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ABSTRACT 

 

 Warming a hemorrhaging victim is the standard of care due to the adverse effects of 

combined hemorrhage and hypothermia on survival.  However, it has been found that 

heating can be detrimental to the maintenance of arterial pressure, cerebral perfusion, and 

may also impact cognitive function.  PURPOSE:  To test the hypothesis that mildly heating 

an otherwise normothermic individual can be detrimental to cognitive function during a 

simulated mild hemorrhagic insult.  METHODS: Nine men (mean ± SD: age, 29.9 ± 8.4 y; 

body mass, 79.4 ± 15.2 kg) underwent a randomized, crossover experimental design.  

Following 15 min of supine rest, 10 min of 30 mmHg of lower body negative pressure 

(LBNP) was applied to simulate a mild hemorrhagic challenge while subjects were 

normothermic.  With LBNP continuing, subjects were exposed to mild whole-body heating 

(mean skin temperature (Tsk): 36.7 ± 0.5°C), skin surface cooling (Tsk: 29.6 ± 1.0°C), or 

remained thermoneutral (Tsk: 33.5 ± 0.6°C) for an additional 40 min via a water-perfused 

suit.  A modified Erikson Flanker task was used as a measure of cognitive function.  

Affective valence and thermal sensations were also assessed.  Upon completion of trials, 

subjects remained supine for 15 min for Tsk to return to baseline temperatures.  RESULTS: 

Interaction between thermal perturbations and LBNP time did not reveal changes in 

cognitive function, as reflected in response accuracy (P = 0.19), reaction time (P = 0.09) or 

performance variability (P = 0.16) on the Flanker task.   This suggests that LBNP with and 

without thermal perturbations had little influence on cognitive function.  CONCLUSIONS: 

For the applied level of simulated hemorrhage (30 mmHg LBNP), these data suggest that 

mild heating of a hemorrhaging victim does not compromise cognitive function, while 
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cooling is not beneficial.  It remains unknown whether mild heating would be detrimental 

during a more profound simulated hemorrhagic challenge.   
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CHAPTER 1 

INTRODUCTION 

 

 One in 10 deaths worldwide is caused by traumatic injury, with 30-40% of trauma-

related deaths due to hemorrhage (Hoyt et al., 2008).  Additionally, hemorrhage from 

major trauma is the predominant mechanism of death in potentially survivable casualties, 

based on each wounds potential for survivability (Eastridge et al., 2011).  It is also 

responsible for deaths on the battlefield (BAA 11-1, October 2010).  Among the trauma 

patients who do not die immediately, hemorrhage-induced hypotension (systolic blood 

pressure ≤ 90 mmHg) often occurs (Heckbert et al., 1998).   

 This decrease in arterial pressure may compromise blood flow through the primary 

blood vessels in the brain (i.e., carotid, vertebral arteries), one result of which may be 

cognitive impairment.  Consequently, the ability to accurately make rapid decisions or 

allocate attention to pertinent tasks (e.g., battalion commander, incident commander, 

firefighter in a dangerous situation) while severely injured may be compromised.  

Currently, trauma patients are passively heated due to severe unintentional hypothermia 

(core body temperature < 35°C) that can accompany trauma (Martin et al., 2005; Peng & 

Bongard, 1999).  However, if the patient does not present with hypothermia (e.g., 

normothermic), it may not be conducive, and may even be disadvantageous to heat them.  

Thus, development of countermeasures to prevent or attenuate decrements in arterial 

pressure and possibly cognitive function during traumatic injury (e.g., hemorrhage) is an 

important undertaking.  
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 Aerobic exercise and fitness has been associated with better cognitive vitality (e.g., 

enhanced executive function, visuospatial processing, speeded processing) and 

improvements in aerobic fitness, from both acute and chronic exercise, have been shown to 

influence cognitive functioning (Colcombe & Kramer, 2003; Hillman, Erickson & Kramer, 

2008; Themanson & Hillman, 2006).  Certain populations, notably military soldiers and 

firefighters, are routinely challenged to perform tasks and operations that are both 

physically and cognitively demanding.  Further, high levels of stress (i.e., physical, 

environmental, cognitive) are generated during battlefield combat and firefighting and the 

risk for developing psychiatric symptoms and compromised neurocognitive functioning 

increases (van Wingen et al., 2012).  Battlefield combat and firefighting often involve long 

(> 60 min) and arduous work that can lead to dehydration and fatigue, which may further 

compromise information processing and memory functions (Tomporowski, 2003).      

 Ultimately, the combination of extreme environmental temperatures, physical 

exertion, heavy equipment, and body armor or personal protective equipment, results in 

body temperatures that often exceed 38°C (Horn, Blevins, Fernhall, & Smith, 2013; Welles 

et al., 2013).  As the body experiences elevated temperatures, such as during exercise or in 

a hot environment, the rectal to skin temperature gradient is reduced, causing 

vasodilatation and an increase in skin blood flow to the periphery to dissipate heat.  The 

increase in skin blood flow then causes peripheral pooling of the blood, leading to a drop in 

central pressure, and thus hypoperfusion to the brain and decrements in cognitive function 

(Castellani 2003; Sawka & Wenger 1988).  Additionally, Lieberman et al. (2005a) have also 

shown decrements in both simple and higher cognitive functions as a result of such 

multiple stressors.  Thus, through the course of their activities, either on the battleground 
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or fire ground, a soldier or firefighter may have compromised cognitive function even 

before experiencing a hemorrhagic injury.    

 Clearly research is needed to identify whether, or to what extent, such combined 

stressors lead to adverse effects on cognitive function.  Thus, the primary research question 

to be addressed in the present study is whether in normothermic hemorrhaging 

individuals, mild heating or skin surface cooling alters cognitive function?  A secondary 

question is the extent to which aerobic fitness might modify that effect.  As a result, the 

purpose of this study is to evaluate the effects of different thermal stimuli during simulated 

hemorrhaging on various aspects of cognitive performance.  The following research 

hypotheses are generated: 

1. Mildly heating an otherwise normothermic individual experiencing a simulated 

hemorrhagic insult will be detrimental to cognitive function.  Specifically, (a) 

response accuracy will decrease; (b) reaction time will increase (i.e., slow); and (c) 

variability in response times will increase for the cognitive task.  Such responses 

will be related to aerobic fitness such that more fit individuals will show 

proportionately less decrement than less fit individuals, as well as compared to their 

baseline scores.     

2. Skin surface cooling an otherwise normothermic individual experiencing a 

simulated hemorrhagic insult will be beneficial to cognitive function.  Specifically, 

(a) response accuracy will increase; (b) reaction time will decrease (i.e., become 

faster); and (c) variability in response times will decrease for the cognitive task.  

Such responses will be related to aerobic fitness such that more fit individuals will 
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show proportionally more benefit than less fit individuals, as well as compared to 

their baseline scores.          
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CHAPTER 2 

REVIEW OF LITERATURE 

 

 This review of literature describes various factors that influence cognitive function.  

The first section presents an overview of physical activity and its association with the 

cognitive function.  Next, the relationship between multiple stressors (including exercise), 

experienced by military and firefighting personnel, and cognitive performance will be 

evaluated.  Subsequently, because hypothermia is a frequent occurrence for both military 

and firefighting personnel, the influence of hyperthermia on cognition will also be 

reviewed.  Alternative treatments, such as body-cooling techniques, have shown favorable 

effects on cognitive function (as described), which may also benefit cognitive performance 

in trauma patients (i.e., those experiencing hemorrhage).  Lastly, an overall summary and 

the statement of the problem are given.  

 

2.1 PHYSICAL ACTIVITY AND COGNITIVE FUNCTION 

 Participation in physical activity has been associated with fewer physical and 

mental disorders (Hillman et al., 2008).  As a result, the relationship between physical 

activity and improvements in brain function and cognition has been explored.  According to 

Nehlig (2010), cognitive function is defined as the capacity for information processing, as 

well as applying knowledge and changing preferences.  All of these aspects of cognitive 

function involve memory, attention, executive function, perception, language and 

psychomotor functions.  Colcombe and Kramer (2003) noted that while the largest positive 

effect of exercise on cognitive function occurred for executive function tasks (effect size = 
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0.68), visuospatial and speeded processing (i.e., reaction time) was also influenced (effect 

size = 0.426 and 0.274, respectively).  Executive control is a particular aspect of cognition 

responsible for the management of cognitive processes of perception, memory and action.  

An oft-used cognitive task that taps these various aspects of executive functioning is the 

Flanker task (Eriksen & Eriksen, 1974; Themanson & Hillman, 2006).  Ultimately, 20-60 

min of submaximal aerobic exercise has been shown to facilitate multiple cognitive 

processes that are critical to optimal performance and adaptive behavior (e.g., reaction 

time, speed of information processing).  Acute moderate intensity exercise has also been 

shown to improve performance on higher-order cognitive processes, aspects of executive 

functioning such as planning and working memory (Ratey & Loehr, 2011).    

 Following a 3-month aerobic exercise regimen (40 min cycling, running, stair 

climbing, or elliptical trainer), Pereira et al. (2007) noted a significant relationship between 

changes (i.e., improvements; β = 0.70) in VO2max and improved cognitive function, 

specifically declarative memory (as assessed by a modified Rey Auditory Verbal Learning 

Test).  Essentially, as aerobic fitness increased due to exercise, first-trial learning of new 

declarative memories improved (pre-exercise = ~8 correct responses; post-exercise = ~12 

correct responses).  Chapman et al. (2013) also utilized a 3-month aerobic exercise 

intervention (3, 60 min sessions per week of cycling or walking) and evaluated 

neurocognitive measures of executive function, memory and complex attention.  Cognitive 

gains were manifested in the exercise group in terms of memory function (as assessed via 

the Wechsler Memory Scale, 4th Edition).  Specifically, immediate and delayed memory 

improved from pre-training, or baseline, to post-training (immediate memory raw score: 
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exercise Δ mean = 1.6, control Δ mean = -2.3, P = 0.003; delayed memory raw score: 

exercise Δ mean = 2.0, control Δ mean = -0.3, P = 0.03).   

 Although significant cognitive benefits have been shown as a result of exercise 

training, short exercise periods (i.e., acute exercise) may also enhance cognitive function.  

Voluntary wheel running for 1 week was shown to improve learning acquisition in rats (i.e., 

shorter latency), as assessed by the time it took to find an escape platform in the hidden 

water maze compared to their sedentary counterparts (Vaynam, Ying, & Gomez-Pinilla, 

2004).  Further, memory retention in exercise rats exceeded control rats.  That is, water 

maze trials were performed 2 days later still showed an advantage for the exercised rats.  

They swam toward the escape platform quadrant and spent a significantly (P < 0.05) 

greater percentage of time in this quadrant than the control sedentary group (48.27 ± 

3.14% vs. 33.95 ± 4.64%; Vaynam et al., 2004).  Improvements in cognitive function have 

also been shown in exercising humans.   

 Higher scores of executive functioning, as measured by performance on the Stroop 

test, were found following acute bouts of exercise (e.g., graded exercise test, 30 min low 

intensity cycling at ~56% VO2max, and 30 min high intensity cycling at ~75% VO2max; Ferris, 

Williams, & Shen, 2007).  Similarly, Murray and Russoniello (2012) reported significant 

improvements in visual attention, task switching and reaction time following a 30 min bout 

of cycling at a self-determined intensity (average 65% VO2max) in regular exercisers and 

non-exercisers.  Specifically, time to complete complex tasks was reduced and faster 

reaction times were noted after an acute bout of moderate intensity cycling (Murray & 

Russoniello, 2012).  Overall, both long-term and short-term exercise can selectively benefit 
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multiple aspects of cognitive performance, but can also be influenced by various factors 

(e.g., dehydration).  

 Exercise-induced (40 min walking, 5.6 km·h-1, 5% grade) dehydration (1.59% loss of 

body mass) produced significantly altered premature errors on the psychomotor vigilance 

test task, a test of simple visual reaction time in which participants must respond as rapidly 

as possible when a stimulus appears (Ganio et al., 2011).  Minor dehydration affected 

sustained attention to the stimulus resulting in more incorrect responses.  This decrement 

would be expected to continually worsen as dehydration continues (e.g., combat, fire 

suppression).   

 Imposition of a greater level of dehydration (~4% body mass loss), generated by 3 h 

of work-rest cycles and passive heating of 10, 20, 30 and 40°C, had no significant effect on 

reaction time to the same psychomotor vigilance test in comparison to the euhydrated 

group (Ely, Sollanek, Cheuvront, Lieberman, & Kenefick, 2013).  Similarly, Adam et al. 

(2008) reported that moderate levels of dehydration (~3% body mass loss via 3 h of 

passive heating) had no significant effect on any measure of cognitive function.  However, 

after 60 min of cycling (60% VO2peak), while dehydrated, increased accuracy was shown in 

sentry duty friend-foe discrimination on a marksmanship simulator and improved total 

response latency (i.e., faster) to a visual vigilance task (Adam et al., 2008).  Since both 

studies elicited dehydration over an extended period of time, it is possible that participants 

may have gradually acclimated to their hydration levels, allowing them to maintain 

cognitive performance.   

 Without question, military and firefighting operations require some form of physical 

activity that is also coupled with conditions that can negatively influence cognitive 
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performance (e.g., hyperthermia, dehydration).  As such, in the presence of multiple 

stressors that are regularly encountered by military and firefighting individuals (e.g., 

extreme temperatures, traumatic injury), it is reasonable to ask whether the benefits of 

physical activity would preserve or attenuate cognitive function decline.      

   

2.2 COMBAT AND FIREFIGHTING CONDITIONS INFLUENCING COGNITIVE FUNCTION  

 Various factors, including mood, level of arousal (reflecting alertness and energy), 

physical well-being, and motivation can influence cognitive function (Nehlig, 2010).  

Additional external stressors and risk factors that are continually present (e.g., exposure to 

extreme environments, heavy workload, inadequate sleep, dehydration, impaired 

nutritional state, fear, uncertainty and information overload), may further challenge or 

hinder cognitive performance, especially among military and firefighting personnel.  These 

individuals are routinely challenged to perform tasks that are both physically and 

cognitively taxing, which increases the risk for developing psychiatric symptoms and 

compromised neurocognitive functioning (van Wingen et al., 2012).  Even well trained, 

seasoned leaders are not immune to cognitive impairments during these high multi-stress 

environments.   

 

Effects on Attention (Vigilance), Reaction Time, and Memory 

 Dismounted soldiers, as opposed to soldiers who fight from mobile platforms, 

perform a combination of complex tasks that require both physical and cognitive resources.  

As such, the combination of 30 min of walking around obstacles (rubber cones, plastic 

hurdles) while carrying a heavy load (40 kg) in simulating dismounted soldiers and its 
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effect on cognitive performance were observed (Mahoney, Hirsch, Hasselquist, Lesher, & 

Lieberman, 2007).  Since substantial resources were needed to guide movement over and 

around the obstacles presented, performance on the vigilance task was worse than walking 

trials without obstacles, which theoretically required minimal attentional resources.  With 

the addition of physical exertion (40 kg load) and the effort required for guided movement 

(obstacle walking), fewer signals on the vigilance task were detected, resulting in 

decreased accuracy (Mahoney et al., 2007).  Since cognition was affected during simulated 

conditions, the ability to perform tasks accurately may be compromised further with the 

added stress of experiencing work operations or training simulations. 

 van Wingen and colleagues (2012) found that combat stress (e.g., exposure to 

enemy fire and improvised explosive devises, armed combat, combat patrols, witnessing 

injured and dead soldiers and civilians) adversely affected sustained attention in deployed 

soldiers.  Further, attention decrements were related to functional and structural changes 

within the midbrain as observed by reduced fractional anisotropy and increased mean 

diffusivity seen with magnetic resonance imaging and diffusion tensor imaging.  Consistent 

with this observation, soldiers exposed to combat performed worse on the sustained 

attention task following deployment relative to their non-deployed counterparts (van 

Wingen et al., 2012).  At follow-up (1.5 y), midbrain changes reverted to baseline levels; 

however, it remains to be seen how constant significant alterations to the brain influence 

cognitive performance.     

 Cognitive impairments (i.e., decrements in vigilance, perception, reaction time, 

learning, memory and logical reasoning) were also reported during stressful combat-like 

training in elite U.S. Army Rangers and U.S. Navy SEALs that had served, on average, 9 and 
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3 y, respectively (Lieberman et al., 2005b).  The extent of this impairment is highlighted by 

the fact that the four-choice reaction time latency was far greater (i.e., slower; Rangers, 

20% degradation; SEALs, ~16% degradation) than those typically produced by alcohol 

intoxication (~7% degradation) or clinical hypoglycemia (~13% degradation; Lieberman 

et al., 2005b).  During exposure to a multi-stressor environment (i.e., sleep deprivation, 

extreme temperatures, physical activities, verbal confrontations), significant decrements in 

both simple and higher cognitive functions were also observed in these military officers 

(Lieberman et al., 2005b).  Greater incidence of errors was coupled with increased reaction 

time, both of which could have a costly impact on a soldier’s survival and that of his or her 

comrades.  

 Similar negative alterations in cognitive functioning (via a continuous performance 

test; CPT) were observed in firefighters performing repeated strenuous live-fire drills 

(Smith, Manning, & Petruzzello, 2001).  The CPT measured reaction times and response 

accuracy.  Although reaction times did not drastically change over time, accuracy of 

responses to the digit stimuli decreased across experimental trials; the latter was 

evidenced by participants having 12% greater error by the final trial (Smith et al., 2001).  

While firefighting conditions may negatively influence response accuracy, it can also affect 

other areas of cognitive performance.  As the stress reaction to a search and rescue 

operation in firefighters increased (i.e., evidenced as a change in heart rate compared to 

maximum heart rate), the index of controlled task-focused thinking varied between the 

firefighters from 5-46% (Kivimaki & Lusa, 1994).  Since environmental stressors (e.g., 

ambient temperature, firefighting activities) were tightly controlled and similar for each 

subject, heightened stress could have lowered cognitive performance. 
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 Although decrements in cognition to varying degrees have been noted, Vincent and 

colleagues (2012) observed minimal effects in active duty service members following 

deployment.  This was due in part to the large sample sizes (N = 8002) used and over-

powered statistics performed.  A selection of cognitive tests believed to be especially 

sensitive to mild traumatic brain injury (TBI) within military and sports concussion 

research was administered the 6th day after returning home from deployment.  Specifically, 

these cognitive tests were derived from Automated Neuropsychological Assessment 

Metrics (version 4; ANAM4), which measured attention, processing speed, and general 

cognitive efficiency.  Vincent et al. (2012) also acknowledged that differences in study 

design and analyses may have attributed to the conflicting results.  For example, the 

ANAM4 test battery could have been administered immediately upon return from 

deployment.  Additionally, a regression analysis could have helped ascertain declines in 

cognitive function with varying durations of deployment, as demonstrated by Vasterling 

and others (2006). 

 Vasterling et al. (2006) utilized the ANAM and Neurobehavioral Evaluation System 

(3rd edition; NES3), test batteries to evaluate sustained attention, working 

memory/executive functioning, fine motor speed, verbal and visual learning and memory, 

reaction time, and cognitive efficiency in soldiers deploying to Iraq.  They compared those 

responses to soldiers not deployed (those preparing for extended intensive desert training 

within the US).  Results revealed that deployment was associated with neuropsychological 

compromise on tasks of sustained attention, verbal learning, and visual-spatial memory 

(Vasterling et al., 2006).  Ultimately, it would appear that neuropsychological compromise 

is a possible negative health consequence of war-zone deployment.  
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 While typical computer test batteries tend to isolate aspects of cognitive 

performance, they may not represent the dynamism and complexity found in combat 

environments (Wong, 2005), although it may induce unnecessary stress on the individual.  

Composite scores, from a multiple-task battery (SynWin), assessed working memory, 

arithmetic computation, and visual and auditory monitoring declined (1500 to 1000) in 

enlisted Navy and Marine Corps personnel as sleep deprivation increased from 18 to 63 h 

(Elsmore, 1994).  Similarly, composite scores prior to and following 12 and 24 h shifts in 

flight crewmembers decreased (Braude, Goldsmith, & Weiss, 2011).  Furthermore, 

significant albeit small relationships between the multi-task battery and irritability were 

observed before (r = -0.25) and after (r = -0.34) a shift.  Essentially, higher reported states 

of irritability corresponded to poorer multi-tasking performance.  Overall, decrements in 

cognitive performance (e.g., memory, computation, visual and auditory vigilance) due to 

sleep deprivation stress were observed during flight operations (Braude et al., 2011; 

Elsmore, 1994).      

 

2.3 THERMAL STRESS AND COGNITIVE FUNCTION   

 The combination of stressors experienced during combat and firefighting (e.g., 

extreme environmental temperatures, physical exertion, heavy equipment, and body 

armor) may result in internal temperatures that often exceed 38°C (Horn et al., 2013; 

Welles et al., 2013).  Additionally, brain temperature can exceed core body temperature by 

0.2°C (Morley et al., 2012).  As the body experiences elevated temperatures, such as during 

physical activity or in a hot environment, the rectal to skin temperature gradient is 

reduced.  This causes vasodilatation and an increase in skin blood flow to the periphery.  In 
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addition to sweating, this helps to dissipate heat to the environment (i.e., non-sweating).  

The increase in skin blood flow then causes peripheral pooling of the blood, leading to a 

drop in central pressure, and thus hypoperfusion to the brain and decrements in cognitive 

function (Castellani, 2003; Sawka & Wenger, 1988). 

 It has been suggested that cognitive performance is essentially unaffected unless 

thermal stress is sufficient enough to change core body temperature away from normal or 

steady state conditions.  Perceptions of thermal stress (e.g., comfort, sensation) however, 

are more sensitive to changes in skin temperature (Simmons, Saxby, McGlone, & Jones, 

2008).  According to the maximal adaptability model, thermal stress exerts its detrimental 

effects on cognitive performance by competing for and eventually draining attentional 

resources (Hancock & Vasmatzidis, 2003).  Additionally, the level of performance 

deterioration is dependent on the severity of heat strain and the complexity of the task.   

As core or ambient temperatures persist (either in duration or intensity of exposure 

or both), attentional resources are progressively drained, and thus a decline in 

performance.  During heat exposure of 26.67°C and above, Pilcher, Nadler and Busch 

(2002) observed the most negative effect on attentional and perceptual type tasks (e.g., 

vigilance), and mathematical processing tasks.  As temperature conditions became hotter, 

performance on these tasks worsened.  Under the hottest conditions (≥ 32.22°C), a 14.88% 

average decrement in cognitive performance was reported, while 26.67-32.17°C created a 

7.5% average decrement (Pilcher et al., 2002).  Overall, simple tasks such as reaction time 

are less vulnerable to the effects of heat; alternatively, more complex tasks such as 

vigilance and monitoring performance have shown to be the more sensitive to extreme 

temperatures.   
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 Heat stress poses a significant problem among individuals wearing protective 

clothing (e.g., military pilots, firefighters, athletes) since it provides extra insulation, which 

prevents evaporative heat loss.  Volunteers (dressed in flight gear) have reported feeling 

“slightly uncomfortable” on a thermal comfort scale 15 min into heat exposure (40°C, 19% 

relative humidity), while thermoneutral conditions (0°C and 23°C) remained at 

“comfortable” (Faerevick & Reinersten, 2003).  Eventually, thermal comfort escalated (i.e., 

worsened) and remained at “uncomfortable” and “very uncomfortable” for the remainder 

of the heating condition (3 h).  As a result of heat exposure, decrements in vigilance were 

observed, as indexed by the increased number of incorrect responses to the test stimulus 

(Faerevick & Reinersten, 2003).  Further, a strong positive correlation (r = 0.907) was 

detected between changes in core temperature from baseline and the number of incorrect 

reactions.  Since sustained attention over long periods of time is required, increased pilot 

error may occur as a result of increased core temperature from wearing protective clothing 

in hot ambient conditions.     

 Combat body armor, involving clothing and personal protective equipment, could 

also potentially impede heat loss mechanisms (e.g., sweating and skin blood flow), which 

can negatively influence cognitive performance.  Long duration (2.5 h), low intensity 

walking in the heat (36°C, 60% relative humidity) with full armor increased core 

temperature at a faster rate (0.51°C·h-1, 38% faster than no armor trial) than wearing 

partial armor (0.41°C·h-1, 10.8% faster than no armor trial) or no armor at all (0.37°C·h-1; 

Caldwell, Engelen, van der Henst, Patterson, & Taylor, 2011).  Although core temperature 

increased to ~38.3°C (minute 150) in the full armor trial (a 1.3°C rise from baseline, minute 

0), no decrements in cognitive function (assessed by vigilance, reasoning, filtering, verbal 
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working memory, divided attention and perceived reaction time) were demonstrated.  

Caldwell et al. (2011) speculated that it would certainly be possible that with more severe 

conditions of hyperthermia (or dehydration, sleep loss, physical exertion, etc., alone or in 

combination), neurocognitive indices of cognitive performance would be more sensitive to 

changes in performance.   

 Similarly, increases in core and skin temperature and cognitive deficits were 

observed in firefighters who exercised while wearing thermal protective clothing and a 

self-contained breathing apparatus (SCBA) in a hot environment (33-35°C; Morley et al., 

2012).  While decrements in neurocognition did not appear immediately following exercise 

(~50 min), impairments in recall and psychomotor vigilance were noted more than an 

hour following exercise.  Impaired short-term memory may place a firefighter at risk 

during fire suppression operations (e.g., exit location recall, details of unstable structures, 

errors in SCBA calculations); while delays in reaction time could result in injury from 

rapidly deteriorating structures (Morley et al., 2012).  Furthermore, if these decrements 

are not adequately addressed, subsequent emergency operations may place firefighters 

and victims at increased risk of injury or death.   

 In an effort to develop more efficient protective gear that reduces thermal stress 

and subsequent elevations in core temperature, Smith and Petruzzello (1998) evaluated 

cognitive performance of response accuracy and response time in different firefighting gear 

configurations.  Gear 1 was the standard 1987 National Fire Protection Agency (NFPA) gear 

(bunker boots and pants, turnout coat, Nomex hood, Cairns helmet, and Fire Grip gloves), 

while Gear 2 was the gear typically worn prior to the adoption of the Gear 1 (Servus ¾ hip 

boots, full-length turnout coat, Cairns helmet, and Fire Grip gloves).  Participants 
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performed three trials of firefighting related tasks (e.g., dummy drag, heavy load carrying, 

hose hoisting, wood chopping) within a burning building (53.6-78.7°C) separated by 10 

min of rest/recovery.  While thermal sensation was reported higher with Gear 1 (1987 

NPFA), there was little difference in response accuracy to stimulus continuous 

performance test (CPT) between the gear configurations and across firefighting trials 

(Smith & Petruzzello, 1998).  Reaction time variability however, increased with Gear 1 

across all trials (pre-trial = 124.95 ms, post-trial 1 = 128.91 ms, post-trial 2 = 145.17 ms, 

post-trial 3 = 158.40), resulting in an inconsistent performance.      

 Aside from developing more efficient protective clothing, to reduce thermal stress 

and potentially associated cognitive impairments, cooling interventions have also been 

employed to combat the negative effects of heat stress.  

 

Cooling Interventions to Preserve Cognitive Performance  

 Following ~2.5 h of passive heating (45°C, 50% relative humidity) inside a climatic 

chamber, both skin and core temperature increased along with subsequent decrements in 

cognitive performance, assessed by simple reaction time, digit vigilance, choice reaction 

time and rapid visual information processing (Simmons et al., 2008).  Power of attention 

(composite score measure of reaction time) and continuity of attention (composite score 

measure of accuracy were calculated from the battery of cognitive tasks.  As core 

temperature increased, power of attention increased, representing quicker reaction times, 

while continuity of attention decreased, representing a loss of accuracy.  Additionally, 

decreased perceptions of thermal comfort, and increased “hot” thermal sensations also 

occurred with increasing skin and core temperatures (Simmons et al., 2008).  When skin 
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cooling was employed via cold water (~3-8°C) perfused through a helmet encapsulating 

the head and neck, participants reported feeling less uncomfortable and less hot.  However, 

cooling had no significant effect on cognitive performance, as shown by increased reaction 

time and decreased response accuracy, since core temperature was unchanged (Simmons 

et al., 2008).  Since decrements in cognitive performance occur when increases in core 

body temperature is beyond thermal steady state (~37°C) that can be compensated for 

(e.g., sweating; Hancock, 1986), isolating cooling strictly to the head and neck may not be 

sufficient enough to quickly reduce core temperature, and thus cognitive performance.  

 Liquid-cooling garments have been used to extract significant amounts of thermal 

energy (i.e., heat) from the body.  In particular, Caldwell, Patterson and Taylor (2012) 

utilized such a garment (15°C water) in conjunction with a standard military combat 

uniform and protective ensemble (e.g., face mask, boots, gloves).  Participants performed 8, 

13 min bouts of low intensity exercise (30 W, simulating flying a helicopter) on a semi-

recumbent cycle ergometer in dry heat conditions (48°C, 30% relative humidity) with and 

without garment cooling.  As expected, both skin and core temperature decreased during 

the cooling condition, and consequently, improved perceptions of thermal sensation and 

thermal comfort (Caldwell et al., 2012).  However, no significant changes in cognition on 

the MiniCog Rapid Assessment Battery (assesses attention, verbal working memory, 

problem solving, and perceptual reaction time) were detected between dry heat conditions 

with and without auxiliary cooling.  Caldwell et al. (2012) speculated that thermal strain in 

the absence of dehydration (water deficits kept < 1% via ad libitum drinking) had minimal 

impact on cognitive function.                        
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 Cold-water immersion has also been investigated as a method of decreasing core 

and skin temperature.  Giesbrecht, Jamieson, and Cahill (2007) performed cold water 

immersion cooling of the hands and forearms in hyperthermic firefighters.  While donning 

firefighter “turn-out gear” (e.g., jacket, pants, rubber boots, helmet, self-contained 

breathing apparatus), participants performed three 20 min of stair stepping in the heat 

(40°C, 40% relative humidity) separated by 20 min of either rest (no active cooling) or 

different cold-water immersion conditions.  Forearm immersion in both 20°C and 10°C 

water resulted in lower core body temperature during each stair stepping trial than hand 

immersion alone or no active cooling (Giesbrecht, et al., 2007).  Since the forearms have a 

greater proportion of total body surface area than the hands (~7% and ~5%, respectively), 

immersion of the entire lower arm increased heat loss, and thus decreased core 

temperature.  Although cognitive performance was not measured, based on the association 

between core temperature and cognitive performance (Hancock, 1986), it would be 

expected that cognitive function improved. 

 When applying cold-water immersion, body temperature should be monitored so 

that core temperature does not fall below normothermic levels (hypothermia), which may 

cause cognitive decrements.  Volunteers equipped with a personal flotation device that 

submerged the back of the head and the entire body in cold water (10°C) resulted in 60% 

greater core cooling than when the head and upper chest were supported out of the water 

(Lockhart, Jamieson, Steinman, & Giesbrecht, 2005).  When core temperature dropped to 

34-35°C, mental performance deficits were observed in increased time required to 

correctly complete the Stroop color-word test, and decreased number of correct responses 

for attention short-term memory tasks (Lockhart et al., 2005).  Cooling interventions 
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should be monitored closely to prevent deficits in cognitive performance as a result of 

hypothermia.    

 During soccer games (with no cooling intervention) in the summer months of July 

and August, increased core temperature of the players (37.21- 40.05°C) had significant 

negative effects on speed for all cognitive tests assessed (visual sensitivity, finger-tapping 

test, visual/auditory working memory, and visuo-spatial working memory; Bandelow et al., 

2010).  Specifically, increases were observed for fine motor speed, visuo-motor reaction 

time, and serial working memory scanning function.  It appeared that significantly elevated 

core temperatures during play exerted a global, non-specific slowing effect on psychomotor 

response speed (Bandelow et al., 2010).  While at a different game, a tent equipped with 

misting cold water (air temperature ~25°C) was pitched next to the field; players sat under 

the tent for 15 min prior to the start of the game, and for 10 min during half-time.  Although 

elevated core temperature was unchanged, visuo-motor reaction times were faster, which 

the authors (Bandelow et al., 2010) attributed to increased perceived comfort (i.e., more 

comfortable) in the cooling tent.   

 Cooling interventions, resulting in decreased skin and core temperature, in addition 

to improved cognitive function and perceptions of stress, have also shown increased 

control of arterial blood pressure and cerebral perfusion.  Skin-surface cooling (15°C), 

through a water perfused suit, 1 min prior to a 10 min head-up tilting manipulation proved 

to be effective in preventing the decrease in cerebral blood flow velocity (CBFV) in both 

normothermic (~37°C) and heat-stressed individuals (~38°C; Wilson, Cui, Zhang, 

Witkowski, & Crandall, 2002).  Adequate cerebral perfusion was indicated by the lack of 

presyncopal symptoms (i.e., dizziness, headache, nausea; Durand, Cui, Williams, & Crandall, 



21 

2004).  As such, skin surface cooling prior to the orthostatic challenge did not result in any 

reports of presyncopal symptoms (Wilson et al., 2004), which would imply better cognitive 

performance since these symptoms would be a hindrance.       

 Preservation of CBFV was also observed during progressive decreases in lower body 

negative pressure (LBNP) while undergoing skin surface cooling (16°C, water perfused 

suit; Durand et al., 2004).  Prior to the start of the LBNP challenge, skin-surface cooling 

caused significant increases in CBFV.  This resulted in statistically greater CBFV protection 

during LBNP stages of -40 and -50 mmHg (i.e., greater orthostatic tolerance) in comparison 

to non-skin surface cooling (34°C, normothermia control group).  Although cognitive 

function was not measured, improvements in performance may arise since cerebral 

perfusion to the brain was protected.  Since cognitive impairments manifest during 

traumatic injury, such as hemorrhage, it would be important to more carefully investigate 

the effectiveness of cooling interventions.        

   

2.4 HEMORRHAGE AND COGNITIVE FUNCTION 

 Hemostasis is a process that causes bleeding to stop through the mechanisms of 

coagulation, or blood clotting, and fibrinolysis, or breakdown of blood clots (Tanaka, Key, & 

Levy, 2009).  Specifically, blood coagulation plays an important role in containing blood 

loss and repairing the vascular injury (wound).  However, during traumatic injury, 28% of 

patients have coagulation dysfunction (coagulopathy) due in part to progressive dilution of 

coagulation factors from resuscitation products (MacLeod, Lynn, McKenney, Cohn, & 

Murtha, 2003; Tanaka et al., 2009).  As a result of coagulopathy, mortality increases 3-5 

times higher compared to a patient with normal coagulation (MacLeod et al., 2003).     
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 Consequently, hemorrhage from major trauma is the leading cause of death in both 

civilian and battlefield settings (Eastridge et al., 2011; Soreide et al., 2007).  Among the 

trauma patients who do not die immediately, hemorrhage-induced hypotension (i.e., 

systolic blood pressure ≤ 90 mmHg), a phenomenon comparable to orthostasis, often 

occurs (Heckbert et al., 1998).  While several physiological responses occur in order to 

maintain vital organ perfusion during a hemorrhagic insult (e.g., tachycardia, 

vasoconstriction, respiration), the severity of the trauma experienced may negate these 

compensatory responses.  Decreases in arterial pressure may compromise perfusion 

through the primary blood vessels in the brain (i.e., carotid, vertebral arteries), similar to 

hypoxia or decreased oxygenation, which may cause cognitive impairment.  Further 

reductions in blood pressure and accompanying cerebral hypoperfusion are also 

accompanied by presyncopal symptoms, such as headache and dizziness, which may lead 

to irreversible brain damage if left unattended (Duschek & Schandry, 2007).  

 

Cognitive Impairments of Attention and Memory 

 Several hypotheses have been developed to help explain the relationship between 

hypotension and cognitive impairment among several clinical populations (e.g., elderly, 

dementia syndromes, movement disorders).  However, the most applicable explanation to 

hemorrhagic injury is cerebral hypoperfusion, which can develop due to hypotension 

and/or impaired autoregulation (Novak & Hajjar, 2010; Sambati, Calandra-Buonaura, Poda, 

Guaraldi, & Cortelli, 2014).  Hypotension influences neurovascular coupling (i.e., 

redistribution of cerebral blood flow to areas of increased activity and metabolic demand), 
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causing decreased perfusion, oxygenation, and vascular reserve capacity, which is 

associated with decline in cognitive function (Novak & Hajjar, 2010).     

 Neuropsychological testing has demonstrated reduced cognitive performance in 

individuals experiencing hypotension, primarily in domains of attention and memory, 

which seem to be a direct consequence of low blood pressure (Duschek & Schandry, 2007; 

Perlmuter, Sarda, Casavant, & Mosnaim, 2013).  Comprehensive cognitive tests measuring 

domains of global function, executive function, processing speed, attention and memory 

were evaluated in older adults (≥ 50 y) participating in the Irish Longitudinal Study on 

Ageing (Frewen, Savva, Boyle, Finucane, & Kenny, 2014).  Among individuals with 

orthostasis, global cognitive function (from mini-mental state exam and Montreal Cognitive 

Assessment) and memory (word recall and picture memory tests) performance were 

significantly less than their normotensive counterparts.  Frewen et al. (2014) concluded 

that rapid changes in blood pressure, from orthostasis could substantially alter cerebral 

blood flow, and cerebral hypoperfusion, causing cognitive impairment.   

 In another group of older adults (≥ 55 y), Yap, Niti, Yap, and Ng (2008) evaluated 

cognitive decline and orthostasis 1-2 y following baseline evaluation.  The mini-mental 

state exam (MMSE), a validated and widely used measure of global cognitive function in the 

domains of memory, attention, language, praxis, and visuospatial ability, was used.  

Individuals with baseline MMSE scores < 24 were classified as cognitively impaired.  At 

follow-up (1-2 y) hypotensive adults were 4 times more likely to present with cognitive 

impairment, defined as at least a 1-point drop in baseline MMSE scores.  The authors (Yap 

et al., 2008) suggested that decreased blood pressure might impair cerebral perfusion and 

aggravate dementia. 
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 Since anatomical structures that degenerate in dementia are also involved in 

autonomic function, all forms of dementia are most likely due to impaired autonomic 

function (Perlmuter et al., 2013; Sambati et al., 2014).  The composite autonomic symptom 

score, derived from the frequency of orthostatic intolerance and syncope, quantifies the 

severity of autonomic dysfunction (cardiovascular, urinary, gastrointestinal and 

sudomotor).  Although Low et al. (1995) did not assess cognitive function they did observe 

cognitive impairments in patients (mean age = 63.6 y) with symptomatic orthostasis.  

Following an upright tilt table test, patients were unable to perform arithmetic calculations, 

became disoriented to time, place and persons, and had considerable slowing in thinking 

(Low et al., 1995).   

 In a more specific form of autonomic disorder, specifically patients (46-82 y) 

diagnosed with pure autonomic failure, a disorder involving peripheral denervation of the 

autonomic system, results in the inability to control blood pressure.  Deficits in speed and 

attention (5 out of 6 participants), and frontal executive functioning (3 out of 6 

participants) were observed (Heims et al., 2006).  It was proposed that significantly 

impaired speed, attention and executive functioning among these patients were 

consequences of cerebral hypoperfusion via systemic hypotension (Heims et al., 2006; 

Perlmuter et al., 2013).    

 Hypotension is also common among Lewy body disorders, which may contribute to 

cognitive impairment (Allcock et al., 2006; Perlmuter et al., 2013).  Parkinson’s disease 

(PD) is considered to represent a Lewy body disease.  Generally, the relationship between 

decreased cognitive function and hypotension in PD patients has been described as 

significant differences in single tasks, especially executive tasks (i.e., attention, memory; 
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Sambati et al., 2014).  Since hypotensives experience attention and visual memory deficits, 

it would be expected that PD with normal orthostatic responses would have a different 

cognitive profile than PD with orthostatic intolerance.  PD patients with hypotension, had 

greater impairments in sustained attention and visual episodic memory, compared to PD 

patients without hypotension.  As such, after adjusting for age and medication, PD patients 

with accompanying hypotension were less accurate in the digit vigilance test (79 vs. 93) 

and visual episodic memory (0.48 vs. 0.59) than patients without hypotension (Allcock et 

al., 2006).  Given these observations, hypotension may be a marker for disease progression 

and cognitive decline.   

 The aforementioned findings may not be consistent in all groups.  For example, 

while young adults (mean age = 26.1 y) became slightly hypotensive (head-down tilt = 127 

± 17 mmHg; head-up tilt = 124 ± 13 mmHg) following an orthostatic tilt test after blood 

donation (350-400 mL) than at baseline (head-down tilt = 124 ± 11 mmHg; head-up tilt = 

141 ± 20 mmHg), cognitive performance remained unchanged (Tuboly et al., 2012).  EEG 

recordings, measured ~5 min following hemodynamic data, assessed cognitive processing 

of new information when attention was engaged (Tuboly et al., 2012).   Images of 

distracters (natural scenes) and targets (animals) were used to elicit cognitive processing, 

and participants had to decide if the image was an “animal” or “non-animal”.  The ability to 

categorize incoming stimuli (i.e., suppress insignificant distracters, process significant 

targets) is very basic and vitally important.  Tuboly and colleagues (2012) interpreted the 

lack of cognitive decline post-donation as an adaptive tendency that is resistant to 

challenges (e.g., minor blood loss). However, a hemorrhaging patient may be losing more 

blood (>400 mL), which may interfere with this paradigm.   
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 Decreased blood oxygenation, which reduces the oxygen supply throughout the 

periphery and in the brain, has been reported immediately upon ascent to high altitudes 

(Ando et al., 2013; Shukitt-Hale, Banderet, & Lieberman, 1998).  As a result, hypoxia 

impairs cognitive performance during altitude exposure (simulations of 4,200 and 4,700 m 

for 4.5 h), specifically in relatively simple tasks, such as simple and choice reaction time, as 

well as more complex tasks, such as the addition test (Shukitt-Hale et al., 1998).  The rapid 

onset and severity of these observed decrements observed could interfere with safe 

military and firefighting operations, since alertness and vigilance are important for combat 

and fire suppression performance.   

 While hypoxia alone (simulations of 1,300 and 2,600 m for ~1 h) may be 

detrimental to cognitive function, when combined with an acute bout of moderate exercise 

(10 min at 60% peak VO2) performance may be maintained (Ando et al., 2013).  Responses 

in reaction time to a Go/No-Go task following aerobic exercise decreased (i.e., responded 

quicker) from rest while experiencing conditions of hypoxia (decreased levels of oxygen) 

and normoxic (normal levels of oxygen).  As such, Ando et al. concluded that improvement 

in cognitive function was attributable to the exercise performed.   

 In addition to decreased arterial pressure, severe unintentional hypothermia 

(decrease in core body temperature below 35°C) accompanies trauma, perhaps secondary 

to reduced metabolism, and increases mortality rates (Martin et al., 2005; Peng & Bongard, 

1999).  Hypothermia can deplete energy stores, disrupt cellular homeostasis, and correlate 

with more severe injuries (Kheirbek, Kochanek, & Alam, 2009).  Further, decreased body 

temperatures (in non-hemorrhaging individuals) result in cerebral changes, including 

decreases in cerebral perfusion, and are associated with reduced cognitive functioning, 
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especially on speeded cognitive tasks, visual vigilance, and mood disturbances (Muller et 

al., 2012; Lieberman, Castellani, & Young, 2009).  As a result trauma patients are often 

passively heated (Martin et al.; Peng & Bongard, 1999).  However, if the patient does not 

present with hypothermia (e.g., normothermic), it is reasonable to question whether 

heating would still be beneficial to the patient.  Perhaps cooling techniques, as previously 

described (section III), would be a better solution for cognitive performance in 

hemorrhaging individuals.        

 Uncontrolled hemorrhage was induced in female swine by creating lacerations to 

the iliac artery and veins and keeping the animals in shock for 30 min (simulating transport 

time to hospital; Alam et al., 2005).  Animals then underwent 60 min of normothermia 

(control) or profound hypothermia (10°C) via fluid infused into the aorta at varying rates 

of slow, medium or fast.  Unfortunately, clinical brain death (e.g., fixed dilated pupils, 

absence of corneal and gag reflexes, no spontaneous respiratory activity) occurred in all of 

the animals in the normothermic group.  Alternatively, none of the hypothermic animals 

displayed any cognitive impairment based on a training and memory task where the animal 

had to identify the box with food (Alam et al., 2005).  The number of sessions required to 

learn the task, and the time taken to open the correct box were the same as normal animals 

(animals that did not undergo hemorrhage).  Not only was this cooling technique able to 

increase survivability during hemorrhage, it also preserved cognitive function. 

     

2.5 SUMMARY 

 It is well accepted that participation in physical activity provides an array of benefits 

for cognitive performance (Colcombe & Kramer, 2003; Hillman et al., 2008).  However, 
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when coupled with negative stressors (e.g., extreme temperatures, traumatic injury) that 

are present among military and firefighting cohorts, cognitive performance is at risk of 

impairment (van Wingen et al., 2012).  Subsequently, as a result of these factors, 

hyperthermia may develop (Horn et al., 2013; Welles et al., 2013), which may further 

degrade performance.  Since various cooling interventions have shown favorable effects on 

cognitive function, it may also provide similar benefits to an individual suffering from a 

hemorrhagic trauma (which could be a likely scenario in both military and firefighting 

personnel).   

 Hemorrhage from major trauma is the leading cause of death in both civilian and 

battlefield settings (Eastridge et al., 2011; Soreide et al., 2007).  Consequently, decreases in 

arterial pressure due to hemorrhage may compromise perfusion through the primary 

blood vessels in the brain (i.e., carotid, vertebral arteries).  This may result in cognitive 

impairment, and the ability to continue making rapid decisions or allocating attention to 

pertinent tasks (e.g., battalion commander, incident commander, firefighter in a dangerous 

situation) may be impacted negatively.   

 The current medical practice with hemorrhagic patients is to passively warm them, 

via blanket, since severe unintentional hypothermia (core body temperature < 35°C) can 

accompany trauma and increase mortality rates (Martin et al., 2005; Peng & Bongard, 

1999).  However, if the patient does not present with hypothermia (e.g., normothermic), it 

may not be conducive, and can be detrimental, to heat or even warm them (Crandall & 

Gonzalez-Alonso, 2010; Wilson et al., 2006).  Thus, development of countermeasures to 

prevent or attenuate decrements in arterial pressure and accompanying cognitive function 

during traumatic injury (e.g., hemorrhage) is an important undertaking.    
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CHAPTER 3 

METHODOLOGY 

 

 This study specifically focused on whether, in otherwise normothermic 

hemorrhaging individuals, mild heating or skin surface cooling influenced cognitive 

function, and the extent to which aerobic fitness might modify that effect. 

 

PARTICIPANTS 

 Nine healthy, non-obese, men from the Dallas-Fort Worth area were recruited to 

participate in this investigation.  The descriptive characteristics of these men (mean ± SD) 

were: age, 29.9 ± 8.4 y; height, 176.7 ± 10.7 cm; body mass, 79.4 ± 15.2 kg; VO2max, 40.4 ± 

6.3 ml·kg-1·min-1.  Due to the difficulty of controlling hormonal and temperature changes 

and potentially varying dosages of birth control, coupled with 4 laboratory visits being 

necessary, women were excluded from the study.  Potential participants with 

cardiovascular, neurological, and/or metabolic illnesses were excluded, as these conditions 

may affect the physiology of the systems targeted in the investigation.  Participants who 

met the aforementioned inclusion criteria were invited to participate. 

 All procedures and the written consent were approved by the following Institutional 

Review Boards for Human Subjects: US Department of Defense, University of Texas 

Southwestern Medical Center, Texas Health Presbyterian Hospital of Dallas, and the 

University of Illinois at Urbana-Champaign.  Participants gave their written informed 

consent (see Appendix A) after being completely informed as to the nature of the 

investigation.   
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FAMILIARIZATION DAY 

 On familiarization testing day (Table 1), participants completed an extensive health 

history form and the International Physical Activity Questionnaire (see Appendix B and C), 

had body mass assessed on an electronic scale, and were measured for height.  The 

participant was then familiarized with the cognitive function test, perceptual scales and 

overall testing procedures.  Participants were encouraged to ask questions.  Next, aerobic 

fitness, as measured by maximal oxygen consumption, was determined via open circuit 

spirometry during a graded exercise test using a cycle ergometer.   

 Participants sat quietly for 2 min (baseline data collection) while equipped with the 

mouthpiece and headgear (for metabolic analysis).  After the 2 min baseline metabolic data 

had been collected, participants began cycling at a self-selected pace between 60-80 

revolutions per minute (rpm) at a workload of 80 watts for 2 min (warm-up period).  

Following the 2 min warm-up, resistance on the cycle ergometer increased 20 watts every 

minute thereafter, with the pace remaining between 60-80 rpm, until the participant 

reached volitional exhaustion.  Heart rate was recorded at every stage, while blood 

pressure and ratings of perceived exertion were taken at every other stage.  Not including 

warm-up time, total test duration was approximately 10 min.  The following criteria 

verified attainment of VO2max: an increase of oxygen consumption less than 150 ml·min-1 

despite an increase in workload, a respiratory exchange ratio (VCO2/VO2) > 1.10, or 

achieving predicted maximum heart rate (i.e., 220-age).   

 

 

 



31 

INSTRUMENTATION FOR EVALUATION DAYS    

Following the familiarization day, participants visited the laboratory on three 

additional occasions to undergo a randomized, crossover experimental design (Table 1).  

Instrumentation and procedures for each visit were identical, with the exception that 

participants were exposed to the following thermal conditions: cooling (COOL), mild 

heating (HEAT), or thermoneutral (NEUT) during key periods of data collection (see 

below).    

 Upon arrival to the laboratory on each of the subsequent test days, participants 

ingested a telemetric temperature-sensing pill (HQ Inc. CorTemp) to monitor intestinal 

temperature throughout the experimental trials.  Participants then provided a urine 

sample, to ensure adequate hydration (urine specific gravity < 1.028), and a nude body 

weight.  Six thermocouples interfaced with Sable Systems TC-2000 thermocouple meter 

were attached to the participant’s skin (upper chest, upper back, abdomen, lower back, 

thigh and calf) to obtain and monitor mean skin temperature throughout the trials.  

Participants were also instrumented with a 5-lead ECG and arterial blood pressure cuffs 

(both auscultation of the brachial artery and finger-derived blood pressures).   

 Participants then donned a full body tube-lined suit (Allen Vanguard) and lay in the 

supine position with the lower half of their body in a lower body negative pressure (LBNP) 

box, sealed at the level of the iliac crest.  The LBNP device is an airtight chamber that seals 

at the level of the iliac crest, resulting in central hypovolemia, i.e., a redistribution of blood 

away from the upper body (inclusive of the brain and chest) to the lower extremities.  

While in the LBNP box, an intravenous catheter was placed in an antecubital vein to collect 

blood samples at the end of each experimental stage.  Next, cerebral perfusion was 
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evaluated via transcranial Doppler (DWL DopBox) of the middle cerebral artery as 

previously performed (Durand et al., 2004; Wilson et al., 2002).  Data collected from these 

variables, with the exception of blood pressure and cerebral perfusion, were used for 

separate analyses discussed elsewhere.  

  

Familiarization (1 Day)  Evaluation (3 Days)  
 Health history, physical activity 

questionnaire 

 Height, weight, VO2max test 

 Explained testing procedures (i.e., cognitive 
and perceptual measures) 

 COOL (15-17°C), HEAT (40-44°C) and NEUT 
(34°C) 

 Superimposed with simulated moderate 
hemorrhagic challenge (30 mmHg) 

 Randomized order, performed on separate 
days 

Table 1: Experimental design overview.  Participants visited the laboratory on 4 separate occasions.  The first 
day was to collect descriptive data and familiarize with testing procedures.  The following 3 days were to 
evaluate the effects of thermal stimuli during simulated hemorrhaging on cognitive performance. 
 

PROCEDURES 

 Figure 1 provides a graphical illustration of the experimental procedures.  Upon 

completion of instrumentation and LBNP set-up, and prior to the start of data collection, 

participants were reacquainted with the same cognitive test (i.e., Flanker task) performed 

during familiarization day (denoted by grey arrow).  Following the practice cognitive test, a 

15 min baseline of quiet rest began, where participants remained in the supine position 

within the LBNP box, while normothermic water (33-34°C) perfused the tube-lined suit.  

Participants performed the cognitive test 2 min into baseline data collection (denoted by 

the first black arrow).     

 Immediately following baseline rest period (15 min), 10 min of LBNP chamber 

decompression at 30 mmHg was applied to simulate a mild hemorrhagic challenge, but not 
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a sufficient challenge to cause arterial hypotension (reduction > 10 mmHg in mean arterial 

blood pressure) while subjects remained normothermic.  This approach has previously 

been verified to simulate central hypovolemia accompanying actual hemorrhage (Cooke, 

Ryan, & Convertino, 2004).  The level of LBNP chosen (30 mmHg) equates to approximately 

400-450 mL of blood loss, which is approximately the amount of a routine blood donation 

(~470 mL).  This was chosen to simulate a sustained hemorrhagic injury, and to ensure 

that all participants would complete the entire protocol without syncope.  To avoid 

interfering with hemodynamic data and blood draws, participants performed the cognitive 

test 2 min into the LBNP only stage.   

 With 30 mmHg LBNP continuing, participants were then exposed to 40 min of the 

following thermal perturbations via the water-perfusing suit:    

1. COOL— 15-17°C water perfused through the tube-lined suit to decrease mean skin 

temperature from normothermia (~34°C) to as low as possible, without causing 

shiver.  Water bath temperature was adjusted if the participant began to shiver, or if 

a 0.5°C decrease in core temperature was observed.  This condition was used to 

evaluate any potential benefit from cooling that would not occur with heating.  

2. HEAT— 40-44°C water perfused through the tube-lined suit to elevate mean skin 

temperature from ~34°C (normothermia) to ~37°C, and cause no more than a 0.5°C 

increase in intestinal temperature.  Water bath temperature was adjusted if the 

participant’s intestinal temperature surpassed a 0.5°C increase.  This condition was 

used to simulate a blanket placed on a hemorrhaging victim (i.e., the current medical 

standard of care). 
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3. NEUT— 33-34°C water continued to perfuse the tube-lined suit in order to maintain 

a mean skin temperature at normothermia (~34°C).  Since the water bath was kept 

at thermoneutral, core temperature was not expected to change.  This condition was 

used as a control condition to compare with heating and cooling.    

The order for thermal challenges was randomized with each performed on separate days 

(at least 24 h between each trial).  Cognitive test was administered at 5 min (LBNP+thermal 

early) and 20 min (LBNP+thermal later) into the 40 min of LBNP and thermal condition 

stage.  This frequency insured in-task assessment in the event that the participant might be 

unable to complete the entire stage (i.e., low tolerance).   

 Upon termination of LBNP and the thermal provocation, participants remained in 

the supine position within the LBNP box (device not engaged), while normothermic water 

(33-34°C) perfused the tube-lined suit for 15 min (post-test) to allow mean skin 

temperature to return to baseline (normothermic) levels.  At the end of the post-test 

period, the cognitive test was administered a final time.     

 For all trials, the Feeling Scale (Hardy & Rejeski, 1989) and the Thermal Sensations 

Scale (Toner, Drolet, & Pandolf, 1986; Young, Sawka, Epstein, Decristofano, & Pandolf, 

1987) were used to assess affective valence (good versus bad) and perceptions of thermal 

sensations.  Participants responded to both scales every 10 min beginning at the start of 

experimentation (minute 0). 
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Figure 1: Graphical illustration of experimental procedures.  Participants were supine within the lower-
body negative pressure (LBNP) device under thermoneutral conditions but without LBNP for 15 min (baseline).  
Participants were then exposed to 10 min of sub-hypotensive LBNP (30 mmHg) while remaining in a 
thermoneutral condition (LBNP only).  Next, for the ensuing 40 min and with LBNP continuing, participants 
remained thermoneutral, underwent mild heating, or underwent skin surface cooling (each on a different day 
and randomized; LBNP + thermal).  Upon completion of trials, participants remained in the supine position 
within the LBNP device under thermoneutral conditions without the LBNP for 15 min (post-trial). Thermal and 
hemodynamic variables were continuously obtained, and perceptions of feeling and thermal comfort were 
obtained every 10 min throughout.  Arrows denote when cognitive performance was assessed; gray arrow 
denotes practice cognitive test (data was not used in analyses).  Numbers across the bottom are approximate 
time points in minutes.   
 

ASPECTS OF COGNITIVE PERFORMANCE 

 A measure of cognitive function, specifically cognitive inhibition, was measured with 

a modified Eriksen Flanker task test (Colcombe et al., 2004; Eriksen & Eriksen, 1974).  This 

task requires the participant to ignore irrelevant stimuli surrounding a relevant stimulus, 

thus it provides a measure of inhibitory control.  Specifically, the Flanker task targets 

selective response inhibition, which is a subset of executive control function.  In this task, 

five arrows appear on a computer screen, and participants are to respond to the 

orientation of the central arrow by pressing a button with their left index finger if the 

central arrow in the array is pointing to the left, or pressing a button with their right index 

finger if the central arrow in the array is pointing to the right.  Flanking arrows are either 

oriented in the same direction (Congruent trials) as the central arrow (e.g., >>>>> or 

<<<<<), or oriented in the opposite direction (Incongruent trials) as the central arrow (e.g., 

<<><< or >><>>).  The percentages of Congruent and Incongruent trials were evenly 
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divided (i.e., 50% each).   Participants responded to 132 total trials as rapidly as they could 

while also trying to minimize incorrect responses.  Each trial lasted 80-100 ms, and the 

inter-trial interval was between 1200-1300 ms.  In addition to response accuracy (% 

correct responses) and reaction time, variability in reaction times (standard deviation) was 

calculated.   Trials were counterbalanced and randomly ordered, and the entire set of 132 

trials was completed in 3 min.  As shown in Figure 1, there were a total of 5 blocks of 132 

trials during each thermal condition.  

 During simulated hemorrhage and thermal conditions, it was expected that 

participants would experience changes in affect and thermal sensations.  Additionally, 

affective states and perceptions were expected to fluctuate within and across trials.  As 

such, affective state was assessed with the Feeling Scale (FS; Hardy & Rejeski, 1989; see 

Appendix D).  This is  an 11-point scale with anchors provided at 0 (neutral) and at odd 

integers, ranging from -5 (very bad) to +5 (very good) in response to the prompt “how do 

you feel right now?”  Perception of thermal sensation (Toner et al., 1986; Young et al., 1987; 

see Appendix E) was measured via the Thermal Sensations Scale (TS).  This is a rating scale 

ranging from 0.0 (unbearably cold) to 4.0 (comfortable) to 8.0 (unbearably hot) in 

response to the prompt “rate your perception of how hot or cold you are right now”.  

Participants gave verbal responses to each prompt, which were recorded by the 

experimenter.     

 

STATISTICAL ANALYSES 

 All statistical analyses were carried out with the SigmaPlot 13.0 statistical software 

package.  Data was input into a SigmaPlot spreadsheet with proper variable coding for time 
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and condition.  Appropriate pair-wise multiple comparison procedures were performed to 

identify any significant interactions of cognitive performance during LBNP and the thermal 

provocations.  The criterion of significance was established at an alpha level of P < 0.05.  

 A power analysis for estimating the sample size necessary for a within-participants 

design that would include treatment and control conditions was conducted using G*Power 

3.1 (Faul, Erdfelder, Lang, & Buchner, 2007).  Since arterial blood pressure and cerebral 

perfusion were primary variables of interest (cognitive function as an accompanying 

variable influenced by these two), these variables were used in the power analysis.  Using 

arterial blood pressure as the variable of interest from previous data (Wilson et al., 2002), 

alpha = 0.05, beta = 0.80, effect size f = 1.20, resulted in an estimated sample size of 9 

participants.  When cerebral perfusion was used as the variable of interest, the results 

yielded a similar sample size.  Thus, 9 participants were recruited for this investigation.  

 A two-way repeated measures analysis of variance (RM ANOVA) was executed on 

the two primary variables of interest: arterial blood pressure via continuous non-invasive 

finger pressure monitoring, and cerebral perfusion via transcranial Doppler of the middle 

cerebral artery.  The two main factors were time (i.e., baseline, LBNP only, LBNP+thermal 

early, LBNP+thermal late, post-trial) and the superimposed thermal stimulus (i.e., COOL, 

HEAT, NEUT). 

To delineate whether, mild heating or skin surface cooling altered cognitive function 

in normothermic hemorrhaging individuals, the following analyses were carried out with 

the Flanker task data.  Response accuracy (% correct), reaction time (ms), and reaction 

time variability (ms) for Congruent trials, Incongruent trials and for overall trials combined 

were computed for each experimental stage at which the cognitive test was administered 
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(5 total: baseline, LBNP only, LBNP+thermal early, LBNP+thermal later, post-trial).  Data 

were then statistically analyzed using a two-way RM ANOVA with main factors of the 

superimposed thermal stimulus (i.e., COOL, HEAT, NEUT) and time (i.e., baseline, LBNP 

only, LBNP+thermal early, LBNP+thermal later, post-trial).  Thus a 3 x 5 Condition x Time 

RM ANOVA was used as the primary analytic strategy.  To address individual variability, 

the change (Δ) in cognitive performance from baseline to later stages was calculated for 

each Flanker outcome (e.g., response accuracy, reaction time, reaction time variability).  A 

one-way RM ANOVA with the main factor of thermal condition was executed on these data.   

Perceptual data was analyzed with a two-way (3 x 8) RM ANOVA with main thermal 

conditions and time (i.e., every 10 min from minute 0 to post-trial) to detect changes in 

affective valence and thermal sensations.  To address individual variability, the change (Δ) 

in Feeling Scale and Thermal Sensations (TS) from baseline to the last 10 min of 

LBNP+thermal stage (minute 60) was calculated.  Data was analyzed using a one way RM 

ANOVA with the main factor of thermal condition.  Pearson correlations were performed to 

compare TS scores and skin temperature.  

 To determine the extent to which aerobic fitness might modify alterations in 

cognitive function (should they exist), a one-way analysis of covariance (ANCOVA), with the 

main factor of thermal condition and covariate of VO2max was carried out.  Given the 

homogeneity of the group, with respect to VO2max, further statistical analyses, aside from 

the ANCOVA, would not have provided further information.   
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CHAPTER 4 

RESULTS 

 

Mean Arterial Pressure and Cerebral Perfusion 

The two-way RM ANOVA for arterial pressure revealed a significant interaction 

between thermal perturbations and LBNP time [F(8, 64) = 4.7, P < 0.001], suggesting that 

changes in blood pressure were affected by the thermal provocation (see Figure 2).  Effect 

size (η2p) measures the degree of association between the interaction and dependent 

variable.  The effect size for the interaction between condition and time was η2p = 0.08, 

indicating that 8% of the variance was accounted for by this interaction.  Within the 

LBNP+thermal early stage, mean arterial pressure (MAP) was significantly greater in COOL 

(95.4 mmHg) than in the NEUT (P = 0.008; 87.0 mmHg) and HEAT (P = 0.009; 87.5 mmHg) 

conditions.  Similarly, at the LBNP+thermal later stage, COOL trials had statistically greater 

MAP (95.1 mmHg) than NEUT (P = 0.03; 88.5 mmHg) and HEAT (P = 0.01; 87.3 mmHg) 

conditions.     

 Analysis from the two-way RM ANOVA for cerebral perfusion revealed an absence of 

an interaction between the thermal perturbation and LBNP time [F(8, 53) = 0.7, P = 0.73], 

suggesting that changes in brain blood flow were unaffected by the thermal provocation in 

combination with LBNP.  The effect size for the interaction between condition and time was 

η2p = 0.003, indicating that 0.3% of the variance was accounted for by this interaction.  

However, there was a significant difference [F(4, 53) = 4.9, P = 0.004] between the mean 

values across LBNP time, regardless of condition (refer to Figure 3).  Overall, cerebral 
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perfusion for LBNP+thermal early (51.0 cm·sec-1; P = 0.004) and LBNP+thermal later 

stages (51.8 cm·sec-1; P = 0.04) were significantly less than baseline values (54.7 cm·sec-1).   

 

  
Figure 2: Mean arterial pressure. Error bars represent + 1 standard deviation; +, significantly greater than 
thermoneutral condition; #, significantly greater than mild heating condition 
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Figure 3: Cerebral perfusion. Error bars represent + 1 standard deviation; significant difference with main 
effect of time (P = 0.004); *, significantly less than baseline 
 

Flanker Response Accuracy  

 Flanker response accuracy was calculated as the number of correctly identified 

responses out of all possible trials.  If no response was provided, it was considered 

incorrect; values are reported as percentages.   

Analysis from the two-way RM ANOVA revealed an absence of an interaction 

between the thermal perturbation and LBNP time [F(8, 64) = 1.47, P = 0.19] for response 

accuracy to overall trials (see Figure 4A), suggesting that changes in overall response 

accuracy were unaffected by the thermal provocation/LBNP combination.  The effect size 

for the interaction between condition and time was η2p = 0.16, indicating that 16% of the 

variance was accounted for by this interaction.  There was no main effect of time [F(4, 32) = 

0.87, P = 0.49], which indicated that LBNP duration alone did not affect these responses.     
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When analyzed separately, no significant interaction between thermal conditions 

and LBNP time were evident for either Congruent (P = 0.29; Figure 4B) or Incongruent 

trials (P = 0.50; Figure 4C).  Calculated effect sizes were η2p = 0.08 and 0.01 for Congruent 

and Incongruent trials, respectively.  The main effect of time was also not significant 

(Congruent, P = 0.90; Incongruent, P = 0.70), indicating no changes overtime for either type 

of stimulus.   Despite the lack of significance, it appeared that participants performed better 

on Congruent trials (> 90% response accuracy) than on Incongruent trials (> 80% response 

accuracy), regardless of thermal condition.  

The one-way RM ANOVA for the change in response between baseline and the later 

LBNP+thermal provocation stage revealed no difference (P = 0.21) between thermal 

perturbations to overall trials for response accuracy (depicted in Figure 5).  Effect size for 

the treatment conditions was η2p = 0.16, indicating that 16% of the variance observed was 

accounted for by thermal conditions.  When analyzed separately, no significant difference 

was seen between thermal conditions were evident for either Congruent (P = 0.51) or 

Incongruent trials (P = 0.21) for the change in these responses.  Calculated effect sizes were 

η2p = 0.07 and 0.12 for Congruent and Incongruent trials, respectively.   

Although statistical significance was not achieved there was a noticeable trend for 

the change in response between baseline and later LBNP+thermal provocation stage.  

Overall, mild heating resulted in decreased response accuracy (overall = -2.1%; Congruent 

= -2.2%; Incongruent = -1.5%), whereas the cooling condition resulted in increased 

response accuracy (overall = +1.2%; Congruent = +1.7%; Incongruent = +1.0%).  
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 A. Overall Trials 

 
 
B. Congruent Trials 

 
 
C. Incongruent Trials 

 
Figure 4: Flanker response accuracy. Error bars represent + 1 standard deviation; No significant differences. 
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Figure 5: Flanker response accuracy change between baseline and later LBNP+thermal provocation. 
Error bars represent + 1 standard deviation; No significant differences. 
 

Flanker Reaction Time 

Reaction time was the next Flanker assessment.  This was calculated as the average 

time (in ms) it took for participants to respond to Flanker trials.  If no response was given, 

an automatic response time between 1200-1300 ms (programmed time between stimuli) 

was applied.  

The two-way RM ANOVA revealed an absence of an interaction between thermal 

perturbations and LBNP time [F(4.4, 35.4) = 1.8, P = 0.15] for reaction time latency to 

overall trials (see Figure 6A), suggesting that changes in reaction time were unaffected by 

the thermal provocation.  Effect size for the interaction between condition and time was η2p 

= 0.18, indicating that 18% of the variance was accounted for by this interaction. (As shown 
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in Figure 7, the tendency, and thus the interaction approaching significance, appears to be 

due to a general slower response in the HEAT condition relative to the other two thermal 

manipulations). There was no main effect of time (P = 0.22) indicating that LBNP duration 

alone did not affect these response latencies.   

When analyzed separately, no significant interaction was evident for either 

Congruent (P = 0.24; Figure 6B) or Incongruent trials (P = 0.10; Figure 6C).  Calculated 

effect sizes were η2p = 0.15 for Congruent and η2p = 0.19 for Incongruent trials.  There was 

also no main effect of time (Congruent, P = 0.25; Incongruent, P = 0.16).  Despite a lack of 

significance, it appeared that participants responded quicker to Congruent trials (< 450 

ms) than to Incongruent trials (< 500ms), irrespective of thermal condition.  Regardless of 

condition, reaction time latency decreased (i.e., faster responses) from baseline to post-

trial (Figure 6A-C), suggesting some potential enhancement of LBNP, a practice/learning 

effect, or perhaps a desire to quickly finish the cognitive test.   

Analysis from the one-way RM ANOVA for the change in response between baseline 

and the later LBNP+thermal provocation stage revealed no difference (P = 0.13) between 

thermal perturbations to overall trial response for reaction time (Figure 7).  Effect size for 

thermal conditions was η2p = 0.13, indicating that the different thermal perturbations (in 

combination with LBNP) accounted for 13% of the observed variance.  When analyzed 

separately, no significant difference between thermal conditions was evident for either 

Congruent or Incongruent trials (P = 0.14 for both) for the change in these responses.  

Calculated effect sizes were η2p = 0.15 and 0.11 for Congruent and Incongruent trials, 

respectively.   
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Although statistical significance was not achieved, there was a noticeable trend for 

the change in response between baseline and the later LBNP+thermal provocation stage.  

Overall, mild heating increased (i.e., slowed) reaction time (overall = +21.9 ms; Congruent = 

+20.7 ms; Incongruent = +22.8 ms), whereas the cooling condition decreased (i.e., 

quickened) reaction time (overall = -11.3 ms; Congruent = -12.8 ms; Incongruent = -11.0 

ms).  
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A. Overall Trials 

 

B. Congruent Trials 

 

C. Incongruent Trials 

 

Figure 6: Flanker reaction time. Error bars represent + 1 standard deviation; No significant differences. 
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Figure 7: Flanker reaction time change between baseline and later LBNP+thermal provocation. Error 
bars represent + 1 standard deviation; No significant differences. 
 

Flanker Reaction Time Variability  

The final Flanker assessment was reaction time variability.  This was calculated as 

the standard deviation of reaction time (in ms) it took for participants to respond to the 

Flanker trials. 

Analysis from the two-way RM ANOVA revealed an absence of an interaction 

between the thermal perturbation conditions combined with LBNP and time [F(8, 64) = 1.5, 

P = 0.16] for reaction time (RT) variability to overall trials (see Figure 8A), suggesting that 

changes in RT variability were unaffected by the thermal provocation in combination with 

LBNP.  The effect size for the interaction between thermal condition and time was η2p = 

0.03, indicating that 3% of the variance was account for by this interaction.  There was no 
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main effect of time [F(4, 64) = 1.9, P = 0.13] on overall RT variability, indicating that LBNP 

duration alone did not affect these responses.   

When analyzed separately, no significant interaction was evident for either 

Congruent (P = 0.35; Figure 8B) or Incongruent trials (P = 0.19; Figure 8C).  Calculated 

effect sizes were η2p = 0.04 and 0.03 for Congruent and Incongruent trials, respectively.  

The main effect of time was also not significant for either Congruent (P = 0.20) or 

Incongruent (P = 0.14) trials examined separately.  Overall, it appeared that performance 

variability was similar for both Congruent (< 120 ms) and Incongruent trials (< 120ms), 

regardless of thermal condition. 

The one-way RM ANOVA for the change in response between baseline and the later 

LBNP+thermal provocation stage revealed no difference (P = 0.30) between thermal 

perturbations to overall trial response for RT variability (Figure 9).  Effect size for thermal 

conditions was η2p = 0.10, indicating that 10% of the variance observed was accounted for 

by thermal condition.  When analyzed separately, no significant difference between 

thermal conditions was evident for either Congruent (P = 0.22) or Incongruent trials (P = 

0.64) for the change in this response.  Calculated effect sizes were η2p = 0.15 and 0.04 for 

Congruent and Incongruent trials, respectively.   

Although statistical significance was not achieved there was a noticeable trend for 

the change in response variability between baseline and the later LBNP+thermal 

provocation stage.  Overall, mild heating increased RT variability (overall = +20.9 ms; 

Congruent = +32.7 ms; Incongruent = +13.4 ms), whereas the cooling condition decreased 

RT variability (overall = -9.7 ms; Congruent = -13.7 ms; Incongruent = -8.3 ms; see Figure 

9).  
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 A. Overall Trials 

 

B. Congruent Trials 

 

C. Incongruent Trials 

 

Figure 8: Flanker reaction time variability. Error bars represent + 1 standard deviation; No significant 
differences. 
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Figure 9: Flanker reaction time variability change between baseline and later LBNP+thermal 
provocation. Error bars represent + 1 standard deviation; No significant differences. 
 

Affective Valence and Thermal Sensations 

 Figure 10 illustrates the average reported affective valence, from the Feeling Scale 

(Hardy & Rejeski, 1989), at 10 min increments for all conditions; the dashed line indicates 

the application of LBNP, and the dotted line indicates the start of the thermal perturbation.  

Interaction between thermal perturbations and LBNP time did not reveal significant 

changes [F(14, 110) = 1.4, P = 0.16], suggesting that affective valence was unaffected by 

thermal provocations.  Effect size for the interaction between condition and time was η2p = 

0.01, indicating 1% of the variance observed was accounted for by this interaction.   

However, there was a significant effect of time [F(7, 110) = 11.4, P < 0.001] 
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baseline (minutes 0 and 10) values of 3.0 FS.  Similarly, FS scores at minutes 40 (P = 0.03; 

1.9 FS), 50 (P = 0.003; 1.7 FS) and 60 (P = 0.01; 1.8 FS) were significantly less than the 

LBNP only stage (minute 20) score of 2.6 FS.  At minutes 30 (P = 0.03; 2.1 FS), 40 (P = 

0.004; 1.9 FS), 50 (P < 0.001; 1.7 FS), 60 (P = 0.002; 1.8 FS), FS scores were significantly less 

than post-trial FS scores of 2.8.  Essentially, affective valence began to change slightly 

(becoming less positive) at the onset of LBNP only, and continued to decrease until the end 

of the trial; during post-trial, FS returned to baseline scores.  Further, the change in 

response between baseline (minute 10) and the last LBNP+thermal stage (minute 60) 

revealed no difference [F(2,16) = 0.3, P = 0.8] between thermal perturbations to affective 

valence.  
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Figure 10: Feeling Scale. Error bars represent + 1 standard deviation; dashed line, application of lower body 
negative pressure (LBNP); dotted line, start of mild heating, skin surface cooling or remained thermoneutral; 
significant difference with main effect of time (P < 0.001); *, significantly less than baseline (minutes 0 and 10); 
^, significantly less than LBNP only stage (minute 20); $, significantly less than post-trial 
 

 Average perceptions of thermal sensations reported every 10 min for all conditions 

is shown in Figure 11; the dashed line signifies the application of LBNP, and the dotted line 

signifies the start of the thermal perturbation.  A significant interaction was evident with 

significant changes [F(14, 110) = 43.5, P < 0.001] occurring at minutes 30, 40, 50 and 60.  

Effect size for the interaction between condition and time was η2p = 0.43, indicating 43% of 

the variance was accounted for by this interaction.    
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minute 30.  As expected, participants reported feeling: (a) significantly (P < 0.001) warmer 

during mild heating at minutes 30 (5.0 TS), 40 (5.2 TS), 50 (5.3 TS) and 60 (5.5 TS) than 

thermoneutral and cooling trials; (b) significantly (P < 0.001) cooler during skin surface 

cooling at minutes 30 (2.4 TS), 40 (2.3 TS), 50 (2.4 TS) and 60 (2.5 TS) than thermoneutral 

and mild heating conditions; (c) and “comfortable” during thermoneutral trials, with TS 

values not really changing at all.   

 

 

Figure 11: Thermal Sensations. Error bars represent + 1 standard deviation; dashed line, application of lower 
body negative pressure (LBNP); dotted line, start of mild heating, skin surface cooling or remained 
thermoneutral; &, significantly greater than thermoneutral and cooling; !, significantly less than thermoneutral 
and mild heating 
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Based on the correlation coefficient (r-value) from the Pearson correlation analysis, 

there was no significant relationship between the reported TS scores and mean skin 

temperature at minute 60 for any of the thermal perturbations (NEUT: r = -0.4, P = 0.23); 

COOL: r = 0.02, P = 0.95; HEAT: r = -0.6, P = 0.09).  During the post-trial period, TS scores 

returned to baseline values of 4.0 or “comfortable” for all three thermal conditions.  

Further, the change in response between baseline (minute 10) and the last LBNP+thermal 

stage (minute 60) revealed a significant difference [F(2,16) = 16.7, P < 0.001] between 

thermal perturbations to affective valence. 

Table 2 illustrates the correlations between TS scores and Flanker performance, and 

the change in TS from baseline and Flanker performance during LBNP+thermal (early) and 

LBNP+thermal (later).  A significant negative relationship (r = -0.7, P = 0.05) was observed 

between TS scores and RT variability during the LBNP+thermal (early) stage of heating 

trials.  As TS scores increased (i.e., participants felt warmer), Flanker RT variability 

decreased.  The coefficient of determination (r2) is 0.49, which means that 49% of the 

variation in mean RT variability can be predicted from the relationship between TS scores 

and heating at the LBNP+thermal (early) stage.  Conversely, 61% of the variation in mean 

RT variability cannot be explained. 
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LBNP+Thermal (early) LBNP+Thermal (later) 

Accuracy RT Variability Accuracy RT Variability 

Thermal Sensations 
Score 

NEUT r = -0.1 r = -0.1 r = 0.2 r = -0.4 r = -0.4 r = 0.4 

COOL r = -0.5  r = 0.2 r = 0.5 r = -0.6 r = 0.1 r = 0.4 

HEAT r = 0.5 r = -0.5 r = -0.7* r = 0.4 r = -0.2 r = -0.3 

Change in Thermal 
Sensations Score from 

Baseline 

NEUT r = 0.1 r = 0.1 r = 0.2 r = -0.1 r = -0.3 r = 0.2 

COOL r =-0.3 r = 0.3 r = 0.4 r = -0.4 r = 0.1 r = 0.3 

HEAT r = -0.4 r = -0.2 r =-0.2 r = 0.2 r = -0.0 r = -0.1 

Table 2: Pearson correlation between Thermal Sensations, (TS) and changes in TS from baseline, and Flanker performance during 
LBNP+Thermal (early) and LBNP+Thermal (later) stages. COOL, cooling condition; HEAT, mild heating condition; NEUT, thermoneutral condition; RT, 
reaction time; *, significant (p< 0.05) correlation.  
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Aerobic Fitness 

 The one-way ANCOVA, controlling for aerobic capacity (i.e., VO2max) confirmed that 

even after accounting for any differences in aerobic capacity, there was no difference in the 

behavioral data (i.e., Flanker task) related to cognitive performance (response accuracy: 

overall trials, P = 0.83, η2p = 0.02; Congruent trials, P = 0.41, η2p = 0.07; Incongruent trials, P 

= 0.20, η2p = 0.11; reaction time: overall trials, P = 0.96, η2p =0.003; Congruent trials, P = 

0.96, η2p =0.003; Incongruent trials, P = 0.81, η2p =0.02; reaction time variability: overall 

trials, P = 0.95, η2p =0.004; Congruent trials; P = 0.31, η2p =0.09; Incongruent trials, P = 0.29, 

η2p =0.11).   

 Since aerobic fitness was relatively homogenous, the variability in the cognitive task 

may have been due to other independent variables, such as age.  A one-way ANCOVA, 

controlling for age determined that there was a significant interaction between thermal 

condition and age for response accuracy on Congruent trials only (P = 0.03).  The effect size 

for the interaction was η2p = 0.25, indicating 25% of the variance was accounted for by the 

relationship between thermal condition and age.  Further analyses determined that the 

regression equation for NEUT trials (NEUT = 7.755-(0.271*age)) shows that the coefficient 

for age in years is -0.271 (-27.1%) in response accuracy during Congruent trials.  During 

the COOL condition, the regression equation (COOL = -0.0210+(0.057*age) shows that the 

coefficient for age is 0.057 (5.7%) in response accuracy for Congruent trials.  The 

regression equation during HEAT (HEAT = -21.046+(0.631*age) shows that the coefficient 

for age is 0.631 (63.1%) in response accuracy for Congruent trials.  It thus appears that age 

has a larger effect in the HEAT condition than in the COOL or NEUT conditions.  
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CHAPTER 5 

DISCUSSION 

 

 Hemorrhage from major trauma is the leading cause of death in both civilian and 

battlefield settings (Eastridge et al., 2011; Soreide et al., 2007).  Currently, the standard of 

medical care is to warm hemorrhagic patients, given the detrimental effects of hypothermia 

associated with trauma (Martin et al., 2005; Peng & Bongard, 1999).  However, heating a 

normothermic hemorrhaging victim can decrease arterial pressure (Crandall & Gonzalez-

Alonso, 2010; Wilson et al., 2006), which may compromise perfusion pressure to the brain 

and perhaps cognitive function.  Since cooling interventions have been shown to have 

beneficial (Alam et al., 2005; Bandelow et al., 2010) or sustained effects (Caldwell et al., 

2012; Giesbrecht, Arnett, Vela & Bristow, 1993) on cognitive function, they may provide 

similar benefits to a normothermic hemorrhaging individual.   

 The purpose of this investigation was to evaluate and compare the effects of mild 

heating and skin surface cooling during a mild simulated hemorrhage challenge on an index 

of cognitive function.  To our knowledge, previous studies have not adequately evaluated 

the occurrence of cognitive impairments during the combination of hemorrhage and mild 

heating.  Overall, we observed that for the applied level of simulated hemorrhage (30 

mmHg LBNP), HEAT did not significantly (P < 0.05) compromise cognitive function, at least 

in terms of the ability to ignore distracting stimuli and preventing those distractions from 

disrupting cognitive performance, while COOL was not beneficial.  However, performance 

trends were observed that were in the direction of the hypotheses; perhaps a larger sample 
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size (discussed in detail later on) would have led to significant outcomes.  Perceptions of 

affective valence (i.e., how good or bad the individual felt at that moment) and thermal 

sensations were in flounced to a greater extent by the thermal conditions than cognitive 

measurements (i.e., Flanker task).  Additionally, given the homogeneity of the participants’ 

aerobic capacity, the extent to which aerobic fitness may modify these effects remains 

inconclusive.   

 

PRIMARY AIM: Mild Heating vs. Skin Surface Cooling and Cognitive Function 

Flanker Task. Since the ability to accurately make rapid decisions or allocate 

attention to pertinent tasks (e.g., battalion commander, incident commander, firefighter in 

a dangerous situation) while severely injured may be compromised, the Flanker task was 

chosen to evaluate the ability to handle conflict created by distracters (e.g., incongruent 

trials).  As hypothesized, decreased response accuracy, increased reaction time (i.e., slower 

response) and more inconsistent performance was observed during mild heating trials.  On 

the other hand, cooling trials presented with increased response accuracy, decreased 

reaction time (i.e., quicker response) and more consistent performance, although not at a 

level that reached statistical significance (P > 0.05, Figures 5, 7, 9).   

Previous work (Takezawa & Miyatani, 2005) has shown an incongruent stimulus 

negatively influences response inhibition by making the response more difficult for the 

individual.  With the Flanker task, this difficulty is achieved by flanking the relevant 

stimulus (i.e., a center arrow) with arrows pointing in the opposite direction.  Although not 

statistically significant, this effect could be visually seen in the data set (Figures 4, 6, and 8) 

via decreased response accuracy coupled with increased reaction time and greater 
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variability in responses to incongruent trials than with congruent trials, regardless of 

thermal condition.  Presumably, the incongruent flankers distract from the task at hand 

(identifying orientation of central arrow), resulting in decreased performance (Hommel, 

2003).  Further, the additional superimposed levels of conflict or stress (e.g., traumatic 

injury/simulated hemorrhage, thermal perturbations) may have supplemented these 

responses.  Others (Giesbrecht et al., 1993; Pilcher et al., 2002) have mentioned that 

cognitive performance can be influenced by a multitude of factors, including, thermal 

environment, person, task and situation.   

Simmons et al. (2008) reported that cognitive performance was unaffected unless 

thermal stress was sufficient enough to change core body temperature away from normal 

or steady state conditions.  Although core temperature remained stable throughout each 

thermal experimentation day (37.0 ± 0.1°C), some performance trends were detected.  

According to the maximal adaptability model (Hancock & Vasmatzidis, 2003), thermal 

stress exerts its detrimental effects on cognitive performance by competing for and 

eventually draining attentional resources.  Further, heating greatly compromises the 

control of blood pressure and cerebral perfusion via presyncopal symptoms (e.g., nausea, 

dizziness) during simulated hemorrhagic challenges (Durand et al., 2004; Wilson et al., 

2002; Wilson et al., 2004), which may affect performance.  Despite no significant change in 

cerebral perfusion and blood pressure during mild heating trials (compared with the other 

conditions; Figures 2 and 3), there was a slight decrease observed for both variables during 

the LBNP+thermal stages from baseline values.  Although participants did not exhibit any 

presyncopal symptoms, some individuals did express feeling “sleepy” during the mild 

heating trial, which may have influenced their performance.   
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Although the heating stimulus was to simulate a blanket (i.e., current medical 

practice for treating hemorrhaging victims), ambient temperatures did persist in duration 

(40 min).  Over time, attentional resources may have been progressively drained and 

perhaps caused the slight decline in performance that was observed.  Further, experiencing 

multiple stressors (i.e., combination of LBNP and mild heating) can negatively influence the 

cognitive domains of vigilance, reaction time and memory (Lieberman et al., 2005b; 

Mahoney et al., 2007; Smith et al., 2001; van Wingen et al., 2012; Vasterling et al., 2006). 

Due to the level of attentional resources required to complete tasks, the level of 

performance deterioration is dependent upon the complexity of the task; whereas simple 

tasks are less vulnerable during heat exposure, more complex tasks have shown to be more 

sensitive (Pilcher et al., 2002).  Although slight decrements in performance on the Flanker 

task were observed, it is a relatively simple information-processing task and changes in 

performance may not be as apparent as more complex tasks (e.g., Stroop test).  

Similar to heat stress, whole body cooling associated with a reduction in core 

temperature (2-4°C) can impair cognitive functions, such as memory and concentration 

(Giesbrecht et al., 1993; Lockhart et al., 2005; Makinen, 2007).  If cooling decreases core 

temperature below 35°C (hypothermia), symptoms of confusion, amnesia and decreased 

alertness can occur.  Internal temperatures were maintained at 37 ± 0.1°C for all conditions 

in this investigation, which may explain why cognitive performance during cooling trials 

was not negatively impacted.  Aside from changes in internal temperature, Bandelow et al. 

(2010) explained that increased perceived comfort during cooling might have allowed 

participants to perform better on a visuomotor task.  Similarly, the perceived affective 

valence in this study was more pleasant during COOL conditions, compared with HEAT 
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(although not significant), which may explain why cognitive performance was not 

negatively influenced.   

Makinen (2007) offered a theory explaining that general arousal levels are 

increased by mild or moderate cold exposure, which initially leads to improved 

performance that can degrade if exposure is prolonged or more severe.  Performance on 

the Flanker task did not vary significantly across cooling exposure time (40 min), perhaps 

because the level of cooling was not severe enough to increase arousal to a level where 

performance could have been degraded.   

In contrast to heating, Durand et al. (2004) and Wilson et al. (2002) reported 

preservation of blood pressure and cerebral blood flow to the brain during skin-surface 

cooling combined with a simulated hemorrhagic challenge.  Additionally, the likelihood of 

presyncopal symptoms to occur is attenuated when blood pressure and cerebral perfusion 

are protected.  Although in this study cerebral perfusion was not shown to be significantly 

different between thermal conditions (Figure 3), there was a significant increase in blood 

pressure once the cooling manipulation began, compared to the heating and thermoneutral 

conditions Figure 2).  In an animal model, hypothermia during cerebral hypoxia (i.e., lethal 

hemorrhage) can preserve the viability of neurons and astrocytes (Alam et al., 2005).  

Observed performance trends seen in this investigation (refer to Figures 5, 7 and 9), 

specifically during cooling trials, could have been attributed to better control of mean 

arterial pressure coupled with less feelings nausea or dizziness (i.e., presyncopal 

symptoms), or possibly neuronal and astrocyte preservation.  Further, Giesbrecht et al. 

(1993) indicated that unlike complicated tasks that call upon greater mental manipulation, 
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less complicated tasks (e.g., Flanker task) make fewer cognitive demands that were 

unaffected by immersion hypothermia.         

Although it was predicted that aspects of cognitive performance would be 

influenced by the thermal manipulations and during LBNP, cerebral blood flow velocity 

was maintained (Figure 3), despite significant changes in arterial pressure (Figure 2).  This 

suggests that cerebral autoregulation, a compensatory mechanism of hemorrhage, was 

activated to maintain constant blood flow to the brain (Cooke et al., 2004; Novak, Novak, 

Spies & Low, 1998; Tzeng et al., 2012).  Additionally, Lewis et al. (2014) found that during 

reductions in oxygen delivery induced by cerebral hypoperfusion, the brain extracted more 

oxygen to compensate for the reduction in delivery.  Since oxygen extraction was not 

measured in this study, it can only be speculated that this was occurring.  Furthermore, 

once the capacity of the brain to extract oxygen is maximized beyond cerebral 

autoregulation further decreases in oxygen delivery would ultimately result in cognitive 

impairment and a loss of consciousness (Lewis et al., 2014).  As a consequence, the indices 

of cognitive function, as assessed by the Flanker task, were unchanged.   

Cerebral blood flow velocity would have significantly risen or fallen, with respect to 

blood pressure, if mean arterial pressure were outside of the autoregulated range of 60-

160 mmHg (Duschek et al., 2007; Novak et al., 1998).  To achieve mean arterial pressure 

below 60 mmHg, and thus a decline in cerebral perfusion that would influence cognitive 

function, the individual would be close to or at the point of hemorrhagic shock or syncope 

(i.e., fainting).  Therefore the applied level of simulated hemorrhage (30 mmHg LBNP) may 

have been insufficient to significantly alter aspects of cognitive function, regardless of the 

thermal perturbations applied (i.e., NEUT, COOL, HEAT).  Increasing the level of LBNP (i.e., 
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> 30 mmHg), under the same experimental protocol, would further decrease blood 

pressure (during HEAT) and in turn cause cerebral hypoperfusion, and ultimately 

significantly impact cognitive performance.  To achieve this, participants would have to be 

taken to their level of presyncope, or the point just prior to fainting.  Due to individual 

variability, tolerance to LBNP levels varies; Rickards, Ryan, Cooke and Convertino (2011) 

classified individuals as high tolerance if they completed the 60 mmHg (equivalent to 

~1000 mL of blood loss), and low tolerance if they did not complete this level.  To 

determine each individual’s presyncope level (for each thermal manipulation) and to test 

cognitive performance prior to this level, a total 6 laboratory visits would be required, 

which may be a challenge with recruitment and possible attrition rates:  

Since changes in cognitive performance were explained by a variance of 10-20%, the 

study may not have had enough statistical power to detect the effect of cognitive responses 

to the different thermal perturbations.  Follow-up power analyses for estimating the 

sample size necessary for a within-participants design that would include treatment and 

control conditions was conducted using response accuracy, RT, and RT variability values 

from this investigation, and resulted in an estimated sample size of 301, 237, and 8716 

participants, respectively.  In order for a significant effect to be observed with the Flanker 

task, a rather large sample size is needed, which may not be realistic (from either a time or 

financial perspective), suggesting that future studies should focus on other aspects of 

cognitive function (i.e., cognitive flexibility, working memory) either alone or in 

combination.  While typical computerized cognitive test batteries tend to isolate aspects of 

cognitive performance, they may not represent the dynamism and complexity found in 

combat environments (Wong, 2005).  Additionally, a multi-cognitive testing battery can 
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elevate stress levels (i.e., tachycardia, hyperventilation) that may be applicable to that 

experienced during warfare and fire suppression.   

While knowledge regarding temperature environment, cognitive task and the 

experimental setting (laboratory) is available, information about the participants’ intellect, 

skills, training, personality and mood were limited.  Perhaps the latter factors relating to 

the individual may have affected the results more than the other variables examined.  

Future investigations should consider assessing personality traits or mood states to better 

comprehend their influence on cognitive performance during mild heating and cooling 

thermal conditions and hemorrhage.  Although a lack of significance (P > 0.05) was 

observed in the behavioral data (i.e., Flanker task), analyses of the perceptual data revealed 

some differences due to the perturbations.   

 Affective Valence and Thermal Sensations. Affective valence characterizes the 

subjective affective experience (pleasant or unpleasant) an individual has at any moment in 

time and in response to any type of stimulus or challenge (Rose & Parfitt, 2008).  The 

Feeling Scale (FS), an often-used measure of affective valence within an exercise paradigm, 

may be a valuable tool for examining affective valence under different modes of stress, such 

as hemorrhaging or heating.  Overall, participants in this investigation reported feeling at 

least “fairly good” (FS score ≥ +1; see Figure 10) within and across all trials and conditions.  

Although not statistically different, greater decreases in FS scores were seen during mild 

heating trials, which may be a function of physiological variables.   

For example, mild heating resulted in the greatest increase in heart rate (~20 

beats·min-1) in comparison to cooling and thermoneutral trials (~5 and 10 beats·min-1, 

respectively).  Tachycardia is a compensatory response that occurs to maintain adequate 
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systemic tissue perfusion during a hemorrhagic insult; with heart rate continuing to 

accelerate as hemorrhage becomes more challenging (Cooke et al., 2004).  However, 

unwanted excessive elevations in HR may be an unpleasant experience.  Although a 

significant difference was not found for cerebral perfusion and blood pressure during mild 

heating (compared with the other conditions; Figures 2 and 3), there was a slight decrease 

observed during the LBNP+thermal stages from baseline values.  Reductions in blood 

pressure and accompanying cerebral hypoperfusion are accompanied by presyncopal 

symptoms, such as headache and dizziness (Duschek & Schandry, 2007), which may have 

influenced how participants felt during heating trials (i.e., somewhat greater reductions in 

FS score during the mild heating condition over time compared with the thermoneutral or 

cooling conditions).   

In contrast to affective valence, perceptions of thermal stress (e.g., comfort, 

sensation) were more sensitive to the thermal perturbations (see Figure 9).  Simmons et al. 

(2008) noted that thermal sensations (TS) are more sensitive to changes in skin 

temperature than core temperature.  Since internal temperature was maintained 

throughout all trials (37.0 ± 0.1°C), changes in TS scores (Figure 11) were most likely 

attributed to mean skin temperature (Tsk) changes.  Early reports noted that changes in 

thermal sensations were best associated with either lowering Tsk toward cold 

environments or increasing Tsk toward hot environments (Gagge, Stolwijk, & Hardy, 1967).   

Increased heart rate variability has been reported to occur during exposure to 

different ambient temperatures, suggesting that sympathetic nerve activity may play a role 

in perceptions of thermal stress (Liu, Lian, &Liu, 2008).  Additionally, during a hemorrhagic 

challenge, inhibition of the baroreceptor reflex, in response to decreased arterial pressure, 
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can cause an increase in sympathetic nerve activity (Levy & Pappano, 2007).  When 

sympathetic nerve activity is elevated, effects of thermoregulation (e.g., vasoconstriction 

during cooling, sweating during mild heating), can correspond with TS scores.  Despite a 

lack of significance, TS scores  did relate to Tsk during the thermal conditions in that 

warmer TS scores were reported as Tsk increased, compared with baseline (i.e., 

normothermia), and cooler TS scores were reported when Tsk decreased, compared with 

baseline.             

 

SECONDARY AIM: Aerobic Fitness and Cognitive Function  

 Aerobic fitness has been associated with better cognitive vitality (e.g., enhanced 

executive function, visuospatial processing, speeded processing; Colcombe & Kramer, 

2003; Hillman et al., 2008; Themanson & Hillman, 2006).  Increased fitness results in 

angiogenesis, or formation of new blood vessels and increased blood volume that may 

benefit cognitive function (Ratey & Loehr, 2011).  The hypothesis that aerobic fitness might 

have a relationship with cognitive performance during a hemorrhagic injury was unable to 

be supported, in part due to the absence of a change in the indices of cognitive function as a 

result of the perturbations.  It could also be that aerobic fitness was too homogenous in this 

sample for any effect to be detected.  Based on the analysis performed (i.e., ANCOVA), 

aerobic fitness does not appear to affect cognitive performance, with respect to selective 

response inhibition, a subset of executive control function.  Any differences observed 

between participants must be interpreted with caution, as the differences may simply be 

individual variability rather than a true fitness effect.  Perhaps a larger range with this 
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variable (i.e., individuals with high and low VO2max values) may have resulted in distinct 

differences in cognitive performance on the Flanker task based on aerobic fitness. 

 Variability on the Flanker task assessments (e.g., response accuracy, response time, 

performance variability) may have been due to other independent variables, such as age.  

Analyses confirmed that even after accounting for the differences in age, there was a 

significant difference on response accuracy for Congruent trials only.  Age appeared to 

positively influence performance during HEAT trials in comparison to NEUT and COOL 

conditions.  The coefficient from the regression equations indicated that for every 

additional year in age, response accuracy (on Congruent trials) was expected to decrease 

an average of 27.1% during NEUT, increase 5.7% during COOL, and increase 63.1% during 

HEAT.  Middle-aged men (45-64 y) are more work-heat-intolerant and suffer more 

physiological strain during thermal stress than their younger counterparts (Pandolf, 1997).  

However, habitually active or aerobically trained middle-aged men tolerate and respond 

better to heat stress than younger individuals (Pandolf).  As such age alone may not be the 

only factor influencing performance on the Flanker task, but one among a myriad of factors 

(e.g., body fat).   

 

CONCLUSIONS 

  The present findings may be applied to soldiers and firefighters, as well as any 

individual who is at risk of being hyperthermic coupled with a hemorrhagic injury (e.g., 

police officer, mine workers).  This investigation provides information regarding whether 

heating a hemorrhaging soldier or firefighter on the battleground or fire ground should 

continue to be universally applied, or whether that decision should be predicated upon the 



69 

victim’s core temperature (i.e., normothermia vs. hypothermia).  Although statistically 

significant differences (P < 0.05) were not seen in measures of cognitive performance (i.e., 

response accuracy, reaction time and performance consistency), some performance trends 

were observed.  Mild heating tended to compromise cognitive performance via decreased 

response accuracy coupled with increased reaction time and variability in performance; 

whereas cooling had increased response accuracy with decreased reaction time and 

performance variability.   Other indices of cognitive function may have been affected in this 

protocol (e.g., working memory), but those assessed by the Flanker task (ability to ignore 

distracting information) were not. 

However, it remains inconclusive whether considerations should be made regarding 

implementation of skin surface cooling, or a comparable cooling intervention, to treat a 

hemorrhaging soldier or firefighter who is not hypothermic.  It appears that the applied 

level of simulated hemorrhage (30 mmHg LBNP) was insufficient to significantly alter 

cognitive function regardless of the thermal perturbation.  Perhaps a more profound 

simulated hemorrhagic challenge (> 30mmHg) with the same thermal conditions would 

produce more significant changes.  Additionally, given the homogeneity of the fitness levels 

of the participants, firm conclusions were unable to be developed regarding the extent to 

which aerobic fitness may modify cognitive performance during mild heating and 

simulated mild hemorrhage.   

Since the current investigation involved young (29.9 ± 8.4 y), relatively fit men (40.4 

± 6.3 ml·kg-1·min-1), the conclusions drawn upon here only apply to this particular 

population.  It would be of interest to determine if women with similar characteristics 

would produce comparable results.  Additionally, recruiting based on aerobic capacity (i.e., 
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individuals with high and low VO2max values) may add to the preliminary results collected 

in this investigation.  Both of these future investigations would further aid treatment of 

trauma injuries in military and firefighting personnel, both men and women, as well as 

active and sedentary individuals.   
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APPENDIX B 

 

HEALTH HISTORY FORM 

 
Date__________________________ 
Name_________________________________________________________________________ 
                LAST                                                                                                                                         
FIRST                                                                                                      MI 

Address_______________________________________________________________________
_ 
                           STREET                                                                                                                                                                                            
APT # 

             
________________________________________________________________________ 
                           CITY                                                                                                                    
STATE                                                                 ZIP CODE 

Contact________________________________________________________________________ 
                          HOME  PHONE                                                   CELL  PHONE                                                  
EMAIL                                                                  

Date of Birth_____________________  Age_______  Gender_______  Hgt_______  
Wgt_______ 
                                                            (MM/DD/YYYY) 

Occupation______________________________Education 
Completed______________________ 
 

Emergency 
Contact______________________________________________________________ 
                                                  NAME                                                                               
RELATIONSHIP                                                  PHONE 
 

Racial Origin: (SELECT ONE OF THE FOLLOWING) 
 

□ American Indian or Alaska Native
□ Asian (includes persons from the Indian subcontinent)  
□ Black or African American 
□ Native Hawaiian or Pacific Islander 
□ White 
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□   More than one 
race______________________________________________________ 
□   I do not wish to disclose this information 

 

Ethnic Origin: (SELECT ONE OF THE FOLLOWING) 
 

□ Hispanic or Latino 
□ Not Hispanic or Latino 
□ I do not wish to disclose this information 

 

 

Social History  
 

My current exercise/activity level is:     □ satisfactory           □  unsatisfactory           
□ I don’t know 
Type of 
exercise/activity_____________________________________Frequency______________ 
 

My current weight is:     □ satisfactory          □   unsatisfactory           □
I don’t know   
I     □ currently     □ previously     □ never      use diet and/or exercise to 
lose/gain weight 
I     □ currently     □ previously     □ never      use medication/supplements to 
lose/gain weight      
 

Is caffeine part of your diet?    □ currently     □ previously:  date 
stopped__________     □ never 
Source of 
caffeine___________________________________Frequency____________________ 
 

Tobacco Use:      □ none      □ current use     □ prior use    year 
started_______year quit_______ 
Type____________________________Amount____________________Number of 
years_______ 
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Alcohol Use:     □ never □ occasionally/rarely         □ weekly          
□ daily 
Type________________________________________________Amount____________________ 
 

Illicit Drug Use: 
I   □ currently     □ previously     □ never   use illicit drugs (such as marijuana, crack, 
PCP, methamphetamines) 
Type___________________________________________________Last 
used_______________ 
 

Contraception/Pregnancy Risk: (FEMALES ONLY) 
I am currently using a reliable method of contraception. 
        □ YES     □ NO     □ I am not in a sexually active relationship 
It is possible that I am pregnant.     □ YES     □ NO       
 

First day of your last menstrual period________________________________ 
 

Medical History  
 

Allergies: (THIS INCLUDES MEDICATION, FOOD, AND/OR LATEX)    None Known   
 

Allergy/Intolerance Describe Reaction 
  
  
  
 

Please mark the box if you have ever seen a doctor for any of the following 
conditions: 
 

asthma other heart trouble liver disease 
chronic bronchitis/emphysema bleeding/clotting disorder kidney disease 
other chronic lung disease headaches urinary problems 
tuberculosis seizures/epilepsy arthritis/joint problems 
high blood pressure stroke chronic infection 
high cholesterol thyroid disorder fainting spells 
diabetes ulcers recurrent fatigue 
heart disease/chest pain diverticulosis/diverticulitis cancer 
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heart attack inflammatory bowel disease anxiety/depression 
(diagnosed) 

racing heart/palpitations bowel obstruction/ileus alcohol/substance abuse 
abnormal electrocardiogram (ECG) gallbladder disease mental illness 

 

Please list ALL surgeries and explain any checked boxes below: 
 
 
 
 

Medications: (CURRENT MEDICATIONS INCLUDING OVER-THE-COUNTER, VITAMINS, AND HERBAL 
SUPPLEMENTS) 

Medication Dose/Amt Frequency Purpose 
    
    
    
    
    
 
   The above medical history is correct to the best of my knowledge. 
   

    I authorize the Institute for Exercise and Environmental Medicine to keep this information and any 
information  
    gained from my participation in their studies in a database so that they may contact me regarding 
future studies. 
 

Signature__________________________________________________Date________________
_ 
 
Witness 
Signature___________________________________________Date_________________ 
 

 
 
 

□ 

□ 
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APPENDIX C 
 

INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE 
(August 2002) 

 
SHORT LAST 7 DAYS SELF-ADMINISTERED FORMAT 

 
 

FOR USE WITH YOUNG AND MIDDLE-AGED ADULTS (15-69 years) 
 
The International Physical Activity Questionnaires (IPAQ) comprises a set of 4 questionnaires. 
Long (5 activity domains asked independently) and short (4 generic items) versions for use by 
either telephone or self-administered methods are available. The purpose of the questionnaires 
is to provide common instruments that can be used to obtain internationally comparable data on 
health–related physical activity. 
 
Background on IPAQ 
The development of an international measure for physical activity commenced in Geneva in 
1998 and was followed by extensive reliability and validity testing undertaken across 12 
countries (14 sites) during 2000.  The final results suggest that these measures have 
acceptable measurement properties for use in many settings and in different languages, and are 
suitable for national population-based prevalence studies of participation in physical activity. 
 
Using IPAQ  
Use of the IPAQ instruments for monitoring and research purposes is encouraged. It is 
recommended that no changes be made to the order or wording of the questions as this will 
affect the psychometric properties of the instruments.  
 
Translation from English and Cultural Adaptation 
Translation from English is supported to facilitate worldwide use of IPAQ. Information on the 
availability of IPAQ in different languages can be obtained at  www.ipaq.ki.se. If a new 
translation is undertaken we highly recommend using the prescribed back translation methods 
available on the IPAQ website. If possible please consider making your translated version of 
IPAQ available to others by contributing it to the IPAQ website. Further details on translation 
and cultural adaptation can be downloaded from the website. 
 
Further Developments of IPAQ  
International collaboration on IPAQ is on-going and an International Physical Activity 
Prevalence Study is in progress. For further information see the IPAQ website.  
 
More Information 
More detailed information on the IPAQ process and the research methods used in the 
development of IPAQ instruments is available at www.ipaq.ki.se and Booth, M.L. (2000).  
Assessment of Physical Activity: An International Perspective.  Research Quarterly for Exercise 
and Sport, 71 (2): s114-20.  Other scientific publications and presentations on the use of IPAQ 
are summarized on the website. 

http://www.ipaq.ki.se/
http://www.ipaq.ki.se/
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INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE 
 
We are interested in finding out about the kinds of physical activities that people do as 
part of their everyday lives.  The questions will ask you about the time you spent being 
physically active in the last 7 days.  Please answer each question even if you do not 
consider yourself to be an active person.  Please think about the activities you do at 
work, as part of your house and yard work, to get from place to place, and in your spare 
time for recreation, exercise or sport. 
 
Think about all the vigorous activities that you did in the last 7 days.  Vigorous 
physical activities refer to activities that take hard physical effort and make you breathe 
much harder than normal.  Think only about those physical activities that you did for at 
least 10 minutes at a time. 
 
1. During the last 7 days, on how many days did you do vigorous physical 

activities like heavy lifting, digging, aerobics, or fast bicycling?  
 

_____ days per week  
 

   No vigorous physical activities  Skip to question 3 
 

 
2. How much time did you usually spend doing vigorous physical activities on one 

of those days? 
 

_____ hours per day  

_____ minutes per day  

 
  Don’t know/Not sure  

 

 
Think about all the moderate activities that you did in the last 7 days.  Moderate 
activities refer to activities that take moderate physical effort and make you breathe 
somewhat harder than normal.  Think only about those physical activities that you did 
for at least 10 minutes at a time. 
 
 
3. During the last 7 days, on how many days did you do moderate physical 

activities like carrying light loads, bicycling at a regular pace, or doubles tennis?  
Do not include walking. 

 
_____ days per week 
 

   No moderate physical activities  Skip to question 5 
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4. How much time did you usually spend doing moderate physical activities on one 
of those days? 

 
_____ hours per day 

_____ minutes per day 

 
  Don’t know/Not sure  

 
 

Think about the time you spent walking in the last 7 days.  This includes at work and at 
home, walking to travel from place to place, and any other walking that you might do 
solely for recreation, sport, exercise, or leisure. 
 
5. During the last 7 days, on how many days did you walk for at least 10 minutes 

at a time?   
 

_____ days per week 
  

   No walking     Skip to question 7 
 
 
6. How much time did you usually spend walking on one of those days? 
 

_____ hours per day 

_____ minutes per day  

 
  Don’t know/Not sure  
 

 
The last question is about the time you spent sitting on weekdays during the last 7 
days.  Include time spent at work, at home, while doing course work and during leisure 
time.  This may include time spent sitting at a desk, visiting friends, reading, or sitting or 
lying down to watch television. 
 

7. During the last 7 days, how much time did you spend sitting on a week day? 
 

_____ hours per day  

_____ minutes per day  

 
  Don’t know/Not sure  
 
 

This is the end of the questionnaire, thank you for participating. 
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APPENDIX D 

 
FEELING SCALE 

+5     VERY GOOD 

+4 

+3     GOOD 

+2 

+1     FAIRLY GOOD 

0        NEUTRAL 

-1      FAIRLY BAD 

-2 

-3      BAD 

-4 

-5      VERY BAD 

Adapted from Hardy & Rejeski, 1989 
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APPENDIX E 
 

THERMAL SENSATIONS SCALE 

0.0     UNBEARABLY COLD 

0.5 

1.0     VERY COLD 

1.5 

2.0     COLD 

2.5         

3.0     COOL 

3.5 

4.0     COMFORTABLE (NEUTRAL) 

4.5 

5.0     WARM 

5.5 

6.0     HOT 

6.5 

7.0     VERY HOT 

7.5 

8.0     UNBEARABLY HOT 

Adapted from Toner et al., 1986 and Young et al., 1987 


