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Abstract 

 

The innate immune system represents the first line of host defense against pathogens. Toll-like 

receptors (TLRs) are the best characterized pathogen recognition receptors (PRRs) of the innate immune 

system. TLRs detect distinct pathogen associated molecules and engage downstream intracellular 

signaling cascades eventually leading to an innate immune response. Thus, the TLR signaling pathway is 

under selective pressure from pathogens and is essential for host survival. The family Suidae (domestic 

pigs and their wild relatives) has diverged over extended evolutionary periods in diverse environments, 

suggesting that adaptation in response to endemic infectious agents may have occurred. It is therefore 

expected that the TLR signaling pathway might have played a crucial role in the survival of members of 

the family Suidae. However, the extent to which pathogen mediated selection pressures have influenced 

the evolution of family Suidae TLR signaling pathway genes is not well understood. Investigating the role 

of pathogens in the genetic variation within the TLR signaling pathway genes will indicate the critical 

role of these genes in host defense against prior and present infections.  

In this dissertation I first determined whether members of the family Suidae TLRs have evolved 

adaptively at the interspecies level. To this end, coding sequences of bacterial sensing TLR (TLR1, TLR2 

and TLR6) and viral sensing TLR (TLR3, TLR7 and TLR8) were retrieved from resequencing libraries of 

one animal representing each of the following members of the family Suidae: Sus scrofa from Europe, 

Sus scrofa from Asia, Potamochoerus larvatus, Potamochoerus porcus and Phacochoerus africanus of 

sub Saharan African origin and Sus verrucosus, Sus celebensis, Sus scebifrons, Sus barbatus and 

Babyrousa babyrussa from island Southeast Asia. Evolutionary analyses of the aligned TLR sequences 

were done using Maximum likelihood (ML) approaches in a phylogenetic framework. These analyses 

indicated that persistent positive selection pressures have acted on amino acid residues across the family 

Suidae in both bacterial and viral sensing TLRs. There were more amino acid sites under positive 

selection in bacterial sensing TLRs than their viral sensing counterparts. Lineage specific positive 

selective events, where positive selective were inferred for particular family Suidae species were 
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suggestive of species specific pathogens that are acting as selection pressures. Some of the amino acid 

residues under positive selective pressure were involved in radical amino acid substitutions and were also 

within or in close proximity to functionally important domains of the TLR proteins.  Thus, such residues 

may have disease resistance implications for the family Suidae.  

Adaptive evolution was also investigated at the intraspecies level. The European Sus scrofa (wild 

boars and domestic pigs) diverged from their Asian counterparts over 1million years ago. Distinct 

pathogen mediated selective pressures might have acted on these geographically separated groups leading 

to signatures of adaptation in host genes. To investigate whether positive selection pressures have acted 

on TLRs of Sus scrofa of European and Asian origins, coding sequences of bacterial sensing TLR (TLR1, 

TLR2 and TLR6) and viral sensing TLR (TLR3, TLR7 and TLR8) were retrieved from resequencing 

libraries of 15 wild boars and 25 domestic pigs of European origin and 5 wild boars and 22 domestic pigs 

of Asian origin. Within and between populations analyses of positive selection indicated that the TLR2 

gene was under positive selective pressure in European Sus scrofa but not in the Asian Sus scrofa. 

Specifically, the derived allele (nucleotide: A; Amino acid: Threonine) of TLR2 SNP A376G (Alanine 

126 Threonine) was under positive selection. The frequency of the derived allele was 83.33% within 

European wild boars, 98.00% within domestic pig breeds of European origin, 40.00% within Asian wild 

boars and 11.36% within Asian domestic pigs. The age of the derived allele was 163,000 years which 

roughly coincided with a time of Sus scrofa population expansion. This population expansion might have 

created an environment for pathogen transmission providing the selective force for adaptation at host 

genes.  Three dimensional crystal structure of the TLR2 protein indicated the derived allele under positive 

selection was located within the N-terminal domain of the extracellular domain where single amino acid 

substitutions are likely to affect protein function.  

TLRs act in concert with other genes in the signaling pathway to elicit innate immune response to 

invading pathogens. A key question in molecular evolution is whether parameters of signaling pathways 

have an influence on how genes evolve. The evolution of the entire TLR signaling pathway in the context 

of parameters of the pathway was therefore investigated. In particular, I investigated whether gene 
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position within TLR signaling pathway of the family Suidae have an effect on evolutionary rate of genes. 

The goal here was to determine whether genes upstream and downstream have distinct selection pressures 

acting on them and the factors responsible for such a polarity. To do this, genes within the TLR signaling 

pathway as indicated in the KEGG database were retrieved from resequencing libraries of  Sus scrofa 

from Europe, Sus scrofa from Asia, Potamochoerus larvatus, Potamochoerus porcus and Phacochoerus 

africanus of sub Saharan African origin and Sus verrucosus, Sus celebensis, Sus scebifrons, Sus barbatus 

and Babyrousa babyrussa from island Southeast Asia. After screening sequences for suitability for 

evolutionary analyses, 33 genes remained. Gene position, the number of protein-protein interactions 

(connectivity), protein length, length of 3’ untranslated region and codon bias measured as Effective 

Number of Codons (ENC) were estimated for each gene sequence alignment. Gene position was 

significantly negatively correlated with evolutionary parameters ω (dn/ds) and dn suggesting that 

downstream genes in the pathway were more selectively constrained than upstream genes. Protein length 

and connectivity were also significantly correlated with evolutionary parameters ω (dn/ds) and dn such 

that downstream genes had shorter protein lengths and were connected to more proteins. As gene position 

was also significantly correlated with protein length and connectivity, the polarity in evolutionary rate 

along the TLR signaling pathway is due to differences in protein length and connectivity between 

upstream and downstream genes within TLR signaling pathway of the family Suidae.  
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Chapter 1: General Introduction 

Immunity 

The health of vertebrates is constantly threatened by infectious pathogenic agents such as 

bacteria, viruses, parasites and fungi. Vertebrates have evolved the immune system to eliminate pathogens 

from the body. Upon encountering an infectious agent, the first line of defenses of the immune system is 

physical and chemical barriers. Physical barriers include the skin that forms an impenetrable barrier of 

epithelium to potentially infectious pathogens and mucous membranes linings of the mouth and nose. 

Chemical barriers such acidity on skin, lysozyme, gastric juice and saliva destroy infectious agents at 

body surfaces, openings and inner linings. When the physical and chemical barriers are breached by 

pathogens, the complement system, a collection of blood and cell surface proteins, named for its ability to 

complement the antibacterial properties of antibodies, can recognize and destroy the invading pathogens. 

Phagocytes such as macrophages and neutrophils can also affect the pathogens that breach the physical 

and chemical barriers by ingesting and destroying them. Macrophages and neutrophils can be attracted to 

the area of infection by chemical substances released by the pathogens. The complement system also 

marks pathogens with molecular flags for their destruction by phagocytes. These defenses collectively 

constitute the innate immune system.  

The innate immune system provides an immediate defense against pathogenic infections. Upon 

breaching the line of defense provided by the complement system and the phagocytes of the innate 

immune system, antigen specific lymphocytes target the infectious agents and persist to provide long term 

immunological memory that enables efficient response to specific pathogens in the future. This 

lymphocyte mediated response constitutes the adaptive immune system. Various antigens are detected by 

T- and B- cell receptors formed by somatic gene arrangements that create a multitude of receptor 

specificities [1]. Major Histocompatibility Complex (MHC) class I and class II molecules are cell surface 

glycoproteins that mediate the presentation of antigens to T- and B- cell receptors, and also play an 

important role in priming/triggering adaptive immune responses when the bound peptide is recognized as 
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foreign [2]. The adaptive immune system is more complex than the innate immune system and is slower 

in response usually taking days or weeks. In order to defend against an invading pathogen, the innate 

immune system must reliably discriminate between invading pathogens (non-self-antigens) and self-

molecules. This is achieved by pattern recognition receptors located on the surfaces of immune cells.  

 

Pattern recognition receptors 

PRRs are innate immune response-expressed proteins that recognize evolutionary conserved 

microbial structures known as pathogen associated molecular patterns (PAMPs) and initiate the innate 

and adaptive immune response. The PAMPs include proteoglycans, lipopolysaccharides, glycoproteins 

and nucleic acid motifs that are shared by different microorganisms. These PAMPS are critical to the 

survival of the microorganisms. PRRs are germline encoded and have been grouped into five families 

based on homology. The families include Toll-like receptors (TLRs), C-type lectin receptors (CLRs), 

cytosolic NOD-like receptors (NLRs), RIG-I-like receptors (RLRs) and AIM2-like receptors (ALRs).  

PRRs are characterized by the location of their cognate ligands into those responsible for 

extracellular derived-ligands and soluble cytosolic ligands respectively [3]. TLRs and CLRs are found at 

cell surfaces or endocytic compartments and detect microbial ligands in the extracellular space and within 

endosomes whereas NLRs, RLRs and ALRs are located within the cytoplasm and detect intracellular 

pathogens. Engagement of PAMPs by PRRs triggers intracellular signaling cascades which results in the 

expression of proinflammatory molecules. Furthermore, PRRs also detect induced-or aberrant self and 

missing self [4], indicating that PRRs mediated immune response can occur in the absence of infectious 

agents.  

An important property of PRRs is that a number of different PRRs are engaged by a given 

pathogen [5]. Thus, the different PRRs have ligands in common. Furthermore, different PRRs can 

recognize distinct PAMPs. The ability to recognize distinct PAMPs and PAMPs shared by most 

pathogens broadens the range of pathogens these receptors can detect enabling the host to deal with 

numerous infections. PRRs have other functions beyond their role in triggering immune response. They 
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may regulate cell proliferation, survival, apoptosis and tissue repair [6,7]. The TLR family is the best 

characterized PRR in terms of structure, function, ligands and the evolutionary pressure imposed by 

pathogens that they detect.   

 

Structure and ligands of TLRs 

In terms of structure, all TLRs are characterized by an extracellular domain which recognizes 

PAMPs, a transmembrane domain and Toll/interleukin receptor (TIR) domains which initiates signaling 

(Figure 1.1).  The TLR extracellular domain consists of 19 to 25 copies of a motif known as leucine-rich 

repeat (LRR). LRRs are typically made up of 20-30 amino acid residues [8], folded in beta-strands 

arranged in sheets and helices that are linked by loops [9]. The copies of consecutive LRR motifs together 

have a horseshoe shape with an interior (inner concave surfaces) parallel beta sheet and an exterior 

(convex surface) array of helices. Each LRR motif consists of a variable region and a conserved 

“LxxLxLxxNxL” region. Other hydrophobic amino acids can substitute the conserved leucine residues 

[10]. The LRR region has cysteine clusters flanking each side at their termini, denoted as LRRNT and 

LRRCT [10]. These LRRNT and LRRCT modules stabilize the protein by protecting its hydrophobic core 

from exposure to solvent [9].  

Most mammalian species have between 10 to 15 TLRs. In humans, 10 TLRs have been identified. 

TLRs can be divided into two groups based on their cellular location (Figure 1.2). TLRs (TLR1, TLR2, 

TLR4, TLR5, TLR6 and TLR10) are expressed on cell surface and recognize predominantly bacterial 

ligands and several fungal and parasite ligands (Table 1) whereas TLR3, TLR7, TLR8 and TLR9 are 

expressed within endosome and recognize single and double-stranded RNA from viruses and CpG DNA 

[3]. In addition to recognizing microbial PAMPs, TLRs also recognize endogenous ligands. Endogenous 

TLR ligands are molecules derived from host tissues or cells [11]. The TLRs can further be classified 

based on the conformation of the beta sheet. The beta sheet of  TLR3, TLR5, TLR7, TLR8 and TLR9 has 

uniform twist angles and radii throughout the entire protein [9,12]. Conversely TLR1, TLR2, TLR4, TLR6 
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and TLR10 have two structural transitions in their beta sheet and therefore their extracellular domains 

have three subdomains: N-terminal domain, central domain and C-terminal domain [9,13].  In vertebrates, 

the N-terminal domain determines PAMPs recognition specificity [14].  The border between the central 

domain and C-terminal (LRR motifs 9-12) of In TLR1 and TLR2 extracellular domains harbors ligand 

binding pockets on the convex side [15,16]. 

Some TLRs form heterodimers that bring their TIR domains together in order to recognize their 

ligands and to initiate signaling. TLR1 and TLR2 form a heterodimer to recognize triacylated lipopeptides 

whereas TLR6 and TLR2 heterodimerization recognize diacylated lipopeptides [17,18]. Similarly, TLR4 

forms a heterodimer with MD-2 to interact with lipopolysaccharide of Gram-negative bacteria [19,20]. 

TLR2 in association with TLR1 or TLR6 recognize numerous PAMPs including mycoplasma lipopeptides, 

fungal zymosan, peptidoglycan, lipopeptides and lipoproteins of gram positive bacteria [21]. 

Heterodimerization therefore broadens the spectrum of ligands TLRs recognize. Jin et al. [12] have 

undertaken crystallographic studies of TLR1-TLR2 and have proposed how TLR heterodimerization 

occurs. They indicated that ligand-induced dimerization brings the C termini of TLR1 and TLR2 close to 

each other, promoting the heterodimerization of their intracellular TIR domains and providing a scaffold 

for the recruitment of other proteins and initiation of signaling. 

 

 Origin and evolution of TLRs  

It has been hypothesized that vertebrate TLRs arose as a result of an ancient gene duplication 

event that has subsequently given rise to two large families of TLRs. Indeed, phylogenetic analysis of 

vertebrate TLRs revealed two strongly supported clusters of TLRs with one clade containing the TLR1 

family (TLR1, TLR2, TLR6 and TLR10) and another clade that included the remainder of mammalian 

TLRs [22]. These two groups arose prior to the divergence of protostomes (primitive invertebrates) and 

deuterostomes (erchinoderms and chordates) [22]. Subsequent evolution of these two gene families have 

been influenced by a complex history of gene duplication, gene conversion, positive selection and co-
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evolution [23,24]. Within avian and mammalian genomes, genes of the TLR1 gene family appear in 

tandem, suggesting successive rounds of tandem gene duplication from an ancestral gene [23]. Related 

TLR genes are also found in plants [25], indicating the ancient nature of host defense mechanism.  

Vertebrate Toll-like receptors are so named due to their homology with the Toll receptor 

originally identified in Drosophila melanogaster. In Drosophila melanogaster, the Toll receptor is 

involved in dorsal-ventral patterning and antifungal and antibacterial immune response [26–28]. The first 

TLR to be identified as an orthologue of Drosophila Toll was TLR4 [29,30] and the first hint of the 

pathogen recognition functions of TLRs was through the discovery that lipopolysaccharides responses 

were abolished in mice with spontaneous TLR4 mutations and TLR4-knock out mice [31–33]. The 

similarity of the toll and TLRs has engendered much research interest. Two evolutionary models have 

been proposed as likely explanations for this similarity; a convergent evolution, where Toll and TLR 

signaling pathways evolved independently to adapt insects and vertebrates environments to similar 

environments [34] and a divergent evolution, where Toll and TLR signaling pathways have a common 

ancestor. Of the two models, the convergent evolution has been supported by several lines of evidence 

[35]. Convergent evolution has also been hypothesized as the force behind the similarity in the innate 

immune systems of plants and animals [36].  

 

TLR signaling pathway 

Signaling pathways are systems of proteins that act in an orchestrated fashion to modulate cell 

response to external and internal stimuli. These pathways have receptors that detect stimulus and trigger a 

cascade of events where each protein in the pathway changes the conformation (usually through 

phosphorylation and dephosphorylation) of the next protein down the pathway. The final effect of the 

signaling pathway is to trigger a response such as the activation of gene transcription. 

 TLR receptors detect PAMPs and trigger signaling pathways that results in increased expression 

of multiple inflammatory genes to eliminate the invading pathogens. In terms of the TLR signaling, two 
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pathways are distinguishable based on two master adaptors (Fig 1.3). The MyD88 adaptor pathway 

(MyD88 dependent pathway) is used by all TLRs except TLR3 principally to induce the release of 

inflammatory cytokines while the TRIF adaptor dependent pathway (MyD88 independent pathway) is 

used by TLR3 and TLR4 to induce the release of type I interferon production. TLR4 therefore has the most 

complex signaling arrangement in comparison with all other TLRs.  

MyD88 has a death domain and a TIR domain. Upon ligand binding, dimerization of TLRs occurs 

leading to interactions of the TLR TIR domains and a subsequent recruitment of MyD88 through its TIR 

domain. Through interactions of the Death domains of both MyD88 and IRAK4, IRAK4 becomes 

activated. IRAK4 phosphorylates IRAK1. Phosphorylated IRAK1 in turn activates TRAF6  which then 

undergoes ubiquitination resulting in the activation of NFкB. The activated NFкB leads to the expression 

of inflammatory cytokine genes [3]. Like MyD88, the TRIF adaptor in the TRIF dependent pathway has a 

TIR domain that is recruited by the TLR3 and TLR4. TRIF then activates the downstream kinases,  TBK1 

and IKKɛ  leading to the phosphorylation and activation of IRF3 [37]. Activated IRF3 then controls the 

transcription of type I IFNS and IFN inducible genes [37]. Over activation of the TLR signaling can result 

in the onset of autoimmune and inflammatory disorders [38,39]. Thus, tight regulation of the TLR 

signaling is required.  Among the numerous mechanisms to prevent aberrant induction of cytokines are 

degradation and sequestration of signaling molecules, transcription inhibition and inhibitory signals from 

certain receptors that antagonize PRR signaling [40].    

 

Crosstalk between MyD88 dependent and independent pathways 

Given that many TLRs recognize similar pathogenic products, it is conceivable that there is 

crosstalk between their signaling pathways: the MyD88 dependent and independent pathways. Indeed, it 

has been observed that some MyD88 dependent pathway genes (Il1β, Cxcl1, Tnf ) were still induced in 

MyD88 knock-out conditions [41], indicating a likely role of the MyD88 independent pathway. The 

induction of the Il1β, Cxcl1, Tnf  genes in  MyD88 knock-out conditions are as a result of crosstalk 
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between TRIF , a MyD88 independent pathway gene to TRAF6, a MyD88 dependent pathway gene and 

between  TRIF to TAB/TAK complex also belonging to the MyD88 dependent pathway [42]. The 

interaction of  TRIF and TRAF6 to directly activate NFкB has also been demonstrated in other studies 

[43,44]. It has also been established that simultaneous stimulation of the MyD88 dependent and MyD88 

independent pathways results in a greater immune response. For example, combinatorial stimulation of 

the MyD88 dependent pathway with the synthetic ligand R848 and the MyD88 independent pathway with 

Poly I:C induced  higher cytokines [45]. Reduced transcript levels of TLR1 and TLR2 in the ileum have 

been reported for both MyD88 and TRIF deficient mice, suggestive of a crosstalk between TRIF and 

MyD88 signaling pathways in the small intestine [46]. TLR signaling therefore involve genes interacting 

with each other in both sequential process within particular pathways and a network of crosstalk between 

pathways.  

 

Single nucleotide polymorphisms within TLR signaling pathway genes 

Single nucleotide polymorphisms (SNPs) refer to single allele mutations in the genomic sequence 

of an organism. Single base substitutions (nonsynonymous nucleotide polymorphisms) in genes can 

influence its expression or the function of the protein encoded by the gene [47–49]. Genetic variability in 

TLR molecules results in differences in susceptibility to infectious and inflammatory diseases across and 

within species [14]. Both synonymous and nonsynonymous polymorphisms have been identified in the 

promoter and coding regions of several TLRs and their association with infectious diseases have been 

documented [50]. In humans, the Asp299Gly amino acid substitution in TLR4 is associated with a 

decrease in airway response to inhaled bacterial lipopolysaccharide [51] and with increased mortality in 

septic shock [52]. Polymorphisms in TLR2 and TLR4 pathways have been shown to regulate 

inflammatory response to bacterial ligands [53,54]. In wild rodents, an association between 

polymorphisms within TLR2 and Borrelia infection has been reported [55]. A SNP of swine TLR2 C406G 

is related to the prevalence of pneumonia [56]. Attempts to replicate findings on TLR polymorphisms and 
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their association with diseases have yielded variable results due to small sample sizes and the use of 

different populations. Apart from the TLRs, mutations within other genes in the TLR signaling pathway 

have been reported to result in susceptibility to diseases. A rare mutations affecting the MyD88 dependent 

pathway causes pyogenic bacteria diseases in childhood [57,58] and another rare mutation within the 

TRIF dependent pathway causes herpes simplex virus encephalitis [59,60]. Thus, genes within the TLR 

signaling pathway are under evolutionary pressure mediated by infectious disease pathogens.  

 

Evolutionary pressure on genes 

Natural selection pressures acting through climate, diets and pathogens have shaped genetic 

variation present in organisms. The response of organisms to such selective pressures results in  three 

types of natural selection;  positive selection which increases the frequency of favored alleles, purifying 

selection which eliminates detrimental alleles and balancing selection which results in diversity at a locus 

[61]. Advantageous genetic diversity at a locus can be maintained by overdominance (higher fitness of 

heterozygotes), frequency-dependent selection which refers to the situation where an allele’s effect on 

fitness varies with its frequency, fluctuating selection where selection changes in time or space and 

pleiotropy where selection on a variant that affects multiple traits [62]. Balancing selection prevent 

fixation and maintain high genetic diversity levels within the species [63].  

Positive selection has engendered more interest due to its adaptive value. Organisms carrying 

advantageous mutations are better adapted to their environment and tend to survive and reproduce. 

Positive selection has been used to identify genes putatively involved in species innovations and 

population adaptations [64–67], genes linked to disease [68–70], and sites within genes involved in 

antiviral or antibiotic resistance [71]. Positive selection can be detected for a whole protein coding gene, 

regions or codons within the gene using interspecies divergence data (variation representing substitutions 

between species) and intraspecific (within population) polymorphism data.  
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Codon based models of molecular evolution can be used to detect codons under positive selection 

in a sequence alignment from interspecies divergence data. An excess of nonsynonymous substitutions 

(dn) over synonymous substitutions (ds) at a codon sites indicates positive selection, suggesting 

replacement substitutions increase fitness [72]. Approaches based on population genetics have been used 

to infer positive selection at the intraspecies level. Geographically restricted positive selection has been 

investigated by comparing the degree of population differentiation at immune genes and putatively 

neutrally evolving loci. The theory here is that selection pressure that is geographically heterogeneous 

will result in increased differentiation at immune genes. High population differentiation, decreased 

polymorphisms between populations and expected linkage disequilibrium relative to neutral expectations 

constitutes some of the population genomic signatures of positive selection. Local adaptation at the 

molecular level occurs when alternative alleles are favored in different geographic locations. This process 

leads to low levels of nucleotide and allelic variation within population under directional selection [73] 

because frequency of alleles conferring adaptation increases.   

 

Evolutionary pressure of infectious disease agents on TLRs 

As pathogens evolve to subvert the host immune system, host immune genes also evolve in 

response. The arms race between hosts and microbial pathogens (host-parasite co-evolution) influences 

variation in the response to infectious disease agents at individuals, population, species levels and within 

higher order taxanomic units [74].  TLRs might be under positive selection due to co-evolutionary arms 

race with their microbial pathogens as they lie directly at the host-environment interface and target 

microbial molecules [75]. They may also be under purifying selection as they detect conserved molecular 

motifs. Previous studies using interspecies divergence data have inferred positive selection for codons 

within almost all TLRs investigated.  

Studies across primates and across a wider range of species (Artiodactyla, rodents, primates, 

carnivores and Lagomorphs) have inferred positive selection for codons in viral (TLR3, TLR7, TLR8 and 
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TLR9) and bacterial sensing TLRs (TLR1, TLR2, TLR4 and TLR6) [75,76]. Positive selections have been 

inferred in TLR1LA, TLR2A, TLR2B, TLR3, TLR4, TLR5 and TLR15 across seven distantly related birds’ 

species [77].  Recently, signatures of positive selection have been inferred in TLR4 and TLR7 across 

several rodent species [78] and several birds species in TLR1LA, TLR2A, TLR2B, TLR3, TLR4, 

TLR5,TLR7, TLR15 and TLR21 [79]. The following insights emerge from these previous studies. First, 

investigations on selection pressure acting on TLRs are an active area of research. Second, these studies 

suggest that positive selection has played a role in the evolution of most species TLRs. Third, the 

extracellular domain has more codons under positive selection than the transmembrane domain of TLRs. 

This is expected given that extracellular domains binds with PAMPs and the two may co-evolve while the 

transmembrane domain is involved in signaling and is therefore conserved. Furthermore, apart from the 

study of Areal et al. [76] which inferred a similar proportion of positively selected codons in both viral 

sensing and bacterial sensing TLRs, the other studies reported of more codons under positive selection in 

bacterial sensing than viral sensing TLRs, indicating that viral pathogens impose a greater selective 

constraint than their bacterial counterparts. For studies that used slightly different species within the same 

genera (Alcaide et al., 2011 and Grueber et al., 2014), some codon sites inferred to be under positive 

selection were different for both studies. These studies also used distantly related species. Studies using 

closely related species are required in order to gain new insights into how pathogens shape TLR 

evolution.   

Studies at the population level have corroborated findings at the interspecies level that TLRs have 

evolved adaptively. For example, there is a strong evidence of recent positive selection in Europeans 

TLR10-TLR1-TLR6 gene cluster with TLR1 SNP 1805G (602S) as the real target of selection (Barreiro et 

al., 2009). Interestingly, this SNP results in impairment of NFкB activation leading to the avoidance of 

excessive TLR mediated inflammatory response [70], indicating how evolutionary analysis augment 

experimental studies in determining TLR polymorphisms of clinical relevance. The adaptor protein 

MyD88 displays signatures of recent positive selection worldwide (human population in sub Saharan 

Africa, Europe and East Asia) whereas other adaptor proteins such as TRIF and TRAM  showed evidence 
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of positive selection restricted to certain populations [80]. However in comparison with TLRs, the adaptor 

proteins are under stronger selective constraints [80], reflecting the different roles of the two groups of 

proteins; the TLRs being involved in pathogen recognition and the adaptor proteins participating in 

signaling in response to infections.  

Further evidence of adaptive evolution of TLRs has been found in chicken populations.  Similar 

to the study in humans [80], TLRs were inferred to have evolved adaptively in domestic chicken 

populations whereas cytokines, mediating molecules that initiate proinflammatory signals in the immune 

system in response to pathogens had signals suggestive of balancing selection [81]. The domestication 

process in chicken populations led to higher population densities creating a conducive environment for 

pathogen spread and this could have constituted an adaptive force on chicken TLRs [81]. Intraspecies 

analysis of three subspecies of chimpanzees indicated that positive selection has targeted a limited 

number of TLRs within specific subspecies [82]. The authors inferred that TLR2 and TLR4 showed 

signals of recent positive selection in Pan troglodytes elliotii of central Africa but not in Pan troglodytes 

verus of Western African, likely due to geographical differences in pathogen distribution. Comparison of 

pigs (wild boars and domestic pigs) from different geographic locations (Europe vs Asia) indicated that 

the snp TLR4 C7485A was under positive selection [83]. However this study used a limited panel of 54 

snps and only two TLR genes (TLR2 and TLR4 among 17 other immune related genes) and might have 

excluded other snps that are likely to be under positive selection. Analysis involving more TLR genes and 

an expanded panel of snps will be necessary to understand pathogen mediated TLR evolution in wild and 

domestic pigs. It is obvious that TLRs have been shown to evolve adaptively at both the interspecies and 

population levels as a result of pathogen-mediated selective pressures. However, given that the pathogens 

differ greatly from one host species to the other, new insights on TLR evolution can be gained from other 

species that have not yet been studied to a greater extent. 
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Protein regions targeted by infectious agents mediated selection pressure 

There appears to be a bias in the region of a protein targeted by selection pressures. For instance, 

disease causing mutations are found in physical interface of protein-protein interactions [84]. 

Furthermore, positive selection pressure tend to target amino acids exposed to the surface of protein 3D 

structures whereas purifying selection pressure selects against amino acids buried in the 3D structure of 

protein because they may disrupt protein function [85–88]. Particular protein domains are also targeted by 

positive selective pressure. The N and C terminal domains of 3D protein structures appear to contain 

more positively selected sites [89]. Proteins have conformationally structured regions containing α-helices 

and β-sheets and intrinsically disordered regions (IDR) that are conformationally flexible. IDRs are 

polypeptide segments that are not likely to form well-defined 3D structures but are still functional 

[90,91]. IDRs generally tolerate increased genetic variation and have more positively selected residues 

than structured regions [92–94]. This has been largely attributed to lack of constraints on maintaining 

packing interactions that is responsible for purifying selection in structured sequences [95].  

Post translational modifications (PTMs) are biochemical alterations of amino acids that extend 

the functional repertoires of protein [96]. PTMs affect the stability, interaction potential and localization 

of proteins within the cell [97]. Given these essential roles of PTMs, pathogens have developed strategies 

to interfere with host PTMs for their survival. Host PTMs are thus a target for pathogen mediated 

selection pressures. PTM regions are enriched in disordered sequences [96] and are thus likely to evolve 

adaptively. Indeed, strong signal for positive selection was evident in the N-linked glycosylation site of 

the envelope protein of the St. Louis encephalitis virus [98]. Knowledge of the protein regions targeted by 

selection pressure is essential in inferring the functional significance of amino acid residues in the 

absence of clinical or experimental studies. 
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Evolution of genes in the context of gene pathways and networks  

Genes encode proteins that that do not act alone but operate as components of complex pathways 

and networks. For example, in the TLR signaling pathway, the receptors detect PAMPs that eventually 

trigger an immune response through interactions of proteins downstream of the signaling pathway.  A 

problem in molecular evolution is to identify factors that influence the rate of protein evolution in the 

context of complex pathways and networks. The availability of whole genome sequences of numerous 

species has made such evolutionary studies possible. Taking into account the network within which a 

gene operates will provide insights into the evolutionary forces acting on it [99].  

Researchers have investigated how position of genes within molecular pathways influences 

selective forces acting on these genes. There are conflicting results as to which genes (early functioning 

or downstream genes) within molecular pathways are under stronger selective constraints (relatively 

smaller dn/ds ratio). A hypothesis predicts that genes found early in pathways are subject to stronger 

selective constraint than downstream genes as mutations in early functioning genes are likely to have 

greater pleiotropic effects and affect all downstream phenotypes [100]. In keeping with this hypothesis, 

upstream genes evolved slower than downstream genes in the plant anthocyanin biosynthetic pathway 

[101]. This pattern is also observed in the plant carotenoid biosynthetic pathway enzymes where the most 

downstream enzyme is under the least constraint [102]. In contrast, studies on some signaling pathways 

indicate that downstream genes tend to be under stronger purifying selection than upstream genes.  For 

instance, in the insulin/TOR signaling pathway in Drosophila and vertebrates, downstream genes evolve 

more slowly than their upstream counterparts [103]. A possible explanation for the relatively stronger 

purifying selection in downstream genes within signaling pathway is that downstream genes are located 

within a more stable cytoplasmic milieu whereas upstream genes encode receptors that lie in the host-

environment interface and are therefore subject to adaptive evolutionary changes [104,105]. A detailed 

analysis of various signal transduction pathways in several organisms indicate differences in the way 

position of genes within networks impact evolutionary rate [104]: Situations where no relationship exist 

between gene position and the strength of purifying selection, upstream genes evolving faster and 
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upstream genes being more conserved have all been observed. Thus, it appears the relationship between 

positions of genes in a network varies depending partly on the function of the pathway and the species 

within which the pathway is being studied.  A comprehensive understanding of the relationship will 

require analysis of different pathways and networks within different organisms.  

 

Protein-protein interaction network and Evolutionary rate 

The overall functions of molecular pathways and networks are dependent on the interactions among 

proteins constituting the pathways. Both protein-protein interactions (PPI) in terms of physical interaction 

between proteins and functional associations have been shown to influence protein evolutionary rate. It 

has been demonstrated that protein with more interactors evolves more slowly [106,107] because a 

greater proportion of the protein is involved in protein function. In contrast, [108] proteins in the center of 

networks have slower evolutionary rate, regardless of the number of PPI partners[108]. A conclusive 

study carried out in yeast indicated no correlation between connectivity and protein evolutionary rate. A 

negative correlation observed for some highthroughput datasets may have been due to artifacts of the data 

sets [109]. The lack of consensus on how the number of PPI affect protein evolution is further supported 

by a study [110] that confirmed that correlation between evolutionary rate and number of PPIs varies 

considerably across different protein interaction datasets. Furthermore, similarity in evolution rates for 

interacting proteins has been observed and this is attributed to their coevolution [106]; substitutions in one 

protein resulting in selective pressure for reciprocal changes in interacting proteins.   

Biological features of PPI partners have also been implicated as having an influence on the 

evolutionary rates of proteins within a network.  For example, proteins interacting with proteins of 

different function, and thus involved with multi different biological processes evolve slowly as compared 

with proteins that interact with proteins of the same function [111]. Makino and Gojobori  [111] again 

showed that proteins in dense parts of PPI (forming a cluster) tend to evolve faster than those in sparse 

parts of PPI.  They speculated that proteins in sparse parts of the PPI may be indispensable and therefore 
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under high selective constraints owing to likely scarceness of substitutable PPI partners.  Considering the 

influence of the type of interactions among proteins on protein evolution, proteins involved in obligate 

(proteins never found out of complex with each other) interactions are more evolutionary constrained than 

those involved in transient interactions [112]. The development of highthroughput technology continues 

to make available large numbers of PPI within model organisms, providing an opportunity to further 

explore the effect of protein-protein interactions on protein evolution within several pathways and 

networks.    

 

Network evolution and length of 3’UTR  

The role of the length of the 3’ untranslated regions (3’UTR) in affecting the evolution of proteins 

is mediated through microRNAs. MicroRNAs are ancient, short noncoding RNA molecules that regulate 

the transcriptome through post-transcriptional mechanisms. The 3’UTR region of a gene typically has 

binding sites for microRNAs influencing stability, localization and translation of messenger RNA [113]. 

Expression of genes encoding functionally important proteins is subject to robust regulation at the 

transcriptional and post-translational levels and therefore, genes under more intense regulation by 

miRNAs are expected to evolve at slower rates at the protein level [114].  A relationship between the 

length of the 3’UTR and protein evolutionary rate is expected as longer 3’UTRs will have more binding 

sites for miRNAs.  Consistent with this expectation, a significant negative correlation between 3’UTR 

length and evolutionary rate for both humans and mice proteins have been inferred [114].  A study 

conducted for the Drosophila Toll-Imd signaling pathway [115] also reported a negative correlation 

between 3’UTR length and evolutionary rate. 

 

Network evolution and codon bias 

Codon bias refers to the phenomenon where synonymous codons are used with different 

frequencies in a variety of organisms [116]. Measures of codon bias usage include Effective Number of 
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Codons (ENC) and Codon Adaptation Index (CAI).  ENC measures the magnitude of codon bias for an 

individual gene, with values ranging from 20 for a gene with extreme bias using one codon per amino 

acid, to 61 for a gene with no bias using synonymous codons equally [117].  The CAI estimates the extent 

of bias towards codons that are preferred in highly expressed genes with range of values 0 to 1, with 1 

representing a stronger codon usage bias and a higher expression level [117]. The existence of codon bias 

can be explained by selection or mutation [116]. The selectionist explanation hypothesizes that codon bias 

is maintained by selection because it contributes to the efficiency and/or accuracy of protein expression.  

In contrast, the mutational explanation proposes that the existence of codon bias is due to some codons 

being more mutable done others (nonrandomness in the mutational patterns). An acceptable model for the 

existence of codon bias called mutation-selection-drift balance model of codon bias [118] proposes that 

selection favors preferred codons whereas mutation and genetic drift allow minor codons to exist. Codon 

bias has been shown to have negative correlation with protein evolution in unicellular organisms as 

diverse as S. cerevisiae [119,120] and multicellular organisms such as Drosophila species [103]. Gene 

expression, which is also known to influence evolutionary rate of proteins has been shown to be 

correlated with codon bias, and therefore there is the need to control for gene expression levels as a 

confounding factor.    

A full understanding of the factors influencing protein evolution in molecular pathways or 

networks will require investigations across a broader range of organisms as different forces seem to drive 

evolution in different species.  For example, transcriptional abundance (Codon adaptation index, gene 

expression level and protein abundance)  is the most important factor influencing evolutionary rate in 

yeast [121] while protein-protein associations was an important contributor to protein evolution in 

bacteria [122]. Codon adaptation index (CAI) has been shown to be the most important factor influencing 

evolutionary rate in E. coli and B. subtilis [123]. Results of the influence of factors on evolutionary rate 

come with an important caveat. Factors influencing protein evolutionary rate are often interrelated. Thus, 

it is necessary to employ partial correlation and multivariate regression analysis in order to identify direct 

and indirect effects of these factors on protein evolution.  
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Suidae evolutionary history  

The Suidae (pigs and their wild relatives) are one of the most successful families within the order 

of Artiodactyla [124]. The family Suidae consists of over 12 closely related species that have survived to 

date [125]. They are classified into six genera; Babyrousa babyrusa from South East Asia, Porcula from 

India, Potamochoerus (bush pig and red river hog), Phacocherus (common and desert warthogs) and 

Hylochoerus from sub-Saharan Africa and the Sus (domestic and wild pigs) from Eurasia [126]. Six out 

of the eight species of the genus Sus are endemic to Southeast Asia (SEA). Thus members of the Suidae 

have spread widely into different habitats.   

Species within Suidae have evolved over a relative short time of 1-10 million years [125] and had 

their greatest adaptive radiation in the late Oligocene/early Miocene [127]. The Suidae radiation was 

characterized by relatively rapid speciation into new territories [128]. Babyrousa babyrussa stands well 

apart phylogenetically from the other members of the family Suidae and its relationship to other genera of 

the family Suidae is contentious. The Babyrousa babyrussa has been considered as an independent 

subfamily separate from the subfamily Suinae comprising the Sus, Potamochoerus and Hylochoerus [129] 

and also as part of the Suinae [130]. The genus Sus originated between 5.0 and 1.2 Mya [127,131] and 

differentiated into several lineages during the Late Pliocene and Early Pleistocene due to repeated 

connection and isolation of islands during sea level fluctuations [132]. Within the Sus, a deep split has 

been observed between S.verrucosus and other Island SEA Sus indicating that S. verrucosus represents a 

distinct lineage [133]. Analyses based on whole genome data have revealed that the speciation process of 

Sus from ISEA involved intra and inter specific gene flow and diversification [133].  

Sus scrofa is the wild ancestor of the domestic pig. Sus scrofa diverged from Sus some 4 mya 

[133]. Sus scrofa originated from South-East Asia and dispersed into India and East Asia and moved 

westwards until they reached Europe [134]. This was followed by genetic isolation of the Eastern and 

Western gene pools occurring at approximately 1.2 mya [133]. The initial divergence between Asian and 
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European Sus scrofa may be the result of cooler climate during the Calabrian period that isolated 

populations in in small refugia across Eurasia [133]. The domestication process of  Sus scrofa (wild 

boars) begun 10,000 years ago from Asia and Europe and introgression between wild pigs and domestic 

pigs might have taken place since the initial domestication event [135].  

The origin of suids from Africa is contentious. Six subfamilies of the family Suidae colonized 

Africa from Eurasia at least six times during the Plio-Pleistocene [136]. On the basis of cranial and dental 

similarities, it has been proposed that some sub-Saharan African suids are more closely related to species 

from Eurasia [137], indicating a possible Eurasian origin of the African suids. However, this is 

inconsistent with the finding that the ancestors of the sub-Saharan suid genera (Potamochoerus, 

Phacochoerus and Hylochoerus) came from Africa and not Eurasia [138]. Attempts have been made to 

address this inconsistency using mitochondrial and nuclear DNA sequences of extant genera of Suidae 

from Eurasia [138]. The study concluded that the ancestors of the extant African suids evolved separately 

from the ancestors of modern day Sus and Porcula in Eurasia before colonizing Africa.   

Phylogenetic analysis of species of the family Suidae indicates that the species form clusters 

consistent with their geographic distribution. For example, the phylogenetic tree of Suidae constructed 

using mitochondrial DNA cytochrome b sequences showed that African suids clustered in a single clade 

while Eurasian species formed another clade [139]. A similar observation has been made using 

mitochondrial and nuclear DNA where all sub-Saharan suids cluster in a monophyletic clade separate 

from Eurasian Sus species (Figure 1.4) [138]. Using near complete genome sequences, a well resolved 

tree for species within the genus Sus has been obtained (Figure 1.5) [133], where Sus scrofa   form a 

cluster separate from the Sus restricted to Island and Mainland Southeast Asia.  

 

Infectious disease challenges of Suidae 

Suidae are a threat to human and domestic pig health as they serve as a reservoir for a number of 

infectious diseases. For example, Aujeszky’s disease also known as pseudorabies is one of the 

economically important infectious diseases of swine for which suids are the natural host [140]. Due to 
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cross species transmission of viruses and bacteria, wild animals that have close phylogenetic relationships 

with domestic animals are at the greatest risk of infectious diseases mediated decline [141]. Indeed within 

the Artiodactyla, species in the families Bovidae and Suidae have been identified as more threatened by 

parasites than species in other families [141]. Wild boars and domestic pigs share many pathogens such as 

classical swine fever virus [142], African swine fever virus [143], Aujeszky’s disease virus [144] and 

porcine reproductive and respiratory syndrome virus [145]. Among the host of naturally occurring 

diseases that affect both wild boars and domesticated pigs, diseases which have viruses and some bacteria  

as their causal agents have fatal consequences on the species either as juveniles or adults and include 

African swine fever, pseudorabies, Classical swine fever and foot and mouth diseases. Thus, infectious 

diseases have implications for the conservation and survival of populations of members of the Suidae.       

Populations from different continents have historically been exposed to different pathogen 

mediated selective pressures [146]. For example, early cattle populations from Asia were exposed to 

rinderpest [147] and cattle populations from Sub-Saharan Africa have been exposed to trypanosomiasis 

[148]. Within the Suidae, different viral subpopulations in African and Eurasian Suidae host species have 

been reported. Two different lineages of Ɣ1 endogenous retroviruses (ERVs), remnants of an exogenous 

viral form, corresponded to host phylogeny, one of Eurasian and another of African species have been 

observed [149]. Furthermore, Phacochoerus africanus (African warthog), Potamochoerus larvatus (bush 

pig) and Hylochoerus meinertzhageni (giant forest hog) are susceptible to African swine fever virus and 

other bacterial, viral and parasitic diseases of domestic swine [143,150]. Classical swine fever has 

become endemic in wild boar populations of eastern and Western Europe with spreading of the virus to 

domestic pigs [151].  

Variation in tolerance for the same disease is well documented in members of the Suidae. For 

example, experimental infection of Phacochoerus africanus and Potamochoerus larvatus with classical 

swine fever virus resulted in subtle histological lesions in Phacochoerus africanus but overt clinical signs 

in Potamochoerus larvatus [152]. This variation in tolerance had also been demonstrated where virulent 

isolates of the African swine fever causes a rapidly fatal hemorrhagic fever in domestic pigs but species 
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(Phacochoerus africanus) endogenous to Africa tolerate the infection [153]. Differences at 

nonsynonymous amino acid sites in candidate genes have been implicated as influencing the level of 

tolerance among these species. Three amino acid differences in the candidate gene RELA (p65; v-rel 

reticuloendotheliosis viral oncogene homolog A) of warthog and domestic pigs causes reduced NF-кB 

activity in vitro for warthog RELA but not for domestic pig RELA. 

In the absence of sufficient data on pathogens that have mediated selective pressure on species in 

the past, evolutionary analysis has been relied on to identify genes that may have been crucial in host 

survival. Evolutionary studies have proven to augment clinical studies in finding disease resistance genes 

[35] and also serve as a first step in characterizing genes for subsequent experimental work. The family 

Suidae has evolved overtime and into diverse environments where they likely encountered numerous 

challenges from infectious disease agents. However, knowledge of how pathogen mediated selection 

pressures have shaped the evolution of their immune related genes is scanty. Such knowledge is necessary 

in determining which genes and amino acid sites within these gene products have been important in 

adaptation of the Suidae members to past and present infections. Given that the innate immune system is 

the first line of defense against pathogens and TLRs have receptors for the recognition for almost all 

classes of pathogens ranging from bacteria, viruses, fungi and parasites [154], the family Suidae TLR 

signaling pathway was chosen for evolutionary analysis in this thesis work. Another criterion for 

choosing the TLR signaling pathway is that as compared to other PRRs where signaling is insufficient to 

mount an effective immune response in some cases, TLR mediated signaling is adequate and essential 

[155]. Evolutionary studies within the Suidae genomes  have become possible due to recent developments 

in next generation sequencing technology, the availability of whole genome-sequence data for Suidae 

members at both the species and population (wild boars and domestic pigs) level and the availability of a 

high quality annotated sequence of the porcine (Sus scrofa) genome.  
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Thesis outline 

Chapter 1 of this thesis, described early on is a general introduction covering review on 

immunity, TLRs in the context of their structure, origin, signaling and the evolutionary pressure imposed 

by pathogens on the TLRs. Also reviewed is the evolution of genes in the context of pathway and network 

parameters. Chapter 1 ends with the evolution of the Suidae and diseases that affect the health of 

members of the Suidae. In chapter 2, bacterial and viral sensing TLR sequences of 10 members of the 

family Suidae were obtained and the following questions were addressed using codon based models in a 

phylogenetic framework: 1) whether there is evidence of persistent positive selection at TLRs across 

members of the family Suidae and 2) to determine whether restricted lineages within the Suidae 

demonstrate TLR positive selection.  Chapter 3 describes TLR adaptation within Sus scrofa (wild boar 

and domestic pig populations). Bacterial and viral sensing TLRs were obtained for wild boars and 

domestic pigs of European and Asian origins. Population genetics approaches were then used the 

determine 1) whether adaptive selection pressures on pigs from both European and Asian environments 

was evident and 2) whether different selective pressures for each geographic environment were identified. 

In chapter 4, the evolutionary rate of genes within the family Suidae TLR signaling pathway is 

investigated in the context of network parameters. Thirty three gene orthologs within the TLR signaling 

pathway of 10 members of the family Suidae were obtained. Codon based and multivariate analyses were 

then used to seek answers to the following questions 1) Is there a relationship between the strength of 

purifying selection and gene position in the TLR signaling pathway 2) Are there any network parameters 

that might be contributing to the polarity in the strength of purifying selection . 
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Figures and Table 

 

Figure 1.1. TLR domain organization. The leucine-rich repeat region is the extracellular domain required for 

detecting PAMPs. TM represents the transmembrane domain. TIR represents the Toll/interleukin receptor domain. 

The N and C termini of the LRR region is covered by LRRNT and LRRCT respectively (adapted from [8]).   
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Figure 1.2. Cellular location of TLRs. TLR1, TLR2, TLR4, TLR5, TLR6 and TLR10 are located on the cell surface 

whereas TLR3, TLR7, TLR8 and TLR9 are located within the endosome. Also shown are the various TLR ligands 

(adapted from https://mcb.illinois.edu/faculty/profile/trapping). 

 

 

 

 

 

 



24 
 

 

Figure 1.3. The TLR signaling pathway. TLR4 and TLR3 utilize the TRIF/MyD88 independent pathway.  TLR4, 

TLR1, TLR2, TLR5, TLR6, TLR7, TLR8, TLR9 and TLR10 utilize the MyD88 dependent pathway of TLR signaling 

(adapted from [35]).  
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Figure 1.4. Relationship among species of the family Suidae based on a combined dataset of mitochondria and 

nuclear DNA sequences. Numbers after nodes represent divergence times and numbers on branches are the posterior 

probabilities. All species from sub-Saharan Africa (belong to the Phacochoerini and Potamochoerini) form a 

monophyletic clade and are separated from their Eurasian counterpart (the Suini) (adapted from [138]).  
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Figure 1.5. Relationship among species within the genus Sus based on near complete genomes. Numbers indicate 

support values. S. scrofa Sumatra; ScEuroIt = S. scrofa Italy; ScEurope = S. scrofa Europe; Sbarba = S.barbatus; 

Scebi = S. celebensis; Sverru= S. verrucosus; ScNChina = S. scrofa North China; ScSChina = S. scrofa South China. 

The relationship is consistent with the geographic distribution of the species; Sus scrofa is distributed across Eurasia 

and form a cluster separate from all other species of the genus Sus that are restricted to Island and mainland 

Southeast Asia (adapted from [133]). 
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  Table 1.1 

TLR Ligands 

TLR1 triacyl lipoproteins 

TLR2 lipoprotein/lipopeptides, gram positive peptidoglycan, lipoteichoic acids, Zymosan 

(Saccharomyces), atypical lipopolysaccharides (Leptospira interrogans, Porphyromonas 

gingivalis), structural viral proteins (Herpes simplex virus, Cytomegalovirus) 

TLR3 Double stranded RNA, polycytidic acid (poly I:C) 

TLR4 Lipopolysaccharide (Gram-negative bacteria) 

TLR5 flagellin 

TLR6 diacyl lipoproteins  

TLR7 Single stranded RNA 

TLR8 Single stranded RNA 

TLR9 Unmethylated CpG motifs (bacteria and viruses) 

TLR10 Unknown 
  Table 1.1: Principal ligands of the Toll-like receptors 
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Chapter 2: Adaptive evolution of Toll-like receptors (TLRs) in the family Suidae
1
 

 

Abstract 

Members of the family Suidae have diverged over extended evolutionary periods in diverse 

environments, suggesting that adaptation in response to endemic infectious agents may have occurred. 

Toll-like receptors (TLRs) comprise a multigene family that acts as the first line of defense against 

infectious microbes at the host-environment interface. We hypothesized that across the Suidae, positive 

selection mediated by infectious agents has contributed to the evolution of TLR diversity. Thus, we 

analyzed Sus scrofa, Sus barbatus, Sus verrucosus, Sus celebensis, Sus scebifrons, Babyrousa babyrussa, 

Potamochoerus larvatus, Potamochoerus porcus and Phacochoerus africanus genomes. Specifically, 

analyses were performed to identify evidence of positive selection using Maximum likelihood (ML) 

methods within a phylogenetic framework for bacterial and viral sensing Suidae TLR extracellular 

domains. Our analyses did not reveal evidence of positive selection for TLR3 and TLR7, suggesting strong 

functional conservation among these two genes for members of the Suidae. Positive selection was 

inferred for Suidae TLR1, TLR2, TLR6 and TLR8 evolution. ML methods identified amino acid sites of 

the bacterial sensing TLR1, TLR2, TLR6 and the viral sensing TLR8 to be under persistent positive 

selection. Some of these sites are in close proximity to functionally relevant sites, further strengthening 

the case for pathogen mediated selection for these sites. The branch leading to the genus Sus 

demonstrated evidence of episodic positive selection for TLR1, indicating selection mediated by 

infectious agents encountered within the specific geographic origin of the Sus. These results indicate that 

species of the Suidae have positively selected residues within functional domains of TLRs reflective of 

prior infections. Thus, TLR genes represent candidates for experimental validation to determine their 

functional role in antibacterial and antiviral activity within members of the Suidae. 

____________________________________________________________________________________________________________________________ 

1This chapter has been accepted for publication in PLoS One 
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Introduction 

Bacterial and viral infectious diseases constitute a significant threat to host survival. Host species 

have developed various strategies to combat these threats, including the development of innate and 

acquired immune defenses. The innate immune system provides an immediate defensive response against 

pathogenic infections while the acquired immune system response to pathogenic infections may require 

weeks to develop. As pathogens evolve to subvert the host immune response, host immune genes evolve 

in response. The arms race between hosts and microbial pathogens (host-parasite co-evolution) influences 

variation in the response to infectious disease agents at individuals, population, species levels and within 

higher order taxonomic units [1].  

Adaptive evolution (positive selective) is selective pressure through a change in environment 

placed on a protein in order to improve the fitness of the organism in that environment [2]. With respect 

to vertebrate immune-related genes, studies on adaptive evolution have mainly focused on the major 

histocompatibility complex (MHC), cell surface glycoproteins of the acquired immune system that 

mediate presentation of peptides to T-cell receptors [3]. In humans, it has been shown that half of the 

genetic variability in immune response to infections is accounted for by non-MHC genes [4]. Most of 

these non-MHC genes seem to belong to the innate immune system [5], indicating that such genes may be 

under adaptive evolution. Phagocytic cells such as monocytes, macrophages and dendritic cells mediate 

the recognition of pathogens by the innate immune system through germline encoded receptors known as 

pattern recognition receptors (PRRs). These PRRs recognize conserved molecular features of microbes 

called pathogen-associated molecular patterns (PAMPs) [6,7]. Among the numerous PRRs, the Toll-like 

receptor family is the most widely studied. The Toll-like receptors (TLRs) are innate immunity receptors 

important during early phase of infections and also serve as a link between the innate and acquired 

immunity during host immune response [8]. Cell surface expressed TLRs (TLR1, TLR2, TLR4, TLR5 and 

TLR6) recognize predominantly bacterial ligands and several fungal and parasite ligands while TLR3, 

TLR7 and TLR8 are expressed within the endosome and recognize single and double-stranded viral RNA 

[9]. TLRs are type I transmembrane glycoproteins composed of an extracellular domain characterized by 
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a leucine-rich repeat (LRR) motif responsible for binding infectious agents ligands, a transmembrane 

domain and an intracellular signaling domain.  

Previous studies have documented purifying selection [10] and overdominant balancing selection 

[11] as the dominant selective pressures acting within innate immune genes including TLRs. TLRs might 

be under positive selection due to a co-evolutionary arms race with their microbial pathogens as they lie 

directly at the host-environment interface and target microbial molecules [12]. Studies at the interspecies 

level have found clear signatures of positive selection at codon positions across TLR genes from primate, 

avian and murinae species [12–15]. In the context of positive selection at the interspecies level, a 

distinction can be made between persistent positive selection, where selective pressure at codon positions 

within a gene remains constant throughout time across species and episodic positive selection where 

selective pressures act in a lineage specific manner [16]. In the case of persistent positive selection, the 

selective pressure affects most lineages within a phylogeny and is evident as codons rapidly evolving 

across the species in a phylogenetic tree. For episodic positive selection, codon positions under positive 

selective pressure within particular lineages may be neutrally or negatively evolving in other lineages. 

Regardless of the type of selective pressure (persistent or episodic positive selection), detection of 

evidence of selection of a gene region suggests a selective advantage in changing amino acid sequence in 

this region [2].       

Members of the family Suidae have a widespread distribution. The natural occurrence of Sus 

scrofa (wild boar) is across most of Eurasia while all other species of the genus Sus are restricted to 

Southeast Asia [17]. The Babyrussa babyrussa (babyrussa) is also found in Southeast Asia and 

Potamochoerus larvatus (bush pig), Potamochoerus porcus (red river hog) and Phacochoerus africanus 

(common warthog) are restricted to sub-Saharan Africa [18]. Such diverse environments of members of 

the family Suidae suggests adaptation to endemic infectious disease agents may have occurred, that can 

be investigated as positive selection within TLR genes. However, information on how positive selection 

has influenced TLR genes within members of the Suidae is limited. 
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The aim of this study was to determine whether there is evidence of positive selective pressure in 

the family Suidae in a phylogenetic framework. We hypothesized that positive selection has contributed 

to the evolution of bacterial and viral sensing TLRs in the family Suidae. The specific aims of this study 

were to 1) identify evidence of persistent positive selection at TLRs across members of the family Suidae 

and 2) to determine whether restricted lineages within the Suidae demonstrate TLR positive selection.  

We focused on the bacterial sensing TLR1, TLR2 and TLR6 and viral sensing TLR3, TLR7 and TLR8 as 

viruses and bacteria are the dominant parasites threatening wild mammals [19]. Identifying positively 

selected residues within the TLR genes of members of the Suidae will yield vital information as to their 

adaptation to previous bacterial and viral infections. Our findings suggest that positive selection of TLRs 

amongst members of the Suidae has been mediated by infectious disease agents.  

 

Materials and methods 

Study animals 

Ten animals representing 9 species of the family Suidae were utilized in this study. A range map 

showing the natural distribution of these species is shown in Fig. 2.1. The species Sus scrofa (wild boar) 

was represented by a European wild boar (Sus scrofa Europe) and a Asian wild boar (Sus scrofa Asia) to 

reflect the wide distribution of this species. Southeast Asian suids were represented by Sus verrucosus 

(javan warty pig), Sus celebensis (sulawesi warty pig), Sus scebifrons (visayan warty pig), Sus barbatus 

(bearded pig) and Babyrousa babyrussa (babirusa). Suidae species of African origin were represented by 

Potamochoerus larvatus (bush pig), Potamochoerus porcus (red river hog) and Phacochoerus africanus 

(common warthog). 
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Genes analyzed 

TLR1, TLR2 and TLR6 encoding receptors for bacterial ligands and TLR3, TLR7 and TLR8 

recognizing viral ligands were selected for this study. The extracellular domains were the focus since they 

encode the functional sites involved in pathogen ligand recognition.   

 

DNA extraction and sequencing 

DNA extraction, library preparation and sequencing were performed as previously described [20]. 

Briefly, DNA was extracted from whole blood by using the QIAamp DNA blood spin kit (Qiagen 

Sciences) and quantity and quality parameters were performed on the Qubit 2.0 fluorometer (Invitrogen) 

and run on a 1% agarose gel. Library construction and re-sequencing of individual members of the family 

Suidae were done with 1-3 ug of genomic DNA according to the Illumina library prepping protocols. The 

library insert size was 300-500 bp and sequencing was performed using a 100 paired-end sequencing kit 

[20]. All DNA were sequenced to approximately 8x depth. Quality trimmed reads (phred quality>20, 

minimum length of pairs of reads=40bp) were aligned to the Sus scrofa reference genome build 10.2 [21] 

using the unique alignment option of Mosaik Aligner (V.1.1.0017). The aligned reads from each of the 

animals together with the Sus scrofa reference genome were stored as bam files for each individual 

animal.    

 

 Orthologs identification and delineation of their extracellular domains  

Porcine TLR mRNA sequences were obtained from Ensemble database 

(http://www.ensemble.org). The accession numbers of sequences obtained from the public databases were 

TLR1: NM_001031775, TLR2: NM_213761, TLR3: HQ412796, TLR6: NM_213760, TLR7: 

NM_001097434, TLR8: ENSSSCG00000012118. When a TLR gene was found to have more than one 

transcript, the longest transcript was chosen. The genomic coordinates of the porcine TLR mRNA 

sequences within the Sus scrofa genome assembly 10.2 were obtained from Ensemble. Based on these 

genomic coordinates, sequences of TLR gene orthologs were then retrieved from aligned bam files 
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(illumina resequencing data for family Suidae species aligned against Sus scrofa genome assembly 10.2) 

of Sus scrofa (Sus scrofa Europe and Sus scrofa Asia), Sus verrucosus, Sus celebensis, Sus scebifrons, Sus 

barbatus Babyrousa babyrussa, Potamochoerus larvatus, Potamochoerus porcus and Phacochoerus 

africanus to identify TLR gene orthologs.  The resulting sequences for each species were then blast 

screened against the Sus scrofa genome to ensure similarity with the porcine TLR mRNA sequences. 

Exonic regions were then obtained from these sequences and concatenated to obtain coding sequences. 

The coding sequences were further trimmed to obtain sequences of the extracellular domain for each TLR 

in each species. Sequences were aligned using ClustalW 1.81 [22]. In this study, porcine TLR reference 

amino acid sequences were aligned to corresponding human and murine sequences in order to delineate 

the extracellular domains of porcine TLRs and their LRR modules and sub-domains [23–28] (Fig.2.2). 

The genomic coordinates of the TLR extracellular domains are provided in Table 2.1.   

 

ML test for positive selection 

Comparison of the non-synonymous substitutions per non-synonymous site (dN) with the number 

of synonymous substitutions per synonymous site (dS) in a maximum likelihood (ML) framework was 

used to test for positive selection for every codon, defining a dN/dS ratio (ω) > 1 in a codon as evidence of 

positive selection. First, we determined whether ω varied among codon sites for each TLR alignment by 

comparing CODEML program models in PAML version 4 [29,30] M0 which assumes that ω is constant 

across all sites in the alignment and M3 which allows ω to vary amongst sites.   

Next, 4 site models were employed to detect sites under persistent positive selection. Two models 

each from the CODEML program in PAML version 4 [29,30] and the Datamonkey web server [31] were 

utilized. CODEML site model M1a, a nearly neutral evolution model where sites are assumed to be 

evolving under either purifying selection (ω < 1) or neutral evolution (ω = 1) was compared to model 

M2a that allows positive selection among sites. M7, which allows sites to evolve under either purifying 

selection or neutrally, was compared to model M8, which allows for positively selected sites. Models M7 

and M8 differ from models M1a and M2a in that, the former assume that ω values are drawn from a beta 
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distribution [32]. Models were compared using a likelihood ratio test (LRT). In order to identify positive 

selection, twice the difference in log-likelihood values (2ln∆L) between models would be significant by 

chi-square testing. The F3x4 model of codon frequencies was used for the analyses. Models were run in 

duplicates with ω of 0.5 and 1.5 to increase the probability of convergence of model parameters. The 

Bayes empirical Bayes (BEB) approach implemented in CODEML was used to identify codons under 

positive selection.  BEB estimates the posterior probability of each site belonging to three selection 

classes: low, intermediate and high ω. Codon sites with ω>1 and a posterior probability > 95% were 

inferred to be under positive selection. Fixed-effects likelihood (FEL) and Random-effects likelihood 

(REL) models implemented using the Datamonkey web server was also used to detect positive selection. 

The FEL model estimates synonymous and nonsynonymous rates directly at each codon site, without 

assuming an a priori distribution of rates across sites while REL model allows synonymous and 

nonsynonymous substitution rates to vary among codon sites. Codon sites were considered to be under 

positive selection at significant levels p < 0.1 for FEL and a Bayes factor > 50 for REL [33].  

To test for episodic positive selection, Branch-Site REL and MEME (mixed effects model of 

evolution) implemented on the Datamonkey web server were utilized. The Branch-Site REL model 

estimates proportion of sites under selection along tree branches and allows evolutionary rates to 

simultaneously vary along phylogenetic branches and sites [16]. The MEME method identifies lineage-

specific events of positive selection at sites, even though the same site is under purifying or neutral 

selection in other lineages [34]. A Suidae species tree (Fig. 2.3) derived from near complete genome 

sequences for members of the Suidae [17] [L. Frantz, personal communication, September 27, 2014] was 

used in all analyses.  

Positively selected sites detected in this study were compared to human TLR Swiss-Prot database 

to determine their possible link to function. Sites under positive selection were also mapped to three 

dimensional (3D) protein structures using MuPIT Interactive [35] in order to examine their functional 

significance. We also determined the conservative or radical nature of amino acid changes at sites under 

positive selection within this study.              
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Results 

The sequences (10 sequences within each TLR alignment) of the extracellular domains of 

bacterial sensing TLR1, TLR2 and TLR6 and viral sensing TLR3, TLR7 and TLR8 from species within the 

family Suidae were obtained. The length of the extracellular domains in terms of number of nucleotides 

of the TLRs ranged from 1668 bases for TLR1 to 2445 bases for TLR7. Amino acid length ranged from 

556 amino acids for TLR1 to 792 amino acids for TLR7.  

 

Heterogeneity of selective pressure along genes 

To determine whether selective pressures varied amongst codon sites for each TLR gene, the M0 

and M3 models of CODEML program was utilized. Comparison of M0 vs M3 indicated that dN/dS ratio 

(ω) of some TLR genes varied among codons, implying that selective constraints were heterogeneous 

between sites. We detected significant (p < 0.01 for 2ln∆l) heterogeneity of ω along TLR1, TLR2, TLR6 

and TLR8 (Table 2.2). For these genes, we found that the proportion of sites with evidence of positive 

selection (p2) is relatively smaller than the proportion of sites with evidence of purifying (p0) or neutral 

(p1) selection. Thus, the majority of sites within the proteins of TLR1, TLR2, TLR6 and TLR8 were 

functionally constrained. TLR3 and TLR7 sequences did not reveal heterogeneity of selection pressure ω 

among their codons and are thus functionally conserved along their entire extracellular domains within 

the members of Suidae involved in this study. 

 

 Detection of persistent positive selection across members of the Suidae  

To detect positive selection pressure that have acted persistently and shared across most Suidae 

members regardless of their geographic origins, site models implemented in the CODEML program of the 

PAML package and on the Datamonkey web server were utilized. Site models permit detection of 

positive selection within gene codons. Site models detected positively selected codons in bacterial sensing 

TLR1, TLR2 and TLR6 and viral sensing TLR8. Specifically, comparisons of nested models available in 

CODEML program indicated that models including codons with ω > 1 (M2a and M8) demonstrated a 
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better fit than did neutral models (M1a and M7) for all the four TLR genes (Table 2.3 and Table 2.4). 

Since detecting codons under positive selection using site-based methods have power limitations when 

analyzing a few closely related species [36], we defined sites under positive selection conservatively as 

those for which significant results were obtained by more than one site model. Such sites and the 

properties of their amino acids are shown in Table 2.5. Three codons were identified for TLR1, 2 codons 

for TLR2, 7 codons for TLR6 and 2 codons for TLR8 that showed evidence for persistent positive 

selection. The site based methods did not identify codons under positive selective pressure for TLR3 and 

TLR7.      

 

Detection of episodic positive selection in particular lineages 

To detect signatures of episodic positive selection in specific lineages for each TLR gene, branch-

site REL analysis available on the Datamonkey web server were performed. The branch-site REL identify 

lineages at which a proportion of sites have dN/dS ratios >1without making any assumptions as to which 

lineages should be analyzed for positive selection. With respect to TLR1, evidence for positive selection 

in the ancestral lineage of the genus Sus (internal branch leading to the Sus clade) and on TLR2 species 

branch corresponding to Sus verrucosus (Table 2.6) were detected. Analyses also indicated that within the 

TLR2 gene, the species branch corresponding to Potamochoerus porcus is under positive selective 

pressure (Table 2.6). Thus, MEME was employed to identify sites under positive selection along 

branches. One codon position in TLR1 (codon position 434) in the lineage leading to the genus Sus and 

the species branch corresponding to Sus verrucosus was identified as under positive selection. Another 

codon position (codon position 338 in TLR2) was found to be under positive selection in the species 

branch corresponding to Potamochoerus porcus (Table 2.6).  
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Functional significance of positively selected sites  

To determine functional relevance of positively selected amino acid sites, sites determined to be 

under positive selection by more than one ML method were compared to human TLR Swiss-Prot entries 

(Table 2.7). First, human and porcine TLRs were aligned to determine the equivalent positions of 

positively selected sites in pigs within humans. Then analysis were performed to determine whether the 

sites in human TLRs have been implicated as having functional effects or are in close proximity to a 

functionally annotated site from human Swiss-Prot. Sites that were adjacent to residues and within 

regions known to affect TLR protein function (Table 2.7) were detected. Thus, amino acid sites under 

positive selection, as determined by more than one ML method were mapped onto TLR protein 3D 

crystallographic structures to gain further insight into their functional significance.  Positively selected 

sites were within the following domains: TLR1 117 (LRR4), 434 (LRR16), 451 (LRR17), 559 (LRR 

carboxy termini (LRRCT)); TLR2 216 (LRR7), 338 (LRR12); TLR6 183 (LRR6), 334 (LRR12), 452 and 

459 (LRR17), 501(LRR19), 554 and 560 (LRRCT); TLR8 178 (LRR5), 388 (LRR13).  Positively selected 

sites which can be inferred to affect protein function based on their location within TLR protein 3D 

crystallographic structures are shown in Figure 2.4. Two of the positively selected codons (TLR1 sites 434 

and 451) are within TLR1/TLR2 interface (Figure 2.4) and might have implications for TLR1/TLR2 

heterodimer formation. TLR2 site 338 is in close proximity to a site that interacts with bacterial 

lipopeptides and may therefore have a role in ligand binding. The conservative or radical nature of amino 

acid changes occurring at positively selected sites was also determined. Radical amino acid changes have 

effects on protein function. Specific sites (TLR1:117, 559; TLR2:216, 338; TLR6:183, 334, 501, 554, 560; 

TLR8:388) have experienced radical amino acid changes (Table 2.5), suggesting a possible role of such 

sites in diverse protein functions.   

   

Discussion 

The important role of pathogen mediated positive selection pressure in shaping diversity in the 

TLRs of mammalian species has been documented elsewhere [12,13,37]. The adaptation of the members 
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of the Suidae to different environments presenting numerous bacterial and viral pathogenic challenges, 

make the family amenable to studies of pathogen mediated selection on immune genes. Results obtained 

in this study indicate that both persistent and episodic positive selection have shaped TLR evolution and 

diversity among the Suidae.  

Our finding of small proportion of sites of TLR1, TLR2, TLR6 and TLR8 showing evidence of 

persistent positive selection agrees with the mostly accepted paradigm that purifying selection is the 

dominant force operating on TLRs [10,12]. As was the case with previous studies [12,15,38], more 

positively selected sites within bacterial-sensing TLRs than their viral-sensing counterparts were inferred. 

Viral infections are thought to exert stronger selective pressure than bacterial infections, constraining the 

evolution of viral-sensing TLRs [38]. In contrast to previous studies done in primates [12] and across 

rodents, carnivores, lagomorphs and primates [37], fewer sites under persistent positive selection within 

genes involved in this study were detected. Members of the Suidae represent closely related species and 

are therefore likely to be affected by fewer related bacteria and viruses than the diverse species involved 

in previous studies. TLR6 stood out as the gene with the strongest evidence of selection, where more 

codons were under persistent positive selection. The dimerization interface in TLR6/TLR2 is 80% larger 

than that of TLR1/TLR2 [39]. Therefore one can speculate that the larger TLR6/TLR2 dimerization surface 

exposes more codons of TLR6 to positive selective pressure. The finding that among the bacterial sensing 

TLRs, TLR2 had fewer sites under persistent positive selection despite having similar protein length as 

TLR1 and TLR6 is suggestive of a stronger selective constraint on TLR2. The TLR2 gene product 

recognizes a myriad of ligands (microbial triacyl lipoproteins, diacyl lipoproteins found in mycoplasma, 

lipoteichoic acid of Gram-positive bacteria or Zymosan of yeast) pathogens through heterodimerization 

with TLR1 and TLR6 [40,41]. TLR2 also been shown to affect IFN production, making the TLR2 gene 

evolutionary constrained [42].  

Apart from persistent pathogen mediated positive selection acting over long evolutionary time 

across members of the Suidae, the evolutionary histories of members of the Suidae may have been 

affected by periodic pathogenic infections confined to specific lineages within certain geographic 
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locations, leading to episodic positive selection within such lineages. Such a signal of adaptive evolution 

is usually masked by a background signal of purifying selection, which makes their identification 

difficult. Both Branch Site REL and the MEME methodology implemented in Datamonkey revealed the 

same lineages were evolving under episodic positive selection, suggesting that sites within these branches 

are under positive selection. MEME is a recently developed method [34] that allows the detection of 

episodic positive selection even when majority of lineages are evolving under purifying selection.  

Our lineage specific analysis showed that the branch leading to the Sus clade was found to have 

undergone episodic positive selection at TLR1 amino acid site 434 indicating that the ancestors of species 

within the genus Sus had to undergo adaptive changes at this site in response to their environment. With 

the exception of Sus verrucosus which had methionine at TLR1 site 434, other Sus species had the leucine 

residue while the African suids and Babyrousa babyrussa had methionine. This finding suggests a 

possible selective advantage for leucine at TLR1 site 434 in the environment in which ancestors of the Sus 

species originated. Indeed, methionine seems to be very rare at TLR1 site 434 within the domesticated 

breeds of Sus scrofa [43], indicating leucine is preferred at this site. The substitutions of methionine with 

leucine within the interior of a protein increase protein stability [44] supporting a hypothesis that leucine 

within the Sus species stabilizes the TLR1 protein prior to heterodimerization with TLR2 for efficient 

recognition of diverse bacterial ligands (peptidoglycans and triacyl lipoproteins). This finding of positive 

selection on branches leading to Sus verrucosus for TLR1 and Potamochoerus porcus for TLR2 requires a 

cautious interpretation, since only one sequence from one animal is involved in each case. Sus verrucosus 

is thought to represent a distinct lineage following a deep split with other species of the genus Sus [17]. It 

is possible that bacterial pathogens restricted to Sus verrucosus may have exerted selective pressure on its 

TLR1 gene. Related to Potamochoerus porcus, positive selection on TLR2 gene could partly be due to 

adaptation to infectious agents within the African rain forest, a location outside of which they are rarely 

found [45].   

The case for positive selection within TLR amino acid sites involved in this study is strengthened 

by the location of specific sites in close proximity to functionally relevant regions. Site 117 of TLR1 is 
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within disulphide bonds region. Disulphide bonds are important to the overall function of proteins as they 

are associated with their folding and stability [46]. Site 434 of TLR1 is adjacent to a glycosylation site. 

One conclusion would be that positive selection at this site is of consequence as glycosylation of TLRs is 

thought to influence receptor surface presentation, trafficking and ligand recognition [47]. The positive 

selection inferred at site 559 of TLR1, adjacent to a site that leads to impairment of NF-kB activation, 

suggests a role for this site in regulating inflammatory response to bacterial infection.  

TLR1/TLR2 heterodimer formation is required for ligand recognition and signal initiation [23]. 

Thus changes at sites 434 and 559 within TLR1 suggest residues at these sites could be under selective 

pressure to improve the TLR1/TLR2 heterodimer formation. As was the case with the study of [48] 

involving RIG-I-like pattern recognition receptors, in this study the majority (10/15 sites) of sites under 

positive selection involved radical amino acid residue changes across species of the Suidae. This is in 

agreement with positive selection favoring radical amino changes at sites within particular genes [49]. 

Such sites may be of functional significance.              

Results obtained here have implications for present day domestic pigs. African wild suids are 

susceptible to some viral, bacterial and parasitic diseases of domestic pigs. As European and Asian wild 

boars are the progenitors of most domestic pigs, it is likely that species of the genus Sus are also 

susceptible to diseases of domestic swine [50]. Thus, residues that were under positive selection in the 

past could still be beneficial to domestic pigs in terms of disease resistance. Evidence for past positive 

selection influencing resistance or susceptibility to present day pathogens is seen in the Protein Kinase R 

(PKR) gene, where adaptive changes at important residues, most likely driven by old viruses [51], are 

important in the ability of PKR to fight infections from present-day poxyviruses [52].  

 

Conclusion 

In conclusion, residues within bacterial sensing TLR1, TL2, TLR6 and viral sensing TLR8 of 

members of the Suidae that have undergone persistent and episodic positive selection were identified. The 

evidence of positive selection on the TLR genes reveals that pathogen mediated selective pressure has 
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shaped Suidae TLR evolution. The case for positive selective at amino acid sites is strengthened by 

location of these sites in close proximity to functionally relevant sites and the radical changes in amino 

acids at some of these sites across members of the Suidae. Sites under positive selection may have aided 

in the adaptation of the Suidae to infectious agents that evolved rapidly or that were encountered in new 

environments.  
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Figures and Tables 

 

Fig. 2.1. Range map for members of the Suidae.  
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Fig. 2.2        LRRNT     LRR1  

Human_TLR1        MT----SIFHFAIIFMLILQIRIQLSEESEFLVDRSKNGLIHVPKDLSQKTTILNISQNY 56 

Porcine_TLR1      MTKENLSIFHFAIIFILILEIRIQLSEESEVLVDRSKTGLTHVPKDLSLETTILDLSQNS 60 

                  **    *********:***:**********.******.** ******* :****::***  

     LRR2   LRR3           LRR4 

Human_TLR1        ISELWTSDILSLSKLRILIISHNRIQYLDISVFKFNQELEYLDLSHNKLVKISCHPTVNL 116 

Porcine_TLR1      ISELQTSDILSLSKLRVFIISHNRIQYLDVSVFKFNQELEYLDLSHNKLEKISCHPMLNL 120 

                  **** ***********::***********:******************* ****** :** 

     LRR5   LRR6 

Human_TLR1        KHLDLSFNAFDALPICKEFGNMSQLKFLGLSTTHLEKSSVLPIAHLNISKVLLVLGETYG 176 

Porcine_TLR1      KHLDLSFNAFDALPICQEFGSMFQLEFLGLSATQLQKSSVLPIAHLHIGKVLLVLGDSYG 180 

                  ****************:***.* **:*****:*:*:**********:*.*******::** 

   LRR7    LRR8 

Human_TLR1        EKEDPEGLQDFNTESLHIVFPTNKEFHFILDVSVKTVANLELSNIKCVLEDNKCSYFLSI 236 

Porcine_TLR1      EREDPESLQDLNTQSLHIVYPPGKEFHFMLDVSVSTAVNLELSNIRCVLDANGCHHFQNV 240 

                  *:****.***:**:*****:*..*****:*****.*..*******:***: * * :* .: 

  LRR9   /  /   /  LRR10     / 

Human_TLR1        LAKLQTNPKLSNLTLNNIETTWNSFIRILQLVWHTTVWYFSISNVKLQGQLDFRDFDYSG 296 

Porcine_TLR1      LLKLQKNSKLSNLTLNNIETTWNSFITTLQFVWRTSIEYFSISSVKLQGQLDFRDFDYSD 300 

                  * ***.*.******************  **:**:*:: *****.***************. 

  LRR11   LRR12 LRR13 

                        /   / d+///+/  /+d /         /   d/+ 

Human_TLR1        TSLKALSIHQVVSDVFGFPQSYIYEIFSNMNIKNFTVSGTRMVHMLCPSKISPFLHLDFS 356 

Porcine_TLR1      TSLKALSLHQVVSEVFSFPQSYIYKIFSNMNIQYLTVSATHMVHMVCPSQISPFLYLDFS 360 

                  *******:*****:**.*******:*******: :***.*:****:***:*****:**** 

   LRR14   LRR15 

                    d d d  d                d d 

Human_TLR1        NNLLTDTVFENCGHLTELETLILQMNQLKELSKIAEMTTQMKSLQQLDISQNSVSYDEKK 416 

Porcine_TLR1      NNALTDMVFKNCANLANLNTLSLQMNQLKELVNVIHMTKEMQSLQQLDVSQNTLRYDENE 420 

                  ** *** **:**.:*::*:** ********* :: .**.:*:******:***:: ***:: 

  LRR16   LRR17  LRR18 

Human_TLR1        GDCSWTKSLLSLNMSSNILTDTIFRCLPPRIKVLDLHSNKIKSIPKQVVKLEALQELNVA 476 

Porcine_TLR1      GSCTWTGSLLSLNLSSNILTDSVFRCLPPRIKVLDLHNNRIRSIPKDVAHLEALQELNVA 480 

                  *.*:** ******:*******::**************.*:*:****:*.:********** 

   LRR19   LRR20  LRRCT 

Human_TLR1        FNSLTDLPGCGSFSSLSVLIIDHNSVSHPSADFFQSCQKMRSIKAGDNPFQCTCELGEFV 536 

Porcine_TLR1      SNSLAHLPGCGSFSSLSILIIDYNSISNPSADFFQSCQKIRSLKAGNNPFQCTCELRDFI 540 

                   ***:.***********:****:**:*:***********:**:***:********* :*: 

 

Human_TLR1        KNIDQVSSEVLEGWPDSYKCDYPESYRGTLLKDFHMSELSCNITLLIVTIVATMLVLAVT 596 

Porcine_TLR1      QSLGQVSSDVVESWPDSYECEYPESYKGTLLKDFRVSELSCNTALLIVTIGVTGLALALT 600 

                  :.:.****:*:*.*****:*:*****:*******::****** :****** .* *.**:* 

 

Human_TLR1        VTSLCSYLDLPWYLRMVCQWTQTRRRARNIPLEELQRNLQFHAFISYSGHDSFWVKNELL 656 

Porcine_TLR1      MTGLCVYFDLPWYLRMLCQWTQTRRRARNVPLEELQRTLQFHAFISYSGHDSAWVKNELL 660 

                  :*.** *:********:************:*******.************** ******* 

 

Human_TLR1        PNLEKEGMQICLHERNFVPGKSIVENIITCIEKSYKSIFVLSPNFVQSEWCHYELYFAHH 716 

Porcine_TLR1      PNVEKEGIKICLHERNFVPGKSIMENIINCIEKSYKSIFVLSPNFVQSEWCHYELYFAHH 720 

                  **:****::**************:****.******************************* 

 

Human_TLR1        NLFHEGSNSLILILLEPIPQYSIPSSYHKLKSLMARRTYLEWPKEKSKRGLFWANLRAAI 776 

Porcine_TLR1      NLFHEGSDNLILILLDSIPQYSIPSSYHKLKALMAQRTYLEWPKEKSKHGLFWANLRASI 780 

                  *******:.******:.**************:***:************:*********:* 

 

Human_TLR1        NIKLTEQAKK------ 786 

Porcine_TLR1      NIKLMEKAEEISYTQI 796 

                  **** *:*::       

  LRRNT LRR1 

Human_TLR2        MPHTLWMVWVLGVIISLSKEESSNQAS-LSCDRNGICKGSSGSLNSIPSGLTEAVKSLDL 59 

Porcine_TLR2      MPCALWTAWVLGIVISLSKEGAPHQASSLSCDPAGVCDGRSRSLSSIPSGLTAAVKSLDL 60 

                  ** :** .****::****** :.:*** ****  *:*.* * **.******* ******* 
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Fig. 2.2 (cont.)    LRR2   LRR3 

Human_TLR2        SNNRITYISNSDLQRCVNLQALVLTSNGINTIEEDSFSSLGSLEHLDLSYNYLSNLSSSW 119 

Porcine_TLR2      SNNRIAYVGSSDLRKCVNLRALRLGANSIHTVEEDSFSSLGSLEHLDLSYNHLSNLSSSW 120 

                  *****:*:..***::****:** * :*.*:*:*******************:******** 

  LRR4   LRR5  LRR6 

Human_TLR2        FKPLSSLTFLNLLGNPYKTLGETSLFSHLTKLQILRVGNMDTFTKIQRKDFAGLTFLEEL 179 

Porcine_TLR2      FKSLSTLKFLNLLGNPYKTLGEAPLFSHLPNLRILKIGNNDTFPEIQAKDFQGLTFLQEL 180 

                  **.**:*.**************:.*****.:*:**::** ***.:** *** *****:** 

     LRR7   LRR8 

Human_TLR2        EIDASDLQSYEPKSLKSIQNVSHLILHMKQHILLLEIFVDVTSSVECLELRDTDLDTFHF 239 

Porcine_TLR2      EIGASHLQRYAPKSLRSIQNISHLILHMRRPALLPKIFVDLLSSLEYLELRNTDFSTFNF 240 

                  **.**.** * ****:****:*******::  ** :****: **:* ****:**:.**:* 

   LRR9  / /  LRR10  / /    /    //  

Human_TLR2        SELSTGETNSLIKKFTFRNVKITDESLFQVMKLLNQISGLLELEFDDCTLNGVGNFRASD 299 

Porcine_TLR2      SDVSINEHCTVMKKFTFRKAEITDASFTEIVKLLNYVSGALEVEFDDCTLNGRGDLSTSA 300 

                  *::* .*  :::******:.:*** *: :::**** :** **:********* *:: :*  

      LRR11   LRR12 

  /  / /  /d/ ddd+//  /   /  /  /d d/++/+  /    

Human_TLR2        NDRVIDPGKVETLTIRRLHIPRFYLFYDLSTLYSLTERVKRITVENSKVFLVPCLLSQHL 359 

Porcine_TLR2      LDTIKSLGNVETLTVRRLHIPQFFLFYDLRSIYSLTGAVKRITIENSKVFLVPCSLSQHL 360 

                   * : . *:*****:******:*:***** ::****  *****:********** ***** 

 LRR13   d d dddd d     LRR14     d   LRR15   

Human_TLR2        KSLEYLDLSENLMVEEYLKNSACEDAWPSLQTLILRQNHLASLEKTGETLLTLKNLTNID 419 

Porcine_TLR2      KSLEYLDLSENLMSEEYLKNSACEHAWPFLHTLILRQNHLKSLEKTGEVLVTLKNLTNLD 420 

                  ************* **********.*** *:********* *******.*:*******:* 

     LRR16   LRR17     LRR18 

Human_TLR2        ISKNSFHSMPETCQWPEKMKYLNLSSTRIHSVTGCIPKTLEILDVSNNNLNLFSLNLPQL 479 

Porcine_TLR2      ISKNNFDSMPETCQWPEKMKYLNLSSTRIHSLTHCLPQTLEVLDISNNNLNSFSLSLPQL 480 

                  ****.*.************************:* *:*:***:**:****** ***.**** 

      LRR19     LRR20 

Human_TLR2        KELYISRNKLMTLPDASLLPMLLVLKISRNAITTFSKEQLDSFHTLKTLEAGGNNFICSC 539 

Porcine_TLR2      KELYISRNKLKTLPDASFLPMLSVLRISRNTINTFSKEQLDSFQKLKTLEAGGNNFICSC 540 

                  ********** ******:**** **:****:*.**********:.*************** 

LRRCT 

Human_TLR2        EFLSFTQEQQALAKVLIDWPANYLCDSPSHVRGQQVQDVRLSVSECHRTALVSGMCCALF 599 

Porcine_TLR2      DFLSFTQGQQALAQVLSDWPENYLCDSPSHVRGQRVQDTRLSLTECHRVAVVSVVCCALF 600 

                  :****** *****:** *** *************:***.***::****.*:** :***** 

 

Human_TLR2        LLILLTGVLCHRFHGLWYMKMMWAWLQAKRKPRKAPSRNICYDAFVSYSERDAYWVENLM 659 

Porcine_TLR2      LLLLLTGALCHHFHGLWCMKMMWAWLQAKRKPRKAPRRDVCYDAFVSYSEQDSYWVENLM 660 

                  **:****.***:***** ****************** *::**********:*:******* 

 

Human_TLR2        VQELENFNPPFKLCLHKRDFIPGKWIIDNIIDSIEKSHKTVFVLSENFVKSEWCKYELDF 719 

Porcine_TLR2      VQELEHFQPPFKLCLHKRDFIPGKWIIDNIIDSIEKSQKTIFVLSENFVKSEWCKYELDF 720 

                  *****:*:*****************************:**:******************* 

 

Human_TLR2        SHFRLFDENNDAAILILLEPIEKKAIPQRFCKLRKIMNTKTYLEWPMDEAQREGFWVNLR 779 

Porcine_TLR2      SHFRLFDENDDTAILILLEPIEKKTIPQRFCKLRKIMNTRTYLEWPADETQREGFWLNLR 780 

                  *********:*:************:**************:****** **:******:*** 

 

Human_TLR2        AAIKS 784 

Porcine_TLR2      AAIKS 785 

 

 

     LRRNT/ LRR1 

Human_TLR3        MRQTLPC-IYFWGGLLPFGMLCASSTTKCTVSHEVADCSHLKLTQVPDDLPTNITVLNLT 59 

Porcine_TLR3      MSRSLPCHIYSFWVLLPFWILYTTSTNKCTVRHEIADCSHLKLTQIPDDLPANITVLNLT 60 

                  * ::*** ** :  **** :* ::**.**** **:**********:*****:******** 

      LRR2   LRR3 

                  / / /                   / /                     / / / 

Human_TLR3        HNQLRRLPAANFTRYSQLTSLDVGFNTISKLEPELCQKLPMLKVLNLQHNELSQLSDKTF 119 

Porcine_TLR3      HNQLRGLPPANFTIYSQLTTLDGGFNTIPKLEPELCQSLPLLDILNLQHNELSQLSDKTF 120 

                  ***** **.**** *****:** *****.********.**:*.:**************** 
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Fig. 2.2 (cont.)  LRR4   LRR5  LRR6 

Human_TLR3        AFCTNLTELHLMSNSIQKIKNNPFVKQKNLITLDLSHNGLSSTKLGTQVQLENLQELLLS 179 

Porcine_TLR3      IFCMNLIELHLMSNSIQKIQNNPFKNLKNLIKLDLSHNGLSSTKLGTQLQLENLQELLLA 180 

                   ** ** ************:**** : ****.****************:**********: 

       LRR7   LRR8  

Human_TLR3        NNKIQALKSEELDIFANSSLKKLELSSNQIKEFSPGCFHAIGRLFGLFLNNVQLGPSLTE 239 

Porcine_TLR3      NNKISALKREELDFLGNSSLKRLELSSNQIQEFSPGCFHAIGKLFGLSLNNVKLSPSLTE 240 

                  ****.*** ****::.*****:********:***********:**** ****:*.***** 

   LRR9   LRR10 

Human_TLR3        KLCLELANTSIRNLSLSNSQLSTTSNTTFLGLKWTNLTMLDLSYNNLNVVGNDSFAWLPQ 299 

Porcine_TLR3      KLCLELSNTSIENLSLSNIQLYKTSNTTFFGLKQTNLSMLDLSHNSLSVIGNDSFAWLPH 300 

                  ******:****.****** ** .******:*** ***:*****:*.*.*:*********: 

  LRR11   LRR12 

Human_TLR3        LEYFFLEYNNIQHLFSHSLHGLFNVRYLNLKRSFTKQSISLASLPKIDDFSFQWLKCLEH 359 

Porcine_TLR3      LKYFFLEYNNIERLSSRSLYGLSNVKYLNLRRSFTKQSISLASLPKIEDFSFQWLKSLEY 360 

                  *:*********::* *:**:** **:****:****************:********.**: 

 LRR13   LRR14   LRR15 

Human_TLR3        LNMEDNDIPGIKSNMFTGLINLKYLSLSNSFTSLRTLTNETFVSLAHSPLHILNLTKNKI 419 

Porcine_TLR3      LNMEDNNFPGIKRNTFTGLIKLKSLSLSNSFSSLRTLTNETFISLADSPLLILNLTKNKI 420 

                  ******::**** * *****:** *******:**********:***.*** ********* 

     LRR16   LRR17 

Human_TLR3        SKIESDAFSWLGHLEVLDLGLNEIGQELTGQEWRGLENIFEIYLSYNKYLQLTRNSFALV 479 

Porcine_TLR3      SKIESGAFSWLGHLKVLDLGLNEIGQELTGQEWRGLKNIVEVYLSYNRYLELTTDSFALV 480 

                  *****.********:*********************:**.*:*****:**:** :***** 

  LRR18    / /  LRR19  LRR20   / 

Human_TLR3        PSLQRLMLRRVALKNVDSSPSPFQPLRNLTILDLSNNNIANINDDMLEGLEKLEILDLQH 539 

Porcine_TLR3      PSLQQLMLRRVALRDMDCSPSPFHPLFNLTILDLSNNNIANINDELLKGLEKLQILDLQH 540 

                  ****:********:::*.*****:** *****************::*:*****:****** 

 /  /      / LRR21   LRR22 

Human_TLR3        NNLARLWKHANPGGPIYFLKGLSHLHILNLESNGFDEIPVEVFKDLFELKIIDLGLNNLN 599 

Porcine_TLR3      NNLARLWKHANPGGPVQFLKGLSHLHILNLESNGFDEIPADAFRDLSELKSIDLGLNNLN 600 

                  ***************: **********************.:.*:** *** ********* 

     / LRR23   LRRCT 

Human_TLR3        TLPASVFNNQVSLKSLNLQKNLITSVEKKVFGPAFRNLTELDMRFNPFDCTCESIAWFVN 659 

Porcine_TLR3      ILPPSVFDNQVSLKSLSLQKNLITSVKKTVFGPAFQKLSNLDMRFNPFDCTCESIAWFVS 660 

                   **.***:********.*********:*.******::*::*******************. 

 

Human_TLR3        WINETHTNIPELSSHYLCNTPPHYHGFPVRLFDTSSCKDSAPFELFFMINTSILLIFIFI 719 

Porcine_TLR3      WINSTHTNISELSSHYLCNTPPQYHGLPVILFDTSPCKDSAPFELFFMITASMLLIFIFI 720 

                  ***.*****.************:***:** *****.*************.:*:******* 

 

Human_TLR3        VLLIHFEGWRISFYWNVSVHRVLGFKEIDRQTEQFEYAAYIIHAYKDKDWVWEHFSSMEK 779 

Porcine_TLR3      ILLIHFEGWRISFYWNVSVHRVLGFKEIDKQPEQFEYAAYIIHAYKDRDWVWEHFAPMEE 780 

                  :****************************:*.***************:*******:.**: 

 

Human_TLR3        EDQSLKFCLEERDFEAGVFELEAIVNSIKRSRKIIFVITHHLLKDPLCKRFKVHHAVQQA 839 

Porcine_TLR3      KDETLRFCLEERDFEAGALELEAIVNSIKRSRKIIFVITQHLLKDPLCKRFKVHHAVQQA 840 

                  :*::*:***********.:********************:******************** 

 

Human_TLR3        IEQNLDSIILVFLEEIPDYKLNHALCLRRGMFKSHCILNWPVQKERIGAFRHKLQVALGS 899 

Porcine_TLR3      IEQNLDSIILIFLEEIPDYKLNHALCLRRGMFKSHCILNWPVQKERINAFHHKLQVALGS 900 

                  **********:************************************.**:********* 

 

Human_TLR3        KNSVH 904 

Porcine_TLR3      RNSVH 905 

                  :**** 
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Fig. 2.2 (cont.)       LRRNT LRR1 

Human_TLR6        MTKDKEPIVKSFHFVCLMIIIVGTRIQFSDGNEFAVDKSKRGLIHVPKDLPLKTKVLDMS 60 

Porcine_TLR6      MTKDKKPTVISLHSVYVMTLVWGTLIQFSEESEFVVDKSKIGLTRVPKDLPPQTKVLDVS 60 

                  *****:* * *:* * :* :: ** ****: .**.***** ** :****** :*****:* 

     LRR2   LRR3 

Human_TLR6        QNYIAELQVSDMSFLSELTVLRLSHNRIQLLDLSVFKFNQDLEYLDLSHNQLQKISCHPI 120 

Porcine_TLR6      QNFITELHLSDISFLSQLTVLRLSQNRMQCLDISVFKFNQDLEYLDLSHNQLQTILCHPI 120 

                  **:*:**::**:****:*******:**:* **:********************.* **** 

  LRR4   LRR5  LRR6 

Human_TLR6        VSFRHLDLSFNDFKALPICKEFGNLSQLNFLGLSAMKLQKLDLLPIAHLHLSYILLDLRN 180 

Porcine_TLR6      TSLKHLDLSFNDFEALPICKEFGNLTQLNFLGLSATKLQQLDLLPIAHLHLSCILLDLER 180 

                  .*::*********:***********:********* ***:************ *****.. 

   LRR7    LRR8 

Human_TLR6        YYIKENETESLQILNAKTLHLVFHPTSLFAIQVNISVNTLGCLQLTNIKLNDDNCQVFIK 240 

Porcine_TLR6      YYMKENEKESLQILNTEKLHLVFHPNSFFSVQVNISVKSVGCLQLANIKLGDDNCQVFIT 240 

                  **:****.*******::.*******.*:*::******:::*****:****.********. 

  LRR9   LRR10 

Human_TLR6        FLSELTRGSTLLNFTLNHIETTWKCLVRVFQFLWPKPVEYLNIYNLTIIESIREEDFTYS 300 

Porcine_TLR6      FLLELTQGPTLLNFTLNHVETTWKCLVGIFQFLWPKPVEYLSIYNLTIVESIDEEDFIYY 300 

                  ** ***:*.*********:******** :************.******:*** **** *  

     LRR11   LRR12  LRR13 

                            d dd  d+/     d              d d d  d 

Human_TLR6        KTTLKALTIEHITNQVFLFSQTALYTVFSEMNIMMLTISDTPFIHMLCPHAPSTFKFLNF 360 

Porcine_TLR6      ETTLKGVKIEHITKRVFIFSQTALYRVFSDMNIRMLTIADTHFIHMLCPQVPSTFNFLNF 360 

                  :****.:.*****::**:******* ***:*** ****:** *******:.****:**** 

    d d dd          d  LRR14   LRR15 

Human_TLR6        TQNVFTDSIFEKCSTLVKLETLILQKNGLKDLFKVGLMTKDMPSLEILDVSWNSLESGRH 420 

Porcine_TLR6      TQNVFTDSVFQNCKTLARLETLILQKNKLEDLFKISLMTKDMLSLEILDVSSNSLEYDRH 420 

                  ********:*::*.**.:********* *:****:.****** ******** **** .** 

  LRR16   LRR17  LRR18 

Human_TLR6        KENCTWVESIVVLNLSSNMLTDSVFRCLPPRIKVLDLHSNKIKSVPKQVVKLEALQELNV 480 

Porcine_TLR6      GENCTWVGSIVVLNLSSNILTDSVFRCLPPRIKVLDLHSNRIRSIPKDVAHLEALQELNV 480 

                   ****** **********:*********************:*:*:**:*.:********* 

   LRR19  LRR20  LRRCT 

Human_TLR6        AFNSLTDLPGCGSFSSLSVLIIDHNSVSHPSADFFQSCQKMRSIKAGDNPFQCTCELREF 540 

Porcine_TLR6      ASNSLAHLPGCGSFSSLSILSIDYNSISNPSADFFQSCQKIRSLKAGNNPFQCTCELRDF 540 

                  * ***:.***********:* **:**:*:***********:**:***:**********:* 

 

Human_TLR6        VKNIDQVSSEVLEGWPDSYKCDYPESYRGSPLKDFHMSELSCNITLLIVTIGATMLVLAV 600 

Porcine_TLR6      IQSLGQVSSDVVESWPDSYECEYPESYKGTLLKDFRVSELSCNTALLIVTIGVTGLALAL 600 

                  ::.:.****:*:*.*****:*:*****:*: ****::****** :*******.* *.**: 

 

Human_TLR6        TVTSLCIYLDLPWYLRMVCQWTQTRRRARNIPLEELQRNLQFHAFISYSEHDSAWVKSEL 660 

Porcine_TLR6      TMTGLCVYFDLPWYLRMLCQWTQTRRRARNVPLEELQRTLQFHAFISYSEHDSAWVKNEL 660 

                  *:*.**:*:********:************:*******.******************.** 

 

Human_TLR6        VPYLEKEDIQICLHERNFVPGKSIVENIINCIEKSYKSIFVLSPNFVQSEWCHYELYFAH 720 

Porcine_TLR6      VPCLEKEGIKICLHERNFVPGKSIMENIINCIEKSYKSIFVLSPNFVQSEWCHYELYFAH 720 

                  ** ****.*:**************:*********************************** 

 

Human_TLR6        HNLFHEGSNNLILILLEPIPQNSIPNKYHKLKALMTQRTYLQWPKEKSKRGLFWANIRAA 780 

Porcine_TLR6      HNLFHEGSDNLILILLDPIPQNSIPGKYHKLKALMAQRTYLEWPKEKSKHGPFWANIRAA 780 

                  ********:*******:********.*********:*****:*******:* ******** 

 

Human_TLR6        FNMKLTLVTENNDVKS 796 

Porcine_TLR6      FNIKLKLVAEEDDVKT 796 

                  **:**.**:*::***: 
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Fig. 2.2 (cont.) LRRNT 

Human_TLR7        MVFPMWTLKRQILILFNIILISKLLGARWFPKTLPCDVTLDVPKNHVIVDCTDKHLTEIP 60 

Porcine_TLR7      -VFPMWTLKRQFLILFNIVLISELLGARWFPKTLPCDVSLDAPNAHVIVDCTDKHLTAIP 59 

                   **********:******:***:***************:**.*: ************ ** 

  LRR1   LRR2 

Human_TLR7        GGIPTNTTNLTLTINHIPDISPASFHRLDHLVEIDFRCNCVPIPLGSKNNMCIKRLQIKP 120 

Porcine_TLR7      GGIPTNATNLTLTINHIASITPASFQQLDHLVEIDFRCNCIPVRLGPKDNLCTRRQQIKP 119 

                  ******:**********..*:****::*************:*: **.*:*:* :* **** 

  LRR3   LRR4  LRR5 

Human_TLR7        RSFSGLTYLKSLYLDGNQLLEIPQGLPPSLQLLSLEANNIFSIRKENLTELANIEILYLG 180 

Porcine_TLR7      SSFSKLTYLKALYLDGNQLLEIPRDLPPSLQLLSLEANNIFWIMKENLTELANLEMLYLG 179 

                   *** *****:************:.**************** * *********:*:**** 

    LRR6   LRR7 

Human_TLR7        QNCYYRNPCYVSYSIEKDAFLNLTKLKVLSLKDNNVTAVPTVLPSTLTELYLYNNMIAKI 240 

Porcine_TLR7      QNCYYRNPCNVSFSIEKDAFLSLRNLKLLSLKDNNISAVPTVLPSTLTELFLYNNIIAKI 239 

                  ********* **:********.* :**:*******::*************:****:**** 

    LRR8   LRR9 

Human_TLR7        QEDDFNNLNQLQILDLSGNCPRCYNAPFPCAPCKNNSPLQIPVNAFDALTELKVLRLHSN 300 

Porcine_TLR7      QEDDFNNLSQPQVLDLSGNCPRCYNVPFPCTPCENNAPLQIHLHAFDALTELQVLRLHSN 299 

                  ********.* *:************.****:**:**:**** ::********:******* 

     LRR10   LRR11 

Human_TLR7        SLQHVPPRWFKNINKLQELDLSQNFLAKEIGDAKFLHFLPSLIQLDLSFNFELQVYRASM 360 

Porcine_TLR7      SLQYVPQRWFQNLNKLKELDLSQNFLAKEIGDAKFLHLLPNLVKLDLSFNYELQVYHTFM 359 

                  ***:** ***:*:***:********************:**.*::******:*****:: * 

     LRR12   LRR13 

Human_TLR7        NLSQAFSSLKSLKILRIRGYVFKELKSFNLSPLHNLQNLEVLDLGTNFIKIANLSMFKQF 420 

Porcine_TLR7      NLSDSFSSLKNLKVLRIKGYVFKELKSLNLSPLRNLPNLEVLDLGTNFIKIANLSIFKQF 419 

                  ***::*****.**:***:*********:*****:** ******************:**** 

     LRR14     

Human_TLR7        KRLKVIDLSVNKISPSGDSSEVGFCSNARTSVESYEPQVLEQLHYFRYDKYARSCRFKNK 480 

Porcine_TLR7      KTLKFIDLSVNKISPSGDSSESGFCSGMRTSAESHGPQVLESLHYFRYDEYARSCRFKNK 479 

                  * **.**************** ****. ***.**: *****.*******:********** 

     / /  LRR15   /    /  LRR16 

Human_TLR7        E-ASFMSVNESCYKYGQTLDLSKNSIFFVKSSDFQHLSFLKCLNLSGNLISQTLNGSEFQ 539 

Porcine_TLR7      EPSSSLPLNEDCSMYGQTLDLSRNNIFFIRSSEFQHLTFLKCLNLSGNSISQALNGSEFQ 539 

                  * :* :.:**.*  ********:*.***::**:****:********** ***:******* 

   / / /  LRR17    /  / LRR18 

Human_TLR7        PLAELRYLDFSNNRLDLLHSTAFEELHKLEVLDISSNSHYFQSEGITHMLNFTKNLKVLQ 599 

Porcine_TLR7      PLVELKYLDFSNNRLDLLHSTAFEELRNLEVLDISSNSHYFQSEGITHMLDFTKNLKVLK 599 

                  **.**:********************::**********************:********: 

 LRR19   LRR20   LRR21 

Human_TLR7        KLMMNDNDISSSTSRTMESESLRTLEFRGNHLDVLWREGDNRYLQLFKNLLKLEELDISK 659 

Porcine_TLR7      KLMMNNNDIATSTSTTMESESLRILEFRGNHLDILWRDGDNRYLKFFKNLHKLEELDISE 659 

                  *****:***::*** ******** *********:***:******::**** ********: 

     LRR22   LRR23 

Human_TLR7        NSLSFLPSGVFDGMPPNLKNLSLAKNGLKSFSWKKLQCLKNLETLDLSHNQLTTVPERLS 719 

Porcine_TLR7      NSLSFLPSGVFDGMPPNLKTLSLAKNGLKSFNWGKLQYLQNLETLDLSYNQLKTVPERLS 719 

                  *******************.***********.* *** *:********:***.******* 

  LRR24   LRR25 

Human_TLR7        NCSRSLKNLILKNNQIRSLTKYFLQDAFQLRYLDLSSNKIQMIQKTSFPENVLNNLKMLL 779 

Porcine_TLR7      NCSRSLKKLILKNNEIRNLTKYFLQDAFQLRHLDLSSNKIQVTQKTSFPENVLNNLQILF 779 

                  *******:******:**.*************:*********: *************::*: 

 LRR26    LRRCT 

Human_TLR7        LHHNRFLCTCDAVWFVWWVNHTEVTIPYLATDVTCVGPGAHKGQSVISLDLYTCELDLTN 839 

Porcine_TLR7      LHHNRFLCNCDAVWLVWWVNHTEVTIPFLATDVTCMGPGAHKGQSVVSLDLYTCELDLTN 839 

                  ********.*****:************:*******:**********:************* 

 

Human_TLR7        LILFSLSISVSLFLMVMMTASHLYFWDVWYIYHFCKAKIKGYQRLISPDCCYDAFIVYDT 899 

Porcine_TLR7      FVLFSLSLSAVLFLIVITIANHLYFWDVWYSYHFCKAKIKGYQRLISPNSCYDAFIVYDT 899 

                  ::*****:*. ***:*:  *.********* *****************:.********** 
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Fig. 2.2 (cont.) 
Human_TLR7        KDPAVTEWVLAELVAKLEDPREKHFNLCLEERDWLPGQPVLENLSQSIQLSKKTVFVMTD 959 

Porcine_TLR7      KDPAVTEWVLDELVAKLEDPREKHFNLCLEERDWLPGQPVLENLSQSIQLSKKTVFVMTD 959 

                  ********** ************************************************* 

 

Human_TLR7        KYAKTENFKIAFYLSHQRLMDEKVDVIILIFLEKPFQKSKFLQLRKRLCGSSVLEWPTNP 1019 

Porcine_TLR7      KYAKTEKFKIAFYLSHQRLMDEKVDVIILIFLEKPLQKSKFFQLRKRLCGSSVLEWPTNP 1019 

                  ******:****************************:*****:****************** 

 

Human_TLR7        QAHPYFWQCLKNALATDNHVAYSQVFKETV 1049 

Porcine_TLR7      QAHPYFWQCLKNALATDNHVTYSQVFKETA 1049 

      ********************:********. 

 

 

 LRRNT 

Human_TLR8        MENMFLQSSMLTCIFLLISGSCELCAEENFSRSYPCDEKKQNDSVIAECSNRRLQEVPQT 60 

Porcine_TLR8      ---MTLHFLLLTCLFLLIPDSCEFFTGANYSRSYPCDERKENGSVIAECNNRQLQEVPRR 57 

                     * *:  :***:****..***: :  *:********:*:*.******.**:*****:  

  LRR1   LRR2 

Human_TLR8        VGKYVTELDLSDNFITHITNESFQGLQNLTKINLNHNPNVQHQNGNPGIQSNGLNITDGA 120 

Porcine_TLR8      VGNYVTELDLSDNFIRRITNESFQGLQNLTKINLNHNAKLWPQS------ENGMTITDGA 111 

                  **:************ :********************.::  *.      .**:.***** 

  LRR3   LRR4            LRR5 

Human_TLR8        FLNLKNLRELLLEDNQLPQIPSGLPESLTELSLIQNNIYNITKEGISRLINLKNLYLAWN 180 

Porcine_TLR8      FLNLHHLRELLLEDNQLREIPTGLPESLRELSLIQNKIILLNTKNMFGLRKLESLYLGWN 171 

                  ****::*********** :**:****** *******:*  :..:.:  * :*:.***.** 

                   dddd      LRR6  LRR7 

Human_TLR8        CYFNKVCEKTNIEDGVFETLTNLELLSLSFNSLSHVPPKLPSSLRKLFLSNTQIKYISEE 240 

Porcine_TLR8      CYFT-CNETFIIDEGAFENLTNLKVLSLSFNTLYRVPPKLPSSLTKLYLSNTKIRNINQE 230 

                  ***.   *.  *::*.**.****::******:* :********* **:****:*: *.:* 

        dddddd LRR8   LRR9 

Human_TLR8        DFKGLINLTLLDLSGNCPRCFNAPFPCVPCDGGASINIDRFAFQNLTQLRYLNLSSTSLR 300 

Porcine_TLR8      DFKGLENLRVLDLSGNCPRCFNAPFPCNPCPGDASIQIHPLAFRYLTELRYLNLSSTSLR 290 

                  ***** ** :***************** ** *.***:*. :**: **:************ 

      LRR10      / /   /  LRR11 

Human_TLR8        KINAAWFKNMPHLKVLDLEFNYLVGEIASGAFLTMLPRLEILDLSFNYIKGSYPQHINIS 360 

Porcine_TLR8      RIPATWFENLHHLKVLHLEFNYLMDEIASGEFLAKLPSLEILDLSYNYEQKKYPQYINIS 350 

                  :* *:**:*: *****.******:.***** **: ** *******:** : .***:**** 

   / / LRR12   / / LRR13 

Human_TLR8        RNFSKLLSLRALHLRGYVFQELREDDFQPLMQLPNLSTINLGINFIKQIDFKLFQNFSNL 420 

Porcine_TLR8      HYFANLTSLQILHLRAYVFQELRKEDFQPLRNLLHLKFINLGINFIKQIDFTIFSEFSNL 410 

                  : *::* **: ****.*******::***** :* :*. *************.:*.:**** 

     

                        dd/                             ddd    LRR14 

Human_TLR8        EIIYLSENRISPLVKDTRQSYANSSSFQRHIRKRRSTDFEFDPHSNFYHFTRPLIKPQCA 480 

Porcine_TLR8      SIIYLSENRISPLVNNTGQKNGDRPSFQSHVLKPRSATPKFDPHSNFYHNTKPLIKPQCS 470 

                  .*************::* *. .: .*** *: * **:  :********* *:*******: 

   ddd d   LRR15    LRR16 ddd   /             LRR17  

Human_TLR8        AYGKALDLSLNSIFFIGPNQFENLPDIACLNLSANSNAQVLSGTEFSAIPHVKYLDLTNN 540 

Porcine_TLR8      RYGKALDLSLNSIFFIGPNQFEAFKDIACLNLSSNGNGQVLHGSEFSHLPGIKYLDLTNN 530 

                   ********************* : ********:*.*.*** *:*** :* :******** 

   d / /   ddd ddd///  LRR18    LRR19      dddd 

Human_TLR8        RLDFDNASALTELSDLEVLDLSYNSHYFRIAGVTHHLEFIQNFTNLKVLNLSHNNIYTLT 600 

Porcine_TLR8      RLDFDDDAAFSELPLLEVLDLSYNSHYFRIAGVTHRLGFIQNLPQLRVLNLSHNSIFTLT 590 

                  *****: :*::**. ********************:* ****:.:*:*******.*:*** 
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Fig. 2.2 (cont.)   d    LRR20     d dddddd  LRR21      d 

Human_TLR8        DKYNLESKSLVELVFSGNRLDILWNDDDNRYISIFKGLKNLTRLDLSLNRLKHIPNEAFL 660 

Porcine_TLR8      ETY-LKSTSLKELVFSGNRLDLLWNAQDDRYWQIFKNLSTLTHLDLSSNNLQHIPSEAFL 649 

                  :.* *:*.** **********:*** :*:** .***.*..**:**** *.*:***.**** 

  LRR22   LRR23  LRR24 

Human_TLR8        NLPASLTELHINDNMLKFFNWTLLQQFPRLELLDLRGNKLLFLTDSLSDFTSSLRTLLLS 720 

Porcine_TLR8      NLPQTLTELYISDNRLNFFNWSLLQQFPNLTLLDLSGNELSFLTDSLSKFTTSLQTLILR 709 

                  *** :****:*.** *:****:******.* **** **:* *******.**:**:**:*  

        LRR25                    LRR26    

Human_TLR8        HNRISHLPSGFLSEVSSLKHLDLSSNLLKTINKSALETKTTTKLSMLELHGNPFECTCDI 780 

Porcine_TLR8      QNRISYLPSGLLSEASSLTHLDLSSNQLKMVNISKLHAKTTTNLAILKLDRNPFDCTCDI 769 

                  :****:****:***.***.******* ** :* * *.:****:*::*:*. ***:***** 

                       LRRCT 

Human_TLR8        GDFRRWMDEHLNVKIPRLVDVICASPGDQRGKSIVSLELTTCVSDVTAVILFFFTFFITT 840 

Porcine_TLR8      RDFRKWMDENLKVTIPRLTDVICASPGDQRGRSIVSLELTTCVSDTIAAIICFFTFFVTS 829 

                   ***:****:*:*.****.************:*************. *.*: *****:*: 

 

Human_TLR8        MVMLAALAHHLFYWDVWFIYNVCLAKVKGYRSLSTSQTFYDAYISYDTKDASVTDWVINE 900 

Porcine_TLR8      TVMLAALAHHWFYWDAWFIYHVCLAKVKGYRSLPTSQTFYDAYVSYDTKDASVTDWVMNE 889 

                   ********* ****.****:************.*********:*************:** 

Fig. 2.2 (cont.) 
Human_TLR8        LRYHLEESRDKNVLLCLEERDWDPGLAIIDNLMQSINQSKKTVFVLTKKYAKSWNFKTAF 960 

Porcine_TLR8      LRFHLEESEGKNVLLCLEERDWDPGLAIIDNLMQSINQSKKTIFVLTKKYAKNWNFKTAF 949 

                  **:*****..********************************:*********.******* 

 

Human_TLR8        YLALQRLMDENMDVIIFILLEPVLQHSQYLRLRQRICKSSILQWPDNPKAEGLFWQTLRN 1020 

Porcine_TLR8      YLALQRLMDENMDVIVFILLEPVLQHSQYLRLRQRICKSSILQWPDNPKAEGLFWQSLKN 1009 

                  ***************:****************************************:*:* 

 

Human_TLR8        VVLTENDSRYNNMYVDSIKQY 1041 

Porcine_TLR8      VVLTENDSRYNSLYVNSIK-- 1028 

                  ***********.:**:*** 
Fig. 2.2. Domain characterization of TLRs. / ligand binding residues, d residues involved in dimerization, + residues 

involved in both ligand binding and dimerization. LRR represents leucine rich repeat. LRRNT represents LRR 

amino termini. LRRCT represents LRR carboxy termini.  Human TLR sequences accession numbers: 

TLR1:Q15399; TLR2:O60603; TLR3: NP_003256.1; TLR6:Q9Y2C9; TLR7:NP_057646; TLR8:NP_619542. Porcine 

TLR sequences accession numbers: TLR1:NP_001026945; TLR2:NP_998926.1; TLR3:DQ266435.1 

TLR6:NP_998925.1; TLR7: DQ647699; TLR8: NP_999352.1. For TLR6, human LRRs were determined from their 

alignment with murine TLR6. Asterisks, colons and periods under aligned the aligned sequences indicate complete 

match, strong conservation and weaker conservation of amino acid respectively.  

 

 

 

 

 

 

 



64 
 

 

Fig. 2.3. Species phylogeny of the Suidae. Shown here is a representation of the relationships among members of the 

Suidae used in analyses. The relationships were derived from near complete genome data of each species. The 

posterior probability at each node is 1. 
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Fig. 2.4. Positively selected sites in the three dimensional structure of TLR1/TLR2 heterodimer. Positively selected 

sites are colored in red. A site known to interact with bacterial lipopeptide is colored in blue. Only sites likely to 

affection protein function based on their location within the structure are shown. 
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 Table 2.1 

Gene Exon no
a
 Genomic coordinates of extracellular domain

b 
Aligned length (bp) of 

extracellular domain 

sequences
c 

TLR1 3 8:31628613-31630280:-1 1668 

TLR2 2 8:79825324-79827018:-1 1695 

TLR3 4 15:53849144-53849505:-1 366 

TLR3 5 15:53848182-53848373:-1 192 

TLR3 6 15:53841845-53843311:-1 1467 

TLR6 2 8:31642930-31644612:-1 1683 

TLR7 2 X:10472926-10475370:1 2445 

TLR8 4 X:10509874-10512249:1 2376 
  Table 2.1. Summary of TLR extracellular domains studied 

aExon encoding the extracellular domain 
bGenomic coordinates were determined by blat search of porcine  TLR mRNA sequences against Sus scrofa genome 

assembly build 10.2.  
cSample origin for species for which sequences were obtained are indicated in bracket as follows: Potomochoerus 

larvatus (San diego zoo, USA), Potomochoerus porcus (San diego zoo, USA), Phacochoerus africanus (Omaha’s 

zoo, USA), Babyrousa Babyrousa (San diego zoo, USA), Sus verucossus (Surabaya zoo, Indonesia), Sus celebensis 

(San diego zoo, USA), Sus barbatus (Omaha’s zoo, USA), Sus cebifrons (San diego zoo, USA), Sus scrofa ,Europe, 

(Meinweg, Roerdalen, Netherlands), Sus scrofa, Asia (North China). 
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  Table 2.2 

Gene Model Parameter estimates Log likelihood 

(L) 

2ln∆L
a 

TLR1 M0 ω = 0.3788 -2648.2197 35.9222** 

M3 p0 = 0.2608,  ω0 = 0.2002, p1 = 0.7235, ω1 = 

0.2002, p2 = 0.0157, ω2 = 20.3741  

-2630.2586  

TLR2 M0 ω = 0.4383 -2762.6134 17.2620** 

M3 p0 = 0.0695,  ω0 = 0.2757, p1 = 0.9142, ω1 = 

0.2757, p2 = 0.0163, ω2 = 11.1174  

-2753.9824  

TLR3 M0 ω = 0.2649 -2952.9019 0.0000NS 

M3 p0 = 0.2240,  ω0 = 0.2649, p1 = 0.3124, ω1 = 

0.2650, p2 = 0.4635, ω2 = 0.2650  

-2952.9019  

TLR6 M0 ω = 0.4692 -2695.5056 30.8540** 

M3 p0 = 0.3864,  ω0 = 0.0000, p1 = 0.5357, ω1 = 

0.0000, p2 = 0.0780, ω2 = 6.7044  

-2680.0786  

TLR7 M0 ω = 0.1087 -3980.3407 1.2288NS 

M3 p0 = 0.4460,  ω0 = 0.0000, p1 = 0.2772, ω1 = 

0.0000, p2 = 0.2768, ω2 = 0.3977 

-3979.7263  

TLR8 M0 ω = 0.3085 -3985.5001 21.3048** 

M3 p0 = 0.7187,  ω0 = 0.0000, p1 = 0.1417, ω1 = 

0.0000, p2 = 0.1397, ω2 = 2.3685 

-3974.8477  

Table 2.2. Test of heterogeneity of selective pressure along genes 

p0 is proportion of sites where ω < 1(ω0), p1 is proportion of sites where ω = 1(ω1) 

p2 is proportion of sites where ω >1(ω2) 
a Twice the difference in log-likelihood values between models M0 and M3 

**p < 0.01 
NSNot significant 
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   Table 2.3 

Gene Codons Tests of selection 

PAML 2a PAML M8 FEL  

p < 0.1 

REL  

BF > 50 pp > 0.95 2ln∆La pp > 0.95 2ln∆Lb 

TLR1 117 0.9850 21.3890** 0.9940 21.6814**  167.5190 

434 0.9970  0.9990   5232.9900 

451   0.9610   58.204 

559 0.9930  0.9970   8417.3400 

TLR2 216 0.9580 7.8286** 0.9800 8.0464**  354.448 

338 0.9620  0.9900   370.5550 

TLR6 49      98.3187 

63      107.5270 

79      84.4861 

121      80.5618 

180      84.6772 

183  16.1352 0.9520 16.1358**  742.6930 

187      97.7689 

213      92.1804 

269      98.6309 

307      137.7390 

334   0.9660   1210.1800 

356      104.0040 

386      102.0440 

394      98.9399 

452 0.9880  0.9960  0.0704 1844.8500 

459   0.9540   922.0600 

467      102.7000 

470      79.1197 

501   0.9610   1592.2300 

536      92.1069 

554   0.9560   1087.2700 

560   0.9650   1104.8600 
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Table 2.3 (cont.) 

Table 2.3. Results from site models at codons under persistent positive selection in members of the family Suidae 

pp represents posterior probability in the BEB analysis 

Sites identified by more than one ML method are underlined 
aTwice the difference in log-likelihood values between models M1a and M2a 
bTwice the difference in log-likelihood values between models M7 and M8 

**p < 0.01 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Codons Tests of selection 

PAML 2a PAML M8 FEL  

p < 0.1 

REL  

BF > 50 

TLR8 178  4.6024  5.0782  226.4190 

236      232.4120 

387      260.8170 

388   0.9590   711.3420 

405      300.8590 

412      258.9650 

740      270.1570 

778      233.6280 
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 Table 2.4 

Gene Model Parameters Log 

likelihood 

TLR1 M1 p0 = 0.7411, ω0 = 0.0000, p1 = 0.2589, ω1 = 1.0000  -2640.9531 

 M2 p0 = 0.9843, ω0 = 0.2002, p1 = 0.0000, ω1 = 1.0000 -2630.2586 

  p2 = 0.0157, ω2 = 20.3745  

 M7 p = 0.0050, q = 0.0118 -2641. 0997 

 M8 p0 = 0.9843, p = 24.8444, q = 99.0000, p1 = 0.0157, ω = 20.3864 -2630.2590 

TLR2 M1 p0 = 0.6628, ω0 = 0.0000, p1 = 0.3372, ω1 = 1.0000  -2757.8967 

 M2 p0 = 0.9837, ω0 = 0.2757, p1 = 0.0000, ω1 = 1.0000 -2753.9824 

  p2 = 0.0163, ω2 = 11.1175  

 M7 p = 0.0050, q = 0.0115 -2758. 0063 

 M8 p0 = 0.9837, p = 37.7613, q = 99.0000, p1 = 0.0163, ω = 11.1332 -2753.9831 

TLR3 M1 p0 = 0.7411, ω0 = 0.0000, p1 = 0.2589, ω1 = 1.0000  -2640.9531 

 M2 p0 = 0.9843, ω0 = 0.2002, p1 = 0.0000, ω1 = 1.0000 -2630.2586 

  p2 = 0.0157, ω2 = 20.3745  

 M7 p = 0.0050, q = 0.0118 -2641. 0997 

 M8 p0 = 0.9843, p = 24.8444, q = 99.0000, p1 = 0.0157, ω = 20.3864 -2630.2590 

TLR6 M1 p0 = 0.7018, ω0 = 0.0000, p1 = 0.2982, ω1 = 1.0000  -2688.1462 

 M2 p0 = 0.9221, ω0 = 0.0000, p1 = 0.0000, ω1 = 1.0000 -2680.0786 

  p2 = 0.0780, ω2 = 6.7045  

 M7 p = 0.0050, q = 0.0117 -2688. 1465 

 M8 p0 = 0.9221, p = 0.0050, q = 1.9056, p1 = 0.0780, ω = 6.7045 -2680.0786 

TLR7 M1 p0 = 0.9554, ω0 = 0.0692, p1 = 0.0446, ω1 = 1.0000  -3979.8010 

 M2 p0 = 0.9554, ω0 = 0.0692, p1 = 0.0247, ω1 = 1.0000 -3979.8010 

  p2 = 0.0200, ω2 = 1.000  

 M7 p = 0.1901, q = 1.4764 -3979.7424 

 M8 p0 = 1.0000, p = 0.1901, q = 1.4765, p1 = 0.0000, ω = 1.0000 -3979.7424 

TLR8 M1 p0 = 0.7371, ω0 = 0.0000, p1 = 0.2629, ω1 = 1.0000  -3977.1489 

 M2 p0 = 0.8604, ω0 = 0.0000, p1 = 0.0000, ω1 = 1.0000 -3974.8477 

  p2 = 0.1397, ω2 = 2.3685  

 M7 p = 0.0050, q = 0.0119 -3977.3868 

 M8 p0 = 0.8604, p = 0.0050, q = 2.8051, p1 = 0.1397, ω = 2.3686 -3974.8477 

Table 2.4. Parameter estimates for PAML models used in detecting persistent positive selection in members of the 

family Suidae 

p0  represents proportion of sites with ω < 1 

p1 represents proportion of sites with ω = 1 

p2 represents proportion of sites with ω > 1  

p and q represent parameters of the beta distribution 
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            Table 2.5 

Species Origin Genes 

TLR1 TLR2 TLR6 TLR8 

Codons 

117 434* 451 559 216 338* 183 334 452 459 501 554 560 178 388 

S. scrofa (E) Eurasia Met Leu Ile Glu Lys Ala Met Arg Ile Ser Thr Ser Glu Asp Phe 

S. scrofa (A) Met Leu Ile Glu Lys Ala Met Arg Ile Asn Ile Gly Lys Glu Phe 

S. barbatus Southeast Asia Thr Leu Val Glu Lys Thr X Arg Ile Asn X Gly Glu Asp Phe 

S. celebensis Thr Leu Val Lys Glu Thr Met Gly Val X Ile Gly Glu Glu Phe 

S. cebifrons Thr Leu X X Lys Thr Thr Arg Val Asn Thr Gly Glu Glu Phe 

S. verrucosus Thr Met Ile X Glu Thr Met Gly Ile X Ile Ser Glu Glu Phe 

B. babyrussa Ile Met Val Lys Glu Ala Val Arg Val Ser Ile Gly Lys Glu Phe 

P. larvatus Africa Thr Met Val Glu Glu Ala Val Arg Val Asn Ile Gly Glu Glu Leu 

P. porcus Thr Met Val Glu Glu Lys Val Arg Val Asn Ile Gly Glu Glu Phe 

P. africanus Thr Met Val Lys Glu Ala Val Arg Val Asn Ile Gly Glu Glu Val 
Table 2.5. Positively selected codons within the extracellular domains of TLRs 

*Codon site 434 in TLR1 is under episodic positive selection and codon site 338 in TLR2 is under both persistent and episodic 

positive selection. Other codon sites are under persistent positive selection. Amino acid properties: Met, Ile, Leu, Val, Ala are non-

polar aliphatic; Thr, Ser, Asn are polar neutral; Lys, Arg are polar positive; Glu, Asp are polar negative; Gly is non-polar neutral; 

Phe is non-polar aromatic. (E) represents Europe, (A) represents Asia. X represents an undetermined amino acid. 
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            Table 2.6 

Branch-site REL analysis MEME analysis 

Gene Branch ω
+
 Pr[ω = ω

+
] p value Codons p value 

 
TLR1 Ancestral lineage of Sus 1012.60 0.0002 0.003 434 0.090 

S.verrucosus 785.40 0.0002 0.003 434 0.090 
TLR2 P. porcus 3334.61 0.0001 0.001 338 0.002 

Table 2.6. Branches and codons under lineage specific positive selection in family Suidae 

ω+ represents the ω value inferred for positively selected sites along branch; Pr[ω = ω+]  

represents the proportion of sites inferred to be evolving at ω+  along branch; p represents 

the p-value for episodic selection at branch corrected for multiple testing using the Holm-

Bonferroni method.  
 

 
 
 Table 2.7 

Gene Codon Equivalent codon 

in human 

Functional Information 

TLR1 117 113 In the region (110-132) of cysteine residues participating  in 

disulphide bondsa 

434 430 Adjacent to a glycosylation site (429)a 

559 555 Adjacent to site of SNP (Tyr554Cys) that leads to marked 

impairment of NF-kB activationb 

TLR2 338 337 LRR12 – involved in ligand bindinga 

TLR6 334 334 LRR12 – involved in TLR2-TLR6 heterodimerizationc 

Table 2.7. Positively selected sites predicted to affect TLR function based on human Swiss Prot entries and site 

location in three dimensional TLR structures 

a, b, c represent references: 
a [23] 
b[42] 
c [25] 
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Chapter 3:  Evidence for adaptation of porcine Toll-like receptors 

 

Abstract 

Naturally endemic infectious diseases provide selective pressures for pig populations. Toll-like 

receptors (TLRs) represent the first line of immune defense against pathogens and are likely to play a 

crucial adaptive role for pig populations. This study was done to determine whether wild and domestic 

pig populations representing diverse global environments demonstrate local TLR adaptation. The 

extracellular genomic sequence domains, responsible for interacting with pathogen ligands of bacterial 

(TLR1, TLR2 and TLR6) and viral (TLR3, TLR7 and TLR8) receptors were obtained. Mitochondrial D-

loop region sequences were obtained and a phylogenetic analysis using these sequences revealed a clear 

separation of animals into Asian (n=27) and European (n=40) clades. The TLR sequences were then 

analyzed for population specific positive selection signatures within wild boars and domesticated pig 

populations derived from Asian and European clades. Using within population and between population 

tests for positive selection, a TLR2 derived variant 376A (126Thr), estimated to have arisen in 163,000 

years ago with a frequency of 83.33% within European wild boars, 98.00% within domestic pig breeds of 

European origin, 40.00% within Asian wild boars and 11.36% within Asian domestic pigs was identified 

to be under positive selection in pigs of European origin. The variant is located within the N terminal 

domain of the TLR2 protein 3D crystal structure and could affect ligand binding. This study suggests the 

TLR2 gene contributing to responses to bacterial pathogens has been crucial in adaptation of pigs to 

pathogens. 
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Introduction 

European and Asian wild boars diverged 1.6-0.8 million years (Myr) ago [1] with domestication 

events occurring approximately 9,000 years ago [2]. European wild boars and European domesticated 

pigs and their Asian counterparts may have experienced different selective pressures given that they have 

originated from different continents with different endemic infectious diseases [3,4]. Such differences in 

selective pressures can be exploited to detect immune related genes that have been of adaptive value in 

terms of disease resistance within pig populations.  

The vertebrate immune system is comprised of the innate and acquired immune components. The 

innate immune component is ancient and characterized by rapid and non-specific responses to pathogenic 

microbes while the acquired immune component is characterized by highly specific memory responses. 

The Toll-like receptor (TLR) family represents a class of innate immunity receptors important during 

early phases of infections that also serve as a link between the innate and acquired immune responses [5], 

consequently triggering inflammatory responses to prevent bacterial and viral spread. In vertebrates, 10-

12 TLRs have been identified [6] and are classified based on their cellular location and the type of 

pathogenic ligands they recognize. Cell surface expressed TLRs (TLR1, TLR2, TLR4, TLR5 and TLR6) 

recognize predominantly bacterial ligands and several fungal and parasite ligands while TLR3, TLR7, 

TLR8 and TLR9 are expressed within endosomes and recognize single and double-stranded RNA and 

CpG DNA [7]. Single nucleotide polymorphisms (SNPs) and differences in expression of TLR molecules 

affect immune responses to numerous pathogens and are associated with host resistance to infectious 

diseases [8]. Several non-synonymous substitutions have been detected in porcine TLR genes, especially 

in the extracellular domain of cell surface expressed TLRs [9], suggesting functional relevance of the 

extracellular domain and specific SNPs residing within these regions.   

Naturally occurring porcine diseases endemic to particular geographic locations include African 

swine fever prevalent in sub-Saharan Africa; the ancient Foot and Mouth disease endemic in l parts of 
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Asia, most of Africa and the Middle East; Brucellosis observed in the Middle East, the Mediterranean 

region, sub-Saharan Africa, China, India, Peru, and Mexico; and Swine influenza which is endemic to 

North and South America, Europe and parts of Asia [10]. The occurrence of such locally or regionally 

endemic diseases suggests that long-term adaptation may have occurred between the host and pathogen 

[11]. Thus, such adaptation could be detected as genomic signatures across populations. Recent studies 

have shown that approximately 7% of the pig genome has been influenced by selection either in the form 

of positive or balancing selection [12]. These signals were observed in genomic regions involved in coat 

color, brain and muscle development, growth, metabolism, olfaction and immunity and were specific to 

certain pig populations [12]. Differences in amino acid substitutions and heterozygosity of TLR SNPs in 

European and Asian pigs have been observed and might be due to differences in pathogens encountered in 

the domestication and initial breed development environments of the pigs [13]. Porcine TLRs therefore 

represent candidate immune genes for investigating pathogen driven selective pressures specific to 

geographically defined populations.    

The aim of this study was to determine whether adaptation to local environments of wild and 

domestic European and Asian pig populations resulted in TLR gene genomic signatures of selection. We 

hypothesized that geographically restricted selective pressures resulted in adaptive genomic signatures 

within porcine TLRs. To test this hypothesis, the extracellular domain of bacterial recognizing (TLR1, 

TLR2 and TLR6) and viral sensing (TLR3, TLR7 and TLR8) receptors were sequenced and the following 

specific questions were addressed: 1) whether adaptive selection pressures on pigs from both European 

and Asian environments was evident and 2) whether different selective pressures for each geographic 

environment were identified. 

 

Materials and Methods 

Study populations  

Sixty seven (67) individuals consisting of wild boars and domestic pigs representing populations 

with origins from diverse geographic environments within Asia and Europe were utilized in this study. 
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European wild boars were represented by 11 unrelated individuals from the Netherlands, 2 from Greece 

and 1 each from Switzerland and Italy. European domestic breeds were sampled from unrelated pigs 

including Angler Sattleschwein (1), Mangalitsa (1), Durocs (4), Hampshires (3), Landraces (6), Pietrains 

(4), Charto Murciano (2), Cassertana (2), Retinto (1) and  Cinta Senese (1). Asian wild boars were 

represented by individuals from Northern China (3), from Southern China (1) and from Japan (1). Finally 

Asian domestic pigs included Meishan pigs (10), Jiangquahai pigs (3), Xiang pigs (2), Wannan spotted 

pigs (2), Jinhua pigs (2), Leping spotted pigs (2) and  Zang pig (1). Animals within a group were not 

related (no shared grandparents). In addition, one species individual from the family Suidae 

(Phacochoerus africanus (Common warthog), Sus verrucosus (Javan warty pig) or Sus celebensis 

(Sulawesi warty pig) were also analyzed. Fig. 3.1 shows the geographic sampling  regions.  

 

Loci  Analyzed   

Six TLR genes chosen for this study are described in Table 3.1. The extracellular domains of 

TLRs were examined since they encode the functional sites involved in pathogen ligand recognition. The 

D-loop region of mtDNA, a neutral marker was used to demonstrate the independent domestication 

origins of European and Asian pigs [14]. The D–loop region of the mtDNA of each animal was obtained 

by direct sequencing and analyzed to obtain clustering patterns among the sampled animals. On each of 

the 18 autosomal chromosomes of pigs, 1 noncoding genomic region (2 kb in size) (Table 3.2) was 

chosen to represent neutrally evolving regions. These noncoding genomic regions were at least 50 kb 

from any known or predicted porcine gene, as determined by inspecting the Sus scrofa 10.2 genome 

assembly on the UCSC genome browser. The 50 kb buffer was chosen to minimize the effect of linkage 

disequilibrium with genic SNPs [15].   

 

DNA Sequencing 

DNA extraction, library preparation and sequencing have been described previously [16]. Briefly, 

DNA was extracted from whole blood by using the QIAamp DNA blood spin kit (Qiagen Sciences) and 
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quantity and quality parameters were performed on the Qubit 2.0 fluorometer (Invitrogen) and run on a 

1% agarose gel. Library construction and re-sequencing of individual pig samples utilized 1-3 ug of 

genomic DNA following Illumina library preparation protocols. The library insert size was 300-500 bp 

and sequencing was performed using the 100 paired-end sequencing kit. All DNA were sequenced to 

approximately 8x depth. Quality trimmed reads (phred quality>20, minimum length of pairs of reads = 40 

bp) were aligned to the Sus scrofa reference genome build 10.2 using the unique alignment option of 

Mosaik Aligner (V.1.1.0017). The aligned reads from each of the animals together with the Sus scrofa 

reference genome were stored as bam files for each individual animal.    

The coordinates of genes within the bam files were obtained by querying the Sus scrofa reference 

genome build 10.2 with coding sequences of porcine TLRs from public databases. The accession numbers 

of sequences obtained from the public databases for TLRs were TLR1: NM_001031775, TLR2: 

NM_213761, TLR3: HQ412796, TLR6: NM_213760, TLR7: NM_001097434, TLR8: 

ENSSSCG00000012118. Perl scripts were used to extract the TLR coding sequences and the noncoding 

genomic regions. Sequences were aligned using ClustalW 1.81 [17]. The D-loop region of mtDNA was 

obtained by direct sequencing.  

A 715 bp fragment of the D-loop region was amplified by polymerase chain reaction (PCR). The 

nucleotide sequences of the primers used were: forward 5´CTCCGCCATCAGCACCCAAAG3´ and 

reverse 5´GCACCTTGTTTGGATTRTCG3´ [18]. Final reactions were made to a final volume of 12 µL 

containing each reaction PCR master mix (Thermo Fisher Scientific, USA) which supplies 1.5 mM 

MgCl2,  0.625 U of Taq DNA polymerase and 0.2 mM dNTPs. Then, 5 pmolar of each primer and ~40 ng 

DNA were added to the final reaction. Amplification protocol was performed as follows: 35 cycles, each 

consisting of 95ºC for 30s, 55ºC for 45s and 72º for 90s and then a final extension at 72ºC for 10 min. The 

amplicon was confirmed using 2 µL PCR product by electrophoresis on a 1.5% agarose gel stained with 

ethidium bromate visualized under UV light . The remaining PCR products were purified using a 

Multiscreen PCR 96 cleanup vacuum system (Millipore). Bidirectional sequencing reactions were carried 

out using Big-Dye Terminator Cycle Sequencing Ready Reaction kit v3.1 (Applied Biosystem, USA) in 
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an ABI3730 DNA Analyzer sequencer (Applied Biosystem, USA). In order to correct sequencing errors 

and obtain the consensus sequence for each individual amplicon, GAP 4 was utilized [19], using the 

mtDNA pig sequence GenBank AJ002189 [20] as a reference sequence. 

 

Data analysis  

Porcine TLR reference amino acid sequences were aligned to the corresponding human sequences 

in order to delineate the extracellular domains, the leucine rich repeat (LRR) modules, ligand-binding and 

dimerization domains, and other sub-domains within the extracellular domain (Fig. 3.2). Haplotype 

reconstructions from the aligned sequences for all loci were carried out with PHASE 2.1.1 software [21] 

using the SNiPLAY web-based tool for SNP and polymorphism analysis [22]. For the D-loop region 

sequences of mtDNA, the Neighbor-Joining method (using p-distance) implemented in MEGA version 5 

[23] was used for phylogenetic analysis (Fig. 3.3). A bootstrap of 1000 replicates was conducted. To test 

for departure from the standard neutral model of evolution, Tajima’s D, Fu and Li’s D* and Fu and Li’s 

F* were conducted using DnaSP [24].  

Derived allele under positive selection was determined using the DIND test. The DIND test was 

applied by plotting for all SNPs within the extracellular domain of genes within groups that showed 

deviation from neutrality, the ratio between the ancestral and derived internal nucleotide diversity 

(diversity among haplotypes carrying alleles) against the frequencies of derived alleles. An elevated ratio 

associated with a high derived allele frequency was used as an indication of positive selection of the 

derived allelic state. To define statistical significance, the values estimated for TLRs were then compared 

against the background neutral distribution obtained by means of 10,000 simulations of the extracellular 

domain conditional on the number of segregating sites and the recombination rate of the extracellular 

domain and integrating a simplified version of a wild boar demographic model (initial effective 

population sizes of European and Asian wild boars = ~25000, a bottleneck at 20000 yrs ago and an 

effective population size 10000 yrs ago of 3000 for European wild boars and 13500 for Asian wild boars) 

[25]. Simulations were carried out using Fastsimcoal2 [26]. TLR SNPs that fell beyond 90th and 95th 
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percentiles of the neutral distribution were considered to be under positive selection. Singletons were 

excluded from this analysis.  

Interpopulation differention (FST) and expected loci heterozygosity were calculated  for TLR 

extracellar domain SNPs that were polymorphic in each of two populations being compared and 

intergenic region sequences SNPs using Arlequin ver 3.5 [27]. TLR SNPs showing high levels of 

population differention and thus, the target of positive selection were indentified by comparison of TLR 

SNP FST values and the 90th and 95th percentiles for FST distribution (estimated using heterozygosity 

sliding windows of size 0.025 with increasing step of 0.01) computed for SNPs of the noncoding genomic 

regions. The p value for a SNP was estimated [28] where first, FST values for a TLR SNP was compared 

with FST values from the noncoding genomic region sequences SNPs with an expected heterozygosity 

value of ±0.025 with respect to that observed for the TLR SNP. Then among the noncoding genomic 

region SNPs, the proportion of SNPs with FST values higher than that observed for the  TLR SNP was 

used as the p value. Ancestral and derived states of TLR alleles, were determined by  a strategy [25] 

where an allele is assumed to be ancestral when one of the alleles in Sus scrofa was observed in 

Phacochoerus africanus (Common warthog), Sus verrucosus (Javan warty pig) or Sus celebensis 

(Sulawesi warty pig) in that order, respectively. A maximum likelihood approach implemented in 

GENETREE version 9 [29] was used to estimate  theta (ϴ = 4Neµ)  and age of mutations. The default 

mutation rate (µ = 2.5 x 10-8) of humans was used as there is no known mutation rates for pigs [25]. Time 

estimated in generations (T) were converted into years (t) using a 5-year generation time (g) with the 

formula t=2*Ne*T*g as stated in the GENETREE manual. Median-joining phylogenetic haplotype 

networks were constructed based on SNPs within extracellular domains of the TLRs using Network 

4.6.1.1 (www.fluxus-technology.com). Only haplotypes present in a mimimum of two animals were 

considered. MuPIT Interactive [30] was used to map variants under selection on to three dimensional 

(3D) protein structures. Swiss prot and Ensemble genome browsers were utilized to determine the 

functional consequences of TLR sites under positive selection. 
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Results 

Sequences (67 sequences for each TLR alignment) of the extracellular domains of bacterial 

sensing TLR1, TLR2 and TLR6 and viral sensing TLR3, TLR7 and TLR8 from wild boars and domestic 

pigs of European and Asian origins were obtained. The length of the extracellular domains in terms of 

number of nucleotides of the TLRs ranged from 1668 bases for TLR1 to 2445 bases for TLR7. Amino acid 

length ranged from 556 amino acids for TLR1 to 792 amino acids for TLR7. A total of 136 SNPs were 

identified within the TLR extracellular domains (Table 3.3).   

 

Evidence of positive selection pressure within population  

To determine whether there is evidence of positive selective pressure mediated by infectious 

agents of endemic diseases on pig populations, wild boars and domestic pigs from previously defined 

European and Asian lineages were chosen [31]. The geographic origins of these populations were 

validated by sequencing the mitochondrial D-loop regions of these animals and constructing a 

phylogenetic tree. The Neighbor Joining tree (Fig. 3.3) obtained from analysis of the D-loop region 

sequences revealed two clades of animals representing animals of European and Asian origins. For 

analysis, animals were grouped by geographic origins and domestication status. The groups considered 

were therefore all European animals (wild boars and domestic pigs combined, N = 40), all Asian animals 

(wild boars and domestic pigs combined, N = 27), Asian wild boars (N = 5), European wild boars (N = 

15), Asian domesic pigs (N = 22) and European domestic pigs (N = 25). Gene sequences of bacterial 

sensing TLR1, TLR2, TLR6 and viral sensing TLR3, TLR7 and TLR8 for each animal were extracted from 

whole genome resequenced data from each animal. Analysis of positive selection focused on the 

extracellular domains (Table 3.1) involved in pathogen recognition.  

The following tests were performed to determine evidence of adaptive selection pressure for 

European and Asian pig populations: 1) test of deviation from neutrality (sliding window analysis of 
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Tajima’s D, Fu and Li’s D* and Fu and Li’s F*)  due to shift to a low frequency spectrum polymorphism; 

and 2) test for derived alleles under recent positive selection due to high frequency of the allele in a 

population [32] using the derived intrallelic nucleotide diversity (DIND) test [28]. Given the relatively 

small population sample sizes, genes under selection were defined conservatively as those for which both 

neutrality and DIND test were significant in the same population [33]. Using these stringent criteria, TLRs 

(TLR1, 3, 6, 7 and 8) investigated in this study did not show signatures of adaptive selection (data not 

shown) in any population. Each of the three neutrality tests detected significant (p<0.05) excess of rare 

alleles within the bacterial sensing TLR2 exon 2 (encoding the extracellular domain) of the European 

(wild boars and domestic pigs combined) population (Tajima’s D = -1.80; Fu & Li’s D* = -3.74;  Fu & 

Li’s F* = -3.67, Fig. 3.4) consistent with positive selection or population expansion. Based on the DIND 

test involving SNPs within the extracellular domain of TLR2 of the European population, the derived 

allele TLR2 SNP 376A (126Thr), located on exon 2 of the TLR2 gene with a frequency of 92.5% (83.33% 

within European wild boars and 98.00% within Asian wild boars) was detected as showing evidence of 

positive selection (πA/πD = 6.88; p = 0.055, Fig. 3.5). Three European wild boars were heterozygous, 1 

wild boar was homozygous for the ancestral allele whereas the 11 remaining wild boars were 

homozygous for the derived allele. One European landrace pig was heterozygous whereas all remaining 

European domestic pigs (N=24) were homozygous for the derived allele indicating that the different 

artificial selective pressures on the various breeds have not resulted in variation at this locus. The derived 

allele is at a frequency of 40.00% in Asian wild boars and 11.36% in Asian domestic pigs population. Of 

the 5 Asian wild boars used in this study, 1 northern Chinese wild boar was homozygous for the derived 

allele, 1 northern Chinese wild boar and 1 Japanese wild boar were homozygous for the ancestral allele 

whereas 1 southern Chinses wild boar and 1 northern Chinese wild boar were heterozygous. Seventeen 

Asian domestic pigs were homozygous for the ancestral allele. The remaining 5 Asian domestic pig 

breeds were heterozygous. Details on frequencies for TLR SNPs are as shown in Table 3.3. 

Determination of the ancestral or derived state of an allele is described in the materials and methods 

section. Fig. 3.6.  shows a conservation of the G allele at TLR2 position 376 within three wild pig 
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relatives. The G allele is the ancestral allele and the A allele is derived. The change from the ancestral to 

the derived allele at TLR2 SNP 376 is a nonsynonymous change (TLR2 SNP G376A, Ala126Thr) and is 

likely to affect protein function.  

 

Selective pressure differences between populations  

To determine whether selective pressures were heterogenous between populations, Fst values for 

SNPs within the extracellular domains of TLRs were compared to the empirical distribution of FST from 

SNPs obtained from noncoding genomic region sequences chosen to represent neutrally evolving regions 

(see Materials and methods). The rationale behind this approach was that differences in selective pressure 

between populations could lead to elevated levels of population differentiation at immune genes relative 

to neutrally evolving loci [28]. The nonsynonymous variant TLR2 SNP G376A showed the highest level 

of population differentiation (Fst between European domestic pigs and Asian domestic pigs = 0.86, p = 

0.02 (Fig. 3.7); Fst between European pigs (wild boars and domestic pigs combined) and Asian pigs (wild 

boars and domestic pigs combined) = 0.74, p = 0.08 (Fig. 3.7). A comparison of European wild boars and 

European domestic pigs indicated that TLR8 SNPs were highly differentiated relative to other TLR SNPs 

(Fig. 3.7). However the location of TLR8 gene on the X chromosome means it is prone to higher genetic 

drift which may result in elevated levels of population differentiation for TLR8 SNPs [28]. Fst values 

between European wild boars and European domestic pigs were low relative to those between pigs of 

European and Asian origins, indicating weak differentiation between pig populations from the same 

geographic origin. Asian wild boar population was not compared to any other population in terms of Fst 

given the small number of Asian wild boars involved in this study.   

To determine whether positive selection drives the prevalence of certain TLR haplotypes in 

European and Asian pig populations, haplotype reconstruction involving SNPs within the extracellular 

domain of each TLR was done using the PHASE 2.1.1 software [21] and the evolutionary relationships 

between haplotypes for each TLR  were determined  using a median-joining network. For TLR2, two high 

frequency haplotypes were observed and differed only at TLR2 SNP 376 (Fig. 3.8, Table 3.4), where the 
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high frequency haplotype (H_1) dominated by the European individuals carried the derived SNP 376A 

allele  and the high frequency haplotype (H_8) dominated by Asian individuals carried the ancestral SNP 

G376 allele. The high frequency haplotype within the European population was detected in all the 

European domestic pigs and the majority (10/15) of European wild boars. In order to estimate the 

divergence time of TLR2 extracellular domain region and the age of TLR2 SNP G376A (Ala126Thr), 

maximum coalescence analysis by GENETREE [29] was utilized. Using all populations, the estimated 

time to most common ancestor (TMRCA) for the entire TLR2 extracellular domain geneology was 0.900 ± 

0.28Mya, which is close to the ~ 1Mya since the split of the Asian and European wild boar, and the age of 

the 126Thr variant assuming neutrality was estimated to be 0.163 ± 0.08 Mya. The age of the derived 

allele and the presence of the haplotype carrying the derived allele in most European wild boars and all 

European domestic pigs involved in this study indicate that the  allele arose within the wild boars, prior to 

the domestication process.   

 

Functional relevance of SNPs under positive selection  

To determine whether variants under selection are within functional domains of TLR receptors, 

variants were mapped onto TLR protein 3D structure. The TLR2 variant 126Thr is located within the N-

terminal (on the fourth leucine rich repeat (Fig. 3.2)) and alpha helices of  the TLR2 protein and is surface 

exposed (Fig. 3.9), indicating a likely role in protein-protein interactions. Porcine TLR2 amino acid 

sequence were also compared to human TLR2 amino acid sequence from Swiss-Prot to examine whether 

the site under positive selection was within functionally relevant domains of the protein. TLR2 variant 

126Thr did not fall within any known region of functional region. Lastly, the TLR2 variation table in 

Ensembl was examined to determine the effects of substitutions at TLR2 amino acid site 126 on protein 

function. SIFT predicts whether an amino acid substitution affects protein function based on sequence 

homology and the physico-chemical similarity between alternate amino acids [34]. Substitutions with 

scores < 0.05 are called ‘deleterious’ and those with scores > 0.05 are called ‘tolerated’. Within Ensembl, 

the substitution from Threonine to Alanine  at porcine TLR2 126 (dbSNP identifier rs81218810) is 
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predicted by SIFT to be deleterious (score = 0.03), indicating that substitution at the TLR2 amino acid site 

126 affects protein function.          

 

Discussion 

This study supports the hypothesis that geographically restricted selective pressures on European 

and Asian wild boars that have diverged over 1mya have resulted in genomic signatures of adaptation in 

porcine TLRs. Specifically, TLR2 SNP 376A (126Thr) of the extracellular domain of European pig (wild 

boars and domestic pigs combined) and not the Asian pig population showed evidence of positive 

selection, consistent with previous studies that have demonstrated that certain polymorphisms in TLR2 

extracellular domains of primates [35], wild rodents [36] and cattle [37] involved in pathogen recognition 

have evolved adaptively confering selective advantage. Porcine TLR2, is found at the distal end of the q 

arm of Chromosome 8, in a region with identified QTLs for some immune related traits [38] and is 

therefore a potential target for positive selection. Furthermore, the association of TLR2 with a wider panel 

of ligands and the need for heterodimerization (TLR2 forms heterodimers with TLR1 and TLR6 to 

recognize lipopetide components of gram-positive and gram-negative bacterial cell walls) indicates that 

the TLR2 region experiences contrasting evolutionary actions, including adaptive evolution to the 

environment and pathogens [37]. A comparison of the genomic coordinates [8:79,824,541-79,834,592] of 

porcine TLR2 to recombination maps computed for 4 different pedigrees [39] indicate that Porcine TLR2 

lies in a region with a relatively low recombination rate on Chromosome 8. Regions with low 

recombination rate have been shown to be prone to positive selection [40].  

Within population based tests for positive selection utilized here have previously been employed 

to detect SNPs under positive selection in immune-related  genes (interferons and Toll-like receptors) 

within European and Asian  human populations [28,33]. The positive selection of  the derived allele TLR2 

SNP 376A (126Thr) in European pig population based on within population tests is likely due to selective 

pressure mediated by bacterial infectious agents encountered by the European wild boars following 
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divergence from their Asian counterparts. Furthermore, the conservation of the ancestral allele across the 

three wild pig relatives, none of which have origins in the European continent, suggests that the derived 

allele has arisen in response to selective pressure pertaining to Europe. In humans, clinical genetic studies 

have indicated a role of TLR2 coding region polymorphisms in immune response to bacteria [41,42], 

demonstrating the action of selective pressure of bacterial origin on TLR2 from a clinical perspective.  

The estimated age of the TLR2 126Thr variant, its presence in European wild boars, European 

domestic pigs, Asian wild boars and Asian domestic in this study supports a situation where the selective 

pressure may have been of an ancient nature and present prior to the domestication process. The variant is 

likely to be of adaptive value to both European wild boars and their domesticated counterparts as they 

share some common bacterial agents [43], some of which may have persisted over extended  periods. In 

this regard, one can expect that the selective pressure experienced by the European wild boars will persist 

in the domestic pigs. This may partly explain the high frequency of the derived allele in both European 

wild boars and domestic pigs. Consistent with our observation of high frequency of a derived allele in 

both European wild boar and domestic pig probably in response to pathogen mediated selective pressure, 

genetic variability in wild boar populations have been detected to be preserved in local domestic breeds at 

genomic sites with potential phenotypic effects [44]. The European domestic pig breeds involved in this 

study included both local and commercial breeds that have experienced artificial selective pressures of 

different intensities. For example, Charto Murciano, Cinta Senese, Cassertana and Mangalitsa are local 

breeds and are not subjected to intense artificial selective pressures as experienced by commercial pigs 

like Pietrain, Duroc and Landrace [44]. These differences have however not resulted in much variation at 

the locus under positive selection as apart from one landrace breed that was heterozygous, all other 

European domestic pigs were homozygous for the derived allele. Therefore, as mentioned earlier, the 

selective pressure responsible for the positive selective might have been in place before the domestication 

process. The estimated age of 163,000 ± 80,000 years of the derived allele under positive selection 

coincides with the late middle Pleistocene periods when  there was an initiation of European wild boar 

expansion (about 190,000 years ago [45]) and when Sus scrofa was spreading from southeastern to 
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northern eastern area of the Asian continent (about 140,000 to 253,000 years ago [46]). This would have 

provided the necessary environment for the spread of infectious diseases that would lead to adaptation at 

host genes. As the derived allele under selection is found in both European and Asian pig populations, 

determining its origin is a bit of a challenge. Our analysis revealed high Fst values for certain TLR alleles 

between European and Asian pig populations with the highest genetic differentiation detected for TLR2 

SNP G376A (Ala126Thr). This may be due to different selective pressures associated with each 

population given that historically, different continental populations have have been exposed to different 

infectious agents [3,4]. TLR2 mediates host immune response to gram positive bacteria and in the case of 

pigs, gram positive bacteria challenges peculiar to specific  continents have been documented. For 

example, the methiclin-resistant staphylococcus aureus sequence type (ST) 398 have been detected to be 

highly prevalent among pigs in Europe and North America whereas ST9 is predominant in Asia [47–49]. 

Such heterogenous selectives pressures across populations can result in positive selection for resistance 

alleles in certain populations. A similar approach of genetic differentiation (Fst) between populations has 

been used to detect geographically restricted adaptation at type III interferons in European and Asian 

human populations [33]. In a comparison of European and Chinese pig populations utilizing Fst outlier 

tests, the TLR4 C7485C have been shown to be under positive selection [50]. Two haplotypes with 

highest frequencies are differentiated at TLR2 SNP 376, (Ala126 for major Asian haplotype and 126Thr 

for the major European haplotype), further supporting a possible role of positive selection at this site.  

Even though the Swiss Prot database did not indicate that TLR2 site 126 is within a functionally 

relevant region of the TLR2 protein, the LRR4 within which TLR2 site 126 is located may be of functional 

relevance given that it contains TLR2 site 136, where amino acid substitution (Pro136Ala) is associated 

with the prevalence of pneumonia in pigs [9]. Therefore one can speculate that TLR2 Ala126Thr can be of 

medical relevance to porcine diseases. Non-synonymous SNPs in LRR domains have been suggested to 

dramatically alter the ability of the molecule to identify extracellular pathogens [51]. The nonsynonymous 

nature of the TLR2 SNP G376A substitution, which causes a change of amino acid property from a non-

polar to a polar amino acid (Ala126Thr) suggests that the substitution may be important in adaptation of 
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European pigs. The location of TLR2 126Thr within the alpha helices of the 3D structure of TLR1/TLR2 

complex and at the N-terminal domain of the TLR2 protein suggests it it is important for ligand detection 

for a variety of ligands including lipoteichoic acid and peptidoglycan [52,53]. The ‘deleterious’ nature of 

the threonine to alanine substitution at TLR2 site 126 as predicted by SIFT further suggests this site is 

functionally relevant.  

Results presented here suggest a role of pathogen mediated selective pressures among pig 

populations in driving the differentiation at TLR2 SNP G376A (Ala126Thr). Future experimental 

functional analyses are required to determine how such SNP variant affects porcine immune response. A 

recent study [36] involving a wild rodent population has identified an association between Borrelia 

infection and haplotypes carrying the variants Ala and Thr (TLR2 Thr276Ala) located within the 

extracellular domain [36]. The study of Tschirren et al. [36] thus has demonstrated a role of alanine-

threonine substitutions within TLR2 in infectious diseases.  

  

Conclusions        

In conclusion, this study provides evidence, based on within and between population tests, that 

European wild boars and domestic pigs show evidence of adaptation which is reflected in TLR2 as 

signatures of selection, whereas no such evidence was observed in Asian wild boars and domestic breeds. 

Thus, our study suggests that TLR2 126Thr present in European wild boars, European domestic pigs, 

Asian wild boars and Asian domestic pigs has evolved under positive selection within the European pigs 

involved in this study, probably in response to pathogen mediated selective pressures. Experimental 

studies designed to investigate the role of the TLR2 126Thr in ligand binding and subsequent immune 

response are needed.   
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Figures and Tables 

 

 

 
 

Fig. 3.1.  Geographic locations from where animal samples were obtained. 
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  LRRNT LRR1 

Human_TLR2        MPHTLWMVWVLGVIISLSKEESSNQAS-LSCDRNGICKGSSGSLNSIPSGLTEAVKSLDL 59 

Porcine_TLR2      MPCALWTAWVLGIVISLSKEGAPHQASSLSCDPAGVCDGRSRSLSSIPSGLTAAVKSLDL 60 

                  ** :** .****::****** :.:*** ****  *:*.* * **.******* ******* 

     LRR2   LRR3 

Human_TLR2        SNNRITYISNSDLQRCVNLQALVLTSNGINTIEEDSFSSLGSLEHLDLSYNYLSNLSSSW 119 

Porcine_TLR2      SNNRIAYVGSSDLRKCVNLRALRLGANSIHTVEEDSFSSLGSLEHLDLSYNHLSNLSSSW 120 

                  *****:*:..***::****:** * :*.*:*:*******************:******** 

  LRR4   LRR5  LRR6 

Human_TLR2        FKPLSSLTFLNLLGNPYKTLGETSLFSHLTKLQILRVGNMDTFTKIQRKDFAGLTFLEEL 179 

Porcine_TLR2      FKSLSTLKFLNLLGNPYKTLGEAPLFSHLPNLRILKIGNNDTFPEIQAKDFQGLTFLQEL 180 

                  **.**:*.**************:.*****.:*:**::** ***.:** *** *****:** 

     LRR7   LRR8 

Human_TLR2        EIDASDLQSYEPKSLKSIQNVSHLILHMKQHILLLEIFVDVTSSVECLELRDTDLDTFHF 239 

Porcine_TLR2      EIGASHLQRYAPKSLRSIQNISHLILHMRRPALLPKIFVDLLSSLEYLELRNTDFSTFNF 240 

                  **.**.** * ****:****:*******::  ** :****: **:* ****:**:.**:* 

   LRR9  / /  LRR10  / /    /    //  

Human_TLR2        SELSTGETNSLIKKFTFRNVKITDESLFQVMKLLNQISGLLELEFDDCTLNGVGNFRASD 299 

Porcine_TLR2      SDVSINEHCTVMKKFTFRKAEITDASFTEIVKLLNYVSGALEVEFDDCTLNGRGDLSTSA 300 

                  *::* .*  :::******:.:*** *: :::**** :** **:********* *:: :*  

      LRR11   LRR12 

  /  / /  /d/ ddd+//  /   /  /  /d d/++/+  /    

Human_TLR2        NDRVIDPGKVETLTIRRLHIPRFYLFYDLSTLYSLTERVKRITVENSKVFLVPCLLSQHL 359 

Porcine_TLR2      LDTIKSLGNVETLTVRRLHIPQFFLFYDLRSIYSLTGAVKRITIENSKVFLVPCSLSQHL 360 

                   * : . *:*****:******:*:***** ::****  *****:********** ***** 

 LRR13   d d dddd d     LRR14     d   LRR15   

Human_TLR2        KSLEYLDLSENLMVEEYLKNSACEDAWPSLQTLILRQNHLASLEKTGETLLTLKNLTNID 419 

Porcine_TLR2      KSLEYLDLSENLMSEEYLKNSACEHAWPFLHTLILRQNHLKSLEKTGEVLVTLKNLTNLD 420 

                  ************* **********.*** *:********* *******.*:*******:* 

     LRR16   LRR17     LRR18 

Human_TLR2        ISKNSFHSMPETCQWPEKMKYLNLSSTRIHSVTGCIPKTLEILDVSNNNLNLFSLNLPQL 479 

Porcine_TLR2      ISKNNFDSMPETCQWPEKMKYLNLSSTRIHSLTHCLPQTLEVLDISNNNLNSFSLSLPQL 480 

                  ****.*.************************:* *:*:***:**:****** ***.**** 

      LRR19     LRR20 

Human_TLR2        KELYISRNKLMTLPDASLLPMLLVLKISRNAITTFSKEQLDSFHTLKTLEAGGNNFICSC 539 

Porcine_TLR2      KELYISRNKLKTLPDASFLPMLSVLRISRNTINTFSKEQLDSFQKLKTLEAGGNNFICSC 540 

                  ********** ******:**** **:****:*.**********:.*************** 

LRRCT 

Human_TLR2        EFLSFTQEQQALAKVLIDWPANYLCDSPSHVRGQQVQDVRLSVSECHRTALVSGMCCALF 599 

Porcine_TLR2      DFLSFTQGQQALAQVLSDWPENYLCDSPSHVRGQRVQDTRLSLTECHRVAVVSVVCCALF 600 

                  :****** *****:** *** *************:***.***::****.*:** :***** 

 

Human_TLR2        LLILLTGVLCHRFHGLWYMKMMWAWLQAKRKPRKAPSRNICYDAFVSYSERDAYWVENLM 659 

Porcine_TLR2      LLLLLTGALCHHFHGLWCMKMMWAWLQAKRKPRKAPRRDVCYDAFVSYSEQDSYWVENLM 660 

                  **:****.***:***** ****************** *::**********:*:******* 

 

Human_TLR2        VQELENFNPPFKLCLHKRDFIPGKWIIDNIIDSIEKSHKTVFVLSENFVKSEWCKYELDF 719 

Porcine_TLR2      VQELEHFQPPFKLCLHKRDFIPGKWIIDNIIDSIEKSQKTIFVLSENFVKSEWCKYELDF 720 

                  *****:*:*****************************:**:******************* 

 

Human_TLR2        SHFRLFDENNDAAILILLEPIEKKAIPQRFCKLRKIMNTKTYLEWPMDEAQREGFWVNLR 779 

Porcine_TLR2      SHFRLFDENDDTAILILLEPIEKKTIPQRFCKLRKIMNTRTYLEWPADETQREGFWLNLR 780 

                  *********:*:************:**************:****** **:******:*** 

 

Human_TLR2        AAIKS 784 
Porcine_TLR2      AAIKS 785 

Fig. 3.2.  Alignment of porcine TLR2 amino acid sequences and human TLR2 amino acid sequences to delineate 

LRRs, and functional domains of porcine TLRs.  / ligand binding residues, d residues involved in dimerization, + 

residues involved in both ligand binding and dimerization. Asterisks, colons and periods under the aligned 

sequences indicate complete match, strong conservation and weaker conservation of amino acids respectively. 
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Fig. 3.3.   Neighbor-joining phylogeny of the partial D-loop region sequences of the mitochondria DNA.  Red 

branches represent pigs of European origin and green branches represent pigs of Asian origin.     
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Fig. 3.4.  Sliding window plots for TLR2 gene. Sliding window plots of Tajima’s D, Fu & Li’s F* and Fu & Li’s D* 

tests within the European (wild boars and domestic pigs combined) porcine population using window length of 

1000bp and step size of 250bp. The white box represents the 5 upstream  region, the thick black line represent the 

intronic region, the grey boxes show the exonic regions and the extracellular domain is represented by the box with 

light down diagonal lines. The distal part of the extracellular domain show significant values for neutrality indices. 
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Fig. 3.5.  Positive selection for TLR2. Detection of positive selection in European (wild boars and domestic pigs 

combined) porcine population TLR2 extracellular domain using the DIND test. The short and long dashed lines 

represent the  90th and 95th percentiles of the empirical distribution of  expected πA/πD values obtained from 10,000 

simulations of the the extracellular domain conditional on the number of segregating sites and the recombination 

rate of the extracellular domain and integrating the wild boar demographic model previously described [25]. Green 

dots represent TLR2 SNPs under neutrality and red dot represents TLR2 SNPs under positive selection. 

 

 

 

Fig. 3.6.  Alignment of TLR2 sequences of Suidae species. Illustrated is the  G allele at nucleotide position 376 

within TLR2 as the ancestral allele. 

  



 

99 
 

 

Fig. 3.7.  Positive selection detection at TLR SNPs on the basis of population differentiation. FST is plotted as a 

function of expected  heterozygosity for every SNP between (a); Asian (wild boars and domestic pigs combined) 

versus European (wild boars and domestic pigs combined)  porcine populations (b); Asian domestic pig versus 

European domestic pig populations; and (c) European wild boar versus European domestic pig populations. Dots 

represent TLR SNPs. The short and long dashed lines represent the 90th and 95th percentiles of the empirical SNP 

distribution of FST of The noncoding genomic region sequences. 
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Fig. 3.8.  Median-joining network for haplotypes at the TLR2 extracellular domain. The circles represent haplotypes 

and the size of  the circles are proportional to the frequency of the haplotypes. The mutation positions are shown 

along branches as red numbers. Asian wild boars, Asian domestic pigs, European wild boars and European domestic 

pigs populations are shown in black, white, deep green and light green colors respectively. SNP 376, under positive 

selection is boxed and differentiates the Asian and European populations.  
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Fig. 3.9.  Location of amino acid residues under selection in TLR2 3D protein structure. Amino acid residue TLR2 

126Thr under positive selection within the European (wild boars and domestic pigs combined) porcine population is 

shown within the crystal structure of TLR1/TLR2 heterodimer (PDB ID 2Z7X)  induced by binding of a tri-acylated 

lipopeptide.  
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 Table 3.1 

 

 

Gene 

 

 

Exon no
a
 

 

Genomic coordinates 

of extracellular 

domain 

Aligned length (bp) 

of extracellular 

domain sequences 

TLR1 3 8:31628613-31630280:-

1 

1668 

TLR2 2 8:79825324-79827018:-

1 

1695 

TLR3 4 15:53849144-

53849505:-1 

366 

TLR3 5 15:53848182-

53848373:-1 

192 

TLR3 6 15:53841845-

53843311:-1 

1467 

TLR6 2 8:31642930-31644612:-

1 

1683 

TLR7 2 X:10472926-

10475370:1 

2445 

TLR8 4 X:10509874-

10512249:1 

2376 

D-loop region of 

mtDNA 

  598 

  Table 3.1. Summary of TLR extracellular domains  studied 
aExon encoding extracellular domain 
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   Table 3.2 

Control sequence  Genomic coordinates* 

Chr1 1: 196113933-196115932 

Chr2 2: 24343289-24345288 

Chr3 3: 22621121-22623120 

Chr4 4: 25952645-25954644 

Chr5 5: 56514331-56516330 

Chr6 6: 106599095-106601094 

Chr7 7: 75443317-75445316 

Chr8 8: 101852934--101854933 

Chr9 9: 98181590-98183589 

Chr10 10: 41491552-41493551 

Chr11 11: 32898992-32900991 

Chr12 12: 30205604-30207603 

Chr13 13: 100433088-100435087 

Chr14 14: 45367685-45369684 

Chr15 15: 10096184-10098183 

Chr16 16: 31646612-31648611 

Chr17 17: 7579504-7581503 

Chr18 18: 38554557-38556556 
  Table 3.2.  Genomic coordinates of noncoding genomic region 

  *The genomic coordinates are on the positive strand. 
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 Table 3.3 

 

 

Gene 

 

 

SNP name 

Allele frequency
a
 

Wild boars Domestic pigs 

EWB (N=15) AWB (N=5) ED (N=25) AD (N=22) 

TLR1 A156G 100.00 60.00 88.00 81.82 

 C204T 100.00 90.00 100.00 90.91 

 A329T 100.00 100.00 98.00 100.00 

 C338T 100.00 100.00 100.00 68.18 

 T350C 100.00 50.00 90.00 75.00 

 G391A 100.00 90.00 100.00 97.73 

 A403G 100.00 100.00 100.00 77.27 

 C489T 73.33 100.00 94.00 100.00 

 G505A 100.00 90.00 100.00 97.73 

 T519C 100.00 90.00 100.00 97.73 

 T532G 100.00 90.00 100.00 97.73 

 C537T 100.00 100.00 100.00 95.46 

 C648T 70.00 90.00 94.00 61.36 

 G649A 100.00 90.00 100.00 97.73 

 G697A 100.00 100.00 100.00 95.46 

 T798C 30.00 100.00 46.00 97.73 

 C840T 100.00 60.00 88.00 59.09 

 G855A 100.00 60.00 88.00 61.36 

 C900T 100.00 100.00 100.00 61.36 

 C966T 100.00 50.00 88.00 52.27 

 A1095G 100.00 100.00 100.00 95.46 

 C1278C 100.00 50.00 88.00 56.82 

 T1305C 100.00 100.00 100.00 95.46 

 C1319T 100.00 100.00 100.00 70.45 

 A1351G 100.00 70.00 88.00 61.36 

 A1373G 100.00 60.00 98.00 81.82 

 T1499C 100.00 80.00 86.00 97.73 

 A1579G 100.00 100.00 94.00 95.46 

 G1636C 100.00 80.00 100.00 100.00 

 G1641A 100.00 80.00 96.00 93.18 

 C1647T 100.00 100.00 100.00 72.73 

 A1657G 100.00 100.00 96.00 61.36 

 T1669A 100.00 100.00 96.00 95.46 

 G1675A 100.00 90.00 100.00 38.64 

 C1695T 100.00 60.00 90.00 70.45 

TLR2 A159G 100.00 100.00 100.00 97.73 

 C198A 100.00 80.00 100.00 100.00 

 C375T 100.00 80.00 100.00 100.00 

 A376G 83.33 40.00 98.00 11.36 

 C406G 100.00 70.00 100.00 97.73 

 C411T 86.67 100.00 98.00 100.00 

 C570T 100.00 100.00 100.00 97.73 

 T609C 80.00 100.00 96.00 100.00 

 G629C 86.67 100.00 96.00 100.00 

 A646G 100.00 70.00 100.00 95.46 
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Table 3.3 (cont.) 

 

 

Gene 

 

 

SNP name 

Allele frequency
a 

Wild boars Domestic pigs 

EWB (N=15) AWB (N=5) ED (N=25) AD (N=22) 

TLR2 A715C 93.33 100.00 98.00 100.00 

 A716G 93.33 80.00 98.00 97.73 

 G819C 100.00 90.00 100.00 84.09 

 G1012A 100.00 90.00 100.00 93.18 

 A1170G 96.67 100.00 100.00 100.00 

 A1294G 100.00 80.00 100.00 97.73 

 C1475T 100.00 100.00 100.00 97.73 

 T1494C 100.00 90.00 100.00 97.73 

 G1510C 100.00 100.00 100.00 84.09 

 A1549C 100.00 90.00 100.00 100.00 

 G1739T 96.67 100.00 100.00 100.00 

 G1746A 100.00 100.00 100.00 97.73 

TLR3 G95A 100.00 100.00 100.00 97.73 

 G153A 100.00 80.00 100.00 100.00 

 T159C 100.00 80.00 100.00 100.00 

 A405T 90.00 100.00 100.00 100.00 

 C798A 97.73 100.00 100.00 100.00 

 C800T 97.73 100.00 100.00 100.00 

 A1116T 100.00 70.00 82.00 61.36 

 T1479C 100.00 100.00 98.00 100.00 

 C1647T 100.00 30.00 82.00 29.55 

 C1722A 100.00 100.00 98.00 100.00 

 G1857A 100.00 100.00 98.00 100.00 

 G1872A 100.00 80.00 84.00 47.73 

TLR6 C133T 100.00 80.00 100.00 97.73 

 G228A 100.00 80.00 76.00 93.18 

 A266G 100.00 30.00 66.00 11.36 

 C341T 100.00 100.00 100.00 95.46 

 G663T 56.67 100.00 92.00 100.00 

 A882G 100.00 80.00 98.00 95.46 

 G919C 100.00 80.00 100.00 100.00 

 C931T 100.00 100.00 98.00 100.00 

 G977A 100.00 100.00 98.00 100.00 

 C1061T 100.00 90.00 76.00 90.91 

 C1124G 96.67 100.00 100.00 100.00 

 A1259G 100.00 70.00 88.00 15.91 

 G1284A 100.00 80.00 80.00 93.18 

 T1329C 100.00 80.00 100.00 100.00 

 A1354G 100.00 80.00 82.00 97.73 

 G1376A 100.00 20.00 78.00 77.27 

 G1391A 100.00 100.00 98.00 100.00 

 G1438C 100.00 90.00 86.00 95.46 

 C1502T 86.67 0.00 74.00 11.36 

 A1660G 100.00 80.00 98.00 95.46 

 G1678A 100.00 80.00 88.00 29.55 

 T1698C 93.33 60.00 80.00 34.09 

 G1729A 100.00 80.00 100.00 100.00 
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Table 3.3 (cont.) 

  Allele frequency
a 

  Wild boars Domestic pigs 

Gene SNP name EWB (N=15) AWB (N=5) ED (N=25) AD (N=22) 

TLR7 G129A 100.00 100.00 100.00 94.12 

 A357G 100.00 85.71 100.00 73.53 

 C465T 100.00 100.00 100.00 97.06 

 C520T 100.00 71.43 100.00 100.00 

 T663G 100.00 100.00 97.56 100.00 

 T792C 100.00 85.71 100.00 97.06 

 C936T 100.00 100.00 100.00 97.06 

 C1019A 78.26 71.43 65.85 100.00 

 A1031G 100.00 100.00 100.00 94.12 

 A1129C 100.00 100.00 100.00 97.06 

 G1319A 100.00 100.00 100.00 82.35 

 T1413C 91.30 57.14 100.00 52.94 

 C1479A 100.00 85.71 100.00 100.00 

 C1633T 100.00 100.00 100.00 88.24 

 C1914T 100.00 100.00 100.00 82.35 

 T1917C 100.00 100.00 100.00 97.06 

 G2034A 100.00 85.71 97.56 76.47 

 C2160T 100.00 85.71 97.56 79.41 

 A2232G 78.26 100.00 63.41 100.00 

TLR8 C99T 65.22 100.00 31.71 100.00 

 G124A 100.00 100.00 100.00 79.41 

 G156T 100.00 85.71 100.00 88.24 

 C177A 100.00 100.00 100.00 79.41 

 T199C 34.78 57.14 73.17 100.00 

 A273C 100.00 100.00 97.56 100.00 

 C309T 100.00 100.00 100.00 88.24 

 A423G 34.78 100.00 73.17 100.00 

 A534C 26.09 85.71 70.73 88.24 

 A570T 30.43 100.00 75.61 85.29 

 C636T 100.00 100.00 100.00 64.71 

 G864T 100.00 71.43 97.56 94.12 

 T907C 39.13 42.86 73.17 61.76 

 T1150A 100.00 85.71 100.00 100.00 

 C1281T 100.00 57.14 100.00 100.00 

 A1593G 100.00 100.00 100.00 88.24 

 T1605C 100.00 71.43 97.56 88.24 

 G1647A 100.00 85.71 100.00 100.00 

 T1710A 69.57 85.71 26.83 100.00 

 C1740T 100.00 85.71 100.00 52.94 

 A2144G 95.65 100.00 100.00 100.00 

 C2338T 100.00 85.71 100.00 82.35 

 A2394G 82.61 71.43 31.71 88.24 

 C2397T 100.00 85.71 100.00 82.35 

 G2439A 100.00 100.00 90.24 100.00 

Table 3.3. Polymorphic positions in TLR1, TLR2, TLR3, TLR6, TLR7 and TLR8 in wild boars and   domestic pigs 
aThe frequency of the first allele. The number in SNP name indicates nucleotide position of SNPs within TLR 

coding sequences. EWB European wild boar, AWB Asian wild boar, ED European domestic pig, AD Asian 

domestic pigN number of animals  
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 Table 3.4 

Haplotype SNPs 

376 411 609 629 646 715 716 819 1012 1510 

H_1 (70) A C T G A A A G G G 

H_2 (3) G T T C A C G G G G 

H_4 (4) G C T G A A A C G C 

H_5 (6) A C C G A A A G G G 

H_8 (33) G C T G A A A G G G 

H_10 (2) G C T G A A A C A C 

H_13 (2) A C T C A A A G G G 

H_14 (2) G C T G G A A G G G 

Table 3.4. Haplotypes of TLR2 extracellular region 

Numbers in brackets are frequencies of the haplotypes 
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Chapter 4: Evolutionary patterns of Suidae genes involved in Toll-like receptor signaling pathway 

 

Abstract 

 

The Toll-like receptor (TLR) signaling pathway constitutes an essential component of the innate 

immune system. The pathway is characterized by highly conserved proteins, indicative of a critical role in 

host survival. Selective constraints on genes therefore might vary depending on the gene’s position within 

the pathway. Thus, we investigated whether gene position might influence protein evolution in TLR 

signaling pathway across the genomes of the family Suidae. The members include the European Sus 

scrofa, Asian Sus scrofa, Sus verrucosus, Sus celebensis, Sus scebifrons, Sus barbatus, Babyrousa 

babyrussa, Potamochoerus larvatus, Potamochoerus porcus and Phacochoerus africanus. A total of 33 

TLR signaling pathway genes were retrieved from resequencing data of these members of the family 

Suidae. The evolutionary parameter ω (dn/ds) had an overall mean of 0.1668 across genes, indicating high 

functional conservation within the signaling pathway. A significant relationship was inferred between the 

network parameters gene position, number of protein-protein interactions, protein length and the 

evolutionary parameter dn (nonsynonymous substitutions) such that downstream genes had lower 

nonsynonymous substitution rates, more interactors and shorter protein length than upstream genes. Gene 

position was also significantly correlated with the number of protein-protein interactions and protein 

length. Thus, the polarity in the selective constraint along the TLR signaling pathway was due to the 

number of molecules a protein interacted with and the protein’s length. Results here indicate that the level 

of selective constraints on genes within the TLR signaling pathway of the family Suidae is dependent on 

the gene’s position and other network parameters. In particular, downstream genes evolve more slowly as 

a result of being highly connected and having shorter protein lengths. Our findings highlight the critical 

role of gene network parameters in gene evolution.    
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Introduction 

Proteins carry out their biological function by working within intricate networks of interacting 

molecules. High throughput techniques such as whole genome sequencing have led to accurate 

representation of gene networks [1].  Key insights regarding the influence of natural selection on genes 

can be obtained by taking into account the network topology [2].  

The evolutionary rate of a protein (ω), represented by the ratio of the rate of its nonsynonymous 

substitutions (dn) to the rate of its synonymous substitutions (ds), is used as an indicator of the selective 

constraints acting on proteins. Studies have indicated that many factors affect the evolutionary rate of 

genes within gene pathways and networks. For example, gene position [3–5], protein length [6], the 

number of protein-protein interactions [7,8] and codon bias [9,10] have influence on gene evolution. 

Signaling pathways mediate the sensing and processing of both extracellular and intracellular stimuli. 

They rely on receptors that recognize a signaling molecule and trigger a series of events leading to the 

transmission of signals to the downstream region of the pathway. Within the Drosophila Toll and Imd 

signaling pathway, downstream genes were more conserved, indicating a relatively stronger evolutionary 

constraints than upstream genes [11]. This is consistent with trends reported for the yeast HOG-signaling 

pathway [12] and the Caenorhabditis elegans and Drosophila insulin/TOR pathway [13,14]. In contrast, 

in analysis of evolutionary patterns of the Insulin/FOXO signaling pathway across metazoan species 

genomes, components within the middle of the pathway were rather under stronger purifying selection 

[10]. Moreover, within the Drosophila Ras signaling pathway, upstream genes have lower evolutionary 

rate than upstream genes [15]. Obviously, different patterns of selective constraints exist for different 

signaling pathways. This is expected, as signaling inputs and network architecture vary among the 

pathways [16].  

The TLR signaling pathway represents the best characterized component of the innate immune 

system [17]. TLR signaling involves the dimerization of receptors in response to pathogenic microbial 

products. This is followed by the recruitment of various adaptor molecules including MyD88 that is used 

by all TLRs except TLR3 and TRIF which is required by only TLR3 and TLR4. The recruitment of these 
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adaptor molecules leads to the recruitment of downstream signaling molecules that activate transcription 

factors leading to the release of inflammatory cytokines and type I interferons. The TLR signaling 

pathway genes therefore demonstrate sequentiality. Thus, the effect of pathway parameters such as gene 

position on the evolutionary rate of genes can be investigated.     

The TLR signaling pathway has been selectively constrained overtime, indicating their essential 

role for host survival [18].  In humans, population genetic studies have indicated that purifying selection 

is stronger within TLR adaptors relative to receptors [18].  A recent study on the TLR signaling pathway-

related genes from eight vertebrate genomes showed that the selective constraints of genes was negatively 

correlated with gene position along the TLR signaling pathway [19]. Thus, different components of the 

TLR signaling pathway appear to differ in their evolutionary rates. Moreover, taxon specific differences 

among pathway components have been demonstrated for the TLR pathway [17]. New insights relating to 

the influence of network parameters on the evolutionary rate of genes within the TLR signaling pathway 

can be gained through studies on closely related species not yet investigated in detail. 

Members of the family Suidae inhabit broad geographic locations including Eurasia, Mainland 

Southeast Asia, Island Southeast Asia [20] and the African continent [21]. Given the numerous 

pathogenic challenges across these diverse environments, the TLR signaling pathway may have been 

critical in the survival of Suidae members. The availability of a complete porcine genome and 

resequencing libraries of the family Suidae species provide an opportunity to investigate the evolution of 

the TLR signaling pathway genes within the context of gene position and other network parameters. 

Species of the Suidae family have also evolved over a relative short time span of 1-10 million years [22]. 

The low divergence among these species indicate that synonymous substitutions are not likely to be 

saturated, making the estimation and comparison of selective pressure (dn/ds) among genes less prone to 

bias. This low divergence among the species also ensures reliability in aligning TLR sequences for 

subsequent analysis. 

In this study, our goal was to investigate the evolutionary constraints of genes within the TLR 

signaling pathway of the family Suidae members. We sought to investigate the extent to which patterns of 
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protein evolution observed in other organisms extend to members of the family Suidae. We hypothesized 

that contrasting patterns of selective constraints have acted among positions of the TLR signaling 

pathway within the family Suidae and tested our hypothesis by answering the following questions 1) is 

there a relationship between the strength of purifying selection and gene position in the TLR signaling 

pathway; and 2) are there any network parameters that contribute to the polarity in the strength of 

purifying selection? 

 

 

Methods 

DNA extraction and sequencing 

DNA was extracted from whole blood by using the QIAamp DNA blood spin kit (Qiagen 

Sciences) and quantity and quality parameters were performed on the Qubit 2.0 fluorometer (Invitrogen) 

and run on a 1% agarose gel. Library construction and re-sequencing of individual members of the family 

Suidae were done with 1-3 ug of genomic DNA according to the Illumina library prepping protocols. The 

library insert size was 300-500 bp and sequencing was performed using a 100 paired-end sequencing kit. 

All DNA were sequenced to approximately 8x depth. Quality trimmed reads (phred quality>20, minimum 

length of pairs of reads=40bp) were aligned to the Sus scrofa reference genome build 10.2 using the 

unique alignment option of Mosaik Aligner (V.1.1.0017). The aligned reads from each of the animals 

together with the Sus scrofa reference genome (resequencing libraries) were stored as bam files for each 

individual animal.    
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Orthologs identification  

Genes involved in the TLR signaling pathway (KEGG database pathway: ssc04620) were utilized 

in this study (Fig. 4.1). In addition TLR10 which is not found in the KEGG database TLR signaling 

pathway  was included as it cooperates with TLR2 and senses lipopeptides [23] and activates the TLR 

signaling pathway through association with MyD88 [24]. The genomic coordinates of Sus scrofa genes 

within the TLR signaling pathway (Table 4.1) were obtained from Ensemble database 

(http://www.ensemble.org). Based on these genomic coordinates, sequences of gene orthologs were then 

retrieved from aligned bam files (Illumina resequencing data for family Suidae species aligned against 

Sus scrofa genome assembly 10.2) of Sus scrofa (Sus scrofa Europe and Sus scrofa Asia), Sus verrucosus, 

Sus celebensis, Sus scebifrons, Sus barbatus, Babyrousa babyrussa, Potamochoerus larvatus, 

Potamochoerus porcus and Phacochoerus africanus to identify gene orthologs.  The resulting sequences 

for each species were then blast screened against the Sus scrofa genome to ensure similarity with the Sus 

scrofa genes. To obtain the coding sequence of genes for each species, exonic regions were retrieved 

based on genomic coordinates of exons from the Sus scrofa gene transcripts (see Table 4.1 for accession 

numbers of mRNA sequences/gene transcripts) and concatenated. If a gene was found to have more than 

one transcript, the longest transcript was chosen for analysis. Coding sequences were aligned using 

ClustalW 1.81 [25].  

Some of the coding sequences had lots of missing nucleotides.  The following criteria were used 

to discard such sequences: (1) Sequences with more than 50% of missing amino acid residues (2) Aligned 

Sequences absent in any one of the species involved in this study. Consequently, the final data set was 

composed of 33 genes (Table 4.2).  
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Impact of natural selection 

The impact of natural selection on genes within the TLR signaling pathway was determined by 

estimating nonsynonymous substitution rate (dn), synonymous substitution rate (ds) and their ratio (ω = 

dn/ ds)  using the M0 model  implemented in the program CODEML program from the PAML package 

version 4 [26,27]. ω values of <1, = 1 and > 1 are indication of purifying selection, neutral evolution and 

positive selection respectively targeting  a gene.  To determine whether some codon positions are under 

positive selection within gene orthologs, CODEML site model M1a, a nearly neutral evolution model 

where sites are assumed to be evolving under either purifying selection (ω < 1) or neutral evolution (ω = 

1) was compared to model M2a that allows positive selection among sites. M7, which allows sites to 

evolve under either purifying selection or neutrally, was compared to model M8, which allows for 

positively selected sites. The F3x4 model of codon frequencies was used for the analyses. Models were 

run in duplicates with ω of 0.5 and 1.5 to increase the probability of convergence of model parameters. 

Multiple testing for positive selection on genes was corrected for by conducting a false discovery rate 

(FDR) test [28] at a q value of 0.05. The phylogenetic relationship among the Suidae species (Fig. 4.2) 

inferred from near complete genome sequences of each species [20] (L. Frantz, personal communication) 

was used for the analysis involving the CODEML program. 

 

 

Network level analysis 

To determine whether the evolution of molecules within each gene was affected by network 

structure, network parameters were computed for each gene and their correlation with each evolutionary 

parameter estimated by model M0 determined. Number of protein-protein interactions (connectivity) for 

proteins encoded by each gene was determined from the Sus scrofa interaction network in the STRING 

database (http://string.embl.de/). STRING is a database of known and predicted interactions which 

include direct (physical) and indirect (functional) associations from various sources including high 

throughput experiments and genomic contexts [29]. The magnitude for codon bias for individual genes 
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was measured by the Effective Number of Codons (ENC). The codon usage bias of each orthologous 

gene group was measured as the mean of ENC of each species gene. ENC values of each gene were 

obtained using DNASP software [30]. Bivariate correlation analysis between network parameters 

(pathway position within network, protein length, codon bias, connectivity (number of protein-protein 

interactions) and length of 3’UTR) and evolutionary parameters (ω, dn, ds) were conducted using 

Spearman’s rank correlations. A false discovery rate (FDR) test [28] was performed to correct for 

multiple testing for correlations controlling for q value at 0.05. Bivariate correlations and corrections for 

multiple testing were performed using SAS software (SAS/STAT, version 9.1.3, SAS Institute Inc., Cary, 

NC). Figures illustrating bivariate correlations were obtained with the package R 

(http://www.rproject.org).  

 

Multivariate analyses 

The two multivariate analyses methods (partial correlation and path analysis) were used to 

determine whether the observed bivariate correlations were due to direct or indirect influences. Partial 

correlation analysis measures the strength of relationship between two variables, while holding one or 

more variables constant. Path analysis estimates direct and indirect relationships under a user defined 

causal model. For the path analysis, pathway position, number of protein-protein interactions, protein 

length, ENC and length of the 3UTR were considered as exogenous variables whereas ω and dn were 

considered as endogenous variables. Prior to performing the path analysis, data were log-transformed to 

improve normality. All statistics related to path analysis were calculated by the lavaan package in R.    

 

Results 

Orthologs of 33 Sus scrofa TLR signaling pathway genes were identified for 10 members of the 

family Suidae. The majority of genes within the TLR signal pathway as indicated in the KEGG database 

were within the genomes in each Suidae species involved in this study. A total of 330 sequences ranging 
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from 351 to 3153 nucleotides were used in analysis. The sequences from orthologs were aligned for a 

series of analysis including test for selection pressures acting on genes, bivariate correlations and 

multivariate analysis.    

 

Analysis of protein sequence evolution 

In order to estimate selective pressure acting on genes within the Suidae TLR signaling pathway, 

the M0 model, which provides a single estimate of ω across all codons and lineages, was utilized. The ω 

values ranged from 0.0001 (MKK6, MEK1, MAPK1, MAPK9 and MAPK14) to 1.0544 (TLR10) (Table 

4.2). The mean ω was 0.1668. To test for positive selection, the models M1a (nearly neutral) vs M2a 

(positive selection); M7 vs M8 were used. The two tests were in agreement for all genes (Table 4.3) and 

demonstrated that a proportion of sites within TLR1, TLR2, TLR6 and IRAK4 (Table 4.3) were under 

positive selection. However, TLR1 was the only gene under positive selection after correcting for multiple 

testing at q = 0.05. Thus, results here indicated that genes within the TLR signaling pathway have evolved 

under strong functional constraint.  

 

Relationship between evolutionary rates and pathway position 

The relationship between the evolutionary parameter ω of genes and their position within the 

TLR signaling pathway was determined using a spearman’s rank correlation test between the two 

variables. The ω values were negatively correlated with pathway position (Spearman’s rank correlation 

coefficient ρ = -0.6250; P = 0.0005 after FDR correction; Table 4.4 and Fig. 4.3) indicating that 

downstream genes are under stronger purifying selection than upstream genes.  ω is a ratio of dn and ds. 

To test for the evolutionary parameter accounting for the ω differences among genes, correlation between 

pathway position and dn, pathway position and ds was also tested. The dn was negatively correlated with 

the pathway position (Spearman’s rank correlation coefficient ρ = -0.6110; P = 0.0007 after FDR 

correction; Table 4.4 and Fig. 4.3). There was no significant correlation between ds and pathway position 

(spearman’s rank correlation coefficient ρ = -0.0990; P = 0.7117). These results indicated that the 
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decrease in ω (increase in the strength of purifying selection) from upstream to downstream genes is 

attributable to a decrease in dn (the rate of nonsynonymous substitution).  

 

Relationship between evolutionary rates and other network parameters 

Network parameters aside from  pathway position can influence the evolutionary parameters (ω, 

dn, ds) and account for inferred polarity in ω and dn. In order to determine such relationships, Spearman’s 

rank correlation test was performed between the number of protein-protein interactions (PPI) of proteins 

encoded by genes within the TLR signaling pathway, protein length, codon bias measured as effective 

number of codons (ENC), length of the 3 UTR region and the evolutionary parameters (Table 4.4 and Fig. 

4.3). The ω values were negatively correlated with PPI (Spearman’s rank correlation coefficient ρ = -

0.6240; P = 0.0005 after FDR correction) and positively correlated with protein length (Spearman’s rank 

correlation coefficient ρ = 0.5990; P = 0.0007 after FDR correction). Similarly, dn values were negatively 

correlated with PPI (Spearman’s rank correlation coefficient ρ = -0.6740; P = 0.0005 after FDR 

correction) and positively correlated with protein length (Spearman’s rank correlation coefficient ρ = 

0.672; p = 0.0005 after FDR correction) indicating that apart from pathway position, the number of 

protein-protein interactions a given protein is involved in and its protein length influence it evolution. In 

addition, ds was also negatively correlated with ENC (Spearman’s rank correlation coefficient ρ = -

0.4650; p = 0.0163 after FDR correction) indicating stronger selection based on codon usage in genes 

with high codon bias than genes with low codon bias [31].       

 Since pathway position, PPI and protein length are intercorrelated and are each correlated with 

evolutionary parameters (ω and dn) (Table 4. 3), observed associations of these network parameters with 

the evolutionary parameters could be indirect (correlation between 2 parameters due to their both being 

correlated with a third parameter). Thus, to distinguish between direct and indirect effects, multivariate 

analysis (partial correlation and path analysis) were utilized. Partial correlation analysis revealed that 

when controlling for PPI, the correlation between ω and pathway position was still significant (ρ = -0.431, 

P = 0.014). When controlling for protein length, the correlation between ω and pathway position 
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remained significant (ρ = -0.386, P = 0.029). Thus, gene position within the TLR signaling pathway 

directly influenced the evolution of genes in the TLR signaling pathway. The correlation between ω and 

PPI while controlling for pathway position remained significant (ρ = -0.429, P = 0.014). It also remained 

significant (ρ = -0.452, P = 0.009) when controlling for protein length. This result indicated that PPI is an 

important factor affecting the evolution of genes within the TLR signaling pathway. The correlation 

between ω and protein length was not significant (ρ = 0.323, P = 0.072) when pathway position was held 

constant indicating that the correlation between ω and protein length was rather mediated by pathway 

position. Nonsynonymous (dn) substitution rates were not significantly  (ρ = -0.306, P = 0.089) correlated 

with pathway position when controlling for protein length. In contrast, the correlation between dn and PPI 

remained significant (ρ = -0.506, P = 0.003) when controlling for protein length. If pathway position was 

held constant, the correlation between dn and PPI remained significant (ρ = -0.600, P = 0.003).  

Correlation between dn and protein length was still significant (ρ = 0.456, P = 0.009) after controlling for 

pathway position and remained significant (ρ = 0.504, P = 0.003) if controlling for PPI. Results for the 

relationship between dn values and network parameters indicated that the number of protein-protein 

interactions and protein length have direct effects on the rate of dn evolution.  

The relationship between evolutionary parameters (ω and dn) and network parameters (pathway 

positon, PPI, protein length, ENC and L3UTR) were further analyzed using path analysis. As depicted in 

Fig. 4.4, path analysis indicated that dn values were affected by gene position within the TLR signaling 

pathway (standardized path coefficient, β = -0.366, P = 0.008). Pathway position had the largest direct 

effect on dn. The dn values were negatively associated with the number of protein-protein interactions (β 

= -0.314, P = 0.011) and positively associated with protein length (β = 0.281, P = 0.029). ω values  were 

only associated with ENC (β = -0.230, P = 0.044). Thus pathway position, the number of protein 

interactions and protein length were factors that influenced Suidae TLR signaling pathway dn substitution 

rates.  
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Discussion 

These results support our hypothesis that there is polarity of purifying selection along the TLR 

signaling pathway (from TLRs as upstream genes to genes downstream of TLRs) within the family 

Suidae with purifying selective pressure increasing along the pathway. Protein-protein interactions and 

protein length accounted for this polarity in the strength of purifying selection, where number of 

interactors of TLR signaling protein molecules increases and protein length decreasing along the TLR 

signaling pathway. The evolutionary parameter influenced by these network parameters was dn 

(nonsynonymous substitution rate), which is actually the metric of selective pressure [11]. Lesser amino 

acid substitutions were tolerated along the signaling pathway reflective of stronger purifying selection.   

The polarity in the strength of purifying selection inferred in this study corroborated with other 

studies. Upstream genes revealed greater constrains than downstream genes in the carotenoid biosynthesis 

pathway [32,33] and in the dopamine catabolic pathway across mammals [34].  The relatively slow rate of 

evolution of upstream genes reflects these genes being required for a wider range of end products and 

therefore being more pleiotropic [35,36]. A negative correlation between strength of purifying selection 

and gene position within pathway, as inferred in this study, have also been reported for the Drosophila 

Toll and Imd signaling pathways [11] and TLR signaling across metazoan genomes [4]. This pattern of 

selective constraint might be attributed to purifying selection acting to maintain the function of 

downstream signal transduction elements and a concentration of adaptive changes in the upstream genes 

due to their interaction with external environment [13]. In this study, TLR1 was the only gene inferred to 

be under positive selection after FDR correction. Therefore, adaptive changes were not prominent within 

upstream genes of the TLR signaling pathway resulting in the inferred pattern of selective constraints. 

With the inferred significantly negative correlation between pathway position and the 

evolutionary parameters ω and dn, a negative correlation between pathway position and number of 

protein-protein interactions for a protein, as indicated in this study, imply a role for the number of protein-

protein interactions in the polarity of selective constraints. This negative relationship is indicative of 

increasing selective constraints for proteins along the TLR signaling pathway, as a result of increase in 
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the number of interactors along the signaling pathway. Evidence for increasing connectivity of proteins 

along signaling pathway has also been demonstrated for the human signal transduction network [2]. 

Within metabolic pathways, connectivity plays a major role in constraining evolutionary rates with 

proteins interacting with more proteins being subject to stronger selective constraints [7,37,38]. The 

increasing number of interactors along the TLR signaling pathway indicates how essential the signaling 

process is and the involvement of protein molecules in other functions apart from TLR signaling. This 

places stronger selective constraint on protein molecules.  

In this study, the finding of a significant negative correlation between protein length and pathway 

position had been detected in the insulin/TOR signaling of Drosophila [3] and indicated that protein 

length decreased and become  more actively translated along the pathway [3]. Given that partial 

correlation and pathway analysis were both in agreement as to there been a positive relationship between 

protein length and dn, protein length appears to be a factor responsible for the polarity in dn along TLR 

signaling pathway. Thus, along the TLR signaling pathway, the decrease in protein length is associated 

with a decrease in the amino acid substitutions. A similar pattern has been reported for the woody 

perennial plant Populus tremula, where protein length is the main factor affecting selective constraints, 

with purifying selection weaker in genes with longer coding genes [39]. A possible explanation for the 

relationship between purifying selection and protein length is that selection at more than one site should 

cause an overall reduction in the effectiveness of selection (Hill-Robertson effect) [40,41]. In that case, 

for longer proteins, which may have many sites under selection simultaneously [39], there will be a 

reduced efficiency in natural selection.  

Though path analysis indicated a negative association between ω and ENC, pathway position and 

ENC were not significantly correlated, therefore ENC cannot explain correlation between selective 

constraints and ENC. In this study, length of the 3UTR region of a gene did not have a relationship with 

any evolutionary parameter in disagreement with studies in the Toll/imd pathway in the Drosophila Toll 

and Imd signaling pathways [11] and human and mice miRNA target prediction data [42]. The 

relationship between the length of the 3UTR and evolutionary parameters is mediated by the number of 
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regulatory miRNAs, with genes with longer 3UTRs likely to be regulated by more miRNAs [11,42]. 

Genes regulated by more miRNAs are likely to be under stronger constraints [11,42]. Thus length of the 

3UTR region has a rather indirect effect on protein evolution. It is therefore likely that in the case of the 

Suidae TLR signaling pathway genes, this indirect effect may be weak.  

Genes within the signaling pathway had average ω value < 1, indicating that the TLR signaling 

pathway is selectively constrained across members of the Suidae. This is in keeping with the essential role 

of the pathway in innate immunity and host survival. Selectively constrained regions within the genome 

are likely to be functionally important [43]. The strongest selective constraints inferred for the MAP 

kinases (MKK6, MEK1, MAPK1, MAPK9, MAPK14) with dn substitution rates of zero for these genes 

suggest their involvement in critical roles during TLR signaling. The MAP kinases cascade components 

play important role in the production of proinflammatory mediators [44]. Recently, it has been 

demonstrated that MAP kinases play a role in agonist dependent regulation of cognate TLR mRNA levels 

[45]. MAP kinases are also required for the regulation of cellular development and differentiation 

processes [46,47]. The conservation of the MAP kinase genes in this study could therefore be attributed to 

their involvement in many processes. Results of increasing purifying along the TLR signaling pathway 

suggests that there is a greater need to protect the integrity of proteins as one moves down the signaling 

pathway [18]. Thus, genes downstream of the TLRs might be essential and nonredundant for survival of 

species involved in this study.  

 

Conclusion 

By analyzing the evolution of genes within the family Suidae TLR signaling pathway in the 

context of network structure, a polarity in the strength of selective constraints along the pathway was 

inferred. This polarity was such that nonsynonymous substitutions decreased along the TLR signaling 

pathway. The number of protein-protein interactions and protein length were significantly correlated with 

both gene position and rate of nonsynonymous substitution indicating a role of network parameters in the 

polarity of purifying selection along the family Suidae TLR signaling pathway.  
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 Figures and Tables 

 
 

Fig. 4.1. The TLR signaling pathway genes. Redrawn following [4], with modification to include TLR10. The 

direction of signal transduction is indicated by the arrows. The numbers on the left side represent the position of the 

pathway genes. Genes used in this study are bolded. 
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Fig. 4.2. Phylogenetic relationships among family Suidae species obtained from near complete genome data of each 

species. The posterior probability at each node is 1.   
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Fig. 4.3. ω and dn versus pathway position, number of protein-protein interactions (PP1) and protein length. All 

relationships are significant. Continuous lines represent regression lines. 
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Fig.4.4. The causal model used to analyze the relationship among evolutionary and network parameters. The 

network parameter pathway position, number of protein-protein interactions (PPI), protein length, codon bias 

(measured as effective number of codons (ENC)) and length of the 3’UTR region are considered as exogenous 

variables. Continuous and dashed lines represent significant and nonsignificant relationships, respectively. Single-

headed arrows indicate causal relationship between variables. Double-headed arrows indicate correlations between 

exogenous variables. Numbers on the arrows represent the standardized regression weights. 
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    Table 4.1 

Gene Genomic coordinates mRNA accession numbers/Transcript 

ID 

TLR1 8: 31,627,788-31,635,628 NM_001031775 

TLR2 8: 79,824,541-79,834,592 NM_213761 

TLR3 15: 53,840,783-53,852,536 NM_001097444 

TLR4 1: 289,775,822-289,785,847 NM_001113039 

TLR5 10: 21,886,309-21,905,776 NM_001123202 

TLR6 8: 31,641,826-31,660,823 NM_213760 

TLR7 X: 10,450,659-10,476,655 NM_001097434 

TLR8 X: 10,500,862-10,512,940 NM_214187 

TLR9 13: 37,647,229-37,652,020 NM_213958 

TLR10 8: 31,604,732-31,615,025 NM_001030534 

MyD88 13: 25,181,051-25,185,351 NM_001099923 

TIRAP 9: 59,051,622-59,056,203 ENSSSCT00000028018 

TRAM 4: 70,399,155-70,429,614 ENSSSCT00000006787 

IRAK4 5: 77,646,641-77,671,387 NM_001112693 

TRAF3 7: 128,907,875-129,006,770 ENSSSCT00000002804 

RIPK1 7: 1,921,742-1,945,193 ENSSSCT00000001101 

TAB1 5: 6,122,718-6,146,864 NM_001244067 

TAB2 1: 18,852,325-18,903,792 ENSSSCT00000004545 

IKKα 14: 120,756,666-120,854,124 NM_001114279 

IKKβ 17: 13,063,170-13,101,996 ENSSSCT00000007699 

MKK6 12: 11,139,492-11,264,120 ENSSSCT00000018783 

MKK4 2: 59,331,232-59,409,597 ENSSSCT00000019611 

MKK7 2: 71,697,110-71,708,586 ENSSSCT00000014840 

MEK1 1: 182,175,684-182,177,853 ENSSSCT00000023493 

MAPK1 14: 53,590,167-53,614,842 ENSSSCT00000011042 

MAPK9 2: 79,823,591-79,881,875 ENSSSCT00000035631 

MAPK10 8: 141,997,575-142,137,195 ENSSSCT00000010107 

MAPK14 7: 36,725,707-36,795,310 ENSSSCT00000001734 

IRF3 6: 50,430,671-50,436,164 NM_213770 

IRF5 18: 20,747,732-20,760,161 ENSSSCT00000018043 

IRF7 2: 299,444-302,179 NM_001097428 

FOS 7: 104,293,657-104,297,121 NM_001123113 

JUN 6: 141,230,121-141,233,597 NM_213880 
   Table 4.1.  Genes of the Sus scrofa TLR signaling pathway used in querying genomes of other Suidae species 
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Table 4.2 

Gene ω dn ds Position PPI ENC PLENGTH L3UTR 

TLR1 0.36932 0.0276 0.0747 1 4 53.28 796 181 
TLR2 0.31229 0.0216 0.069 1 15 54.71 785 192 
TLR3 0.30699 0.0117 0.038 1 22 54.28 905 218 

TLR4 0.26995 0.0133 0.0493 1 24 53.54 841 806 
TLR5 0.33407 0.0293 0.0878 1 2 52.27 856 1516 
TLR6 0.46067 0.0288 0.0624 1 3 53.37 796 468 
TLR7 0.12225 0.0145 0.1187 1 6 54.58 1050 655 
TLR8 0.24534 0.0241 0.0984 1 4 56.33 1028 53 
TLR9 0.0764 0.0097 0.1271 1 1 35.82 1030 167 
TLR10 1.05445 0.0318 0.0301 1 0 52.49 811 272 
MyD88 0.08294 0.0032 0.0384 2 31 45 293 1641 

TIRAP 0.0655 0.0078 0.1197 2 24 41.24 221 0 
TRAM 0.20405 0.0039 0.0192 2 3 55.13 374 111 
IRAK4 0.52095 0.0104 0.0199 3 22 50.19 460 759 
TRAF3 0.10269 0.0077 0.0747 4 11 43.56 568 4976 
RIPK1 0.08849 0.016 0.181 4 23 39.77 664 1704 
TAB1 0.02593 0.0059 0.2261 5 12 37.37 504 895 
TAB2 0.1354 0.0013 0.0098 5 18 52.19 689 1894 
IKKα 0.0417 0.0018 0.0422 6 37 52.77 755 548 

IKKβ 0.00611 0.0007 0.1187 6 30 38.85 649 774 
MKK6 0.0001 0 0.0386 6 16 53.84 334 277 
MKK4 0.07146 0.0026 0.0369 6 6 52.7 376 2455 
MKK7 0.07876 0.0058 0.074 6 26 43.74 536 0 
MEK1 0.0001 0 0.0859 6 26 43 117 0 
MAPK1 0.0001 0 0.0455 7 50 51.73 325 634 
MAPK9 0.0001 0 0.0311 7 39 53.73 424 604 
MAPK10 0.02238 0.001 0.0465 7 33 54.76 464 3555 

MAPK14 0.0001 0 0.0299 7 50 53.59 360 2288 
IRF3 0.13262 0.0151 0.114 8 8 40.63 419 68 
IRF5 0.0975 0.0089 0.0908 8 1 39.74 503 1138 
IRF7 0.15374 0.0167 0.1086 8 22 36.93 487 48 
FOS 0.07942 0.0048 0.0608 8 50 43.3 380 830 
JUN 0.04095 0.0012 0.0305 8 50 37.48 335 1290 

Table 4.2. Summary statistics for genes 
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Table 4.3 

Gene LnM1a LnM2a LnM7 LnM8 2(LnM2a-

LnM1a) 

2(LnM8-

LnM7) 

TLR1 -3884.4 -3872.6 -3884.6 -3872.6 23.6*† 24*† 

TLR2 -3758.0 -3753.6 -3758.2 -3753.6 8.8* 9.2* 

TLR3 -4016.4 -4016.4 -4016.4 -4016.4 0 0 

TLR4 -3832.2 -3832.0 -3832.3 -3832.0 0.4 0.6 

TLR5 -4259.9 -4259.5 -4259.9 -4259.5 0.8 0.8 

TLR6 -3856.1 -3852.0 -3856.4 -3852.0 8.2* 8.8* 

TLR7 -5104.2 -5104.2 -5104.2 -5104.2 0 0 

TLR8 -5085.7 -5084.2 -5085.8 -5084.2 3 3.2 

TLR9 -4586.9 -4586.9 -4586.9 -4586.9 0 0 

TLR10 -3828.6 -3828.2 -3828.6 -3828.2 0.8 0.8 

MyD88 -1238.3 -1238.3 -1238.3 -1238.3 0 0 

TIRAP -1012.8 -1012.8 -1012.8 -1012.8 0 0 

TRAM -1574.8 -1574.8 -1574.8 -1574.8 0 0 

IRAK4 -1971.3 -1966.4 -1971.3 -1966.4 9.8* 9.8* 

TRAF3 -2492.8 -2490.4 -2493.1 -2490.4 4.8 5.4 

RIPK1 -3067.3 -3067.3 -3067.2 -3067.2 0 0 

TAB1 -2323.6 -2323.6 -2323.6 -2323.6 0 0 

TAB2 -2818.0 -2818.0 -2818.0 -2818.0 0 0 

IKKα -3225.9 -3225.9 -3225.9 -3225.9 0 0 

IKKβ -2710.1 -2710.1 -2710.1 -2710.1 0 0 

MKK6 -1427.5 -1427.5 -1427.5 -1427.5 0 0 

MKK4 -1630.0 -1630.0 -1630.0 -1630.0 0 0 

MKK7 -2321.4 -2320.2 -2321.7 -2320.2 2.4 3 

MEK1 -490.6 -490.6 -490.6 -490.6 0 0 

MAPK1 -1370.1 -1370.1 -1370.1 -1370.1 0 0 

MAPK9 -1745.5 -1745.5 -1745.5 -1745.5 0 0 

MAPK10 -2000.2 -1998.9 -2000.6 -1998.9 2.6 3.4 

MAPK14 -1518.4 -1518.4 -1518.4 -1518.4 0 0 

IRF3 -1915.3 -1913.8 -1915.4 -1913.8 3 3.2 

IRF5 -2238.1 -2237.4 -2238.1 -2237.4 1.4 1.4 

IRF7 -2205.9 -2205.9 -2205.9 -2205.9 0 0 

FOS -1649.3 -1649.3 -1649.3 -1649.3 0 0 

JUN -1305.2 -1305.2 -1305.2 -1305.2 0 0 

Table 4.3. Results of codon based test for positive selection  

*p<0.05, †statistical significance at FDR test of q=0.05 
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Table 4.4 

  ω dn ds Position PPI ENC PLENGTH L3UTR 

ω ρ  0.868 -0.054 -0.625 -0.624 0.219 0.599 -0.162 

 P_raw  <.0001 0.7650 <.0001 0.0001 0.2216 0.0002 0.3685 

 P_FDR  0.0005 0.8380 0.0005 0.0005 0.3266 0.0007 0.4690 

dn ρ   0.364 -0.611 -0.674 0.035 0.672 -0.259 

 P_raw   0.0374 0.0002 <.0001 0.8446 <.0001 0.1452 

 P_FDR   0.0806 0.0007 0.0005 0.8759 0.0005 0.2710 

ds ρ    -0.099 -0.245 -0.465 0.269 -0.250 

 P_raw    0.5846 0.1692 0.0064 0.1303 0.1609 

 P_FDR    0.7117 0.2787 0.0163 0.2606 0.2787 

Position ρ     0.552 -0.393 -0.654 0.193 

 P_raw     0.0009 0.0237 <.0001 0.2812 

 P_FDR     0.0028 0.0553 0.0005 0.3756 

PPI ρ      -0.083 -0.529 0.193 

 P_raw      0.6460 0.0051 0.2817 

 P_FDR      0.7537 0.0042 0.3756 

ENC ρ       0.226 -0.017 

 P_raw       0.2064 0.9250 

 P_FDR       0.3211 0.9250 

PLENGTH ρ        -0.051 

 p_raw        0.7781 

 p_FDR        0.8380 

Table 4.4. Bivariate correlations among variables 

ρ is correlation coefficient 

P_raw is p value before FDR correction 

P_FDR is p value after FDR correction  
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