-suite execution most of that memory is garbage collected, so the

postponed reruns can be faster). Section 4.2 experimentally compares the cost of postponed

and immediate reruns.

(2) Fork: The third for loop reruns the failed tests in a new JVM. Again, as discussed

earlier, this helps detect flaky tests that would not be found if rerun multiple times in the

same JVM, e.g., flaky tests that are due to test-order dependencies. If a test fails because

another test ran before it and polluted the state, the failing test would likely keep failing no

matter how many times it is rerun in the same JVM.

The cost of rerunning on a forked new JVM is higher than the cost of rerunning in the

same JVM. In particular, the new JVM needs to start, it needs to load the classes that the

test depends on, and it needs to set up the state before it starts the test. However, setting

up the new state is precisely what provides the benefit: these reruns can find some failures

to be flaky that would not be found otherwise. Section 4.3 evaluates the cost of reruns that

use a new JVM.

(3) Intersect: The special case of rerunning in a new JVM is to collect the coverage

of the test being rerun. If the test passes, it can be immediately concluded that the test

is flaky. If the test fails again but its coverage does not intersect with the latest changes,

it can be again concluded that the test is flaky, because the code that is executed by the

test did not change between the two revisions, while the test changed behavior. If the test

fails and its coverage does intersect with the latest changes, then nothing can be concluded

definitely: maybe the test failure is due to a real fault in the latest changes, or maybe the

test failure is due to some flaky cause and just by chance executed some changes.

The cost of running the new forked JVM with collecting coverage is expected to be higher

than the cost of running the new forked JVM without collecting coverage, especially if one

wanted to collect coverage at a fine granularity level. In principle, any coverage granularity

level (e.g., classes, methods, statements, etc.) can be used. The challenge is to choose

the granularity of the coverage (and thus code changes) such that the coverage is cheap to
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collect and yet does not intersect with the changes relatively often. We propose to use class

coverage: for each test, we collect what classes it depends on [20]. This granularity is good

for several reasons. First, class coverage is cheap to collect compared to coverage of finer

granularity such as methods or statements. Second, using finer granularity may not be safe,

because it may not capture all dependencies [20–22]. Third, we have previously developed

a publicly available tool to efficiently collect class coverage [20]. Section 4.4 evaluates the

cost of reruns that collect class coverage. Moreover, that section also evaluates how often

covered classes do not intersect with the changed classes, i.e., how often the intersection

could conclude that a test is flaky if it were to fail.

3.1 Parameters

Figure 3.1 summarizes the technique with our proposed improvements. The technique has

several parameters: C IMM is the number of times to rerun each failing test immediately

after failure (can be 0); THRESHOLD is the percentage of failures for which the failing tests

need not even be rerun because the latest changes are likely broken and the rerun would

only waste time without finding relevant flaky tests; C END is the number of times to rerun

the failing tests at the end of the test-suite run (can be 0); C NEW is the number of times

to rerun each failing test in a new JVM (can be 0); and MEASURE COVERAGE indicates

whether to collect coverage when rerunning the test in the first new JVM.

While the parameters can be set to arbitrary values, a good default configuration can have

the values as follows. C IMM can be a small number, say 1 or 2; for flaky tests that are not

bursty, there is a high chance that they would pass in one of these runs for a relatively small

number of C IMM. THRESHOLD can be set to some relatively higher ratio, say 1%, if the

reruns are more expensive, and relatively lower ratio, say 0.1%, if the reruns are cheaper. If

a test still fails for all immediate reruns, C END can be also a small number, say 1 or 2; even

if the test is a bursty flaky test, there would be some higher chance for it to pass at this time

rather than immediately after the first failure. Tests that are still failing at this point will be

rerun in a new JVM (each), and C NEW can be another small number, say 1 or 2. This can

suffice to detect flaky tests that were failing because of state pollution. While the test is run
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in a new JVM for the first time, its coverage can be collected with MEASURE COVERAGE

set to true, because our evaluation shows that there is very little extra cost to collecting

test coverage (at the class granularity) over forking a new JVM. If a test keeps failing after

all these reruns, and its coverage does intersect with the latest changes, the test may still be

flaky, but it is more likely a non-flaky (deterministic) failure due to the latest changes.
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// Parameters for the algorithm

int C_IMM; // number of times to rerun test right after failure; can be 0

float THRESHOLD; // ratio of failures for which to rerun tests at the end

int C_END; // number of times to rerun test at the end; can be 0

int C_NEW; // number of times to rerun test in a new JVM; can be 0

boolean MEASURE_COVERAGE; // should the first rerun in a new JVM measure coverage

// Input is a list of tests to run

// Outputs are a set of failed tests and a (sub)set of definitely flaky tests

Pair<Set<Test>, Set<Test>> flakyDetector(List<Test> tests) {

Set<Test> failures = emptySet;

Set<Test> flakies = emptySet;

// run tests and rerun failures immediately

jvm = new JVM();

for (Test t : tests) {

if (!jvm.run(t)) { // FAIL

failures.add(t);

if (rerun(t, C_IMM, jvm)) { // PASS

flakies.add(t);

}

}

}

// may not rerun if too many failures

if (failures.size() / tests.size() >= THRESHOLD) {

return new Pair(failures, flakies);

}

// rerun at end failures with unknown flaky status

for (Test t : failures.minus(flakies)) {

if (rerun(t, C_END, jvm)) {

flakies.add(t);

}

}

// rerun in new JVM failures with unknown flaky status

for (Test t : failures.minus(flakies)) {

if (rerun_fork(t, C_NEW, MEASURE_COVERAGE)) {

flakies.add(t);

}

}

return new Pair(failures, flakies);

}

Figure 3.1: Flaky Detector Technique

15



// reruns test t up to N times on the given JVM

boolean rerun(t, N, jvm) {

for (i = 0; i < N; i++) { // could be parallel for

if (jvm.run(t)) { // PASS

return true;

}

}

return false;

}

// reruns test t up to N times in a new JVM,

// potentially measuring coverage on the first rerun

boolean rerun_fork(t, N, MEASURE_COVERAGE) {

for (i = 0; i < N; i++) { // could be parallel for

if (MEASURE_COVERAGE && i == 0) { // measure coverage on first rerun

if (run_fork_coverage(t)) { // PASS

return true;

}

} else {

if (run_fork(t)) { // PASS

return true;

}

}

}

return false;

}

// run test t in a new JVM

boolean run_fork(t) {

jvm = new JVM();

return jvm.run(t);

}

// reruns test t in a new JVM and collects its coverage

boolean run_fork_coverage(t) {

jvm = new JVM_with_code_coverage();

if (jvm.run(t)) { // PASS

return true;

}

covered_entities = jvm.get_coverage();

changed_entities = compute_changes_from_VCS();

intersection = intersect(covered_entities, changed_entities);

return intersection.isEmpty();

}

Figure 3.2: Helper Functions for Rerunning in Flaky Detector
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CHAPTER 4

Evaluation

We next evaluate the trade-off that our proposed improvements offer compared to rerunning

failing tests immediately after failure. We first give an overview of the projects and tests used

in our evaluation (Section 4.1). We then evaluate our three proposed extensions: Postpone

(Section 4.2), Fork (Section 4.3), and Intersect (Section 4.4).

We ran the experiments that measure time (sections 4.2 and 4.3) on an Intel Xeon E5

CPU with 2GB of RAM running Scientific Linux 7.1, OpenJDK 64-Bit Server 1.7.0 79, and

Apache Maven 3.0.5.

4.1 Experimental Objects

Table 4.1 lists the flaky tests used in our evaluation. For each flaky test, we tabulate the

Apache project that had the test, the test name, the revision when the test was introduced,

the revision when it was fixed to not be flaky, the number of revisions where the test was

flaky, the number of those revisions where the project can compile, and the number of test

classes in the last revision. We selected these tests from the Apache projects that we studied

previously [1]. However, in our previous study we did not build the projects and did not

run the flaky tests but only reasoned about the code changes. In this study we want to

run the tests, but many old project revisions cannot be easily compiled due to their build

dependencies [38]. As a result, we selected only a subset of flaky tests that compile in the

majority of revisions in which they were flaky. All these flaky tests were flaky from the

first revision when they were written (in general, a test may not be flaky from the first

revision but could become flaky later on due to code changes), and all these flaky tests were

eventually fixed. These flaky tests come from various categories and from projects in various
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Project
Test Class.

Test ID First SHA Last SHA Revisions Buildable
# of Test
ClassesTest Method

Ambari [23]
TestActionQueue.
testConcurrentOperations

Ambari f1 b87dc45e be1d871d 1061 1008 167

Hadoop [24]
TestFairScheduler.
testContinuousScheduling

Hadoop f1 4fe912df cae1ed9f 50 48 151

Hadoop
TestRMContainerAllocator.
testBlackListedNodes

Hadoop f2 ba66ca68 9692cfc9 103 103 42

Hadoop
TestAuditLogs.
testAuditAllowed

Hadoop f3 f4555669 06d635cd 120 120 286

Hadoop
TestUnderReplicatedBlocks.
testNumberOfBlocksToBeReplicated

Hadoop f4 d26334b4 3c6e5b90 24 24 351

HBase [25]
TestHRegion.
testWritesWhileScanning

HBase f1 e593f0ef f8ca192f 56 54 137

HBase
TestFromClientSide.
testRegionCachePreWarm

HBase f2 d92c4962 ca2f1678 25 23 121

HBase
TestMasterWrongRS.
testRsReportsWrongServerName

HBase f3 982a15f2 dc641719 46 45 116

HttpCore [26]
TestConnPool.testStateful
ConnectionRedistributionOnPerRouteMaxLimit

HttpCore f1 49247d20 66d43a02 34 34 68

Oozie [27]
TestPartitionDependencyManagerEhcache.
testEvictionOnTimeToIdle

Oozie f1 426d13fc 85e70e19 113 75 277

Table 4.1: Flaky Tests Used in Evaluation

domains (networking, databases, etc.), so they offer a relatively representative sample of

flaky tests.

To compare the results of flaky tests with the results of non-flaky tests, we use two

additional datasets. Table 4.2 lists several non-flaky tests from the projects for which we

had some flaky tests. We randomly selected a few tests that existed in the first SHA where

the flaky test was added. Table 4.3 lists several additional Java projects used in Section

4.4; we selected popular projects from GitHub that could compile and run tests in most of

their latest 100 revisions at the time of our download in March 2015. We tabulate similar

information as in Table 4.1; in our experiments, all these projects for all revisions (that

build) had their tests pass, but they may still have unknown flaky tests that just by chance

never failed in 100 runs (e.g., even our first example from Chapter 2 has the probability of

1− (255/256)100 = 32.4% to not fail in any of 100 runs).

4.2 Postponing the Reruns

The first improvement we propose is to postpone some reruns to the end of the test-suite

execution. We measure the cost of these reruns for the tests listed in Section 4.1. As
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Project TestClass.TestMethod Test ID

Ambari TestHeartbeatMonitor.testHeartbeatStateCommandsEnqueueing Ambari t1
Ambari TestHeartbeatMonitor.testHeartbeatLoss Ambari t2
HBase TestMemStore.testSnapshotting HBase t1
HBase TestMemStore.testMultipleVersionsSimple HBase t2
HBase TestMemStore.testScanAcrossSnapshot HBase t3
HttpCore TestConnPool.testEmptyPool HttpCore t1
HttpCore TestConnPool.testLeaseRelease HttpCore t2
Oozie TestCoordinatorEngine.testCustomDoneFlag Oozie t1
Oozie TestCoordinatorEngine.testDoneFlag Oozie t2

Table 4.2: Non-Flaky Tests Used in Evaluation

Project First SHA Last SHA Buildable
# of Test
Classes

Closure Compiler [28] 9cc8d234 16a92448 100 258
Commons Lang [29] d1c24733 53577f2f 100 125
Commons Math [30] e11c0008 68e6de35 98 484
Commons Net [31] 4c63aa0a e17d89b3 100 40
Cucumber [32] f8ecfb49 3fc886e8 98 100
Dropwizard [33] dd70ee6c 5add60b1 100 142
GraphHopper [34] 75a6b9c9 65a496d4 100 98
JodaTime [35] 51ca3165 b9fe534c 100 124
Phoenix [36] ba0409f2 e0a81a09 96 107
Retrofit [37] a9c1f415 763fe163 100 23

Table 4.3: Other Projects Used in Evaluation

discussed previously, postponing the reruns offers two benefits: (1) more flaky tests (whose

failures are bursty) may be detected and (2) more information is available at the end of

the run so if too many tests fail, reruns can be avoided altogether. However, we do not

attempt to precisely measure the benefit; as discussed in Chapter 2, measuring the exact

frequency of failures, and especially the “burstiness” and distribution of failures in time,

would be challenging because they depend on sources of non-determinism that vary from

one environment to another.

To compare the cost of Postpone and rerunning failing tests immediately after failure,

we compare the execution time for the tests shown in tables 4.1 and 4.2; a priori one cannot

tell if the reruns at the end would be slower or faster than immediate reruns, although we
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Test ID Reruns
Test-Suite Time (s)
Rerun Postpone

Ambari f1 10 369.31 370.98
Ambari t1 10 363.70 362.14
Ambari t2 10 366.68 364.75
Hadoop f1 10 670.22 710.19
Hadoop f2 10 140.71 138.52
Hadoop f3 10 4912.29 5542.81
Hadoop f4 10 7145.82 7107.83
HBase f1 100 19160.57 18770.84
HBase f2 n/a n/a n/a
HBase f3 n/a n/a n/a
HBase t1 100 40720.70 38515.12
HBase t2 100 40620.96 38988.08
HBase t3 10 40828.90 40537.51
HttpCore f1 100 9.28 9.06
HttpCore t1 100 8.99 8.67
HttpCore t2 100 9.12 8.70
Oozie f1 10 5408.33 5406.75
Oozie t1 100 4536.35 5409.13
Oozie t2 100 2245.49 2073.24

Table 4.4: Rerunning Immediately vs. Rerunning at the End

could reasonably expect these reruns to take about the same time. For this experiment, we

have implemented a new option in the Maven Surefire Plugin to rerun failing tests at the end

of the test-suite execution in the same JVM. The latest version of Maven Surefire already

provides an option for rerunning failing tests immediately after the failure. We modify the

projects’ Maven configuration files (pom.xml) to use our modified version of Maven Surefire,

and we set the maximum number of reruns to 10 for tests that run for more than 10 ms,

and to 100 for tests that run for less than 10 ms, so that the contribution of the reruns to

the overall test-suite execution time is not insignificant.

For each test, we run two experiments. In both experiments, we change the test to

deterministically fail, so that it will be rerun exactly the maximum number of times. We

also enforce an execution order on the test classes such that the class containing the failing

test is the first to execute in the test suite. To limit the time needed, we restrict the

experiments to the tests in the same module as the failing test. In the first experiment, we

use the available option in Maven Surefire (rerunFailingTestsCount) to rerun failing tests
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immediately after failure (C IMM=r, where r is either 10 or 100, and C END=0). In the

second experiment, we use our added option to rerun failing tests at the end of the test-suite

execution (C IMM=0 and C END=r, where r is either 10 or 100).

These two experiments, with all reruns at the very beginning or at the very end of the

test-suite execution, allow us to compare the difference at the extremes. (In general, a flaky

test could have its first natural run, and a failure, anywhere in the test suite, not at the

beginning of the test suite.) We perform these experiments on all the tests listed in tables

4.1 and 4.2 except the tests HBase f2 and HBase f3 that cannot be rerun because they do

not properly clean up the state after their first run and during the attempted reruns throw

an exception when they try to start up a server that has already been started in the initial

run. We repeat the experiments five times and report the average test-suite execution time.

Table 4.4 shows the results, with all times in seconds. For each test, we tabulate the

number of reruns and the entire test-suite execution time (as reported by Maven) that

includes the reruns in both scenarios. Our inspection of the differences shows that they are

largely irrelevant in the context of the entire test-suite execution. Some individual reruns can

be slower or faster because of class loading or JIT compilation in Java. However, the overall

test-suite execution time is largely unaffected. As a result, rerunning the tests immediately

after the failure or at the end of the test-suite execution has about the same cost. To derive

the highest benefit for this cost, it seems the most prudent to split the number of reruns,

e.g., for a total of three reruns, it is better to have one immediately and two more at the

end, rather than having all three immediately or all three at the end.

4.3 Running in a New JVM

The second improvement we propose is to rerun each failing test in a new JVM. This re-

running also offers an option to collect coverage. In our experiments, we use the publicly

available Ekstazi tool [20, 39] that collects coverage to perform regression test selection.

While Ekstazi can work in multiple modes, we use the lowest-cost mode that simply re-

ports all the classes that were loaded during a JVM run for a test. (The next section discusses

the precision that this mode achieves.)
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Test ID Base (s) Ekstazi (s)
Reruns (s)

NE1 5 10 20 50

Ambari f1 1.11 1.36 1.74 8.61 20.43 43.90 114.62 1.28
Ambari t1 8.41 8.29 10.67 16.84 23.67 32.22 54.85 4.99
Ambari t2 7.58 7.70 9.89 16.14 21.04 30.97 54.72 4.37
Hadoop f1 12.36 12.78 14.53 17.59 27.68 51.12 63.00 8.53
Hadoop f2 8.19 8.19 9.03 11.34 14.67 20.33 36.99 13.02
Hadoop f3 14.07 14.03 17.08 29.17 43.00 70.80 148.63 4.66
Hadoop f4 12.91 12.99 14.41 18.38 23.78 32.41 57.22 12.36
HBase f1 2.99 2.97 5.00 14.54 32.63 90.73 494.35 1.41
HBase f2 n/a n/a n/a n/a n/a n/a n/a n/a
HBase f3 n/a n/a n/a n/a n/a n/a n/a n/a
HBase t1 0.45 0.46 0.46 0.52 0.63 0.80 0.99 35.79
HBase t2 0.45 0.47 0.48 0.52 0.56 0.63 0.72 110.00
HBase t3 0.70 0.71 0.95 1.42 1.75 2.11 3.15 4.83
HttpCore f1 0.47 0.50 0.50 0.55 0.68 0.84 1.17 29.09
HttpCore t1 0.43 0.46 0.45 0.49 0.55 0.67 0.96 39.66
HttpCore t2 0.47 0.51 0.50 0.54 0.61 0.80 1.12 33.13
Oozie f1 23.54 23.69 26.91 35.76 46.95 65.97 122.82 10.06
Oozie t1 22.57 22.28 25.25 32.12 40.53 58.54 109.56 12.56
Oozie t2 22.38 22.44 24.22 32.08 40.52 59.79 109.49 12.20

Table 4.5: Rerunning in the Same JVM vs. Forking a New JVM

To compare the cost of rerunning in a new forked JVM with rerunning in the same JVM,

we compare the execution time for 17 tests, i.e., all tests from tables 4.1 and 4.2, excluding

HBase f2 and HBase f3 for the same reason described in the previous section. To obtain

more precise results, we focus on one test at a time. For each test, we collect its execution

time (from the JVM execution, without the Maven build overhead) when run alone once in

a JVM, when executed with Ekstazi collecting coverage, and when rerun in one JVM with

a varying numbers of reruns (between 1 and 50). We repeat each of these executions five

times and compute the average.

Table 4.5 shows the results, with all times in seconds. The cost of rerunning the test once

in a new forked JVM is the execution time of its base run; the cost of rerunning it in a new

JVM while collecting coverage is the execution time with Ekstazi; and the cost of rerunning

the test in the same JVM n times is the difference between the column labeled n and the base.

We can see that the time for rerunning is often non-linear. For example, for Ambari f1, rerun

with n = 1 gives 1.74− 1.11 = 0.63s, whereas with n = 50 gives 114.62− 1.11 = 113.51, and
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113.51/50 = 2.27s; in contrast, for Hadoop f1, rerun with n = 1 gives 14.53−12.36 = 2.17s,

whereas with n = 50 gives 63.00− 12.36 = 40.72, and 40.72/50 = 0.81s. While some of the

differences are due to the imprecision of time measurements (especially more affected for

smaller values of n), some others are due to several reruns of the same test interacting (e.g.,

later test reruns can get slower if the test leaks some memory/resources as likely Ambari f1

does, or later test reruns can get faster if the executed code gets JIT compiled with more

optimizations as Hadoop f1 likely does).

For a high-level comparison of techniques, we can still approximate the missing values

for n by using a linear interpolation (and, in the case of HBase t2, using extrapolation).

Specifically, we are interested in the number of test reruns that can be executed in the same

JVM for the time needed to rerun the test once in a new JVM. In terms of parameters from

Section 3.1, we are interested in the values for C IMM and C END (and we know from the

previous section that the time to execute the test for those is about the same) that give

the same test execution time as for C NEW=1. We call this value NE and compute it as

follows. We find values n1 and n2 such that rn1
≤ tBase ≤ rn2

, where rn = tn−tBase. We then

compute NE= (tBase − rn1
) · (n2 − n1)/(rn2

− rn1
) + n1. The last column in Table 4.5 shows

NE . We can see that the value ranges from close to 1 (e.g., for Ambari f1 and HBase f1),

which means that the cost of rerun in a new JVM is about the same as the cost of rerun in

the same JVM, up to over 100 (for HBase t2), which means that the cost of rerun in a new

JVM is much higher than the cost of rerun in the same JVM.

For half the tests considered, running them in a new JVM would take more time than

rerunning them 10 times in the same JVM. Although this may seem to show that simply

rerunning the test many times in the same JVM would be much better than rerunning once

in a new JVM, one must keep in mind that it is very unlikely for a test that failed 9 times

in a row to suddenly pass in the 10th run with no change to the environment. However, the

test may pass in a clean environment (a new JVM). Therefore, even if a test runs extremely

fast, it is almost never beneficial to rerun it more than a few times in the same JVM and

then potentially rerun in a new JVM.

It is important to note that the difference in execution times between the base run and the

Ekstazi run is very small for all the tests considered. This shows that whenever developers
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are willing to pay the cost of forking a new JVM to check flaky tests, it is a good idea

to also collect coverage during the run. While a finer level of granularity (e.g., method or

statement) could add a lot more overhead, using Ekstazi to collect coverage at the class

level of granularity does not add much overhead.

4.4 Intersecting Coverage

The third improvement we propose is to intersect test coverage of a failing test with the

latest changes. If a test that passed in the previous revision fails in this revision, and the

test execution does not depend on the changes introduced in this revision, we can definitely

conclude that the test is flaky (because the test can both pass and fail without executing

the change, it depends on some source of non-determinism). If the test does depend on the

change, we cannot conclude whether the test is flaky or not.

Therefore, the key question to evaluate is how often this Intersect technique could

provide a definite conclusion. Yet again, it would be rather challenging to simulate when

developers observed real failures due to flaky tests and what exact changes they made in

the revisions when those failures happened. Instead, we use a large number of tests and

revisions to evaluate how often test runs do not intersect with the latest changes; if one

of those tests was a flaky test that failed in that revision, the technique would find it. For

instance, recall the first example from Chapter 2; the coverage for this test does not intersect

with the changes made in 80% percent of the revisions (96 out of 120 revisions) between

the revision when this test was written and the revision when this test was fixed to not be

flaky. In any one of those 120 revisions, the test had a chance of 1/256 to fail, and for 96

of those revisions, the test would fail without executing any of the changed code. In this

case, only 20% of the test runs of the flaky test would intersect with the changes. If a large

fraction of test runs intersect with the latest changes, our technique would not be beneficial:

it would only increase the cost, however slightly, by collecting coverage, but it would not

help determine whether the test is flaky or not.

To evaluate the applicability of Intersect, we collect coverage data for 2715 test classes

(i.e., we do not collect test coverage separately for each test method in a test class, which
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Figure 4.1: Percentage of Revisions with Disjoint Coverage in Projects w/ Flaky Tests

could make the results even more precise) over many revisions and determine the percent-

age of revisions in which this coverage does not intersect with the changes. Our evaluation

includes both test classes with known flaky tests and test classes for which we never ob-

tained a test failure (although they might still have flaky tests). Specifically, our evaluation

includes 1214 test classes (test classes that were included in more than one range of revi-

sions are counted only once) from 5 different projects that had at least one flaky test in our

prior study [1] (Table 4.1 shows their detailed statistics). Because we used only 5 projects

that could successfully build in most revisions between when the test was first written and

when it was fixed, our evaluation also uses 1501 test classes from 10 additional projects

(Table 4.3 shows their detailed statistics). While we did not encounter any flaky failure in

these additional projects, their coverage data is still relevant to obtain a better insight into

the applicability of our Intersect technique.

For each project and all revisions from both tables 4.1 and 4.3, we run the Ekstazi tool

for regression test selection. At each revision, Ekstazi only selects tests whose behavior
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may be affected by the changes (i.e., tests whose coverage intersects with the changes). We

record which test classes Ekstazi selects and which not. We then compute, for each class,

the percentage of revisions in which each test class is not selected (i.e., its coverage does not

intersect with the changes).

Figure 4.1 plots the distribution of this percentage for the different flaky tests used to

choose the range of revisions from their projects. We show each distribution as a boxplot,

where whiskers mark 10th and 90th percentile, and the red horizontal line marks the median.

It can be seen from the figure that the median in all cases but one (Oozie f1) is above 70%.

Moreover, most data points are over 60%. It means that for the majority of test classes

and revisions, test coverage does not intersect with the changes. However, the flaky tests

themselves (shown as green dots) often have percentages below the median. The reason for

this is not that the flaky tests are in general more likely than non-flaky tests to have their

coverage intersect with the changes; instead, newer (or more recently modified) tests are

more likely than older (or less recently modified) tests to have their coverage intersect with

changes. The revision range in each case includes revisions right after the flaky test was

written, which likely means that the code it depends on is probably being changed at that

point, and hence the test gets selected. Similarly, the range also includes revisions towards

the end where developers were trying to fix the flaky tests, and sometimes developers make

several commits while fixing a test (changing the test code itself and/or the code under test

that this test depends on), and hence the test gets selected.

Figure 4.2 plots the distribution of the percentage for the projects and revision ranges

from Table 4.3. We ran the test suite for each project over the last (buildable) 100 revisions

at the time of download, and again used Ekstazi to only select the test classes that are

affected by the changes in each revision. For these ranges, all the medians but one are

above 80%, and except for two projects (Closure Compiler and Phoenix), most data points

are above 80%. These averages are somewhat higher than for the ranges with known flaky

tests, but in general the selection percentages vary because of the choice of revisions, type

of changes, maturity of the project, and other factors.

Overall, these results show that the coverage intersection would be applicable in more

than 70% of cases. The main takeaway is that the intersection of test coverage and latest
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Figure 4.2: Percentage of Revisions with Disjoint Coverage in Additional Projects

changes is often empty, and therefore it is, on average, cost-beneficial to always pay the cost

of collecting coverage in order to sometimes obtain the benefit of determining that some test

failure is definitely due to a flaky test.
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CHAPTER 5

Discussion

We next discuss several other factors that could influence the cost of detecting flaky tests.

For some projects, the developers already configure the build system to fork a new JVM

for each test class (generally to avoid state pollution) [8]. For such projects, reruns would

already run the failing test in a new JVM, so collecting coverage all the time by default would

be definitely beneficial, without introducing almost any additional overhead. Moreover, for

some projects, the build system already collects test coverage all the time (especially if the

tests are run in a continuous integration system such as Jenkins). In such cases, coverage is

obtained for free, with no extra cost.

Besides the cost collecting the coverage, there is also the cost of intersecting the coverage

with the changes. Coverage intersection can be done in several ways with different trade-offs

between time and space. One way is to get the changes from the version-control system (e.g.,

git diff); using this approach requires computing a map from the test coverage entities

(computed at the level of compiled binary, e.g., Java .class or .jar files) to the changed

entities (computed at the source level). This is easy to obtain if the classes are compiled with

debug options (i.e., javac -g) as is the most common case in Java (because it allows easier

debugging, e.g., by providing source information in the stack traces). Another approach

would be to store some additional information to detect changes more easily. For example,

.class files from the previous revision could be saved and a simple checksum can be used

to detect class files that changed; Ekstazi already uses this approach, and the computation

of checksum is extremely efficient [20]; the only issue is that the old .class files need to be

saved for at least one revision.

In case of projects that already use regression test selection, Intersect would not need

to be run, because a test that is not affected would not be even selected to run, and hence
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it could not fail if flaky. However, not all projects use regression test selection. Moreover,

using it requires collecting coverage for all tests all the time. In contrast, our Intersect

technique requires collecting coverage only after some test(s) failed, and it requires collecting

coverage only for the test(s) that failed.
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CHAPTER 6

Threats to Validity

Out experimental evaluation shows that our proposed technique could determine that more

failures are due to flaky tests without significantly increasing the cost of detection. How-

ever, the evaluation was performed on a limited number of cases, and there are threats to

generalizing our findings.

External: The projects used in our evaluation may not be representative. To alleviate

this threat, we consider a large number of projects from different application domains, with

different code sizes, and number of test classes. We evaluate our proposed improvements

on 15 projects, of which 5 have known flaky tests. We selected flaky tests with different

characteristics and evaluate Postpone and Fork on the revision in which those tests

were written. Our results could differ for different revisions. Similarly, we evaluate the

applicability of Intersect for the revisions in which the tests were flaky, from the revision

in which a flaky test was written to the revision in which it was fixed. Our results could differ

for a different range of revisions. We chose this range because it shows most precisely the

percentage of revisions in which coverage intersection would have been beneficial in detecting

those specific flaky tests.

Internal: The tools we use in our evaluation may have bugs. To increase confidence in

our experiments, we use tools that are adopted by the open-source community; the Maven

Surefire Plugin is widely used, and the Ekstazi tool, although very recent, has already been

adopted by several open-source projects [20].

Construct: To evaluate the applicability of Intersect, we compute the percentage of

revisions in the coverage of a test class does not intersect with changes. This is only one

part of the condition for coverage intersection to be beneficial. First, the test needs to show

flaky behavior and then, if its coverage does not intersect with changes, it is flaky. Although
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the probability of a test coverage intersecting with the changes between any two revisions

is low, the conditional probability given that the test has failed might be higher. However,

we expect that this probability is largely independent of the failures, because the pass/fail

outcome of a flaky test depends on some source of non-determinism that is not related to

the code changes.

We evaluate the costs and benefits of the proposed technique on both known flaky tests

and (presumably) non-flaky tests. The results collected for non-flaky tests may not be

representative of flaky tests. Because we had a limited number of flaky tests whose projects

we could build over several old revisions, we include non-flaky tests in order to get more

extensive results.

To evaluate the trade-off involved in postponing reruns to the end of the test suite, we

compare the test-suite execution times when failing tests are rerun immediately and when

they are rerun at the end. Measuring time in this way may be misleading as tests that are

run earlier may have a higher cost (e.g., due to loading classes, JIT compiling, etc.). We

mitigate this threat by showing the total execution time of the test-suite rather than the

individual test-method execution times.

To compare the cost of rerunning tests in the same JVMmultiple times and rerunning them

once in a new JVM, we collect the execution times for n reruns where n ranges between 1 and

50 and then use a linear interpolation/extrapolation to approximate the number of reruns

that can be executed in the time needed for running the test once in a new JVM. Though

this offers a rough approximation, our experiments show that the increase in execution time

is not always linear.
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CHAPTER 7

Related Work

7.1 Flaky Tests

We recently published the first extensive study of flaky tests [1]. We studied more than 200

flaky tests from 51 Apache projects and categorized their root causes, common fixes, and

ways to manifest them. During this earlier study, we came across different types of flaky tests

that we now characterize as non-bursty and bursty (where bursty can be state-dependent or

not). That study identified all of the flaky tests used in Chapter 4.

The most common approach to detecting flaky tests is to immediately rerun failing tests,

which we call Rerun. Several systems mentioned in Chapter 1 provide support for this

immediate rerun. For example, Google TAP can rerun tests immediately (it has the @flake

annotation which indicates that a test should be rerun, by default up to 3 times, immediately

after failure), but as a notable exception, it can also rerun (by default up to 10 times) at

night all the tests that failed during a day (including those with the @flake annotation that

failed on all reruns) [17,18]. Rerunning at night waits for the build/test machines to be less

busy but provides the feedback to the developers hours after their tests failed (and after they

may have already wasted their time debugging a flaky test). To the best of our knowledge,

TAP (or any other system for that matter) does not offer all the options we propose. Our

options can provide the feedback much faster at the same cost (for postponing to the end)

or somewhat higher cost (for new JVM) than @flake.

Specific techniques have been recently proposed for handling order-dependent tests. Zhang

et al. propose several methods to detect such tests by rerunning them in different orders [7].

Huo and Clause also propose a technique that can be used to detect such tests [40], although

their technique was originally proposed to detect brittle assertions (that may cause non-
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deterministic failures). Bell and Kaiser [8] propose an approach to tolerate the effects of

order-dependent tests by isolating them in the same JVM. However, none of these techniques

focuses on detecting whether a given test failure is due to a flaky test or not, and none of

the techniques handle general case of arbitrary flaky tests.

7.2 Change-Impact Analysis

Change-impact analysis (CIA) techniques aim to determine the effects of source code changes,

using static analysis, dynamic analysis, or combined approaches [21, 41, 42]. For example,

Chianti is a CIA technique, proposed by Ren et al. [21], which uses a static analysis to

decompose the difference between two program versions into independent atomic changes

and uses dynamic call graphs to determine the set of tests whose behavior might be affected

by these changes. It also uses these call graphs to determine for each affected test, which

subset of changes can affect its behavior. Our coverage intersection technique also collects

coverage but fully dynamically and does not require any static analysis; it has a much lower

overhead because it focuses on only the tests that failed and not on all tests.

7.3 Regression Test Selection

Regression Test Selection (RTS) techniques determine which tests can be affected by a code

change and only run those to speed up regression testing. Many RTS techniques have been

proposed [43–49], and are summarized in two literature reviews [50,51]. Most RTS techniques

collect coverage, first for all the tests, and then recollect coverage only for the tests that are

run as potentially affected by the code changes. Our experiments use the Ekstazi RTS tool

that we recently developed and made publicly available [39]. Ekstazi collects for each test

class which files it depends on (be they .class, .jar, or other files) [52].

If a project uses RTS, it is most likely already intersecting test coverage with the changes

between revisions. Therefore, using the coverage intersection technique we propose for flaky

tests would be redundant in such cases (as the flaky test may not be run in the first place

to even fail once). However, projects that use RTS will pay the cost of collecting coverage
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and analyzing changes for all tests at every revision. In contrast, our Intersect technique

would only collect coverage and analyze changes if there are test failures (that did not pass

after reruns). Also, our Postpone and Fork techniques for rerun are still relevant: even

if the test coverage intersects with the changes, the failing test can still be flaky.
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CHAPTER 8

Conclusions and Future Work

Automated regression testing is a valuable and widely practiced activity for improving soft-

ware quality, but its value is lowered by flaky tests that can non-deterministically fail or

pass for the same code revision. Knowing whether a test failure is due to a flaky test or

not helps developers to make better decisions about debugging and development. The most

widely used technique to determine whether a test failure is due to a flaky test is to rerun the

failing test multiple times immediately after it fails. We have proposed and evaluated several

improvements: (1) postponing the reruns, (2) rerunning in a new runtime environment (e.g.,

a new JVM for Java tests), and (3) intersecting the test coverage with the latest changes.

Our results are promising, and we hope that our proposed improvements will be added to

many testing frameworks and build systems to help developers combat flaky tests.

To perform the experiments presented in this thesis, we have already extended the Maven

Surefire Plugin with an option to rerun failing tests at the end of the test-suite execution (this

is our first proposed improvement, Postpone). In the future, we plan to further extend this

plugin to also include our other two proposed improvements, namely rerunning failing tests

in a new JVM (Fork) and intersecting their coverage with the code changes (Intersect).

We are also hoping to release these contributions to the open-source community. Moreover,

this thesis has only considered cases with one test failure at a time, but in general, multiple

tests can fail in the same test-suite execution. It would be interesting to consider not just

“temporal” correlation of failures for one test (i.e., being bursty or not) but also “spatial”

correlation of failures among multiple tests. For example, multiple tests in the same test

class may all depend on some network service, and when one test fails (if the service is

down), all other tests are likely to fail as well. In fact, one can even consider postponing the

first test run in such cases. Similarly, if multiple tests fail and are rerun in a new JVM, one

can either rerun all failing tests at once of rerun each test in a separate JVM.
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