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ABSTRACT

Frequency regulation is becoming increasingly important with deeper pene-

tration of variable generation resources. This dissertation is about exploiting

the flexibility of distributed energy resources (DERs) to provide frequency

regulation though the framework of an aggregator, which groups DERs into

simple, yet accurate, models; offers capability based on these models; and

coordinates the DERs to provide the service.

Flexible loads have been proposed as a low-cost provider of frequency reg-

ulation. For example, the flexibility of loads with inherent thermal energy

storage resides in their ability to vary their electricity consumption without

compromising their end function. The aggregate flexibility of a collection of

diverse residential air-conditioning loads has previously been shown to be well

modeled as a virtual battery using first principles load models. In this dis-

sertation, through developing control and parameter identification schemes,

we show that the virtual battery can also model more complex loads such as

buildings with large, multi-zone air conditioning systems.

The small power ratings and capacity constraints of individual flexible

loads is an obstacle to their integration. Thus, we additionally propose a

framework wherein an aggregator coordinates the response of many flexible

loads and other types of distributed energy resources (DERs) (e.g., plug-in

electric vehicles and microturbines) connected to electric power distribution

networks to provide frequency regulation services. In this framework, the ag-

gregator participates in the day-ahead and real-time ancillary services mar-

kets by submitting an offer to provide frequency regulation. If the offer is
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accepted, the aggregator must coordinate the response of the DERs in or-

der to provide the service. The DERs are compensated through bilateral

contracts, the terms of which are negotiated in advance.

The DER coordination problem the aggregator is faced with is cast as an

optimal control problem, and we propose a bilayer framework to obtain a

sub-optimal solution. In the first layer, we utilize model-predictive control

techniques driven by regulation signal forecasts and parameter estimates to

obtain a reference control action for the DERs. A second control layer pro-

vides closed-loop regulation around the reference computed by the top layer,

which minimizes the error that arises due to forecast error, plant-model mis-

match, and the slower speed of the optimal control.
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CHAPTER 1

INTRODUCTION

In this chapter, we provide context for the remainder of the dissertation.

We begin by discussing the background of the present changes underway in

electric power systems and the benefits that can be gained from utilizing

flexible loads. Related work will be discussed, and the main contributions of

this thesis will be explained. Finally, we will summarize the contents of the

following chapters.

1.1 Background

Electric power systems are undergoing dramatic transformations in structure

and functionality in response to the US DoE Smart Grid vision [1], and its

European counterpart Electricity Networks of the Future [2]. These trans-

formations are enabled by (i) the integration of new renewable generation

resources (e.g., solar photovoltaics (PV) installations) and energy-storage

capable loads (e.g., plug-in electric vehicles (PEVs)), and (ii) the increased

reliance on advanced communications, which enables the active control of

other types of energy-storage capable loads such as thermostatically con-

trolled loads (TCLs) (e.g., air conditioners, heat pumps, water heaters, and

refrigerators).

These generation and controllable/storage-capable resources are commonly

referred to as distributed energy resources (DERs). If properly coordinated,

DERs provide new opportunities and added flexibility in the procurement

of ancillary services such as frequency regulation and load following. For
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instance, PEVs and TCLs can be utilized to provide active power for up and

down regulation services, e.g., energy peak-shaving during peak hours and

load-leveling at night [3–5].

Frequency regulation is a necessary ancillary service because instantaneous

imbalances between power supply and demand cause the frequency of a power

system to deviate from its nominal value, e.g., 60Hz in the USA. Many

devices rely on a fixed frequency supply for proper operation, so this deviation

must be minimized. This imbalance is used alongside scheduled and actual

interchange flows in the calculation of the so-called area control error (ACE).

This value is used in the automatic generation control (AGC) system to

automatically coordinate the response of generators so as to minimize the

ACE.

It has been hypothesized for decades that demand-side resources could

supplement or even replace the regulation service provided by conventional

generators [6]. The massive integration of renewable resources and their of-

ten unpredictable and variable generation patterns are creating an increasing

need for frequency regulation [7]; this need has renewed interest in demand-

side resources. The increasing prevalence of technologies such as advanced

controls, real-time metering, and continuously variable power electronic de-

vices are enabling this radical shift in the way frequency regulation is per-

formed in the bulk power system. Also, advances in power electronics al-

low more precise control over how much power loads consume, e.g., through

cheaper and more reliable variable frequency drives. Many loads can mod-

ify their consumption more quickly than conventional generators, which is

an advantage when providing this service. Together, these transformative

changes are creating a perfect environment for the participation of load side

resources in the procurement of ancillary services. In order to enable this

added functionality that these new technologies may provide, it is necessary

to develop an appropriate structure and control mechanism.

We are interested in the ability of flexible loads and other types of dis-
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tributed energy resources (DERs) to provide frequency regulation. These

resources could include microturbines, renewable generation resources (e.g.,

rooftop solar photovoltaics (PV) installations), chemical energy-storage capa-

ble loads (e.g., plug-in electric vehicles (PEVs)), and thermal energy-storage

capable loads such as thermostatically-controlled loads (TCLs) (e.g., air con-

ditioners, heat pumps, water heaters, and refrigerators).

It is important to note the essential role of an aggregator in enabling the

utilization of DERs for frequency regulation. Most of these DERs will not

be able to participate directly in a frequency regulation market because they

may not meet minimum regulation capability and performance standards

because they are smaller and less concentrated than traditional resources. For

example, in the PJM interconnection, participation in such a market requires

a minimum of 0.1MW of regulation [8]; this exceeds the capability of most

DERs. By aggregating the frequency regulation capacity that these DERs

can collectively provide, the aggregator will be able meet the requirements

of the frequency regulation market. If an aggregator is subsequently called

upon to provide frequency regulation, the regional transmission operator

(RTO) will issue a frequency regulation signal—updated every 2 s—and the

aggregator needs to be able to track it by coordinating the collective response

of the DERs.

The cost incurred by the aggregator includes the payments to the DERs,

and the penalty that the aggregator needs to pay if it is not able to follow

the frequency regulation signal set by the RTO. The profit of the aggregator

is the difference between: the revenue obtained from selling the frequency

regulation service in the real-time market, and the costs incurred by the

payments to the DERs and the penalties for not being able to follow the

frequency regulation signal. Thus, since the revenue is determined by the

market clearing price, which is fixed before service delivery, the aggregator

maximizes its profit by minimizing the total payments to the DERs and the

penalties incurred for not being able to follow the frequency regulation signal.
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1.2 Contributions of Dissertation

1.2.1 Load Flexibility Modeling and Control

In order for a load to provide frequency regulation, it must have a controller

which can utilize its flexibility to follow a regulation signal. To this end, we

propose one such controller, the sole function of which is to provide maximum

regulation capability while respecting constraints, e.g., occupant comfort and

equipment ratings. We note that there may be additional objectives when

designing the control system, e.g., minimization of total energy use [9]. A

natural extension of our proposed controller would balance minimizing energy

costs while maximizing income from the regulation market so as to minimize

total costs.

Beyond designing the controller described above, we are interested in quan-

tifying the flexibility of loads. Flexibility is defined as the ability to tolerate

perturbations from the baseline power, which is the power the building would

have consumed were it not providing the regulation service. The details of

flexibility and baseline power are calculated based on the rules of the rele-

vant electricity markets. Our tool for quantifying flexibility of loads is the

virtual battery, which is a first-order linear time-varying (LTV) model with

constraints on the value that the state and the input takes. This model can

easily be used by system operators procuring capacity in the ancillary services

market because it is agnostic to the details of the underlying resource. The

authors of [10] demonstrated the power of this model to simply and succinctly

describe the aggregate flexibility of a large number of possibly heterogeneous

TCLs. In this work, we show that the virtual battery model has the power

to capture the flexibility of more complex loads, and we provide a method

to identify its parameters.

Our proposed method for identifying the parameters of the virtual battery

model requires a detailed model of the load and its control system. We use
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this model to perform software-based tests to determine equivalent battery

parameters including charge/discharge rate limits, capacity, dissipation, and

initial charge. These tests stress the system by issuing carefully selected

commands to the controller. By noting which commands cause the controller

to fail to converge at what time, our method can deduce how the real system

will react to certain inputs; this is useful to determine how much frequency

regulation can be offered in the market.

1.2.2 Coordination of Distributed Energy Resources

Once the capability of a flexible load has been quantified, it may be necessary

to coordinate it with other DERs in order to realize the full potential of

these resources to provide frequency regulation; thus, in this dissertation, we

propose a framework that enables such coordination.

In this framework, the aggregator participates in the day-ahead or real-

time ancillary services market by submitting an offer to provide frequency

regulation services. The aggregator does not own generation or storage as-

sets. The DERs are compensated for participation through negotiated bilat-

eral contracts. This compensation is agreed to ex-ante and may vary among

the participating DERs. For example, the aggregator is likely to take into

account the fuel cost of a microturbine when setting its monetary compen-

sation; whereas for a TCL, the aggregator might consider and inconvenience

costs, e.g., PEV less than fully charged or water heater being too cold. If

the aggregator’s offer is accepted, it must coordinate the response of a set of

DERs. We propose a bilayer control method.

In the top control layer, the aggregator uses model-predictive control (MPC)

techniques to minimize the costs incurred when providing regulation during

a fixed service interval at time-scales consistent with existing real-time regu-

lation markets.1 The constraints in the optimal control problem include the

1In a real-time market, the duration of the period over which the aggregator offers to
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inherent dynamics associated with the DERs power delivery process, their

upper and lower power output limits, their upper and lower energy limits,

as well as constraints on their ramping rates, i.e., the rate at which they can

change their power output.

In the bottom layer, a closed-loop control, similar to that implemented in

traditional automatic generation control (AGC) systems, regulates around

the MPC solution calculated by the top layer. Separating fast and slow time

scales when designing a controller is a well-established method for solving

problems involving dynamics of differing speeds [13]. The authors of [14]

have proposed replacing traditional AGC with MPC, but, to our knowledge,

this dissertation is the first work to propose the aforementioned bilayered

approach. This approach benefits from both the speed of traditional AGC-

like control and the foresight of MPC, giving results with impressive accuracy,

while the amounts of computational power necessary to obtain such accurate

solutions are limited.

1.3 Related Work

1.3.1 Load Flexibility Modeling and Control

Previously, it has been shown that residential HVAC systems can be ag-

gregated and used to provide frequency regulation by utilizing their ther-

mal energy capacity and flexible energy consumption. The virtual battery

model—a first-order linear dynamical model—was analytically shown to be

an accurate and simple model to capture the flexibility of residential HVAC

systems.

In this context, many recent papers have focused on the use of small res-

idential thermostatically controlled loads (TCLs) with the ability to store

provide the regulation service is typically five to ten minutes, and the offer needs to be
submitted in advance, e.g., two periods before the actual service is to be provided if the
offer is accepted [11,12].
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thermal energy [10, 15–18]. Commercial buildings are another load with the

ability to store thermal energy and with the flexibility to provide frequency

regulation. The large power consumption and thermal mass of these build-

ings, combined with the ability to continuously vary power consumption,

could eliminate the need to aggregate them with other similar loads; this

simplifies the communication and control with remote devices. The authors

of [19–25] focus on using commercial buildings to provide regulation, possibly

in select frequency ranges of the regulation signal, or other ancillary services,

but do not adopt the virtual battery model.

There is a small amount of literature in which techniques related to ours

have been suggested. For example, in [26], charge rate limits and capacity

parameters are identified for a collection of TCLs; our proposed method im-

proves upon this technique in two ways. First, we identify the parameters in

terms of a more accurate model that includes dissipation. Second, we do not

rely on the ability to command a load to consume a maximum or minimum

possible power. Although this may be simple for a collection of TCLs, it

is not clear that this approach can easily be utilized in more complicated

systems.

1.3.2 Coordination of Distributed Energy Resources

There have been many recent papers that exploit the salient features of DERs

in different ways, e.g., [27] uses receding horizon model predictive control of

flexible loads for energy arbitrage. The framework proposed in [28] utilizes

stochastic dynamic programming to arrive at a solution to a Markov pro-

cess in which flexible loads respond to broadcasted prices. A number of

papers have looked at using air conditioners for spinning reserves or demand

response [29–31]. We will focus on papers that directly control DERs to

provide frequency regulation services. For example, in [3], the authors use

mean field games to control a very large population of homogeneous PEVs.
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In [20] and [18], the authors propose to use Markovian Decision Processes to

control heating, ventilation and air conditioning (HVAC) systems in commer-

cial buildings and deferrable loads such as pool pumps, respectively. Finally,

in [5], the authors propose an allocation strategy for TCLs based on priority

stacks. Many of these earlier works focus on a specific class of DERs, while

we are interested in exploiting the distinct capabilities of diverse classes of

DERs.

The formulation of the problem to be solved in the top layer of our architec-

ture is similar to [32], in which the authors use MPC to coordinate frequency

response of diverse types of resources. Here, we build on the framework in-

troduced in that paper and make valuable contributions in several directions.

First, we generalize the model of energy-limited DERs and introduce a cost

function that explicitly takes into account the aggregator payments to the

DERs, which allows us to introduce several related economic problems. Sec-

ond, we formalize the decision-making that the aggregator is faced with when

coordinating the DER responses as a stochastic optimal control problem, and

we show that in the perfect information case (i.e., the regulation signal is

known a priori), the optimal control problem reduces to a linear program.

Additionally, we go beyond the assumption of a perfect forecast and a two

step prediction horizon in [32], and investigate longer time-horizon schemes

that incorporate a forecasting technique the aggregator can use to handle

imperfect information. Our architecture adds a second layer which improves

tracking of fast moving regulation signals and decreases the computational

complexity involved in finding a solution. Finally, we provide empirical ev-

idence via synthetic simulations that use a mix of real and simulated data

to show the effectiveness of these schemes and conduct parameter sensitivity

studies. An aggregator can use similar studies to optimize the control and

determine appropriate DER portfolios to profitably offer regulation services.

The authors of [33] and [34] propose an ambitious multi-level control frame-

work for coordinating aggregations of commercial buildings. The nicely inte-
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grated result considers the interaction between the aggregator and the system

operator/reserves market as well as the internal control of a single type of

DER. In this framework, the reserve allocations for individual loads are cal-

culated by the aggregator daily, while distributed controllers handle changes

on the order of minutes and seconds. In contrast, we propose a framework

in which the aggregator runs a fast, centralized control to coordinate the

response. In our framework, the distributed controllers are not required to

use predictive techniques for regulation. We believe this method is advanta-

geous as the centralized controller is able to fully consider the entire pool of

capability in real time, utilizing the strength of each heterogeneous DER as

appropriate.

The forward-looking nature of the centralized top layer formulation is

especially valuable when utilizing energy-constrained resources. A classic

controller may push the resource to its limits for short term performance,

whereas predictive control has the option of saving some capacity for an

even more critical time period in the future. Because of this benefit, other

authors have also recently taken interest in using MPC for frequency regu-

lation [35], [36], [37]. Our proposal differentiates itself by being a two-level

control strategy, which utilizes AGC-like control for fast time scales and MPC

for slow time scales. Together, the two levels realize benefits from each of

the control techniques.

1.4 Dissertation Organization

In Chapter 2, we discuss virtual battery models and how they can be created

for various types of flexible loads. The initial research and the synthetic case

study on input types from this chapter have been published in [38]. Another

paper with improvements to the formulation and procedure, as well as a case

study of a realistic building, has been published in [39].

In Chapter 3, we propose an aggregator framework that shows how virtual
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battery models can be utilized alongside models of other DERs to provide

frequency regulation.

In Chapter 4, we propose an aggregator framework that shows how virtual

battery models can be utilized alongside models of other DERs to provide

frequency regulation. Content from Chapters 3 and 4 has been prepared for

upcoming publication.

Chapter 5 summarizes the main results of the dissertation and suggests

directions for future work.
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CHAPTER 2

LOAD FLEXIBILITY MODELING AND
CONTROL

In this chapter, we introduce a general model of a flexible load and formulate

our proposed controller using a first-order model as a motivating example.

For clarity, we will refer to the load as a commercial building with an asso-

ciated HVAC system and controller; however, application to other systems

is straightforward (e.g., by replacing the state vector with tank levels in a

pumping application or battery charge in an PEV application). We formu-

late the problem of identifying the parameters of the virtual battery model

describing the ability of a load to provide frequency regulation and introduce

the proposed algorithm for identifying the parameters of the virtual battery

model. The algorithms are used to study effects of different test inputs using

an artificial tests system. We also develop a model of an airport terminal

building and present the results of the procedure used on this model.

2.1 Building Thermal Dynamics and Control

In this section, we introduce a generalized flexible commercial building model

and a controller that enables it to provide frequency regulation. Throughout

this section, we will use a first-order model to illustrate the ideas presented.

2.1.1 Flexible Load Model

We first introduce a model to describe the thermal dynamics of a building.

Let T denote the vector of temperatures in different zones of the building, let
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s denote the vector of control inputs (e.g., HVAC fan speed, air flow control

damper positions, on/off control for vestibule heaters, etc.), and let w(t)

denote a vector of exogenous variables (e.g., outside ambient temperature,

solar thermal load, internal thermal load from occupants and equipment).

Then, the dynamics of the system can be described by a nonlinear state

space model of the form

d

dt
T (t) = h1(T (t), s(t), w(t)), (2.1)

where h1(·, ·, ·) describes the change in zone temperature as a function of the

current state and control variables.

Additional variables relate the dynamics in (2.1) to the electric power

consumed by the building HVAC system, which we denote P (t); specifically,

we can write

P (t) = h2(T (t), s(t), w(t)). (2.2)

Finally, we need to consider the constraints which arise from acceptable

occupant comfort and those that arise from the ratings of the equipment:

h3(T (t), s(t)) ≤ 0. (2.3)

Next, we illustrate the above concepts using a first-order model as an exam-

ple.

Example 1 (First-Order System): Consider a single room building with

heat transfer from outside ambient as well as interior thermal loads. Assume

that the building is cooled by a variable speed air conditioner which recycles

some fraction of the interior air. Let T (t) be the temperature of the room

and the control input s(t) be equal to the mass flow rate of the conditioned

air ṁ; then, the expression for (2.1) in this case is

d

dt
T (t) =

1

m
(q̇ − rT (t) + cpṁ(t)(Tc − T (t))) , (2.4)
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1/r 1/(cpṁ(t))

+
− Tc

+
−q̇/r m

+

−
T (t)

Figure 2.1: Equivalent first-order model circuit diagram.

where m is the thermal mass of the room, r is the thermal conductance, cp is

the specific heat capacity of air, and Tc is the temperature of the conditioned

air. The external variable w equals q̇, which is the thermal load that includes

effects from the ambient temperature as well as objects inside the room. An

equivalent circuit diagram of the thermal dynamics of the building is shown

in Fig. 2.1.

The total power consumed, P (t), is the sum of the fan power, which is

assumed to be quadratic in mass flow rate, and the cooling power, which is

the power required to maintain the cooling coil temperature as it cools the

passing air; thus the expression for (2.2) in this case is

P (t) = κfṁ(t)2 +
cp
ηc
ṁ(t) ((1− dr)Toa + drT − Tc) , (2.5)

where κf is a function of the properties of the fan, ηc is the cooling system

coefficient of performance, dr is the fraction of return air that is recycled,

and Toa is the outside ambient temperature.

We enforce limits on interior temperature to ensure the comfort of oc-

cupants and limits on mass flow rate to keep the AC system functioning

correctly; in this case, the constraints in (2.3) are as follows: T ≤ T (t) ≤ T ,

ṁ ≤ ṁ(t) ≤ ṁ. This completes the example.
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2.1.2 Baseline Power

We define the regulation power at time t as the difference between the actual

power consumed by the load, P (t), and some baseline power, denoted by P 0,

which is the total electric power consumed by the system were it not providing

the regulation services. In practice, it may be challenging to calculate the

baseline power in a way that is fair and auditable.

In this work, we consider P 0 to be the value obtained from the steady state

solution of (2.1), with the zone temperatures set to some nominal value, Tm.

In subsequent developments, we will assume this solution satisfies (2.3); thus,

by setting the left hand side of (2.1) to zero, we can implicitly solve for the

baseline control input, s0. If the problem is underdetermined, some secondary

selection criterion would need to be utilized, e.g., energy efficiency. Using s0,

we can calculate the baseline power from (2.2), which results in the baseline

power P 0.

Example 2 (First-Order System): Consider the same system as in Exam-

ple 1; then, solving for the steady state of (2.4) gives us the baseline mass

flow rate:

ṁ0 =
rTm − q̇

cp(Tc − Tm)
,

from which we can calculate the baseline power using (2.5); which results in

P 0 = κf (ṁ
0)2 +

cp
ηc
ṁ0 ((1− dr)Toa + drT

m − Tc) .

This completes the example.

2.1.3 Controller Design

The controller must enforce a constraint so the load consumes the com-

manded power output, P ∗(t), which is equal to the desired regulation plus

the baseline power. The output of the controller is an optimal control, s∗(t),
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which causes the HVAC system to consume the requested amount of power

while also respecting the limits in (2.3). In the most general form, we can

write

s∗(t) = arg min
s(t)

h4(T (t), s(t))

subject to h3(T (t), s(t)) ≤ 0

|P ∗(t)− P (t)| ≤ δ,

(2.6)

where h4 is an objective function that is used to weigh different possibilities

if there are multiple solutions that satisfy the hard constraints and δ is some

small value considered acceptable by the system operator.

The controller must be designed with the structure of the system and

priorities of the owner in mind. For example, on a hot day the building HVAC

system may be able to increase the amount of outside air being brought in

(decreasing the recirculation fraction).1 This would lower efficiency, causing

extra power to be used without decreasing the temperature. This inefficient

use of energy would result in a battery model with large capacity, but this

would have to be balanced against wasting cool air on a hot day. An ideal

objective function will have a unique solution that balances the capacity of

the battery model, temperature variations, equipment cycling, and losses.

The controller should also have defined behavior if it is unable to meet the

commanded power.

Example 3 (First-Order System): For the first-order system in Examples

1 and 2, there is only one solution that satisfies the constraints in (2.6) if

δ = 0, so h4 in (2.6) can be chosen arbitrarily. In fact, we can find the

solution analytically, so an optimization procedure is not required. To find

this solution, note that at any given time we can find the mass flow rate that

1This is known as economizing mode and is desirable under certain combinations of
ambient and zone temperatures.
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will cause a power consumption P ∗ by using the quadratic equation

P ∗(t) = κf (ṁ
∗(t))2 +

cp
ηc
ṁ∗(t) ((1− dr)Toa + drT (t)− Tc)

and solving for ṁ∗. There will be only one meaningful solution assuming

realistic parameters, which is given by

ṁ∗(t) =
cp(−drT (t) + (dr − 1)Toa + Tc)

2ηcκf

(2.7)

+

√
c2p(−drT (t) + (dr − 1)Toa + Tc)2 + 4η2cκfP ∗(t)

2ηcκf

.

Plugging (2.7) into (2.4) gives us a an initial value problem which can only

be solved numerically unless dr = 0; this concludes the example.

2.2 Virtual Battery Parameter Estimation

We first define a procedure which incorporates software-based stress tests to

determine which regulation signals the building/HVAC system is capable of

following. Then, we introduce a reduced-order model—the virtual battery

model—that we will use to compactly represent the flexibility of the build-

ing/HVAC system outfitted with the controller proposed in Section 2.1.3.

Using these, we formulate a criterion for the quality of the virtual battery

model for describing the behavior of the full nonlinear system model. The

problem is then to find the parameters that optimize this criterion.

2.2.1 Violation Time Function

We define a scalar input ui(t) = P ∗
i (t) − P 0 which is the desired deviation

from the baseline power consumption profile. Assume we are free to choose

ui(t), but have no knowledge of the structure or parameters of the underlying

system in (2.1)–(2.3), and (2.6), and cannot make measurements beyond
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checking whether or not constraints have been violated. Then, for some

input ui(t), define a function f(ui(t), τ) such that if there is a constraint

violation at or before t = τ , it takes the value of the time τi at which a

constraint was violated, otherwise it takes the value ∞; in other words:

f(ui(t), τ) =

∞ if ∃ solution to (2.6) ∀ t ≤ τ

τi otherwise,
(2.8)

where τi = min t such that there is no solution to (2.6).

2.2.2 Virtual Battery Model

The virtual battery been shown to accurately model the flexibility of cer-

tain buildings [10], [38]. Even in the case of a nonlinear, high-order building

model, heat transfer is governed by Fourier’s law. With the appropriate con-

trol, many buildings can act as a battery-type first-order model, the dynamics

of which is given by:
d

dt
x(t) = −ax(t)− ui(t), (2.9)

where x(t) ∈ R, ui(t) ∈ R, a > 0 is a constant, and x(0) = x0. There are

upper and lower bounds constraining x(t) and ui(t), i.e.,

−C ≤ x(t) ≤ C, −n ≤ ui(t) ≤ n, (2.10)

where C > 0, n > 0, n > 0 are constant. If a constraint is violated, the behav-

ior is undefined. We group the parameters into a vector φ = [a, C, n, n, x0]
T

to make the notation more compact.

For some input ui(t), define a function b(ui(t),φ, τ) such that if a constraint

in (2.10) is violated by (2.9) before time τ , it takes the value of the time τi

at which a constraint was violated; otherwise it takes the value ∞. Thus,
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similar to (2.8), we have that

b(ui(t),φ, τ) =

∞ if (2.9) – (2.10) hold ∀ t ≤ τ

τi otherwise,

where τi = min t such that (2.9) and (2.10) are not satisfied.

2.2.3 Problem Statement

We want to find the values of the virtual battery model parameters in (2.9)

and (2.10) which will allow us to predict the behavior of the dynamic model

in (2.1)–(2.3) and (2.6). The quality of the fit is inversely related to the

difference between the violation times predicted by the nonlinear system and

those predicted by the virtual battery model. If the fit is not exact, we wish

to err on the side of caution by constraining the battery model to predict

a violation time smaller than that incurred by the nonlinear model. This

ensures that if an input does not cause a violation on the identified battery

model, it will not cause a violation in the nonlinear model. Mathematically,

the problem can be formulated as finding a set of parameters φ∗ such that

φ∗ = argmin
φ

max
ui(t)

|b(ui(t),φ, τ)− f(ui(t), τ)|

subject to b(ui(t),φ, τ) ≤ f(ui(t), τ).

(2.11)

2.3 Estimation Algorithms

In this section, we propose algorithms for identifying the parameters of the

virtual battery model capturing the flexibility of the HVAC system of a

commercial building as described by the dynamic model in (2.1)–(2.3) and

(2.6). The basic structure of the proposed identification setup is shown in Fig.

2.2, where P ∗ is the commanded power, and s is a vector of control signals.
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Figure 2.2: System identification setup.

Feedback includes the state vector T and the actual power P consumed by

the building HVAC system.

2.3.1 Estimation of Rate Limits

The first step of the proposed procedure is to identify the rate limits n and

n. If the initial state is within its temperature bounds and we apply an input

which causes a constraint to be immediately violated (i.e., f(ui(0), 0) =∞),

we know it was due to the input constraints; this is because some finite time

is required for an input to affect the value of the state.

To begin, we will assume w and φ are constant. To be conservative, we

must calculate n under the worst case scenario, which is when the state values

are at their upper limit T ; likewise, n would need to use T . The drawback

of this conservative method is that the actual limits will be underestimated

during normal operating conditions.

We know that n > 0 (n > 0), but we do not know an upper bound on

these values. We therefore perform a one-sided binary search to find such an

upper bound. Once we have an upper bound, we use it together with the

greatest known lower bound in a binary search procedure to find n (n) to

arbitrary precision ε. The details of this procedure for estimating n and n

are laid out in Algorithm 1. The procedure for n is similar, but with f(·, 0)

replaced with g(·, 0) = f(−·, 0).
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Algorithm 1 Rate limit search algorithm

1: procedure Search(ε) . ε > 0
2: α← 0 . Lower bound
3: β ← 1 . Upper bound
4: while f(β, 0) =∞ do . No instant violation
5: α← β
6: β ← 2 · β
7: end while
8: while (β − α) > ε do
9: γ ← (α + β)/2 . New bound to be tested

10: if f(γ, 0) =∞ then
11: α← γ
12: else
13: β ← γ
14: end if
15: end while
16: return α . Less than ε below true value
17: end procedure

2.3.2 Estimation of Capacity and Dissipation Constant

If we respect the identified rate limits, we can guarantee that any constraint

violation error is due to the capacity limit. In general, dissipation cannot

be neglected when solving for the capacity limit, such that the two must be

solved for simultaneously.

Because we are trying to fit the behavior of a linear model to that of

a nonlinear one, we must look for a sufficient solution instead of an exact

one. We say a solution is sufficient in the sense that verifying that an input

does not cause any violations in the virtual battery model is sufficient to

guarantee that the same input will not cause violations in the full nonlinear

model. We are unable to mathematically prove that a solution is sufficient,

i.e., the constraint in (2.11) will hold for all ui(t), because of the nonlinearity

in (2.2); instead, we propose a heuristic. In Section 2.5 we will provide

empirical evidence for the effectiveness of this heuristic procedure.

We start the procedure by picking a large value of τ and generating

u1(t), . . . , un(t) such that violation times will be finite. Constant functions
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with different (log-distributed) magnitudes are a natural first choice, but

others can be used. Then, we can construct a vector of violation times for

the nonlinear model: F = [f(u1(t), τ), . . . , f(un(t), τ)]
T . We also construct a

vector of violation times for the linear model: B(a, C, x0) = [b(u1(t),φ, τ),

. . . , b(un(t), φ, τ)]
T . The values of the components of the difference vectorB−

F can vary by many orders of magnitude; in order to prevent the larger val-

ues from dominating the optimization, we define a new vector G(a, C, x0) =

[log|b(u1(t),φ, τ)−f(u1(t), τ)|, . . . , log|b(un(t),φ, τ)−f(un(t), τ)|]T , which is

the natural logarithm of each component of B − F .

We wish to find the values of a, C, and x0 so the two models have similar

violation times. If the difference in times cannot be reduced to zero, we

require that the violation time predicted by the virtual battery model be less

than that of the nonlinear model. We can cast this problem as a constrained

nonlinear least squares problem of the form

minimize
a,C,x0

‖G(a, C, x0)‖2

subject to B(a, C, x0) ≤ F.

(2.12)

If ui(t) = k is constant and x(0) = x0, we can write an analytic expression

for b. The solution to (2.9) is given by

x(t) =

(
x0 +

k

a

)
e−at − k

a
.

Then, by setting x(τi) = −C and solving for τi, we obtain

τi = b(k,φ, τ) =
1

a
log

(
−ax0 − k

aC − k

)
,

if k > aC. However, in general we cannot analytically solve for the first τi

at which the equality given by

x(τi) = x0 +

∫ τi

0

e−a(τi−τ)ui(τ) dτ = ±C
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holds. If this is the case, we can use a numerical method to evaluate the func-

tion b, just like we must use for f . Given x0 and
d

dt
x(t) = −ax(t) − ui(t),

we can approximate the system trajectory, x(t), t > 0, until |x(τi)| = C,

and record τi. This change causes the computation of B to take orders of

magnitude longer, but we found that solving (2.12) is still computationally

tractable. Because F needs to be calculated only once, we expect the proce-

dure to scale reasonably well to large systems.

2.4 Case Study: Artificial Test System

We begin this section by examining the behavior of the controller using an

artificial test system. We will then test the performance of the identification

procedure described in Section 2.3 on the aforementioned system.

2.4.1 Building Model

For this study we adopt a variable air volume (VAV) building HVAC model.

Figure 2.3 illustrates such a system. The building comprises different zones,

which are assumed to have first order thermal dynamics. The air handling

unit (AHU) includes the supply fan and cooling coil. The supply fan is able

to adjust its speed (and thus airflow), while the cooling coils are regulated to

a setpoint temperature by chilled water. A VAV box near the duct terminals

contains heating elements and dampers to control air flow. Return air from

the zones is partially exhausted and partially recycled alongside outside air

to create the supply air.

Let T denote the vector of building zone temperatures, and let ṁ denote

the vector of mass flow rates of cooled air into each zone. Also, let dr denote

the fraction of return air that is recycled into the system, and let Tc be the

cooling coil outlet air temperature. Additionally let Q̇offset be the vector of

thermal loads independent of zone temperatures. Then, the dynamics of the
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Figure 2.3: Illustration of typical variable air volume HVAC system [9].

system can be described by

M
d

dt
T (t) = RT (t) + Q̇offset(t) + cpṁ(t).∗(1Tc(t)− T (t)), (2.13)

where 1 = [1, . . . , 1]T , .∗ denotes an elementwise product, M is a diagonal

matrix of thermal capacitances associated with each building zone, R is a

matrix of thermal resistances associated with each building zone, and cp is

the specific heat capacity of air.

Additional variables relate the dynamics in (2.13) to the electric power

consumed by the HVAC system. Specifically, the electric power consumed

by the supply fan, Pf , is given by

Pf (t) = κf

(
1T ṁ(t)

)2
, (2.14)

and the electric power consumed by the cooling coils, Pc, is given by

Pc(t) =
cp
ηh
1T ṁ(t)(Tm(t)− Tc(t)), (2.15)

where Tm is the cooling coil inlet air temperature which is given by

Tm(t) = (1− dr(t))Toa(t) + dr(t)Tr(t),
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where Tr is the average return air temperature, which can be obtained as

follows:

Tr(t) =
ṁ(t)TT (t)

1T ṁ(t)
.

Finally, we need to consider the constraints which arise from acceptable

occupant comfort:

T ≤ T (t) ≤ T , 0 ≤ dr(t) ≤ dr, (2.16)

as well as those that arise from the ratings of the equipment:

ṁ ≤ ṁ(t) ≤ ṁ, T c ≤ Tc(t) ≤ Tm. (2.17)

In the remainder, we will assume that dr = 1 and Tc < min(T ). These

assumptions are not a requirement for any future development, but they re-

sult in a cleaner formulation which is better for illustration purposes. Also,

we will define the control input, s(t), as a function of flow rates as follows:

s(t) = cpṁ(t).∗(Tc1−T (t)). Finally, we will neglect inter-zonal energy trans-

fer. The matrix R becomes a diagonal matrix proportional to the difference

between ambient and zonal temperatures, and Q̇offset is a vector of thermal

loads that are independent of both ambient and zone temperatures. With

these simplifications, the dynamic model in (2.13) becomes

M
d

dt
T (t) = R(Toa1− T (t)) + Q̇offset + s(t). (2.18)

The expression for the fan power in (2.14) becomes

Pf (t) =
κf

cp

(
1T (s(t)./(Tc1− T (t)))

)2
, (2.19)

where ./ denotes an elementwise division, and the expression for the cooling
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coil power in (2.15) becomes

Pc(t) = −1T s(t)

ηc
. (2.20)

The constraints in (2.16) – (2.17) result in

T ≤ T (t) ≤ T , (2.21)

s(t) ≤ s(t) ≤ s(t). (2.22)

Numerical values of system parameters used in this section are given in

Table 2.1.

Table 2.1: Parameters used in numerical study

Parameter Value Unit

n 5 zones
∆t varied s
cp 1 kJ/(kgK)
mci 1000 kJ/K
R 0.1 kW/K
ηh 0.9 dimensionless
κf 0.065 kWs2/kg2

T zi 21 ◦C
T zi 24 ◦C
T oa 30 ◦C
mzi 0.025 kg/s
mzi 1.5 kg/s

Q̇offset 0 kW

2.4.2 Baseline Power

We define the regulation power at time t as the difference between the actual

power consumed by the fan and cooling coils, i.e., Pf (t) + Pc(t), and some

baseline power, denoted by P 0, which is the total electric power consumed by

the system were it not providing the regulation services. In this chapter, we
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consider P 0 to be the value obtained from the steady state solution of (2.18),

with the zone temperatures set to their midpoint values Tm = 1
2
(T + T ). In

subsequent developments, we will assume this solution satisfies (2.21) and

(2.22). Thus, by setting the left hand side of (2.18) to zero, it immediately

follows that

s0 = −(RTm + Q̇offset). (2.23)

From (2.23), we can calculate the baseline power using (2.19) and (2.20),

which results in

P 0 = −1T s
0

ηc
+

κf

cp

(
1T
(
s0./(Tc1− Tm)

))2
.

2.4.3 Controller Design

Previous work on TCLs has proposed various controllers including a priority

stack scheme [40]. Such a design is not applicable to this system because we

have continuous control inputs rather than a number of binary ones, thus we

propose a new controller which is appropriate for more general systems.

The controller’s input is a commanded power output, P ∗, which is equal

to the desired regulation plus the baseline power. The output is a control,

s(t), t > 0, which causes the HVAC system to consume the requested amount

of power while also respecting the limits in (2.21) and (2.22). First, we

check for feasibility, and if there exists an input, s(t), t > 0, such that all

constraints are satisfied, we choose to optimize s(t), t > 0, so temperatures

are driven towards their midpoints. We can pose this problem as a nonlinear
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least square error estimation problem:

s∗(t) =arg min
s(t)

‖T (t+∆t)− Tm‖2

subject to T ≤ T (t+∆t) ≤ T

s(t) ≤ s(t) ≤ s(t)

P ∗(t)− Pf (t)− Pc(t) = 0.

(2.24)

2.4.4 Controller Performance Verification

In the first study, we examine the behavior of the controller proposed in

Section 2.1 and verify its functionality. The baseline power is calculated

to be 4.17 kW. Figure 2.4 shows that initial zonal temperatures are evenly

distributed through the acceptable range indicated by dashed lines. We see

that the controller initially drives temperatures toward the midpoints, as

desired. Minimum flow rate constraints are initially binding for zones 1

through 4. The commanded power is then stepped from 0 kW to 1 kW.

The controller initially issues commands that perfectly meet the request.

Temperatures decrease until temperature constraints become binding. At

this point the controller is unable to meet the requested power, so there is a

positive error.

2.4.5 Charge Rate Limit Estimation

We next use the estimation procedure outlined in Section 2.3 to identify

the positive charge rate limits n and n. We obtain that n = 103.7 kW

and n = 2.44 kW; the asymmetry is quite large because, for the chosen

parameters, the air conditioning system is capable of blowing much more

cold air than required to maintain a steady temperature. On the other hand,

the baseline air flow is quite close to the lower limit, so it cannot consume

much less than the baseline power value. For this reason, this system would
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Figure 2.4: Response to step regulation signal.

be much better utilized in a market that treats up and down regulation as

two distinct services.
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Table 2.2: Estimated parameters

Parameter

Input b Solver a (s−1) C (kWh)

Step Analytic 1.003× 10−4 2.321

Step Numerical 1.003× 10−4 2.321

Ramp Analytic 1.002× 10−4 2.324

Ramp Numerical 1.002× 10−4 2.324

RC Step Numerical 1.003× 10−4 2.321

Monomial Numerical 1.003× 10−4 2.322

RegD Numerical 9.966× 10−5 2.334

2.4.6 Capacity and Dissipation Estimation

The next step is to identify capacity and dissipation parameters. For this

task, a set of test inputs needs to be chosen. We investigate a number of

different families of inputs and compare their performance. The parameters

identified using the different techniques are remarkably consistent; the results

are summarized in Table 2.2.

Step Input

We first test the use of inputs of the form u(t) = k, t ≥ 0, with k ∈ R.

Fifty values of k were chosen logarithmically distributed between a value

just above aC (which can be found using a search procedure similar to the

one outlined in Algorithm 1) up to n. Figure 2.5 provides a plot of violation

time versus input magnitude. If a = 0, we would expect a straight line with

slope −1. The line curves upward for small inputs because there is more time

for the effects of the dissipation to manifest themselves.

Step inputs are simple enough that we can find an analytic solution to

(2.9); thus we have a choice of calculating b using an analytic expression or

a numerical solver. In this regard, the optimization procedure in (2.12) runs
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Figure 2.5: Best battery model bounded above by constant input
experimental data.

orders of magnitude faster with the analytic expression, and the identified

parameters were confirmed to be nearly identical in either case.

Ramp Input

Figure 2.6 shows the result for inputs of the form u(t) = kt, t ≥ 0, with

k ∈ R. Again, we calculate the parameters using both an analytic expression,

which is given by

tv =
1

a

(
1 +

a2C

k
+W (−e−1−a2C

k )

)
,

where W is the Lambert W function [41], and a numerical solver; both

approaches yield identical results. The identified parameters also agree with

those identified using the step inputs.

RC Step Input

Figure 2.7 shows the result for inputs of the form u(t) = k(1− e−λt), t ≥ 0,

with k ∈ R, and λ = 5× 10−5 s−1. For a given k, violation times with this

input are larger than the instantaneous step input because u(0) = 0 and u(t)
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Figure 2.7: Best battery model bounded above by RC charging step input.

approaches k asymptotically. For this type of input and the following types,

there is not an analytical expression for the violation time, so we only test

the numerical methods. In the end, the identified parameters agree with the

previous values identified using step functions.
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Figure 2.8: Best battery model bounded above by monomial input.

Monomial Input

Figure 2.8 shows the result for inputs of the form u(t) = ktλ, t ≥ 0, with

k ∈ R, and λ = 1
3
. The parameters obtained using this input provide further

evidence for the consistency of the results among different input types.

Regulation Signal Step Input

Figure 2.9 shows violation time vs. input constant using a modified regulation

signal u(t) = r(t)(k(r(t) > 0)+n(r(t) < 0)), where r(t) is the PJM dynamic

regulation signal from [42]. A representative segment of this signal is shown

in Fig. 2.10. This asymmetric signal was selected because of the asymmet-

ric nature of the charge rate constraints. A symmetric signal that respects

n would never violate a capacity limit and would not provide limited eco-

nomic benefit. Providing asymmetric regulation is possible in markets such

as CAISO, where up regulation and down regulation are treated as different

services.

Of all the tests, this had the most issues with convergence, step sizes, and

tolerances. This is likely due to the input function not being monotonic.

With a monotonic function, a small integration or interpolation error will
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Figure 2.9: Best battery model identified by regulation signal input.

lead to a small change in violation time. This is not the case with this in-

put signal. A small difference (for example, the nonlinear data uses Euler’s

method, but the battery model uses Runge-Kutta) can lead to a much bigger

difference in violation time. Even with this difficulty, the estimated param-

eters using this input match those obtained with the other aforementioned

approaches (see Table 2.2). Conversely, the parameters identified using the

other inputs performed practically identically in predicting violation times

from the regulation signal. Overall this is excellent empirical evidence to

support our proposed stress-based estimation procedure for this system.

2.5 Case Study: Real Commercial Building

We begin this section by formulating a specific building/HVAC system model

and a controller of the very general form presented in Section 2.1. We will

then test the performance of the identification procedure described in Sec-

tion 2.3 on the aforementioned system.
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Figure 2.10: Portion of modified dynamic regulation input signal, k = 99.5.

2.5.1 Commercial Building/HVAC System Model

Our building/HVAC system dynamic model and controller formulation will

now be specifically tailored to describe the thermal dynamics of the Uni-

versity of Illinois Willard Airport terminal building. The formulation is a

generalization of the commercial building model used in Section 2.4, which

has a structure that is insufficient to accurately model the terminal. Key

changes include allowing for multiple air handling units, generalizing the fan

power consumption formula, and accommodating unconditioned zones.

Let T denote the vector of building zone temperatures; M denote the

(diagonal) matrix of zone thermal inertias; Toa denote the outside ambient

temperature; cp denote the specific heat capacity of air (assumed constant);

ṁ denote the vector of conditioned air mass flow rates to each zone; Tc

denote the air temperature at the output of the cooling coils; Q̇people, Q̇lighting,

Q̇equipment, Q̇solar denote vectors of thermal loads due to occupants, electric

lighting, miscellaneous machinery and office equipment, and solar radiation,

respectively. Then, the dynamics of the building/HVAC system are described
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by

M
d

dt
T (t) =R1T (t) +R2(Toa − T (t)) + Q̇people + Q̇lighting

+ Q̇equipment + Q̇solar + cpṁ.∗(Tc1− T (t)), (2.25)

where .∗ indicates element-wise multiplication; R1 is a sparse, symmetric

matrix with off-diagonal elements (i, j) that are the thermal conductance

between zones i and j, and diagonal elements (i, i) equal to the negative sum

of the off-diagonal elements in row i; R2 is a diagonal matrix of external

conductance values.

By defining R = R1−R2 and Q̇ = R2Toa+ Q̇people+ Q̇lighting + Q̇equipment+

Q̇solar, we arrive at a more compact version of (2.25):

M
d

dt
T (t) = RT (t) + Q̇+ cpṁ(t).∗(Tc1− T (t)). (2.26)

The Willard Airport terminal building has five air handling units (AHUs).

Let Ṁ be the vector of mass flow rates through each of the air handler

units. We assume ideal ducts, so each element can be obtained by summing

the elements of ṁ corresponding to the appropriate air handler. Then, the

expression for power consumed by the air handling fans is a second-order

function of mass flow rate:

Pf (t) = κf2Ṁ(t)TṀ(t) + κf11
TṀ(t) + κf0.

If we assume the return air is a weighted average of the conditioned zones,

the expression for the cooling coil power is given by

Pc(t) =
cp
ηc
1T ṁ(t) (Tm − Tc) , (2.27)
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where the temperature of the input to the AHU is

Tm(t) = (1− dr)Toa + drTr,

and the return air temperature is

Tr(t) =
ṁ(t)TT (t)

1T ṁ(t)
.

Fast chiller dynamics are assumed in (2.27), and fixed supply air temperature

is assumed in (2.26) and (2.27). While we note there is other literature that

assumes fast chiller dynamics [9], some papers use a first order time delay [19]

or utilize only the fan power [35] to provide regulation. Extensive chiller

modeling is outside the scope of this dissertation, but future work could

classify typical equipment into classes where 1) our assumption effectively

holds, 2) there is a noticeable, but acceptable lag in the chiller response,

or 3) the response is delayed so much that is no longer useful for frequency

regulation.

The model is composed of zones which may be conditioned or uncondi-

tioned. Let T1 be the vector of conditioned zone temperatures, and ṁ1 be

the vector of conditioned zone mass flow rates. Similarly, let T2 be the vec-

tor of unconditioned zone temperatures, and ṁ2 = 0 · 1 be the vector of

unconditioned zone mass flow rates.

The constraints will then be T ≤ T1(t) ≤ T and ṁ ≤ ṁ1(t) ≤ ṁ.

Additional constraints, Ṁ ≤ Ṁ(t) ≤ Ṁ , limit the total flow through each

AHU.
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The optimization problem in (2.6) is chosen to be

s∗(t) = arg min
s(t)

‖(T1(t+∆t)− Tm
1 ) ./

(
T − T

)
‖∞

subject to T 1 ≤ T1(t+∆t) ≤ T 1

s(t) ≤ s(t) ≤ s(t)

|P ∗(t)− Pf (t)− Pc(t)| ≤ δ, (2.28)

where ./ indicates element-wise division and s = ṁ1. The objective function

is chosen so that the controller will attempt to keep all conditioned zones

near their midpoint temperature. If the regulation signal pushes the system

to its limits, the controller will bring all zones to their temperature limit at

the same time, at which point there will be a constraint violation.

The problem in (2.28) is solved using sequential quadratic programming

using the baseline control input as an initial condition. As overly restrictive

constraints can cause problems with the numerical solver, if no feasible solu-

tion to (2.28) can be found with δ = 0.1W, δ is increased until a solution is

found. Then, δ is decreased in gradual steps, using the previous solution as

an initial condition for solving each new optimization problem. Then, if the

optimization finds a solution with δ = 0.1W, the simulation continues. If

there is truly no feasible solution, the controller considers this a violation and

returns the solution that converged with the smallest δ. This alternative so-

lution minimizes the error without violating state or input constraints. This

graceful degradation is not required for the parameter identification algo-

rithm proposed in Section 2.3, but it would be desirable when implementing

the controller in a real system.
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To find the baseline power, (2.26) can be broken into

Mc 0

0 Mu

Ṫ1(t)

Ṫ2(t)

 =

R11 R12

R21 R22

T1(t)

T2(t)

+

Q̇1(t)

Q̇2(t)


+ cp

ṁ1(t)

ṁ2(t)

 .∗

Tc1− Tm
1 (t)

Tc1− T2(t)

 . (2.29)

Then, we set Ṫ1(t) = Ṫ2(t) = 0, T1(t) = Tm
1 , and ṁ2 = 0 in (2.29), giving

us R11 R12

R21 R22

Tm
1

T 0
2

+

Q̇1

Q̇2

 =

−cpṁ0
1.

∗(Tc1− Tm
1 )

0

 . (2.30)

Equivalently, (2.30) can be written as two equations:

R11T
m
1 +R12T

0
2 + Q̇1 = −cpṁ0

1.
∗(Tc1− Tm

1 ) (2.31)

and

R21T
m
1 +R22T

0
2 + Q̇2 = 0. (2.32)

From (2.32), it follows that T 0
2 = −R−1

22 (R21T
m
1 + Q̇2). By plugging this into

(2.31), we obtain

R11T
m
1 −R12R

−1
22 (R21T

m
1 + Q̇2) + Q̇1 = −cpṁ0

1.
∗(Tc1− Tm

1 ),

which can easily be solved for baseline mass flow rate, yielding

ṁ0
1 = (R11T

m
1 −R12R

−1
22 (R21T

m
1 + Q̇2) + Q̇1)./(−cp(Tc1− Tm

1 )).

2.5.2 Numerical Values for Willard Airport Terminal Building

A three-dimensional model of the Willard Airport terminal building in Savoy,

Illinois, was created by the Illinois Smart Energy Design Assistance Center

(SEDAC) at the University of Illinois [43]. The model, shown in Fig. 2.11,
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Figure 2.11: Three-dimensional model of Willard Airport terminal provided
by Shawn Maurer, Andrew Robinson, and Todd Rusk, all affiliated with the
Illinois Smart Energy Design Assistance Center (SEDAC) at the University
of Illinois [43].

was created in eQuest, a software program designed to evaluate building

energy performance [44]. The model comprises 41 zones, 19 of which are

conditioned. Since it is a very detailed model of a real building, it makes

for a compelling case study. We will next look at the development of some

key parameters of the study; however, values for every parameter cannot be

presented due to space restrictions.

Thermal Conductance

To construct the interior thermal conductance matrix, R1, and exterior ther-

mal conductance matrix, R2, the material and geometry of the surfaces be-

tween each of the 41 zones and all the other zones and the exterior were

considered.

Thermal Mass

One of the most important parameters for our study is the thermal mass

M . The dimensions of each zone are known, so the volume of air can be
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easily calculated. The volume multiplied by the density and specific heat

capacity gives us the thermal mass. We assume the air is at a constant 25 ◦C

temperature and 1 atm pressure for density calculations.

It is well known that solids have a higher specific heat capacity than gases;

thus the walls, floors, and furnishings in a room usually have a higher thermal

mass than the air. Because eQuest contains thickness, density, and specific

heat values for the building materials, we can calculate their thermal masses.

For interior walls, half the thermal mass was assigned to each of the two

zones it separates. External surfaces can develop a significant temperature

gradient across the insulation, making the effective mass smaller. To account

for this, we divided the calculated mass by a factor of two to reach an effective

amount.

For each zone, the thermal mass of the air is calculated. Then, the ther-

mal mass of walls, floors, and ceiling is estimated by multiplying the square

footage by the thermal mass per square foot of a representative zone.

Thermal Loads

Solar radiation values were recorded at the time of peak cooling load. These

values were multiplied by a scaling factor to account for the time of day and

day of year using standard insolation formulas [45]. However, this simplifi-

cation does not account for the exact geometry of the building or the effect

of cloud cover. Occupancy, lighting, and equipment loads are each updated

hourly based on their regular weekday or weekend schedule.

Ambient, Limit, Supply Temperature

Ambient temperature (Toa) data from 2013 in nearby Springfield, Illinois, is

used due to its availability. Conditioned zone temperature limits were se-

lected as 21.2 ◦C and 23.2 ◦C; these values are consistent with normal varia-

tions in temperature without the regulating controller. Historical data shows
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some variation in supply temperature Tc, but an average of 15 ◦C was selected.

Other Scalar Parameters

Fan parameters and the chiller efficiency were estimated using least squares

estimation against eQuest timeseries data. The authors believe that, for

the purposes of this study, this calibration adequately compensates for other

approximations.

2.5.3 Estimation Procedure Results

We next present the results obtained by using the battery model identification

procedure described in Section 2.3 on the Willard Airport terminal building

model. Three summer days were selected for the study. Numerical results

are summarized in Table 2.3. We will first analyze the results for the time-

invariant studies, followed by the time-varying studies.

Charge Rate Limit Estimation

We find n varies from 138 kW to 239 kW, and n varies from 46.8 kW to

148 kW. The sum of these values is always approximately 286 kW. This sum

is driven by the difference between the upper and lower mass flow rate limits

of the air handler units. The way this difference is distributed between the

two rate limits depends on the baseline power. For example, on a cooler

day, the relatively small baseline power results in n > n. Because of the

asymmetry, this system could be more effectively utilized in a market setting

that treats up and down regulation as two distinct services.

Capacity, Dissipation, and Initial Charge Estimation

The results in Section 2.4 show that for a time-invariant system results are

independent of the type of input used. Step inputs are chosen for their
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Table 2.3: Identified parameters

Time- n n a C x0

Date varying (kW) (kW) (Ms−1) (MWh) (MWh)

10-Jun no 138 148 8.92 0.580 0.228
10-Jun yes 138 148 11.7 0.424 0.424
06-Jul no 239 46.8 7.60 0.312 0.312
06-Jul yes 239 46.8 6.86 0.318 0.317
26-Aug no 140 145 7.92 0.633 0.147
26-Aug yes 140 145 7.06 0.708 0.0174

simplicity.

Let ui(t) = k, t ≥ 0, with k ∈ R. Sixteen values of k were chosen

logarithmically-distributed between aC (which can be found using a search

procedure similar to the one outlined in Algorithm 1) and n. Figures 2.12

and 2.13 provide a plot of violation time versus input magnitude on June

10th and July 6th. If a = 0, we would expect a straight line with slope −1.

The line curves upward for small inputs because there is more time for the

effects of the dissipation to manifest themselves.

On June 10th, the parameters of the battery model obtained by our identi-

fication procedure are as follows: a = 8.92× 10−6 s−1, C = 0.580MWh, and

x0 = 0.228MWh. On July 6th, the identified parameters are a = 7.60 s−1,

C = 0.312MWh, and x0 = 0.312MWh. We attribute the differences to

changing environmental conditions (solar intensity, ambient temperature)

and internal loads due to weekend versus weekday schedule. For both cases,

even using our narrow range of acceptable temperatures, C is large compared

to the charge rate limits. In fact, the virtual battery can supply maximum

power for at least an hour without running out of charge, but a realistic

regulation signal tends to alternate between charging and discharging with

periods no longer than tens of minutes. Thus, we expect the charge rate

limits to be the primary factor in determining the capability offer for the

building.
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Figure 2.12: Experimental violation times and best fit battery model
predictions for simulations starting June 10th.
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Figure 2.13: Experimental violation times and best fit battery model
predictions for simulations starting July 6th.

2.5.4 Effect of Time-Varying Parameters

For the next set of studies, Toa, Q̇people, Q̇lighting, Q̇equipment, and Q̇solar are

allowed to vary with time; in our previous work, these values were all assumed

to be fixed. Figure 2.14 shows how this translates into time-varying power

values, and Fig. 2.15 shows how that creates diurnal patterns in temperature

and mass flow rate. This generalization is challenging to our model, and

analysis brings a number of interesting points.
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Figure 2.14: Power values for the time-varying simulation starting June
10th.

First, we note that for this study we assume knowledge of future values

of the studied time-varying parameters. In practice, weather forecasts and

historical thermal load data based on the regular airport schedule will need to

be used. Future work could quantify the impact of uncertainty in predictions

on output parameters. Further, as Tc and dr may also vary, the procedure will

need to be implemented in a receding-horizon manner, which will periodically

update the identified battery parameters using new measurements to deal

with the model-plant mismatch.

We note that the identified rate limits are identical to those in the time-

invariant studies. This is because the rate limits are only identified at the

first time step. As the baseline power varies, the rate limits will also change.

A simple fix is to generalize the battery model to allow time-varying rate

limits and identify these rate limits at each time step of the simulation.

Next, we compare the parameters a, C, and x0. It would be natural to also

allow a and C to vary with time, but this would add significant complexity

and make the model more difficult to analyze. We note that the time-varying

battery fit curves in Figs. 2.12 and 2.13 do not fit the data from the time-

varying nonlinear model as well as the time-invariant battery fit curves for
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Figure 2.15: Variables for the time-varying simulation starting June 10th.

the time-invariant nonlinear model data; thus, using the battery model would

lead to more conservative predictions. The user would have to decide if the

accuracy/complexity trade-off is appropriate for the task at hand.

We also notice that the time-varying and time-invariant fit curves in Figs.

2.12 and 2.13 are quite similar, but the identified parameters in Table 2.3

can differ significantly. This occurs because the battery parameters can be

sensitive to small changes in the violation time data. The dissipation pa-

rameter a is most apparent over long periods of time. Also, the effects of C

and x0 are relatively indistinguishable to our method over short amounts of

time. To distinguish them, the behavior over long periods of time is also crit-

ical. Unfortunately, it is over longer periods of time that the time-varying

and time-invariant parameters tend to diverge. For some purposes, using

the time-invariant battery model may be deemed sufficient to model a time-
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varying system. With sufficient data, studies can determine the functional

relationship between the virtual battery parameters and exogenous variables

such as time and ambient temperature, which can further improve the quality

of the model.

2.5.5 Regulation Signal Input

In the final study, we illustrate the ability of a selected building to success-

fully follow a regulation signal that is within the capability characterized by

the identified battery model without adversely impacting the indoor environ-

ment.

We utilize a normalized regulation signal r(t), plotted in Fig. 2.16, which is

chosen to be an example “RegD” signal published by PJM. In this example,

the identification procedure is performed each hour. In the following hour,

the commanded deviation from the baseline power is n(t)r(t) if r(t) ≥ 0, and

n(t)r(t) if r(t) < 0. This scenario approximates participation in a real-time

market with instantaneous hourly clearing of separate zero-cost up-regulation

and down-regulation capability offers. If the identified capacity limit were

not large compared to the charge rate limits, the offer would be based on the

more restrictive limit.

Figure 2.17 shows how the controller proposed in Section 2.1.3 enables the

building to track the regulation signal and the effect on indoor temperatures.

The temperature variations are small compared to the established bounds of

21.2 ◦C and 23.2 ◦C. Power consumption varies greatly from the baseline,

with more up-regulation at night and more down-regulation at midday. In

this example, all constraints are satisfied at each time step. However, unless

exogenous parameters are time-invariant, it is possible for situations to arise

where this is not true if r(t) takes on unfortunate values and external vari-

able change quickly. Possible mitigation techniques include obtaining more

accurate forecasts, identifying battery parameters more frequently, and mak-
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Figure 2.16: Normalized regulation signal r(t) and commanded deviation
from baseline power P ∗(t). During this period, n and n are nearly equal,
making the plots similar. During peaks and nadirs in power consumption,
P ∗(t) is less balanced.

ing more conservative capability offers (e.g., 90% of calculated maximum) to

account for uncertainty.

2.6 Concluding Remarks

We have proposed a controller that allows for flexible loads to provide fre-

quency regulation. We have introduced a method whereby the ability of

the resulting closed-loop system to provide regulation can be accurately de-

scribed by a simple, well understood battery model. Although the estimation

method is an approximation, it was found to be effective on our University

of Illinois Willard Airport test system.

Our case study revealed challenges that will be faced when applying the

technique to real buildings. An ideal candidate building would have a large

thermal mass with high, constant power consumption and the ability to con-

sume much more or less power if required. Large thermal masses are common;

however, arbitrary flexibility over power consumption is likely less abundant

as excess capacity comes at a cost. Thus, for realistic buildings, rate lim-
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Figure 2.17: Effect of tracking regulation signal on temperature and power.
Temperature values remain well within the bounds of 21.2 ◦C and 23.2 ◦C.
Simulation starting June 10th.

its will primarily be the limiting factor in determining regulation capability,

and these parameters will vary with baseline power. Asymmetric regulation

markets are extremely helpful in allowing full use of the virtual battery.
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CHAPTER 3

PREDICTIVE COORDINATION OF
DISTRIBUTED ENERGY RESOURCES

In this chapter, we will introduce the dynamics and constraints of the gener-

alized DER model, define the costs of utilizing the DERs, and formalize the

aggregator coordination problem as an optimal control problem. Next, we

propose solution procedures based on predictive control in various cases with

different assumptions about forecasts and solution time horizons. Simulation

results will highlight the importance of the forecasting procedure.

3.1 Problem Setting

In this section, we first introduce the model that describes the dynamics

associated with the power delivery process of the different types of DERs

considered in this chapter. We then capture the regulation cost associated

with the DERs. Using these, we formulate the DER coordination problem

faced by the aggregator.

3.1.1 DER Power Delivery Model

We assume the aggregator needs to coordinate various types of DERs, which

could include small-rating conventional generators (commonly referred to

as microturbines), commercial building HVAC systems, collections of PEVs

or TCLs, and flexible industrial processes. We provide a single model—

a generalization of the virtual battery model [39]—which can describe the

behavior of any of these resources.
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Let P i(t) = pi(t) + pi0 denote the power delivered by DER i at time t,

where pi0 is some nominal setting at which the DER is operating, and pi(t) is

the amount of regulation power that this type of DER provides, and let ui(t)

denote the rate of change of pi(t), i.e.,
d

dt
pi(t). Also, let X i(t) = xi(t) + xi

0

denote the DER energy level at time t, where xi
0 is some nominal energy level,

and xi(t) is the variation in the DER energy level around xi
0. Additionally, let

pi and -pi denote the maximum and minimum values of pi(t) as determined

by the charge rate limits of the DER (e.g., maximum power rating), and let

ui and −ui denote the maximum and minimum values of ui(t) as determined

by the DER ramping constraints (e.g., inertia). Finally, let Ci denote the

limit on up and down variation in xi(t) around xi
0 as determined by capacity

constraints (e.g., acceptable chemical charge or temperature range). Then,

for the ith DER, we have

d

dt
pi(t) = ui(t),

d

dt
xi(t) = −aixi(t)− pi(t), (3.1)

−ui ≤ ui(t) ≤ ui, − pi ≤ pi(t) ≤ pi, |xi(t)| ≤ Ci,

where ai ≥ 0 captures the process of dissipation towards nominal energy, and

ui(t) is controlled by the aggregator.

While we have considered symmetric constraints on xi(t), the formulation

can be easily extended to the asymmetric case. Also, the dynamic model

we adopt is consistent with those used in bulk power transmission systems

to describe the regulation capabilities of units participating in AGC (see,

e.g., [46]).

3.1.2 DER Coordination Problem Formulation

We assume that the aggregator does not own any DERs. To deliver the

amount of frequency regulation stipulated through the clearing process of
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the real-time market, the aggregator needs to coordinate the response of a

collection of n heterogeneous DERs modeled as in Section 3.1.1.

We will assume that the DERs have agreed in advance to provide the

service on behalf of the aggregator in exchange for some monetary compen-

sation. For a given market-clearing price, in order to maximize its revenue,

the aggregator needs to minimize its cost; thus, it needs to minimize the

sum of the payments to the DERs and the penalty which it would incur if

not able to follow the frequency regulation signal set by the RTO. In our

formulation, the payments to the DERs are those associated with power and

energy used for regulation provision. DERs may also receive a reservation

payment based on capacity independent of whether or not they are used for

service provision. From the perspective of this formulation, these would be

sunk costs which would not influence the coordination scheme.

Let πi
1 denote the price per unit of power that the aggregator respectively

pays DERs for providing power for both up and down regulation, and let

πi
2 denote the price per unit of deviation from baseline energy. Also, let X

denote the amount of power for up and down frequency regulation that the

aggregator has offered in the real-time market. Additionally, let σXr(t), 0 ≤

σ ≤ 1, where r(t) is the value that the normalized regulation signal set by

the RTO takes at time t, be the value of the signal that the aggregator needs

to track at every time instant t; and let πp denote the price per unit of

power that the aggregator incurs as a penalty if it does not track the signal.

Finally, let [t0, tf ] be the time interval over which the aggregator provides

regulation service. Then, given (3.1), the DER coordination problem faced

by the aggregator is to find functions ui that minimize

J(u1, · · · , un) =

∫ tf

t0

L(p1(t), x1(t), · · · , pn(t), xn(t), r(t)) dt, (3.2)
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where

L(p1(t), x1(t), · · · , pn(t), xn(t), r(t)) = (3.3)

πp|σXr(t)−
n∑

i=1

pi(t)|+
n∑

k=1

(
πi
1p

i(t) + πi
2|xi(t)|

)
.

In (3.2), while t0 is likely to correspond to the beginning of the period

over which the aggregator needs to provide frequency regulation, tf does not

necessarily correspond to the time instant at which this period ends. In this

regard, if the aggregator were to choose tf to exactly coincide with the time

at which the frequency regulation period ends, then it would maximize its

revenue for this period. However, if the aggregator were to participate in

subsequent periods, this strategy might not be optimal; thus, the aggregator

might decide to look ahead and consider a longer time horizon to better

position itself.

In (3.3), it is assumed there is a large penalty price, πp, for error in tracking

the regulation signal. A nonlinear imbalance penalty may be more accurate,

but would greatly complicate the solution procedure. Regulation power is

paid according to the amount of power used, which is negative for down reg-

ulation. Energy costs reflect the inconvenience cost of deviating from the

baseline value, e.g., uncomfortable temperature, insufficient battery charge,

or no hot water. This function could be generalized to include mileage pay-

ments, which account for increased maintenance costs due to cycling the

equipment.

The normalized regulation signal, r(t), is computed in real-time by the

RTO based on the frequency error and inter-area power exchange errors

(see, e.g., [46]); thus, this signal is not known a priori. This uncertainty

adds a crucial complicating factor for the aggregator. In following section,

we provide the top layer of a bilayer architecture that the aggregator can use

to provide a solution to the DER coordination problem. In the top layer, all
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costs are considered and regulation signal forecasts will be used. The bottom

layer, which will be proposed in Chapter 4, will regulate around the top layer

solution to minimize short-term tracking error.

3.2 Top Layer DER Coordination Scheme

We first discretize the DER coordination problem as defined in (3.1) – (3.3),

and provide an exact solution for the case where the regulation signal is

known a priori to the aggregator. We then discuss the effects of uncertainty

and long time horizons.

3.2.1 Perfect Information, Fixed-Horizon

We will show that the DER coordination problem reduces to a linear program

under perfect information with a fixed service interval. To this end, define

x(t) = [p1(t), x1(t), · · · , pn(t), xn(t)]T , and u(t) = [u1(t), · · · , un(t)]T ; then,

the differential equations in (3.1) can be written as

ẋ(t) = Ãx(t) + B̃u(t),

where

Ãi =

 0 0

−1 −ai

 B̃i =

 êi

0 · · · 0



Ã =


Ã1 0 · · · 0

0 Ã2 · · · 0
...

...
. . .

...

0 0 · · · Ãn

 B̃ =


B̃1

B̃2

...

B̃n

 ,
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with êi being the unit row vector pointing in dimension i. This model can

be replaced by a discrete-time state-space model of the form

xk = Axk−1 +Buk−1, k = 1, . . . , N, (3.4)

where N = (tf − t0)/∆T1 ∈ N, xk = x(k∆T1 + t0), uk = u(k∆T1 + t0),

A = I + Ã∆T1, and B = B̃∆T1. As is standard, the discretization error can

be made negligible by choice of sampling time ∆T1.

The constraints in (3.1) can also be compactly written in matrix form as

follows:

Exxk ≤ Fx, Euuk ≤ Fu, (3.5)

where

Ex =
[
ê1, −ê1, ê2, −ê2, · · · , ê2n−1, −ê2n−1, ê2n, −ê2n

]T
Fx =

[
p1, p1, C1, C1, · · · , pn, pn, Cn, Cn

]T
Eu =

[
ê1, −ê1, · · · , ên, −ên

]T
Fu =

[
u1, u1, · · · , un, un

]T
. (3.6)

The cost functional in (3.2) can also be discretized as:

J(u) = ∆T1

N∑
k=1

(Q1xk + ‖Q2xk +Rrk‖1) , (3.7)

where rk = r(k∆T1 + t0), k = 1, . . . , N , and

Q1 =
[
0ê1, π1

1 ê
1, 0ê2, · · · , πn

1 ê
2n−1, 0ê2n

]T
Q2 =

[
−πp

∑n
i=1 ê

2i−1, 0ê1, π1
2 ê

2, · · · , 0ê2n−1, πn
2 ê

2n

]T
R =

[
πpσX, 0, · · · , 0

]T
. (3.8)
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Combining (3.4) – (3.8), we can formulate the optimization problem

u∗
k = argmin

u
∆T1

N∑
k=1

(Q1xk + ‖Q2xk +Rrk‖1) ,

subject to Exxk ≤ Fx,

Euuk ≤ Fu,

xk = Axk−1 +Buk−1,

(3.9)

the solution of which can be used to solve the DER coordination problem as

defined by (3.1) – (3.3).

Using the technique laid out in the Appendix, the optimization problem

in (3.9) can be cast as a linear program of the form

minimize
y

fTy

subject to Gy ≤ h,

(3.10)

where f ∈ R(3n+1)N , y ∈ R(3n+1)N , G ∈ R(3n+1)N×(10n+2)N , h ∈ R(10n+2)N .

This linear program can be solved using any of a number of well documented

linear programming algorithms in the literature (see, e.g., [47, 48]).

3.2.2 Imperfect Information, Receding Horizon

To solve the DER coordination problem via (3.10), it is necessary to have

complete information of the values that the regulation signal r(t) takes for

all t = t0 + k∆T1, k = 1, . . . , N . Next, we propose an MPC-based solution

to the DER coordination problem when r(t) is not known in advance.

We use the subscript k + l|l to denote an estimate, made at time tl =

t0 + l∆T1, of the value that a variable takes at time tk+l = t0 + (k + l)∆T1,

e.g., nk+l|l denotes the estimate of the regulation signal k steps ahead of time

t0 + l∆T1 (this, and other notation used here was adopted from [49]). With

this notation we can write an optimization program similar to (3.9), but with
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an arbitrary starting point and no requirement of perfect knowledge of the

future:

u∗
k = argmin

u
∆T1

N∑
k=1

(
Q1xl+k|l + ‖Q2xl+k|l +Rrl+k|l‖1

)
,

subject to Exxl+k|l ≤ Fx,

Euul+k|l ≤ Fu,

xl+k|l = Axl+k−1|l +Bul+k−1|l,

(3.11)

with Ex, Fx, Eu, and Fu as in (3.6); and Q1, Q2, and R as in (3.8). This

optimization can also be rewritten in the form in (3.10).

Suppose the solution to (3.11) was calculated with l = 0. This is equivalent

to (3.9) with an arbitrary forecast. This solution only depends on the current

state x0|0 and an estimate of future values to calculate the optimal control

for the present time and next N − 1 time steps. The first calculated optimal

control input, denoted u∗
0|0, is then applied. At time t0 + ∆T1, the system

state may not have evolved as predicted due to an inaccurate forecast of

r(t0 + ∆T1), incorrect system parameters, or unmodeled disturbances, i.e.,

x1|0 6= x1|1, r1|0 6= r1|1. Thus, in order to obtain a better solution, this new

information should be taken into account.

At the next time step we assign l ← l + 1 and update xl|l with new

measurements, and the forecast of r(t) with the latest information. We also

assign N ← N − 1 to avoid making choices that would create higher costs

for t ≤ tf in exchange for even lower costs when t > tf . The problem is

solved again, giving us a new control plan taking the latest information into

account. The first optimal control input from this optimization is applied at

this time step, and so on. The procedure continues until l = N − 1. Then,

at the following time step, we have that t = tf , thus arriving to the final

solution.

If the aggregator continues providing frequency regulation beyond time tf
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because it has cleared subsequent markets, it is not desirable for the aggrega-

tor to be left in a position where it cannot, or cannot profitably, meet future

obligations. For this reason the aggregator would likely prefer to use a tech-

nique that takes a more far-sighted view. This can be done by performing

the steps described in the previous paragraph without decrementing N . The

procedure continues until some arbitrary time step l = M , M > N . This

technique is known as receding horizon control because as time progresses,

the optimization window is also extended. A receding horizon will be used

in the numerical examples presented in the next section.

As future values of r(t) are unknown, forecasts must be used. On a second

by second basis the regulation signal does not change much, so in the short

term we expect future values of the regulation signal to be similar to the

present value. This gives rise to the persistence forecast

rk+l|l = rl|l, k ≥ 1. (3.12)

However, the current value of the regulation signal tells us practically nothing

about its value in the distant future; in this case it is best to predict the

mean value. In the medium term it would be logical to interpolate between

the present value and the mean. Two possible methods that take this into

account are linear prediction

rk+l|l = rl|l ·max (1− α1k∆T1, 0) , k ≥ 1, α1 > 0, (3.13)

and exponential prediction

rk+l|l = rl|l · e−α1k∆T1 , k ≥ 1, α1 > 0. (3.14)

Because the uncertainty of the forecasts increases with the prediction hori-

zon, the objective function used by the predictive controller can be multiplied
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by a factor which de-weights values that are further into the future, i.e.,

J(u) = ∆T1

N∑
k=1

(
e−α2k∆T1

(
Q1xl+k|l + ‖Q2xl+k|l +Rrl+k|l‖1

))
. (3.15)

An “oracle” solution that assumes future values are known, i.e., rk+l|l = rk+l

is also considered for comparison purposes.

3.3 Case Studies

We next test the performance of the DER coordination architecture intro-

duced in Section 3.2. We first describe the features of the dataset used in all

case studies. Then, we present simulation results.

3.3.1 Dataset

We utilize “Normalized Dynamic and Traditional Regulation Signals” from

PJM (the world’s largest wholesale electricity market [50]) for the period

January 1-18, 2013. This data is available at [42], and includes two regulation

signals—RegD, a fast response signal, and RegA, a filtered version of RegD

for slower ramping generators; both signals are updated every 2 s.

Figure 3.1 shows a representative segment of the aforementioned data. We

choose the fast signal RegD for our studies because DERs are expected to

have faster ramping rates than conventional generators, and because storage

devices work best with a zero-mean signal. Average cost and capability data

for the same period is calculated using data available at [51]. From January

1–18, 2013, the average cost of regulation capacity was $14.3/MWh, and

947MW of capacity was dispatched.
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Figure 3.1: Segment of PJM regulation data. RegD is the fast dynamic
response signal. RegA is a filtered version for slower responding units.

3.3.2 Base Case

A case study involving two units was investigated. The first unit has low

ramp rate limits, but a low cost and high energy capacity. The second unit

is able to ramp its power consumption more quickly, but is more expensive

and has a lower energy capacity. The parameters for the studies are given

in Table 3.1. The penalty price πp was chosen to be ten times the PJM

average capability clearing price. It was assumed the aggregator’s dispatched

capability made up about 2% of the total market. A time step, ∆T1, of 20 s is

used, and the prediction horizon T is set to 5min. We use receding horizon

control to calculate u∗ for 60min. The other parameters were selected to

show different types of behavior that can arise.

A study was performed to find optimal values of α1 and α2 for each fore-

casting technique. Figure 3.2 illustrates the different results that arise based

on the different forecasts. The total cost for each of the four forecasting

techniques is given in Table 3.2. The oracle forecast has the lowest total cost
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Table 3.1: Case study parameters

Parameter Description Value Unit
π1
1 Regulation Price 14.3 $/MW

π2
1 Regulation Price 42.9 $/MW

π1
2 ,π

2
2 Energy Price 0 $/MWh

πp Imbalance Price 143 $/MWh
u1, u1 Ramp Limit 0.04 MW/s
u2, u2 Ramp Limit 0.096 MW/s
p1, p1 Regulation Limit 11.9 MW
p2, p2 Regulation Limit 7.9 MW
C1 Storage Energy Limit 0.45 MWh
C2 Storage Energy Limit 0.15 MWh

a1, a2 Dissipation Constant 0 s−1

σX Regulation Signal Magnitude 18.9 MW
T Prediction Horizon 5 min

Table 3.2: Base case total cost for different forecasting methods

Forecast Method ∆T1 Total Cost ($)
Persistence 20 s 481.32
Linear 20 s 466.91

Exponential 20 s 468.91
Oracle 20 s 365.05

by a large margin. The results with the linear and exponential forecasting

methods are both very similar, and, as expected, improve upon the results

obtained with the persistence model. It is hypothesized that the forecasts

could be further improved by utilizing the past data in addition to the present

value of the regulation signal. This would allow forecasts that predict based

on a short moving average, or even more complicated schemes.

3.3.3 Sensitivity

The optimal values of the forecast parameters were found using a gradient-

based search procedure. Figure 3.3 plots the total operating costs versus the

forecast parameters for the linear prediction method. We find that cost is

much more sensitive to α1, which affects the forecast itself, compared to α2,

which affects how much weight is given to forecasted values when calculating

predicted costs.

60



3.4 Concluding Remarks

We have shown that the DER coordination problem that the aggregator

is faced with can be cast as an optimal control problem. By coordinating

the response of the DERs, the aggregator can sell this service in real-time

regulation markets.

A related problem that is worthy of future exploration is the decision-

making process that the aggregator uses under this framework to choose the

capability and price to offer in the market under the uncertainty of DER

parameters and regulation signal frequency content.
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Figure 3.2: Numerical simulation results comparing forecasting strategies.
Left to right: power, state of charge. Top to bottom: Persistence Forecast,
Exponential Forecast, Oracle Forecast.
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Figure 3.3: Sensitivity of operating costs to forecast parameters.
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CHAPTER 4

BILAYER COORDINATION OF
DISTRIBUTED ENERGY RESOURCES

In this chapter, we address the limitations of a single layer coordination strat-

egy. We provide background on traditional AGC control; we then propose

modifications to allow its use with constraint limited DERs inside of the ag-

gregator framework. We show that this control can be integrated with the

predictive control of Chapter 3, forming a bilayer control. Case studies show

the performance of each layer individually and the combined bilayer control.

4.1 Background

In this section, we explore the need for a bottom control layer and develop

the necessary preliminaries for formulating the control.

4.1.1 Effect of Uncertainty on Top Layer Control

In our framework, an aggregator participating in the frequency regulation

market faces two primary sources of uncertainty in optimal coordination

problem: uncertainty of parameters of the DERs and uncertainty in the

regulation signal.

Consider a building which is modeled by a virtual battery as discussed

in Chapter 2. To understand the uncertainty in the model parameters, it

is first necessary to study how uncertainty in the building parameters and

exogenous variables (e.g., ambient temperature, solar loads, internal loads)

translate into changes in the battery model. This can be accomplished by

64



performing sensitivity studies using the procedures presented in Chapter 2.

Historical data can be used to determine the probability density function of

a realized value given a forecast some time period in advance. Distributions

of battery parameters can then be found using transformation of random

variables through a multi-variate function. This procedure is straightforward

with sufficient data for the specific model in question, so we will assume the

end result as known. In this work, we will treat the expected parameter

value as the true value and deviations as disturbances to be rejected by the

bottom control layer. A natural extension of this work would be to address

this problem probabilistically.

Chapter 3 acknowledged uncertainty in the regulation signal and examined

ad-hoc signal forecasting techniques. Because the forecasting techniques will

be imperfect, receding horizon control was proposed in order to constantly

use the latest measurements and forecasts. However, the framework does not

have a closed-loop control scheme to account for disturbances between runs

of the MPC optimization. In this chapter, we improve the control scheme

to account for the uncertainty in resource parameters and regulation signal

forecasts and address robustness, stability, and time-scale limitations of the

top layer control.

4.1.2 Traditional Control

Traditional AGC utilizes an integral or PI controller with the objective of

driving the ACE to zero [52]. Consider a power system balancing area with

N generators. Let P denote the actual power interchange between the area

and all connected areas, and let f denote the actual frequency in the area.

Then, the ACE is given by

ACE = (P − P sch)− b(f − fnom), (4.1)
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where P sch is the scheduled interchange power, fnom is the nominal frequency

in the area, and b is the area’s bias factor.

To calculate P ref
i , the power reference signal to be followed by unit i, PI

control is used. Let Pi denote the current power generation by unit i, and

let P ed
i denote the optimal power generation at unit i as calculated by the

economic dispatch procedure. Then, the controller variables z1 and z2, which

in steady state will equal the total generation in the area, are

dz2
dt

= η2ACE +
N∑
i=1

(
Pi − P ref

i

)
(4.2)

z1 = η1ACE + z2, (4.3)

where η1 and η2 are controller gains. The reference signal for each generator

is calculated as

P ref
i = P ed

i + βi(z1 −
N∑
j=1

P ed
j ), (4.4)

with
∑N

i=1 βi = 1, where participation factors βi are based on the economics

and operating constraints of each unit [53].

4.1.3 Adaptation for DER Control

To adapt the traditional scheme to be used by an aggregator, several changes

must be made. First, the objective must change from minimizing the ACE

to following a regulation signal command from the system operator. Second,

commands must be issued in terms of deviation from baseline power rather

than absolute power values. Third, we must respect the ramping, power, and

energy constraints of the underlying resources. Finally, we must incorporate

the top layer solution. All of these issues will be addressed in Section 4.2.

There are multiple advantages of adding an additional control layer. First,

the stability of the top layer is difficult to analyze, whereas the faster control

will be tractable. Second, an MPC-based solution can be slow; using a 2 s
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time step, even the two DER system of Section 3.3 cannot be simulated in

real-time by a desktop computer. A realistic problem would have a much

higher order, which may make it too slow to handle the fast-changing regu-

lation signal. A stochastic controller would require even more computation.

An AGC-like controller is faster because of its simplicity. Finally, the closed-

loop feedback in the fast controller compensates for parameter uncertainty

and disturbances.

4.2 Bottom Layer Regulation Provision

We next formulate the second control layer, which provides closed-loop con-

trol so as to minimize the error that arises due to forecast error, plant-model

mismatch, and the slower speed of the optimal control. Constraints are given

special consideration, which removes the possibility of violations.

4.2.1 Unconstrained, Continuous Time Formulation

For clarity, we begin by introducing an unconstrained formulation. In this

case, the continuous time DER power delivery model in (3.1) becomes

d

dt
pi(t) = ui(t) (4.5)

d

dt
xi(t) = −aixi(t)− pi(t), (4.6)

where i indexes n DERs, xi is the state of charge, ai is the dissipation con-

stant, and pi is the power being charged or discharged.

As described in Section 4.1.2, conventional AGC, which is typically imple-

mented using proportional-integral (PI) control, is used to coordinate partic-

ipants in frequency regulation markets [53]. It is natural to apply a similar

closed-loop control scheme to the problem at hand. Unlike predictive con-

trol, PI control is simple and can be performed very quickly. The controller
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has a single state variable, zk, which is proportional to the integral of the

tracking error, i.e., the difference between the regulation signal, σXr(t), and

the sum of regulation power provided by each DER. We will utilize PI con-

trol to control
∑n

i=1 p
i(t) via ui(t) to follow σXr(t). For the integral part of

the controller, we define a new state variable z, which is proportional to the

integral of the regulation error. Its dynamics are

d

dt
z(t) = η2

(
σXr(t)−

n∑
i=1

pi(t)

)
, (4.7)

where η2 is the integral gain. The desired power is then

pi(t) = βi

(
η1

(
σXr(t)−

n∑
i=1

pi(t)

)
+ z(t)

)
, (4.8)

where η1 is the proportional gain, β
i is the participation factor, with

∑n
i=1 β

i =

1. Combining (4.5) and (4.8), we calculate ui(t) to be

ui(t) =
d

dt
pi(t) = βi

(
η1

(
σX

d

dt
r(t)− d

dt
p(t)

)
+

d

dt
z(t)

)
. (4.9)

Eliminating z(t) from (4.9) using (4.7) results in

ui(t) = βi

(
η1

(
σX

d

dt
r(t)− d

dt
p(t)

)
+ η2

(
σXr(t)−

n∑
i=1

pi(t)

))
.
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4.2.2 Unconstrained, Discrete Time Formulation

To discretize the formulations, we utilize the Forward Euler method, with

subscript k denoting the time index. Equations (4.5)–(4.8) become

pik+1 = pik +∆T2u
i
k (4.10)

xi
k+1 = (1− ai∆T2)x

i
k −∆T2p

i
k (4.11)

zk+1 = zk +∆T2η2

(
σXrk −

n∑
i=1

pik

)
(4.12)

pik+1 = βi

(
η1

(
σXrk −

n∑
i=1

pik

)
+ zk+1

)
, (4.13)

where ∆T2 < ∆T1 is the time step of the bottom layer control.

By combining (4.10) and (4.13), solving for ui
k, and eliminating zk using

(4.12), we obtain

ui
k = η1

(
σX

rk − rk−1

∆T2

−
n∑

i=1

pik − pik−1

∆T2

)
+ η2

(
σXrk −

n∑
i=1

pik

)
. (4.14)

4.2.3 Constrained, Discrete Time Formulation

Now, we consider the constraints from (3.1),

−ui ≤ ui(t) ≤ ui, −pi ≤ pi(t) ≤ pi, |xi(t)| ≤ Ci.

Clearly, (4.13) and (4.14) may no longer hold, as these values could violate

these constraints. We introduce the superscript ∗ to denote the value desired

before considering constraints. Then, we can write

pi∗k+1 = βi

(
η1

(
σXrk −

n∑
i=1

pik

)
+ zk+1

)
(4.15)

ui∗
k =

pi∗k+1 − pik
∆T2

. (4.16)
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For each pair of constraints in (3.1), we define an interval of feasible values

for ui
k. The ramping constraint interval straightforwardly limits the control

input at the current time step:

Si
1 =

[
−ui, ui

]
.

The interval associated with the power constraints ensures no control action

is taken that would cause the power to exceed a limit at the following time

step:

Si
2 =

[
−pi − pik
∆T2

,
pi − pik
∆T2

]
.

The interval associated with the energy constraints is more difficult to cal-

culate. The control input takes at least two time steps to affect the state of

charge, and control action could potentially need to be taken even further

in advance in order to avoid constraint violations. Thus, determining these

limits is more difficult. The variables p̌ǩ∗ and p̂k̂∗ indicate lower and upper

bounds on power derived from energy capacity constraints; the exact pro-

cedure for calculating them will be given in the Section 4.2.4. For now, we

define

Si
3 =

[
p̌i
ǩ∗
− pik

∆T2

,
p̂i
k̂∗
− pik

∆T2

]
. (4.17)

The constrained controller solution is the projection of the desired solution

onto the intersection of the three feasible intervals, i.e., Si = Si
1 ∩Si

1 ∩Si
3. In

other words,

ui
k =

[
pi∗k+1 − pik

∆T2

]+
, (4.18)

where [·]+ indicates projection onto Si. This ensures all constraints in (3.1)

are satisfied at every time step.
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4.2.4 Capacity Constraints

Here, we solve a backwards reachability problem to find the values p̂k̂∗ and

p̂k̂∗ used in (4.17).

For a single DER, the dynamic equations in (3.1) can be replaced by a

discrete-time state-space model of the form

Xk = AXk−1 +Buk−1, (4.19)

where Xk = [p(k∆T2+t0), x(k∆T2+t0)]
T , uk = u(k∆T2+t0), A = I+Ã∆T2,

and B = B̃∆T2.

We consider the bound x ≤ C. If x = C, we must enforce the constraint

p ≥ −aC. Because u limits how quickly we can increase p, if p < −aC we

must also make sure it is possible to ramp to p = −aC before x > C. We

can find the limits on u by starting at X̌0 = [−aC C]T , and working the

dynamics (4.19) backwards with uk = u using the equation

X̌k+1 = A−1
(
X̌k −Bu

)
,

with k increasing until p̌k ≤ −p or x̌k ≤ −C, where X̌k = [p̌k x̌k]
T . This

procedure only needs to be done once; the values can be stored and used at

each time step in the future.

Then, at each time step, calculate

ǩ∗ = arg min
k

x̌k − (x−∆T2(p+ ax))

subject to x̌k ≥ (x−∆T2(p+ ax)).

This solution will always exist and be unique. Although this may look

like a computationally difficult optimization problem, it is not; since x̌k is

monotonous, its value can be obtained via a lookup table. The limit on u
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due to the constraint x ≤ C is then

p̌ǩ∗ − pk
∆T2

.

p̂k̂∗ is calculated similarly, starting at X̂0 = [aC − C]T , and working the

dynamics (4.19) backwards with uk = −u.

4.2.5 Final Bilayer Formulation

Let piMPC
k+1 denote the optimal power value for unit i at time step k + 1 as

calculated by the most recent solution from the MPC-based top layer control.

Then, the final bilayer controller can be formulated as follows:

zk+1 = zk +∆T2η2

(
σXrk −

n∑
i=1

pik

)

pi∗k+1 = βi

(
η1

(
σXrk −

n∑
i=1

pik

)
+ zk+1

)
+ piMPC

k+1

ui
k =

[
pi∗k+1 − pik

∆T2

]+
.

We reset the integral control, i.e., zk = 0, when a new top layer solution is

found. This control can also be used without the top layer by fixing piMPC
k+1 = 0

and not resetting zk.

Participation factor selection must balance optimality and complexity. The

simplest possible values of βi would be the constants 1/n. The optimal values

would be time-varying and would consider the costs, current values of state

variables, and limits of each unit. The computation effort required to arrive

at such a solution would likely be more effective if it were spent working on

solving the MPC problem more quickly. A compromise solution would use

a heuristic to update βi infrequently, likely based on the slow optimization

solution.
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4.3 Case Studies

We compare the performance of the DER coordination architecture intro-

duced in Section 3.2 with the new fast and bilayer controls from Section 4.2.

Then, we explore the sensitivity of the solution to key parameters.

4.3.1 Base Case

The parameters from Table 3.1 will be used again for this study. Time steps

∆T1 and ∆T2 were set to 2 s and 20 s, respectively.

Figure 4.1 illustrates the behavior of the fast bottom layer controller, the

slow top layer, and the bilayer control. We observe that the fast control better

tracks the small variations in r(t), whereas the slow control uses prediction

to spend less time bounded by energy constraints. The bilayer controller

combines these two advantages. As expected, results in Table 4.1 show that

the top layer performed better than the bottom at equal time scales. If the

MPC is constrained to run more slowly than the PI control, its performance

decreases, but it still outperforms the bottom layer running ten times faster.

However, combining the two methods results in cost values lower than the

slow top layer, while requiring significantly less computation power than the

fast top layer control.

Both the fast and slow control loops take measures to ensure solutions are

feasible. However, feasibility problems are encountered when the time scales

are mixed. The MPC problem can be given an initial condition which is fea-

sible on the fast time scale, but unfeasible on the slow time scale. This must

be resolved by requiring all fast control solutions to be slow time feasible, or

by relaxing constraints on the slow time solution.
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Table 4.1: Base case total cost for different control strategies

Control Time-Step Total Cost ($)
Bottom Layer 20 s 584.39
Bottom Layer 2 s 480.58
Top Layer 20 s 470.37
Top Layer 2 s 362.10
Bilayer 2 s/20 s 387.13

4.3.2 Sensitivity

Here, we explore the sensitivity of the control scheme total cost with regard

to participation factors and controller gains. As in Chapter 3, base case

controller parameters were optimized using a 12 hour long segment of the

PJM regulation signal as training data. Figure 4.2 shows that the optimal

participation factors require DER 1, which has a lower regulation price, to

participate less than DER 2. However, DER 2 still has significant partici-

pation despite its higher price due to its faster ramping ability. Figure 4.3

illustrates the sensitivity of cost to controller gains. Even with a 12 h simu-

lation period, these functions are non-convex, making optimization difficult.

Multi-start methods were used to locate the global minimum.

4.4 Concluding Remarks

We have discussed a framework for an aggregator to coordinate the amount

of power provided by a collection of heterogeneous DERs for providing up

and down frequency regulation services. We have provided a bilayer con-

trol scheme that enables the aggregator to solve this problem by using slow

but accurate predictive control techniques while also responding quickly to

second-to-second variations in the regulation signal.

We note that in the top layer the controller may intentionally deviate from

the regulation signal if the costs of utilizing DERs are too high compared to

the penalty cost or in order to prepare for future regulation, but the bottom
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control layer attempts to minimize the current regulation error at all costs.

Even with a high penalty price, sub-optimal participation factors may cause

the controller to deviate significantly from the optimal solution from the top

layer. Thus, a balance must be struck between responding to fast variations

and neglecting price information from the top layer solution. This can be

done through choice of controller gains η1 and η2, which should be optimized

using historical data.
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Figure 4.1: Numerical simulation results comparing control strategies. Left
to right: power, state of charge. Top to bottom: Bottom layer control, Top
layer control, Bilayer control.
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CHAPTER 5

CONCLUDING REMARKS

In this chapter, we revisit the contributions of the dissertation, and conclude

with some final thoughts and observations.

5.1 Thesis Summary and Contributions

In this dissertation, we have addressed many of the challenges regarding the

use of flexible loads to provide frequency regulation. In Chapter 1, we gave

background on the ongoing changes that are making this idea possible and

valuable, outlined the major parts of the framework, and examined related

literature. In Chapter 2, we developed a model to capture the flexibility of

loads through an abstraction that removes needless complexity and showed

how to obtain its parameters. In the course of this development, we pro-

posed a controller that enables resources to utilize their flexibility without

compromising end function. The proposed methods were verified through

simulation of a realistic model of an airport terminal building. Chapter 3

built a layer of control on top of these models. We proposed an aggregator

entity which works with large numbers of DERs to enable them to participate

in the frequency regulation market. We examined the costs of providing this

service and proposed a controller to maximize profits. Chapter 4 improved

the coordination strategy by introducing a second control layer based on tra-

ditional AGC and discussed how to incorporate its benefits while retaining

the advantages of the predictive top layer control.
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5.2 Conclusion and Future Work

From this dissertation and related literature, we conclude it is technically fea-

sible and economically valuable to utilize flexible loads to provide frequency

regulation. Further development is recommended in the area of detailed mod-

els of building and HVAC systems, with special attention to time constants,

e.g., of the chiller [54], or through a second-order thermal zone model [55].

This work has used power balance equations to model the regulation service;

it may also be of interest model network effects, where appropriate.

Further work could also be done on the internal control of various flexible

loads with different modeling frameworks. For example, the virtual battery

model could likely capture the flexibility of such systems such as aggregations

of smaller deferable loads [56,57]. Studies could investigate the effect different

control schemes have on the equivalent battery parameters.

Another remaining topic for investigation is determining how, within this

framework, the aggregator chooses the capability and price to offer in reg-

ulation markets. A conventional generator has known heat rates and cost

functions, but an aggregator represents a heterogeneous (in terms of both

cost and performance) portfolio of units. Even if the aggregator is a price

taker, the capability offer is not straightforward. Due to ramp and energy

limits, the aggregator will have to offer a discounted aggregated capability.

The optimal bidding strategy will likely take into account the statistical prop-

erties of the regulation signal to balance the desire for the biggest payments

against the probability of imbalance penalties or even market disqualifica-

tion. Recent papers that have addressed this problem in other frameworks

include [34, 58–60]. The importance of this problem may vary depending on

the reality faced by the aggregator. In practice, participating DERs may

persist from day to day, with little variance in parameters. In this case, the

optimal offer may be found through a simple adaptive bidding scheme. Or,

perhaps, it may be vary more significantly, in which case having a rigorous
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probabilistic approach would be justified to maximize the potential of each

bid.

Although this framework has focused on large-scale power systems, many

of the same concepts could benefit microgrids, e.g., in some industrial power

systems. Utilizing flexible loads can bring about improvements in cost and

emissions by decreasing the amount of regulation required by gensets.
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APPENDIX

LINEAR PROGRAM TRANSFORMATION

The following definitions are used in the process of casting (3.9) as a standard

linear program:

X =
[
xT
1 xT

2 . . . xT
N

]T
U =

[
uT
0 uT

1 . . . uT
N−1

]T
R =

[
Rr1 . . . RrN

]
∆T1

A =


A

A2

...

AN

 B =


B 0 . . . 0

AB B . . . 0
...

. . . . . .
...

AN−1B . . . AB B



Ex =


Ex 0 . . . 0

0 Ex
. . .

...
...

. . . . . . 0

0 . . . 0 Ex

 Eu =


Eu 0 . . . 0

0 Eu
. . .

...
...

. . . . . . 0

0 . . . 0 Eu


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Q1 =


Q1 0 . . . 0

0 Q1
. . .

...
...

. . . . . . 0

0 . . . 0 Q1

∆T1 Fx =


Fx

...

Fx



Q2 =


Q2 0 . . . 0

0 Q2
. . .

...
...

. . . . . . 0

0 . . . 0 Q2

∆T1 Fu =


Fu

...

Fu

 .

With these definitions, the problem can be written without the summation:

minimize
U

1TQ1X + ‖Q2X +R‖1

subject to EXX ≤ FX

EUU ≤ FU

X = Ax0 + BU .

Introduce the variable Zx to bound Q2X + R, which removes the norm in

the objective function, and the problem becomes

minimize
U ,Zx

1TQ1X + 1TZx

subject to EXX ≤ FX

EUU ≤ FU

X = Ax0 + BU

− Zx ≤ Q2X +R ≤ Zx.
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Eliminating X by plugging in the dynamic equations gives us

minimize
U ,Zx

1TQ1Ax0 + 1TQ1BU + 1TZx

subject to ExBU ≤ Fx − ExAx0

EuU ≤ Fu

− Zx ≤ Q2 (Ax0 + BU) +R ≤ Zx.

To create a single unknown variable and a single and inequality, we define

f =
[
1TQ1B 1T

]T
, y =

[
U Zx

]T
,

G =


−Q2B −I

Q2B −I

Eu 0

ExB 0

 , h =


Q2Ax0 +R

−Q2Ax0 −R

Fu

Fx − ExAx0

 .

Note the term 1TQ1Ax0 is ignored as it is constant with respect to the

decision variables. The problem is then in the form of a standard linear

program (3.10).
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