
c© 2015 Lingyu Xu



FOUR-LAYER CAKE: SEPARATING ADVERTISEMENT FROM HOST
APPLICATION ON ANDROID

BY

LINGYU XU

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Professor Carl A. Gunter



ABSTRACT

Many applications on Android rely on advertisements for revenue. In the

current advertisement model, ad libraries are linked to host applications and

their permission requirements are coupled. More permissions means more

targeted ads, which brings more revenue. As a result, developers tend to

seek more permissions from the user, which is not desirable with regard to

the user’s privacy. In this thesis work we attempt to address two approaches

to solve this problem. The first separates ad library permission requirements

from the host application, and the second provides users with a four-level

privacy-concerned advertisement mechanism.

Though developing the ad module and the host app in two different ap-

plications makes sure that the permission requirements are separated, the

ad module requires interaction with the user through the host app. The

Android system does not yet support cross-application embedding and inter-

action. In this thesis work, we build our model based on an existing work

called LayerCake, which supports secure embedded user interfaces by mod-

ifying the Android system, allowing the host application to embed another

activity that runs in a separate process.

We propose to provide users with four levels of ads to choose. Highest

Privacy Level (Level 3): No Ads, which means the user makes a payment

directly to the provider to get rid of the ads; Fundamental Privacy Level

(Level 2): Plain Ads, which means the advertiser broadcasts ads without

targeting; Pragmatism Privacy Level (Level 1): Inter-app Ads, which means

we utilize installed packages information to select advertisements; Trusted

Privacy Level (Level 0): In-app Ads, which means we gather user information

in the host app to provide more targeted ads.

Our work, Four-Layer Cake, using the above two approaches, effectively

creates an architecture that Android users are aware of how their information

are collected and used, so they can select their own privacy and service level.

ii



To my parents, my advisor and my friends, for their love and support.

iii



ACKNOWLEDGMENTS

First and foremost, I’d like to express my appreciation to Professor Carl A.

Gunter, my advisor, who has always been guiding me through these two years

and has been offering tremendous helps to me, especially at the most difficult

moments. I’m really grateful for the learning experiences in the University of

Illinois at Urbana-Champaign and the opportunities to study from different

people that my advisor has given me.

I also appreciate the help from, including but not only, Soteris Demtrious,

Muhammud Naveed, Vincent Bindschaedler, Yunhui Long, Aston Zhang in

the Illinois Security Lab, Dongjing He, Xun (Sean) Lu, who has graduated

from the University of Illinois at Urbana-Champaign. They are among the

most outstanding students in our department and are really helpful. When

I got stuck in my study and turn to them, I can always get kind help. In

particular, Yunhui and I did the course project for Advanced Computer Se-

curity together and I really cherish the opportunity to gain deeper insights

into privacy issues on Android during our discussions and project meetings

with our advisor, Professor Carl A. Gunter.

Last but not least, I would also like to express my love and thankfulness to

my parents. Without their unconditional love and support, I would not have

had the chance to study in the University of Illinois at Urbana-Champaign

and gain so many valuable experiences.

iv



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . 6
2.1 Current Design of Advertising Model and Its Limitations . . . 6
2.2 Known Attempts to Preserve Privacy on Android Platform . . 8
2.3 Known Uses of App Bundles . . . . . . . . . . . . . . . . . . . 10

CHAPTER 3 ANDROID LAYERCAKE AS A PLATFORM . . . . . 12
3.1 LayerCake Features . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 LayerCake Performance when Embedding Advertising . . . . . 14

CHAPTER 4 IDEAS RELATED TO APP BUNDLES . . . . . . . . 16
4.1 Sequential Pattern Mining for Prediction in Medicine Field . . 16
4.2 Amazon Anticipatory Package Shipping . . . . . . . . . . . . . 17
4.3 Persistent Cookies Profiling . . . . . . . . . . . . . . . . . . . 19

CHAPTER 5 FOUR-LAYER CAKE DESIGN . . . . . . . . . . . . . 21
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Modified Three Parties Feedback Loop . . . . . . . . . . . . . 22
5.3 Four Layers of Privacy . . . . . . . . . . . . . . . . . . . . . . 23

CHAPTER 6 IMPLEMENTATION . . . . . . . . . . . . . . . . . . . 25
6.1 Advertisement Library Server Implementation . . . . . . . . . 26
6.2 Android App Client Implementation . . . . . . . . . . . . . . 27
6.3 Advertising Procedure . . . . . . . . . . . . . . . . . . . . . . 31

v



CHAPTER 7 DEMO AND EVALUATION . . . . . . . . . . . . . . . 35
7.1 Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Evaluation and Analysis . . . . . . . . . . . . . . . . . . . . . 40

CHAPTER 8 CONCLUSION AND FUTURE WORK . . . . . . . . 42

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vi



LIST OF TABLES

7.1 Advertisements Used in the Demo . . . . . . . . . . . . . . . . 35

vii



LIST OF FIGURES

2.1 The current advertising model . . . . . . . . . . . . . . . . . . 6

4.1 How does Amazon Anticipatory Package Shipping Work . . . 18

5.1 Three-Party Feedback Loop Model for Android Advertising . . 21
5.2 Modified Three-Party Advertisement Model for Android . . . 23
5.3 Four-Layer Cake Privacy Model for Android . . . . . . . . . . 24

6.1 Advertisement Library Server . . . . . . . . . . . . . . . . . . 26
6.2 Android Application Client . . . . . . . . . . . . . . . . . . . 28
6.3 Communication between Host App and Ad App process . . . 29
6.4 Communication process between Ad Library Server and

Android Client . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.5 Advertising Process and State Transition Finite State Au-

tomaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.1 Ads Loop 1 : Health-related (AppType 0) Ads . . . . . . . . . 36
7.2 Ads Loop 2 : Music-related (AppType 1) Ads . . . . . . . . . 36
7.3 Click on Ads to Show Application in Google Play Store . . . . 38
7.4 Unlock Professional Functionality via Payment . . . . . . . . . 39
7.5 Unlock Professional Functionality via Payment . . . . . . . . . 39

viii



CHAPTER 1

INTRODUCTION

With the prevalence of the current design of application and advertisement

model, the resulting problems are attracting more and more attention. In the

current advertisement model, ad libraries are linked to host applications, and

they may require additional permissions to gather user personal information

on the devices to provide more targeted ads. These permission requirements

are then directly presented to the users as requirements of the host appli-

cations. The current advertising business model accepted in the Android

market is the main mechanism that helps fund the exploding emerging of

mobile phone applications. Regardless of the fact that this model has been

prevalent in the Android application market, it has significant drawbacks

with regard to the protection of user privacy. As more detailed user informa-

tion tends to results in more targeted ads, more targeted ads brings about

more revenue, the developer is likely to seek more permissions from the user,

an ad library tend to abuse a host application’s permissions. Another draw-

back of this current model is for the advertiser: a malicious application could

simulate interactions between the advertisement and the user to cheat the

advertiser in order to make more revenue.

1.1 Overview

In Android on-line advertising, there are a number of models which aim at

privacy-preserving erupting in recent years. They are able to provide privacy

protection via effective ways such as delivering mock information to the ap-

plication [1, 2] or using differential privacy to avoid profiling due to details

[3]. Most of these models have been focusing on the preserving of privacy

and are successful to some extent, but have given too little attention to the

needs of a huge party in the advertising market: the advertisers. The fact

1



that the implications for a market is largely driven by the accurate profiling

of users is merely considered [4]. These models are either unable to provide

accurate ad profiling or are too complicated that advertisers find it difficult

to adopt. As a result, there is hardly any practical model existing that could

properly balance between Android user privacy protection and advertisement

profiling. This project is trying to solve this problem by applying the idea of

privacy-level negotiation into current privacy-protection advertising models.

1.2 Problem Statement

The market of Android on-line advertising contains three primary parties:

advertisers, who make profit by selecting targeted advertisements using accu-

rate user profiling information; developers, who receive reward/revenue from

advertisers by providing accurate user information for profiling; and users,

who provide their private information in exchange for services offered by de-

velopers. A practical privacy-preserving advertising model should equally

consider the interest of all three parties in the market. Balance is so difficult

to achieve which calls for several specific questions:

1. How is the negotiation between advertisers, developers and

users expected to take place?

2. How should we specify different levels of privacy and relate

them with different service levels?

3. What are the incentives for advertisers, users and develop-

ers to use the negotiation model?

The solve of these questions will lead to the balance the benefits of all

three parties and achieve our primary goal of privacy-preserving.

1.3 Our Approach

To answer the first question, in this work, we propose to take advantage of

LayerCake [5]—a modified version of the Android System [6]—to clearly sep-

arate Host application and Advertisement Module permission requirements.

2



By doing this the developer has no motivation to require unnecessary per-

missions from the user. The separation of the permission requirements would

provide the users with a clear and clean overview of what information is be-

ing collected and how and where is the information being used. Information

will flow to the developer and the advertiser in two individual flows.

For the second question, we introduce a new advertising model from which

each of the three parties benefits. To induce the users, we illustrate that

the advertiser get information from the user directly with out revealing any

unnecessary private information to the provider and user can choose different

privacy levels by themselves. To encourage the developers to accept the

new model we validate that when they provide more service they get more

revenue by establishing a indirect link between service and revenue. On the

advertiser side, as they get needed information directly from the user, they

could circumvent being cheated by any application developer.

In the meanwhile, with respect to the third question, we explore meth-

ods to deliver ads due to Inter-app and In-app information, which specifies

4 clear levels of privacy. Inter-app information—the list of installed appli-

cation packages, including application name, package name, version name,

version code, application icon, application installation (or modification) time,

etc—is also referred to as App Bundles in the rest parts of this thesis work.

We are also employing In-app information—demographic information and in

application behaviors collected by the host application—in our advertising

selection algorithm.

1.4 Main Contributions

Some of the major contributions of our work are listed as follows:

• Three Party Loop Module: First of all, the permissions required

by the host application and the advertising application are aimed to

be separated. Users only provide the necessary permissions to the

host app, and all the additional permissions should be independently

required by the advertisement module. Advertising app delivers the

users’ privacy information ( demographic information like age and gen-

der, in app behavior information, long term track of click through rates,

3



etc) to the ad network server, then the ad server pushes selected adver-

tisement to be displayed to the users, and give corresponding revenue

to the app developers. Taking all these requirements into considera-

tion, we make modifications to the model proposed in [4]. Service from

the application provider, information flow from the user, and revenue

from the ad network, forms a three-party feedback loop. The ad net-

work is also responsible for delivering advertisements to the embedded

advertisements application.

• Exploit of App Bundles: To our knowledge, there are not many

advertising system that exploit the utilization of App Bundles. Twitter

is collecting the installed packages on Android devices [7], Facebook is

also utilizing similar information [8] but only gathered from applica-

tions that have their code baked into them. We note the importance

and significance of App Bundles, and when comparing to buying prod-

ucts from a super market, the usage of App Bundles to predict the next

possible application installed is similar to sequential pattern mining in

Data Mining field [9, 10]. We use App Bundles as the as a main factor

of selecting advertisements on the ad server side, and we use In-app

information for further filtering the ads.

• Offering four levels of privacy associated advertisement: De-

pending on the user’s preference, we provide four privacy concerned

service and advertisement related levels. With regard to privacy re-

vealing extend, the four levels include: professional functionality with

no ads, basic functionality with plain advertisements (broadcast from

the ad server without any targeting), medium functionality with Inter-

App targeted Ads by collecting App Bundles information, professional

functionality with In-App targeted Ads based on personal information

collected by the host application.

1.5 Outline

We give an outline of the following contents of this thesis.

Chapter 2 gives the thorough background information on the Android on-

line advertisement market. In particular, section 2.1 introduces the current

4



design of the advertising model and argues its limitations; section 2.2 de-

scribes some known attempts of providing approaches of splitting ads from

the host apps to preserve user privacy; section 2.3 brings in the idea of App

Bundles and introduces some know attempts of utilizing App Bundles.

Chapter 3 aims to understand a modified version of Android System, Lay-

erCake, since we build our model based on this platform. Section 3.1 analyzes

the primary features of the LayerCake system, while section 3.2 introduces

how LayerCake benefits Android advertising.

Chapter 4 illustrates the concept of App Bundles and discusses why and

how could it be utilized. Sections 4.2, 4.3 respectively discuss the similar-

ity between App Bundles and Amazon Anticipatory Package Shipping and

Persistent Cookies Profiling.

Chapter 5 explains the design of our model, Four-Layer Cake. Chapter 6

gives the implementation details of our mechanism while chapter 7 offers the

evaluation demo and analysis. Last but not least, Chapter 8 concludes our

work, analyzes the limitations and proposes possible future works.

5



CHAPTER 2

BACKGROUND

This chapter gives background information of the current advertising model

in Android market and the existing attempts of preserving user privacy in

Android on-line advertising. In particular, section 2.1 explains the current

design of advertising model, section 2.2 describes known exploits of preserving

user privacy on Android platform, and section 2.3 gives examples of how App

Bundles information has been used.

2.1 Current Design of Advertising Model and Its

Limitations

[4] investigate the current advertising model by analyzing a popular ad-

network Admob [11]. In its generic form, this advertising model involves

three primary parties. First, the user, who receives service provided by the

mobile application developer. Second, the developer, who expects to get

compensation/revenue from the advertiser as a reward for the delivering its

service. Third, ad-network, who pays the developer when it successfully

gathers the user’s preferences and delivers targeted adverts.

Figure 2.1 shows the relationship of the three parties in the current model.

Figure 2.1: The current advertising model

6



In this model, one thing worth noting is that all the private information

of the user first flows to the developer, regardless of what does the developer

actually needs. The complete delegation of information collection means it

is possible that the user is unwilling to expose some of information to the

developer.

In Admob ad-network, the developer is paid according to an advert’s “click-

through rates”. An impression of the advert displaying in the Android ap-

plication may lead to a “click” from the user. A “click” means the user is

attracted by the ad and proceed to the download stage. The success rate

of the delivered ads means the successful operation of the advertiser, and

will significantly leads to revenue rewarded to the developer. Consequently,

Admob ad-network as well as the provider aim to generate as many “clicks”

per “impression” as possible. When the ratio of “clicks/impression” is high,

it means that the adverts are well targeted at the user. And since the ad-

vertiser need to pay the developer anyway for making the impressions to the

user, the cost of unsuccessful advertising is reduced when the ratio is high.

Demographic information (such as gender, age), location information and

social networks information are some of the kinds of information used in user

profiling algorithms for advertisement targeting.

More targeted ads means more profit and less cost, so an advertiser may

be incentivized to collect as much information as possible about the users for

accurate profiling. For the developer, it will only be rewarded when the im-

pression of an advert gets a “click”. The tight coupling of the advertisement

module and the host application shown in Figure 2.1 results in a fact that the

developer tends to support the profiling algorithm on the advertiser’s side.

This model actually could not meet the trust expectation by the user, and

lead to the consequence that the privacy requirements of the applications

rarely represents the true demand of the service provided. There should be

a pressure on the developer to constraint its request of unnecessary permis-

sions, or more effectively, a way of keep it away from touching the user’s

privacy.

7



2.2 Known Attempts to Preserve Privacy on Android

Platform

There are some existing work providing some level of privacy protection to

the user, here we mainly introduce two categories:

1. Delivering mock information to the host application.

2. Splitting the advertising module from the host application.

MockDroid [1], a modified version of the Android system, is a represen-

tative of category 1. It allows a user to choose to preserve his personal

information. In MockDroid, a user could ‘mock’ the access to a resource just

like an application. After this ‘mock’ access, the resource accessed would be

marked as unavailable subsequently. Whenever an real application requests

to access the resource, it gets a report that the particular resource is empty

or unavailable. This mechanism helps the user to choose what kind of per-

sonal information that could be exposed. In the meantime, the user can be

encouraged to think about the trade-offs between the service he gets and the

disclosure of private information, as the application that request the access

to a certain resource could have provided better service if the access is au-

thorized. Though this kind of approach provides privacy preserving to some

extent, the simple forbidding of resource access would not work well the the

Android on-line advertising market, since it has not take the interest of the

advertiser into account. The ignorance of the advertiser’s profit will cause

the whole advertising market to collapse.

The balance of interest of the three parties in the advertising model is

fundamental. To this end, we look at the second category: attempts of

splitting advertisement module from the host application. The deployment

of methods in this category still ensures that the advertiser gets profit.

[4] proposes a framework which includes a market mechanism and estab-

lishes a three-party virtuous feedback loop. This feedback loop works well

to balance between the privacy information collected from the user and the

service provided to the user. In a word, the user exchanges more privacy

information for more services. For the provider, the more service it provides

it gets more rewards. For the advertiser, the more profiling information col-

lected, the more accurate the advertisement targeting would be. None of the

8



three parties can abuse its ability of controlling the resource that it owns. In

this model, the private information needed by the advertiser directly flows

to the ad-network, instead of being collected by the developers first. The ad-

network therefore gives the corresponding revenue to the developer according

to the click through rates of the advert. The developer provides different lev-

els of services due to the resulting revenue. A redesigned application market

is also playing a important role. The new market will ask the users to rate

applications, those applications who ask for unreasonable permissions will

get low scores, and the most unwanted permissions will be listed as most

conspicuous. With the help of peer-pressure from a redesigned market, the

developers can be incentivized to not collect unnecessary privacy information

from the users. The proposed framework is implemented as a separate adver-

tisement service which allows other applications to subscribe to. A real time

monitor is responsible for monitoring the data flows between the three par-

ties, recording the overall clicks and controlling revenue. There are, though,

limitations of this mechanism. This design does not allow the user to choose

what kind of information can be exposed. The upgrade of service level and

the privacy exposure level may not be out of the user’s willingness.

Adsplit [12] proposes an approach to automatically separate an application

and its advertisement module, thus allows them to run in different and inde-

pendent processes under different user-ids. In this way, permissions required

by advertisements can be separated from those required by host applica-

tions, giving the user a clear prospect on how their privacy information is

used. This function of AdSplit is achieved by providing AdWebview, a built-

in advertisement application in Android core distribution. AdWebView could

load HTML and Javascript from advertising libraries, fetch advertisements

accordingly, and display the advertisements on a WebView component in

separated process and activity. It supports three categories of permissions:

the permission to load a url, the permission to call to HTML5 geo-location

API and the permission to maintain long-term tracking cookies. However, the

process of granting permission is non-negotiable. Users would either grant all

the permissions required by an advertiser or have all the permissions denied.

Also, it is unclear how host applications could respond when advertisement

permissions are denied. Adsplit successfully prevents programmatic click-

fraud attacks using Quire [13], by authenticating user input.

9



LayerCake [5] explores the requirements to support secure embedded user

interfaces of a system. The researchers analyze existing systems such as

browsers and smart phones systematically, with regard to whether they pro-

vide security properties and how do they provide these properties if any. They

make a modification to Android system (Android 4.2 JELLY BEAN MR1)

and end up with being capable of supporting secure interface embedding.

They implement their design and evaluate the implementation using case

studies which are based on embedded interfaces. Advertisement libraries

and Facebook social plugins, which are typical types of embedded widgets,

are evaluated. The LayerCake system has been deployed in some of the re-

cent works of the research group from University of Washington, showing in

[14] and [15].

2.3 Known Uses of App Bundles

The news of Twitter [7] starting to track user’s installed packages for advertis-

ing targeting purposes quickly exploded on November 26th, 2014 [16, 17, 18].

The app tracking mentioned in the above news, means that Twitter appli-

cation on Android, is tracking lists of applications installed and the in-app

basic metadata to use for advertising. As is mentioned in 1.2, the list of

applications installed, we will use App Bundles to refer to it in the rest of

this work.

The fact that the related API [19] is built in the Android Operating System

makes it extremely easy to get the App Bundles. What’s more, the calling of

this API does not even require any special permissions. A simple call of get-

PackageManager().getInstalledPackages() returns the developer with all the

information about installed packages on a device, including application name,

package name, version name, version code, application icon, application in-

stallation time, etc. There are even more ways provided by the Android API

to refine the results, for example, a call to getPackagesHoldingPermissions()

returns a list of all installed packages that are currently holding any of the

given permissions on the device. Package manager can also pull information

about a particular individual application once it is determined this appli-

cation has already been installed. Twitter claims that they have only been

10



collecting and updating data of applications that the users have installed,

but not using any in-app information [7]. In our work we propose to use

in-app information from our host application to further tailor the result set

of advertisements.

To our knowledge Twitter is a pioneer of social networks who collects such

information on users devices, but maybe not the only one. Facebook has been

reported to being collecting similar data [8], but only from applications that

have their code baked into them. This is referred to as “software development

kit” [20].

11



CHAPTER 3

ANDROID LAYERCAKE AS A PLATFORM

Smart phone applications nowadays commonly embed third-party user in-

terfaces such as advertisements, Facebook social plugins, and access con-

trol gadgets[5]. The capability of embedding third party user interfaces

comes with security issues, and Android does not yet support secure cross-

application interface embedding. The LayerCake [5] group proposes to mod-

ify the Android operating system to provide support for secure embedded

user interfaces from scratch. Our work, Four-layer Cake, uses LayerCake

as a platform to build our models on, so this chapter gives an introduction

of what main features does LayerCake provide and how does it work when

embedding advertisement module.

3.1 LayerCake Features

LayerCake, a modified version of the Android system, supports secure cross-

application embedding via making changes to the ActivityManager class, the

WindowManager class, and input dispatching. Some features of LayerCake

that are fundamental to Android on-line advertising will be listed as follows:

• Allow more than one application to be visible to the user at the same

time.

• Allow one application to embed one or multiple instances of other Ac-

tivities which does not interfere with each other.

• Provide clickjacking prevention and ancestor redirection prevention.

12



3.1.1 Visualization of More Than One Application

Android UI provides the user with a particular view for an application. An

application may consist multiple Activities, each of them defines built in

View elements. The original Android operating system’s ActivityManager

could only keep one Activity in the foreground. An application is not capa-

ble of embedding an Activity from a different application. Though Android

ActivityGroups provide UI code reuse within the same application, it does

not support true cross-application embedding. LayerCake explores to al-

low one application to embed Activities from a different and independent

application. The embedded Activities run in a separate process. Android’s

WindowsManager isolates the window of each application, i.e., an application

cannot access the window from another application, nor could it dispatch the

user input for the other application. The isolation properties are relied on by

the LayerCake design. In LayerCake, multiple applications may have visible

windows, though only one application could be in the foreground, and their

interaction with the user are clearly isolated.

This allows the advertisement module in Four-Layer Cake to share the

view with the host application, in a secure cross-application embedding way.

3.1.2 One Host Embedding Multiple Applications

A new View called EmbeddedActivityView is introduced into Android’s

UI toolkit. This View allows the embedding of another application’s Activity

to a host application. Specifying the package and class names of the embed-

ded Activity in the parameters of the EmbeddedActivityView ensures the

success of embedding in the host application’s interface.

Android’s ActivityManager is extended to support embedded Activities.

These embedded Activities are launched when the corresponding instances of

EmbeddedActivityView is created and displayed. One thing is that the em-

bedded Activities are not under the control of ActivityManager, they follow

the life cycle of the embedding Activity.

Multiple Activities may be embedded in the same host application. The

embedded Activities themselves may also embed one or more Activities.

What’s more, multiple instances of the same Activity may be sharing the

same host. An application may also be embedded by multiple host appli-

13



cations, thus allowing the leverage of information collected inside different

hosts.

The fact multiple embedded activities are supported makes it possible for

an Android application to embed advertising module for different advertise-

ment networks.

3.1.3 Clickjacking Prevention

A clickjacking attack [21] happens when a malicious application tricks or

compels a user into interacting with an interface. For example, a malicious

application may make an interactive UI element as transparent, thus the user

has the chance of passing through inputs into it with out knowing anything.

LayerCake is able to prevent clickjacking by checking the following:

1. Whether the Activity is covered by another window (obscured).

2. Whether the minimum requested size is not met.

3. Whether the Activity is not fully visible due to window placement (a

View could be cropped due to scrolling).

If any of the answers to the above question is “YES”, LayerCake would

just discard the embedded Activity’s user input.

These rules help prevent the application providers from cheating users for

more clicks.

3.2 LayerCake Performance when Embedding

Advertising

In the current Android design, stock Android applications embeds third-party

advertisements and provides an AdView element to show the adverts, and

ad library module is running in the same process as the host applications.

In LayerCake, modifications have been made to separate the AdView out

into an individual process. In the evaluation demo, a wrapper application for

AdMob [11], a primary advertisement library, is created as an embeddable

application. All of the APIs of the ad library is exposed across the process

14



boundary, making it possible for the host application to pass on parameters

to it.

LayerCake is successful in moving ads into an individual process and ad-

dresses a number of concerns. First and most importantly, permissions

needed by the advertisement library would no longer be requested by the

parent application. Second, an ad library could also no longer abuse a host

application’s permissions [22]. Thirdlym the fact that all ads from the same

ad library—even if the Admob application is embedded in different host

applications—run in the same process allows the Admob wrapper applica-

tion to leverage input from different host application sources. Last but not

least, the host application can no longer be capable of mounting program-

matic click fraud attacks.

15



CHAPTER 4

IDEAS RELATED TO APP BUNDLES

Twitter is most likely to be the pioneer of exploiting the usage of App Bun-

dles. There are, though, a small number of know attempts of using this

information.

App brain[23] is an online Android Market which allows users to upload

lists of installed applications to it for management. App Usage Tracker [24],

an application available in the Google Play Store [25], tracks how all the

installed apps are getting used on the device, and depicts the usage informa-

tion in a graphical format. We can come to the conclusion that the usage of

App Bundle information in Android on-line Advertising is still in its early

stage, and we need to further explore the features of it.

Though the usage of App Bundles still needs exploration, there are exam-

ples in other areas that provides similar attempts of using known information

to make predictions.

Three concrete examples are given as follows: section 4.1 introduces that

the idea of sequential pattern mining has been used for prediction in the

medicine field, section 4.2 illustrates how does Amazon anticipatory package

shipping work, section 4.3 finds the similarity between App Bundles and

persistent cookies.

4.1 Sequential Pattern Mining for Prediction in

Medicine Field

Sequential pattern mining [9] is a data mining technique which can be used to

identify patterns of sequenced events within a database. The original appli-

cation of sequential pattern mining is in the retail industry: after purchasing

a particular book, a customer is predicted to buy its sequel within a certain

time period.

16



Applications in medicine field were proposed in [26], and have received

great success in disease susceptibility prediction [27]. [28] uses sequential

pattern mining to establish temporary links between medications automat-

ically. The links are visualized and used for generating rules to predict the

next possible medicine prescribed to the patient. [28] does evaluations re-

spectively at drug level and drug class level, and come to a conclusion that

frequent pattern mining is effective in identifying the temporary links be-

tween medicines and predicting the next prescribed medicine.

As is mentioned in Section 1.2, App Bundles information includes appli-

cation name and application installation (or modification) time, in our work

we also classify applications into different types. When being compared to

the prediction in medication prescription, an application is a “medicine”, its

installation time is the “prescribed time”, and its type information is the

“drug class” in medication.

4.2 Amazon Anticipatory Package Shipping

A news titled Amazon knows what you want before you buy it [29] claims

that Amazon could conceivably use a patent for the algorithm-based system

to ship products even before the customer place an order.

Officially known as “method and system for anticipatory package ship-

ping” [30], the benefits of the system are obvious: the accurate predicting

of customers orders helps increase sales. Further more, the potential money

and time cost of shipping could be largely reduced.

Figure 4.1 shows how the Amazon anticipatory package shipping work.

According to the patent, the prediction model is using data from a user’s

previous Amazon behaviors, including but not only, time on-line, links clicked

in site, duration of views, wishing list, shopping history and shopping cart

status. The algorithm also takes real-world customer personal information

into account. These information can be collected from customer telephone

inquiries, responses to advertising materials, and so on.

App Bundles could be made analogy to Amazon’s anticipatory package

17



Figure 4.1: How does Amazon Anticipatory Package Shipping Work

shipping patent to some extent. In our case, an application not yet installed

is our “commodity” for sale, the App Bundle information is like the shopping

history of Amazon. Amazon make predictions, or anticipatory package ship-

ping officially, (partially) due to the shopping cart activities and we make our

18



recommendations due to the “bought” applications. To this end, we could

also take an insight into Amazon’s efforts and employ their algorithms in our

future work, even though in chapter 6 we are employing a straight forward

algorithm for demo the advertising procedure: select advertisements based

on the installed packages and recommend similar applications.

4.3 Persistent Cookies Profiling

Cookies has been working as a tagging mechanism of identifying a user out of

millions. Cookie profiling uses persistent cookies to track the overall activities

of a user online.

Cookies tracking is occurring whenever you are browsing [31] web pages.

Marketers/advertisers are most likely to do cookies profiling. They collect

and collate information about a certain user from cookies and create the “pro-

file” for him. The behaviour of a user when browsing the Internet becomes

the reason why he has been targeted by a particular collection of adverts

[32].

Cookie profiling is the only way for marketers/advertisers to target po-

tential customers and obtain a possible product purchase from them. By

knowing a users browsing habits, including sites visited, age, gender, marital

status, political preferences and religious affiliations, they can show him or

her advertisements that are appealing, advertisements that he or she will care

to patronize. This is a way for marketers/advertisers to increase their profit

and cut down on the cost of unsuccessful delivery of adverts by accurately

targeting their customer.

The advantage of using cookies to do the on-line profiling is that it is

permitted by users to some extent, since the profiling using cookies is less

alarming and less offensive than, for example, buying data from social net-

works.

There could also be a line drawing from Four-Layer Cake App Bundles

usage to Cookies profiling as analogies. Both of them are used for on-line

advertising purposes, though one in web browsers and the other in Android

applications. App Bundles is just like the persistent cookies, which stores

the past “behavior” of the user, and with a careful designing of algorithm,

19



can make accurate predictions about a user. The App Bundles is also a

long term information as an Android device is always having some installed

applications. In our approach we are also using in-app information gathered

by host application to make more targeted ads. An obvious thing is that,

the more in-app information we get, the more accurate the adverting would

be. This is actually similar as the multi-source cookies used for profiling in

the web browser advertising.

20



CHAPTER 5

FOUR-LAYER CAKE DESIGN

Our work mainly includes two core parts: the three parties feedback loop

and the four levels of privacy. Section 5.1 illustrates the related work for

our design, section 5.2 introduces the idea of a modified three party feedback

loop, section 5.3 gives the idea of four privacy levels with regard to user

preferences.

5.1 Related Work

As is mentioned by figure 2.1 in section 2.1, in a typical in-application ad-

vertisement under the current advertisement model, the collecting of user

demographic information is delegated to the host application.

Figure 5.1: Three-Party Feedback Loop Model for Android Advertising

The tight coupling of the ad-network module with the host application

brings the result that the permissions required for advertisement targeting

are publicized as part of the host application’s permission requirements. The

21



obscuring of who might access the users’ personal information and how these

information would be used causes privacy concerns.

To resolve this problem, [4] proposes a decoupled three-party feedback loop

model, shown in Figure 5.1. In this new model, decoupling privacy control

between the advertisement component and the host application is achieved.

There are two independent information flows flowing respectively towards the

ad-network and the host-application. This separation allows users to have

different sharing agreements with the other two parties, and makes it easier

for users to be aware of how is their information used.

[4] achieves the decoupling of application and advertising permissions by

separating the two functions into distinct binaries. A generic advertising

service which requests its own set of permissions is implemented. This service

exports a new Intent for other applications to subscribe to.

Our work keeps the idea of three party feedback loop but does some modifi-

cations to employ LayerCake [5] to do the permission separation. LayerCake

modified the Android system source code to support secure cross-application

embedding, more details have been illustrated in chapter 3.

5.2 Modified Three Parties Feedback Loop

To balance user privacy and still protect the benifits of developers to ensure

that they get deserved rewards for delivering the service, we establish a clear

three-party model and form a feedback loop between each pair of parties.

Our idea can be illustrated by Figure 5.2.

First of all, the permissions required by the host app and the advertisement

app, which is used to display the advertisements, are separated. Users only

provide the necessary permissions to the host app, and all the additional

permissions should be independently required by the advertisement appli-

cation, which is running in a separate process. Advertisement application

gets the users’ privacy information and delivers selected advertisement to be

displayed in the host application’s EmbededView as a Banner Ad, and gives

corresponding revenue to the host app developer. We adopt LayerCake to

support secure embedded interfaces such that the host application and the

ad application can be developed in two completely independent process.

We then propose to form a three-party feedback Loop to balance privacy

22



Figure 5.2: Modified Three-Party Advertisement Model for Android

and service (from the user’s point of view). After the separating of per-

missions for the host application and the advertisements, we re-develop the

applications and utilize LayerCake’s feature to embed the ad application into

the host. The information flows, service and revenue form a feed back loop

between the user, the ad network and the developer (the loop is marked as

red in Figure 5.2). The user can “pay” with privacy information in exchange

for services, and the developer gets paid by encouraging the user to give

more accurate privacy information. The advertisement application reports

individual clicks to the ad network to calculate revenue to the developer. In

this feedback loop, the advertisement application starts with plain ads, and

may require more information from the user if the user requires more service

(without paying off to the developer directly).

5.3 Four Layers of Privacy

We propose to provide users with four levels of ads to choose.

• Highest Privacy Level (Level 3): No Ads, when the user chooses to make

a payment directly to the provider to get rid of the advertisements.

• Fundamental Privacy Level (Level 2): Plain Ads, which means the

advertiser broadcasts ads without targeting.

• Pragmatism Privacy Level (Level 1): Inter-app Ads, which means App

23



Bundles information is used to select advertisements.

• Unconcerned Privacy Level (Level 0): In-app Ads, which means user

information in the host app is gathered to refine ads to be more tar-

geted.

Figure 5.3 shows the details of the four layers.

Figure 5.3: Four-Layer Cake Privacy Model for Android

The feedback loop mentioned in section 5.2 starts with Fundamental Pri-

vacy Level (Level 2). No special information about the user or his device

is provided to the developer or the advertiser, only plain ads are broadcast

from the advertisement library server to each of the advertisement client con-

nected to this server. If a user allows the usage of inter-app information for

advertising purposes, the advertisement application will run for some time

and collect all the App Bundles information which will then be reported to

the server, and the user will be at Pragmatism Privacy Level (Level 1). Then

if the user prefers to upgrade his service, he has two choices. To get rid of

the advertisement and reach Highest Privacy Level (Level 3), he could make

a direct payment to the service’s provider; or, he can also choose to move to

Unconcerned Privacy Level (Level 0) to get more service [33, 34] and more

targeted ads. More details are demonstrated in chapter 6.

24



CHAPTER 6

IMPLEMENTATION

After understanding the mechanism and algorithms of our approach, this

chapter gives implementation details of the Four-Layer Cake model. While

the above model intuitively appears to be reasonable, it is not guaranteed

that it provides satisfiable performance in practice. We explore what it takes

in practice by demonstrating our model in chapter 7.

To provide a direct overview of the model introduced in this work, an

advertisement library server and an application client on Android mobile

phone are needed. We are not using any existing ad library, but building our

own advertisement library server, to maintain more flexible query interfaces

and provide modifiable advertisement recommendation strategy. Up to 5

threads are supported in our server.

On the Android client side, we are using LG NEXUS as a testing environ-

ment device. Android Layercake System is flashed into this device to support

interactions and permissions separation between host application and its em-

bedded activity.

Communications between the advertisement server and the android appli-

cation are established via Socket. In section 6.1 we describe the Multi-thread

advertisement library server implementation while section 6.2 describes the

techniques we used on the Android Client side. Section 6.3 illustrates how

the states of the advertising process change by presenting our socket commu-

nication finite state automaton. Since in our Four-Layer Cake model, both

the Plain Ads Level and the Inter-app Ads Level require no additional per-

missions, for simplification, with regard to privacy Level, we just start from

the No Ads (no privacy information provided to Advertiser), then Inter-App

Ads (only use App Bundles information and requires no additional permis-

sions), and then In-app Ads (requires personalized meta data collected by

the host application).

25



6.1 Advertisement Library Server Implementation

Four-Layer Cake Model requires the support from a manageable advertise-

ment library server. In our implementation, we used Java SE 1.6 development

environment.

Figure 6.1: Advertisement Library Server

The server is expected to provide mainly four functionalities:

• Sending and accepting data flows to and from the client side.

• Interpreting data from bytes into strings or from strings to bytes.

• Maintaining database for advertisements information querying and re-

trieval.

• Storing advertisement files.

The coordination of the four modules are shown in figure 6.1.

First of all, the Communication Module. All of our commands and data are

transmitted using Java Socket. In our code, the package /Server/src/socket

includes SocketServer.java and SocketThread.java. SocketServer class helps

maintain a thread pool of size 5, which allows up to 5 clients to connect

26



to the advertisement library server. SocketServer is also responsible for ac-

cepting in-coming connections from clients and starting a new instance of

SocketThread for each new client. SocketThread class provides individual

and non-interfering threads for each client. It first waits until getting a con-

nection request from a client, then it creates a new connection to the local

database for afterwards queries. When it gets a command, since Socket com-

munication transmits bytes, we need to interpret the command into string,

using the embedded Command/Data Interpreting module. The advertise-

ment results are also interpreted back into bytes and then sent to the client.

The Server and the Client need to strictly follow the loop of sequences of

Command number–Data length–Data–Command number–... when communi-

cating, since Socket accepts all the data bytes as a stream, it cannot recognize

individual commands or messages by itself.

Another package in our source code, /Server/src/operation contains DB-

Operation.java which provides interfaces of querying the database and re-

turning result sets. The table Ad has the following keys: id, AppName,

AppAdLocation, AppDownloadURL, AppType, UserAgeRange.

As Socket only transmits bytes, /Server/src/operation/Transfer.java pro-

vides the functionality of translating between strings and bytes. We are using

ISO-8859-1 as the encoding standard.

The ads are stored in the server’s local storage. The stored location of

the ads in the result set of the database query is used to get ads from the

local disk. The ads are returned to the interpreting module as picture file

instances, and will then be interpreted into bytes and transmitted to the

client via the communication module.

6.2 Android App Client Implementation

The Android application client implementation is based on the LayerCake

System [5]. As mentioned before, LayerCake is a modified version of Android

operating system which allows the using of secure embedded user interfaces

and supports the host application to embed another activity that runs in a

individual process.

The Android client includes two core parts. The host application provides

functionality while the embedded ad application is responsible for displaying

27



the ads and communicating with the ad library server. The information flows

collected by the two applications are exactly separated since they are running

in two independent processes. The relationship of the two parts are shown

in Figure 6.2.

Figure 6.2: Android Application Client

The Host Application, in our test, is a health coach master which allows the

user to keep track of the calories that he takes from meals, and the calories

that he consumes when he works out. It only asks for necessary permissions

upon installation and does not require additional permissions for the ad-

vertising module. The advertisement application is installed independently.

When the user gets the basic version of the application, he is only offered

an overview of his calories information and the UI to record his meals. Only

after unlocking the exercise functionality could the user access the third tab

to record how many calories he consumes via working out. There are two

buttons in the Host Application provided to the user to have the third tab

unlocked: making a payment (and also the user gets rid of the ads, so that

the provider’s revenue comes directly from the user’s payment), or provid-

ing in-app personal meta data (and also get more targeted advertisements).

The Host Application provides an EmbeddedView for the banner advertise-

ment (which is enabled by the modified Android System LayerCake) to be

displayed.

The ad application has a transparent UI of itself and is only visible to the

user when showing in the host application. When it is embedded in the host

application, the ad picture is retrieved from the ad library server and then

displayed as a banner. When the banner is clicked on, a message prompts

28



Figure 6.3: Communication between Host App and Ad App process

29



and asks the user’s permission for the advert to be fully displayed. Once the

user agrees to view the whole advertisement, the ad application starts an

new Intent to call the system browser. The browser brings out the complete

information about the application in the displayed advertisement by loading

contents using the ad’s corresponding url. On the page loaded, the user can

choose to read the full description of the application and download it.

The inter-process communication is accomplished using Android interface

definition language. In a word, both the host application and the ad appli-

cation define interfaces and claim methods and variables which are available

for the other one to use. The AIDL compiler outputs an interface translated

as the Java programming language from the interface defined in the .aidl

file. Then both application implement their own interface methods which

are necessary for IPC calls. An inner abstract class named Stub that inherits

the interface is implemented in both the host and the ad applications.

Figure 6.3 shows the procedure of how the embedded ads are shown and

updated. The host application implements IEmbeddedContainer while the

ad application implements IRemoteEmbeddedAd. When the host application

is first created and opened, the onCreate method is called and everything

is initialized. Then the host application shares an instance of the IEmbed-

dedContainer to the child process (here the ad application) and refers it

as parentBinder. The ad application creates an instance ownInterface of the

IRemoteEmbeddedAd and in the meantime gets the reference to parentBinder.

The child process then passes its ownInterface as an argument to the main

process via containerInterface.registerChildInterface(ownInterface), which is

implemented in the Stub class in the host application. The host application

starts a new thread to monitor user preference. When the user allows the

collection of his demographic information, the host application sends the in-

formation to ad application, which then communicates with the ad library

server. The user gets more targeted ads after the upload of demographic

information, and also unlocks the professional functionality. On the other

hand, when the user chooses to make a payment to the provider directly, the

third functionality could also be unlocked and the user gets rid of all the

advertisements.

The communication actions with the ad library server are all implemented

in the ad application using Socket. For consistency the ad application is

using the same Transfer class as is used on the server side. When it starts to

30



send a command, it first uses Transfer.FromStringToBytes() to interpret the

command into bytes before communicating with the server. As is mentioned

in section 6.1, the data sent from this Client side also strictly follows the loop

of sequences of Command number–Data length–Data–Command number–....

6.3 Advertising Procedure

After the illustration of the details on the ad library server side and the

application client side, we now come to an overview of the complete procedure

of our advertising, which is shown in Figure 6.4.

We set up our multi-thread server to wait for the connection request from

the Android client. The client sends command ID 1 using socket.write() to

request a connection. After a connection is successfully established, the client

then starts to send App Bundles information to the server using command

ID 2, followed by the App Bundles list size, and then, length of each package

name, and finally the packagename. All the strings are translated into bytes

before goes to Socket.

After finishing receiving all the data after command 2, the server first

translates the bytes into strings and selects appropriate ads due to the app

types from the database. A collection C of three lists which all follow the

same index order—AdPicLocation list, AdDownloadURL list, UserAgeRange

list—is then created due to the result set of querying the database. When

user’s age information has not been updated from the client, the server sends

periodically (refreshing every 10 seconds in our Demo) both the advertise-

ment and the corresponding downloading url of every application in C to the

client side.

Similar to command ID 2, here the server sends command ID 3 to the

client to indicate the start of actual advertising. For each advertisement

in the list, the server sends the length of the ad picture file, then the file

itself, followed by the length of the download url, and finally the download

url. Once the user selects to exchange his demographic information for more

functionality, the server further filters the ads (stop sending those Ads that

the age range does not match with the user of the current host application)

and keeps refreshing. The user can also choose to get more functionality by

making a payment directly to the application provider and stop receiving ads

31



Figure 6.4: Communication process between Ad Library Server and
Android Client

32



Figure 6.5: Advertising Process and State Transition Finite State
Automaton

from the advertiser.

Algorithm 1 Advertisement Selection and Filtering Algorithm

1: procedure Advertising
2: Client gets user age a from host app and sends to server
3: for each app name n ∈ App Bundle L do
4: Client sends n message to Server
5: Server queries database Ad table using n and get the app type t
6: Server queries database Ad table using t and get result set S
7: for each result s ∈ result set S do
8: add ad location to list L
9: add ad url to list U

10: add app user age range to list R
11: end for
12: for each age range ar ∈ R do
13: if a matches ar then
14: get ad from ad location and send to Client
15: get ad url and send to Client
16: end if
17: end for
18: end for
19: end procedure

33



One thing worth noting here is that, once the actual advertising has

started, the server is only sending ads and the client is only receiving ads.

Socket supports full-duplex communication so the input stream of the server

side and the output stream of the client side can still be utilized. In our

implementation, the server has a child thread which monitors the reporting

of user age from the client, while on the client side, the ad application has

a child thread that listens to the host application, once the user allows the

sharing of age information in the host application, this child thread reports

it to the server.

Figure 6.5 uses a finite state automaton to describe the state transitions

of the above procedure. State 0 indicates the initialization of the system,

state 1 shows the connection of the server and the client, when in state 2, the

user keeps receiving Inter-App Ads until he chooses any of the two options

to upgrade his Health Coach Master to get more functionality, while sharing

in-app information (user’s age in our case) leads to state 3, and payment

leads to state 4. A user cannot transit from state 3 to state 4 or in the

opposite direction.

Algorithm 1 introduces how the advertisement library server selects and

filters ads with regard to a particular client. Before the user choose to share

the age information with the server, the server simply collects and collates

all the possible advertisements matching the type of every application from

App Bundles information. After age information is uploaded, it is used as

a filter to get rid of any application that does not match the reported age

range.

34



CHAPTER 7

DEMO AND EVALUATION

After the implementation of our model, we do a demo using the ad library

server and the Android application client. Section 7.1 shows the procedure of

how the implemented demo works. Section 7.2 demonstrates the advantages

of our work and provides analysis of limitations of this work.

7.1 Demo

We use 8 sample applications in our demo. Table 7.1 shows the information

of the related applications:

Table 7.1: Advertisements Used in the Demo

ID AppName AdPicLoc AppUrl AppType UserAgeRange

0 30DAY S ... ... 0 2X

1 EATFIT ... ... 0 3X

2 FITBODY ... ... 0 4X

3 LAY AMUSIC ... ... 1 2X

4 MUSICPLAY ER ... ... 1 3X

5 BEATSMUSIC ... ... 1 4X

6 HealthCoachManager ... ... 0 2X

7 Music ... ... 1 3X

First we will explain what does each of the keys in Table 7.1 mean.

• ID is the unique primary key of each application in the database, it

starts from 0 and it is auto-increment.

35



Figure 7.1: Ads Loop 1 : Health-related (AppType 0) Ads

Figure 7.2: Ads Loop 2 : Music-related (AppType 1) Ads

36



• AppName shows the packagename the same as what could be got using

getInstalledPackage() by our Android application client.

• AdPicLoc is the locations of the advertisement picture stored in the

Server’s local disk.

• AppUrl is the url in Google Play Store which leads to the downloading

page of the advertised application.

• AppType shows which AppType does a application belong to. In our

demo we’re using 2 AppTypes of applications. When the value of App-

Type is 0, it means the application is health-related, while AppType 1

means it is a music-related application.

• One application is always most prevalent among a particular user group

in a certain age range, revealed by UserAgeRange in the above Table.

The 8 sample ads include 4 apps in AppType 0 and 4 apps in AppType

1, 3 apps most popular in the user group of ages 20s, 3 most prevalent with

users in their 30s and 2 for those in their 40s.

Our demo host application Health Coach Manager is a health-related appli-

cation, its AppType is recorded as 0 in Table 7.1. Other installed applications

in our test device include Music, Bluetooth, Email, Browser, etc.

The procedure of advertising is as follows.

When the Health Coach Master application is first opened, it is initialized

and an EmbeddedView instance is created. Now the user is at Inter-App Ads

Level and get basic functionality of the application: the overall information

and the UI of recording his calories taking from meals. The embedded ad

application sends App Bundles information to the ad library server. The list

of package names in our App Bundles information includes Music, Bluetooth,

Email, Browser, Health Coach Manager, etc. Only 2 of them are in our test

data set, Music and Health Coach Manager, of AppType 1 and 0 respec-

tively. The querying of AppType = 0 returns a set of applications: 30DAYS,

EATFIT and FITBODY. Similarly, The querying of AppType = 1 returns

LAYAMUSIC, MUSICPLAYER and BEATSMUSIC. The server then is pre-

pared with a list of applications: 30DAYS, EATFIT and FITBODY, LAYA-

MUSIC, MUSICPLAYER and BEATSMUSIC. The server then sends ads to

37



the client, one at a time, and refreshes every 10 seconds. The refreshments

of advertisements are shown in Figure 7.1 and Figure 7.2.

Clicking on any of these ads prompts a dialogue asking the user’s permis-

sion to display the complete ad in a browser, shown in Figure 7.3. Once the

user chooses “OK” the application starts a new intent to call the browser, in

which the application is completely shown in Google Play Store, where the

user can view the full information of the app and install it.

Figure 7.3: Click on Ads to Show Application in Google Play Store

The two buttons on the bottom of the host application, PAY and INFO,

which can also be seen in Figure 7.1 and Figure 7.2 provide the user oppor-

tunities of upgrading his service.

When the Pay button is clicked the user pays service fees directly to the

application developer to unlock the third functionality: keep track of calories

consumed via exercises, and also gets rids of all the advertisements. The

result of the payment activity is shown in Figure 7.4.

The other button Info, when clicked, it means the user agrees to share his

demographic information with the advertiser to unlock the Exercise function-

38



Figure 7.4: Unlock Professional Functionality via Payment

Figure 7.5: Unlock Professional Functionality via Payment

39



ality and gets more targeted ads. In our demo, our host application collects

the user’s age information, 20, and updates it to the server. The server,

which has been monitoring the receiving of the user’s demographic informa-

tion, starts to use UserAge as a filter to stop sending less matching ads. In

Table 7.1, only 30DAYS and LAYAMUSIC are recorded as most prevanlent

among the users in their 20s, so the resulting advertisements are shown in

Figure 7.5, only the two ads for 30DAYS and LAYAMUSIC are periodically

delivered to the client.

7.2 Evaluation and Analysis

From our demo we demonstrate that our model effectively provides permis-

sion separating for the advertisement module and the host application. The

design of privacy levels for the users to choose considers the preferences of

different users and balances between service and privacy.

The advantage of our approach is obvious: first of all, our model solves the

problem of privacy offense with regard to the user; on the other hand, the

benefits of the advertiser is also protected by preventing click fraud cheating

from the provider; last but not least, for the provider, the ad library is no

longer able to abuse the permissions it gets from the host application. In a

word, the three party feedback loop balances the benefits of each entity in

the advertisement model. There are actually some applications on the iOS

platform that provides in-app purchases [35] to get rid of the ads. This is a

“two-layer” advertisement model to some extent, providing a No Ads level

and a Having Ads Level. Our work, designed with four layers, considers more

about the variances and changes of users’ preferences by offering the users

with more levels to choose.

There are, however, limitations of our work. Most significantly, the de-

ployment of LayerCake system as a platform means that our model does not

work in any original Android system. It is difficult for Google to incorporate

the new model into their design since the current model is still prevalent

and has not caused too many complaints from the users. What’s more, our

model proposes that all the permissions required by different applications

being clearly stated to the user, which might be good to some users who

have good security and privacy background knowledge, but might also cause

40



panic among those who have not been caring too much about their privacy

previously. This means our model could also be hard for the users to accept.

Also, our work uses a simple and naive recommendation algorithm: find ap-

plications which are similar to what have been installed, which means our

prediction may not be accurate enough.

41



CHAPTER 8

CONCLUSION AND FUTURE WORK

In this master thesis work, we study the privacy problems in the current

Android on-line advertising model. With the explore of the background

knowledge, we discover that many Android applications rely on the revenue

from the advertiser. The current advertising model brings about privacy

offense problems with regard to the user. After doing the analysis of know

attempts of preserving user privacy, we address two approaches in our work.

Our first approach separates ad library permission requirements from the

host application and forms a clear three party feedback loop, and the second

approach provides the user with a four-level privacy concerned advertisement

mechanism.

Our model call into further attention to alternate the design of current

Android on-line advertising model. However, our design still has some lim-

itations. First, our implementation uses LayerCake System as a platform,

which requires the modification of the Android system source code. This lead

to the difficulty for Google to incorporate the new model into their design

in recent years. Second, our new model proposes to use App Bundles infor-

mation and presents the user with clear described permission requirements.

This could be good news to some users who have background knowledge

about privacy but could also cause panic among the other users who have

not been caring anything about their personal information previously. In the

latter case, the new model would actually be even harder to be accepted,

before the users understand why and how their privacy should be protected.

Third, our advertising procedure adopts a naive recommendation and pre-

diction algorithm, and has been doing the test using a relatively small data

set.

There is still a long way to go before this work can be applied in real life.

There are some future works that could be done. First, we can design and

adopt more reasonable and accurate prediction algorithms for the advertise-

42



ment selection. Second, we are using static App Bundle information in our

current implementation, however, we could always modify our code to sup-

port App Bundles information updating, which means, whenever after the

user installs a new application, the ads targeted at him may be different.

43



REFERENCES

[1] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid: trading
privacy for application functionality on smartphones,” in Proceedings
of the 12th Workshop on Mobile Computing Systems and Applications.
ACM, 2011, pp. 49–54.

[2] M. Nauman, S. Khan, and X. Zhang, “Apex: extending android per-
mission model and enforcement with user-defined runtime constraints,”
in Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security. ACM, 2010, pp. 328–332.

[3] D. Quercia, I. Leontiadis, L. McNamara, C. Mascolo, and J. Crowcroft,
“Spotme if you can: Randomized responses for location obfuscation on
mobile phones,” in Distributed Computing Systems (ICDCS), 2011 31st
International Conference on. IEEE, 2011, pp. 363–372.

[4] M. P. I. Leontiadis, C. Efstratiou and C. Mascolo., “Dont kill my ads!
balancing privacy in an ad-supported mobile application market.” in
12th Workshop on Mobile Computing Systems and Applications, San
Diego, CA, HotMobile 12, 2012.

[5] F. Roesner and T. Kohno., “Securing embedded user interfaces: Android
and beyond.” in USENIX Security, 2013.

[6] “Android open source project. dex http://source.android.com/tech/dalvik/
dex-format.html,” 2007.

[7] J. MARSHALL, “Twitter is tracking users installed apps for ad
targeting,” 2014. [Online]. Available: http://blogs.wsj.com/cmo/2014/
11/26/twitter-is-tracking-users-installed-apps-for-ad-targeting/

[8] A. Henry, “Facebook is tracking your every move on the web; here’s how
to stop it,” 2011. [Online]. Available: http://lifehacker.com/5843969/
facebook-is-tracking-your-every-move-on-the-web-heres-how-to-stop-it

[9] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Data Engi-
neering, 1995. Proceedings of the Eleventh International Conference on.
IEEE, 1995, pp. 3–14.

44

http://blogs.wsj.com/cmo/2014/11/26/twitter-is-tracking-users-installed-apps-for-ad-targeting/
http://blogs.wsj.com/cmo/2014/11/26/twitter-is-tracking-users-installed-apps-for-ad-targeting/
http://lifehacker.com/5843969/facebook-is-tracking-your-every-move-on-the-web-heres-how-to-stop-it
http://lifehacker.com/5843969/facebook-is-tracking-your-every-move-on-the-web-heres-how-to-stop-it


[10] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-
C. Hsu, “Prefixspan: Mining sequential patterns efficiently by prefix-
projected pattern growth,” in 2013 IEEE 29th International Conference
on Data Engineering (ICDE). IEEE Computer Society, 2001, pp. 0215–
0215.

[11] Google, “Admob ads sdk.” [Online]. Available: https://developers.
google.com/mobile-ads-sdk/

[12] M. D. Shekhar, Shashi and D. S. Wallach., “Adsplit: Separating smart-
phone advertising from applications.” in USENIX Security Symposium,
2012.

[13] S. S. Y. P. A. S. Dietz, Michael and D. S. Wallach., “Quire: Lightweight
provenance for smart phone operating systems.” in USENIX Security
Symposium, 2011.

[14] F. Roesner, J. Fogarty, and T. Kohno, “User interface toolkit mecha-
nisms for securing interface elements,” in Proceedings of the 25th annual
ACM symposium on User interface software and technology. ACM,
2012, pp. 239–250.

[15] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan, “User-driven access control: Rethinking permission grant-
ing in modern operating systems,” in Security and privacy (SP), 2012
IEEE Symposium on. IEEE, 2012, pp. 224–238.

[16] A. NEWCOMB, “Twitter is watching you: How to opt out of new
tracking feature,” 2014. [Online]. Available: http://abcnews.go.com/
Technology/twitter-watching-opt-tracking-feature/story?id=27204927

[17] K. Wagner, “Twitter to start tracking which apps its users have
downloaded,” 2014. [Online]. Available: http://recode.net/2014/11/
26/twitters-now-collecting-data-on-which-apps-you-download/

[18] E. M. Zeman, “Twitter now tracking which apps you’ve installed,”
2014. [Online]. Available: http://www.phonescoop.com/articles/article.
php?a=14964

[19] “Get search, twitter api,” 2013. [Online]. Available: https:
//dev.twitter.com/docs/api/1/get/search

[20] Wikipedia, “Twitter now tracking which apps you’ve installed,”
2015. [Online]. Available: http://en.wikipedia.org/wiki/Software
development kit

[21] L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schecter, and C. Jackson,
“Clickjacking: Attacks and defenses.” in USENIX Security Symposium,
2012, pp. 413–428.

45

https://developers.google.com/mobile-ads-sdk/
https://developers.google.com/mobile-ads-sdk/
http://abcnews.go.com/Technology/twitter-watching-opt-tracking-feature/story?id=27204927
http://abcnews.go.com/Technology/twitter-watching-opt-tracking-feature/story?id=27204927
http://recode.net/2014/11/26/twitters-now-collecting-data-on-which-apps-you-download/
http://recode.net/2014/11/26/twitters-now-collecting-data-on-which-apps-you-download/
http://www.phonescoop.com/articles/article.php?a=14964
http://www.phonescoop.com/articles/article.php?a=14964
https://dev.twitter.com/docs/api/1/get/ search
https://dev.twitter.com/docs/api/1/get/ search
http://en.wikipedia.org/wiki/Software_development_kit
http://en.wikipedia.org/wiki/Software_development_kit


[22] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of
mobile malware in the wild,” in Proceedings of the 1st ACM workshop on
Security and privacy in smartphones and mobile devices. ACM, 2011,
pp. 3–14.

[23] A. BRAIN, “Discover new android apps, manage your apps, share your
apps with friends.” [Online]. Available: http://www.appbrain.com/

[24] V. Agrawal, “App usage tracer.” [Online]. Avail-
able: https://play.google.com/store/apps/details?id=com.agrvaibhav.
AppUsageTracking&hl=en

[25] Google, “Google play,” 2015. [Online]. Available: https://play.google.
com/store/search?q=traffic+monitor&c=apps

[26] R. Srikant and R. Agrawal, Mining sequential patterns: Generalizations
and performance improvements. Springer, 1996.

[27] J. Reps, J. M. Garibaldi, U. Aickelin, D. Soria, J. E. Gibson, and
R. B. Hubbard, “Discovering sequential patterns in a uk general practice
database,” in Biomedical and Health Informatics (BHI), 2012 IEEE-
EMBS International Conference on. IEEE, 2012, pp. 960–963.

[28] A. P. Wright, A. T. Wright, A. B. McCoy, and D. F. Sittig, “The use
of sequential pattern mining to predict next prescribed medications,”
Journal of biomedical informatics, 2014.

[29] L. Ulanoff, “Amazon knows what you want before you buy it,”
2015. [Online]. Available: http://www.predictiveanalyticsworld.com/
patimes/amazon-knows-what-you-want-before-you-buy-it/

[30] R. Barnes, “Amazon’s ’anticipatory shipping’ explained,” 2014.
[Online]. Available: http://www.marketingmagazine.co.uk/article/
1228379/amazons-anticipatory-shipping-explained

[31] “All about cookies.” [Online]. Available: http://www.allaboutcookies.
org/cookies/cookie-profiling.html

[32] H. Haddadi, P. Hui, and I. Brown, “Mobiad: private and scalable mobile
advertising,” in Proceedings of the fifth ACM international workshop on
Mobility in the evolving internet architecture. ACM, 2010, pp. 33–38.

[33] J. Camenisch, D. Sommer, S. Fischer-Hübner, M. Hansen, H. Krase-
mann, G. Lacoste, R. Leenes, J. Tseng et al., “Privacy and identity
management for everyone,” in Proceedings of the 2005 workshop on Dig-
ital identity management. ACM, 2005, pp. 20–27.

46

http://www.appbrain.com/
https://play.google.com/store/apps/details?id=com.agrvaibhav.AppUsageTracking&hl=en
https://play.google.com/store/apps/details?id=com.agrvaibhav.AppUsageTracking&hl=en
” https://play.google.com/store/search?q=traffic+monitor&c=apps
” https://play.google.com/store/search?q=traffic+monitor&c=apps
http://www.predictiveanalyticsworld.com/patimes/amazon-knows-what-you-want-before-you-buy-it/
http://www.predictiveanalyticsworld.com/patimes/amazon-knows-what-you-want-before-you-buy-it/
http://www.marketingmagazine.co.uk/article/1228379/amazons-anticipatory-shipping-explained
http://www.marketingmagazine.co.uk/article/1228379/amazons-anticipatory-shipping-explained
http://www.allaboutcookies.org/cookies/cookie-profiling.html
http://www.allaboutcookies.org/cookies/cookie-profiling.html


[34] F. F-Secure Labs, Helsinki, “Mobile threat report,” 2013.
[Online]. Available: https://www.f-secure.com/documents/996508/
1030743/Mobile Threat Report Q3 2013.pdf

[35] CodeTuition, “Integrating ios app with in-app purchase,”
2013. [Online]. Available: http://www.codetuition.com/ios-tutorials/
integrating-ios-app-with-in-app-purchase/

47

https://www.f-secure.com/documents/996508/1030743/Mobile_Threat_Report_Q3_2013.pdf
https://www.f-secure.com/documents/996508/1030743/Mobile_Threat_Report_Q3_2013.pdf
http://www.codetuition.com/ios-tutorials/integrating-ios-app-with-in-app-purchase/
http://www.codetuition.com/ios-tutorials/integrating-ios-app-with-in-app-purchase/

	List of Tables
	List of Figures
	CHAPTER 1 Introduction
	Overview
	Problem Statement
	Our Approach
	Main Contributions
	Outline

	CHAPTER 2 Background
	Current Design of Advertising Model and Its Limitations
	Known Attempts to Preserve Privacy on Android Platform
	Known Uses of App Bundles

	CHAPTER 3 Android LayerCake as A Platform
	LayerCake Features
	Visualization of More Than One Application
	One Host Embedding Multiple Applications
	Clickjacking Prevention

	LayerCake Performance when Embedding Advertising

	CHAPTER 4 Ideas related to App Bundles
	Sequential Pattern Mining for Prediction in Medicine Field
	Amazon Anticipatory Package Shipping
	Persistent Cookies Profiling

	CHAPTER 5 Four-Layer Cake Design
	Related Work
	Modified Three Parties Feedback Loop
	Four Layers of Privacy

	CHAPTER 6 Implementation
	Advertisement Library Server Implementation
	Android App Client Implementation
	Advertising Procedure

	CHAPTER 7 Demo and Evaluation
	Demo
	Evaluation and Analysis

	CHAPTER 8 Conclusion and Future Work
	REFERENCES

