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ABSTRACT

Traffic for a typical MapReduce job in a datacenter consists of multiple net-

work flows. Traditionally, network resources have been allocated to optimize

network-level metrics such as flow completion time or throughput. Some re-

cent schemes propose using application-aware scheduling which can reduce

the average job completion time. However, most of them treat the core net-

work as a black box with sufficient capacity. Even if only one network link in

the core network becomes a bottleneck, it can hurt application performance.

We design and implement a centralized flow scheduling framework called

Phurti with the goal of decreasing the completion time for Hadoop MapRe-

duce jobs. Phurti communicates both with the Hadoop framework to retrieve

job-level network traffic information and the OpenFlow-based switches to

learn about network topology. Phurti implements a novel heuristic called

Smallest Maximum Sequential-traffic First (SMSF) that uses collected appli-

cation and network information to perform traffic scheduling for MapReduce

jobs. Our evaluation with real Hadoop workloads shows that compared to

application and network-agnostic scheduling strategies, Phurti improves job

completion time for 95% of the jobs, decreases average job completion time

by 20% and tail job completion time by 13%.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The shuffling phase (intermediate data transfer) in Hadoop [1] can account

for 33% of the running time of a MapReduce job on average [2]. The shuffling

traffic for a job contains multiple flows between host pairs, and the reduce

phase of the job cannot start until all flows have finished. In a shared cluster

with multiple jobs running, a job flow might be throttled by traffic belonging

to other jobs and can become a straggler. Flow-based scheduling policies

[3, 4, 5] decrease the average completion time of flows but they can starve the

large flows, thereby increasing the completion time of the job. Consequently,

it is important to have application-awareness while scheduling network flows.

In modern datacenters, it is common for multiple MapReduce jobs to

share cluster resources. While CPU and memory can be allocated efficiently,

it is very hard to control network usage since it is a distributed resource.

This means that in addition to application-awareness, it is desirable to have

network-awareness during flow scheduling for better application performance.

Current network-aware traffic scheduling schemes [6, 7, 8] are focused on im-

proving network utilization instead of application performance.

While other application-aware traffic scheduling techniques [2, 9, 10] have

been proposed, our goal is to use both application and network topology

information for allocation of network resources. Our approach can work in

conjunction with the approach by Alkaff et.al.[11]. They utilize the applica-

tion and topology information for task placement and choosing the network

route while we perform flow scheduling and bandwidth allocation along pre-

determined network routes.

We design a centralized scheduling framework called Phurti which pro-

vides APIs to dynamically collect the shuffling phase traffic information from
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Hadoop jobs, as well as network topology and flow routing path information

from the OpenFlow-based [12] Software Defined Network (SDN) switches.

Phurti provides the option to suspend or throttle the traffic of any job at

any time. Unlike a decentralized architecture [10], our approach does not

require any change in the network switches, thus making deployment easier.

The information and functionality provided by Phurti in turn can be used

by any flow scheduling algorithm.

We also design and evaluate a new heuristic called Smallest Maximum

Sequential-traffic First (SMSF) that uses the application and network in-

formation collected by the APIs to schedule the MapReduce traffic. Our

algorithm can preempt the flows based on job priority, utilize the network

maximally and protect against starvation. To our knowledge, this is the first

framework of its kind that collects and uses both the application and network

information for scheduling the traffic for MapReduce jobs. Our approach

works well when a majority of jobs are small and the datacenter network is

congested. Both of these are generally true in real Hadoop clusters. Face-

book traces for Hadoop workloads [13] show that more than 70% are small

jobs less than 1 MB in size while [14] shows that network congestion is one

of the main reasons for poor job completion times in MapReduce framework.

We deployed and evaluated Phurti on a cluster of 6 machines intercon-

nected by 2 switches. We evaluate it using both microbenchmarks and real-

istic workload generated by the SWIM [13] Facebook workload. Evaluation

results show Phurti improves job completion time for 95% of the jobs, de-

creases average job completion time by 20% and tail job completion time by

13%.

1.2 Thesis Outline

Chapter 7 examines some of the related works in. We present the general

design of Phurti in chapter 3 and describe specific implementation details

in chapter 5. We present our evaluations and their results in chapter 6 and

conclude with chapter 9.
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CHAPTER 2

MOTIVATION

Map Task of 
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Job 2 Network Traffic 

Map Phase Shuffling Phase Reduce Phase 

Figure 2.1: Traffic pattern for two Hadoop MapReduce jobs in a cluster.

2.1 Application-Awareness

The shuffling phase in a typical MapReduce job generates several flows in

the network. A flow consists of all the traffic in a transport (e.g. TCP)

connection. If two large MapReduce jobs happen to send data on shared

network links simultaneously as shown in Fig. 2.1, they may slow each other

down due to network contention. Since the computation for reduce function

cannot start before all the flows in the shuffling phase complete, the over-

all job completion time depends on the successful completion of all of the

constituent flows of that job.

Flow-based scheduling policies such as shortest flow first (SFF) concerned
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with optimizing flow level metrics such as flow completion time etc., have

grown popular for datacenter networks. However, since flows of many simul-

taneous jobs are scheduled independently by such policies, they only perform

well for network flow metrics and may not improve application performance.

An application-aware scheduling strategy would take into account the work-

load characteristics and schedule all the flows of a job together. This would

be more suitable for improving the average job completion time.

We demonstrate this using an example in Fig. 2.2. This shows three

concurrent jobs A, B and C running on a shared cluster. A and B are

larger jobs with three flows each, while C is a small job with only one flow.

A fair sharing (FS) strategy such as DCTCP [3] (Fig. 2.2b) divides the

bandwidth equally between the flows on shared links. For the example, all

the jobs transmit concurrently on link X, so it becomes the bottleneck and

increases the average job completion time to 5.33s. A flow based scheduling

strategy, shortest-flow-first (SFF) [4][5] as shown in Fig. 2.2c, serializes the

flows on each link and prioritizes the shorter ones on interfering links. This

optimizes the average flow completion time. However, it schedules job A’s

flow first on link X and job B’s flows first on link Y and Z. This leads to

an increase in completion time for both jobs A and B because each job has

straggler flows. We then show a simple application-aware scheduling strategy

(Fig. 2.2d) that serializes the jobs and schedules all their flows together on

different links. While this increases the average flow completion time from 3s

to 3.43s, it improves the job completion time from 4.67s to 3.67s compared

to SFF as shown in Fig. 2.2e. This behavior was also recognized by [9, 10].

4



ID Link Size

A1 X 1

A2 Y 2

A3 Z 3

B1 X 3

B2 Y 1

B3 Z 2

C1 X 2

(a) Network Flows for jobs A,B,C

0

1/2

1

0

1/2

1

0

1/3

2/3
1

B
a
n
d
w
id

t
h

0 1 2 3 4 5 6

time

L
i
n
k
Z

L
i
n
k
Y

L
i
n
k
X

A, C end
B ends

A3

B3

A2

B3

B1

A1 C1

(b) Fair Sharing

Figure 2.2: Application-Aware vs. Application-Agnostic scheduling
strategies for three concurrent jobs. Shortest Flow-first has the minimum
average flow completion time (FCT) but an application-aware scheduler
performs best in terms of average job completion time (JCT).
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Figure 2.2: Application-Aware vs. Application-Agnostic scheduling
strategies for three concurrent jobs. Shortest Flow-first has the minimum
average flow completion time (FCT) but an application-aware scheduler
performs best in terms of average job completion time (JCT).

2.2 Network-Awareness

Application-awareness alone is not sufficient for a scheduler to prevent con-

current jobs from slowing each other down. Even if the mappers and reducers

of different jobs are scheduled on different nodes, their shuffling traffic might

still interfere on a common link inside the network. A network-agnostic

scheduler treats the network as a black box and assumes sufficient capacity

at the core. It is unaware of any conflict between interfering flows, so it

treats them as independent and schedules them concurrently. This can lead

to a slowdown in data transfer if the link does not have sufficient capacity.

A network-aware scheduler is aware of the network topology information. It

can use this information to help prevent potential network congestion.

Fig. 2.3 considers two jobs each consisting of one flow of size 1. The topol-

ogy of the network is shown in Fig. 3.1. All the links in the network have

the same capacity. The flows do not share the end hosts but interfere in the

network on the link between the switches S1 and S2. The network-agnostic

scheduler (Fig. 2.3a) lets both the jobs send traffic at the same time. As
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a result, they split the bandwidth of the bottleneck link S1→S2 between

each other. This leads to a slowdown and both the jobs complete in 2s.

A network-aware scheduler (Fig. 2.3a) would predict the flow interference

and serialize the jobs. We define interference as the overlap of the paths of

network flows from different jobs on at least one link. Initially, job A fully

utilizes the link, completes and then job B can utilize the link fully. This

reduces the average job completion time from 2s to 1.5s.
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Figure 2.3: Network-Aware vs. Network-Agnostic Scheduling for two
concurrent jobs in the network in Fig. 3.1. Network awareness can reduce
conflict in the network and improve the job completion time.
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CHAPTER 3

SYSTEM ARCHITECTURE

To achieve application-aware and topology-aware network resource alloca-

tion, we design a flow scheduling framework called Phurti. The key idea

of Phurti is to enable the applications and OpenFlow switches to pass the

information about the system through APIs to enable global network traffic

coordination. As shown in Figure 3.1, we propose a centralized architecture

that communicates with the traffic-generating applications as well as with

the OpenFlow switches. Phurti receives information about the underlying

network topology, host placement and the path taken by each flow from

the OpenFlow switches via its Southbound API. It also gathers information

about the application generated network traffic by communicating with them

via the Northbound API. We now discuss the design goals of these APIs. We

will describe more implementation details in Section 5.

3.1 Northbound API

The Northbound API enables Hadoop to pass information about the shuffling

phase traffic of each MapReduce job to Phurti. Whenever a MapReduce job

launches, it contacts Phurti to register the job. It also sends notifications

whenever it starts or stops sending the traffic into the network on a per-

task basis. It can provide additional information to help in the scheduling

decision, e.g., the size of network traffic a job needs to send between any

pair of hosts during the shuffling phase, the number of concurrent flows in

a job, etc. Phurti implements a rate-limiting module described in Section 5

that enables flow preemption. Depending on the flow scheduling algorithm,

Phurti can choose to suspend, rate limit, or transfer a flow of any given job.
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Figure 3.1: System Architecture of Phurti.

3.2 Southbound API

For topology-awareness, Phurti leverages the Southbound API to gain knowl-

edge from OpenFlow switches about the cluster network topology including

current hosts in the cluster network and how they are connected. It can also

identify the complete path a flow traverses in the network. Acquiring this

information allows Phurti to predict where interference of flows can happen

to help avoid congestion.
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CHAPTER 4

SCHEDULING ALGORITHM

In this section, we describe Phurti’s scheduling heuristic with the goals of

optimizing end-to-end job completion time and network utilization. We con-

sider heuristics because scheduling the data transfers to minimize average

completion time of shuffling is shown to be NP-hard, even without consider-

ing link-level capacity in core network [9].

4.1 Smallest Maximum Sequential-traffic First

Heuristic

Shortest Job First (SJF) is a well known scheduling algorithm that can im-

prove the average completion time of jobs. However, scheduling data trans-

fers of MapReduce jobs purely based on the size of total amount of network

traffic of the job can be inefficient. The completion time of the shuffling phase

is likely determined by the size of largest amount of network transmission

between any pair of hosts rather than the size of total amount of traffic. This

is because the former is the bottleneck of the shuffling phase.

Concretely, we define the sequential-traffic Tij of a MapReduce job as the

traffic it needs to transmit between host i and host j. Note that sequential-

traffic might consist of multiple flows. For a MapReduce job, we calculate

the Maximum Sequential-traffic as max(Tij) across all host pairs (i,j). In Fig

5.1, the maximum sequential-traffic of job J1 is 1GB, while for job J2 it is

2GB.

Using this, Phurti’s flow scheduling strategy allocates network bandwidth

to the flows of MapReduce jobs in increasing order of maximum sequential-

traffic of jobs. We call this heuristic Smallest Maximum Sequential-traffic

First (SMSF). We further discuss Phurti’s mechanism for enforcing SMSF

on flows in Section 4.2 and Phurti’s bandwidth allocation strategy in Section
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4.3.

Phurti maintains a priority queue for jobs. A job with smaller maximum

sequential-traffic has higher priority. Phurti updates the priority queue con-

tinuously as it receives the new information from the Northbound API. When

the size of maximum sequential-traffic of a MapReduce job changes, Phurti

adjusts its priority accordingly.

4.2 Flows & States

In this section, we describe how Phurti enforces the priority defined by SMSF

on network traffic generated by MapReduce jobs.

Flow States: A flow can belong to one of two possible states: TRANS-

MIT and SLOW. For a given link, only flows from one job can be in the

TRANSMIT state. All the flows in the SLOW state share a small portion of

the bandwidth of the links they traverse, while the majority of the bandwidth

of links is used by the flows in the TRANSMIT state.

Flow Entry: When a flow arrives, Phurti retrieves the network path for

the incoming flow. Phurti checks if there are any higher priority flows in the

TRANSMIT state on any of the link along the network path of the incoming

flow. If there are, the incoming flow is assigned a SLOW state, so that it does

not interfere with the higher priority flows along its path. If not, it starts

in the TRANSMIT state and asks Phurti to preempt other flows belonging

to lower priority jobs along its path to the SLOW state. Phurti acquires

all of these conflicting lower priority flows and rate-limits them to prevent

interference. We summarize Flow Entry as pseudocode in Algorithm 1.

Flow Exit: Phurti keeps track of the states of all the flows and examines

these states as flows finish. Firstly, if a flow finishes in the TRANSMIT

state, Phurti retrieves all the links along its path and collects the flows in

SLOW state that are traversing on those links. The collected SLOW flows

are sorted in decreasing order of job priority. Each of the sorted SLOW flows

is examined to check if it can be switched to TRANSMIT state, by the same

procedure used in Section 4.2. Phurti preempts any flows if necessary.

Secondly, if the finished flow was in SLOW state, Phurti takes no action

since no readjustment of bandwidth allocation is needed. Flow Exit is sum-

marized as pseudocode in Algorithm 2.
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Algorithm 1 Flow Entry

1: function FlowEntry(flow)
2: if canTransmit(flow, flow.path) then
3: flow.state = TRANSMIT
4: PreemptFlows(flow,flow.path,)
5: else
6: flow.state = SLOW
7: end if
8: end function
9:

10: function canTransmit(flow,path)
11: for Flow f along path do
12: if flow.state == TRANSMIT AND flow.prio ≤ f.prio then

. interfere with a higher priority flow in TRANSMIT state
13: return False
14: end if
15: end for
16: return True
17: end function
18:

19: function PreemptFlows(flow,path)
20: for Flow f along path do
21: if f.prio < flow.prio AND f.state == TRANSMIT then .

interfere with a lower priority flow in TRANSMIT state
22: f.State = SLOW
23: end if
24: end for
25: end function

14



Algorithm 2 Flow Exit

1: function FlowExit(flow)
2: if flow.state == TRANSMIT then
3: S FLOWS = {}
4: for Flow f along flow.path do
5: if f.state == SLOW then
6: S FLOWS = S FLOWS ∪ {f}
7: end if
8: end for
9: for Flow sf ∈ S FLOWS do

10: if canTransmit(sf, sf.path) then
11: PreemptFlows(sf ,sf.path)
12: sf.state = TRANSMIT
13: end if
14: end for
15: end if
16: end function

4.3 Flow Managing Discussion

Allowing Preemption: Flows of a job may need to be preempted at any

time due to the arrival of flows of higher priority jobs (with the priority

defined by SMSF.) Without preemption, flows of low priority jobs can po-

tentially hog network resources and increase average job completion time.

Maximal Network Utilization If there are two concurrent jobs in the

cluster, our algorithm serializes them to let the higher priority job transfer

first. However, some of the flows of the lower priority job might not interfere

with the high priority job. If we use a strict policy to let only one job transfer

at a time, the majority of network resources might be idle, which would be

undesirable. This can decrease the network throughput compared to Fair

Sharing, which would be utilizing the network maximally.

Phurti aims for a congestion-free maximal network utilization approach.

Network flows of a MapReduce job can start with TRANSMIT state when

it arrives, as long as it does not interfere with network flows from higher

priority jobs (line 2 of Algorithm 1). These flows may be preempted anytime

during their lifetime by the arrival of a higher priority job. This scheme

ensures that the network is used fully by the incoming traffic.

Starvation Protection: If there is a continuous stream of high priority

jobs arriving into the cluster, SMSF can lead to perpetual starvation for low
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priority jobs. We present a two-fold solution to protect the jobs from getting

starved as described below.

First, all SLOW flows with same source host s share together a small

fraction β of B, where B is the capacity of the link which connects s with

the core network. This approach is better than blocking the interfering flows

of lower priority jobs. It allows the queued low priority jobs to make some

progress, albeit small, even if they remain queued for a long time.

We also keep track of time elapsed since each job is submitted. Every

T seconds we check if a job has been submitted for more than threshold

seconds and any of its flow is at SLOW state. For those flows, we switch

them to TRANSMIT state for τ seconds. This ensures that all jobs can

make steady progress towards completion without getting stuck behind short

jobs perpetually. We mention the default values we use for these system

parameters in Section 6.1.
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CHAPTER 5

IMPLEMENTATION

In this section, we present implementation details about how Phurti interacts

with Hadoop and OpenFlow switches.

5.1 Northbound API

The Northbound API of Phurti provides a push-based notify function that

can accept different types of messages from Hadoop for communicating the

traffic information of different jobs.

Job Registration and Unregistration: When a MapReduce job starts,

it registers itself by calling notify(JOB START,jobID). Phurti adds it to

the list of active jobs and initializes relevant states to get ready for fu-

ture notifications. When a job finishes, it unregisters itself by calling no-

tify(JOB COMPLETE,jobID). Phurti cleans up the data structures allocated

to keep track of the job.

Task Host Notification: When a map or reduce task launches, it calls

notify(TASK HOST,jobID,taskID,host) to notify Phurti of the host this task

is running on.

Partition Size Notification: When a Map task completes, it notifies

Phurti the size of intermediate data, by calling notify(SIZE,jobID,taskID,

sizeInformation[]). sizeInformation contains information about the amount

of data this map task needs to send to each reduce task.

17
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Figure 5.1: Constructing Traffic Pattern.

In Fig. 5.1, we show an example of how Phurti uses the SIZE notifications.

There are two MapReduce jobs J1 and J2. J1 has two map tasks: M1 at

node 1 and M2 at node 3, and two reduce tasks: R1 at node 3 and R2 at

node 4. J2 has one map task M1 at node 1 and one reduce task R1 at node

4. When the map tasks finish, M1 of J1 notifies Phurti it has generated 1GB

data for each of the reduce tasks while M2 of J2 notifies it has generated

0.5GB data for each of the reduce tasks. Based on this traffic data and the

host information of tasks learned through TASK HOST notification, Phurti

constructs the flows for all ongoing jobs.

Flow Registration and Unregistration: When the data transfer from

a map task to a reduce task starts, Hadoop notifies Phurti of the source and

destination as well as the size via notify(FLOW REQUEST,jobID,flowID,

flowInformation). Phurti keeps track of the state of ongoing flows including

the network paths they traverse, in order to predict where flow interference

can happen and make corresponding scheduling decisions. When the data

transfer completes, Hadoop notifies Phurti by calling

notify(FLOW COMPLETE,jobID,flowID). This results in actions in Section

4.2.
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5.2 Southbound API

Phurti uses the Southbound API to discover underlying network topology

and predict flow interference.

Path Retrieval: We use the topology discovery and host tracker modules

provided with the POX controller to obtain the network topology. Phurti

uses the network topology information to query the path a network flow

traverses. When Phurti needs to identify the path a flow traverses through

the network, it calls query(GET PATH,source,destination) where source and

destination are the endpoints of the flow. The path returned consists of all

links this flow traverses in the network.

Since SDN controller and OpenFlow switches together are continually

tracking the network topology, even if there are changes in the network topol-

ogy caused by adding or removing switches or hosts, Phurti will be capable

of detecting these changes.

Interference Avoidance
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Figure 5.2: Predicting Flow Interference.

Phurti predicts possible flow interference by calling query(CHECK PATH,

PATH1,PATH2). It returns true if two flows intersect at any link in the net-

work. Phurti queries the paths for the flows by using the GET PATH query
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and then uses the CHECK PATH query to detect if those paths intersect on

a certain link.

An example is shown in Fig. 5.2. Phurti uses GET PATH query to retrieve

the paths P1, P2 and P3 for flows Flow1, Flow2 and Flow3 respectively.

query(CHECK PATH,P1,P2)) returns True since both of them traverse on

the same link (N1→S1). query(CHECK PATH,P1,P3)) returns False since

there is no overlap between P1 and P3, assuming all the switches are full-

duplex. Phurti uses this information to predict flow interference and help

avoid congestion.
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CHAPTER 6

EVALUATION

6.1 Experimental Setup

We evaluate Phurti with a local testbed running Hadoop YARN 2.3.0. We

evaluate it using both micro-benchmarks and a realistic workload based on

production Hadoop trace from Facebook. We measure and compare average

job completion time by Phurti with other existing approaches.

Our cluster consists of 6 servers (nodes) divided into 2 racks, where each

rack consists of 2 nodes with 6 GB and 1 node with 3 GB RAM configured for

Hadoop YARN containers. There are two HP 3500 OpenFlow switches each

connected to 3 nodes of the same rack. Both the switches are connected by

a singe link. The network topology is shown in Fig. 3.1. All the ports of the

switches are capable of supporting 100 Megabits/sec full-duplex bandwidth.

We use POX [25] as the OpenFlow controller. We run Phurti at a separate

server with 2.40GHz CPU and 4 GB memory.

For the system parameters mentioned in Section 4.3, we set β to be 1%,

threshold to be 100 seconds, T to be 20 seconds and τ to be 10 seconds. We

found empirically these parameter values achieve balance between starvation

protection for large jobs and avoid penalizing the short jobs for workloads

we used.

6.2 Microbenchmarks

Workload: We use a workload of two MapReduce Terasort jobs to explicitly

compare SMSF used by Phurti against other existing scheduling techniques.

The first job has input size of 1GB and the second job has input size of

500MB. We adjust the inter-arrival time of the jobs so the 500MB job starts
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its shuffling phase just after the 1GB job. We use job completion time as the

primary metric. We compute average job completion time over 10 iterations.

Phurti vs. Other Scheduling Techniques: Fig. 6.1 compares Phurti

with two other scheduling algorithms: Fair Sharing and JobFIFO. Fair Shar-

ing (FS) is the default TCP fair sharing policy. Fair sharing allocates the

link bandwidth equally between all the flows on that link. JobFIFO allocates

links to the jobs in the order their network flows request them.
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Figure 6.1: Comparison of SMSF used by Phurti with other scheduling
algorithms for two Terasort jobs. SMSF has better average job completion
time.

Fig. 6.1 shows that Phurti achieves the best overall average job completion

time for the two jobs. The 1GB job has lowest average job completion when

using JobFIFO because its network flows request the links before the 500MB

job, and can transfer using full link capacities. The tradeoff is that JobFIFO

has the worst average job completion for the 500MB job since it has to wait

for the completion of the flows from 1GB job to start transmitting. Since FS

allocates bandwidth equally for competing flows, it achieves a performance

balance between 1GB and 500MB jobs compared to other scheduling policies

as expected. We observe Phurti performs particularly well for the shorter

job, in terms of reducing completion time by 36% compared to JobFIFO

and 15% compared to FS. Furthermore, the penalty Phurti introduced for

the completion time of the 1GB job is minimal (around 2.2% compared to

FS) since Phurti is work-conserving: flow rates are re-adjusted as any flow

completes to make sure no network link is unnecessarily under-utilized.
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Preemption and Maximal Network Utilization: In order to further

understand the performance of different flow scheduling techniques, for each

of FS, JobFIFO and Phurti, we choose one of the ten iterations and visualize

the timeline of flow transfers. This is shown in Fig. 6.2. For all of the plots,

we use blue solid horizontal lines to show the flows of the larger 1GB job (job

1) and red dashed horizontal lines to show the flows of the smaller 500MB

job (job 2). We label the paths traversed by each network flow on the left

side of the plots.
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We first start with FS shown in Fig. 6.2a. Both jobs have node N2 as

the destination for their flows and as a consequence flows from different jobs

encounter congestions at link S1 → N2. Both jobs are only able to finish

their shuffling phase after 100s.

Fig. 6.2b shows the flow transfers for JobFIFO. Since the large job (Job

1) starts its shuffling phase before the small job (Job 2) does, links on paths

N2  N6 and N5  N6 are all allocated to flows of the large job. Flow 6

of the small job is still able to transmit concurrently with the flows of the

large job, because flow 6 does not interfere with them. However, flow 1 of

the short job has to wait for flow 5 of the large job to finish, because flow 1

interferes with flow 5 on link N2→ S1. This increases the completion time

of the small job that gets starved behind the large job.

Finally, we show Phurti’s capabilities of preemption and achieving maximal

network utilization in Fig. 6.2c. When the small job requests to transfer flow

3 and flow 4, flows of the large job are already transmitting. Flow 3 can start

transmitting without interference with flows of the large job. Phurti predicts

the interference between flow 4 and flow 5 on link N5→ S1, and determines

that the small job has a higher priority. Phurti preempts flow 5 (shown by

reduced width) and starts transmitting flow 4, which allows the small job to

finish its shuffling phase faster compared to the other cases. Right after flow 4

finishes transmission, Phurti lets flow 5 transmit at normal rate. This shows

Phurti’s work-conserving feature for achieving maximal network utilization,

since none of the links are underutilized at any time.

6.3 Realistic Workload Evaluation

In order to demonstrate the advantages of Phurti for a realistic workload,

we generate MapReduce jobs using SWIM[13], based on real MapReduce

trace from Facebook cluster. The generated workload consists of 100 jobs.

The original workload was collected on a 600-node cluster and we scaled

down the jobs proportionally according to our testbed. The scaled trace still

maintains original workload’s characteristics including job arrival time, job

size distribution and time variants of cluster utilization.

We divide the jobs in the workload into three categories, based on the

size of intermediate data they generate: small, medium and large. Table
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6.1 shows the percentage of the number of jobs belonging to each category

along with the percentage of the intermediate data size. This shows that the

majority of jobs in the workload are small jobs.

Table 6.1: Categories of Jobs in Workload.

Job Size % of Jobs % of Bytes in Intermediate Data

Small 62% 5.5%
Medium 16% 10.3%

Large 22% 84.2%

Improvement of Job Completion Time: We first show the benefit

of Phurti via the main metric of job completion time. For each job in the

workload, we take the difference between its job completion time under Phurti

and its job completion time under FS to show performance improvement. A

negative difference for a job shows its job completion time is smaller under

Phurti. We average the results over 8 iterations.
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Figure 6.3: CDF of difference in Job Completion Time(sec): Phurti vs FS.
Negative values imply Phurti is better.

In Fig. 6.3, we plot the CDF of the differences in job completion time

for all jobs. The result shows around 95% of the jobs have improved job

completion time under Phurti compared to FS. Around 50% of the jobs have

at least 100s improvement in job completion time. Around 5% of the jobs

have higher job completion time under Phurti and the worse increase in job

completion time is around 100s. Compared to the fraction of jobs for which
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the job completion time get improved and the factor of improvement they

receive, we believe the trade-off introduced by Phurti is reasonable.
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Figure 6.4: Fractional Improvement by Job Category. Phurti performs best
for small jobs.

To further understand which of the jobs benefit the most under Phurti

and how this improvement compares to FS, we plot Fig. 6.4. For each of

job categories, small, medium and large, we compute both the average and

95th percentile of the job completion time. We show the results as a form of

fractional improvement over FS. Among all jobs, Phurti achieves an average

fractional improvement close to 20% and a 95th percentile improvement of

nearly 13%. As expected, the small jobs have highest average fractional

improvement of nearly 23% and 95th percentile improvement of 16% among

all job categories. This is expected since jobs with smaller size are likely to

have smaller maximal sequential-traffic, and thus have higher priority under

Phurti. This is significant since there are much more smaller jobs in our

MapReduce workload (62%) which is also confirmed by [13] (70%).

Starvation Protection: Although our workload is dominated by small

jobs which have higher priority under Phurti, it should be pointed out that

the large job category is still able to achieve an average fractional improve-

ment of over 16% with 95th percentile improvement of 15%. This demon-

strates that Phurti performs well for large jobs by avoiding perpetual star-

vation. This is also evident through the tail completion times. The 95th
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percentile completion time for Phurti shows significant improvements greater

than 10% over FS for all job categories.

Impact on Network Utilization:: Is Phurti able to achieve high net-

work utilization? In order to answer this question, for each job we compute

the effective transmit rate as fraction of time its flows spend in TRANSMIT

state under Phurti. We plot the CDF of effective transmit rate in Fig. 6.5.

Over 90% the jobs have effective transmit rate larger than 0.8, which means

their flows spend more than 80% of the time in TRANSMIT state. The effec-

tive TRANSMIT rate for all the flows on average is greater than 0.9. Based

on this result we conclude that, Phurti is able to maintain high utilization

of the cluster network since flows transmit at their full potential most of the

time (more than 90%).

In Fig. 6.6, we further analyze the network utilization of Phurti by showing

the average effective transmit rate for jobs in different size categories. The

results show that the small jobs have highest average effective transmit rate

of nearly 95%, which is due to their higher priorities under Phurti. We

observe that average effective transmit rate even for larger jobs is around

85%, despite the fact their flows have the lowest priorities and are likely to

be preempted more frequently by other flows. This shows Phurti is able to

achieve high network utilization for large jobs.
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Figure 6.5: CDF of Effective Transmit Rate. Higher values are better.
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CHAPTER 7

RELATED WORKS

Traditional Flow Scheduling and Traffic Engineering: There is rich

literature about flow scheduling and traffic engineering techniques targeting

only network-layer metrics. Both PDQ [5] and pFabric [4] can be used to

approximate shortest-flow-first policy which is optimal for reducing average

flow completion time but may lead to increased job completion times. Hedera

[6] performs dynamic flow scheduling in a data center network to optimize

network capacity but does not consider the application requirements during

scheduling. SWAN [8] and B4 [7] are software defined WANs which use a

centralized controller to perform traffic engineering to improve network uti-

lization but are not concerned with application performance. Unlike Phurti,

all of them are concerned with improving network level metrics but not ap-

plication performance.

Performance Optimization for Data-Parallel Computing: Task-

level optimization for data-parallel computing has been widely studied by

research community. SUDO [15] is an optimization framework which ana-

lyzes user-defined functions to avoid unnecessary data-shuffling. RoPE [16]

adapts execution plans based on estimates of user-defined code and data

properties. Natjam [17] uses job-level and task-level eviction policies to en-

force the job priority constraints for Hadoop jobs, but does not enforce net-

work level scheduling. PACMan [18] is a distributed cache service analogous

to Phurti but does cache management instead of flow scheduling. It priori-

tizes jobs with smaller wave-widths (number of parallel tasks). We believe

Phurti can work along with SUDO, RoPE, Natjam and PACMan to improve

the overall job completion time. Phurti does not interfere with the compu-

tation processing, memory and storage part of MapReduce jobs that can be

efficiently scheduled and improved upon independently.

Application-Aware and Network-Aware Task Schedulers There

are frameworks which use application and cluster information to allocate
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resources to tasks. Tetris [19] is a scheduler that assigns tasks to machines

based on their requirements for resources such as CPU, memory, storage

and network with priorities based on smallest remaining time first. Wang et

al. [20] propose using application and network-awareness in schedulers for

scheduling jobs and do run-time network configurations to jointly optimize

application performance and network utilization. Alkaff et al. [11] propose

a cross-layer scheduler between the application and the networking layer.

It uses the application and network information to perform task placement

and select network routes. However, these schedulers work on allocating the

nodes and network routes to tasks while Phurti performs flow scheduling on

precomputed paths based on job priority.

Application-Aware Traffic Scheduling: Recent work has started to

explore the opportunities to optimize application performance by implement-

ing application-aware cloud network. Ferguson et al. [21] provide an API

for SDN that allows the applications to formulate an overall network policy.

FlowComb [22] uses software agents to predict application network transfers

and avoids network congestion by scheduling upcoming flows via a central-

ized decision engine. Chanda et al. [23] describe a traffic engineering scheme

which uses metadata such as content length to optimize the content delivery.

Literature that is most closely related to Phurti includes Orchestra [2],

Baraat [10] and Varys [9]. Orchestra uses Weighted Shuffle Scheduling to

minimize the completion time of a shuffle. However, Orchestra relies on

launching multiple TCP connections to adjust flow transfer rate. Instead,

Phurti uses explicit rate limiting mechanism, which adjusts flow transfer rate

faster and incurs lower traffic overhead. Baraat utilizes a decentralized task

aware scheduling system to minimize the task completion time. It assigns

flow priorities in a task-aware fashion for scheduling. Phurti uses a centralized

framework with a different scheduling strategy to schedule the network flows.

Baraat’s approach is at transport layer and requires modifications to both

end-hosts and switches, while Phurti is transparent to client application and

underlying network.

Coflow [24] proposes a networking abstraction for cluster applications to

express their communication requirements. Varys uses this abstraction to

implement an inter-coflow scheduling policy for improved and predictable

communication time. While Phurti priorities job transfers in a similar fashion

with Varys, Phurti differs with Varys in two important aspects: i) Phurti
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is network topology-aware, ii) Phurti can schedule a subset of flows of a

MapReduce job as soon as they are ready and thus can achieve high network

utilization.
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CHAPTER 8

DISCUSSION

8.1 System Design Trade-offs

Phurti contains the weaknesses of common centralized architectures including

scalability and single point of failure. On the other hand, implementing a

centralized scheduling scheme allows us to move the flow states away from

switches. It also makes it easier to maintain consistency for flow scheduling

decisions.

8.2 Task Placement via Network Layer Feedback

Phurti tries to schedule the network flows to accommodate the network re-

source demand of cluster applications. An orthogonal approach is to let

Hadoop place the tasks on hosts based on network conditions. We believe

that Phurti’s traffic scheduling can be integrated with such task placement

to further improve application performance.

8.3 Routing Decisions via Application Feedback

Currently we are using the Southbound API of Phurti to pull the network

information only. However, because we use OpenFlow switches, the API also

provides the option to perform routing decisions. We leave it for future work

to come up with a scheme that exploits multiple paths for application-aware

routing strategies.
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CHAPTER 9

CONCLUSION

In this paper we presented Phurti, which is an application and network

topology-aware scheduling framework designed for MapReduce. Phurti has

interfaces both with the cluster applications to retrieve job-level traffic in-

formation and with the OpenFlow layer to learn the topology of the un-

derlying network. We implemented and evaluated Phurti with real testbed

and demonstrated the advantage of Phurti compared to application-agnostic

approach. Evaluation results on real-world workloads show Phurti improves

job completion time for 95% of the jobs. It decreases average job completion

time by 20% for all jobs and by 23% for small jobs. It also prevents starvation

by improving tail job completion time by 13%.
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