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Abstract

In this thesis, we will first follow Kirchberg’s categorical perspective to establish operator-valued WEP

and QWEP. We develop similar properties as that in the classical WEP and QWEP, and illustrate the

relations with the classical cases by some examples. Then we will discuss the notion of relative WEP in

the context of Hilbert correspondence and investigate the relations between relatively weak injectivity

and relative amenablity. Finally we will apply our discoveries to recent results on C∗-norms, and

generically find a mechanism to construct a continuum number of C∗-norms on some tensor products

which admit infinitely many copies.
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Chapter 1

Introduction

In this thesis, we investigate a new notion of operator-valued WEP and QWEP. Let us recall that

the weak expectation property (abbreviated as WEP) was introduced by E. Christopher Lance in his

paper [Lan73] of 1973, as a generalization of injectivity of von Neumann algebras. In 1993, Eberhard

Kirchberg [Ki93] revealed remarkable connections between tensor products of C∗-algebras and Lance’s

weak expectation property. He defined the notion of QWEP as a quotient of a C∗-algebra with the

WEP, and formulated the famous QWEP conjecture that all C∗-algebras are QWEP. He showed a a

number of equivalences between various open problems in operator algebras. In particular, he showed

that the QWEP conjecture is equivalent to an affirmative answer to the Connes Embedding Problem.

The motivation of our research is to generalize the notion of WEP and QWEP in the setting of

Hilbert C∗- modules, in which the inner product of a Hilbert space is replaced by a C∗-valued inner

product. Hilbert C∗-modules were first introduced in the work of Irving Kaplansky in 1953 [Kap53],

in which he developed the theory for commutative, unital algebras. In the 1970s the theory was

extended to noncommutative C∗- algebras independently by William Lindall Paschke [Pas73] and Marc

Rieffel[Rie74]. The latter used Hilbert C∗-modules to construct a theory of induced representations

of C∗-algebras. Hilbert C∗-modules are crucial to Kasparov’s formulation of KK-theory [Kas80], and

provide the right framework to extend the notion of Morita equivalence to C*-algebras [Rie82]. They

can be viewed as a generalization of vector bundles to noncommutative C*-algebras and as such play

an important role in noncommutative geometry, notably in C∗-algebraic quantum group theory and

groupoid C∗-algebras.

Another motivation of our research is from the relation with amenable correspondences. The notion

of correspondence of two von Neumann algebras has been introduced by Alain Connes and Vaughan

Jones [CJ85], as a very useful tool for the study of type II1 factors. Later Sorin Popa systematically

developed this point of view to get some new insights in this area [Pop]. Among many interesting

results and remarks, he discussed Connes’ classical work on the injective II1 factor in the framework of
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correspondences, and he defined and studied a natural notion of amenability for a finite von Neumann

algebra relative to a von Neumann subalgebra using conditional expectations. As Lance was inspired

by Tomiyama’s work on conditional expectations, we are interested in weak conditional expectations

relative to a C∗-algebra.

Here is the plan of this thesis. Chapter 2 contains preliminaries on C∗-algebras, von Neumann

algebras, tensor products of C∗- algebras and approximation properties. Moreover, we will list some

useful results in classical WEP and QWEP theory, mostly by Kirchberg [Ki93]. We will omit most of

the proofs.

Chapter 3 contains the main results on relative WEP and QWEP, which are inspired by Kirchberg’s

seminal work on non-semisplit extensions. We define two notions of WEP relative to a C∗-algebra

D. Let ED be a Hilbert D-module, and L(ED) be the C∗-algebra of bounded adjointable linear

operators on ED. Also let ED∗∗ be the weakly closed Hilbert D∗∗-module, and Lw(ED∗∗) be the von

Neumann algebra of bounded adjointable linear operators on ED∗∗ . We say that a C∗-algebra A has

the DWEP1 if it is relatively weakly injective in L(ED), i.e. for a faithful representation A ⊂ L(ED),

there exists a u.c.p. map L(ED) → A∗∗, which preserves the identity on A. Respectively we define

the DWEP2 to be relatively weak injectivity in Lw(ED∗∗). We show that DWEP1 implies DWEP2,

but the converse is not true. After investigating some basic properties, we establish a tensor product

characterization of DWEP. Let maxD1 be the tensor norm on A ⊗ C∗F∞ induced from the inclusion

A ⊗ C∗F∞ ⊆ L(EuD)⊗max C
∗F∞ for some universal Hilbert D-module EuD and A ⊂ L(EuD). Then a

C∗-algebra A has the DWEP1, if and only if

A ⊗
maxD1

C∗F∞ = A ⊗
max

C∗F∞.

We have the similar result for DWEP2 with respect to some universal weakly closed D∗∗-module

EuD∗∗ .

Following the notion of relative WEP, we define two notions of the relative QWEP, derived from

relative WEP. After developing basic properties of relative QWEP, we show that the two notions

are equivalent, in contrast to the case of the relative WEP. Similarly, we establish a tensor product

characterization of relative QWEP. Also we investigate some properties of WEP and QWEP relative

to some special classes of C∗-algebras, and illustrate the relations with classical results in the theory

of WEP and QWEP.

In Chapter 4, we examine the connections between relative weak injectivity and the weak contain-
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ment of Hilbert correspondences. Given a pair of von Neumann algebras N ⊂ M , one finds many

situations where there exists a norm one projection E from M onto N , and one may ask what proper-

ties of M are automatically inherited by N . This question is related to the concept of correspondence

between two von Neumann algebras, as a very useful tool for the study of type II1 factors.

The main problem of this chapter is the following. Suppose that a C∗-algebra A is represented

faithfully in a von Neumann algebra M with N being the weak closure of A in M . If the inclusion

A ⊂ M is r.w.i., can we find a conditional expection from M to N? This problem is related to the

problem of whether the Hilbert A − N correspondence AL2(N)N is weakly contained in AL2(M)N .

It turns out the problem has a negative answer. In particular, we find an example that A ⊂ B ⊂M ,

in which A and B are C∗-algebras sitting in a von Neumann algebra M , such that A ⊂ M is r.w.i.,

but B ⊂M is not.

In Chapter 5, we discuss some applications of our tensor product characterization result for DWEP

from Chapter 3 to construct more C∗-norms. As we know, the algebraic tensor product A⊗B of two

C∗-algebras may admit distinct norms, for instance, the minimal and maximal norms. A C∗-algeba

A such that ‖ · ‖min = ‖ · ‖max on A⊗ B for any other C∗-algebra B is called nuclear. In particular,

Simon Wassermann [Was76] shows that B(H) is not nuclear, and later Gilles Pisier and Marius Junge

[JP95] show that ‖ · ‖min 6= ‖ · ‖max on B(H)⊗B(H). Recently, Pisier and Ozawa [OP14] showed that

there is at least a continuum of different C∗-norms on B(`2)⊗ B(`2).

We adopt the idea in their paper to construct a new C∗-norm on A ⊗ B by using the notion of

DWEP and the maxD1 norm constructed in Chapter 3. We provide the conditions which make it

neither min nor max norm, thus distinct from the continuum norms constructed by Pisier and Ozawa.

We also give a concrete example satisfying the conditions and hence possessing four distinct tensor

norms. These conditions will give us a new way to distinguish norms on C∗-algebras.

Moreover, we find a simple mechanism to construct a continuum number of distinct norms on

tensor products, which admits infinite many copies. As a corollary, we find a new construction of a

continuum number of distinct norms on B(H) ⊗ B(H), which covers the result in [OP14]. Moreover,

if we assume that the Connes embedding problem has a negative answer, then C∗F∞ ⊗ C∗F∞ , not

only have different ‖ · ‖min and ‖ · ‖max norms, but also admits 2ℵ0 distinct C∗-norms.

In reality, this thesis consists of three rather disjoint parts. Results in Chapter 3 are from joint

work with Sepideh Rezvani. Hence some of the proofs will be omitted here and will appear in Rezvani’s

thesis. Results in Chapter 4 and 5 are from the joint work with Marius Junge.
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Chapter 2

Preliminaries

This chapter contains preliminaries which will be used throughout the thesis. The reader is assumed

to be familiar with general functional analysis and basic C∗-algebra theory, and have a reasonably

good knowledge of von Neumann algebras.

2.1 Basics of C∗-algebras and von Neumann Algebras

This section most serves the purpose of fixing the notation concerning the basic results in C∗-algebras

and von Neumann algebras.

In this thesis, C∗-algebras are neither assumed to be unital nor separable unless explicitly stated.

We will use the symbols A, B, C and D for C∗-algebras, and π for a ∗-homomorphism. For given

C∗-algebra A and a positive linear functional φ on A, we let (πφ,Hφ, ξφ) denote the GNS-construction

corresponding to φ.

A von Neumann algebra is a self-adjoint algebra of bounded linear operators on a Hilbert space,

which contains the identity and is closed in the weak operator topology. We will use the letters M

and N to denote von Neumann algebras, and τ to denote traces. For a group Γ we will denote the

group von Neumann algebra associated to Γ by LΓ.

We also recall that there are many interesting locally convex topologies on the set of bounded linear

operators on a Hilbert space, and some relations between these topologies. Namely, the weak operator

topology is weaker than both the strong operator topology and the ultraweak operator topology; the

strong operator topology is weaker than the strong∗ operator topology and the ultrastrong operator

topology; the strong∗ operator topology is weaker than the ultrastrong∗ operator topology; the ultra-

weak operator topology is weaker than the ultrastrong operator topology, which is weaker than the

ultrastrong∗ operator topology. Also, all these topologies are weaker than the uniform topology, that

is, the norm topology on B(H). See [Tak1] Chapter II for details.
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2.1.1 Completely positive maps and Stinespring’s theorem

Completely positive maps are the heart and soul of C∗-approximation theory.

Definition 2.1.1. An operator system E is a closed self-adjoint subspace of a unital C∗-algebra A

such that 1A ∈ E. For each n ∈ N, let Mn(E) denote the matrix algebra over E, inherit an order

structure from Mn(A): an element in Mn(E) is positive if and only if it is positive in Mn(A).

A map ϕ from an operator system E to a C∗-algebra B is said to be completely positive if ϕn :

Mn(E)→Mn(B), defined by

ϕn([ai,j ]) = [ϕ(ai,j)],

is positive for every n.

We use c.p. to abbreviate “completely positive”, u.c.p. for “unital completely positive”, and c.c.p.

for “contractive completely positive”.

Directly generalizing the GNS construction, we have Stinespring’s Representation Theorem for c.p.

maps. The details of the proof can be found in many places (for example in [BrOz] Theorem 1.5.3),

however we need the explicit construction and hence we reproduce the main ingredients.

Theorem 2.1.2 (Stinespring). Let A be a unital C∗-algebra and ϕ : A→ B(H) be a c.p. map. Then

there exist a Hilbert Space Ĥ, a ∗-representation π : A → B(Ĥ), and an operator V : H → Ĥ such

that

ϕ(a) = V ∗π(a)V

for every a ∈ A. In particular, we can choose V such that ‖ϕ‖ = ‖V ∗V ‖ = ‖ϕ(1)‖.

2.1.2 Tensor products

This section contains the necessary results on tensor products of C∗-algebras needed for this thesis.

Most of the proofs are omitted, and the results can be found in the literature. For example, the results

on the maximal and minimal tensor products are all contained in [BO08, Chapter 3]. Tensor products

of operators are discussed in detail in [KR83, Section 2.6].

The readers are assumed to be familiar with the algebraic tensor product. We denote the algebraic

tensor product of vector spaces V and W by V ⊗W , and elementary tensors in the algebraic tensor

product are denoted by v ⊗ w, for v ∈ V and w ∈W .
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The readers are also expected to be familiar with the tensor product of Hilbert spaces and operators

on Hilbert spaces. For Hilbert spaces H and K, we denote by H⊗K their tensor product. For bounded

linear operators x and y on H and K, respectively, we denote by x ⊗ y the tensor product operator

on H⊗K. It is uniquely determined by acting on elementary tensors by (x⊗ y)(ξ⊗ η) = (xξ)⊗ (yη),

ξ ∈ H, η ∈ K. For a Hilbert space H, we denote by H⊗n the n-fold tensor product H⊗H⊗ · · · ⊗H.

If A, B and C are C∗-algebras, and πA : A → C and πB : B → C are ∗-homomorphisms with

commuting ranges, then we denote by πA × πB the ∗-homomorphism

πA × πB : A⊗B → C defined by (πA × πB)(a⊗ b) = πA(a)πB(b),

for a ∈ A and b ∈ B.

Proposition 2.1.3. Given C∗-algebras A and B, a Hilbert space H and a ∗-homomorphism π :

A ⊗ B → B(H), there exist ∗-homomorphisms πA : A → B(H) and πB : B → B(H) with commuting

ranges, such that π = πA × πB.

The maps πA and πB from the above proposition are called the restrictions of π.

Given C∗-algebras A and B together with representations πA : A→ B(H) and πB : B → B(K) on

Hilbert spaces H and K, respectively, we get a ∗-representation

πA ⊗ πB : A⊗B → B(H⊗K)

which is defined on elementary tensors by

(πA ⊗ πB)(a⊗ b) = πA(a)⊗ πB(b).

One can define several C∗-norms on the algebraic tensor product of C∗-algebras. The most impor-

tant are the maximal norm and the minimal norm, whose definitions we now recall.

Definition 2.1.4. Given C∗-algebras A and B, the maximal tensor product of A and B is the com-

pletion of A⊗B, with respect the norm

‖x‖max = sup{‖π(x)‖, π : A⊗B → B(H) is a ∗-representation},

for x ∈ A⊗B, and it is denoted by A⊗max B.
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The maximal tensor norm is well-defined, and A⊗maxB is a C∗-algebra. The maximal norm turns

out to be the largest possible C∗-norm on A⊗B.

Definition 2.1.5. Given C∗-algebras A and B, the minimal tensor product of A and B is the com-

pletion of A⊗B, with respect to the norm

‖
n∑
k=1

ak ⊗ bk‖min = ‖
n∑
k=1

π(ak)⊗ ρ(bk)‖B(H⊗K),

for a1, . . . , an ∈ A and b1, . . . , bn ∈ B, and some choice of faithful representations π : A→ B(H) and

ρ : B → B(K). This completion is denoted by A⊗min B.

The minimal tensor product is also called the spatial tensor product. It can be shown that ⊗min

is independent of the choice of faithful representation. A famous theorem of Takesaki states that the

minimal tensor norm is, in fact, the smallest C∗-norm on A⊗B.

The maximal and minimal tensor product norms are both cross-norms, meaning that ‖x ⊗ y‖ =

‖x‖‖y‖ holds for all elementary tensors x⊗ y.

Since the maximal norm and the minimal norm are the largest and the smallest C∗-norms on A⊗B

respectively, we obtain for any other C∗-norm ‖ · ‖α, canonical surjective ∗-homomorphisms

A⊗max B → A⊗α B → A⊗min B,

where A⊗α B denotes the completion of A⊗ B with respect to the norm ‖ · ‖α. By canonical maps

we mean that they restrict to the identity on the algebraic tensor product. We deduce that there is a

unique C∗-norm on A⊗B if and only if A⊗max B = A⊗min B.

Later in the thesis, we will be interested in cases where A⊗max B = A⊗min B. A particular case

where this happens, is if A or B is equal to Mn, for some n ∈ N.

The maximal tensor product has the following universal property:

Proposition 2.1.6. Suppose that A, B and C are C∗-algebras. Given a ∗-homomorphism π : A⊗B →

C, there exists a unique map A⊗maxB → C extending π. In particular, if πA : A→ C and πB : B → C

are C∗-algebras with commuting ranges, then they induce a unique ∗-homomorphism

πA × πB : A⊗max B → C.

Since a map πA × πB always extends from the algebraic tensor product to the maximal tensor
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product, we will use the symbol πA × πB to mean both these things.

Since restrictions always exist, every ∗-homomorphism π going out of the maximal tensor product

has the form π = πA × πB .

Now, let us turn our attention to maps between tensor products, and continuity properties of such.

Theorem 2.1.7. Suppose that Ai and Bi , i = 1, 2, are C∗-algebras, together with completely positive

maps ϕi : Ai → Bi, i = 1, 2. Then the map

A1 ⊗A2 → B1 ⊗B2 given by a1 ⊗ a2 7→ ϕ1(a1)⊗ ϕ2(a2)

extends to a completely positive map

ϕ1 ⊗max ϕ2 : A1 ⊗max A2 → B1 ⊗max B2,

and it extends to a completely positive map

ϕ1 ⊗min ϕ2 : A1 ⊗min A2 → B1 ⊗min B2.

Moreover, these satisfy ‖ϕ1 ⊗max ϕ2‖ = ‖ϕ1 ⊗min ϕ2‖ = ‖ϕ1‖‖ϕ2‖

A particular case of the above theorem is when ϕ1 and ϕ2 are ∗-homomorphisms. In this case,

continuity ensures that both ϕ1 ⊗max ϕ2 and ϕ1 ⊗min ϕ2 are again ∗-homomorphisms.

In the above theorem we used the notation ϕ1 ⊗max ϕ2 and ϕ1 ⊗min ϕ2, for these specific tensor

product maps, but later we will use ϕ1 ⊗ ϕ2 as a generic symbol for most tensor product maps. It

should be clear from the context which maps we are talking about.

At this point, let us make some comments on a particular class of maps, namely, the inclusion of

a C∗-subalgebra into a C∗-algebra. The following proposition follows directly from the fact that the

minimal tensor norm is independent of the choice of faithful representation.

Proposition 2.1.8. Given C∗-algebras Bi and C∗-subalgebras Ai ⊆ Bi , i = 1, 2, the minimal tensor

norm on B1 ⊗ B2 restricts to the minimal tensor norm on A1 ⊗ A2. Hence, the inclusion of the

algebraic tensor products induces an isometric inclusion

A1 ⊗min A2 ⊆ B1 ⊗min B2.
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There is no analogue of the above proposition for the maximal tensor product. There always exists

a map

A1 ⊗max A2 → B1 ⊗max B2,

and it maps surjectively onto the closure of the algebraic tensor product A1⊗A2 inside B1⊗B2, with

respect to the maximal tensor norm on B1 ⊗ B2, but we are not guaranteed that it is injective. We

will see later that for a C∗-algebra B and a C∗-subalgebra A ⊆ B, the inclusion A⊗maxC ⊆ B⊗maxC

being isometric for all C∗-algebras C is equivalent to A being relatively weakly injective in B.

One would also like to know how the tensor products behave with respect to exact sequences.

Unlike the case of inclusions, in this case there is an easy answer for the maximal tensor product.

Proposition 2.1.9. Given a C∗-algebra A and an ideal I in A, the sequence

0→ I ⊗max B → A⊗max B → (A/I)⊗max B → 0

is exact for all C∗-algebras B, where all the maps are the obvious ones.

However, the answer for the minimal tensor product is not necessarily true. In this case, among

other results we have the following proposition.

Proposition 2.1.10. Suppose that A and B are C∗-algebras, and that I is an ideal in A. If there is

a unique norm on (A/I)⊗B, then the sequence

0→ I ⊗min B → A⊗min B → (A/I)⊗min B → 0

is exact, where all the maps are the obvious ones.

Before ending this section we will talk about some other tensor products, namely the von Neumann

algebra tensor product.

Suppose that we are given von Neumann algebras M and N on Hilbert spaces H and K. The von

Neumann algebra tensor product of M and N , denoted by M⊗̄N , is the set

M⊗̄N = {x⊗ y : x ∈M,y ∈ N}′′,

which is also the strong operator closure of the set {x ⊗ y : x ∈ M,y ∈ N} in B(H ⊗ K). For a von

Neumann algebra M we will denote by M ⊗̄n the n-fold tensor product M⊗̄M⊗̄ · · · ⊗̄M .
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2.1.3 Approximation properties and tensorial characterization

Nuclearity and Exactness have dominated the C∗-scene for quite a while. We will give a short review

on these notions, and especially review the tensorial characterization.

Definition 2.1.11. A map θ : A→ B is called nuclear if there exist c.c.p. maps ϕn : A→Mk(n)(C),

and ψ : Mk(n)(C)→ B such that ψn ◦ ϕn → θ in the point-norm topology:

‖ψn ◦ ϕn(a)− θ(a)‖ → 0,

for all a ∈ A.

A C∗-algebra A is called nuclear if the identity map id : A → A is nuclear. A is called exact, if

there exists a faithful representation π : A→ B(H) such that π is nuclear.

It is obvious that nuclearity of A implies exactness. Some examples of nuclear C∗-algebras are

abelian C∗-algebras, finite dimensional C∗-algebras, and the group C∗-algebra of an amenable group.

The most important characterization of nuclearity and exactness are the following.

Theorem 2.1.12. For a C∗-algebra A, we have that

1. (Choi and Effros) A is nuclear, if and only if for every C∗-algebra B, there exists a unique

C∗-norm on A⊗B.

2. (Kirchberg) A is exact, if and only if for each C∗-algebra B and ideal J in B, the sequence

0→ J ⊗min A→ B ⊗min A→ (B/J)⊗min A→ 0

is exact.

2.1.4 Type decomposition for von Neumann algebras

Let us recall the type decomposition of a von Neumann algebra. We start by reviewing the concepts

of abelian, finite and infinite projections.

Definition 2.1.13. Let M be a von Neumann algebra, and p ∈ M a projection. We say that p is

abelian if pMp is abelian, and we say that p is finite if whenever q ∈M is a projection equivalent to p

with q ≤ p, then q = p. A projection which is not finite is called infinite. The von Neumann algebra
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M is called finite, if the identity in M is finite, and properly infinite, if it does not contain any central

non-zero finite projections.

We now define the type of a von Neumann algebra.

Definition 2.1.14. Let M be a von Neumann algebra. We say that M is: of type I if every non-

zero projection majorizes a non-zero abelian projection; of type II if it does not contain any non-zero

abelian projection and every non-zero projection majorizes a non-zero finite projection; of type III if

it does not contain any non-zero finite projections.

The type decomposition then says the following:

Proposition 2.1.15. Every von Neumann algebra M can be written uniquely as a direct sum MI ⊕

MII ⊕MIII , where MI , MII and MIII are either zero or of type I, II and III, respectively. Also,

every von Neumann algebra M can be written uniquely as a direct sum Mf ⊕M∞ , where Mf is finite

or zero and M∞ is properly infinite or zero.

Combining the two statements above one obtains, that every von Neumann algebra can be written

uniquely as a direct sum of five kinds of von Neumann algebras, finite of type I, properly infinite of

type I, finite of type II, properly infinite of type II, and type III, respectively.

By a von Neumann algebra factor we shall understand a von Neumann algebra, whose center

consists only of scalar multiples of the identity. Clearly, a factor is exactly of one of the three types

mentioned. It is also either finite or properly infinite. Finite von Neumann algebras of type II are

called type II1 von Neumann algebras. Recall also that if M is a finite von Neumann algebra factor,

then either M is isomorphic to Mn for some n ∈ N, in which case we say that M is of type In , or it

is of type II1 . The latter happens if and only if M has infinite linear dimension.

We will frequently use the fact that a finite von Neumann algebra factor has a unique faithful

normal trace, see [KR83], Proposition 8.5.3.

2.1.5 Universal Enveloping von Neumann Algebra

We know that a von Neumann algebra can be thought of as a dual space in a particularly nice way.

In this section, we shall see that the double dual of a C∗-algebra can be given the structure of a von

Neumann algebra in a natural way.

We first introduce the notion of a universal representation.
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Definition 2.1.16. Suppose that A is a C∗-algebra and π : A → B(H) a representation of A on

some Hilbert space H. The representation π is called universal if π is non-degenerate, and satisfies

the following universal property: given another non-degenerate representation ρ of A on some Hilbert

space K, there exists a surjective ∗-homomorphism ρ̃ : π(A)′′ → ρ(A)′′, which is ultraweakly operator-

to-ultraweak operator continuous, such that ρ̃◦π = ρ. In other words, the following diagram commutes:

A
ρ //

π

��

ρ(A)′′

π(A)′′
ρ̃

::

Now, the following proposition is the key ingredient in proving that the double dual of a C∗-algebra

has a natural structure as a von Neumann algebra.

Proposition 2.1.17. Suppose that A is a C∗-algebra and π : A → B(H) a non-degenerate represen-

tation of A on a Hilbert space H. Then π extends uniquely to a weak ∗-to-ultraweak continuous map

π : A∗∗ → π(A)′′ , that is, π is weak ∗-to- ultraweakly continuous and the diagram

A
π //

ι

��

π(A)′′

A∗∗
π̃

;;

commutes. Here ι denotes the natural inclusion. Moreover, π maps the closed unit ball of A∗∗ onto

the closed unit ball of π(A)′′, so in particular it is surjective.

Now we are ready to show that universal representations exist, and give the connection to the

double dual.

Suppose that A is a C∗-algebra, and for each element ϕ in the state space S(A) of A, let (πϕ,Hϕ, ξϕ)

be the GNS-construction corresponding to ϕ. We let πu denote the direct sum of all these representa-

tions. So πu =
⊕

ϕ∈S(A) πϕ, and it is a representation on the Hilbert space Hu =
⊕

ϕ∈S(A)Hϕ. This

representation is non-degenerate since each representation πϕ, ϕ ∈ S(A) is so. It is well-known that

this representation is faithful, since the states on A separate points. This representation is actually

universal, and that πu(A)′′ can be identified with A∗∗ in a natural way.

Theorem 2.1.18. Let A be a C∗-algebra. With the notation above, the representation πu is a universal

representation of A. Moreover, πu extends to a surjective isometry π̃u : A∗∗ → πu(A)′′, which is also
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a weak∗-to-ultraweak operator topology homeomorphism.

The von Neumann algebra πu(A)′′ from Theorem 2.1.18 is called the universal enveloping von

Neumann algebra of A. The theorem justifies that we may identify A∗∗ with this universal enveloping

von Neumann algebra of A, and thus in the following we do not distinguish between the two spaces.

It is also referred to as the double dual. Since a Banach space is weak∗-dense in its double dual, we

also get from Theorem 2.1.18 that A is ultraweakly dense in A∗∗ .

Before we end this section, let us recall the following small result, which we will need a couple of

times.

Proposition 2.1.19. Suppose that A and B are C∗-algebras, and π : B → A is a surjective ∗-

homomorphism. Let I = kerπ, and let p denote the central projection in B∗∗ so that pB∗∗ = I∗∗. If

ϕ : B∗∗ → I∗∗ denotes multiplication by p, then the map ϕ⊕π∗∗ : B∗∗ → I∗∗⊕A∗∗ is an isomorphism.

2.1.6 Ultrafilter and ultraproduct of C∗-algebras

This section is a very short introduction to filters and ultraproduct. The purpose of this section is to

set the terminology and state a number of results on filters that will be used frequently throughout

the thesis.

Definition 2.1.20. Suppose that I is an index set. A family F of subsets of I is called a filter, if it

satisfies the following three conditions:

1. (nontriviality) the empty set is not in F ;

2. (directedness) if A ∈ F and B ⊆ I with A ⊆ B, then B ∈ F ;

3. (finite intersection property) if A, B ∈ F , then their intersection is also in F .

If in addition to the conditions above, the set F satisfies:

1. (maximality) for each A ⊆ I, either A ∈ F or I \A ∈ F ,

then F is called an ultrafilter.

If I is a set and J a collection of subsets of I such that J has the finite intersection property, then

there is a filter containing J , namely the set of all subsets I0 of I such that there exist I1, . . . , In ∈ J

with I1 ∩ · · · ∩ In ⊆ I0. This is called the filter generated by J .
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It is straightforward to check that for any non-empty set A ⊂ I, the set

F = {B ⊂ I : A ⊂ B}

is a filter on I. Such a filter is called a principal filter on I. An ultrafilter which is not principal is

called free (or non-principal). If F is a principal ultrafilter, then A must necessarily be a singleton,

that is, A only has one point.

The notion of filter comes from topology. It can be used to axiomatize topological spaces. Suppose

that X is a topological space, I is an index set and F a filter on I. An indexed family (xi)i∈I of

elements in X is said to converge along the filter F to some x ∈ X if

{i ∈ I : xi ∈ U} ∈ F

for all open neighborhoods U of x. This is written limi→F xi = x.

It is straightforward to check that if the topological space is Hausdorff, then a potential limit along

a filter is unique. This follows from the fact that a filter cannot contain the empty set.

The following theorem is probably the main reason that we, in this thesis, prefer ultrafilters, in

contrast to just filters. For details of the proof, see [CSC10], Appendix J.

Theorem 2.1.21. Suppose that X is a compact topological space, I an index set and ω an ultrafilter

on I. Then every subset of X indexed by I converges along ω, that is, for every indexed subset (xi)i∈I

of X the limit limi→ω xi exists.

Let U be an ultrafilter on a set I. Let (Xi)i∈I be a net of Banach spaces. We denote by Πi∈IXi

the `∞-direct sum of the Xi’s and let NU be the Banach space of U-null nets:

NU = {(xi)i∈I ∈ Πi∈IXi : lim
i→U
‖xi‖ = 0}.

The ultraproduct Banach space of (Xi)i∈I is defined as XU = (ΠXi)/NU . We write xU for the element

represented by (xi)i∈I . It is easy to check that ‖xU‖ = limU ‖xi‖. If Ai = Xi are all C∗-algebras, then

the ultraproduct AU is again a C∗-algebra. If Hi = Xi are all Hilbert spaces, then the ultraproduct

HU is again a Hilbert space such that 〈ηU , ξU 〉 = limU 〈ηi, ξi〉. If Ai ⊂ B(Hi), then AU ⊂ B(HU ) with

aUξU = (aiξi)i→U .

Ultraproducts of von Neumann algebras are not quite as straightforward as the C∗-case. To keep
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the notation consistent, let ω be a free ultrafilter on N. Let (M, τ) be a von Neumann algebra with a

faithful tracial state τ . Let Nω be the norm closed ideal of ΠM , given by

Nω = {(xn)n∈N ∈ ΠM : lim
n→ω
‖xn‖2 = 0},

where ‖xn‖2 = τ(x∗nxn)1/2. The (tracial) ultraproduct of (M, τ) is defined to be Mω = (ΠM)/Nω. It

has a faithful tracial state τω given by τω(xω) = limω τ(xn). We note that ‖xω‖2 := τω(x∗ωxω)1/2 =

limn→ω ‖xn‖2. It can be shown that Mω is a von Neumann algebra and faithful tracial state τω is

normal. See [BrOz] Appendix A for details.

2.2 WEP and QWEP

The notion of WEP is from Lance [Lan73], inspired by Tomiyama’s extensive work on conditional

expectations. Kirchberg in [Ki93] raises the famous QWEP conjecture and establishes its several

equivalences. Here we list some useful results for readers’ convenience. Most of the results and proofs

can be found in Ozawa’s survey paper [Oz04].

Definition 2.2.1. Suppose that B is a C∗-algebra and A is a C∗-subalgebra of B. We say A is

relatively weakly injective (abbreviated as r.w.i.) in B, if there is a c.c.p. map ϕ : B → A∗∗ such that

ϕ|A = idA.

For von Neumann algebras N ⊂ M , relative weak injectivity is equivalent to the existence of a

(non-normal) conditional expectation from M to N .

The next proposition gives equivalent characterizations of relatively weakly injectivity.

Proposition 2.2.2. Suppose that B is a C∗-algebra and A is a C∗-subalgebra of B. Then the following

are equivalent:

1. A is relatively weakly injective in B;

2. there exists a conditional expectation ψ : B∗∗ → A∗∗;

3. for every finite dimensional subspace E ⊆ B and any ε > 0, there exist a linear contraction

ψ : E → A such that ‖ψ|A∩M idA∩M ‖ < ε.

We say a C∗-algebra A has the weak expectation property (short as WEP), if it is relatively weakly

injective in B(H) for a faithful representation A ⊂ B(H).
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Since B(H) is injective, the notion of WEP does not depend on the choice of a faithful representation

of A. We say a C∗-algebra is QWEP if it is a quotient of a C∗-algebra with the WEP. The QWEP

conjecture raised by Kirchberg in [Ki93] states that all C∗-algebras are QWEP.

From the definition of r.w.i., it is easy to see the following transitivity property.

Lemma 2.2.3. For C∗-algebras A0 ⊆ A1 ⊆ A, such that A0 is relatively weakly injective in A1, A1

is relatively weakly injective in A, then A0 is relatively weakly injective in A.

The property of r.w.i. is also closed under direct product.

Lemma 2.2.4. If (Ai)i∈I is a net of C∗-algebras such that Ai is relatively weakly injective in Bi for

all i ∈ I, then Πi∈IAi is relatively weakly injective in Πi∈IBi.

In [Lan73], Lance establishes the following tensor product characterization of the WEP. The proof

of the theorem is called The Trick, and we will be using this throughout the paper. In the following,

let F∞ denote the free group with countably infinite many generators, and C∗F∞ be the full group

C∗-algebra of F∞.

Theorem 2.2.5. Suppose that B is a C∗-algebra and A a C∗-subalgebra of B. Then the following are

equivalent:

1. A is relatively weakly injective in B;

2. for each representation π : A → B(H) of A on a Hilbert space H, there exists a contractive

completely positive map ϕ : B → π(A) extending π;

3. the inclusion A⊗max C → B ⊗max C is isometric for every C∗-algebra C;

4. the inclusion A⊗max C
∗F∞ → B ⊗max C

∗F∞ is isometric.

As a consequence of the above theorem, we have the following result.

Corollary 2.2.6. A C∗-algebra A has the WEP if and only if for any inclusion A ⊆ B, A is relatively

weakly injective in B.

Similar to the WEP, the QWEP is also preserved by the relatively weak injectivity as following.

Lemma 2.2.7. If a C∗-algebra A is relatively weakly injective in a QWEP C∗-algebra, then it is

QWEP.
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Although the WEP does not pass to the double dual, the QWEP is more flexible.

Proposition 2.2.8. A C∗-algebra A is QWEP if and only if A∗∗ is QWEP.

As a corollary of the above proposition, B(H)∗∗ is QWEP. Moreover we have the following equiv-

alence.

Corollary 2.2.9. A C∗-algebra A is QWEP if and only if A is relatively weakly injective in B(H)∗∗.

2.3 LP and LLP

Let A be a C∗-algebra, J be a closed two-sided ideal in a C∗-algebra B, and π : B → B/J be the

quotient map. We say a c.c.p. map ϕ : A → B/J is liftable if there exists a c.c.p. map ψ : A → B

such that π ◦ ψ = ϕ. We say ϕ is locally liftable if for any finite-dimensional operator system E ⊂ A,

there exists a c.c.p. map ψ : E → B such that π ◦ ψ = ϕ|E .

Definition 2.3.1. A unital C∗-algebra has the lifting property (LP) (resp. local liftying property

(LLP)) if any c.c.p. map from A into a quotient C∗-algebra B/J is liftable (resp. locally liftable). A

nonunital C∗-algebra has the LP (resp. LLP) if its unitization has the property.

The Choi-Effros Lifting theorem implies that separable nuclear C∗-algebras have the LP. Kirchberg

shows in [Ki93] that the full C∗-algebra C∗F∞ of a countable free group F∞ has the LP. Moreover,

he gives a tensorial characterization for the LLP and WEP, with the help of the following striking

theorem.

Theorem 2.3.2 (Kirchberg [Ki93]). For any free group F and any Hilbert space H, we have the

isometric isomorphism

C∗F⊗max B(H) = C∗F⊗min B(H).

The C∗-algebra B(`2) is the home space in the sense that it contains all separable C∗-algebras.

It has the WEP, since it is injective. The full free group C∗-algebra C∗F∞ has the LP and any

separable unital C∗-algebra is a quotient of it. With these simple observations, we can now establish

the tensorial characterization of the WEP and LLP.

Corollary 2.3.3 (Kirchberg [Ki93]). For C∗-algebras A and B, we have the following:

1. A⊗max B = A⊗min B canonically if A has the LLP and B has the WEP;

17



2. A⊗max B(H) = A⊗min B(H) canonically if and only if A has the LLP.

3. C∗F∞ ⊗max B = C∗F∞ ⊗min B if and only if B has the WEP.

2.4 The QWEP Conjecture and the Connes Embedding

Problem

Recall that a C∗-algebra A is QWEP if it is a quotient of C∗-algebra with the WEP. Kirchberg’s

QWEP conjecture asserts that every C∗-algebra is QWEP, and it turns out to be equivalent to several

seemingly unrelated open problems, including the Connes embedding problem. Consequently, the

QWEP conjecture is one of the most important open problems in the theory of operator algebras.

Theorem 2.4.1 (Kirchberg [Ki93]). The following statements are equivalent:

1. every C∗-algebra is QWEP;

2. C∗F∞ ⊗max C
∗F∞ = C∗F∞ ⊗min C

∗F∞ canonically;

3. every type II1-factor with separable predual is embeddable into the ultraproduct Rω of the hyper-

finite type II1 factor R;

4. the (separable) predual of any von Neumann-algebra is isometrically isomorphic to a subspace of

the Banach space ultraproduct (S1)ω of the predual S1 of B(`2).

2.5 Hilbert C∗-Modules

The notion of Hilbert C∗-modules first appeared in a paper by Irving Kaplansky [Kap53] in 1953.

The theory was then developed by the work of William Lindall Paschke in [Pas73] . In this section

we give a brief introduction to Hilbert C∗-modules and present some of their fundamental properties

which we are going to use throughout this paper.

Definition 2.5.1. Let D be a C∗-algebra. An inner-product D-module is a linear space E which is

a right D-module with compatible scalar multiplication: λ(xa) = (λx)a = x(λa), for x ∈ E, a ∈ D,

λ ∈ C, and a map (x, y) 7−→ 〈x, y〉 : E × E → D with the following properties:

1. 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉 for x, y, z ∈ E and α, β ∈ C;

18



2. 〈x, ya〉 = 〈x, y〉a for x, y ∈ E and a ∈ D;

3. 〈y, x〉 = 〈x, y〉∗ for x, y ∈ E;

4. 〈x, x〉 ≥ 0; if 〈x, x〉 = 0, then x = 0.

For x ∈ E, we let ‖x‖ = ‖〈x, x〉‖1/2. It is easy to check that if E is an inner-product D-module,

then ‖ · ‖ is a norm on E.

Definition 2.5.2. An inner-product D-module which is complete with respect to its norm is called a

Hilbert D-module or a Hilbert C∗-module over the C∗-algebra D.

Note that any C∗-algebra D is a Hilbert D-module itself with the inner product 〈x, y〉 = x∗y for

x and y in D. Another important example of a Hilbert C∗-module is the following.

Example 2.5.3. Let H be a Hilbert space. Then the algebraic tensor product H ⊗alg D can be

equipped with a D-valued inner-product:

〈ξ ⊗ a, η ⊗ b〉 = 〈ξ, η〉a∗b (ξ, η ∈ H, a, b ∈ D).

Let HD = H ⊗ D be the completion of H ⊗alg D with respect to the induced norm. Then HD is a

Hilbert D-module.

Let E and F be Hilbert D-modules. Let t be an adjointable map from E to F , i.e. there exists a

map t∗ from F to E such that

〈tx, y〉 = 〈x, t∗y〉, for x ∈ E and y ∈ F.

One can easily see that t must be right D-linear, that is, t is linear and t(xa) = t(x)a for all x ∈ E

and a ∈ D. It follows that any adjointable map is bounded, but the converse is not true – a bounded

D-linear map need not be adjointable. Let L(E,F ) be the set of all adjointable maps from E to F ,

and we abbreviate L(E,E) to L(E). Note that L(E) is a C∗-algebra equipped with the operator

norm.

Now we review the notion of compact operators on Hilbert D-modules, as an analogue to the

compact operators on a Hilbert space. Let E and F be Hilbert D-modules. For every x in E and y

19



in F , define the map θx,y : E → F by

θx,y(z) = y〈x, z〉 for z ∈ E.

One can check that θx,y ∈ L(E,F ) and θ∗x,y = θy,x. We denote by K(E,F ) the closed linear subspace

of L(E,F ) spanned by {θx,y : x ∈ E, y ∈ F}, and we abbreviate K(E,E) to K(E). We call the

elements of K(E,F ) compact operators.

Let E be a Hilbert D-module and Z be a subset of E. We say that Z is a generating set for E if

the closed submodule of E generated by Z is the whole of E. If E has a countable generating set, we

say that E is countably generated.

In [Kas80], Kasparov proves the following theorem known as the absorption theorem, which shows

the universality of HD in the category of Hilbert D-modules.

Theorem 2.5.4. Let D be a C∗-algebra and E be a countably generated Hilbert D-module. Then

E ⊕ HD ≈ HD, i.e. there exists an element u ∈ L(E ⊕ HD,HD) such that u∗u = 1E⊕HD and

uu∗ = 1HD .

Remark 2.5.5. Using the absorption theorem, for an arbitrary Hilbert D-module E, we have L(E⊕

HD) ' L(HD). Hence we have an embedding of L(E) in L(HD) and a conditional expectation from

L(HD) to L(E).

Before we proceed to the main results of Hilbert C∗-modules, let us recall the notion of multiplier

algebra of a C∗-algebra.

Definition 2.5.6. Let A and B be C∗-algebras. If A is an ideal in B, we call A an essential ideal

if there is no non-zero ideal of B that has zero intersection with A. Or equivalently if b ∈ B and

bA = {0}, then b = 0.

It can be shown that for any C∗-algebra A, there is a unique (up to isomorphism) maximal C∗-

algebra which contains A as an essential ideal. This algebra is called the multiplier algebra of A and

is denoted by M(A).

Theorem 2.5.7. If E is a Hilbert D-module, then L(E) =M(K(E)).

Note that if E = D for a unital C∗-algebra D, then D = K(D) and L(D) =M(D).
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In the special case where E = HD, we have

K(HD) ' K(H) ⊗
min

D = K⊗D,

where K = K(H) is the C∗-algebra of the compact operators. Therefore, by Theorem 2.5.7 we have

L(HD) 'M(K⊗min D).

In [Kas80] Kasparov introduces a GNS type of construction in the context of Hilbert C∗-modules,

known as the KSGNS construction (for Kasparov, Stinespring, Gelfand, Neimark, Segal) as follows.

Theorem 2.5.8. Let A be a C∗-algebra, E be a Hilbert D-module and let ρ : A→ L(E) be a completely

positive map. There exists a Hilbert D-module Eρ, a ∗-homomorphism πρ : A→ L(Eρ) and an element

vρ of L(E,Eρ), such that

ρ(a) = v∗ρπρ(a)vρ (a ∈ A),

Span{πρ(A)vρE} is dense in Eρ.

As a consequence of the above theorem, Kasparov shows that given a C∗-algebra D, any separable

C∗-algebra can be considered as a C∗-subalgebra of L(HD). This indicates that L(HD) plays the

similar role in the category of Hilbert C∗-modules to that of B(H) in the category of C∗-algebras.

Proposition 2.5.9. Let A be a separable C∗-algebra. Then there exists a faithful non-degenerate

∗-homomorphism π : A→ L(HD).

As we see, L(HD) plays the role of B(H). Note that B(H) is also a von Neumann algebra, but

L(HD) is not in general. Paschke in [Pas73] introduces self-dual Hilbert C∗-modules to play the similar

role in the von Neumann algebra context.

Let E be a Hilbert D-module. Each x ∈ E gives rise to a bounded D-module map x̂ : E → D

defined by x̂(y) = 〈x, y〉 for y ∈ E. We will call E self-dual if every bounded D-module map of E into

D arises by taking D-valued inner products with some x ∈ E. For instance, if D is unital, then it is

a self-dual Hilbert D-module. Any self-dual Hilbert C∗-module is complete, but the converse is not

true.

For von Neumann algebra N , it is natural to consider the the self-dual Hilbert N -module EN ,

because of the following theorem from [JS05].
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Theorem 2.5.10. For a Hilbert C∗-module E over a von Neumann algebra N , the following conditions

are equivalent:

1. The unit ball of E is strongly closed;

2. E is principal, or equivalently, E is an ultraweak direct sum of Hilbert C∗-modules qαN , for

some projections qα;

3. E is self-dual;

4. The unit ball of E is weakly closed.

We denote the algebra of adjointable maps on EN closed in the weak operator topology by Lw(EN ).

Remark 2.5.11. According to [Pas73] and Kasparov’s absorption theorem, for any von Neumann

algebra N , we have Lw(EN ) = eB(H)⊗̄Ne for some projection e.

Remark 2.5.12. Let N be a von Neumann subalgeba of M , such that N = zM for some central

projection z ∈ M . Then one can unitize the inclusion map ι : B(`2)⊗̄N ↪→ B(`2)⊗̄M . Indeed since

B(`2) is a type I∞ factor, the projection 1⊗ z : B(`2)⊗̄M → B(`2)⊗̄N is properly infinite, and hence

it is equivalent to identity on B(`2)⊗̄M [Tak1]. Let 1 ⊗ z = v∗v, and idB(`2)⊗̄M = vv∗. Note that

(1⊗ z) ◦ ι = idB(`2)⊗̄N . Multiplying by v from left and by v∗ from right, we get vιv∗ = idB(`2)⊗̄N .

2.5.1 Kirchberg’s observations on the multiplier algebras

In this section, we explore Kirchberg’s seminal paper on non-semisplit extensions in detail. The proof

of the following results will appear in Sepideh Rezvani’s thesis.

Let A, B and C be C∗-algebras. We say a map h : A → B factors through C approximately via

u.c.p. maps in point-norm topology if there exist u.c.p. maps ϕn : A→ C and ψn : C → B such that

the following diagram commutes approximately in point-norm topology:

A

ϕn ��

h // B

C

ψn

??

i.e. ‖(ψn ◦ ϕn)(x)− h(x)‖ → 0 for all x ∈ A.
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Theorem 2.5.13. Let A be a C∗-algebra and M(A) be its multiplier algebra. Then the identity map

on M(A) factors through `∞(A) approximately via u.c.p. maps in point-norm topology. That is the

following diagram commutes in point-norm topology.

A

ϕn ""

id // A

`∞(A)

ψn

<<

Using the above theorem, we can establish the following result on the relation betweenM(A) and

A∗∗.

Corollary 2.5.14. Suppose A is a C∗-algebra and M(A) is its multiplier algebra. Then M(A) is

relatively weakly injective in A∗∗.
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Chapter 3

Operator-valued Kirchberg Theory

In [Ki93], Kirchberg shows that for two QWEP von Neumann algebras M and N , their free product

M ∗N is also QWEP. It is natural to investigate the property of being QWEP for an amalgamated

free product of two QWEP algebras. It is known that for two QWEP von Neumann algebras M and

N , and an amenable C∗-subalgebra A, the amalgamated free product M ∗A N is also QWEP. But it

is not known for a general C∗-subalgebra A. To reduce the complexity of the problem, we consider

the property of being QWEP relative to a C∗-algebra A, We are interested to see if in the case where

both M and N are QWEP relative to A, whether M ∗A N is QWEP relative to A or not.

To study the notion of relative QWEP, first we need to define the relative WEP. Recall that

in [Lan73], Lance defined a C∗-algebra A to have the WEP, if for A ⊂ B(H), A is relatively weakly

injective (abbreviated as r.w.i.) in B(H), namely there exists a u.c.p. map from B(H) to A∗∗ such that

its restriction to A is the identity. To define the notion of the relative WEP, there are two natural

ways of replacing B(H) in the framework of Hilbert C∗-module. Recall that for a C∗-algebra D,

any C∗-algebra can be regarded as a C∗-subalgebra of L(HD), where HD is a Hilbert D-module, and

L(HD) is the C∗-algebra of bounded adjointable D-linear maps on HD. Another way of representation

is to replace L(HD) by the von Neumann algebra B(H)⊗̄D∗∗. We say that A has the WEP1 (WEP2)

relative to C∗-algebra D, if A is r.w.i. in L(HD) (B(H)⊗̄D∗∗, respectively).

In this chapter, we investigate basic properties of these two notions. We discover that Kirchberg’s

methodology in his seminal work on non-semisplit extensions is functorial, and gives rise to properties

as in the classical case. In particular, we establish the tensorial characterization for the two notions.

Also we study the relation between the two notions of relative WEP. This leads to a more general

question: Let A and B be C∗-algebras such that A ⊂ B ⊂ A∗∗ canonically. Does this imply that B is

r.w.i. in A∗∗? The answer to this question turns out to be negative in the general case. However, in

the special case where A = K⊗minD and B = L(HD), B is r.w.i. in A∗∗ = (K⊗minD)∗∗ = B(H)⊗̄D∗∗.

This shows that DWEP1 implies DWEP2. We also show that the converse is not true.
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3.1 Module version of the weak expectation property

The notion of r.w.i. is a paired relation between a C∗-subalgebra and its parent C∗-algebra. If the

parent C∗-algebra is B(H), the r.w.i. property is equivalent to the WEP. By carefully choosing a

parent C∗-algebra, we can define the notion of WEP relative to a C∗-algebra.

Let C be a collection of inclusions of unital C∗-algebras {(A ⊆ X)}.

For a C∗-algebra D, there are two classes of objects that we will discuss throughout this thesis.

1. C1 = {A ⊆ L(ED)}, where ED is a Hilbert D-module.

2. C2 = {A ⊆ Lw(ED∗∗)}, where ED∗∗ is a self dual Hilbert D∗∗-module.

Definition 3.1.1. A C∗-algebra A is said to have the DWEPi for i = 1, 2, if there exists a pair of

inclusions A ⊆ X in Ci such that A is relatively weakly injective in X.

Notice that the notion of the DWEP is a r.w.i. property. By Corollary 2.2.6, the WEP implies

the DWEPi, for i = 1, 2. Also, inherited from r.w.i. property, we have the following lemmas for the

DWEP.

Lemma 3.1.2. Let A0 and A1 be C∗-algebras such that A0 is relatively weakly injective in A1. If A1

has the DWEPi for i = 1, 2, then so does A0.

Proof. Since A1 has the DWEPi, there exists a pair of inclusions A1 ⊆ X in Ci such that A1 is r.w.i.

in X, for i = 1, 2. By Lemma 2.2.3, A0 is r.w.i. in X. Therefore the result follows.

Remark 3.1.3. By the absorption theorem and Remark 2.5.5 and 2.5.11, L(ED) is r.w.i. in some

L(HD) and Lw(ED∗∗) is r.w.i. in some B(H)⊗̄D∗∗. Sometimes it is more convenient to consider the

DWEP1 as relatively weak injectivity in L(HD), and the DWEP2 as relatively weak injectivity in

B(H)⊗̄D∗∗, because of the concrete structures.

Example 3.1.4. From the above, all WEP algebras have DWEPi for arbitrary C∗-algebra D. Also, D

has the DWEPi trivially for 1-dimensional Hilbert space H. Our first non-trivial example of DWEPi

is K ⊗ D. For the first class C1, K ⊗ D is a principle ideal of L(HD), and thus is r.w.i. in L(HD).

For the second class C2, note that (K ⊗ D)∗∗ = B(H)⊗̄D∗∗, so K ⊗ D is r.w.i. in B(H)⊗̄D∗∗. By

universality of L(HD) and B(H)⊗̄D∗∗, K⊗D has the DWEPi for both i = 1, 2.

Because of the injectivity of B(H), we see that the notion of the WEP does not depend on the

representation A ⊆ B(H). By constructing a universal object in the classes Ci, we can define the

DWEPi independent of inclusions.
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Lemma 3.1.5. A C∗-algebra A has the DWEPi for some inclusion A ⊆ X in Ci, if and only if there

exists a universal object Xu and A ⊆ Xu in Ci, such that

1. A is relatively weakly injective in Xu;

2. If A is relatively weakly injective in some X, then there exists a u.c.p. map from Xu to X,

which is identity on A.

Proof. The “if” part is trivial. For the “only if” part, take C1 for example. The proof of the other

case is similar. For all u.c.p. maps ρ : A → L(ED), by construction there exists a Hilbert D-module

Eρ and a ∗-homomorphism πρ : A → L(Eρ). Let EuD =
⊕

ρEρ. Then any L(ED) containing A can

be embedded into L(EuD), and there exists a truncation L(EuD)→ L(ED). Now suppose A is r.w.i. in

some L(ED). Then it is also r.w.i. in L(EuD). Hence we complete the proof.

Following Lance’s tensor product characterization Theorem 2.2.5, we have a similar result for the

DWEPi, for i = 1, 2. We only present the result for the first class. The other case can be proved

similarly.

Let A ⊆ L(EuD) be the universal representation. We define a tensor norm maxD1 on A⊗ C∗F∞ to

be the norm induced from the inclusion A⊗C∗F∞ ⊆ L(EuD)⊗max C
∗F∞ isometrically. This induced

norm is categorical in the sense that if φ is a u.c.p. map from A to B, then φ⊗ id extends a u.c.p. map

from A ⊗maxD1
C∗F∞ to B ⊗maxD1

C∗F∞. Indeed, let ι be the inclusion map from B to its universal

representation LB(EuD), then ι◦φ is a u.c.p. map from A to LB(EuD). By KSGNS and the construction

of LA(EuD), there exists a u.c.p. map from LA(EuD) to LB(EuD) extending the map ι ◦ φ. Hence we

have a composition of u.c.p. maps

A ⊗
maxD1

C∗F∞ ⊆ LA(EuD) ⊗
max

C∗F∞ → LB(EuD) ⊗
max

C∗F∞,

whose image is B ⊗maxD1
C∗F∞.

Theorem 3.1.6. A C∗-algebra A has the DWEP1, if and only if

A ⊗
maxD1

C∗F∞ = A ⊗
max

C∗F∞.

Proof. First, suppose A has the DWEP1, then A is r.w.i. in L(EuD). That is, there exists a u.c.p.

map ϕ : L(EuD)→ A∗∗ such that ϕ|A = idA. Then ϕ⊗ id gives a u.c.p. map from L(EuD)⊗max C
∗F∞
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to A∗∗ ⊗max C
∗F∞. Therefore the map ϕ|A ⊗ id, defined on the algebraic tensor product, extends to

a u.c.p. map from A⊗maxD1
C∗F∞ to A∗∗ ⊗max C

∗F∞, whose image is A⊗max C
∗F∞.

To prove the other direction, suppose A ⊗maxD1
C∗F∞ = A ⊗max C

∗F∞, and let A ⊆ B(H)be

the universal representation, i.e. A′′ = A∗∗. Let π be a representation of C∗F∞ to B(H) with

π(C∗F∞)′′ = A′. Then there exists a u.c.p. map A ⊗maxD1
C∗F∞ = A ⊗max C

∗F∞ → B(H). Since

A ⊗maxD1
C∗F∞ ⊆ L(EuD) ⊗max C

∗F∞, by Arveson’s extension theorem, we can extend the above

u.c.p. map to Ψ : L(EuD)⊗max C
∗F∞ → B(H). Now define a map ψ on L(EuD) by ψ(T ) := Ψ(T ⊗ 1),

for T ∈ L(EuD). Then ψ is a u.c.p. extension of idA. Since Ψ is a C∗F∞-bimodule map, we have

ψ(T )π(x) = Ψ(T ⊗x) = π(x)ψ(T ) for T ∈ L(EuD) and x ∈ C∗F∞, i.e., ψ(T ) ∈ π(C∗F∞)′ = A∗∗. This

completes the proof.

It is natural to explore the relationship between the DWEP1 and the DWEP2. We have the

following.

Theorem 3.1.7. If a C∗-algebra A has the DWEP1, then it also has the DWEP2.

In fact, the converse of the above theorem is not true, and we will give a counterexample in Section

5.

To prove the above theorem, we need following lemmas.

Lemma 3.1.8. Suppose that the identity map on a C∗-algebra A factors through a C∗-algebra B

approximately via u.c.p. maps in point-norm topology, i.e. there exist two nets of u.c.p. maps

φi : A→ B and ψi : B → A, such that ‖ψi ◦ φi(x)− x‖ → 0 for x ∈ A. If B has the DWEPi, then so

does A.

Proof. Following Kirchberg’s method, it suffices to show A ⊗maxDi
C∗F∞ = A ⊗max C

∗F∞. Since we

have u.c.p. maps φi : A → B and ψi : B → A, such that ‖ψi ◦ φi(x) − x‖ → 0 for x ∈ A, we have

u.c.p. maps φi ⊗ id : A⊗maxDi
C∗F∞ → B ⊗maxDi

C∗F∞ and u.c.p. maps ψi ⊗ id : B ⊗max C
∗F∞ →

A⊗maxC
∗F∞. Since B has the DWEPi, by Theorem 3.1.6, we have B⊗maxDi

C∗F∞ = B⊗maxC
∗F∞.

Therefore we have u.c.p. maps A ⊗maxDi
C∗F∞ → A ⊗max C

∗F∞ defined by the composition of the

maps according to the following diagram

A ⊗
maxDi

C∗F∞
φi⊗id−→ B ⊗

maxDi

C∗F∞ = B ⊗
max

C∗F∞
ψi⊗id−→ A ⊗

max
C∗F∞.

This net of maps converges to the identity. Hence we get the result.
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Another lemma we need is that the DWEPi property is preserved under the direct product.

Lemma 3.1.9. If (Ai)i∈I is a net of C∗-algebras with the DWEPi, then
∏
i∈I Ai has the DWEPi.

Proof. We will prove the result for the DWEP1. The proof of the other case is similar. Since each

Ai has the DWEP1, there exists an inclusion Ai ⊆ L((Ei)D) such that Ai is r.w.i. in L((Ei)D). By

Lemma 2.2.4,
∏
i∈I Ai is r.w.i. in

∏
i∈I L((Ei)D). Since L(⊕i∈I(Ei)D) contains

∏
i∈I L((Ei)D) and

it has a conditional expectation onto
∏
L((Ei)D),

∏
i∈I Ai is also r.w.i. in L(⊕i∈I(Ei)D). Therefore∏

i∈I Ai has the DWEPi.

Kirchberg[Ki93] shows that for a C∗-algebra A, the multiplier algebraM(A) factors through `∞(A)

approximately by u.c.p. maps (Theorem 2.5.13). Using this fact, we have the following.

Corollary 3.1.10. Suppose that the C∗-algebra A has the DWEPi, for i = 1, 2. Then the multiplier

algebra M(A) also has the DWEPi, for i = 1, 2.

Proof. By Theorem 2.5.13,M(A) factors through `∞(A) approximately via u.c.p. maps in point-norm

topology. Since A has the DWEPi, `∞(A) has DWEPi by Lemma 3.1.9. Therefore by Lemma 3.1.8,

M(A) also has the DWEPi.

Now we are ready to see the proof of the theorem.

Proof of Theorem 3.1.7. It suffices to show that L(HD) has the DWEP2. Notice that L(HD) =

M(K⊗min D), and also M(K⊗min D) factors through `∞(K⊗min D) approximately via u.c.p. maps

in point-norm topology. Since K⊗min D has the DWEP2 by Remark 3.1.4, and hence `∞(K⊗min D)

by Lemma 3.1.9. By Corollary 3.1.10, M(K⊗min D) has the DWEP2.

Remark 3.1.11. Note that D∗∗WEP1 implies DWEP2. Indeed having D∗∗WEP1 is equivalent

to being r.w.i. in L(HD∗∗) = M(K ⊗min D
∗∗), and having DWEP2 is equivalent to being r.w.i. in

B(H)⊗̄D∗∗. Note that K⊗minD
∗∗ is r.w.i. in B(H)⊗̄D∗∗. By Corollary 3.1.10, we haveM(K⊗minD

∗∗)

has the DWEP2 as well.

Now we investigate some properties of the module WEP. The first result is that the module WEP

is stable under tensoring with a nuclear C∗-algebra, similar to the classical case.

Proposition 3.1.12. For a C∗-algebra D, the following properties hold:

1. If a C∗-algebra A has the DWEP1, and B is a nuclear C∗-algebra, then A ⊗min B has the

DWEP1 as well.
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2. If von Neumann algebras M and N have the CWEP2 and DWEP2 respectively, then M⊗̄N has

the (C ⊗min D)WEP2.

Proof. (1) Since A has the DWEP1 and B is a nuclear, we have A is r.w.i. in L(HD), and B is r.w.i. in

B(H). Therefore we have u.c.p. maps A⊗minB → L(HD)⊗minB(H) = L(H̃D)→ A∗∗⊗minB
∗∗. Note

that B is nuclear and hence exact, so the inclusion map A∗∗⊗B∗∗ ↪→ (A⊗minB)∗∗ is min-continuous.

Therefore A⊗min B is r.w.i. in L(H̃D).

(2) Since M is r.w.i. in Lw(HC∗∗) and N is r.w.i. in Lw(HD∗∗), we have u.c.p. maps M⊗̄N →

Lw(HC∗∗)⊗̄Lw(HD∗∗) = Lw(HC∗∗⊗̄D∗∗)→M⊗̄N → (M⊗̄N)∗∗. Note that C ⊗minD is weak ∗-dense

in C∗∗⊗̄D∗∗. Therefore we have a normal conditional expectation (C ⊗min D)∗∗ → C∗∗⊗̄D∗∗, and

hence C∗∗⊗̄D∗∗ is r.w.i. in (C ⊗min D)∗∗. Therefore Lw(HC∗∗⊗̄D∗∗) is r.w.i. in Lw(H(C⊗minD)∗∗),

and hence M⊗̄N is r.w.i. in Lw(H(C⊗minD)∗∗).

As a consequence of Corollary 3.1.10, we have the transitivity property of DWEP.

Proposition 3.1.13. If A has the BWEPi, and B has the CWEPi, then A has the CWEPi, for

i = 1, 2.

Proof. Since B has the CWEPi, then so does K⊗min B, and hence so does M(K⊗min B) by Corol-

lary 3.1.10. Since A has the BWEPi, A is r.w.i. in some L(HB) =M(K⊗minB). By the transitivity

of r.w.i., we conclude that A has the CWEPi, for i = 1, 2.

Corollary 3.1.14. If A has the DWEP1, and D has the WEP, then A has the WEP.

Proof. It suffices to show that L(HD) =M(K ⊗min D) has the WEP. This is obvious since if D has

the WEP, then so does K⊗min D and hence M(K⊗min D) has the WEP.

Remark 3.1.15. The previous result is not necessarily true for the WEP2 case, since B(`2)⊗̄D∗∗

may not have the WEP, for instance for D = B(`2). See Example 3.3.1 for the proof.

In [Ju96], Junge shows the following finite dimensional characterization of the WEP.

Theorem 3.1.16. The C∗-algebra A has the WEP if and only if for arbitrary finite dimensional

subspaces F ⊂ A and G ⊂ A∗, and ε > 0, there exist matrix algebra Mm and u.c.p. maps u : F →Mm,

v : Mm → A/G⊥, such that

‖v ◦ u− qG ◦ ιF ‖ < ε,

where ιF : F → A is the inclusion map and qG : A→ A/G⊥ is the quotient map.
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We have a similar result for the module WEP as follows.

Theorem 3.1.17. The C∗-algebra A has the DWEP1 if and only if for arbitrary finite dimensional

subspaces F ⊂ A and G ⊂ A∗, and ε > 0, there exist matrix algebra Mm(D) and u.c.p. maps

u : A→Mm(D), v : Mm(D)→ A/G⊥, such that

‖v ◦ u|F − qG ◦ ιF ‖ < ε,

where ιF : F → A is the inclusion map and qG : A→ A/G⊥ is the quotient map.

For the DWEP2 case, we will replace the matrix algebra Mm(D) by Mm(D∗∗).

Proof. ⇐: From the assumption, we get a net of maps u and v over (F,G, ε). Taking the direct

product of all such u, and one w∗-limit of v, we have u.c.p. maps A → Π(F,G,ε)Mm(D) → A∗∗,

whose composition is identity on A, and hence A is r.w.i. in Π(F,G,ε)Mm(D). By Lemma 3.1.9,

Π(F,G,ε)Mm(D) has the DWEP1 since Mm(D) does. Therefore A has the DWEP1.

⇒: A has the DWEP1, and hence we have A→ L(HD)→ A∗∗. Let σI be the composition of the

inclusion maps

A ↪→ L(HD) ↪→ ΠI(Mm(i)(D)) ↪→ ΠI(Mm(i)(D
∗∗)).

Note that each of the inclusions above is r.w.i.. By taking the duals, we have

ϕI : A∗
r.w.i.
↪→ L(HD)∗

r.w.i.
↪→ ΠI(Mm(i)(D))∗

r.w.i.
↪→ ΠI(Mm(i)(D

∗∗))∗ = `I1(Sm(i)
1 (D∗))∗∗.

By the local reflexivity principle, for arbitrary F , G and ε as in the theorem, there exists a map

αεI : G→ `1(I,S1(D∗)), such that

|〈αεI(g), σI(f)〉 − 〈ϕI(g), σI(f)〉| < ε‖f‖‖g‖,

for f ∈ F and g ∈ G. By carefully choosing an Auerbach basis for the finite dimensional spaces, we

can have the above relation on a finite subset I0 ⊂ I, i.e.

|〈αεI0(g), σI0(f)〉 − 〈ϕI0(g), σI0(f)〉| < ε‖f‖‖g‖.

By the r.w.i. property of σI we have 〈ϕI(g), σI(f)〉 = 〈g, f〉. Therefore for f and g with norm 1, we
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have |〈αεI0(g), σI0(f)〉 − 〈g, f〉| < ε, and hence |〈g, αε∗I0 ◦ σI0(f) − f〉| < ε. Let u = σI0 and v = αε∗I0 .

Then we have the desired result.

3.2 Module version of QWEP

In this section, we will follow the two notions of module WEP to define the module QWEP. This is

joint work with Sepideh Rezvani. Since proofs of these results will appear in her thesis, we will list

the results without proofs.

Definition 3.2.1. A C∗-algebra B is said to be DQWEPi if it is the quotient of a C∗-algebra A with

DWEPi for i = 1, 2.

Similar to the DWEPi, we have a tensor characterization for DQWEPi for i = 1, 2 as follows.

First we need the following result due to Kirchberg.

Lemma 3.2.2 ([Ki93] Corollary 3.2 (v)). If φ : A → B∗∗ is a u.c.p. map such that φ maps the

multiplicative domain md(φ) of φ onto a C∗-subalgerba C of B∗∗ containing B as a subalgebra, then

the C∗-algebra md(φ) ∩ φ−1(B) is relatively weakly injective in A.

We only prove the tensor characterization for DQWEP1. The proof of the other case is similar.

Theorem 3.2.3. Let C∗F∞ ⊂ L(HuD) be the universal representation. The following statements are

equivalent:

(i) A C∗-algebra B is DQWEP1;

(ii) For any u.c.p. map u : C∗F∞ → B, the map u ⊗ id extends to a continuous map from

C∗F∞ ⊗maxD1
C∗F∞ to B ⊗max C

∗F∞, where maxD1 is the induced norm from the inclusion

C∗F∞ ⊗ C∗F∞ ⊆ L(HuD)⊗max C
∗F∞.

Remark 3.2.4. In the proof of the above Theorem, we showed that the second statement is equivalent

to the statement that for any u.c.p. map u : C∗F∞ → B, w : C∗F∞ → Bop, the map u ⊗ w extends

to a continuous map from C∗F∞ ⊗maxD1
C∗F∞ to B ⊗max B

op.

Now let us investigate some basic properties of the DQWEP. We have the following proposition,

similar to the DWEP case.

Proposition 3.2.5. The following hold:
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1. If a C∗-algebra B is DQWEP1 and C is nuclear, then C ⊗min B is also DQWEP1.

2. If von Neumann algebras M and N are CQWEP2 and DQWEP2, respectively, then M⊗̄N is

(C ⊗min D)QWEP2.

By Theorem 3.1.7, DWEP1 implies DWEP2, and hence DQWEP1 implies DQWEP2. In Section

5 we will show that there exist C∗-algebras with DWEP2 which do not have DWEP1. However in

the QWEP context, the two concepts coincide. To see this, we need the following lemmas in which

we use Kirchberg’s categorical method.

Remark 3.2.6. If a C∗-algebra A has the DWEP2, then it is D∗∗QWEP1. Indeed since A has the

DWEP2, it is r.w.i. in B(`2)⊗̄D∗∗ = (K⊗min D)∗∗. Now since D is D∗∗QWEP1, so is K⊗min D and

therefore, so is (K⊗min D)∗∗. Hence A is D∗∗QWEP1.

The next lemma shows that DQWEPi, for i = 1, 2, is stable under the direct products.

Lemma 3.2.7. Suppose (Bi)i∈I is a net of C∗-algebras in B(H). If Bi is DQWEPi, for all i ∈ I,

then so is Πi∈IBi.

Lemma 3.2.8. Let B be a DQWEPi C∗-algebra, for i = 1, 2, and B0 a C∗-subalgebra of B which is

relatively weakly injective in B. Then B0 is also a DQWEPi C∗-algebra.

Lemma 3.2.9. Let A and B be unital C∗-algebras. Suppose there exists a map ψ : A→ B which maps

the closed unit ball of A onto the closed unit ball of B. If A has the DWEPi, then B is DQWEPi,

for i = 1, 2.

Corollary 3.2.10. Let B and C be C∗-algebras. Suppose B is DQWEPi, and ψ : B → C is a u.c.p.

map that maps the closed unit ball of B onto that of C. Then C is DQWEPi.

Lemma 3.2.11. Suppose (Bi)i∈I is an increasing net of C∗-algebras in B(H). If all Bi are DQWEPi,

then ∪Bi and (∪Bi)′′ are DQWEPi.

The next corollary shows that unlike the DWEP case, the DQWEP of a C∗-algebra and its double

dual are equivalent.

Corollary 3.2.12. A C∗-algebra B is DQWEPi if and only if B∗∗ is DQWEPi for i = 1, 2.

Lemma 3.2.13. Suppose B and C are C∗-algebras, and B factors through C approximately via u.c.p.

maps in the point-weak∗ topology. If C is DQWEPi, then so is B.
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Corollary 3.2.14. If a C∗-algebra B is DQWEPi, for i = 1, 2, then so is M(B).

We have the following transitivity result for DQWEPi. We only show the DQWEP1 case. The

proof of the other case is similar. First we need the following lemma.

Lemma 3.2.15. Let D be a C∗-algebra. If D is CQWEPi for i = 1, 2, then so are L(HD) and

Lw(HD∗∗).

The following result shows the transitivity of the DQWEPi for i = 1, 2.

Corollary 3.2.16. Let B, C and D be C∗-algebras such that B is DQWEPi, and D is CQWEPi.

Then B is CQWEPi.

Now we are ready to establish the equivalence between the DQWEP notions by observing the

following result.

Theorem 3.2.17. For a C∗-algebra B, the following conditions are equivalent:

1. B is DQWEP1;

2. B is DQWEP2;

3. B∗∗ is D∗∗QWEP1;

4. B∗∗ is D∗∗QWEP2.

Proof. (1)⇒(2): This follows from the fact that DWEP1 implies DWEP2.

(2)⇒(3): Suppose B is DQWEP2. Therefore, B is the quotient of a C∗-algebra A which is r.w.i.

in Lw(ED∗∗). By Remark3.2.6, since Lw(ED∗∗) has the D∗∗WEP1, it is D∗∗QWEP1. Hence A is

D∗∗QWEP1, and therefore, B is D∗∗QWEP1.

(3)⇒(4): Follows from (1)⇒(2).

(4)⇒(1): Suppose B∗∗ is D∗∗QWEP2, and therefore so is B by Corollary 3.2.12. Then B is the

quotient of a C∗-algebra A which is r.w.i. in Lw(ED∗∗∗∗). We have

A
r.w.i.
⊂ Lw(ED∗∗∗∗)

r.w.i.
⊂ B(`2)⊗̄D∗∗∗∗ = (K ⊗

min
D∗∗)∗∗.

Therefore, it suffices to show that K⊗min D
∗∗ is DQWEP1. Notice that K⊗min D

∗∗ factors through∏
nMn(D∗∗) approximately via u.c.p. maps in point-norm topology, since ∪Mn(D∗∗) is norm-dense

in K⊗min D
∗∗. Now since D has the DWEP1, D∗∗ is DQWEP1. Therefore, by Proposition 3.2.5, so

33



is Mn(D∗∗) = Mn ⊗min D
∗∗. Hence by Lemma 3.2.13, K ⊗min D

∗∗ is DQWEP1. This finishes the

proof.

3.3 Illustrations

In Section 3, we showed that DWEP1 implies DWEP2. Our first example will show the converse is

not true, and hence the two notions of DWEP are not equivalent.

Example 3.3.1. Let D = B(`2). Note that L(HD) = M(K ⊗min B(`2)), and K ⊗min B(`2) has the

WEP, and so does M(K ⊗min B(`2)). Therefore the two notions of DWEP1 and WEP coincide. On

the other hand, the DWEP2 of a C∗-algebra is the same as being r.w.i. in B(H)⊗̄B(`2)
∗∗

. Notice

that B(H)⊗̄B(`2)∗∗ = (K⊗ B(`2))∗∗ is QWEP. Therefore by Proposition 2.2.9, DWEP2 is equivalent

to QWEP. Hence if A is a QWEP C∗-algebra without the WEP, for instance C∗λFn, then A has the

DWEP2 but not the DWEP1, for D = B(`2).

Now we are ready to see some examples of relative WEP and QWEP over special classes of C∗-

algebras.

Proposition 3.3.2. Let D be a nuclear C∗-algebra. Then a C∗-algebra A has the DWEPi for i = 1, 2

if and only if it has the WEP.

Proof. Suppose A has the WEP. Therefore A has the DWEP1, and hence the DWEP2.

Now assume A has the DWEP2, i.e. it is r.w.i. in B(`2)⊗̄D∗∗. Since D is nuclear, D∗∗ is injective.

Hence we have D∗∗ ⊆ B(H)
E→ D∗∗, where E is a conditional expectation. Let CB(A,B) be the space

of completely bounded maps from A to B. Therefore we have

CB(S1, D
∗∗)

π
↪→ CB(S1,B(H))

ϕ→ CB(S1, D
∗∗),

where S1 is the algebra of trace class operators, π is a ∗-homomorphism, and ϕ acts by composing the

maps in CB(S1,B(H)) and E. Note that by operator space theory CB(S1, D
∗∗) ' B(`2)⊗̄D∗∗ and

CB(S1,B(H)) ' B(`2)⊗̄B(H) = B(`2 ⊗ H). Hence we have the maps B(`2)⊗̄D∗∗ π→ B(`2)⊗̄B(H) =

B(`2⊗H)
ϕ→ B(`2)⊗̄D∗∗. Now by Remark 2.5.12 we can unitize these two maps. Therefore A is r.w.i.

in B(`2 ⊗H), and hence it has the WEP.

After nuclear C∗-algebras, it is natural to consider the relative WEP for an exact C∗-algebra D.

For convenience, we consider the following stronger version of the weak exactness property. A von
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Neumann algebra M ⊆ B(H) is said to be algebraically weakly exact, (a.w.e. for short), if there exists

a weakly dense exact C∗-algebra D in M . By [Ki94], we know that the a.w.e. implies the weak

exactness.

Notice that the unitization trick works better in C2 category, and hence we have the following.

Proposition 3.3.3. A C∗-algebra has the DWEP2 for some exact C∗-algebra D if and only if it is

relatively weakly injective in an a.w.e. von Neumann algebra.

Proof. Suppose a C∗-algebra A has the DWEP2, then A is r.w.i. in B(H)⊗̄D∗∗. Since both K and

D are exact C∗-algebras, so is K ⊗min D. Note that K ⊗min D is weakly dense in (K ⊗min D)∗∗ =

B(H)⊗̄D∗∗. We have B(H)⊗̄D∗∗ is a.w.e.

For the other direction, suppose A is r.w.i. in an a.w.e von Neumann algebra M . Let D be an exact

C∗-algebra with D′′ = M . Then there exists a central projection z in D∗∗ such that M = zD∗∗. Hence

we have completely positive maps M ↪→ D∗∗ → M , which preserves the identity on M . Therefore

by unitization M is r.w.i. in B(H)⊗̄D∗∗ for some infinite dimensional Hilbert space H. Hence if A is

r.w.i. in M , then it is also r.w.i. in B(H)⊗̄D∗∗, and therefore it has the DWEP2.

As we see, the nuclear-WEP is equivalent to the WEP. But the exact-WEP is different.

Example 3.3.4. Let F2 be the free group of two generators. Then it is exact and hence C∗λF2 is exact

and LF2 is weakly exact. Since C∗λF2 is r.w.i. in LF2, by Proposition 3.3.3, C∗λF2 has the DWEP2

for D = C∗λF2. But C∗λF2 does not have the WEP, since the WEP of a reduced group C∗-algebra is

equivalent to the amenability of the group (see Proposition 3.6.9 in [BrOz]).

Now we consider the full group C∗-algebra of free group C∗F∞. Since it is universal in the sense

that for any unital separable C∗-algebra A, we have a quotient map q : C∗F∞ → A. By the unitization

trick, we have the following.

Proposition 3.3.5. Let A be a unital separable C∗-algebra. Then it has the DWEP2 for D = C∗F∞.

Proof. Since we have a quotient map q : C∗F∞ → A, there exists a central projection z in C∗F∞∗∗ such

that A∗∗ = zC∗F∞∗∗. Hence we have an embedding A∗∗ ↪→ B(H)⊗̄C∗F∞∗∗ with a completely positive

map from B(H)⊗̄C∗F∞∗∗ to A∗∗ by multiplying 1⊗ z. By the unitization trick in Remark 2.5.12, A∗∗

has the DWEP2 for D = C∗F∞ and so does A, since A is r.w.i. in A∗∗.

It is natural and even more interesting to ask whether the full group C∗-algebra C∗F∞ has DWEP,

for D is the reduced group C∗-algebra C∗λF2. In fact, this is related to the QWEP conjecture. If C∗F∞
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has the DWEP1 for some WEP algebra D, then it has the WEP by Corollary 3.1.14 of transitivity.

If C∗F∞ does not have the DWEP1 for some C∗-algebra D, then it does not have the WEP either.

At the time of writing, we do not have an answer for this question.

Now let us discuss some properties of being module QWEP relative to some special classes of

C∗-algebras. In the rest of this section, we will examine the relation between one of the equivalent

statements of Theorem 3.2.17 (for example statement (1), B is DQWEPi), and the statement that

B∗∗ is D∗∗WEPi, for either i = 1 or 2.

Proposition 3.3.6. Let B be a C∗-algebra. If B∗∗ has the D∗∗WEPi, then B is DQWEPi, for

i = 1, 2.

Proof. Suppose B∗∗ has the D∗∗WEPi, and hence B∗∗ is D∗∗QWEPi by the trivial quotient. By

Theorem 3.2.17, B is DQWEPi.

For some C∗-algebra D, the four equivalent statements in Theorem 3.2.17 are equivalent to the

statement that B∗∗ has the D∗∗WEPi. But this is not true in general. We will show examples of both

circumstances.

Example 3.3.7. Let D = B(`2). Then a C∗-algebra B is DQWEPi if and only if B∗∗ has the

D∗∗WEPi, since they are both equivalent to B being QWEP. Indeed, if B is DQWEP1, then B = A/J

and A has the DWEP1. Since L(HD) has the WEP as shown in Example 3.3.1, so does A, and hence B

is QWEP. On the other hand, having B(`2)∗∗WEP1 is equivalent to being r.w.i. inM(K⊗minB(`2)∗∗),

which is QWEP. Hence B∗∗ is QWEP. By Proposition 2.2.8, B is QWEP as well.

Example 3.3.8. Let D be a nuclear C∗-algebra. Then the above statements are not equivalent.

Indeed, it follows from Proposition 3.3.2 that a C∗-algebra is DQWEPi if and only if it is QWEP.

On the other hand, assume that B∗∗ has the D∗∗WEP1. Note that D∗∗WEP1 implies DWEP2 by

Remark 3.1.11, which is equivalent to WEP by Proposition 3.3.2, and B∗∗ has the WEP if and only

if it is injective. Therefore the fact that a C∗-algebra B is DQWEPi does not imply that B∗∗ has the

D∗∗WEP1.

Example 3.3.9. For a von Neumann algebra M , let us compare the properties MQWEP1 of B and

the M∗∗WEP1 of B∗∗. We have the following partial results.

Case (i): M is of type In. Then M is subhomogeneous, which is equivalent to nuclearity. By

Example 3.3.8, these two statements are not equivalent.
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Case (ii): M is of type I∞, then B(`2)⊗̄M is r.w.i. in M . Suppose B is MQWEP1, then B is

a quotient of a C∗-algebra A which is r.w.i. in B(`2)⊗̄M . Hence B∗∗ is r.w.i. in A∗∗ and hence

in (B(`2)⊗̄M)∗∗, and hence in M∗∗. Since M∗∗ is isomorphic to L(HM∗∗) for 1-dimensional Hilbert

space H, it follows that B∗∗ has the M∗∗WEP1.

Case (iii): M is of type II∞ or III, then B(`2)⊗̄M ' M . By a similar argument to that of Case

(ii), we have the same conclusion.

Case (iv): M is of type II1 and a McDuff factor, i.e. M⊗̄R ' M . Then we have a completely

postive map from M⊗̄B(`2) to M by the following:

M⊗̄B(`2)→M⊗̄
∞∏
n=1

Mn →M⊗̄R⊗̄L∞[0, 1] ⊆M⊗̄R⊗̄R 'M⊗̄R 'M.

with a completely positive left inverse from M to M⊗̄B(`2), namely M⊗̄B(`2) factors through M by

completely positive maps. Therefore M⊗̄B(`2) is r.w.i. in M∗∗. By the same argument above, the

equivalence is established.

At the time of writing, we do not have an affirmative answer for the case where M is a non-Mcduff

II1 factor.
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Chapter 4

Correspondence

A celebrated theorem of Connes [Con76] characterizes hyperfinite von Neumann algebras.

Theorem 4.0.10 (Connes). Let N ⊂ B(H) be a von Neumann algebra. The following are equivalent:

1. There exists a norm one projection E : B(H)→ N .

2. N is hyperfinite.

3. There exist a net of normal states ωn : B(H)→ C, such that:

(a) for arbitrary u ∈ U(H), ‖ωnu− uωn‖S1(H) → 0;

(b) ωn(x)→ τ(x) for x ∈ N .

If we replace B(H) by M , for a pair of von Neumann algebras N ⊂M , one finds many situations

where there exists a norm one projection E from M onto N , and one may ask what properties of M

are automatically inherited by N . This question is related to the concept of correspondence between

two von Neumann algebras, which has been introduced by Connes and Jones in [Con], [CJ85], as a

very useful tool for the study of type II1 factors. Later Popa has systematically developed this point

of view to get some new insights in the area[Pop]. Among many interesting results and remarks, he

discussed Connes’ classical work on the injective II1 factor in the framework of correspondences, and

he defined and studied a natural notion of amenability for a finite von Neumann algebra M relative

to a von Neumann subalgebra N .

The most well-known inherited property from the norm one projection E : M → N is the amenabil-

ity of M . In [AD95] Anantharaman-Delaroche shows that other approximation properties such as the

weak∗-completely bounded approximation property ([Haa86], [CH]), or the σ-weak approximation

property of [Kra91] are also preserved. Their common feature is the approximation of the identity

map of M by appropriate σ-weakly continuous bounded maps, and the main problem is that the norm

one projection E is not σ-weakly continuous in general.
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The existence of E follows easily from the existence of a net (φi)i∈I of σ-weakly continuous com-

pletely positive contractions φi : M → N such that limi φi(x) = x σ-weakly for all x ∈ N . As is

indicated in [AD95], the converse is very likely true, but Anantharaman-Delaroche does not prove it

in full generality. Instead she shows that, when there exists a norm one projection E from M onto

N , we may find a von Neumann algebra M1, Morita equivalent to M , which contains N as a von

Neumann subalgebra, in such a way that there exists a net (φi)i∈I of σ-weakly continuous completely

positive contractions φi : M1 → N such that limi φi(x) = x σ-weakly for all x ∈ N .

In this chapter, we will show that these two statements are equivalent, with the bridge of amenable

correspondence as in [AD95]. The main theorem is the following:

Theorem 4.0.11. Let N ⊂M be von Neumann algebras, then the following are equivalent:

1. The Hilbert N −N correspondence NL2(N)N is weakly contained in NL2(M)N .

2. There exist normal u.c.p. maps φi : M → N , such that φi(x)→ x in point-σ(N,N∗) topology.

3. There exists a norm one projection E : M → N .

Anantharaman-Delaroche in [AD95] shows that (1)⇒ (2)⇒ (3). We will show that (3)⇒ (1) to

complete the equivalences.

In Section 4, we will apply the theorem to relative amenability. The notion of relative amenability

was introduced in [OP10], where they characterize the equivalent conditions as in Connes’ classical

result on amenability. Also, Popa and Vaes in [PV14] show the equivalent relation between relative

amenability and left amenability for certain correspondences in the sense of [AD95]. Their main

concerns are in the case of finite von Neumann algebras. We will extend the equivalent theorem in

the context of general von Neumann algebras.

In the last section, we will examine the relation between relative weak injectivity, short as r.w.i.,

raised by Kirchberg in [Ki93], and weak containment of correspondences. Recall the notion of relatively

weak injectivity from Kirchberg [Ki93]. For C∗-subalgebra A ⊆ B, we say that A is relatively weakly

injective in B, if there exists a u.c.p. map ϕ : B → A∗∗, such that ϕ|A = idA. The main problem of

this section is the following: suppose that a C∗-algebra A represented faithfully in a von Neumann

algebra M with N being the weak closure of A in M , if the inclusion A ⊂ M is r.w.i., can we find a

conditional expection from M to N? This problem is related to the statement whether the Hilbert

A − N correspondence AL2(N)N is weakly contained in AL2(M)N . It turns out the problem has a
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negative answer. In particular, we find an example that A ⊂ B ⊂M , in which A and B are C∗-algebas

sitting in a von Neumann algebra M , such that A ⊂M is r.w.i., but B ⊂M is not.

4.1 Preliminaries

4.1.1 Correspondences

For the reader’s convenience, we first recall the basic facts on correspondences that will be needed in

this chapter. For more details, the reader may consult [CJ85], [BDH], [Rie74], [Pop], [Pas73].

Let M and N be two von Neumann algebras. A correspondence from M to N is a Hilbert space

H with a pair of commuting normal representations πM and πNop of M and Nop (the opposite of N)

respectively [CJ85]. Usually, the triple (H, πM , πNop) will be denoted by H. For x ∈ M , y ∈ N and

h ∈ H , we shall write xhy instead of πM (x)πNop(y)h. In case of ambiguity on which algebras are

acting, we shall write MHN instead of H. The commutants of πM (M) and πNop(Nop) respectively

will be denoted by LM (H) and LNop(H). In this chapter, we shall always assume that πM and πNop

are faithful.

The standard form [Haa85] of M gives rise to a correspondence L2(M) from M to M , called the

the identity correspondence. We will denote by JM the conjugate linear isometry of L2(M) given with

the standard form of M . In this example, we have πMop(x) = JM x̂JM .

Let us recall another useful equivalent way to look at correspondences. Let X be a self-dual

(right) Hilbert N -module (see [Pas73]). The N -valued inner product, denoted by 〈, 〉, is supposed to

be conjugate linear in the first variable and such that the linear span of {〈ξ, η〉, ξ, η ∈ X} is σ-weakly

dense in N . The von Neumann algebra of all N -linear continuous operators from X to X will be

denoted by LN (X) (or L(X) when N = C). Following ([BDH], Def. 2.1), by a M −N correspondence

we mean a pair (X,π) where X is as above, and π is a unital normal faithful homomorphism from M

into LN (X). More briefly, such a correspondence will be denoted by X and we shall often write xξ

instead of π(x)ξ.

These two notions of correspondences are related in the following way. Consider a M −N corre-

spondence X and let H(X) = X ⊗N L2(N) be the Hilbert space obtained by inducing the standard

representation of N up to M via X ([Rie74], Th. 5.1). Then the left action of M and the right action
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of N defined on H(X) by

x(ξ ⊗ h)y = xξ ⊗ hy, for ξ ∈ X,h ∈ L2(N), x ∈M,y ∈ N,

turn H(X) into a correspondence between these algebras.

Conversely, given a correspondence H between M and N , let X(H) = HomNop(L2(N),H) be

the space of continuous Nop-linear operators from L2(N) into H. Let N acts on the right of X(H)

by composition of operators and define on X(H) a N -valued inner product by 〈r, s〉 = r∗s for r,

s ∈ X(H). Then X(H) is a self-dual Hilbert N -module ([Rie74], Th. 6.5). Moreover, M acts on the

left of X(H) by composition of operators, and we obtain in this way an M −N correspondence.

The maps X → H(X) and H → X(H) are inverse to each other ([BDH], Th. 2.2 and [Rie74],

Prop. 6.10), up to unitary equivalence. We shall not make any distinction between equivalent corre-

spondences. Also, we shall often identify a correspondence H and its self-dual module version X(H).

It will be useful to note that, when replacing X by H = H(X) = X ⊗N L2(N), the von Neumann

algebra LN (X) is canonically identified with LNop(H), by the map which carries x ∈ LN (X) onto the

element (still denoted by x) of LNop(H) defined as follows:

x(ξ ⊗ h) = (xξ)⊗ h, for ξ ∈ X,h ∈ L2(N).

Let us recall from [Rie74] that two von Neumann algebras M and N are Morita equivalent if there

exists a M −N correspondence X (or equivalently a correspondence H from M to N) such that M

is isomorphic to LN (X) (or LNop(H)). This amounts to saying that there is a type I factor F and

a projection e in F ⊗N with central support 1 such that M and the reduced von Neumann algebra

e(F ⊗N)e are isomorphic.

Let us point out now that most of the familiar techniques used in von Neumann algebras theory and

Hilbert spaces theory apply also when we work with a self-dual Hilbert N -module X. The ultrastrong

topology has a useful analogue on X called the s-topology (see [BDH], §1.3). It is the topology defined

on X by the family of semi-norms qϕ where ϕ is a normal positive form on N and

qϕ(η) = ϕ(〈η, η〉)1/2, for η ∈ X.

Let H be a correspondence from M to N , and let H̄ be the conjugate Hilbert space. If h ∈ H,
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we denote by h̄ the vector h when viewed as an element of H. Then H has a natural structure of

correspondence from N to M by

yh̄x = ¯x∗hy∗, for x ∈M,y ∈ N,h ∈ H,

(see [Pop], 1.3.7). It is called the adjoint or conjugate correspondence of H. Notice also that with a

M − N correspondence X = X(H) is associated its adjoint X̄ = X(H̄). But in general, there is no

explicit description of X̄ from X.

A subcorrespondence of H is a Hilbert subspace K of H, stable by the left M -action and the right

N -action. In the self-dual version, a subcorrespondence Y of X is a submodule of X closed in the

s-topology and stable by the left action of M . In this case, we shall say that K is contained in H (or

that Y is contained in X), and we shall write K ≤ H (or Y ≤ X).

Consider now three von Neumann algebras M , N , P , an M − N correspondence (X,π) and an

N −P correspondence (Y, π1). We denote by X ⊗N Y the self-dual completion of the algebraic tensor

product X ⊗ Y endowed with the obvious right action of P and the P -valued inner product

〈ξ ⊗ η, ξ1 ⊗ η1〉P = 〈η, 〈ξ, ξ1〉N 〉P , for ξ, ξ1 ∈ X, η, η1 ∈ Y.

Then there is a canonical homomorphism from LN (X) into LP (X ⊗N Y ), sending x ∈ LN (X) to the

map ξ ⊗ η 7→ (xξ) ⊗ η. Moreover this homomorphism is faithful when π1 : N → LP (Y ) is faithful

([AD90], Lemma 1.5). By composition of this homomorphism with π, we get a left action of M into

X ⊗N Y which turns X ⊗N Y into an M − P correspondence, called the composition correspondence

of X by Y . Put H = H(X) and K = H(Y ). When an auxiliary faithful weight ν has been chosen on

N , A. Connes has shown [Con] how to define the composition H⊗ν K of the correspondences H and

K (see also [S]). It follows from ([S, Prop. 2.6]) that, up to equivalence, the result does not depend

on the choice of ν, so we shall use the notation H⊗N K instead of H⊗ν K. It is easily checked that

X(H⊗NK) = X⊗N Y and thus there is no ambiguity on the notion of composition of correspondences.

Let N be a von Neumann subalgebra of a von Neumann algebra M (and then we will say that

N ⊂ M is a pair of von Neumann algebras). The Hilbert space L2(M) has a natural structure of

correspondence from M to N by restricting to N the right action of M . This object, which is crucial

in the study of the inclusion, is called the standard correspondence associated with the pair N ⊂ M

and denoted by ML2(M)N . In a similar way, we may consider the correspondence NL2(M)M from N
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to M , and by using JM it is easily checked that it is equivalent to the conjugate of ML2(M)N . Let

us remark that any correspondence MHN is isomorphic to the correspondence ML2(M)⊗M HN , and

to MH⊗N L2(N)N as well.

Let H be a correspondence from M to M . Then NL2(M)⊗MH⊗M L2(M)N is the correspondence

from N to N obtained by restricting to N the left and right actions of M on H. It will be called the

restriction of H from M to N .

LetH be now a correspondence from N to N . Then ML2(M)⊗NH⊗NL2(M)M is a correspondence

from M to M . We will say that it is the correspondence induced by H from N up to M and will

denote it by IndMN H.

Let us recall now that a correspondence H from a von Neumann algebra M to a von Neumann

algebra N is nothing else than a representation of the binormal tensor product M ⊗bin N
op (see [EL]

for the definition of the norm bin). Furthermore two correspondences are isomorphic if and only if they

are unitarily equivalent when considered as representations of M ⊗bin N
op. Thus every notion which

makes sense for representations of C∗- algebras can also be defined for correspondences. In particular

the topology defined by Fell ([Fel62], Section 1) on the space of (equivalence classes of) representations

of the C∗-algebra M⊗binN
op gives rise to the following topology on the set Corr(M,N) of (equivalence

classes of) correspondences from M to N (as usual this set is restricted suitably in order to avoid

paradoxically huge sets). Let H0 ∈ Corr(M,N), ε > 0, E ⊂ M and F ⊂ N two finite sets, and

S = (h1, . . . , hp) a finite subset of H0. We define by U(H0; ε, E, F, S) the set of H ∈ Corr(M,N) such

that there exist k1, . . . , kp ∈ H with

|〈ki, xkjy〉 − 〈hi, xhjy〉| < ε, for all x ∈ E, y ∈ F, i, j = 1, . . . , p.

Then Corr(M,N) is equipped with the well defined topology having these U ’s as a basis of neighbour-

hoods.

If we regard correspondences as self-dual Hilbert modules, the topology may be described as follows

(see [AD90], §1.12). Let X0 = X(H0), Ω a σ- weak neighbourhood of 0 in N , E a finite subset of

M , and S = ξ1, . . . , ξp a finite subset of X0 be given. We denote by V (X0; Ω, E, S) (or, more briefly

V (Ω, E, S)) the set of correspondences X such that there exist η1, . . . , ηp ∈ X with

〈ηi, xηj〉 − 〈ξi, xξj〉 ∈ Ω, for all x ∈ E, i, j = 1, . . . , p.
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Then such V ’s constitute a basis of neighbourhoods of X0 in Corr(M,N). Moreover, if X0 has a cyclic

vector ξ0, it has a basis of neighbourhoods of the form V (X0; Ω, E) = V (X0; Ω, E, {ξ0}). Note that

in this case, X0 belongs to the closure of X ∈ Corr(M,N) if and only if there is a net (ξi) in X such

that limi〈ξi, xξi〉 = 〈ξ0, xξ0〉 σ-weakly for all x ∈ M . If ξ ∈ X, we say that the normal completely

positive map x 7→ 〈ξ, xξ〉 from M to N is a coefficient of X.

In particular, the identity correspondence of M belongs to the closure of a M −M correspondence

X if and only if there is a net (φi) of coefficients of X such that limi φi(x) = x σ-weakly for all x ∈M .

Let H0 and H1 be two correspondences from M to N , and denote by π0 and π1 the associated

representations of M ⊗bin N
op. We say that H0 is weakly contained in H1, and we write H0 ≺ H1,

if the representation π0 is weakly contained in π1, that is if Kerπ0 ⊃ Kerπ1, or equivalently, if

‖π0(x)‖ ≤ ‖π1(x)‖ for all x ∈ M ⊗ Nop. This amounts to saying that H0 belongs to the closure of

the set of finite direct sums of copies of H1 in Corr(M,N) (see [Fel62], Th. 1.1). For instance, the

identity correspondence of M is weakly contained in a M −M correspondence X if and only if there

exists a net (φi) of completely positive maps from M to M , each of which is a finite sum of coefficients

of X, such that limi φi(x) = x for all x ∈ M . Note that we may replace the net (φi) by a bounded

one by a convex combination argument (see Lemma 2.2 of [ADH]).

Definition 4.1.1. We say that a correspondence H from M to N is left amenable if ML2(M)M ≺

MH⊗N H̄M . We say that H is right amenable if H̄ is left amenable, that is if L2(N) ≺ H̄ ⊗M H.

Put N1 = LNop(H). Sauvageot has proved ([Sau83], Prop. 3.1) that H ⊗N H̄ is a standard form

for N1 and thus we have

MH⊗N H̄M = ML2(N1)M = ML2(N1)⊗N1 L2(N1)M .

Therefore we see that MHN is left amenable if and only if ML2(N1)N1 is left amenable, and thus it

would be enough to study the case of an inclusion M ⊂ N1 with H = ML2(N1)N1
.

Now without ambiguity, we assume N ⊂ M . Then the left amenablity of N −M correspondence

NL2(M)M is equivalent to the weak containment NL2(N)N ≺ NL2(M)⊗M L2(M)N , which is the

condition (1) in Theorem 4.0.11. In [AD95], Anantharaman-Delaroche shows the implication (1) ⇒

(2)⇒ (3) in Theorem 4.0.11. The key ingredient is the following proposition in [AD95].

Proposition 4.1.2. For N ⊂M von Neumann algebras, the following are equivalent.

1. NL2(N)N ≺ NL2(M)N .
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2. There exists a net (φi) of completely positive maps from M to N , of the form φi(x) =∑
j(W

i
j )
∗xW i

j , where the sum is finite and W i
j ∈ HomNop(L2(N), L2(M)), such that limi φi(x) =

x σ-weakly for all x ∈M .

4.1.2 Local reflexivity

The main tool for proving the missing implication (3) ⇒ (1) in the Thoerem 4.0.11 is the following

theorem of local reflexivity.

Theorem 4.1.3. Let N be a von Neumann algebra. For arbitrary finite dimensional subspaces E ⊂

N∗ and F ⊂ N , and arbitrary ε > 0, there exists a map u : E → N∗ such that

1. ‖u‖cb ≤ 1 + ε;

2. ‖u−1‖cb ≤ 1 + ε;

3. |〈u(e), f〉 − 〈e, f〉| ≤ ε‖e‖‖f‖.

Directly applying the local reflexivity, we have the following corollary on ultraproduct of a von

Neumann algebra.

Corollary 4.1.4. There exists an ultrafilter U on some index set I, and a map u : N∗ → ΠUN∗, such

that the composition of maps N∗
u−→ ΠUN∗

Lim−→ N∗, where Lim is the limit over the ultrafilter U , is

the identity on N∗, and u∗ : (ΠUN∗)
∗ → N∗∗ is complete positive.

Proof. For each tuple (E,F, ε) as in Theorem 4.1.3, we have a map u(E,F,ε). Now define the map

u(x) = (u(E,F,ε)(x))x∈E . Then Lim(E,F,ε) u(E,F,ε)(x)(y) = (x)(y) for x ∈ N∗ and y ∈ N . By

Theorem 4.1.3, u is completely contractive. Hence u∗ : (ΠUN∗)
∗ → N∗∗ is completely contractive and

u∗(1) = 1. Therefore u∗ is completely positive.

Remark 4.1.5. We have the following facts from [Ray02]:

1. (Lim)∗(x) = (x)◦ for x ∈ N , and (x)◦ is a representative in ΠUN .

2. Lp((ΠUN∗)
∗) = ΠULp(N).

4.1.3 Basic construction and relative amenability

Consider a tracial von Neumann algebra (M, τ) equipped with a faithful normal tracial state τ . Let

A ⊂ M be a von Neumann subalgebra in M . Then, the conditional expectation EA can be viewed
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as the orthogonal projection eA from L2(M) onto L2(A) ⊂ L2(M). It satisfies eAxeA = EA(x)eA for

every x ∈M . The basic construction 〈M, eA〉 is the von Neumann subalgebras B(L2(M)) generated by

M and eA. We note that 〈M, eA〉 coincides with the commutant of the right A-action in B(L2(M)).

The linear span of {xeAy : x, y ∈ M} is an ultraweakly dense ∗-subalgebra in 〈M, eA〉 and the

basic construction 〈M, eA〉 comes together with the faithful normal semi-finite trace Tr such that

Tr(xeAy) = τ(xy). See Section 1.3 in [Pop06] for more information on the basic construction.

Recall that for von Neumann algebras B ⊂M , a state ϕ on M is said to be B-central if ϕ◦Ad(u) =

ϕ for any u ∈ U(B), or equivalently if ϕ(ax) = ϕ(xa) for all a ∈ B and x ∈M . M is amenable if there

exists an M -central state on B(L2(M)), whose restriction to M equals to τ . Connes’s fundamental

theorem in [Con76] says that a tracial von Neumann algebra M is amenable if and only if M is

hyperfinite, i.e. M admits an increasing net of finite-dimensional von Neumann subalgebras whose

union is weakly dense in M . Also, M is amenable if and only if the identity correspondence (or trivial

bimodule) ML2(M)M is weakly contained in the coarse bimodule M (L2(M)⊗ L2(M))M .

In [OP10], Ozawa and Popa adapted Connes characterization of amenable von Neumann algebras

to the relative situation.

Definition 4.1.6 ([OP10]). Let (M, τ) be a tracial von Neumann algebra and let A, B be von Neu-

mann subalgebras of M . We say that B is amenable relative to A inside M , if the von Neumann

algebra 〈M, eA〉 admits a B-central positive functionals whose restriction to M is τ .

Similarly Popa and Vaes in [PV14] adapted the notion of left amenablity in a relative sense.

Definition 4.1.7 ([PV14]). Let (M, τ) and (A, τ) be tracial von Neuamann algebras, and B ⊂ M .

An M −A correspondence MHA is left B-amenable if the M −B correspondence ML2(M)B is weakly

contained in the M −B correspondence H⊗A H̄.

Note that the above definition generalizes the notion of left amenability in Definition 4.1.1. More

precisely, an M − A correspondence MHA is left M -amenable in the sense of Definition 4.1.7, if and

only if MHA is left amenable in the sense of Definition 4.1.1.

By definition, for A ⊂M and B ⊂M , we have that B is amenable relative to A inside M , if and

only if M −A correspondence ML2(M)A is left B-amenable.

A characterization for the notion of relative amenability is proved in [OP10] and also in [PV14].

Theorem 4.1.8. Let A, B ⊂M be finite von Neumann algebras. Then the following are equivalent:
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1. B is amenable relative to A inside M , i.e. there exists a B-central state ϕ on 〈M, eA〉, such that

ϕ|M = τ .

2. There exists a B-central state ϕ on 〈M, eA〉, such that ϕ is normal on M , and faithful on

L(A′ ∩M).

3. There exists a conditional expectation Φ from 〈M, eA〉 onto B such that Φ|M = idB.

4. There exists a net (ξn) in L2〈M, eA〉, such that limn〈xξn, ξn〉 = τ(x) for every x ∈ M and that

lim ‖[u, ξn]‖ = 0 for every u ∈ B.

5. ML2(M)A is left B-amenable, i.e. ML2(M)B ≺ ML2(M)⊗A L2(M)B.

We will extend the definition and the equivalence theorem by [OP10] to a general non-finite von

Neumann algebra N .

4.2 Proof of the main theorem

The key ingredient for proving the main theorem is the following proposition.

Proposition 4.2.1. Let M be a von Neumann algebra. Then ML2(M∗∗)M ≺ ML2(M)M .

To prove the above proposition, we need to set up the following lemma.

Lemma 4.2.2. Let M1 be a von Neumann subalgebra of M2, with a normal (non-faithful) conditional

expecation E : M2 → M1. Then there exist maps Lp(M1)
jp→ Lp(M2) → Lp(M1), where jp is a

complete isometry and an M1-bimodule map.

Proof. For conditional expecation E : M2 →M1, let E = E∗|M1∗ : M1∗ →M∗2 .

Case I: M2 is σ-finite and E is faithful. The case is solved in [JX08], by defining

jp(d
1−θ
p ad

θ
p ) = D

1−θ
p aD

θ
p (4.2.1)

for a ∈M1, where d ∈M1∗ is a density and D = E(d).

Case II: M2 is σ-finite and E is not faithful. Let e be the support of E, and π(x) = exe for x ∈M1.

We claim that [π(x), e] = 0, and therefore π is a ∗-homomorphism. Indeed, E(π(x∗)eπ(x)) =

x∗E(e)x = x∗x = E(π(x)∗π(x)). Hence eπ(x)∗eπ(x)e = eπ(x)∗π(x)e, and therefore eπ(x)e = π(x)e.
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Let D = E(d), the D ∈ Lp(eM2e) = eLp(M2)e ⊆ Lp(M2). Then jp defined in (4.2.1) is a M1-

bimodule map. Indeed, since π is a ∗-homomorphism, jp(ad
1
p ) = aD

1
p = aeD

1
p = eaeD

1
p ∈ eLp(M2)e.

Case III: M2 is not σ-finite. Recall that for a weight φ on M , there exists a net of normal

strict semifinite faithful weights (φi), such that φ =
∑
i∈I eiφiei, where ei’s are mutually orthogonal

projections, and supp(φi) = ei. For any finite subset F ⊂ I, let eF =
∑
i∈F ei. Case II implies that

eFM1eF ⊆ eFM2eF , and jp maps Lp(eFM1eF ) to Lp(eFM1eF ), consistently for the order of subsets.

Note that eF → 1 in the strong operator topology. Therefore ∪F eFLp(M2)e
−‖·‖
F = Lp(M2).

Proof of Proposition 4.2.1. Use Lemma 4.2.2 for M1 = M∗∗ and M2 = (ΠUM∗)
∗. By Theorem 4.1.3

and its corollary, there exists u∗ : (ΠUM∗)
∗ → M∗∗ which is a ∗-homomorphism, and hence a con-

ditional expectation. By Lemma 4.2.2, there exists j2 : L2(M∗∗) → L2(ΠUM∗)
∗) = ΠUL2(M). By

the definition of weak containment, we have natually that MΠUL2(M)M ≺ ML2(M)M . Therefore

ML2(M∗∗)M ≺ ML2(M)M .

Applying Proposition 4.2.1 in particular for von Neumann algebras N ⊂M , we have that

NL2(M∗∗)N ≺ NL2(M)N . Now we are ready to prove the missing implication in the main theorem.

Proof of Theorem 4.0.11. (3) ⇒ (1) in Theorem 4.0.11: Let E : M → N be the conditional expec-

tation. Let E∗ = E∗|N∗ and E = (E∗)
∗

: M∗∗ → N∗∗ be the normal conditional expectation. Then

by Lemma 4.2.2 and Proposition 4.2.1, we have that NL2(N)N ⊂ NL2(N∗∗)N → NL2(M∗∗)N ≺

NL2(M)N .

4.3 Relative Amenability

In this section, we will generalize Theorem 4.1.8 to a general setting.

Theorem 4.3.1. Let N be a von Neumann algebra(might not be finite) and A, B be von Neumann

subalgebras of N such that there exists a normal conditional expecation EB : N → B. Let N =

B(L2(N)) ∩ (Aop)′. Then the following statements are equivalent:

1. there exists a conditional expectation E : N → B (non-normal), such that E|N = EB.

2. B is amenable inside N over A, i.e. NL2(N)B ≺ NL2(N)⊗A L2(N)B;

Remark 4.3.2. Recall that in [Sau83], supposeM ⊆ B(H) is a von Neumann algebra and A = (M ′)op.

Then we have MH ⊗A H̄M = L2(M). Now let H = L2(N), A ⊆ N , and N = (Aop)′ ⊆ B(L2(N)).
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Therefore we have NL2(N) ⊗A L2(N)N = L2(N ). In particular, if A is conditioned in N , such that

there exists a projection eA : L2(N)→ L2(A), then L2(N)⊗AL2(N) = L2(〈N, eA〉). Hence our result

generalized Theorem 4.1.8 in a non-II1 setting.

Proof of Theorem 4.3.1. (1) ⇒ (2): Suppose we have a conditional expectation E : N → B, and let

E∗ = E∗|B∗ : B∗ → N ∗. Then E = (E∗)
∗ : N ∗∗ → B∗∗ is a normal conditional expectation. By local

reflexivity and Lemma 4.2.2, we have

L2(B) ⊂ L2(B∗∗)
jE2−→ L2(N ∗∗) jLR2−−→ ΠUL2(N ) = ΠU (L2(N)⊗A L2(N)).

We claim that NjE2 (L2(B)) = L2(N), and therefore NL2(N)B is contained in NL2(N ∗∗)B .

Indeed, for the simplicity of writing, let Tr denote the formal Haagerup trace induced from the

inner product. For b1, b2 in B, and n1, n2 in N , we have

〈n1j
E
2 (b1), n2j

E
2 (b2)〉 = Tr(jE2 (b1)∗n∗1n2j

E
2 (b2)) = Tr(n∗1n2j

E
2 (b2)jE2 (b1)∗)

= Tr(n∗1n2E∗(b2b
∗
1)) = Tr(E(n∗1n2)b2b

∗
1) = Tr(n∗1n2b2b

∗
1) = 〈n1b1, n2b2〉.

Hence by Lemma 4.2.1, we have NL2(N)N ⊆ NL2(N ∗∗)B ≺ NL2(N )B .

(2)⇒ (1): Let d be a normal faithful state on B, i.e. a density in L1(B). Then there exists a net

ξn ∈ L2(N)⊗A L2(N), such that for b1, b2 in B, and n1, n2 in N ,

〈n1ξnb1, n2ξnb2〉 → 〈n1d
1
2 b1, n2d

1
2 b2〉 = Tr(b∗1d

1
2n∗1n2d

1
2 b2) = Tr(d

1
2 b2b

∗
1d

1
2n∗1n2).

Define Φ : N → Bop ∗ by

Φ(x)(b) = lim
n
〈ξn, bξnx〉 = lim

n
Tr(ξ∗nbξnx).

Note that Φ(1)(b) = Tr(ξnξ
∗
nb)→ Tr(b), we have Φ(1) ∈ B∗. Therefore Φ : N → Bop

∗ . By a standard

construction, there exists E : N → B, such that the following diagram commutes

N

E !!

Φ // Bop
∗

B

d
1
2 ·d

1
2

OO
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It is easy to check from the construction that E|N = EB .

Remark 4.3.3. From the proof of (2)⇒ (1), the statements are equivalent to

(2′) There exists a net ξn ∈ L2(N)⊗A L2(N) with norm 1, such that

〈ξn, bξnx〉 → 〈d
1
2 , bd

1
2x〉.

Actually they are all equivalent to the following conditions similar to Theorem 4.1.8.

(2′′) For density d ∈ B∗, and x ∈ N and b ∈ B, there exists ξn, such that the following hold:

(a) 〈ξn, ξnx〉 → Tr(dx);

(b) ‖ξnb− σdt (b)ξn‖2 → 0, where σdt denote the one parameter modular automorphism group asso-

ciate with normal faithful state d.

Apparently we have (2′′) ⇒ (2′) ⇒ (1). For (1) ⇒ (2′′), (a) follows from the proof of the

theorem. For (b), since L2(B) → ΠU (L2(N) ⊗A L2(N)), we have ‖bd 1
2 − σdt (b)d

1
2 ‖2 = 0. Hence

‖ξnb− σdt (b)ξn‖2 → 0.

4.4 Relation with relatively weak injectivity

In this section, we examine the relation between relatively weak injectivity and the weak containment

of correspondences. Recall the notion of relatively weak injectivity from Kirchberg [Ki93]. For C∗-

subalgebra A ⊆ B, we say that A is relatively weakly injective in B, if there exists a u.c.p. map

ϕ : B → A∗∗, such that ϕ|A = idA.

Let C∗-algebra A be a subalgebra of a von Neumann algebra M , and let N = A′′ ∩M ⊆ M .

Consider the following stronger statement than relative weak injectivity:

(*) If A is relatively weakly injective in M , then there exists a u.c.p. map Φ : M → N such that

Φ|N = idN .

In the first glance, the statement seems to be natural. Since A′′ = N , there exists a central

projection z in A∗∗, such that N = zA∗∗. Hence by the relative weak injectivity of A ⊆ M , we have

a composition Φ : M → A∗∗ → N of the weak expectation and the projection. It is obvious that

Φ|A = idA. However it is not clear that such map restricted on N is the identity. In fact, the above

statement (*) does not hold necessarily, which means there does exist an r.w.i. inclusion A ⊂M , such
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that we cannot have such Φ. A trivial example is when M = B(Hu) is the universal representation of

A, then N ' A∗∗. The existence of Φ implies injectivity of A∗∗, which is equivalent to nuclearity of

A. Hence we would have the WEP implies nuclearity.

In this section, we will construct a more explicit counter example to see some interesting implica-

tions. First, we establish the following Swap Lemma.

Lemma 4.4.1. [Swap Lemma] Assume (*) is true. Let π0 and π1 be disjoint representations of A in

M0 and M1 respectively, and π0 is faithful. If π0(A) ⊆ M0 is relatively weakly injective, then there

exists a conditional expecation ψ : M1 → π1(A)′′.

Proof. Let N0 = π0(A)′′∩M0 and N1 = π1(A)′′∩M1. Let M = M0⊕M1 and π be the representation

of A on M induced from π0 and π1, and N = π(A)′′ ∩M .

First, we claim that π(A) is relatively weakly injective in M . Indeed, suppose P0 is the projection

from M to M0, and ϕ0 is the weak expectation from M0 to π0(A)∗∗. Since π0 is faithful, so is π, we

have that

π(A)
π0◦π−1

−−−−−→ π0(A)
π−1◦π0−−−−−→M

P0−→M0
ϕ0−→ π0(A)∗∗

(π◦π−1
0 )∗∗

−−−−−−−→ π(A)∗∗,

which is the identity on π(A).

By (*), there exists a u.c.p. Φ : M → N , such that Φ|N = idN .

Now let πnor : A∗∗ → N , πnor
0 : A∗∗ → N0 and πnor

1 : A∗∗ → N1, z0 = supp(πnor
0 ) and z1 =

supp(πnor
1 ). Then by disjointness of π0 and π1, we have that z0 ⊥ z1 and πnor = πnor

0 ⊕ πnor
1 .

Denote zN0 = πnor(z0) and zN1 = πnor(z1). Then we have zN0 N = N0 and zN1 N = N1. We define

a u.c.p. map ψ on M1 by Φ(x) = Φ(0, x)zN1 . It is easy to show that this is a conditional expectation

from M1 to N1.

We will construct a counter example to show (*) is not true. Let Fn+1 be the free group of n+ 1

generators g1, . . . , gn+1, and Fn be the free subgroup of Fn+1 generated by g1, . . . , gn. We define a

state ϕ on C∗λFn+1 by:

ϕ(λ(g)) =


1 if g ∈ gZn+1;

0 else .

(4.4.1)

This is a well-defined state from the composition of the conditional expectation and the trivial state

ϕ : C∗λFn+1
E−→ C∗λZ→ C. We claim that ϕ is singular with respect to the trace on LFn+1.

51



Lemma 4.4.2. Let G0 be a subgroup of G1, and ϕ0 be a state on C∗λG0, which admits a singular

extension to LG0. Then ϕ0 admits a singular extension on LG1.

Proof. Let ϕ̂ be the singular extension of ϕ0 on LG0. Then there exists a net of increasing projections

qλ converging to 1 in strong operator topology, such that ϕ̂|C∗λG0 = lim((1− qλ)x(1− qλ)).

Now we define a state ψ on LG1 by ψ(x) = limλ→∞ ϕ̂((1−qλ)E(x)(1−qλ)), where E : LG1 → LG0

is the conditional expectation. We claim that this ψ is singular with respect to the trace on LG1.

Indeed, let ψ = ψn + ψs be the singular decomposition of ψ. Then by the increasing property of

the projections, we have

(a) ψ(x) = ψ((1− qλ)x(1− qλ)) for arbitrary λ;

(b) ψs(x) = ψs((1− qλ)x(1− qλ)) for arbitrary λ;

(c) ψn((1− qλ)x(1− qλ))→ 0.

Hence we have ψ(x) = ψs(x), i.e. ψ is a singular on LG1.

Corollary 4.4.3. The state ϕ defined in (4.4.1) is singular on LFn+1 with respect to the trace.

Proof. Let H ' Z ' T be the subgroup of Fn+1 generated by gn+1, and ϕn = n
2 1[−1/n,1/n] be

the state on C∗λT, and ϕ̂ be the limit of ϕn in weak∗-topology. Then ϕ̂|C∗λT = δ0 6= 0 is singular

on LT. By the proof of Lemma 4.4.2, we can construct a singular state ψ on LFn+1 by ψ(x) =

limλ→∞ ϕ̂((1− qλ)E(x)(1− qλ)).

Now let x = λ(g) for g ∈ Fn+1. If g 6∈ H, from the construction of ψ, we have that ψ(x) = 0. If

g ∈ H, then ψ(x) = 1. Therefore we have that ψ|C∗λFn+1
= ϕ, and hence ϕ is singular with respect to

the trace on LFn+1.

Now we apply the Swap Lemma to disproof (*).

Proposition 4.4.4. There exists an r.w.i. inclusion A ⊂M with N = A′′ ∩M , such that there is no

u.c.p. map Φ : M → N with Φ|N = idN .

Proof. Suppose we have such map Φ. Then we have the Swap Lemma.

Let πλ : C∗λFn+1 → LFn+1 be the faithful representation. It is well known that C∗λFn+1 ↪→ LFn+1

is r.w.i.. Let ϕ be the state on C∗λFn+1 defined in (4.4.1), and πϕ : C∗λFn+1 → B(Hϕ) be the GNS

construction from ϕ. By Corollary 4.4.3, we have that πλ and πϕ are disjoint representations. By the

Swap lemma, there exists a conditional expectation ψ : B(Hϕ)→ πϕ(C∗λFn+1)′′.
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Now let F+ = {gk1i1 · · · g
kl
il
| il 6= n+1} be the subset of words in Fn+1, which do not end with gn+1.

We claim that Hϕ = `2(F+). Indeed, suppose w1 = vv′ and w2 = vv′′ in F+. If w1 6= w2, then we

have either v′ 6= 0 or v′′ 6= 0. Without loss of generality, let v′ 6= 0, then we have w−1
2 w1 = v′′−1v′, and

w−1
1 w2 = v′v′′ and hence ϕ(w−1

2 w1) 6= 0, ϕ(w−1
1 w2) 6= 0. On the other hand, for arbitrary w ∈ Fn+1,

by the construction of ψ from the conditional expectation, we have that ϕ(λ(wgkn+1)) = ϕ(λ(w)).

Therefore Hϕ = `2(F+).

Now let F+ = Fn×R be the set decomposition, where R is the right coset of Fn, and r1 6= r2 if and

only if r1r
−1
2 6∈ Fn. Since Hϕ = `2(F+) = ⊕r∈RHr, we have B(Hϕ) = B(`2(F+)) = B(`2(Fn × R)) '

B(`2(Fn))⊗̄B(`2(R)), and πϕ embeds each x ∈ C∗λFn on the diagonal in B(`2(Fn))⊗̄`∞(R). Since

R is countable, there exists a normal conditional expectation E = id⊗PD : B(`2(Fn))⊗̄B(`2(R)) →

B(`2(Fn))⊗̄`∞(R), where D is the diagonal in R and PD is the projection on the diagonal. Let

Mϕ = πϕ(C∗λFn+1)′′ and M = πϕ(C∗λFn)′′. We claim that E|Mϕ maps Mϕ to M .

Indeed, let g ∈ F+ = Fn × R. If g ∈ FnD, where D is the diagonal operator, then it is easy to

check that E(λ(g)) = λ(g). If g 6∈ FnD, let g1, g2 ∈ Fn, and r1, r2 ∈ R. Consider the matrix unit

〈(e(g2,r2), E(λ(g))e(g1,r1)〉 = δr1,r2〈e(g2,r1), e(gg1,r1)〉. This is not zero if and only if g = g2g
−1
1 ∈ Fn.

Hence we have the image of Mϕ is in M .

Let PH0 be the coordinate projection on B(`2(Fn))⊗̄`∞(R). Then we have Ψ = PH0EψPH0 :

B(Hϕ)→ LFn.

Now we have that C∗λFn
πϕ−−→ B(Hϕ)

Ψ−→ LFn. Notice that from [HP], we have the map V :

Rn∩Cn → C∗λFn and the map W : LFn → Rn∩Cn, where Rn is the n-dimensional row space, and Cn

is the n-dimensional column space, with ‖V ‖cb ≤ 2 and ‖W‖cb ≤ 1. Therefore we have that Rn ∩Cn

factors through B(Hϕ) with the factorization norm γ∞(Rn ∩ Cn) ≤ 2. When n is large enough, this

contradicts the fact that γ∞(Rn ∩ Cn) ≥
√
n/2 by [HP].

Remark 4.4.5. Suppose A ⊂M is r.w.i., and N = A′′ ∩M . Consider the diagram

A ⊂ N ⊂M → A∗∗ → N

Let Φ be the compostion map from M to N , then we have Φ|A = idA by r.w.i. property. But

Φ|N 6= idN in full generality, i.e. there exists x ∈ N , such that Φ(x) 6= x. Notice that there exist a

net Φλ converging to Φ in point-weak∗ topology, and a net as ⊂ A converging to x weakly. Hence we

have Φ(x) = limλ Φ(x) = limλ lims Φλ(as). On the other hand, x = lims limλ Φλ(as). Therefore our
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result shows that the limits are not interchangable.

Remark 4.4.6. Let A = C∗λFn+1, M = LFn+1 ⊕ B(Hϕ), and N = A′′ ∩M . Let u = (1,−1) ∈ M .

Then u2 = 1, and hence it is a unitary, and u ∈ A′ ∩M . Then the failure of the existence of Φ which

is indentity on N , implies that there is no such Φ, that Φ|A = idA and Φ(u) = u. This leads to the

following corollary.

Corollary 4.4.7. There exists an r.w.i inclusion A ⊂M with N = A′′∩M , and a unitary u ∈ A′∩N ,

such that for C∗-algebra C∗〈A, u〉 generated by A and u, there is no such map Φ : M → N with

Φ|C∗〈A,u〉 = idC∗〈A,u〉. In particular, for r.w.i. inclusion A ⊂M , we have

A ⊂ C∗〈A, u〉 ⊂M

such that C∗〈A, u〉 is not r.w.i. in M .

Remark 4.4.8. Assume the setting A ⊂M with N = A′′ ∩M . Consider the following statements

(a) There exists a u.c.p. map Φ : M → N , such that ΦA = idA.

(b) There exists a norm one projection Φ : M → N .

The above example shows that the statement (a) does not imply the statement (b). Let us consider

another related statement.

(c) There exist a net of normal u.c.p. maps Φt : M → N , such that Φt(x) converges to x σ-weakly

for x ∈ A.

We can also show that (c) does not imply (b) either, by our example A = C∗λFn+1 and M =

LFn+1 ⊕ B(Hϕ).

Let Tt be the Poisson semigroup on LFn+1, defined as

Tt : λg 7→ e−t|g|λg,

where | · | is the word length with respect to the generating set. By Haagerup’s inequality [Haar79],

Tt is a completely positive and map LFn+1 from C∗λFn+1. Then we have that

M = LFn+1 ⊕ B(Hϕ)
Tt⊕0−−−→ C∗λFn+1

λ⊕πϕ−−−−→ N.
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Let Φt = (λ⊕ πϕ) ◦ (Tt⊕ 0). Clearly it is the identity on A. However we have already shown that (b)

fails in this setting A ⊂M .

Now let us relate above result in a setting of correspondence and weak containment.

Corollary 4.4.9. Suppose A is relatively weakly injective in M , then we have AL2(A∗∗)A ≺ AL2(M)A.

However, if in addition let N = A′′ ∩M , then there exists a pair of inclusions A ⊂ N ⊂M , such that

NL2(A∗∗)N 6≺ NL2(M)N .

Proof. By relatively weak injectivity of A ⊂M , there exists a normal conditional expectation M∗∗ →

A∗∗. Hence the first assertion follows from Proposition 4.2.1 that AL2(A∗∗)A ≺ AL2(M∗∗)A ≺

AL2(M)A. For the second assertion, by Proposition 4.4.4 and Theorem 4.0.11, there exists A ⊂

N ⊂M such that NL2(A∗∗)N 6≺ NL2(M∗∗)N

In a more general setting with A ⊂ N ⊂ M , where A is a C∗-algebra and N = A′′ ∩M , consider

the correspondence AHN as a Hilbert space with a representation π : A ⊗nor N → B(H). One has a

similar topology on Corr(A,N) described in [ADH]. Then we can establish a similar proposition for

A−N correspondence, as in Theorem 4.0.11.

Proposition 4.4.10. Let A be a C∗-subalgebra of a von Neumann algebra M , and N = A′′ ∩M .

Consider the following statements:

1. AL2(N)N ≺ AL2(M)N .

2. There exist a net of normal u.c.p. maps φi : M → N , such that φi(x) converges to x σ-weakly

for x ∈ A.

3. There exists a u.c.p. map Φ : M → N , such that Φ|A = idA.

Then we have (1)⇒ (2)⇒ (3).

Proof. (1)⇒ (2): As Proposition 4.1.2 is the key ingredient for showing (1)⇒ (2) in Theorem 4.0.11,

following the same procedure of the proof in [AD95], we can show that AL2(N)N ≺ AL2(M)N if and

only if there exists a net of maps (φi) with the form in Proposition 4.1.2, such that (φi) converges to

the identity on A point σ-weakly.

(2)⇒ (3) follows from the standard accumulation argument of the net (φi).
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Remark 4.4.11. In general we do not have (3)⇒ (1) or (3)⇒ (2). As above the two different copies

of N will lead to a counter example. Indeed, if we assume (3), then we have a composition

N∗
Φ∗−−→M∗ → N∗.

Since A is weakly dense in N , there exists a d ∈ L2(N) such that Ad is dense in N∗, and

〈Φ∗(ad), b〉 = 〈ad,Φ(b)〉 = tr(bad),

for a, b in A, and hence the above composition map is identity on Ad. Therefore we have a conditional

expectation (Φ∗)∗ : M∗∗ → N . Then we have the composition

N ↪→M∗∗
(Φ∗)∗−−−−→ N,

which is in general not the identity on N .

Assume we have a lifting π1 : N →M∗∗ of N induced from (Φ∗)∗. Then we will have that

NL2(N)N ≺ π1(N)L2(M∗∗)π1(N). (4.4.2)

Since the map Φ preserves the identity on A, with the help of local reflexivity, we have in particular

AL2(N)A ≺ AL2(M∗∗)A ≺ AL2(M)A.

But in general we cannot fix the position of N in M∗∗, and hence we cannot replace π1(N) by N

in (4.4.2).

For a specific counter example for A − N correspondence, let us come back to the setting A =

C∗λFn+1 and M = LFn+1⊕B(Hϕ), and let N = LFn+1⊕Mϕ, with Mϕ in the proof of Proposition 4.4.4.

Then we have that

L2(M) = AL2(Fn+1)LFn+1
⊕2 AL2(B(Hϕ))Mϕ

,

L2(N) = AL2(Fn+1)LFn+1
⊕2 AL2(Mϕ)Mϕ

.
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Applying the projection on the second component, then (1) implies that

AL2(Mϕ)Mϕ
≺ AL2(B(Hϕ))Mϕ

,

which implies that Mϕ is injective. This is the conclusion of the Swap Lemma, and hence leads to a

contradiction as in the proof of Proposition 4.4.4.

A similar proof will work for (3) 6⇒ (2), by replacing L2(M)π1(N) by `2(L2(M)πi(N)), with πi as

π1 constructed above.

By observing the issue of different positions, we have the following proposition.

Proposition 4.4.12. Let A be a C∗-subalgebra of a von Neumann algebra M , with N = A′′ ∩M .

Then the following statements are equivalent.

1. There exists a u.c.p. Φ : M → N , such that Φ|A = idA.

2. There exists a lifting π1 : N →M∗∗, such that AL2(N)N ≺ AL2(M∗∗)π1(N).

Proof. The implication (1)⇒ (2) follows from (4.4.2) in above remark.

Suppose we have (2). By Proposition 4.4.10, there exists a map ψ : M∗∗ → π1(N). Composing

with π−1
1 , we have a map

Ψ : M∗∗
ψ−→ π1(N)

π−1
1−−→ N.

It is easy to see that Ψ|A = idA. Now let Φ = Ψ|M , and we have the desired result.

Remark 4.4.13. If in addition we have an automophism θ on M∗∗, such that θ(π1(N)) = N , and

θ|A = idA, then we have the implication (3)⇒ (1) in Proposition 4.4.10.

Now let us summarize all the implications above.

Theorem 4.4.14. Let A ⊂ N = A′′ ⊂M . Consider the following statements:

1. A is relatively weakly injective in M .

2. There exists a u.c.p. Φ : M → N , such that Φ|A = idA;

3. There exists a net of normal u.c.p. ϕi : M → N , such that ϕi(x)→ x σ-weakly for x ∈ A;

4. AL2(N)N ≺ AL2(M)N ;

5. there exists a norm one projection Φ : M → N .
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Then we have (5) ⇒ (2) and (3); (1) ⇒ (2); and (4) ⇒ (3) ⇒ (2). Also (2) 6⇒ (4); (1) 6⇒ (5); and

(3) 6⇒ (5).
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Chapter 5

Construction of Many Tensor
Norms

Tensor norms on C∗-algebras have been intensively studied by Effros, Lance, Connes, and Kirchberg,

as a part of noncommutative analogue of Grothendieck’s program. It turns out to be particularly

important for the investigation of different C∗-norms on tensor products of C∗-algebras and the analysis

of approximation properties such as nuclearity and injectivity.

Let A and B be C∗-algebras. It is always possible to put a C∗-norm on the algebraic tensor product

A ⊗ B. For example, the spatial (or minimal) tensor product norm ‖ · ‖min and the maximal tensor

product ‖ · ‖max are always C∗-norms on A⊗B. As the names suggest, the spatial tensor norm is the

smallest C∗-norm one can place on A⊗B, and the maximal is the largest. In general these norms do

not agree. The C∗-algebra A is said to be nuclear if A⊗B admits a unique C∗-norm for all choices of

C∗-algebras B, or equivalently, if ‖ · ‖min = ‖ · ‖max on A⊗B for every C∗-algebra B. In 1995, Junge

and Pisier [JP95] discovered that the min and max norm do not coincide on B(H)⊗ B(H). However,

we have very limited ways of contructing norms on tensor products. Recently in [OP14], Ozawa and

Pisier have demonstrated that B(H)⊗ B(H) admits 2ℵ0 number of norms.

In this chapter, we find a simple mechanism to construct many norms on some tensor products as

follows. The idea is the contruction of induced norm from the subalgebra structure inspired by the

work in Chapter 3. The main theorem is the following:

Theorem 5.0.15. For a unital separable C∗-algebra A which does not have the weak expectation

property, there are 2ℵ0 number of distinct norms on the following tensor product:

1. A⊗N ⊗ Aop, where A⊗N is the countably infinite tensor product of A completed in min-tensor

norm;

2. (∗N(A,ϕ))⊗Aop, where ∗N(A,ϕ) is the reduced free product of infinite many A’s with respect to

the faithful state ϕ;

3. c0(A)⊗Aop;
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4. C([0, 1], A) ⊗ Aop, where C([0, 1], A) is the C∗-algebra of continuous functions on [0, 1] with

values in A.

As a corollary for the free product case, if we assume that the Connes embedding problem [Ki93]

has a negative answer, then C∗F∞ ⊗ C∗F∞, not only admits different min and max norms, but also

2ℵ0 distinct C∗-norms. Also for the case of the continuous functions algebra, we apply the result to

the reduced group C∗-algebra and discover that if a discrete group Γ is not amenable, then there are

2ℵ0 number of distinct norms on C∗λ(Z×Γ)⊗C∗λΓ. We conjecture that the Z copies are not necessary.

This conjecture would cover the result in [Wie], where Wiersma shows that if Γ contains a copy of

the free group, then C∗λΓ⊗ C∗λΓ admits 2ℵ0 distinct norms.

By duality, we can construct norms from the quotient map q : C∗F∞ → A. We show that for

C∗-algebras A and B such that A ⊗min B 6= A ⊗max B, there are 2ℵ0 distinct norms on A ⊗ B⊗N,

A⊗ (∗N(B,ϕ)), A⊗ c0(B), and A⊗ C([0, 1], B). The construction can also be applied to the case of

von Neumann algebra N with A⊗min N 6= A⊗nor N .

Finally, we construct norms from the subalgebra-quotient structure. We show that if there exists

a unital separable C∗-algebra A which is not QWEP, then there are 2ℵ0 distinct norms on A⊗Aop⊗N,

A⊗ (∗N(Aop, ϕ)), A⊗ c0(Aop), and A⊗ C([0, 1], Aop).

5.1 Application to C∗-norms

In this section, we will discuss some application of our tensor norm maxD constructed in Chapter 3,

to C∗-norms. We will follow the approach in [OP14] to construct norms on A⊗B for C∗-algebras A

and B.

Let E be a n-dimensional subspace in B, and C∗〈E〉 be the separable unital C∗-subalgeba of

B generated by E, which contains E completely isometrically. For free group of countably infinite

generators F∞, we have a quotient map C∗F∞ → B. Let q : C∗〈E〉 ∗ C∗F∞ → B denote the free

product of the inclusion C∗〈E〉 ⊂ B and the quotient map C∗F∞ → B, and let I = ker(q), so that

we have B ' (C∗〈E〉 ∗ C∗F∞)/I. Following [OP14], let

A⊗
E
B =

A⊗min (C∗〈E〉 ∗ C∗F∞)

A⊗min I
. (5.1.1)

Similarly, we can construct a new norm using the maxD1 norm defined in Chapter 3. Recall that

for a universal inclusion A ⊂ L(HuD), the maxD1 norm is the induced tensor norm from the inclusion
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A⊗ C ⊂ L(HuD)⊗max C. Now we define

A ⊗
D,E

B =
A⊗maxD1

(C∗〈E〉 ∗ C∗F∞)

A⊗maxD1
I

. (5.1.2)

By their constructions, it is easy to see the following continuous maps

A ⊗
max

B → A ⊗
D,E

B → A⊗
E
B → A ⊗

min
B.

The goal of this section is to determine the conditions which distinguish the above norms.

We will follow the notations in [OP14]. Let us first recall the operator space duality F ∗ ⊗min E ⊂

CB(F,E) isometrically (see Theorem B.13 in [BrOz]). This gives us a correspondence between a

tensor x =
∑
k f
∗
k ⊗ ek ∈ F ∗ ⊗ E, and a map ϕx : F → E given by ϕx(f) =

∑
k f
∗
k (f)ek, with

‖x‖min = ‖ϕx‖cb. For finite dimensional operator space E, we denote by tE the “identity” element in

E∗ ⊗ E. Note that ‖tE‖min = 1 and that any norm of tE is independent of embeddings E∗ ↪→ B(`2)

and E ↪→ B(`2).

For any n ∈ N, let OSn denote the metric space of all n-dimensional operator spaces, equipped

with the completely bounded Banach-Mazur distance. Note that by [JP95], OSn is non-separable for

n ≥ 3. If A is a separable C∗-algebra, then the set OSn(A) of all n-dimensional operator subspaces

of A is a separable subset of OSn.

The first lemma will help us distinguish ‖ · ‖E,D and ‖ · ‖min.

Lemma 5.1.1. Let E and F be subspaces of C∗-algebra B, and E∗, F ∗ be subspaces of C∗-algebra A.

Then ‖tF ‖E,D ≥ dcb(F,OSn(C∗F∞)), where dcb(F,OSn(C∗F∞)) = inf{dcb(F,G) | G ∈ OSn(C∗F∞)}.

Proof. By their construction, we have the following diagram

A ⊗
maxD1

(C∗〈E〉 ∗ C∗F∞)

q

��

� � // L(HuD) ⊗
max

(C∗〈E〉 ∗ C∗F∞) L(HuD) ⊗
max

C∗F∞
πoo

� _

ι

��

� _

ι

��
A ⊗
E,D

B L(HuD) ⊗
min

C∗F∞

where π is induced from a quotient map C∗F∞ → C∗〈E〉 ∗ C∗F∞, and ι is a continuous inclusion.

Note that for finite dimensional F ∗ ⊂ A and F ⊂ B, we can lift F to a subspace G ⊂ C∗〈E〉∗C∗F∞,

and then a G̃ ⊂ C∗F∞. Therefore the identity map tF on F ∗ ⊗ F ⊂ A ⊗E,D B admits a lifting
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ξ ∈ F ∗ ⊗ G̃ ⊂ L(HuD) ⊗min C
∗F∞ which corresponds to a map α : F → G̃. Hence we have a

factorization

F
α−→ G̃

q◦π−→ B,

such that the composition is the inclusion F ⊂ B. Therefore the image α(F ) in G̃ is isomorphic to F .

Hence we have

tF : F // α(F )� _

��

// F

C∗F∞

and therefore, ‖tF ‖E,D ≥ dcb(F,OSn(C∗F∞)).

The next lemma will help us distinguish ‖ · ‖E,D and ‖ · ‖max.

Lemma 5.1.2. Let A ⊂ L(HuD) be the universal representation of A. Also let π be a surjective u.c.p.

from B1 to B with kernal I, such that (A ⊗maxD1
B1)/(A ⊗maxD1

I) ' A ⊗max B. If there exists a

surjective completely positive map σ : B → Aop, then A has the DWEP1.

Proof. From the assumptions, we have the following diagram

A ⊗
maxD1

B1

� _

��

// A ⊗
max

B // A ⊗
max

Aop // B(L2(A∗∗))

L(HuD)⊗max B1

22

By Arveson’s extension theorem, there exists a u.c.p. map Φ : L(HuD) ⊗max B1 → B(L2(A∗∗)).

Applying the Trick, we obtain a u.c.p. map φ : L(HuD) → A∗∗, which is identity on A, and hence A

has the DWEP1.

Now we are ready to give the conditions which distinguish the norms.

Theorem 5.1.3. Consider the four norms on A⊗B

A ⊗
min

B 6=
(a)

A⊗
E
B 6=

(b)

A ⊗
D,E

B 6=
(c)

A ⊗
max

B.

The strict inequality holds for

(a), if there exists n-dimensional subspaces F ∗ ⊂ A and F ⊂ B, such that F 6∈ OSn(C∗〈E〉∗C∗F∞);
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(b), if E 6∈ OSn(C∗F∞);

(c), if there exists a surjective u.c.p. B → Aop, and A does not have the DWEP1.

Moreover, for n-dimensional subspaces E, F in B, and E∗, F ∗ in A, we have A⊗D,E B 6= A⊗F B, if

F 6∈ OSn(C∗F∞). Therefore A⊗D,E B gives us a new norm on A⊗B, distinct from the continuum

norms constructed in [OP14].

Proof. (a) is proved in [OP14]. Indeed, if such F and F ∗ exist, then the identity map tF on F ∗⊗F ⊂

A ⊗min B has norm 1. On the other hand, notice that the norm of tF in A ⊗E B is greater than 1.

Indeed if ‖tF ‖E = 1, then by the construction of A⊗EB, it lifts to an element ξ ∈ F ∗⊗(C∗〈E〉∗C∗F∞)

with ‖ξ‖min = 1. This corresponds to a completely isometric mapping F → C∗〈E〉 ∗ C∗F∞, showing

that F is completely isometric to a subspace of C∗〈E〉 ∗ C∗F∞, which contradicts the condition

F 6∈ OSn(C∗〈E〉 ∗ C∗F∞). Hence ‖tF ‖E > ‖tF ‖min = 1.

(b) By Lemma 5.1.1, ‖tE‖E,D ≥ dcb(E,OSn(C∗F∞)). If E 6∈ OSn(C∗F∞), then we have

dcb(E,OSn(C∗F∞)) > 1, and so is ‖tE‖E,D. Therefore ‖tE‖E,D > ‖tE‖E = 1.

(c) Apply Lemma 5.1.2 to B1 = C∗〈E〉 ∗ C∗F∞. Then by the construction we have A ⊗D,E B =

(A ⊗maxD1
B1)/(A ⊗maxD1

I). If A ⊗D,E B = A ⊗max B, then by Lemma 5.1.2, A has the DWEP1,

which contradicts the condition.

Moreover, similar to the proof of (b), Lemma 5.1.1 shows that A ⊗D,E B 6= A ⊗F B, if F 6∈

OSn(C∗F∞).

Now we will construct C∗-algebras A and B giving a concrete example with the above distinct

norms. Our goal is to construct a C∗-algebra A such that A ' Aop without DWEP1, and let B = A.

Recall that for operator spaces E and F , C∗〈E〉 ∗ C∗〈F 〉 ' C∗〈E ⊗h F 〉, where E ⊗h F is the

Haagerup tensor product, and also that C∗〈Eop〉 ' C∗〈E〉op.

Lemma 5.1.4. Let C = C∗〈E ⊗h Eop〉. Then C ' Cop.

Proof. Let π : C∗F∞ → C∗〈E〉 be the quotient map, then so is πop : C∗Fop
∞ → C∗〈E〉op. Then we

have a quotient map C∗F∞ ∗C∗Fop
∞ → C∗〈E〉∗C∗〈E〉op, which maps the unitaries to unitaries. Notice
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that for I the index set of F∞, we have the following isomorphism given by

C∗F∞ ∗ C∗Fop
∞ ' C∗FI×I ' (C∗FI×I)op

gi ∗ 1 7−→ 1× g−1
i 7−→ (1× gi)op

1 ∗ hi 7−→ h−1
i × 1 7−→ (hi × 1)op

Let π(gi) = x and πop(hi) = yop. Define the map C∗〈E〉 ∗ C∗〈E〉op → (C∗〈E〉 ∗ C∗〈E〉op)op, by

x ∗ 1 → (1 ∗ xop)op, and 1 ∗ yop → (y ∗ 1)op. Then it is easy to check that this is an isomorphism

following from the isomorphism C∗F∞ ∗ C∗Fop
∞ → (C∗FI×I)op.

Now we are ready to construct the example. For n-dimensional operator spaces E and F satisfying

the conditions (a) and (b) in Theorem 5.1.3, let

D = C∗〈(E ⊕ E∗ ⊕ F ⊕ F ∗)⊗h (E ⊕ E∗ ⊕ F ⊕ F ∗)op〉,

where the direct sum is in `∞. Then by Lemma 5.1.4, D ' Dop.

Let A = D ⊗min C
∗
λF2. Then we have

Aop = (D ⊗
min

C∗λF2)op ' Dop ⊗
min

C∗λF
op
2 ' D ⊗

min
C∗λF2 = A.

Let B = A, and hence we have a surjective u.c.p. B → Aop. Also since C∗λF2 does not have the WEP,

the faithful representation for C∗λF2 ⊂ B(H) induces an inclusion A = D ⊗min C
∗
λF2 ↪→ D ⊗min B(H)

which is not r.w.i.. Notice that this is not equivalent to DWEP. However if we construct the maxD

norm from the inclusion A ⊆ D ⊗min B(H) instead of A ⊆ L(HuD), we will have the same conclusion

that the four norms are distinct.

Corollary 5.1.5. Let D be as above, and A = D ⊗min C
∗
λF2. For a faithful representation C∗λF2 ⊂

B(H), define the maxD norm on A ⊗ C to be the tensor norm induced from the inclusion A ⊗ C ⊆

(D ⊗min B(H))⊗max C. Let B = A. Define the quotient norms A⊗E B as in (5.1.1) and A⊗D,E B

as in (5.1.2) with the new maxD norm as follows

A ⊗
D,E

B =
A⊗maxD (C∗〈E〉 ∗ C∗F∞)

A⊗maxD I
.
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Then we have the following strict norms

A ⊗
min

B 6= A⊗
E
B 6= A ⊗

D,E
B 6= A ⊗

max
B.

5.2 Construction of norms from subalgebras

Lemma 5.2.1. Let A and B be separable C∗-algebras. Then there are at most 2ℵ0 number of distinct

norms on A⊗B.

Proof. For an arbitrary tensor norm ‖ · ‖α on A ⊗ B, by the universal property of the max-tensor

product, there exists a ∗-homomorphism qα : A ⊗max B → A ⊗α B. Let X ⊂ A ⊗ B be a countable

dense subset with respect to the max-tensor norm. For tensor norms ‖ · ‖α and ‖ · ‖β on A ⊗ B,

qα(x) = qβ(x) for any x ∈ X implies that ‖ · ‖α = ‖ · ‖β . This gives rise to an injective map from the

set of tensor norms to the set of functions from X to R. Notice that the later has the cardinality of

continuum, and hence we have the disired result.

From now on, C∗-algebras are assumed to be unital and separable throughout the paper.

Theorem 5.2.2. Suppose that A is a unital subalgebra of C∗-algebra B, which is not r.w.i. in B. Let

A⊗N be the tensor product A⊗ A · · · ⊗ A of countable copies of A, completed in ‖ · ‖min norm. Then

there are 2ℵ0 number of distinct norms on A⊗N ⊗Aop.

Proof. It is clear that for j ∈ J , there is a natural ∗-homomorphism πj : A → A⊗N, defined as

πj(a) = 1⊗ · · · ⊗ a⊗ · · · ⊗ 1 on the j-th component of A⊗N.

For each subset J ⊂ N, define the algebra DJ = D⊗Nj , closed in the min-norm, where

Dj =


A if j ∈ J ;

B if j 6∈ J.
(5.2.1)

Then for the inclusion ι : A ↪→ B and a faithful state ϕ on B, we can define the ∗-homomorphism

ΘJ = ⊗θj : A⊗N → DJ by

θj =


idA if j ∈ J ;

ι if j 6∈ J.

and ϕj = ϕ⊗ · · · ⊗ id⊗ · · · ⊗ ϕ, where the identity is on the j-th component.
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Now for each J ⊂ N, we define the (J,max)-norm to be the closure of (ΘJ ⊗ id)(A⊗N ⊗ Aop) in

DJ ⊗maxA
op with respect to the max-tensor norm, and we regard A⊗N⊗J,maxA

op as a C∗-subalgebra

in DJ ⊗max A
op. We claim that for different subset J and J ′, the norms are different, and hence we

have 2ℵ0 number of distinct norms on A⊗N ⊗Aop.

Without loss of generality, let j ∈ J \ J ′, we have maps

A⊗Aop πj⊗id−−−−→ A⊗N ⊗J,max A
op ΘJ⊗id−−−−→ DJ ⊗max A

op ϕj⊗id−−−−→ A⊗max A
op → B(Hu),

where Hu is the universal representation of A.

Suppose that A⊗N ⊗J,max A
op = A⊗N ⊗J′,max A

op. We can apply Arveson’s extention theorem to

A⊗N ⊗J′,max A
op ⊂ DJ′ ⊗max A

op. This yields a u.c.p. map Φ : DJ ⊗max A
op → B(H). Notice that

Φ|πj(B)⊗1 = ϕj ⊗ id |πj(A)⊗1 ⊂ A∗∗. Define a map T : B → A∗∗ by T (b) = Φ ◦ (πj(b)⊗ 1) for b ∈ B.

It is easy to see that it perserves the identity on A, which contradicts the assumption that A is not

r.w.i. in B.

Remark 5.2.3. The core of the above proof is referred as The Trick by Kirchberg [Ki93] (see more

details in [BrOz] Prop. 3.6.5.). If we define the (max,B)-norm on A ⊗ C such that the inclusion

A⊗max,B C ⊂ A⊗max B is injective, then the r.w.i. property of the inclusion A ⊂ B is equivalent to

say A⊗max,B C = A⊗max C for any C∗-algebra C. Therefore for j ∈ J and j′ ∈ J ′, we have that

A⊗max,B A
op ⊂ B ⊗max A

op πj⊗id−−−−→ DJ ⊗max A
op ϕj′⊗id
−−−−→ A⊗max A

op,

which contradicts the assumption that A is not r.w.i. in B.

Our method can be applied more generally. Fix a unital inclusion A ⊂ B. Assume Ã is a C∗-

algebra contructed from countably infinite copies of A, such that for j ∈ N, there exists a component

map πj : A→ Ã. Accordingly suppose we have B̃ and πj : B → B̃, such that the induced map from

Ã to B̃ is injective and the following diagram commutes:

A
� � //

πj
��

B

πj
��

Ã
� � // B̃

For a subset J ⊂ N, define DJ componentwise by Dj , compatible with the construction of Ã from
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A and the component map πj , such that Dj = A if j ∈ J , and Dj = B if j 6∈ J , i.e., the following

diagram commutes:

A //

πj

��

Dj
//

πj

��

B

πj

��
Ã
� � // DJ

� � // B̃

Moreover, we have a c.p. subunital map ϕj : DJ → Dj such that ϕj ◦ πj |Dj = idDj .

As an illustration of such conditions, the min-tensor product A⊗N and B⊗N can play the role of Ã

and B̃ respectively. Define DJ = D⊗Nj , where Dj are as in (5.2.1). Hence we have A⊗N ⊂ DJ ⊂ B⊗N,

with component maps πj for each j ∈ N. Another example is the reduced free product with respect

to a faithful state ϕ on B. By [VDN] we have injective inclusions ∗N(A,ϕ) ⊂ ∗j∈N(Dj , ϕ) ⊂ ∗N(A,ϕ).

For a C∗-algebra C, we can define the J-norm on Ã ⊗ C, which is closed in max-norm as a

subalgebra in DJ ⊗max C, namely

Ã⊗J C ⊂ DJ ⊗max C.

Assume that the inclusion A ⊂ B is not r.w.i. and C admits Aop as a quotient, i.e. there is a u.c.p.

map from C onto Aop. Then for each different subset J and J ′, we have different J and J ′-norms on

Ã⊗ C by Remark 5.2.3.

Now we can apply our construction in the following situations.

Proposition 5.2.4. Suppose that A is a unital subalgebra of C∗-algebra B, which is not r.w.i. in

B, and C is a C∗-algebra which admits Aop as a quotient. Then there are 2ℵ0 distinct norms on the

following C∗-algebras:

1. ∗N(A,ϕ) ⊗ C, where ϕ is a faithful state on B, and ∗N(A,ϕ) is the reduced free product of

countable many A’s associated with ϕ.

2. c0(A)⊗ C.

3. C([0, 1], A) ⊗ C, where C([0, 1], A) is the C∗-algebra of continuous functions on interval [0, 1]

with values in A.

Proof. (1). For J ⊂ N, let DJ = ∗j∈N(Dj , ϕ), where Dj = A if j ∈ J , and Dj = B if j 6∈ J . By

[VDN], we have injective inclusions ∗N(A,ϕ) ⊂ ∗j∈N(Dj , ϕ) ⊂ ∗N(B,ϕ).

Now define the J-norm on ∗N(A,ϕ)⊗ C from the inclusion of algebraic tensor product such that

(∗N(A,ϕ))⊗J C ⊂ (∗j∈N(Dj , ϕ))⊗max C.
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This allows us to track the j-th position as in Theorem 5.2.2 and hence we find continuum number of

distinct norms.

(2). We view that c0(A) as the c0-direct sum of A. For J ∈ N, let DJ = ⊕j∈NDj , where Dj = A

if j ∈ J , and Dj = B if j 6∈ J . Define the J-norm on c0(A)⊗C from the inclusion of algebraic tensor

product such that

c0(A)⊗J C ⊂ (⊕Dj)⊗max C,

where Dj = A if j ∈ J , and Dj = B if j 6∈ J . Moreover, we have the component maps πj , and

conditional expectations ϕj : ∗j∈N(Dj , ϕ) → (Dj , ϕ). By tracking the j-th component, we have the

desired result.

(3). Let 0 ≤ t1 < t2 < · · · < tj < tj+1 < · · · < 1 be a sequence in [0, 1], and sj ∈ (tj , tj+1) be the

midpoint of the interval. For J ⊂ N, define the algebra DJ as

DJ = {f : [0, 1]→ B | f(tj) ∈ A, ∀j ∈ N; f(s) ∈ A, ∀j ∈ J and tj < s < tj+1}.

Then we have an evaluation map ev1 such that

DJ
ev1−−→ `∞(B)

f 7→ (f(sj))j∈N

Now let D̃J = Π∞j=1Dj , with Dj = A for j ∈ J , and Dj = B for j 6∈ J . The map ev1 admits a c.p.

lifting v such that

D̃J
v−→ DJ

(xj)j∈N 7→
∑
j∈N

xjgj

where gj ∈ C[0, 1] with supp gj ⊂ (tj , tj+1), gj(sj) = 1, and
∑
j∈N gj(s) = 1. It is easy to verify that

DJ is a C∗-algebra.

Now we define the J-norm as

C([0, 1], A)⊗J C ⊂ DJ ⊗max C.

Therefore we have component maps πj : A⊗C → C([0, 1], A)⊗J C such that πj(a⊗ c) = gja⊗ c, and
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component conditional expectation ϕj : C([0, 1], A)⊗J C → A⊗maxC as ϕj(f ⊗ c) = f(sj)c. The rest

of the proof follows as in Theorem 5.2.2.

As an application of the first statement in Proposition 5.2.4, we consider the tensor norms on

C∗F∞⊗C∗F∞. The QWEP conjecture [Ki93] says that all C∗-algebras are QWEP, which is equivalent

to the fact that C∗F∞ has the WEP, or equivalently C∗F∞ ⊗min C
∗F∞ = C∗F∞ ⊗max C

∗F∞. Now if

the QWEP conjecture were not true, then we would have not only two, but a continuum number of

disctint norms on C∗F∞ ⊗ C∗F∞.

Corollary 5.2.5. If the QWEP conjecture has a negative answer, then there are 2ℵ0 number of

distinct norms on C∗F∞ ⊗ C∗F∞.

Proof. We have C∗F∞ ' C∗FN×N ' ∗NC∗FN. If the QWEP conjecture has a negative answer, then

C∗FN is not r.w.i. in B(H). By Proposition 5.2.4, we can construct continuum number of disctinct

norms on C∗FN ⊗ C∗FN.

For an application of the second statement, we consider the case of group C∗-algebras. Recall that

for a discrete group Γ, the reduced group C∗-algebra C∗λΓ has the WEP if and only if Γ is amenable

(see [BrOz], Prop. 3.6.9.).

Corollary 5.2.6. Suppose Γ is a non-amenable discrete group. Then C∗λ(Γ × Z) ⊗ C∗λΓ admits 2ℵ0

number of distinct norms.

Proof. Notice that C∗λ(Γ×Z) ' C(T, C∗λΓ). Then Statement (2) in Corollary 5.2.4 yields the assertion.

The Corollary 5.2.6 is related to Wiersma’s result in [Wie] which finds a continuum number of

norms on C∗λΓ1⊗C∗λΓ2, if Γ1 and Γ2 contain some free group. We conjecture that the Z-copies in the

Corollary 5.2.6 are not necessary, namely C∗λΓ ⊗ C∗λΓ admits 2ℵ0 different norms, whenever Γ is not

amenable. This would cover Wiersma’s result.

5.3 Constructions of norms from quotients

In the previous section, the main idea is to use the non-relatively weak injectivity of an inclusion

A ⊂ B, and construct normed copies either from the max norm or from the max-induced norms on

subalgebras. In this section, we will construct the norms from quotients.
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Theorem 5.3.1. For C∗-algebras A and B, such that A⊗min B 6= A⊗max B, there are a continuum

number of distinct norms on A ⊗ B⊗N, where B⊗N is the tensor product of countably infinite copies

of B completed in the min-norm.

In order to construct a norm for each subset J ⊂ N, we first consider the quotient map. For any

unital C∗-algebra A, there exists a quotient map q : C∗F∞ → A. This quotient map q induces u.c.p.

maps Qmax : C∗F∞ ⊗max B → A⊗max B and Qmin : C∗F∞ ⊗max B → A⊗min B. Let Imax and Imin

be the kernels of Qmax and Qmin respectively. For each i ∈ N, we have a natural ∗-homomorphism

πi : B → B⊗N, such that πi(b) = 1⊗ 1⊗ · · · ⊗ b⊗ · · · ⊗ 1 on the i-th component. Now for each subset

J ⊂ N, let

Ij =


Imax if j ∈ J ;

Imin if j 6∈ J.
(5.3.1)

and let IJ be the ideal in C∗F∞ ⊗max B
⊗N generated by 1⊗ πj(Ij) for all j ∈ N. Now we define the

J-norm on A⊗B⊗N to be the induced quotient norm as

A⊗J B⊗N =
C∗F∞ ⊗max B

⊗N

IJ
.

We will show that each different subset J ⊂ N gives rise to a dinstint J-norm.

Lemma 5.3.2. Let ϕ be a faithful state on B and Ej be the conditional expection from C∗F∞⊗maxB
⊗N

to C∗F∞ ⊗max B, such that Ej = idC∗F∞ ⊗ϕ⊗ · · · ⊗ idB ⊗ · · · ⊗ ϕ, where idB is on the j-th position

in B⊗N. Then we have the following:

(a) For j ∈ J , the conditional expectation Ej on C∗F∞⊗maxB
⊗N induces a well-defined u.c.p. map

Êj on A⊗J B⊗N such that the following diagram commutes:

C∗F∞ ⊗max B
⊗N Ej //

��

C∗F∞ ⊗max B

Qmax

��
A⊗J B⊗N

Êj // A⊗max B

(b) The map idC∗F∞ ⊗πj on C∗F∞ ⊗max B induces a continuous map π̂j such that for j ∈ J , the

following composition is the identity:

A⊗max B
π̂j−→ A⊗J B⊗N

Êj−−→ A⊗max B;
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and for j 6∈ J , the following composition is the identity:

A⊗min B
π̂j−→ A⊗J B⊗N

Êj−−→ A⊗min B.

Proof. (a) Notice that kerQmax ⊂ kerQmin, and hence it suffices to show that Êj is well defined from

A⊗J B⊗N to A⊗maxB, and the digram commutes for Qmax. We claim that IJ ⊂ ker(Qmax ◦Ej), and

therefore Êj is well defined.

Indeed, we have the commuting diagram

C∗F∞ ⊗max B

��

id⊗ϕ // C∗F∞
q

��
A⊗min B

id⊗ϕ // A

Hence for z ∈ Imin, id⊗ϕ(z) might not be 0, but we have

inf
α∈ker q

‖α · (id⊗ϕ)(z)‖ = 0. (5.3.2)

Let Îi be the ideal generated by πi(Ii). This means Îi = (C∗F∞ ⊗max B
⊗N) · (id⊗πi)(Ii) ·

(C∗F∞⊗maxB
⊗N), and IJ =

∑
i∈N Îi. Let z =

∑
k ak⊗ bk ∈ Ii, and T = 1C∗F∞ ⊗T1⊗· · ·⊗Tj⊗· · · ∈

C∗F∞ ⊗max B
⊗N. Then elements in IJ can be written as combinations of zj =

∑
k ak ⊗ T1 ⊗ · · · ⊗

Tj−1 ⊗ bk ⊗ Tj+1 ⊗ · · · .

For i 6= j, let Zj = Ej(zi). Then Zj =
∑
k akϕ(bk)Πr 6=jϕ(Tr)Tj , and therefore by (5.3.2), there

exists an α such that ‖(α ⊗ id)Zj‖ < ε. Notice that kerQmax = ker q ⊗max B, and hence we have

α ⊗ id ∈ kerQmax. This implies that Qmax((α ⊗ id)Zj) = Qmax(Zj). Therefore ‖Qmax(Zj)‖ =

‖Qmax((α⊗ id)Zj)‖ < ε.

For i = j, we have Zj =
∑
k ak ⊗ bkΠr 6=jϕ(Tr), and hence Qmax(Zj) = 0.

(b) We will only show the max-case. The min-case is similar. Let γ ∈ kerQmax ⊂ C∗F∞ ⊗max

B. Since IJ is the kernel of the quotient map from C∗F∞ ⊗max B
⊗N to A ⊗J B⊗N, we have that

(id⊗πj)(γ) ∈ Îj ⊂ IJ . Therefore the induced map on A ⊗max B is well defined and the following

diagram commutes:

C∗F∞ ⊗max B
id⊗πj//

��

C∗F∞ ⊗max B⊗N

��
A⊗max B

π̂j // A⊗J B⊗N
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In order to the identity composition, let η =
∑
k ak ⊗ bk ∈ A⊗m B with ‖η‖max < 1. Then there

exists ξ ∈ C∗F∞ such that Qmax(ξ) = η. From (a), we have that Ej ◦ (id⊗πj)(ξ) = ξ, and hence

Qmax ◦ Ej ◦ (id⊗πj)(ξ) = η. Since the diagram commutes, we have Êj ◦ π̂j(η) = η.

Now we are ready to prove the main theorem of this section.

Proof of Theorem 5.3.1. For different subset J and J ′ in N. Let j ∈ J ′ \ J . By (b) in Lemma 5.3.2,

we have

A⊗min B
π̂j−→ A⊗J B⊗N = A⊗J′ B⊗N

Êj−−→ A⊗max B, (5.3.3)

which contradicts the assumption that A⊗min B 6= A⊗max B.

Similarly as in the previous section, the construction on infinite tensors can be modified to the

other cases of infinite copies such as the reduced free product, the c0-direct sum and the continuous

B-valued function algebra.

Proposition 5.3.3. For C∗-algebras A and B, such that A⊗minB 6= A⊗maxB, there are a continuum

number of distinct norms on the following algebras:

1. A⊗ ∗N(B,ϕ);

2. A⊗ c0(B);

3. A⊗ C([0, 1], B).

Proof. (1) follows exactly as the construction of J-norms in the case of infinite tensor product.

(2) The construction is even easier. Since direct sum and tensor product commute, we can define

the J-norm on A⊗ c0(B) from the inclusion A⊗ c0(B) ⊂ ⊕j∈N(A⊗mj B), where the mj-norm is the

min-norm if j ∈ J , and the max-norm if j 6∈ J . Hence we have well-defined component maps π̂j and

conditional expectations Êj . The result follows as in the proof of the Theorem 5.3.1.

(3) Let (ti)i∈N be an increasing sequence in [0, 1], and sj be the midpoint for interval (tj , tj+1).

For J ⊂ N, let Ij as in (5.3.1), and define

IJ = {f : [0, 1]→ C∗F∞ ⊗max B | f(s) ∈ Ij for tj < s < tj+1 and j ∈ J ; f(ti) = 0 for all i ∈ N}

Notice that C∗F∞⊗maxC([0, 1], B) ' C∗F∞⊗maxB⊗maxC[0, 1] ' C([0, 1], C∗F∞⊗maxB). Therefore

we have IJ =
∑
i∈N Ii and in particular IJ is the ideal generated by all the Ii’s in C∗F∞ ⊗max

C([0, 1], B).
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Now define the J-norm on A⊗ C([0, 1], B) such that

A⊗J C([0, 1], B) =
C∗F∞ ⊗ C([0, 1], B)

IJ
.

Let gj ∈ C[0, 1] such that g(sj) = 1 and supp gj ⊂ (tj , tf+1). Then for j 6∈ J , gj induces a continuous

u.c.p. map π̂j : A ⊗min B → A ⊗J C([0, 1], B) which maps a ⊗ b ∈ A ⊗m B to a ⊗ bgj . For j ∈ J ,

there exists an evaluation map ev1j : C([0, 1], B)→ B, which maps f ⊗ b to f(sj)b. Then we have the

following commuting diagram

C∗F∞ ⊗max B
id⊗πj//

��

C∗F∞ ⊗max C([0, 1], B)
id⊗ ev1j //

��

C∗F∞ ⊗max B

��
A⊗min B

π̂j // A⊗J C([0, 1], B) // A⊗max B

which contradicts the assumption.

The norm construction in Theorem 5.3.1 can be applied in the case of von Neumann algebra, where

the infinite copies of min-tensor product can be replaced by von Neuamann tensor product. we define

the J-norm on A ⊗N ⊗̄N for J ⊂ N, as a quotient from C∗F∞ ⊗nor N
⊗̄N by IJ . The right-normality

will take care of all issues of continuity. Therefore we have the following proposition:

Proposition 5.3.4. For a unital C∗-algebra A and a von Neumann algebra N such that A⊗min N 6=

A⊗nor N , there are 2ℵ0 distinct norms on A⊗N ⊗̄N.

5.4 Constructions of norms from subalgebras and quotients

Now we would like to construct many norms based on the property of being QWEP.

Remark 5.4.1. Notice that A being QWEP is equivalent to say that A is r.w.i. in B(H)∗∗. Therefore

if there exists a C∗-algebra A, which is not QWEP, we could use the non-r.w.i. pair A ⊂ B(H)∗∗ to

construct the norms as in Section 2. On the other hand, we could directly construct the norms by

other equivalent conditions, and we hope the new construction can be applied to other cases.

Recall that if a C∗-algebra is QWEP if and only if for any u.c.p. u : C∗F∞ → A, we have the

map u ⊗ id : C∗F∞ ⊗min A
op → A ⊗max A

op is continuous. Define the q-norm on A ⊗ Aop to be the
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quotient norm

A⊗q Aop =
C∗F∞ ⊗min A

op

I ⊗min Aop
.

Then the condition is equivalent to say that A⊗q Aop = A⊗max A
op.

Theorem 5.4.2. Suppose that there exists a C∗-algebra A which is not QWEP. Then there are 2ℵ0

number of distinct norms on A⊗ (Aop)
⊗N

.

Proof. Let Aop ⊂ B(H) be a faithful representation. For J ⊂ N, let the C∗-algebra DJ be the min

tensor product of Dj for j ∈ N

Dj =


A if j ∈ J ;

B(H) if j 6∈ J.

Define the J-norm on C∗F∞ ⊗ (Aop)
⊗N

to be the closure C∗F∞ ⊗J (Aop)
⊗N ⊂ C∗F∞ ⊗max DJ , and

the J-norm on A⊗ (Aop)
⊗N

to be the quotient norm

A⊗J (Aop)
⊗N

=
C∗F∞ ⊗J (Aop)

⊗N

I ⊗J (Aop)
⊗N .

Suppose for J 6= J ′, we have A ⊗J (Aop)
⊗N

= A ⊗J′ (Aop)
⊗N

. Let j ∈ J \ J ′, consider the j-th

component on both sides of the tensor algebra.

On the left hand side, since C∗F∞ ⊗J (Aop)
⊗N ⊂ C∗F∞ ⊗max DJ , and C∗F∞ ⊗max A

op is on the

j-th component, we have that

A⊗max A
op =

C∗F∞ ⊗max A
op

I ⊗max Aop
⊂ C∗F∞ ⊗J (Aop)

⊗N

I ⊗J (Aop)
⊗N = A⊗J (Aop)

⊗N
.

On the right hand side, since C∗F∞ ⊗min B(H) = C∗F∞ ⊗max B(H) by [Ki93], we have that

C∗F∞ ⊗min A
op ⊂ C∗F∞ ⊗min B(H) = C∗F∞ ⊗max B(H) ⊂ C∗F∞ ⊗max DJ′ . Therefore we have the

quotient norm

A⊗q Aop =
C∗F∞ ⊗min A

op

I ⊗min Aop
⊂ C∗F∞ ⊗J′ (Aop)

⊗N

I ⊗J′ (Aop)
⊗N = A⊗J′ (Aop)

⊗N
.

Hence we have A⊗qAop = A⊗maxA
op on the j-th component, which contradicts the assumption that

A is not QWEP.

To complete the picture, we also have similar results for the contructions from infinite copies of
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Aop. Since the proofs are similar, this will be left to the readers’ interest.

Proposition 5.4.3. Suppose there exists a C∗-algebra A, which is not QWEP. Then there are 2ℵ0

number of distinct norms on the following algebras:

1. A⊗ (∗N(Aop, ϕ));

2. A⊗ c0(Aop).

3. A⊗ C([0, 1], Aop).
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