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ABSTRACT 

Northern leaf blight (NLB) of corn, caused by Exserohilum turcicum, is a yield reducing foliar 

disease common across the north central U.S.  Previous race population distribution studies 

identified five physiological races present in the U.S., prior to 1995.  For this study, 156 E. 

turcicum isolates were screened on corn differential lines containing Ht1, Ht2, Ht3, Htm1, and 

Htn1 resistance genes.  Isolates were collected from fields in Illinois, Indiana, Iowa, Minnesota, 

North Carolina, Ohio, and Wisconsin, including: 143 isolates collected between 2007 and 2014; 

and 13 isolates collected between 1979 and 1985.  Twenty different physiological races were 

observed based on the resistance response of the differential corn lines.  Exserohilum turcicum 

race 0, 1, 1mn were the most prevalent races, comprising 21%, 27%, and 13% of the 156 

isolates, respectively.  Race populations were diverse within states and years.  Virulence to 

multiple Ht resistance genes within individual isolates was observed in 47% of those tested, with 

3% of the isolates conferring virulence to all Ht resistance genes.  Virulence to the Ht1, Ht2, Ht3, 

Htm1, and Htn1 resistance genes was present in 64%, 20%, 18%, 32%, and 27% of the E. 

turcicum isolates, respectively.  Virulence to Ht resistance genes was fairly evenly distributed 

across states in isolates collected after 2008.  Ht2, Ht3, Htm1, and Htn1 virulence decreased after 

2010.  Variations in race population diversity are difficult to explain without knowing the level 

of selection pressure present in fields, and information regarding Ht resistance gene deployment 

in commercial varieties is not publicly available.  While virulence was observed for all Ht 

resistance genes, qualitative Ht resistance genes could be used in conjunction with quantitative 

resistance to increase NLB control. 

 Demethylation inhibitor (DMI) fungicides have been labeled for corn use since the early 

1990s; in this dissertation a study was conducted to measure E. turcicum baseline sensitivity to 
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DMI fungicides and monitor shifts in sensitivity over years.  Metconazole, propiconazole, and 

prothioconazole are DMI fungicides commonly used to control NLB.  Monitoring for shifts in 

DMI sensitivity in E. turcicum populations is important for making management decisions and 

maintaining fungicide efficacy.  Sensitivity to metconazole, propiconazole, and prothioconazole 

was determined for E. turcicum isolates collected prior to DMI use on corn (baseline group) and 

E. turcicum isolates collected in 2009, 2010, 2011, 2012, and 2014.  An in vitro mycelial growth 

assay was used to determine the effective fungicide concentration at which 50% of the fungal 

growth was inhibited (EC50) for each isolate-fungicide combination.  Baseline EC50 value 

lsmeans for metconazole, propiconazole, and prothioconazole were 0.032 µg/ml, 0.060 µg/ml, 

and 0.254 µg/ml, respectively.  When lsmeans of EC50 values for 2009, 2010, 2011, 2012, 2013, 

and 2014 E. turcicum isolates were compared to the lsmean of the baseline E. turcicum EC50 

values, no significant (P < 0.05) shift towards reduced sensitivity was observed in metconazole, 

propiconazole, or prothioconazole.  Three isolates had EC50 values significantly higher (P < 

0.05) than the least sensitive baseline isolate for metconazole, and one isolate had an EC50 value 

significantly higher (P < 0.05) than the least sensitive baseline isolate for propiconazole.  These 

isolates will require further evaluation to determine if they demonstrate reduced field sensitivity.  

Small but statistically significant (P < 0.05) positive correlations were found between 

metconazole and propiconazole (r = 0.3269), as well as metconazole and prothioconazole (r = 

0.0.0295) but not between propiconazole and prothioconazole.  Positive correlations between 

metconazole and the other fungicides suggest the potential for cross-resistance between these 

DMI fungicides.  To date, no loss of NLB control has been observed with the use of 

metconazole, propiconazole, and prothioconazole in the field. 
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 Fungicides containing quinone outside inhibitor (QoI) and demethylation inhibitor (DMI) 

active ingredients alone or in combination are frequently applied to control NLB.  Field trials 

were conducted in Illinois at DeKalb, Monmouth, and Urbana in 2012 and Dixon Springs and 

Urbana in 2013 to evaluate NLB control of DMI, QoI, and QoI + DMI fungicides applied at the 

solo label rates and the reduced rates present in QoI + DMI premixed fungicides.  A moderately 

susceptible field corn hybrid (Pioneer 33W84) was planted at all site locations across years.  

Trials were inoculated at the 4-leaf growth stage and fungicides were applied at silk emergence.  

The mean NLB percent leaf infection for the ear leaf, leaf above the ear, and below the ear and 

the plot NLB percent severity were evaluated at corn reproductive stages R1, R2, R3, R4 and R5.  

Stalk rot severity, plant maturity, and yield data were collected. Sweet corn trials were conducted 

in Urbana in 2012 and 2013 using the same methods.  NLB leaf and plot severities were 

evaluated at reproductive stages R1, R2, and R3 and mean ear weight was calculated at harvest.  

In the greenhouse, trials were conducted to evaluate NLB percent leaf severity on plants 

inoculated with E. turcicum up to seven days before and after fungicide application with 

azoxystrobin, propiconazole, prothioconazole, or pyraclostobin.  In field trials with low disease 

severity, no significant differences in treatments were observed for NLB severity ratings, stalk 

rot severity, plant maturity, or yield.  In field corn trials with moderate disease severity, label 

rates of metconazole and azoxystrobin + propiconazole significantly (P ≤ 0.05) reduced NLB 

leaf and plot disease severity compared to the non-treated control across reproductive stages.  

DMI fungicides at high rates and QoI + DMI premixes offered greater NLB control than other 

treatments.  Fungicide treatments did not significantly affect stalk rot, plant maturity, or yield in 

field trials with moderate disease severity.  In sweet corn trials, metconazole, propiconazole, and 

azoxystrobin + propiconazole significantly (P ≤ 0.05) reduced plot disease severity compared to 
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the non-treated control at R2 and R3.  DMI fungicides controlled NLB better than other 

treatments when compared by fungicide chemical group and rates.  Ear weight was not 

significantly affected by treatments in sweet corn trials.  In greenhouse trials, all fungicides 

significantly (P ≤ 0.05) reduced disease severity when applied 3 days, 1 day, and 3 hours before 

inoculation and 3 days and 7 days after inoculation.  QoI and DMI fungicides can control NLB 

when applied prior and post infection; however, products containing DMI fungicides offered 

better NLB control in the field.       
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CHAPTER 1: LITERATURE REVIEW 

Introduction 

Corn (Zea mays) is a major crop produced in the United States and has increased in market value 

in recent years.  In 2014, the U.S. planted over 36 million hectares of corn valued at over $52 

billion (United States Department of Agriculture, National Agricultural Statistics Service; 

USDA-NASS).  From 2001 to 2005, the average price of corn in the U.S. was $0.08/kg 

($2.14/bushel) compared to an average of $0.14/kg ($3.61/bushel) from 2006 to 2010 (USDA-

NASS).  The average price from 2011 to 2014 was $0.23/ kg ($5.74/bushel) (USDA-NASS).  

The price inflation has led to an increase in the overall area planted to corn and an increase in the 

practice of planting corn back into the same field without rotating to alternative crops.  Increased 

corn prices also have prompted producers to select corn hybrids based on high yield potential 

with less emphasis on disease resistance.  These trends teamed with no-till and reduced-tillage 

practices have led to an increase in many foliar pathogens that overwinter in corn residue 

(Pedersen and Oldman, 1992; Wise and Mueller, 2011).  Exserohilum turcicum (Pass.) K.J. 

Leonard & E.G. Suggs (syn., Setosphaeria turcica (Luttrell) K.J. Leonard & E.G. Suggs, 

Helminthosporium turcicum Pass., Bipolaris turcica (Pass.) Shoemaker, Drechslera turcica 

(Pass.) Subramanian and P. C. Jain, and Trichometasphaeria turcica Luttrell), the causal agent of 

northern leaf blight of corn (NLB), is one such pathogen that can cause major yield reductions 

(Bowen and Pedersen, 1988; Fisher et al., 1976; Raymundo and Hooker, 1981; Ullstrup and 

Miles, 1957).  According to a recent survey of corn growers and crop consultants from Illinois, 

Iowa, Ohio, and Wisconsin, a third of the corn growers and certified crop advisers listed NLB as 

one of the most prevalent foliar diseases observed in fields (C. Bradley, personal 

communication). 
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NLB can be found across corn producing regions around the world, in temperate climates 

and the tropics and subtropics (Carson, 1999).  It was first identified in Perma, Italy in 1876 by 

Passerini (Drechsler, 1923). In the U.S., NLB was first reported in New Jersey in 1878 

(Drechsler, 1923).  When conditions are favorable for NLB, epidemic levels of disease have 

been observed in corn producing regions across the U.S. (Drechsler, 1923; Carson, 1999; Levy 

and Pataky, 1992).  In the Midwest, where a majority of the nation’s corn is produced, NLB 

appears annually and is one of the predominant diseases (Brewster et al., 1992; Pataky, 1992).  In 

2014, NLB was the primary economic disease, reducing yields by an estimated nine million 

tonnes in the major corn producing regions of the U.S. and Ontario, Canada (Wise, 2015).  

 

Disease cycle and corn yield effects 

Exserohilum turcicum is a polycyclic, heterothallic, facultative parasite of corn and sorghum 

(Sorghum bicolor) crops.  While there is some evidence suggesting the sexual stage of the 

pathogen may occur in nature (especially in tropical and subtropical regions), the asexual phase 

is considered more significant in the disease cycle (Carson, 1999; Ferguson and Carson, 2004).  

The pathogen primarily overwinters in infected host residue as mycelia, conidia and 

chlamydospores (Boosalis et al., 1967; Levy, 1984; Robert and Findley, 1952; Takan et al., 

1994), but conidia also can be carried long distances by wind (Ferguson and Carson, 2004).  

Primary inoculum levels can be elevated by the use of no-till and conservation tillage practices 

resulting in increased surface residue, especially following years of high disease severity (de 

Nazareno et al., 1993; Pedersen and Oldham, 1992; Takan et al., 1994).  Initial inoculum is 

wind- and rain-dispersed onto the lower host leaves.  In the presence of free water on the leaf and 
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a dark environment, conidial germination and direct infection can occur in as little as 5 hours 

(Levy and Cohen, 1983a).  Increased light intensity can reduce conidial germination and increase 

incubation time, as observed by Levy and Cohen.  Light, at a photon flux of 150 µE.s
-1

m
-1

 during 

the wet-leaf incubation period, inhibited conidial germination by 85% when compared to the 

dark control (Levy and Cohen, 1983b).  Disease development is more aggressive on young, 

susceptible plants and favored by warm (near 20˚C) and humid conditions (Levy and Cohen, 

1983a).  Initial NLB lesions usually appear as elliptical or cigar-shaped, water-soaked, spots that 

are grayish-green in color (Ullstrup, 1966; Ullstrup and Miles, 1957).  As lesions progress they 

increase in size, typically 12 mm wide and 3-15 cm long, and become necrotic, appearing tan or 

gray and may have red or brown margins (Ullstrup, 1966; Ullstrup and Miles, 1957).  Conidia 

produced on necrotic lesions act as secondary inoculum and are wind and rain dispersed to the 

upper canopy (Ullstrup, 1966; Ullstrup and Miles, 1957).  Severely affected fields may have a 

scorched appearance (Ullstrup, 1966; Ullstrup and Miles, 1957).  Heavily diseased plants have 

decreased grain yield due to reductions in the photosynthetic potential of infected leaves and 

defoliation.  Root and stalk infection and lodging may increase as carbohydrates are translocated 

to the ear for kernel fill as carbohydrate production from leaves is decreased (Dodd, 1980a; 

Dodd, 1980b; Fisher et al., 1976; Fajemisin and Hooker, 1974; Pedersen and Oldham, 1992; 

Raymundo and Hooker, 1981).    

Yield reductions due to NLB can be significant depending on disease severity, timing, 

and plant susceptibility.  Raymundo and Hooker (1981) reported an increasing positive 

correlation between decreased yield and the area under disease progress curve (AUDPC) as NLB 

severity increased.  Fisher et al. (1976) estimated that corn yield was reduced 0.2% for each 1% 

increase in NLB severity when measured 3 to 4 weeks after mid-silk.  Ullstrup and Miles (1957) 
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observed yield reductions ranging from 40% to 70% when disease was severe 2-3 weeks after 

pollination; however, yield was not affected if disease was not severe until 6-8 weeks after 

pollination.  Differences in host susceptibility have been identified and shown to affect yield 

reductions due to disease (Bowen and Pedersen, 1988; Raymundo and Hooker, 1981).  

Raymundo and Hooker (1981) compared NLB effects on yield for an early-maturing, susceptible 

hybrid, a hybrid with polygenic resistance to NLB, and a hybrid with a dominant Ht resistance 

and polygenic resistance, and reported yield reductions of 63%, 43%, and 17%, respectively.  

Similar results were observed when  Bowen and Pedersen (1988) measured 5% to 44% yield 

reduction in a susceptible inbred with NLB severities ranging from 52% to 100% at dent stage, 

but no significant yield reductions in the moderately resistant and highly resistant inbreds. 

 

Pathogen taxonomy and biology 

Exserohilum turcicum is a fungal pathogen that was first identified in 1876 and has undergone 

several changes in nomenclature.  Exserohilum turcicum is currently classified in the family 

Pleosporaceae in the order Pleosporales in the class Dothideomycetes in the phylum Ascomycota 

(Alcorn, 1988; Drechsler, 1923).  With the adoption of ‘one fungus = one name’convention, 

Exserohilum turcicum (Pass.) K.J. Leonard and E.G. Suggs is the accepted name (Rossman et al., 

2015); however, it was initially placed in the genus, Helminthosporium as Helminthosporium 

turcicum Pass. (Alcorn, 1988; Drechsler, 1923).  Helminthosporium was later divided into three 

separate genera: Drechslera, Bipolaris and Exserohilum (established in 1930, 1959, and 1974, 

respectively) based on differences in morphology.  Exserohilum turcicum is the type species of 

the Exserohilum genus (Alcorn, 1988).  Introduction of the Exserohilum genus occurred years 
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after initial species identification and adoption of the taxonomic changes varied resulting in the 

anamorphic phase of E. turcicum having multiple synonyms, including: Exserohilum turcicum 

(Pass.) K. J. Leonard and E. G. Suggs, Bipolaris turcica (Pass.) Shoemaker, Drechslera turcica 

(Pass.) Subramanian and P. C. Jain, and Helminthosporium turcicum Pass (Alcorn, 1988). 

Furthermore, the E. turcicum teleomorphic phase was identified in 1957 and named 

Trichometasphaeria turcica Luttrell and later changed to Setosphaeria turcica (Luttrell) K. J. 

Leonard and E. G. Suggs) (Alcorn, 1988; Leonard and Suggs, 1974; Luttrell, 1964).  

 The anamorphic phase of E. turcicum is most often observed in nature.  Brown 

conidiophores emerge individually or in groups of two to four from stomata in necrotic leaf 

lesions (Luttrell, 1964).  Single conidia form at the tip of conidiophores.  Following conidia 

formation, the conidiophore proliferates laterally below the initial conidia to form a new terminal 

growing point for the formation of conidia (Luttrell, 1964).  Conidia are large (20 × 105 µm), 

olive gray to brown and cylindrical to spindle-shaped with three to eight transverse septa and a 

protruding hilum (Alcorn, 1988; Luttrell, 1964).  Spore germination commonly occurs at one or 

both polar cells, with the basal germ tube growing semi-axial, close to the hilum (Alcorn, 1988).  

Direct penetration into the host is achieved through formation of an appressorium and a 

penetration peg. 

 The teleomorphic phase of E. turcicum has been observed in the laboratory but typically 

not in nature.  Exserohilum turcicum is a heterothallic fungus with three distinct mating types 

found in nature: MAT 1, MAT 2 and MAT 1, 2 (Yongshan et al., 2007).  Isolates of different 

mating types are able to undergo sexual recombination forming dark globose pseudothecia with 

cylindrical, bitunicate asci containing one to eight fusoid, three septae, hyaline ascospores 

(Luttrell, 1964).  Near equal proportions of mating types and near gametic phase equilibrium 
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found in populations across several states in the U.S. suggest the occurrence of sexual 

recombination in nature (Ferguson and Carson, 2004).  Research has shown sexual 

recombination of E. turcicum can increase pathogenicity and host range (Nelson, 1965; 

Rodriguez and Ullstrup, 1962), as well as lead to the production of new races (Fallah and Pataky, 

1994).  

 Studies of population genetics have indicated high genetic diversity in E. turcicum 

(Borchardt et al., 1998a; Ferguson and Carson, 2004; Ferguson and Carson, 2007; Yongshan et 

al., 2007).  Greater genotypic diversity and gametic phase equilibrium was observed in E. 

turcicum populations from tropical regions (Kenya, Mexico, and southern China) than 

populations from temperate regions (Europe and northern China) (Borchardt et al., 1998a).  The 

results support a higher frequency of sexual recombination in tropical climates, while 

populations in temperate regions appear to be more clonal.  Borchardt et al. (1998a) also found 

extensive migration within agroecological zones and concluded that E. turcicum populations 

were highly adaptable in both temperate and tropical climates.  Ferguson and Carson (2004) also 

found similar evidence to support E. turcicum exhibiting high genetic diversity, clonal and 

sexual reproduction, and long distance migration in the United States.  

  

Host resistance 

Host resistance has been the most effective and prevalent form of NLB control in the U.S.  

Quantitative (polygenic) and qualitative (monogenic Ht genes) sources of NLB resistance can be 

utilized in corn breeding (Ferguson and Carson, 2004; Schechert et al., 1999; Welz and Geiger, 

2000).  Some of the qualitative resistant genes, especially Ht1, were used in commercial corn 
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lines when first discovered; however, virulent races have since been observed for most Ht genes 

(Jordan et al., 1983; Keller and Bergstrom, 1990; Leath et al., 1990; Lipps and Hite, 1982; 

Ogliari et al., 2005; Raymundo and Hooker, 1982; Thakur et al., 1989a; Turner and Hart, 1975; 

Turner and Johnson, 1980; Welz and Geiger, 2000; Winders and Pedersen, 1991).  Corn breeders 

currently select for quantitative resistance to E. turcicum, which is more durable and less affected 

by environmental conditions (Carson, 1995; Welz and Geiger, 2000).  

Polygenic resistance was identified in breeding programs in the 1950s after producers 

suffered severe NLB epidemics on highly susceptible hybrids (Welz and Geiger, 2000).  

Quantitative resistance is expressed as reductions in disease severity and progression during 

grain-fill.  Reduced disease development is accomplished in a variety of ways, including: 

reduced infection efficiency, increased incubation and latent periods, reduced lesion size and 

expansion rates, and reduced sporulation (Adipala et al., 1993; Brewster et al., 1992; Ullstrup, 

1970).  Exserohilum turcicum isolates vary in their sensitivity to polygenic resistance (Levy and 

Pataky, 1992; Robert and Sprague, 1960).  Most commercial breeding programs in the U.S. 

utilize quantitative resistance for control of NLB (Carson, 1995; Carson and Van Dyke, 1994; 

Jordan et al., 1983; Welz and Geiger, 2000). 

The first single gene resistance, Ht1, was identified by Hooker in 1963 (Hooker, 1963).  

Hooker also identified the Ht2 gene in 1977 and Ht3 gene in 1981 (Hooker, 1977; Hooker, 

1981).  The genes Ht1, Ht2, and Ht3 confer a resistance response by causing chlorotic lesions 

with reduced sporulation, with Ht2 and Ht3 displaying slightly more necrosis than Ht1 (Hooker, 

1963; Hooker, 1977; Hooker, 1981; Welz and Geiger, 2000).  During the same decade, Gevers 

(1975) identified HtN (syn. Htn1) which confers a resistance response resulting in a delay in 

lesion development and decreased lesion number (Gevers, 1975; Leonard et al., 1989; Welz and 
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Geiger, 2000).  Other single resistance genes that have been identified include recessive ht4, 

Htm1, HtNN, HtP, recessive rt, and another with unidentified genetic action, though not known 

to be deployed in commercial lines (Carson, 1995; Maize Data Base, 1999; Ogliari et al., 2005; 

Robbins and Warren, 1993; Welz and Geiger, 2000).  The recessive ht4 gene confers a chlorotic 

halo, while Htm1 and HtNN confer complete resistance (Welz and Geiger, 2000).  Ogliari et al. 

(2005) observed resistance responses varying from complete resistance to smaller necrotic 

lesions with chlorotic halos for the HtP, recessive rt gene, and unidentified resistant gene.  More 

single resistance genes are likely but have not been identified (Welz and Geiger, 2000).  Most 

research has focused on Ht1, Ht2, Ht3 and Htn1 genes which have been backcrossed into widely 

used inbred lines (Ferguson and Carson, 2004; Ferguson and Carson, 2007; Jordan et al., 1983; 

Pataky et al., 1986; Welz and Geiger, 2000).  Qualitative genes have proven effective against E. 

turcicum and their efficacy can be improved when incorporated into lines with quantitative 

resistance (Lipps et al., 1997; Pataky et al., 1986). 

Qualitative resistant Ht genes have successfully been used in breeding programs; 

however, limitations have been discovered.  The first report of E. turcicum virulence on corn 

containing the Ht1 gene came from Hawaii in 1972 and first reported in the U.S. grain belt in 

1979 (Bergquist and Masias, 1972; Turner and Johnson, 1980).  Exserohilum turcicum isolates 

collected from Estill, SC in 1976 were found to be virulent on corn containing the Ht2 and Ht3 

genes (Smith and Kinsey, 1980).  It was later determined that virulence to Ht2 and Ht3 was 

conferred by the same single gene (Welz, 1998).  Isolates collected from Texas in 1986 caused 

symptoms on corn containing the Ht2, Ht3, and Htn1, which was the first observed virulence to 

the Htn1 gene (Thakur et al., 1989a).  The recessive ht4 gene conferred resistance to the isolates 

tested in the U.S.; however, was not effective against isolates from Kenya tested in 1996 (Welz 
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and Geiger, 2000).  Virulence to the rt gene and the unidentified resistant gene were observed 

when the resistance genes were first identified (Ogliari et al., 2005).  Interestingly, 

environmental conditions can affect the expression of virulence to some of the Ht genes.  Isolates 

virulent on corn with Ht1 at a 22°/18°C (day/night) temperature regime, may trigger the Ht1 

resistant response at a 26°/22°C (day/night) temperature regime depending on the host genetic 

background (Thakur et al., 1989). Similarly, virulence to Ht3 and Htn1 were best expressed at a 

22°/18°C (day/night) temperature regime and light intensities of 324 µmol m
-2 

s
-1

 and lower 

(Leath et al., 1990; Thakur et al., 1989a). 

Populations of E. turcicum are designated by physiological races based on virulence to 

host Ht gene(s), for example: race 1 is virulent against the Ht1 gene; race 23N is virulent against 

the Ht2, Ht3, and Htn1 genes; while race 0 is avirulent against all of the Ht genes (Leonard et al., 

1989).  In the U.S., five major races of E. turcicum have been reported to overcome specific Ht 

resistance (Fallah and Pataky, 1994; Ferguson and Carson, 2007; Windes and Pedersen, 1991).  

Races 0 and 1 are most prevalent, while races 23, 2N, and 23N are rare (Fallah and Pataky, 

1994).  In a temporal analysis conducted with isolates collected from the U.S. between 1974 and 

1994, Ferguson and Carson (2007) identified a shift in race populations as race 0 declined in 

frequency from 83% in 1974 to 50% in the 1990s, most likely due to selection pressure from 

wide utilization of the Ht1 gene in corn hybrids.  In several states, race 1 made up the largest 

proportion of isolates (Ferguson and Carson, 2007).  Ferguson and Carson (2004) also were able 

to identify populations with high genetic diversity, nearly equal mating type frequencies, and 

gametic phase equilibrium in the asexual stage samples of E. turcicum collected from several 

states, which suggested the likelihood of sexual recombination occurring.  Similar findings in 

population studies across the world support the notion of the occurrence of sexual recombination 
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(Borchardt et al., 1998a; Borchardt et al., 1998b).  Studies also have shown that E. turcicum 

migration over long distances is possible, which could transfer virulence to new regions 

(Borchardt et al.b, 1998; Ferguson and Carson, 2004).  Selection pressure, sexual recombination 

within the pathogen, and ability to migrate long distances could produce more virulent 

populations and lead to spatial and temporal race population shifts.  Alterations in race 

population distributions could be partially responsible for the increased presence of NLB in 

recent years. 

 

Management with foliar fungicides 

Since 2007, the use of foliar fungicides on corn in the U.S. has increased (Munkvold et al., 2008; 

Wise and Mueller, 2011).  Increased fungicide application is the result of multiple factors, 

including: increased availability of fungicides labeled for corn, elevated corn prices making 

fungicide application economically feasible, and higher disease levels due to cultural practices 

previously described (Wise and Mueller, 2011).  Most foliar-applied fungicide products used on 

corn contain a fungicide from the quinone outside inhibitor (QoI) class, a.k.a. strobilurins, as the 

only active ingredient, a demethylation inhibitor (DMI) class, a.k.a. triazoles, or a QoI fungicide 

and a DMI fungicide mixture.  QoI fungicides function by targeting the cytochrome bc1 enzyme 

complex (complex III) at the quinone outer binding site in the mitochondrial respiration pathway 

of fungi, disrupting electron transport, which interferes with spore germination and reduces 

mycelial growth (Gisi et al., 2002; Fernandez-Ortuno et al., 2008; Ma and Michailides, 2005; 

Wise and Mueller, 2011).  Shah and Dillard (2010) reported that the QoI fungicides, 

azoxystrobin and pyraclostrobin, reduced NLB severity in sweet corn.  The DMI fungicides bind 
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to the cytochrome P450 lanosterol 14α-demethylase (CYP51), which interferes with ergosterol 

production in fungi (Yoshida, 1993).  Without ergosterol, fungi cannot develop functional cell 

membranes leading to reduced mycelial growth and eventual death (Ma and Michailides, 2005; 

Mueller et al., 2013).  The DMI fungicide, propiconazole, has demonstrated effective control of 

NLB in field corn and sweet corn (Bowen and Pedersen, 1988; Harlapur et al., 2007; Pataky, 

1992; Raid, 1991).  NLB control also has been achieved using QoI + DMI products, such as 

pyraclostrobin and epoxiconazole (Da Costa and Boller, 2008).  Which fungicide products (QoI, 

DMI, or QoI + DMI) are the most effective in controlling NLB is unclear. 

 QoI fungicides were first introduced to the marketplace in 1996 (Bartlett et al., 2002; Gisi 

et al, 2002).  Since then, resistance to QoI fungicides has been observed in multiple 

phytopathogenic fungi on multiple crops (FRAC, 2013).  Frequently, QoI resistance is the result 

of one of two possible point mutations in the mitochondrial cytochrome b (cyt b) gene.  An 

amino acid substitution from glycine to alanine at codon 143 (G143A mutation) or from 

phenylalanine to leucine at codon 129 (F129L mutation) confers QoI resistance with no fitness 

penalty (Bartlett et al., 2002).  G143A confers a higher level of resistance than F129L (Kim et 

al., 2003).  Another point mutation at codon 137, recognized as G137R, substitutes arginine for 

glycine conferring QoI resistance levels similar to F129L; however, this mutation is much rarer 

than either G143A or F129L (Sierotzki et al., 2007). Miguez et al. (2004) reported reduced QoI 

sensitivity of Mycosphaerella graminicola resulting from the activation of an alternative oxidase 

(AOX), especially at low azoxystrobin dose rates.  The fungicide resistance action committee 

(FRAC, 2013) considers QoI fungicides to be high risk for pathogen resistance development due 

to the presence of single gene mutation conferring near-complete resistance with no fitness 



 

12 
 

penalty, potential for cross-resistance to chemicals in the QoI group, and the speed at which 

resistance developed in the field following the initial use. 

 DMIs were introduced during the mid-1970s and resistance has developed in multiple 

pathogens that affect many crops (De Waard et al., 1986; Karaoglanidis, 2000; Morton and 

Staub, 2008; Spolti et al., 2014).  Shifts of sensitivity to the DMI fungicides have been tied to 

three main resistance mechanisms: i) mutations in the 14α-demethylase (CYP51) gene (Leroux et 

al., 2007; Ma and Michailides, 2005), ii) overexpression of the CYP51 gene, and iii) 

overexpression of ABC (ATP-Binding Cassette) transporters (Ma and Michailides, 2005; 

Steffens et al., 1996).  All of the resistance mechanisms confer partial resistance (decreased 

sensitivity), often allowing DMIs to remain relatively effective for disease management (Leroux 

et al., 2007).  Cross-resistance to different chemistries within the DMI class can vary but are 

common (De Waard el al., 1986; Hsiang et al., 1997; Leroux et al., 2007).  FRAC (2013) 

considers DMI fungicides to be medium risk for pathogen resistance development due to the 

presence of multiple mechanisms of resistance and potential for cross-resistance to chemicals in 

the DMI group; however, high levels of resistance would require multiple mechanisms within an 

organism. 

 QoI and DMI fungicide-associated risk of resistance has been assessed from various 

fungal responses already observed; however, species vary in resistance response to fungicides 

(Brent and Hollomon, 2007; Gisi et al., 2002).  QoI resistance is unlikely to be a significant 

problem in E. turcicum since it is unable to develop the highly resistant G143A mutation due to 

the presence of an intron sequence directly after codon 143 (Stammler, 2012).  Codon 143 plays 

a role in the removal of the intron, which is necessary for a functioning complex II, and the 

G143A mutation has never been observed when the intron is present (Stammler, 2012).  
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Exserohilum turcicum could develop the F129L, G137R, or AOX mutations; however, these 

mutations confer low resistance, and the QoIs still offer control (Kim et al., 2003; Sierotzki et al., 

2007; Stammler, 2012).  Exserohilum turcicum could become resistant to DMI fungicides as 

previously discussed; however, resistance is observed as a gradual reduction in sensitivity over 

time.  This stepwise loss of DMI sensitivity over time is the result of resistance being conferred 

by multiple mutations instead of a strong single mutation.  Selection pressure for resistance is 

applied by continued exposure to DMIs, which eventually shift the population (Leroux et al., 

2007; Ma and Michailides, 2005).  Exserohilum turcicum is a polycyclic disease with relatively 

high genetic diversity, limited in its host range by the agricultural practices in the U.S. grain belt 

which could increase the risk of resistance (Ferguson and Carson, 2004; USDA-NASS, 2014; 

Carson, 1999).  FRAC (2013) categorizes E. turcicum at medium risk of developing fungicide 

resistance since it has not been a major problem thus far; however, the lack of observed 

resistance could be the result of limited fungicide use in corn prior to the mid-2000s (Bradley 

and Ames, 2008; Wise and Mueller, 2011). 

The probability of selecting for decreased fungicide sensitivity in the E. turcicum 

population greatly increases with the adoption of foliar fungicide application as a management 

tool in field crops across the U.S. Corn Belt (Bradley and Ames, 2008; Wise and Mueller, 2011; 

Mallowa et al., 2015).  Corn hectares that receive foliar fungicide applications fluctuate with 

field conditions annually.  In 2007, approximately 18% of corn hectares planted in major corn 

producing states received foliar fungicide applications (Munkvold et al., 2008).  In 2010, the 

corn hectarage sprayed with foliar fungicides was estimated to be approximately 10% (Mallowa 

et al., 2015; Wise and Mueller, 2011).  Large populations of E. turcicum across millions of 

hectares in major corn producing regions of the U.S. are exposed repeatedly to selection pressure 
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for QoI and DMI fungicide resistance (Wise and Mueller, 2011; Mallowa et al., 2015).  

Monitoring resistance progression can aid in making management decisions and maintain 

fungicide efficacy (Brent and Hollomon, 2007).   
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Objectives 

 NLB, caused by E. turcicum, has recently increased in prevalence in the U.S. due to 

changes in cultural practices.  Research to determine fungicide efficacy and establish baseline 

sensitivity for monitoring fungicide resistance, as well as, determining race population 

distribution in the north central U.S. will ultimately aid producers in making sound disease 

management decisions.  The objectives of this research are to: 

1) Determine races of E. turcicum present in the North Central U.S. 

2) Establish a baseline sensitivity of E. turcicum to DMI fungicides. 

3) Determine which foliar fungicides from different chemistry classes are the most effective 

for control of NLB.      

 

  



 

16 
 

Literature Cited 

Adipala, E., Lipps, P. E., and Madden, L. V. 1993. Reaction of maize cultivars from Uganda to 

Exserohilum turcicum. Phytopathology 83:217-223. 

Alcorn, J. L. 1988. The taxonomy of “Helminthosporium” species. Ann. Rev. Phytopathol. 

26:37-56. 

Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., and Parr-Dobrzanski, B. 

2002. The strobilurin fungicides. Pest Manage. Sci. 58:649-662.  

 

Bergquist, R. R. and Masias, O. R. 1974. Physiologic specialization in Trichometasphaeria 

turcica f. sp. zeae and T. turcica f. sp. sorghi in Hawaii. Phytopathology 64:645-649. 

Boosalis, M. G., Sumner, D. R., and Rao, A. S. 1967 Overwintering of Helminthosporium 

turcicum on corn residue and in soil in Nebraska. Phytopathology 57:990-996. 

Borchardt, D. S., Welz, H. G., and Geiger, H. H. 1998a. Genetic structure of Setosphaeria 

turcica populations in temperate and tropical climates. Phytopathology 88:322-329. 

Borchardt, D. S., Welz, H. G., and Geiger, H. H. 1998b. Molecular marker analysis of European 

Setosphaeria turcica populations. Eur. J. Plant Pathol. 104:611-617. 

Bowen, K. L. and Pedersen, W. L. 1988. Effects of propiconazole on Exserohilum turcicum in 

laboratory and field studies. Plant Dis. 72:847-850. 

Brent, K. J. and Hollomon, D. W. 2007b. Fungicide resistance: the assessment of risk: 2
nd

 

revised edition. FRAC Monograph No. 2. Fungicide Resistance Action Committee, 

Brussels, Belgium. 



 

17 
 

Brewster, V. A., Carson, M. L., and Wicks, Z. W. III. 1992. Mapping components of partial 

resistance to northern leaf blight of maize using reciprocal translocations. Phytopathology 

82:225-229. 

Carson, M. L. 1995. Inheritance of latent period length in maize infected with Exserohilum 

turcicum. Plant Dis. 79:581-585. 

Carson, M. L. 1999. Northern corn leaf blight. In White, D.G., editor. Compendium of Corn 

Diseases, 3
rd

 ed. The American Phytopathological Society, St. Paul, MN. 

Carson, M. L. and Van Dyke, C. G. 1994. Effect of light and temperature on expression of partial 

resistance of maize to Exserohilum turcicum. Plant Dis. 78:519-522. 

Da Costa, D. I. and Boller, W. 2008. Aerial and ground applications of fungicide for the control 

of leaf diseases in maize crop (Zea mayz L.). Presented at CIGR International Conference 

of Agricultural Engineering XXXVII Congresso brasileiro De Engenharia Agricola - 

Conbea 2008. 

de Nazareno, N. R. X., Madden, L. V., and Lipps, P. E. 1992. Survival of Cercospora zeae-

maydis in corn residue in Ohio. Plant Dis. 76:67-70. 

De Waard, M. A., Kipp, E. M. C., Horn, N. M., and Van Nistelrooy, J. G. M. 1986. Variation in 

sensitivity to fungicides which inhibit ergosterol biosynthesis in wheat powdery mildew. 

Neth. J. Pl. Path. 92:21-32. 

Dodd, J. L. 1980a. The role of plant stresses in development of corn stalk rot. Plant Dis. 64:533-

537. 



 

18 
 

Dodd, J. L. 1980b. Grain sink size and predisposition of Zea mays to stalk rot. Phytopathology 

70:534-535. 

Drechsler, C. 1923. Some graminicolous species of Helminthosporium. J. Agric. Res. 24:641-

739. 

Fallah, M. P. and Pataky, J. K. 1994. Reactions of isolates from mating of races 1 and 23N of 

Exserohilum turcicum. Plant Dis. 78:767-771. 

Fajemisin, J. M. and Hooker, A. L. 1974. Top weight, root weight, ad root rot of corn seedlings 

as influenced by three Helminthosporium leaf blights. Plant Dis. Rep. 58:313-317. 

Ferguson, L. M. and Carson, M. L. 2004. Spatial diversity of Setosphaeria turcica sampled from 

the eastern United States. Phytopathology 94:892-900. 

Ferguson, L. M. and Carson, M. L. 2007. Temporal variation in Setosphaeria turcica between 

1974 and 1994 and origin of races 1, 23, and 23N in the United States. Phytopathology 

97:1501-1511. 

Fernandez-Ortuno, D., Tores, J. A., de Vicente, A., and Perez-Garcia, A. 2008. Mechanisms of 

resistance to QoI fungicides in phytopathogenic fungi. Inter. Microbiol. 11:1-9. 

Fisher, D. E., Hooker, A. L., Lim, S. M., and Smith, D. R. 1976. Leaf infection and yield loss 

caused by four Helminthosporium leaf diseases of corn. Phytopathology 66:942-944. 

FRAC. 2013. FRAC list of plant pathogenic organisms resistant to disease control agents. 

Fungicide Resistance Action Committee, Brussels, Belgium. 

FRAC. 2013. Pathogen risk list. Fungicide Resistance Action Committee, Brussels, Belgium. 



 

19 
 

Gevers, H. O. 1975. A new major gene for resistance to Helminthosporium turcicum leaf blight 

in maize. Plant Dis. Rep. 59:296-299. 

Gisi, U., Sierotzki, H., Cook, A., and McCaffery, A. 2002. Mechanisms influencing the 

evolution of resistance to Qo inhibitor fungicides. Pest Manage. Sci. 58:859-867. 

Harlapur, S. I., Kulkarni, M. S., Wali, M. C., and Kulkarni, S. 2007. Evaluation of plant extracts, 

bio-agents, and fungicides against Exserohilum turcicum (Pass.) Leonard and Suggs, 

causing turcicum leaf blight of maize. Karnataka J. Agric. Sci. 20:541-544. 

Hooker, A. L. 1963. Inheritance of chlorotic-lesion resistance to Helminthosporium turcicum in 

corn seedlings. Phytopathology 53:909-912. 

Hooker, A. L. 1977. A second major gene locus in corn for chlorotic-lesion resistance to 

Helminthosporium turcicum. Crop Sci. 17:132-135. 

Hooker, A. L. 1981. Resistance to Helminthosporium turcicum from Tripsacum floridanum 

incorporated into corn. Maize Genet. Coop. Newsl. 55:87-88. 

Hsiang, T., Yang, L., and Barton, W. 1997. Baseline sensitivity and cross resistance to 

demethylation-inhibiting fungicides in Ontario isolates of Sclerotinia homoeocarpa. Eur. 

J. Pl. Path. 103:409-416. 

Jordan, E. G., Perkins, J. M., Schall, R. A., and Pedersen, W. L. 1983. Occurrence of race 2 of 

Exserohilum turcicum on corn in the central and eastern United States. Plant Dis. 

67:1163-1165. 



 

20 
 

Karaoglanidis, G. S., Ionnidis, P. M., and Thanossoulopoulos, C.C. 2000. Reduced sensitivity of 

Cercospora beticola isolates to sterol demethylation inhibiting fungicides. Plant Pathol. 

49: 567 – 572. 

Keller, N. P. and Bergstrom, G. C. 1990. Predominance in New York of isolates of Exserohilum 

turcicum virulent on maize with gene Ht1. Plant Dis. 74:530. 

Kim, Y. S., Dixon, E. W., Vincelli, P., and Farman, M. L. 2003. Field resistance to strobilurin 

(QoI) fungicides in Pyricularia grisea caused by mutations in the mitochondrial 

cytochrome b gene. Phytopathology 93:891-900. 

Leath, S., Thakur, R. P., and Leonard, K. J. 1990. Variation in expression of monogenic 

resistance in corn to Exserohilum turcicum race 3 under different temperature and light 

regimes. Phytopathology 80:309-313. 

Leonard, K. J. and Suggs, E. G. 1974. Setosphaeria prolata, the ascigerous state of Exserohilum 

prolatum. Mycologia. 66:281-297. 

Leonard, K. J., Levy, Y., and Smith, D. R. 1989. Proposed nomenclature for pathogenic races of 

Exserohilum turcicum on corn. Plant Dis. 73:776-777. 

Leroux, P., Albertini, C., Gautier, A., gredt, M., and Walker, A. 2007. Mutations in the CYP51 

gene correlated with changes in sensitivity to sterol 14α-demethylation inhibitors in field 

isolates of Mycosphaerella graminicola. Pest Manag. Sci. 63:688-698. 

Levy, Y. 1984. Overwintering of Exserohilum turcicum in Israel. Phytoparasitica 12:177-182. 

Levy, Y. and Cohen, Y. 1983a. Biotic and environmental factors affecting infection of sweet 

corn with Exserohilum turcicum. Phytopathology 73:722-725. 



 

21 
 

Levy, Y. and Cohen, Y. 1983b. Differential effects of light on spore germination of 

Helminthosporium turcicum on corn leaves and corn leaf impressions. Phytopathology 

73:249-252. 

Levy, Y. and Pataky, J. K. 1992. Epidemiology of northern leaf blight on sweet corn.  

Phytoparasitica 20:53-66.   

Lipps, P. E. and Hite, R. E. 1982. Exserohilum turcicum virulent on corn with the Ht resistance 

gene in Ohio. Plant Dis. 66:397-398. 

Lipps, P. E., Pratt, R. C., and Hakiza, J. J. 1997. Interaction of Ht and partial resistance to 

Exserohilum turcicum in maize. Plant Dis. 81:277-282. 

Luttrell, E. S. 1958. The perfect stage of Helminthosporium turcicum. Phytopathology 48:281-

287. 

Luttrell, E. S. 1964. Morphology of Trichometasphaeria turcica. Am. J. Bot. 51:213-219. 

Ma, Z. and Michailides, T. J. 2005. Advances in understanding molecular mechanisms of 

fungicide resistance and molecular detection of resistant genotypes in phytopathogenic 

fungi. Crop Protect. 24:853-863. 

Mallowa, S. O., Esker, P. D., Paul, P. A., Bradley, C. A., Chapara, V. R., Conley, S. P., and 

Robertson, A. E. 2015. Effect of maize hybrid and foliar fungicides on yield under low 

foliar disease severity conditions. Phytopathology 105:1098-1089. 

Miguez, M., Reeve, C., Wood, P. M., and Hollomon, D. W. 2004. Alternative oxidase reduces 

the sensitivity of Mycosphaerella graminicola to QoI fungicides. Pest Manag. Sci. 60:3-

7. 



 

22 
 

Morton, V. and Staub, T. 2008 A Short History of Fungicides. Online, APSnet Features. Doi: 

10.1094/APSnetFeature-2008-0308. 

Mueller, D. S., Wise, K.A., Dufault, N.S., Bradley, C. A. and Chilvers, M.I. 2013. Fungicides for 

Field Crops.  The American Phytopathological Society, St. Paul, MN. 

Mueller, D. S., Jeffers, S. N., and Buck, J. W. 2004. Effect of timing of fungicide applications on 

development of rusts on daylily, geranium, and sunflower. Plant Dis. 88:657-661. 

Munkvold, G. P., Doerge, T., and Bradley, C. 2008. IPM is still alive for corn leaf diseases: look 

before you spray. In: Proc. 62
nd

 Annu. Corn Sorghum Res. Conf. Chicago. CD-ROM, 

American Seed Trade Association, Alexandria, VA. 

Ogliari, J., Guimaraes, M., Geraldi, I., and Camargo, L. 2005. New resistance genes in the Zea 

mays – Exserohilum turcicum pathosystem. Gen. Mol. Bio. 28:435-439. 

Pataky, J. K. 1991. Exserohilum turcicum on sweet corn in Florida. Phytopathology 81:813. 

Pataky, J. K. 1992. Relationships between yield of sweet corn and northern leaf blight caused by 

Exserohilum turcicum. Phytopathology 82:370-375. 

Pataky, J. K., Perkins, J. M., and Leath, S. 1986. Effects of qualitative and quantitative resistance 

on the development and spread of northern leaf blight of maize caused by Exserohilum 

turcicum races 1 and 2. Phytopathology 76:1349-1352. 

Pataky, J. K., Raid, R. N., du Toit, L. J., and Schueneman, T. J. 1998. Disease severity and yield 

of sweet corn hybrids with resistance to northern leaf blight. Plant Dis. 82:57-63. 



 

23 
 

Pedersen, W. L. and Oldham, M. G. 1992. Effect of three tillage practices on development of 

northern corn leaf blight (Exserohilum turcicum) under continuous corn. Plant Dis. 

76:1161-1164. 

Raid, R. N. 1991. Fungicidal control of foliar sweet corn diseases in the presence of high 

inoculum levels. Proc. Fla. State Hort. Soc. 104:267-270. 

Raymundo, A. D. and Hooker, A. L. 1981. Measuring the relationship between northern corn 

leaf blight and yield losses. Plant Dis. 65:325-327. 

Raymundo, A. D. and Hooker, A. L. 1982. Single and combined effects of monogenic and 

polygenic resistance on certain components of northern corn leaf blight development. 

Phytopathology 72:99-103. 

Robert, A. L. 1964. The effect of temperature and relative humidity on longevity of 

Trichometasphaeria turcica. Plant Dis. Rep. 48:943-946. 

Robert, A. L. and Findley, W. R. 1952. Diseased corn leaves as a source of infection in artificial 

and natural epidemics of Helminthosporium turcicum. Plant Dis. Rep. 36:9-10. 

Robert, A. L. and Sprague, G. F. 1960. Adeaptation of the corn leaf blight fungus to a resistant 

and a susceptible corn host. Phytopathology 50:261-263. 

Robbins, W. A. and Warren, H. L. 1993. Inheritance of resistance to Exserohilum turcicum in PI 

209135 ‘Mayorbela’ variety of maize. Maydica 38:209-213. 

Rossman, A. Y., Crous, P. W., Hyde, K. D., Hawksworth, D. L., Aptroot, A., Bezerra, J. L., 

Bhat, J. D., Boehm, E., Braun, U., Boonmee, S., Camporesi, E., Chomnunti, P., Dai, D., 

D’souza, M. J., Dissanayake, A., Jones, E. B. G., Groenewald, J. Z., Hernandez-Restrepo, 



 

24 
 

M., Hongsanan, S., Jaklitsch, W. M., Jayawardena, R., Jing, L. W., Kirk, P. M., Lawrey, 

J. D., Mapook, A., McKenzie, E. H. C., Monkai, J., Phillips, A. J. L., Phookamsak, R., 

Raja, H. A., Seifert, K. A., Senanayake, I., Slippers, B., Suetrong, S., Taylor, J. E., 

Thambugala, K. M., Tian, Q., Tibpromma, S., Wanasinghe, D. N., Wijayawardene, N. 

N., Wikee, S., Woudenberg, J. H. C., Wu, H., Yan, J., Yang, T., and Zhang, Y. 2015. 

Recommended names for pleomorphic genera in Dothideomycetes.  IMA Fungus 6:507-

523. 

Schechert, A. W., Welz, H. G., and Geiger, H. H. 1999. QTL for resistance to Setosphaeria 

turcica in tropical African maize. Crop Sci. 39:514-523. 

Shah, D. A. and Dillard, H. R. 2010. Managing foliar diseases of processing sweet corn in New 

York with strobilurin fungicides. Plant Dis. 94:213-220. 

Sierotzki, H., Frey, R., Wullschleger, J., Palermo, S., Karlin, S., Godwin, J., and Gisi, U. 2007. 

Cytochrome b gene sequence and structure of Pyrenophora teres and P. tritici-repentis 

and implications for QoI resistance. Pest Manag. Sci. 60:225-233. 

Smith, D. R. and Kinsey, J. G. 1980. Further physiologic specialization in Helminthosporium 

turcicum. Plant Dis. 64:779-781. 

Spolti, P., Del Ponte, E. M., Dong, Y., Cummings, J. A., and Bergstrom, G. C. 2014. Triazole 

sensitivity in a contemporary population of Fusarium graminearum from New York 

wheat and competitiveness of a tebuconazole-resistant isolate. Plant Dis. 98:607-613. 

Stammler, G. 2012. Resistance risk of corn pathogens to QoI fungicides. Outlooks on Pest 

Management 23:211-214. 



 

25 
 

Steffens, J. J., Pell, E. J., and Tien, M. 1996. Mechanisms of fungicide resistance in 

phytopathogenic fungi. Curr. Opinion Biotech. 7:348-355. 

Takan, J. P., Adipala, E., and Ogenga-latigo, M. W. 1994. Northern corn leaf blight progress and 

spread from Exserohilum turcicum infested maize residue. Afric. Crop Sci. J. 2:197-205. 

Thakur, R. P., Leonard, K. J., and Jones, R. K. 1989a. Characterization of a new race of 

Exserohilum turcicum virulent on corn with resistance gene HtN. Plant Dis. 73:151-155. 

Thakur, R. P., Leonard, K. J., and Leath, S. 1989b. Effects of temperature and light on virulence 

of Exserohilum turcicum on corn. Phytopathology 79:631-635.  

Turner, M. T. and Hart, K. 1975. Field spore production of Helminthosporium turcicum on Zea 

mays with and without monogenic resistance. Phytopathology 65:735-736. 

Turner, M. T. and Johnson, E. R. 1980. Race of Helminthosporium turcicum not controlled by Ht 

genetic resistance in corn in the American corn belt. Plant Dis. 64:216-217. 

Ullstrup, A. J. 1966. Corn diseases in the United States and their control. United States, 

Department of Agriculture. Agriculture Handbook No. 199:26. 

Ullstrup, A. J. 1970. A comparison of monogenic and polygenic resistance to Helminthosporium 

turcicum in corn. Phytopathology 60:1597-1599. 

Ullstrup, A. J. and Miles, S. R. 1957. The effects of some leaf blights of corn on grain yield. 

Phytopathology 47:331-336. 

Ward, J. M. J., Laing, M. D., and Rijkenberg, F. H. J. 1997. Frequency and timing of fungicide 

applications for the control of gray leaf spot in maize. Plant Dis. 81:41-48. 



 

26 
 

 

Welz, H. G. 1998. Genetics and epidemiology of the pathosystem Zea mays/Setosphaeria 

turcica. Habilitation Thesis, Univ. of Hohenheim/Shaker-Verlag., Stuttgart/Aachen, 

Germany. 

Welz, H. G. and Geiger, H. H. 2000. Genes for resistance to northern corn leaf blight in diverse 

maize populations. Plant Breed. 119:1-14. 

Welz, H. G., Wagner, R., and Geiger, H. H. 1993. Virulence variation in Setosphaeria turcica 

populations collected from maize in China, Mexico, Uganda, and Zambia. 

Phytopathology 83:1356. 

Windes, J. M. and Pedersen, W. L. 1991. An isolate of Exserohilum turcicum virulent on maize 

inbreds with resistance gene HtN. Plant Dis. 75:430. 

Wise, K. 2015. Diseases of corn: corn disease loss estimates from the United States and Ontario, 

Canada – 2014. Purdue Ext. Pub. BP-96-14--W. Purdue Extension Education Store, 

Lafayette, Indiana. 

Wise, K. and Mueller, D. 2011. Are fungicides no longer just for fungi? An analysis of foliar 

fungicide use in corn. APSnet feature article. Doi:10.1094/APSnetFeature-2011-0531. 

Wong, F. P. and Midland, S. L. 2007. Sensitivity distributions of California populations of 

Colletotrichum cereale to the DMI fungicides propiconazole, myclobutanil, 

tebuconazole, and triadimefon. Plant Dis. 91:1547-1555. 



 

27 
 

Yongshan, F., Jifang, M., Xiumei, G., Xinlong, A., Shuqin, S., and Jingao, D. 2007. Distribution 

of mating types and genetic diversity induced by sexual recombination in Setosphaeria 

turcica in northern China. Front. Agric. China 1:368-376. 

Yoshida, Y. 1993. Lanosterol 14α-demethylase (cytochrome P45014DM). Springer-verlag, 

Berlin, Germany. 

  



 

28 
 

CHAPTER 2: EXSEROHILUM TURCICUM RACE POPULATION DISTRIBUTION IN 

THE NORTH CENTRAL UNITED STATES 

Abstract 

Northern leaf blight (NLB) of corn, caused by Exserohilum turcicum, is a yield reducing foliar 

disease common across the north central U.S.  Previous race population distribution studies 

identified five physiological races present in the U.S., prior to 1995.  For this study, 156 E. 

turcicum isolates were screened on corn differential lines containing Ht1, Ht2, Ht3, Htm1, and 

Htn1 resistance genes.  Isolates were collected from fields in Illinois, Indiana, Iowa, Minnesota, 

North Carolina, Ohio, and Wisconsin, including: 143 isolates collected between 2007 and 2014; 

and 13 isolates collected between 1979 and 1985.  Twenty different physiological races were 

observed based on the resistance response of the differential corn lines. Exserohilum turcicum 

races 0, 1, 1mn were the most prevalent races, comprising 21%, 27%, and 13% of the 156 

isolates, respectively.  Race populations were diverse within states and years.  Virulence to 

multiple Ht resistance genes within individual isolates was observed in 47% of those tested, with 

3% of the isolates conferring virulence to all Ht resistance genes.  Virulence to the Ht1, Ht2, Ht3, 

Htm1, and Htn1 resistance genes was present in 64%, 20%, 18%, 32%, and 27% of the E. 

turcicum isolates, respectively.  Virulence to Ht resistance genes was fairly evenly distributed 

across states, in isolates collected after 2008.  Ht2, Ht3, Htm1, and Htn1 virulence decreased 

after 2010.  Variations in race population diversity are difficult to explain without knowing the 

level of selection pressure present in fields, and information regarding Ht resistance gene 

deployment in commercial varieties is not publicly available.  While virulence was observed for 

all Ht resistance genes, qualitative Ht resistance genes could be used in conjunction with 

quantitative resistance to increase NLB control.  
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Introduction 

Northern leaf blight (NLB) of corn (Zeae mays subsp. mays), caused by Exserohilum turcicum 

(syn. Bipolaris turcica, Drechslera turcica, Helminthosporium turcicum, Setosphaeria turcica, 

and Trichometasphaeria turcica), is a common disease found in corn-producing areas worldwide 

(Dong et al., 2008; Ferguson and Carson, 2004; Muiru et al., 2010; Scherchert et al., 1999).  

NLB is a foliar disease that initially presents as green-gray, elliptical lesions which turn necrotic 

(Carson, 1999; Ullstrup and Miles, 1957).  In cool, moist field conditions, lesions expand and 

coalesce, which reduce host photosynthetic potential (Levy and Cohen, 1983).  Secondary 

infections occur from conidia formed on the surface of necrotic lesions spread to the upper 

canopy by wind and rain (Carson, 1999; Ullstrup and Miles, 1957).  Disease stress during seed 

set and fill can result in yield reductions greater than 50%, while potentially increasing the 

incidence of stalk rots and lodging (Dodd, 1980a; Dodd, 1980b; Fisher et al., 1976; Pedersen and 

Oldham, 1992; Raymundo and Hooker, 1981).  

 Host resistance has been effectively used to control NLB in the U.S. through the 

deployment of qualitative and quantitative resistance genetics.  The first qualitative Ht resistance 

gene, designated Ht1, was discovered in 1963 (Hooker, 1963).  The resistance response presents 

as chlorotic streaking surrounding reduced necrotic lesions with decreased sporulation.  The Ht2 

and Ht3 genes were discovered in 1977 and 1981, respectively, and display similar resistance 

responses as Ht1, but with more necrosis (Hooker, 1977; Hooker, 1981).  In 1975, a single gene 

conferring delayed latent period and decreased lesion number was identified, and later 

designated as the Htn1 (syn. HtN) gene (Gevers, 1975; Leonard et al., 1989; Welz and Geiger, 

2000).  In 1993, another resistance gene conferring complete resistance to E. turcicum was 

observed and later designated Htm1 in analogy to Htn1 (Robbins and Warren, 1993; Welz and 
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Geiger, 2000).  The Ht1 gene often was utilized as the primary form of NLB control in corn 

breeding lines until virulent E. turcicum populations were observed across corn producing areas 

of the U.S. (Ferguson and Carson, 2004; Jordan et al., 1983; Lipps and Hite, 1982). The Ht2, 

Ht3, and Htn1 genes have not been heavily utilized in field corn breeding due to presence of E. 

turcicum virulent populations, as well as variations in resistance under different light intensities 

and temperatures (Ferguson and Carson, 2004; Leath et al., 1990; Thakur et al., 1989a; Thakur et 

al., 1989b).  Furthermore, a dominant gene, designated Sht1, suppresses expression of Ht2, Ht3, 

and Htn1, which makes backcrossing more difficult (Ceballos and Gracen, 1989; Simcox and 

Bennetzen, 1993).  The Htm1 gene also has limited deployment in field corn breeding, and little 

E. turcicum race screening has been done using this resistance gene.  Quantitative resistance 

breeding has become the primary method for NLB control due to the durability of polygenic 

resistance across environments and E. turcicum races (Carson, 1995; Carson and Van Dyke, 

1994; Jordan et al., 1983; Welz and Geiger, 2000). 

 NLB has increased in prevalence in the U.S. since 2000 (Munkvold et al., 2008; Wise 

and Mueller, 2011).  Adoption of reduced tillage and no-tillage practices, as well as increased 

hectares in continuous corn has led to increased field residue.  Exserohilum turcicum-infected 

corn residue generally serves as the primary inoculum that causes infections and NLB 

development (Mallowa et al., 2015; Wise and Mueller, 2011).  Currently, producers tend to 

select corn hybrids based on high yield potential over those with high disease resistance, which 

has also led to increased disease severity (Wise and Mueller, 2011).  This suggests that some 

high-yielding lines may lack adequate quantitative resistance genetics to control NLB in some 

regions.  Single resistance genes can be backcrossed into corn lines fairly quickly, relative to 

breeding for polygenic resistance.  The qualitative Ht genes could increase NLB control if used 
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in conjunction with partial resistance or provide protection while quantitative resistance is 

improved in high-yielding lines.  Lipps et al. (1997) reported that crosses of lines containing Ht 

genes and lines with moderate partial resistance controlled NLB better than crosses of the same 

lines without Ht genes and lines with moderate partial resistance when inoculated with E. 

turcicum race 0 (avirulent to all Ht genes).  In addition, Pataky et al. (1986) reported that 

qualitative resistance genes and high partial resistance were equally effective in limiting spread 

and development of NLB in the presence of a race avirulent against Ht genes.   

  To determine if any of the Ht genes could be widely deployed to aid in NLB control, the 

distribution of E. turcicum race populations in corn-producing regions must be assessed.  

Exserohilum turcicum races are determined by inoculating differential corn lines containing the 

individual Ht genes and assessing the presence or absence of the host resistance response 

(Berguist and Masias, 1974).  Physiological races are designated based on virulence to host Ht 

gene(s). For example, race 1 of E. turcicum is virulent against the Ht1 gene; race 23N is virulent 

against the Ht2, Ht3, and Htn1 genes; while race 0 is avirulent against all of the Ht genes 

(Leonard et al., 1989).  Previous studies, conducted with various isolates collected prior to 1995, 

showed that five races occur in the U.S.  Races 0 and 1 were found to be dominant, while races 

23, 2N, and 23N occurred at much lower frequencies (Fallah and Pataky, 1994; Ferguson and 

Carson, 2004; Ferguson and Carson, 2007; Windes and Pedersen, 1991).  These race-typing 

studies were performed with isolates collected prior to 1995.  Little is known about the present E. 

turcicum race population distribution in the central U.S. or the presence of selection pressure.  It 

is widely believed that Ht genes are not being deployed in private, commercially-developed 

hybrids; however, that information is not publicly available (Carson, 1995; Carson and Van 

Dyke, 1994; Jordan et al., 1983; Welz and Geiger, 2000).  The purpose of this study was to 
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determine the race population diversity and distribution of E. turcicum present in several states in 

the North Central U.S. 

 

Materials and Methods 

Isolate collection.  The E. turcicum collection consisted of 156 isolates obtained from corn.  

Thirteen isolates collected prior to 1986 were from a collection originally compiled by Dr. 

Martin Carson and later curated by Dr. Peter Balint-Kurti (United States Department of 

Agriculture, North Carolina State University, Raleigh, NC) (Ferguson and Carson, 2004; 

Ferguson and Carson 2007).  In addition to these 13 “historical” isolates, isolates from corn leaf 

samples from Illinois, Indiana, Iowa, Ohio, and Wisconsin were collected between 2007 and 

2014.  Either leaf samples or isolate cultures collected between 2009 and 2014 from states other 

than Illinois were provided by Drs. Alison Robertson (Iowa State University, Ames, IA), Paul 

Esker (University of Wisconsin, Madison, WI), Pierce Paul (The Ohio State University, 

Wooster, OH), and Kiersten Wise (Purdue University, West Lafayette, IN).  NLB symptomatic 

leaf tissue were received and placed in humidity chambers (sealed plastic bags containing a 

damp paper-towel) to induce sporulation.  Conidia were rinsed off the leaf surface with 200 to 

500 µl of water, and the conidial suspension was spread onto Petri plates containing potato 

dextrose agar (PDA) (Fisher Scientific, Pittsburgh, PA) amended with rifampicin (25 mg/L) 

(Fisher Scientific, Pittsburgh, PA) to inhibit bacterial growth.  Conidia were allowed to 

germinate, and single germinated E. turcicum conidia were collected and transferred to new PDA 

the following day.  Isolates were allowed to grow at 20 to 25°C with 12 hour light/dark 

conditions for 7 to 14 days before mycelia samples were cut from plates and placed in 1.5 ml 
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tubes containing 850 µl of 15% glycerol solution.  Tubes were placed in a -80°C freezer for long 

term storage until isolates were screened for race-type.  The final collection contained isolates 

collected between 1979 and 2014 from Illinois, Indiana, Iowa, Minnesota, North Carolina, Ohio, 

and Wisconsin (Table 2.1). 

Race determinations.  To determine race, virulence was assessed on differential corn 

lines containing Ht1, Ht2, Ht3, Htm1 or Htn1 qualitative resistance genes or no Ht qualitative 

resistance gene.  Unfortunately, limitations in the quantity of seed of lines that contained Ht1, 

Htm1, or Htn1 required the use of multiple lines to test all isolates.  The corn lines containing the 

Ht resistance genes were: A619 (no Ht genes), A619Ht1, B37Ht1, A619Ht2, A619Ht3, 

H102Htm1, H117Htm1, MayorbelaHtm1, Mayorbela(R)C3Htm1, A509Htn1, A632Htn1, 

B37Htn1, FRSHtn1, MLSHtn1, and MRSHtn1.  The majority of seed for the A619 near isogenic 

lines and all of the seed for the B37 near isogenic lines came from Dr. Don White’s collection 

(Emeritus Professor, University of Illinois, Urbana, IL).  A portion of the seed for the A619 

lines, H102Htm1, A632Htn1, and A509Htn1 were provided by Dr. Krishan Jindal (Agriculture 

and Agri-Food Canada, Ottawa, ON, Canada) and Albert Tenuta (Ontario Ministry of 

Agriculture, Food and Rural Affairs, Ridgetown, ON, Canada).  The remaining Htm1 and Htn1 

screening lines were procured from the U.S. National Plant Germplasm System (NPGS, 

http://www.ars-grin.gov/npgs).  Pots (30.2 cm wide x 27.9 cm tall, C2000, Nursery Supplies Inc., 

Chambersburg, PA) were filled with a 1:1:1 (soil:peat:perlite) steam-sterilized soil mix.  All pots 

were planted with 18 seeds (3 seeds of each Ht gene type and 3 seeds of the A619 control with 

no Ht genes).  All plants in each pot were inoculated with a single E. turcicum isolate.  Plants 

were watered as needed and fertilized with Osmocote Classic 13-13-13 (N-P-K) controlled 

release fertilizer (The Scott’s Company, Marysville, OH) to maintain plant health and growth.  
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The greenhouse was maintained at 21°C ± 3° daytime and 18°C ± 3° nighttime temperatures.  

Supplemental lighting was used at 25 to 50 klux (325 to 650 µE m
-2

 s
-1

) with 15 hour daytime 

and 9 hour nighttime.  Greenhouse temperature and light intensity were consistent with those 

used by Leonard et al. (1989) and Ferguson and Carson (2004), since virulence to Ht1, Ht2, and 

Ht3 can be affected by varying temperature and light intensity (Leath et al., 1990; Thakur et al., 

1989).  Plants were inoculated at the four leaf growth stage. 

Exserohilum turcicum isolates were grown on lactose casein agar (LCA) (Tuite, 1969).  

Cultures were maintained at 20-25°C under a 12 hour light and dark regime for 7 to 14 days to 

promote sporulation (Ferguson and Carson, 2004).  Pieces (approximately 5 mm
2
) were cut from 

the sporulating cultures, placed in 1.5 ml tubes containing 800 µl of water, and vortexed to 

dislodge conidia.  Conidial suspensions were quantified with a hemocytometer and diluted with 

water containing Tween 20 (10 µl/liter) to approximately 1,000 conidia/ml.  Plants were 

inoculated in the whorl with 150 µl of the conidial suspension using a pipette.  To promote 

infection, plants were placed in a humidity chamber in the greenhouse for 20 to 24 hours 

following inoculation.  The humidity chamber consisted of an opaque plastic tent constructed in 

the greenhouse with 2 humidifiers that maintained relative humidity at 100%.   

Plants were inspected for symptoms of infection 14 and 21 days after inoculation.  

Symptoms caused by virulent E. turcicum isolates initially appeared as gray-green elliptical 

lesions in the first week, generally turning necrotic by the 14 day evaluation and continuing to 

increase in size by the 21 day evaluation.  Host resistant responses (avirulence) provided by Ht1, 

Ht2, and Ht3 appeared as chlorotic streaking surrounding reduced necrotic lesions.  Host 

resistant responses provided by Ht2 and Ht3 usually displayed more necrosis than Ht1.  The host 

resistance response provided by Htm1 appeared as slight necrotic flecking at the point of 
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infection, with minimal necrotic lesions.  The Htn1 host resistance response presented as delayed 

lesion development and reduced lesion size.  If the appropriate Ht host resistance response was 

observed on any of the plants containing the Ht gene, the isolate was considered avirulent against 

that gene.  Races were assigned based on plant resistance responses following the race scheme 

outlined by Leonard et al. (1989). 

  

Results 

Twenty races of E. turcicum were observed when the isolates were tested on the corn differential 

lines containing the various Ht resistance genes (Table 2.1).  Races observed were not consistent 

across years within states.  Race 0 (avirulent against all Ht genes) was found in 50% of the 

counties sampled in Iowa, 65% of the counties in Illinois, 80% of the counties in Indiana and 

Minnesota, 50% of the counties in North Carolina, and 100% of the counties in Ohio.  Races 

containing virulence to Ht1 were observed in 100% of the counties sampled in Iowa, 41% of the 

counties in Illinois, and 80% of the counties in Indiana.  None of the “historical” isolates 

collected from Minnesota or North Carolina were virulent to Ht1, while 100% of the counties 

sampled in Ohio and Wisconsin had isolates with Ht1 virulence.  Races with virulence to Ht2 

were identified in 100% of the counties in Iowa, 35% of the counties in Illinois, 40% of the 

counties in Indiana, 100% of counties in North Carolina, and 50% of the counties in OH.  

Virulence to Ht3 was observed in all of the same locations in which virulence to Ht2 was 

observed, except that virulence to Ht2 was not observed in Piatt County, IL but was observed in 

Grant County, WI.  Virulence to Htm1 was found in 100% of the counties in Iowa, 29% of the 

counties in Illinois, 40% of the counties in Indiana, 50% of the counties in NC, and 100% of the 
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counties in both Ohio and Wisconsin.  Virulence to Htn1 was found in 50% of the counties in 

Iowa, 41% of the counties in Illinois, 20% of the counties in Indiana, one location in North 

Carolina, 100% of the counties in Ohio, and 50% of the counties in Wisconsin.  In counties 

where samples were collected over multiple years, virulence profiles were not consistent across 

years.  

Virulence to multiple resistance genes was common among the isolates, which led to the 

high number of observed races (Table 2.2).  Ten races were observed in Iowa, 18 races in 

Illinois, 6 races in Indiana, 1 race in Minnesota, 4 races in North Carolina, 9 races in Ohio, and 3 

races in Wisconsin.  Race 1, race 0, and race 1mn were the most commonly observed races 

across all 156 isolates, which made up 27%, 21%, and 13% of the total isolates tested, 

respectively (Table 2.2).  Race 1 was the predominant race in Iowa and Ohio, while race 0 was 

predominant in Illinois, Indiana, and Minnesota (though, only one isolate was tested from 

Minnesota).  Isolates were evenly distributed among races in North Carolina, and 1mn was the 

predominant race in Wisconsin.  Generally, states with a greater number of isolates collected and 

tested resulted in more races observed. 

 The frequency of virulence to the specific Ht genes also was examined across states 

(Table 2.3).  In Illinois, Indiana, Iowa, Ohio, and Wisconsin, virulence to Ht1 was present in 

greater than 50% of the collected isolates.  In Minnesota and North Carolina isolates, which were 

all collected prior to 1986, no virulence to Ht1 was observed.  Virulence to Ht2 and Ht3 were 

observed together except in Wisconsin and Illinois.  Htn1 virulence was in all states, except 

Minnesota, and varied in its frequency.  Htm1 virulence was present in all states, except 

Minnesota, at levels similar to or greater than Ht2, Ht3 and Htn1.  Isolates avirulent to all Ht 

genes (race 0) were present in all states but often at a low frequency.  Of the total 156 isolates 
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tested, 21% were avirulent to all Ht genes, 64% were virulent to Ht1, 20% were virulent to both 

Ht2 and Ht, 30% were virulent to Htn1, and 30% were virulent to Htm1. 

Similarly, when examining temporal race distribution, the number of races identified 

within years tended to increase with the number of isolates tested (Table 2.4).  Five races were 

observed for isolates collected between 1979 and 1985, two races were observed in 2007, nine 

races in 2009, 16 races in 2010, 11 races in 2011, seven in 2012, one race in 2013, and four races 

in 2014.  Race 0 was the most prevalent among isolates collected between 1979 and 1985, as 

well as isolates collected in 2014.  Race 1mn was observed in greater frequency than any other 

race in 2009 and 2010.  In 2011, 2012, and 2013 (only one isolate tested in 2013), race 1 was 

present in the highest number of isolates.   

A shift in virulence to Ht genes was observed among years (Table 2.5). Greater than half 

of the isolates collected between 1979 and 1985 were race 0, inducing resistance responses on 

hosts containing any of the Ht genes.  No virulence to Ht1 was found in isolates collected prior 

to 2009; however, Ht1 virulence was observed in the majority of isolates collected in 2009 and 

subsequent years.  After 2010, the frequency of Ht2 and Ht3 virulence decreased compared to 

isolates collected previously.  A similar reduction was observed in Htn1 and Htm1 virulence 

after 2010. 

 

Discussion 

In this race survey, a much greater number of races were observed than previously reported in 

the U.S.  In previous reports, the commonly reported races found in U.S. fields were 0, 1, 23, 2n, 

and 23n, with race 0 and 1 being the most frequent (Fallah and Pataky, 1994; Simcox et al., 
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1993; Windes and Pedersen, 1991).  In the isolates tested here, 20 races were observed at fairly 

equal frequencies, with the exception of races 0, 1, and 1mn, which were more common.  The 

increased number of races identified resembles recent results from other corn-producing regions, 

such as Europe, Africa, and China, where races are more diverse (Dong et al., 2008; Muiru et al., 

2010).  It is possible that more races have developed over time in the U.S., since previous studies 

focused on isolates collected prior to 1995 (Ferguson and Carson, 2004; Ferguson and Carson, 

2007; Thakur et al., 1989; Windes and Pedersen, 1991).  Another reason more races were 

identified in this study is the inclusion of lines containing the Htm1 resistance gene in the 

differential test, which was not commonly used in earlier race typing studies (Ferguson and 

Carson, 2004; Thakur et al., 1989; Windes and Pedersen, 1991).  The inclusion of Htm1 allowed 

another level of race separation, increasing the number of races observed.   

There was a high diversity of races observed within regions. Multiple races could be 

found within counties and even fields.  Some inconsistency among years could be the result of 

isolates collected from different fields within counties and the relatively limited sample size.  

The diversity of races is somewhat unexpected in a population considered highly clonal in the 

North Central U.S. and under limited selection pressure, with minimal utilization of Ht genes in 

commercial breeding programs (Ferguson and Carson, 2004; Welz and Geiger, 2000; White, 

1999).  Ferguson and Carson (2004) did report high genetic diversity with approximately equal 

gametic phase equilibrium and equal proportions of mating types in Indiana, Kentucky, North 

Carolina and Ohio, which suggested that sexual recombination was occurring in those regions.  

Furthermore, they concluded that E. turcicum inoculum may travel long distances, which could 

cause new race introductions and race diversity in fields.  The diversity of races in this collection 

does suggest a genetically diverse population, possibly due to sexual recombination or mutation, 
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and the presence of some selection pressure or limited fitness penalty associated with 

physiological races.  

Races 0 and 1 remained the most frequently observed and were widely distributed across 

states, similar to earlier studies (Ferguson and Carson, 2004; Jordan et al., 1983).  Races 1m, 

1mn, and 1n were the second most frequently observed.  The wide distribution of race 0 could be 

the result of reduced use of Ht resistance genes in breeding programs, which shifted to the use of 

more prolific quantitative resistance to control NLB after virulence to Ht genes were observed in 

the 1970s and 1980s (Welz and Geiger, 2000).  The Ht1 gene, and to a lesser extent the Htn1 

gene, were commonly incorporated in commercial lines until virulence was readily observed 

(Leonard, 1993; Raymundo and Hooker, 1982; Turner and Johnson, 1980).  It is not surprising 

that populations with races virulent to Ht1 and Htn1 would be present in regions traditionally 

used for corn production due to selection pressure.   

Races with virulence to Ht1 were prevalent across major corn producing regions where 

isolates were collected after 2007.  It is likely, if more isolates were available to test prior to 

2009 virulence to Ht1 would have been observed.  Isolates from 1979 to 1985 were arbitrarily 

selected from part of a collection used for a genetic diversity study by Ferguson and Carson 

(2004; 2007) in which they observed virulence to Ht1 across the eastern U.S. at lower 

frequencies than found in the more recent isolates tested here.  This suggests the frequency of 

virulence to Ht1 has increased in E. turcicum populations; however, a previous study conducted 

on isolates collected between 1979 and 1981 determined that 72 out of 89 isolates collected in 

1981 were virulent to Ht1 (Jordan et al., 1983).  The variation among these previous studies 

makes it hard to determine if a population shift in virulence has occurred over time or if small 

sample size is confounding conclusions.  Whether the population has shifted or remained 
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consistent, virulence to Ht1 is present at high frequencies in E. turcicum populations across the 

north central U.S., which limits the usefulness of the Ht1 gene in breeding for NLB control.   

Races virulent to Htn1, Htm1, or both were fairly prevalent in all states, except 

Minnesota.  Virulence to Htn1 was expected given the Htn1 gene may have been previously 

utilized in breeding programs and virulence had been reported in U.S. E. turcicum populations 

(Ferguson and Carson, 2004; Raymundo and Hooker, 1982; Thakur et al., 1989a).  The high 

frequency of virulence to Htm1 found in the collection was surprising since there is little 

evidence available to suggest that the gene has been deployed in field corn breeding programs, 

and virulence has not been previously reported.  Virulence to Htm1 was found in the isolates 

collected from North Carolina in 1985; however, the Htm1 gene was not identified until 1993 

(Robbins and Warren, 1993).  The Htm1 resistance response is characterized as reduced disease 

severity or no disease response, without the telltale chlorosis of Ht1, Ht2, and Ht3.  It is possible 

the Htm1 gene was unknowingly incorporated into quantitative resistance breeding programs, 

prior to its identification.  Htm1 virulence is common in this E. turcicum isolate collection, but 

whether that is a response to selection pressure or if it naturally occurs is unclear.  The frequency 

of Htm1 virulence may have been over-represented in this study.  Part of the Htm1 source seed 

for this study was provided by the U.S. National Plant Germplasm System (NPGS, 

http://www.ars-grin.gov/npgs) and problems with contamination and misclassification of Ht lines 

have been encountered previously (Simcox and Bennetzen, 1993).      

 Races with virulence to Ht2, Ht3, or both were the least frequently observed of the 

isolates tested.  Virulence to these Ht genes was observed in all years, except 2013 when only 

one isolate was tested.  Despite the presence of virulence across years and in most states, virulent 

isolates were the least distributed within states.  These results are similar to other studies which 
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found virulence to Ht2 and Ht3 to be present at low frequency across the U.S. (Fallah and 

Pataky, 1994; Ferguson and Carson, 2004; Jordan et al., 1983; Lipps and Hite, 1982).  The 

presence of virulence to one of these genes without the presence of the other is confusing since 

virulence appears to be conferred by the same single gene (Welz, 1998).  In spite of this, multiple 

studies have reported races virulent to one gene without virulence to the other gene (Dong et al., 

2008; Fallah and Pataky, 1994; Muiru et al., 2010; Ogliari et al., 2005).  It is unclear what causes 

the variation in virulent races.  

Since nearly all of the commercial corn production in the U.S. is with hybrids developed 

by private companies, the degree of Ht gene deployment is publicly unknown, which makes 

interpretation of the results more difficult.  Most reports have determined use of qualitative 

resistance for NLB control in the U.S. is limited due to the observation of virulence races, though 

it has not been confirmed (Ferguson and Carson, 2004; Schechert et al., 1999; Welz and Geiger, 

2000).  Ferguson and Carson (2007) indicated that virulence to Ht1 may reduce fitness of E. 

turcicum, as the mutation was not observed prior to widespread use of the Ht1 gene.  The high 

frequency of virulence to the Ht1 gene observed in the isolates screened here would suggest 

either the Ht1 gene is still present in corn lines or there is no fitness penalty associated with Ht1 

virulence.  Furthermore, it is difficult to determine if the increase in races and the high frequency 

of virulence to Ht genes were due to current selection pressure, sexual recombination, or random 

mutation without knowing if Ht genes are present.  Knowing the distribution of Ht genes in the 

states where isolates were collected would have complimented the race screening data.          

NLB is increasing in prevalence across the U.S. Corn Belt due to changes in cultural 

practices and reductions in effective partial host resistance in commercially available corn 

hybrids (Munkvold et al., 2008; Wise and Mueller, 2011).  Qualitative Ht resistance genes could 
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be useful in commercial breeding programs.  In a study conducted by Lipps et al. (1997), the 

progeny of susceptible lines with the Ht1 gene crossed with a line containing strong quantitative 

resistance demonstrated reduced disease severity when inoculated with E. turcicum race 0 than 

the progeny of the same cross with the isogenic susceptible lines without the Ht1 genes.  From 

the results observed in this isolate collection, virulence to Ht1, Htn1, and Htm1 was frequent and 

widespread.  The Ht2 gene and Ht3 gene would offer the greatest resistance to NLB in most 

regions.  Ferguson and Carson (2007) concluded that virulence to Ht2, Ht3, and Htn1 are not 

often expressed under field conditions, so hybrids containing these resistance genes may offer 

control even when virulent populations are present.  Virulence to Htm1 was more widespread 

than expected and may not be as effective; however, little has been reported about virulence 

under field conditions.  Breeding multiple Ht resistance genes into lines may not offer as much 

protection as may have been thought based on previous race screening studies.  Races conferring 

virulence to multiple Ht genes were diverse and widespread, and several isolates were virulent to 

all Ht genes.  More Ht genes have been discovered than were included in this study and more are 

likely to be found (Ogliari et al., 2005; Welz and Geiger, 2000).  Breeding programs could 

possibly benefit from using other Ht genes as well. Whether or not Ht genes could help improve 

control of NLB long term is hard to predict, but they could offer a level of disease control while 

quantitative resistance is improved and introgressed into popular corn lines.  
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Table 2.1.  Origin by state, county, and year of Exserohilum turcicum collection, number of 

isolates, and race determined by differential screening lines containing Ht1, Ht2, Ht3, Htm1, and 

Htn1. 

State County Year 

No. of 

isolates Isolate races 

Iowa Story 2009 4 1(1)
a
, 12(1), 1mn(1), m(1) 

  

2010 8 123(2), 123mn(1), 1m(1), 1mn(3), m(1) 

 

Washington 2011 21 0(3), 1(13), 123(1), 13(1), 123m(1), 1m(2) 

Illinois Champaign 2007 2 23(1), 23m(1) 

  

2009 1 0(1) 

  

2010 4 1m(2), 2(1), 23(1) 

  

2011 1 1mn(1) 

  

2012 2 1(1), 1n(1) 

  

2014 1 1(1) 

 

DeKalb 2010 12 1(3), 123(2), 123mn(1), 1mn(4), 23mn(2)  

  

2012 5 1(2), 123m(1), 13(1), 1n(1) 

  

2014 1 1(1) 

 

Ford 2009 3 1(1), 123m(1), 1n(1) 

  

2011 3 1(1), 1mn(2) 

 

Gallatin 2014 1 0(1) 

 

Iroquois 1979 2 0(2) 

 

Johnson 2010 1 0(1) 

 

Kane 2010 2 12mn(1), 23n(1) 

 

Mclean 2011 1 0(1) 

 

Piatt 2009 3 12(2), 2mn(1) 

  

2011 3 0(2), n(1) 

  

2012 3 0(1), 1m(1), 1mn(1) 

 

Pike 2010 1 0(1) 

 

Pope 2014 1 0(1) 

 

Saline 2014 1 0(1) 

 

Sangamon 2010 5 0(2), 1(2), 1n(1) 

  

2014 1 0(1) 

 

St. Clair 2009 3 23(3) 

 

Vermilion 1981 2 n(2) 

 

Warren 2012 2 1(2) 

 

Woodford 1981 1 0(1) 

Indiana Clark 1980 2 0(1), 23(1) 

 

Henry 2014 3 1(2), 1m(1) 

 

Knox 2014 1 0(1) 

 

North IN
b 

2012 1 1(1) 

 

Tippecanoe 2011 3 0(2), 1n(1) 

  

2013 1 1(1) 

 

Wabash 2014 2 0(1), 123m(1) 
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Table 2.1. (cont.)    

Minnesota  Swift 1981 1 0(1) 

North Carolina Wilkes 1985 3 0(1), 23m(1), 23mn(1) 

 

NA
C 

1985 1 23(1) 

Ohio Clark 2009 4 1(1), 1mn(1), 1n(2) 

  

2010 9 0(2), 1m(1), 1mn(3), mn(2), n(1) 

 

Wayne 1980 1 0(1) 

  

2011 18 0(3), 1(9), 123mn(1), 1m(1), 1mn(2), 1n(1), m(1) 

Wisconsin Grant 2009 3 1mn(3) 

    2010 2 13(1), 1m(1) 
a 
The number of isolates belonging to a race are in parenthesis following the race nomenclature. 

b
 The county where the isolate collected was not recorded but the general location was northern 

Indiana.  
c 
The location where the isolate was collected is not available (NA). 
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Table 2.2.  The number of Exserohilum turcicum isolates of each race found in states. 

 

E. turcicum race distribution by state Number of 

isolates per 

race Race Iowa Illinois Indiana Minnesota 

North 

Carolina Ohio Wisconsin 

0 3 16 5 1 1 6 

 

32 

1 14 14 4 

  

10 

 

42 

12 1 2 

     

3 

13 1 1 

    

1 3 

123 3 2 

     

5 

123m 1 2 1 

    

4 

12mn 

 

1 

     

1 

123mn 1 1 

   

1 

 

3 

1m 3 3 1 

  

2 1 10 

1mn 4 8 

   

6 3 21 

1n 

 

4 1 

  

3 

 

8 

2 

 

1 

     

1 

23 

 

5 1 

 

1 

  

7 

23m 

 

1 

  

1 

  

2 

2mn 

 

1 

     

1 

23mn 

 

2 

  

1 

  

3 

23n 

 

1 

     

1 

m 2 

    

1 

 

3 

mn 

     

2 

 

2 

n 

 

3 

   

1 

 

4 

Total 

Isolates
a 

33 68 13 1 4 32 5 156
b 

a
 The total number of isolates evaluated for race from each state. 

b
 The total number of isolates evaluated for race. 
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Table 2.3.  The frequency of Exserohilum turcicum isolates virulent to the Ht 

resistance genes within states. 

  Number of virulent isolates for each Ht gene Number of 

isolates per 

state State No Ht Ht1 Ht2 Ht3 Htm1 Htn1 

Iowa 3
a 

28 6 6 11 5 33 

Illinois 16 38 19 15 19 21 68 

Indiana 5 7 2 2 2 1 13 

Minnesota 1 0 0 0 0 0 1 

North Carolina 1 0 3 3 2 1 4 

Ohio 6 22 1 1 12 13 32 

Wisconsin 0 5 0 1 4 3 5 

Total Isolates
 

32
a 

100 31 28 50 44 156
b 

a
 The total number of virulent isolates for each Ht resistance gene. 

b
 The total number of isolates evaluated for virulence to Ht resistance genes.
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Table 2.4.  The number of Exserohilum turcicum isolates of each race found in years. 

 

E. turcicum race distribution by year   

Number of 

isolates per 

race Race 

1979-

1985 2007 2009 2010 2011 2012 2013 2014 

0 7 

 

1 6 11 1 

 

6 32 

1 

  

3 5 23 6 1 4 42 

12 

  

3 

     

3 

13 

   

1 1 1 

  

3 

123 

   

4 1 

   

5 

123m 

  

1 

 

1 1 

  

3 

12mn 

   

1 

    

1 

123mn 

   

2 1 

  

1 4 

1m 

   

5 3 1 

 

1 10 

1mn 

  

5 10 5 1 

  

21 

1n 

  

3 1 2 2 

  

8 

2 

   

1 

    

1 

23 2 1 3 1 

    

7 

23m 1 1 

      

2 

2mn 

  

1 

     

1 

23mn 1 

  

2 

    

3 

23n 

   

1 

    

1 

m 

  

1 1 1 

   

3 

mn 

   

2 

    

2 

n 2     1 1       4 

Total 

isolates 13
a 

2 21 44 50 13 1 12 156
b 

a
 The total number of isolates evaluated for race from each year. 

b
 The total number of isolates evaluated for race. 
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Table 2.5.  The frequency of Exserohilum turcicum isolates virulent to the Ht resistance genes 

within years. 

  Number of virulent isolates for each Ht gene Number of 

isolates per 

year Race No Ht Ht1 Ht2 Ht3 Htm1 Htn1 

1979-85 7 0 4 4 2 2 13 

2007 0 0 2 2 1 0 2 

2009 1 15 8 4 8 9 21 

2010 6 29 12 11 23 20 44 

2011 11 37 3 4 11 9 50 

2012 1 12 1 2 3 3 13 

2013 0 1 0 0 0 0 1 

2014 6 6 1 1 2 0 12 

Total Isolates 32
a 

100 31 28 50 43 156
b 

a
 The total number of virulent isolates for each Ht resistance gene. 

b
 The total number of isolates evaluated for virulence to Ht resistance genes.
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CHAPTER 3: SENSITIVITY OF EXSEROHILUM TURCICUM TO DEMETHYLATION 

INHIBITOR FUNGICIDES 

Abstract 

Exserohilum turcicum, the causal agent of northern leaf blight (NLB) of corn, can cause 

significant yield reductions in Illinois.  Foliar fungicides are often used for NLB control in corn 

seed and grain fields.  Metconazole, propiconazole, and prothioconazole are demethylation 

inhibitor (DMI) fungicides applied as solo active ingredients or premixed with other fungicide 

groups to control NLB.  Monitoring for shifts in DMI sensitivity in E. turcicum populations is 

important for making management decisions and maintaining fungicide efficacy.  Sensitivity to 

metconazole, propiconazole, and prothioconazole was determined for E. turcicum isolates 

collected prior to DMI use on corn (baseline group) and E. turcicum isolates collected in 2009, 

2010, 2011, 2012, and 2014.  An in vitro mycelial growth assay was used to determine the 

effective fungicide concentration at which 50% of the fungal growth was inhibited (EC50) for 

each isolate-fungicide combination.  Baseline EC50 value lsmeans for metconazole, 

propiconazole, and prothioconazole were 0.032 µg/ml, 0.060 µg/ml, and 0.254 µg/ml, 

respectively.  When lsmeans of EC50 values for 2009, 2010, 2011, 2012, 2013, and 2014 E. 

turcicum isolates were compared to the lsmean of the baseline E. turcicum EC50 values, no 

significant (P < 0.05) shift towards reduced sensitivity was observed in metconazole, 

propiconazole, or prothioconazole.  Three isolates had EC50 values significantly higher (P < 

0.05) than the least sensitive baseline isolate for metconazole, and one isolate had an EC50 value 

significantly higher (P < 0.05) than the least sensitive baseline isolate for propiconazole.  These 

isolates will require further evaluation to determine if they demonstrate reduced field sensitivity.  

Small but statistically significant (P < 0.05) positive correlations were found between 
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metconazole and propiconazole (r = 0..3269), as well as metconazole and prothioconazole (r = 

0.0.0295) but not between propiconazole and prothioconazole.  Positive correlations between 

metconazole and the other fungicides suggest the potential for cross-resistance between these 

DMI fungicides.  To date, no loss of NLB control has been observed with the use of 

metconazole, propiconazole, and prothioconazole in the field.   
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Introduction 

Northern leaf blight (NLB), caused by Exserohilum turcicum (Luttrell) Leonard and Suggs, is a 

fungal foliar disease that can reduce grain yields of maize (Bowen and Pedersen, 1988; Fisher et 

al., 1976; Raymundo and Hooker, 1981; Ullstrup and Miles, 1957).  Leaf symptoms appear as 

long elliptical lesions that are initially pale green and turn necrotic over time (Carson, 1999; 

Ullstrup, 1966; Ullstrup and Miles, 1957).  Under cool, moist conditions conidia will form on the 

lesion surface and rain will spread the conidia causing secondary infections up the canopy 

(Carson, 1999; Ullstrup, 1966; Ullstrup and Miles, 1957).  Severe disease causes reduction in 

plant photosynthetic potential and increases the incidence of stalk rots and lodging (Dodd, 

1980a; Dodd, 1980b; Fisher et al., 1976; Fajemisin and Hooker, 1974; Pedersen and Oldham, 

1992; Raymundo and Hooker, 1981).  Grain yields can be reduced by greater than 50 percent if 

infection occurs early in the growing season and conditions are favorable for disease 

development (Fisher et al., 1976; Raymundo and Hooker, 1981).  NLB is found in maize 

producing regions around the world, and recently, it has increased in incidence across the United 

States (Carson, 1999; Wise and Mueller, 2011).   

Several management strategies can be used to control NLB.  Tillage and rotation are 

effective at limiting initial inoculum present on residue (Pedersen and Oldman, 1992; Wise and 

Mueller, 2011).  Unfortunately, increased adoption of reduced tillage practices and continuous 

corn rotations has led to increased disease, especially in the northcentral regions of the country 

Pedersen and Oldman, 1992; Wise and Mueller, 2011).  Resistant hybrids are available with both 

single-gene and multi-gene resistance (Ferguson and Carson, 2004; Schechert et al., 1999; Welz 
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and Geiger, 2000).  Although host resistance can provide some protection, virulent races of the 

pathogen are present that can overcome the single-gene forms of resistance, and polygenic 

resistance does not offer complete control (Ferguson and Carson, 2004; Lipps et al., 1997; Welz 

and Geiger, 2000).  Fungicides have become an economically viable option for control of maize 

foliar diseases in the last decade (Mallowa et al., 2015; Wise and Mueller, 2011).  Producers 

often use foliar applied fungicides alone or in conjunction with other management practices to 

control NLB (Mallowa et al., 2015; Munkvold et al., 2008).   

    Corn producers are limited to a few fungicide groups for foliar application, one of 

which is the demethylation inhibitors (DMIs) (Mallowa et al., 2015; Munkvold et al., 2008).  The 

DMIs are a group of fungicides in the sterol biosynthesis inhibitor class often used for NLB 

control in the field (FRAC, 2015).  Three triazole chemicals make up the majority of the DMIs 

fungicides applied to production corn fields: metconazole (Caramba, BASF Corporation, 

Research Triangle Park, NC), propiconazole (Tilt, Syngenta Crop Protection, Greensboro, NC), 

and prothioconazole (Proline, Bayer CropScience, Research Triangle Park, NC).  These 

chemicals are applied alone or in combination with a quinone outside inhibitor (QoI) fungicide. 

DMIs inhibit the C14 demethylation step in fungal sterol production limiting ergosterol, which is 

necessary for cell membrane construction (FRAC, 2015; Yoshida, 1993). The Fungicide 

Resistance Action Committee (FRAC) considers DMIs to be at medium risk of developing 

pathogen resistance, which appears as a stepwise decrease in sensitivity due to prolonged 

exposure to the fungicide (Brent and Hollomon, 2007b; Klix et al., 2007).  Multiple independent 

mutations can be accumulated within the pathogen resulting in quantitative resistance; however, 

there is often a fitness penalty associated with resistance and a partial recovery of sensitivity may 

occur in the absence of fungicide selection pressure (Brent and Hollomon, 2007b).  Cross-
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resistance to fungicides in the DMI group has been observed in other pathogens, which can limit 

the fungicide options (Brent and Hollomon, 2007b).   

 Pathogen resistance to DMI fungicides is a concern due to their repeated use by 

producers across the U.S. Corn Belt placing selection pressure on a large E. turcicum population.  

The first objective of this study was to establish the in vitro E. turcicum baseline sensitivity to 

metconazole, propiconazole, and prothioconazole.  The second objective was to monitor isolate 

sensitivity from 2009 to 2014 and compare to the baseline sensitivities.   

 

Materials and Methods 

Isolate collection.  The E. turcicum collection consisted of 170 isolates obtained from corn: 168 

isolates were tested for metconazole and prothioconazole sensitivity and 155 isolates were tested 

for propiconazole sensitivity.  Isolates collected prior to 1992 were considered baseline isolates, 

because their collection predates metconazole, propiconazole, and prothioconazole being labeled 

for use on corn, thus, they were likely never exposed to DMI fungicides.  Baseline isolates were 

provided from a collection compiled by Dr. Martin Carson and curated by Dr. Peter Balint-Kurti 

(United States Department of Agriculture, North Carolina State University, Raleigh, NC) from 8 

states (Table 3.1).  The baseline isolates were previously used for research including 

quantification of E. turcicum genetic variation, mating-type identification, and race identification 

and population distribution (Ferguson and Carson, 2004; Ferguson and Carson, 2007).  Isolates 

were collected between 2009 and 2014 from random seed production fields and research fields 

across Illinois, except for two Indiana isolates collected in 2014 provided by Dr. Kiersten Wise 

(Purdue University, West Lafayette, IN) (Table 3.1).  Many of the isolates from 2009 to 2014 
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were collected from fields known to have been treated with metconazole, propiconazole, or 

prothioconazole alone or in combination with a quinone outside inhibitor (QoI) fungicide in the 

year of collection: 7 isolates in 2009, 9 isolates in 2010, 21 isolates in 2011, and 15 isolates in 

2012.  The remaining isolates collected from 2009 to 2014 were from fields treated with a QoI 

fungicide alone, that did not receive a fungicide application, or in which it was unknown if 

fungicide had been applied.  

  Baseline E. turcicum isolates and the two isolates from Indiana were received as cultures 

grown on potato dextrose agar (PDA) (Fisher Scientific, Pittsburgh, PA), while all remaining 

isolates were isolated from NLB symptomatic corn leaf tissue samples.  Leaf samples were 

placed in humidity chambers (sealed plastic bags containing a damp paper towel) to induce 

sporulation.  After approximately four days, conidia were rinsed off the leaf surface with 200 to 

500 µl of water, and the conidial suspension was spread on Petri plates containing PDA amended 

with 25 mg/L of rifampicin (Fisher Scientific, Pittsburgh, PA).  The following day, single 

germinated E. turcicum conidia were collected and transferred to new Petri plates with PDA + 

rifampicin.  Cultures were grown for 7 to 14 days at 20° to 25°C with 12 hour light/dark cycles 

until a thick mycelial mat formed.  Mycelia samples were cut from isolate cultures and placed in 

individual 1.5 ml tubes containing 850 µl of 15% glycerol solution.  Tubes were stored in a -

80°C freezer until isolated were screened for fungicide sensitivity.   

Fungicide sensitivity testing.  Technical-grade formulations of metconazole (97% a. i.; BASF 

Corporation, Research Triangle Park, NC), propiconazole (95% a. i.; Syngenta Crop Protection, 

Greensboro, NC), and prothioconazole (97.7% a. i.; Bayer CropScience, Research Triangle Park, 

NC) were used to prepare stock solutions at concentrations of 100 mg/ml in acetone.  The stock 

solution of each fungicide was used to make serial dilutions in acetone.  PDA was autoclaved 
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and allowed to cool to approximately 55°C before it was amended with each fungicide dilution.  

The fungicide-amended PDA was poured in 65 x 15 mm Petri plates (Fisher Scientific, 

Pittsburgh, PA) at concentrations of 0, 0.001, 0.01, 0.1, 1, 10, and 100 µg/ml for the three 

fungicides.  To measure fungicide sensitivity, mycelial growth of each isolate was assessed on 

PDA amended with the different concentrations of each fungicide.  This method of sensitivity 

evaluation is commonly used for DMI fungicides (Brent and Hollomon, 2007b; Demirci et al, 

2003; Miller et al., 2002; Russell, 2004; Wise et al, 2011). 

  In preparation for fungicide sensitivity testing, E. turcicum isolates were removed from 

long term storage and cultured on lactose casein agar (LCA) to promote conidia formation 

(Tuite, 1969).  Isolates were grown on LCA for 7 to 14 days at 20° to 25°C with 12 hour 

light/dark cycles.  Pieces (approximately 5 mm
2
) of the sporulating cultures were placed in 1.5 

ml tubes containing 500 to 800 µl of water and vortexed to dislodge the conidia.  The conidia 

suspensions were evenly spread on PDA + rifampicin and allowed to grow for 5 to 10 days under 

temperature and light conditions previously described, until a dense, evenly distributed mycelial 

mat was present.  Mycelial plugs (5 mm diameter) were cut from the PDA plates and placed 

mycelia side down in the center of the fungicide-amended PDA plates containing the different 

concentrations.  Plates were placed in a growth chamber and incubated at 23°C in the dark for 4 

days.  Plates were then digitally scanned with a flatbed scanner (Epson Expression 10000XL, 

Epson American, Inc., Long Beach, CA) and the surface area (mm
2
) of mycelia growth was 

quantified using specialized software (Assess 2.0: Image Analysis Software for Plant Disease 

Quantification, American Phytopathological Society, St. Paul, MN).  The surface area of the plug 

was subtracted from the total surface area measured on each fungicide concentration and the 

percent inhibition was calculated as: 100 - [(mycelia surface area of the fungicide amended 
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media/mycelia surface area of the non-amended media) × 100].  From this, a linear interpolation 

method (Pasche et al., 2004; Wise et al., 2009; Zhang et al., 2012) was used to calculate the 

effective concentration where mycelia growth was reduced by 50% (EC50) for each isolate. 

 Due to space limitations, E. turcicum isolates were tested in groups of approximately 10.  

An internal positive control isolate was included in each group to ensure assay reproducibility 

(Wong and Wilcox, 2000).  An isolate from 2011 was selected as the internal control isolate and 

tested in five separate trials for each fungicide.  The mean, standard error, and 95% confidence 

intervals were calculated based on the resulting EC50 values.  If the internal control isolate EC50 

values were within the 95% confidence intervals previously determined, trials were combined for 

statistical analysis; however, groups of isolates were retested if the internal control isolate EC50 

values did not satisfy the reproducibility assay (Wong and Wilcox, 2000).   

Each isolate was tested in two trials repeated over time with two replications per trial, 

using a completely randomized design (CRD).  Isolates collected prior to 1992 were grouped 

together as baseline isolates for statistical analysis, while the non-baseline isolates were analyzed 

by the year they were collected.  Isolate EC50 values for each fungicide were analyzed separately 

using the mixed models procedure (PROC MIXED) in SAS (version 9.4, SAS institute, Inc., 

Cary, NC).  Residuals were examined with the Shapiro-Wilk test for normality (alpha = 0.01) 

using the univariate procedure (PROC UNIVARIATE) and Brown-Forsythe test for 

homogeneity of variance (alpha = 0.05) with the general linear model procedure (PROC GLM).  

Isolate EC50 values (calculated as µg/ml) were multiplied by 10
3
 and natural log transformed to 

meet assumptions of normality and homogeneity for all analyses.  For the analysis of years, the 

baseline and years were considered fixed effects, while trials, isolates nested in years, and 

interactions with trial and isolates were considered random effects.  Exserohilum turcicum 
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baseline and year EC50 value means were compared and the ‘PDMIX800’ macro was used to 

format the pairwise differences from the PDIFF option in the LSMEANS statement in PROC 

MIXED, creating groups of similar means for fixed effects, designated by letters (Saxton, 1998).  

Boxplots of E. turcicum isolates base-10 log transformed EC50 values grouped by years were 

made using the boxplot procedure (PROC BOXPLOT).  A separate analysis was performed to 

identify significant differences between isolate EC50 values, specifically, non-baseline isolates 

with EC50 values significantly greater than that of the least sensitive baseline isolate.  For this 

analysis, isolates were treated as fixed effects while trials and interactions with trials were treated 

as random effects in PROC MIXED.  Again, the ‘PDMIX800’ macro was used to group isolates 

with similar means.  Correlation analysis was performed on EC50 values for metconazole, 

propiconazole, and prothioconazole using Pearson’s correlation procedure (PROC CORR).  

Terms and estimates were considered significant when P ≤ 0.05.   

 

Results 

The range of EC50 values determined for E. turcicum baseline isolates (collected prior to 1992) 

exposed to metconazole was 0.001-0.180 µg/ml (Table 3.1) with 89% of the isolate EC50 values 

below 0.1 µg/ml (Figure 3.1).  The least squares mean (lsmean) of the baseline was 0.032 µg/ml 

(Figure 3.2).  The ranges of the isolate EC50 values from 2009, 2010, 2011, 2012, and 2014 

exposed to metconazole were 0.002-0.853, 0.009-3.898, 0.015-0.032, 0.012-0.072, and 0.025-

0.191 µg/ml, respectively (Table 3.1).  No Significant differences (P = 0.0625) between the 

metconazole EC50 value lsmeans of E. turcicum baseline and years were observed.  The 

metconazole EC50 value lsmeans for the 2009, 2010, 2011, 2012, and 2014 were 0.030, 0.057, 
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0.047, 0.032, and 0.036 µg/ml, respectively (Figure 3.2).  Significant differences (P < 0.0001) in 

metconazole sensitivity were found among isolates.  Three non-baseline isolates were 

significantly greater than the baseline isolate with the greatest EC50 value.  Two isolates from 

2010 and one isolate from 2009 had EC50 values of 3.898, 0.921, and 0.860, respectively.  The 

greatest EC50 value measured in the baseline isolate was 0.180 µg/ml.   

The range of EC50 values determined for E. turcicum baseline isolates exposed to 

propiconazole was 0.007-0.670 µg/ml (Table 3.1), with 84% of isolate EC50 values below 0.13 

µg/ml (Figure 3.3).  The lsmean of the baseline was 0.060 µg/ml (Figure 3.4).  The ranges of the 

isolate EC50 values from 2009, 2010, 2011, 2012 and 2014 were 0.005-0.977, 0.011-3.318, 

0.006-0.446, 0.029-0.555, and 0.042-0.300 µg/ml, respectively (Table 3.1).  No significant 

differences (P = 0.3189) between the propiconazole EC50 value lsmeans of E. turcicum baseline 

and years were observed.  The propiconazole EC50 value lsmeans for 2009, 2010, 2011, 2012, 

and 2014 were 0.107, 0.117, 0.072, 0.093, and 0.071 µg/ml, respectively (Figure 3.4).  

Significant differences (P < 0.0001) in propiconazole sensitivity were found among isolates.  

One 2010 isolate EC50 value was significantly greater than the baseline isolate with the greatest 

EC50 value.  The 2010 isolate EC50 value was 3.318 µg/ml.  The greatest EC50 value measured 

in the baseline isolate was 0.670 µg/ml. 

The range of EC50 values determined for E. turcicum baseline isolates exposed to 

prothioconazole were 0.007-2.143 µg/ml (Table 3.1), with 86% under 0.9 µg/ml (Figure 3.5).  

The lsmean of the baseline was 0.254 µg/ml (Figure 3.6).  The ranges of the isolate EC50 values 

from 2009, 2010, 2011, 2012, and 2014 were 0.017-1.261, 0.018-0.963, 0.007-1.909, 0.013-

0.924, and 0.179-4.170 µg/ml, respectively (Table 3.1).  No significant differences (P = 0.2631) 
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between the prothioconazole EC50 value lsmeans of E. turcicum baseline and years were 

observed (Figure 3.6).  The prothioconazole EC50 value lsmeans for 2009, 2010, 2011, 2012, and 

2014 were 0.254, 0.196, 0.237, 0.381, 0.147, and 0.544 µg/ml, respectively (Figure 3.6).  A 

significant difference (P < 0.0001) in prothioconazole sensitivity was found among isolates.  A 

2014 isolate with an EC50 value of 4.170 µg/ml was measured, but it was not significantly 

different than the least sensitive baseline isolate with an EC50 value of 2.1427 µg/ml. 

 Correlation analysis was conducted between log EC50 values for each fungicide to assess 

cross-resistance.  A significant correlation was found between metconazole EC50 values and 

propiconazole EC50 values (r = 0.3269, P < 0.0001, n = 153) (Figure 3.7).  A significant positive 

correlation was found between metconazole EC50 values and prothioconazole EC50 values (r = 

0.1690, P = 0.0295, n = 166) (Figure 3.8).  No significant positive correlation was also found 

between propiconazole EC50 values and prothioconazole EC50 values (r = 0.1411, P = 0.0820, n 

= 153) (Figure 3.9). 

 

Discussion 

There are some concerns that must be considered when establishing baseline fungicide 

sensitivity and making non-baseline comparisons including: dose rates, sample size, region of 

isolate collection, and methods for measuring fungicide sensitivity (Russell, 2004). The dose 

rates used for this study encompassed all EC50 values measured, included enough rates for 

accurate EC50 measurement, and offered 100% control at the higher concentrations for the 

baseline and non-baseline isolates. There is no set number of isolates required to establish a 

baseline; however, the histograms for all three fungicide baseline EC50 values demonstrated 
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fairly normal distributions and 100% control was achieved for isolates suggesting an adequate 

number of isolates were used.  Similar results were found for the non-baseline isolates but not 

included.  In the study, the baseline included isolates from multiple states across years, while the 

non-baseline focused on Illinois isolates; however, it was reasonable to make comparisons 

between the non-baseline isolate EC50 values from Illinois and the baseline EC50 values since 

baseline isolates from Illinois had EC50 values similar to those measured across other states.  

Finally, methods for sensitivity evaluation were consistent between baseline and non-baseline 

isolates, following procedures commonly used for in vitro DMI fungicide evaluations (Demirci 

et al., 2003; Miller et al., 2002; Russell, 2004; Wise et al., 2011). 

Intrinsic differences in efficacy of the three fungicides were observed based on the 

baseline EC50 value lsmeans.  Metconazole had the greatest activity, followed by propiconazole, 

followed by prothioconazole.  Harlapur et al. (2007) found similar intrinsic differences when 

testing multiple DMI fungicides for efficacy against E. turcicum.  The percent mycelial growth 

inhibited by five DMI fungicides, including propiconazole, tested in vitro at 0.1% concentrations 

ranged from 69 to 99% inhibition (Harlapur et al., 2007).  Inherent differences in the efficacy of 

fungicides within the DMI chemical group also have been reported in other fungal species 

(Hsiang et al., 1997; Karaoglanidis et al., 2000; Sombardier et al., 2009).  

 The E. turcicum baseline isolates used for this study had varying ranges in sensitivity to 

metconazole, propiconazole and prothioconazole, approximately: 0.179 µg/ml, 0.663 µg/ml, and 

2.136 µg/ml between the most and least sensitive isolates, respectively.  The ranges in the E. 

turcicum EC50 values for the metconazole and propiconazole are similar to baseline ranges 

established for other species (Burlakoti et al., 2010; Forster et al., 2011; Wong and Midland, 

2007).  Similar EC50 ranges were reported in metconazole baseline sensitivity tests performed on 
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Fusarium spp. (0.0058 to 0.084 µg/ml) and Alternaria spp. (0.014 to 0.224 µg/ml) (Burlakoti et 

al., 2010; Forster et al., 2011).  Furthermore, the metconazole baseline EC50 range found in this 

study was also very similar to the baseline EC50 value range found in baseline E. turcicum 

isolates previously tested from Georgia and Florida (0.008 to 0.155 µg/ml)  (Arcibal, 2013).  A 

similar EC50 range in propiconazole baseline sensitivity has been reported for Colletotrichum 

cereale (0.025 to 0.35 µg/ml) (Wong and Midland, 2007).  The fold-differences for the 

prothioconazole baseline EC50 values were greater than those found for Ascochyta rabiei (0.0526 

to 0.2958 µg/ml) and Rhizoctonia solani (0.20 to 5.58 µg/ml) (Ajayi and Bradley, 2014; Wise et 

al., 2011).  The wide fold differences between the most sensitive and least sensitive baseline E. 

turcicum isolates suggest an increased potential for resistance development; however, none of 

the baseline lsmeans for metconcazole, propiconazole, and prothioconazole were skewed 

towards the less sensitive end of the distributions, suggesting development of resistance is less 

likely (Russell, 2004).    

No significant reductions in sensitivity for the years of non-baseline isolates from Illinois 

were observed when compared to the baseline isolates for metconazole, propiconazole, or 

prothioconazole.  It is likely some of the non-baseline isolates tested may not have been 

previously exposed to DMI fungicides.  Unknown isolate histories, sprayer error, and migration 

of E. turcicum conidia from non-treated to fungicide-treated fields increase the level of 

variability of fungicide exposer.  In years when the majority of isolates tested were from fields 

where DMI fungicides were applied, the level of exposure provided insufficient selection 

pressure to cause a shift in fungicide sensitivity.  Many of the isolates were collected from seed 

production fields where fungicides were applied annually; however, the repeated selection 

pressure was too limited to cause shifts in sensitivity.  In a study testing Monilinia fructicola 
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sensitivity to propiconazole in peach orchards, there was no significant reduction in sensitivity 

between the baseline isolate population mean (never exposed to propiconazole) and the 

population mean of isolates collected from the same orchard after 23 applications of 

propiconazole (Zehr et al., 1999).  Multiple studies have reported significant shifts in DMI 

sensitivity in populations only after prolonged and repeated exposure to fungicides (Keller et al., 

1997; Wong et al., 1997; Zehr et al., 1999).  These results are not surprising considering DMI 

fungicide resistance is quantitative, requiring repeated DMI exposure to select for populations 

containing multiple mutations to reduce fungicide sensitivity (Brent and Hollomon, 2007b; Luke, 

2014). 

The absence of significant population shifts in sensitivity to the DMI fungicides could be 

partially explained by the biology of E. turcicum and the DMI resistance mechanisms.  

Exserohilum turcicum primarily reproduces asexually, forming conidia as both the primary and 

secondary inoculum (Carson, 1999).  While NLB is a polycyclic disease which favors fungicide 

resistance development, asexual reproduction limits the amount of genetic recombination and 

variation necessary for rapid spread and development of fungicide resistance (McDonald and 

Linde, 2002).  The Fungicide Resistance Action Committee (FRAC) has labeled E. turcicum as 

medium risk of developing fungicide resistance (FRAC, 2013).  As stated previously, multiple 

mutations are necessary to reduce DMI sensitivity.  The three primary mechanisms are: i) 

mutations in the target-encoding CYP51 gene causing decreased affinity of the protein for 

inhibitors, ii) over-expression of the CYP51 gene caused by insertions in the predicted promoter 

regions, and iii) increased efflux caused by over-expression of genes encoding membrane 

transporters (Cools et al., 2013; Ma and Michailides, 2005).  Mutations in the target-encoding 

CYP51 gene tend to be fungicide specific, while over-expression of the CYP51 gene and 
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increase fungicide efflux confer reduced sensitivity to multiple fungicides.  Enhanced efflux has 

only been shown to affect fungicide performance in Botrytis cinerea in the field, thus far (Cools 

et al., 2013).  None of the mutations appear to confer complete resistance and there seems to be a 

fitness penalty associated with the over-expression of CYP51 (Cools et al., 2013). 

Though no shifts in E. turcicum population sensitivity were observed between the 

baseline and years, several isolate EC50 value lsmeans were significantly higher than the least 

sensitive baseline isolates for metconazole and propiconazole.  These isolates could be the result 

of exposure to DMI fungicides resulting in reduced sensitivity; however, they also may be the 

result of experimental error due to sample size.  In vivo fungicide testing will be required in the 

future to establish if these isolates confer resistance, as fungicide sensitivity in vitro is generally 

higher than in the field and does not always correlate to the field performance (Karaoglanidis et 

al., 2000; Reis et al., 2015; Russell, 2004).   

Significant cross-sensitivity was observed between metconazole and propiconazole, 

metconazole and prothioconazole, but not propiconazole and prothioconazole.  Though 

statistically significant, correlations between fungicide sensitivities varied and were low.  

Variations in the levels of cross-sensitivity are common in the DMI fungicides (Hildebrand et al., 

1988; Karaoglanidis et al., 2000; Klix et al., 2006).  Variations in the cross-sensitivity between 

the three fungicides could be related to the differences in their intrinsic activity, differences in 

their mode of interference with the demethylation process, and the multigene mutations 

necessary for resistance development (Hildebrand et al., 1988; Karaoglanidis et al., 2000; Klix et 

al., 2006).  Due to the relatively low level of correlation among the fungicides, monitoring for 

shifts in E. turcicum population sensitivity should be carried out for each fungicide. 
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This study established E. turcicum baseline sensitivity for metconazole, propiconazole, 

and prothioconazole which can be utilized to monitor for resistance.  The study also determined 

that no significant shift in population sensitivity has occurred in Illinois between 2009 and 2014.  

Fungicides currently are applied to less than 20% of corn production fields in the corn belt, 

leaving the remaining corn fields to act as ‘refuge’ to reduce selection pressure and mitigate wide 

spread population shifts in sensitivity (Mallowa et al., 2015; Munkvold et al., 2008; Wise and 

Mueller, 2011).  Multiple DMI fungicides are available for rotation to producers with low levels 

of cross-sensitivity (as concluded in this research) and can be applied in combination with other 

fungicides to further reduce the potential for resistance development while offering NLB control 

(Da Costa and Boller, 2008).  These management practices plus the limitations imposed by the 

asexual lifecycle of E. turcicum, the multigene mutations required for DMI resistance, and the 

potential fitness penalties associated with the mutations slow the development of DMI resistance.  

Increased DMI foliar fungicide applications and repeated use of the same fungicide could cause 

reduced sensitivity to DMI fungicides (Brent and Hollomon, 2007a).  Resistance to other 

fungicide groups has been observed in closely related species.  The causal agent of sugarcane 

leaf spot, Helminthosporium halodes, developed in vitro resistance to mancozeb (Reddy, 1989).  

Polyoxin-resistant mutants of Cochliobolus heterostrophus, the causal agent of southern leaf 

blight of corn, were produced in the laboratory (Gafur et al., 1998).  Field resistance to 

thiabendazole and thiophanate-methyl also has been reported in Helminthosporium solani, the 

causal agent of silver scurf on potato (Geary et al., 2007).  Monitoring DMI resistance 

progression in E. turcicum can aid in making management decisions and maintain fungicide 

efficacy (Brent and Hollomon, 2007b). 
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Table 3.1.  Collection information and results of in vitro assays for isolates of Exserohilum turcicum for metconazole, propiconazole, 

and prothioconazole baseline sensitivity and non-baseline sensitivity.   

      

Number of 

isolates/location 

Metconazole 
 

Propiconazole 
 

Prothioconazole 

Year State County N 

Mean EC50 

(µl/ml) EC50 range 

 

N 

Mean EC50 

(µl/ml) EC50 range 

 

N 

Mean EC50 

(µl/ml) EC50 range 

1975 GA Lee 1 1 0.012 

 

 
1 0.035 

 

 
1 0.475 

 
1977 MN Redwood 1 1 0.104 

 

 
1 0.049 

 

 
1 0.175 

 
1978 IA Webster 1 1 0.037 

 

 
1 0.047 

 

 
1 0.750 

 
1979 IL Iroquis 4 4 0.046 0.020-0.089 

 
4 0.230 0.007-0.670 

 
4 0.207 0.298-0.074 

1980 IA Webster 1 1 0.005 

 

 

   

 
1 0.432 

 

 

IN Clark 1 1 0.030 

 

 
1 0.121 

 

 
1 0.219 

 

 

OH Wayne 3 3 0.060 0.029-0.095 
 

3 0.055 0.038-0.064 
 

3 1.100 0.061-2.143 

 

VA Fauquier 1 1 0.022 

 

 
1 0.060 

 

 
1 2.242 

 
1981 IL Henry 2 2 0.025 0.006-0.043 

 
2 0.261 0.094-0.428 

 
2 0.348 0.215-0.482 

  

Iroquis 1 1 0.113 

 

 
1 0.123 

 

 
1 0.593 

 

  

Stark 3 3 0.041 0.012-0.064 
 

3 0.082 0.054-0.123 
 

3 0.127 0.007-0.306 

  

Vermilion 2 2 0.105 0.029-0.180 
 

2 0.222 0.212-0.232 
 

2 0.258 0.141-0.375 

  

Whiteside 1 1 0.024 

 

 
1 0.021 

 

 

   

  

Woodford 1 1 0.032 

 

 
1 0.051 

 

 
1 0.638 

 

 

MN Swift 1 1 0.032 

 

 
1 0.044 

 

 
1 0.060 

 
1985 NC Wilkes 7 7 0.032 0.005-0.075 

 
7 0.054 0.026-0.082 

 
7 0.475 0.144-1.033 

 

NC NA 4 4 0.040 0.013-0.093 
 

4 0.052 0.037-0.075 
 

4 0.446 0.032-0.671 

1990 IA Clay 2 2 0.029 0.018-0.041 
 

2 0.058 0.031-0.084 
 

2 0.219 0.100-0.337 

 

IL Champaign 1 1 0.164 

 

 
1 0.196 

 

 
1 0.711 

 

 

IN Montgomery 2 2 0.034 0.022-0.046 
 

2 0.136 0.021-0.250 
 

2 0.139 0.087-0.191 

1991 MN Steele 4 4 0.029 0.001-0.060 
 

4 0.033 0.001-0.072 
 

4 0.150 0.028-0.324 

2009 IL Champaign 11 10 0.123 0.002-0.853 
 

9 0.157 0.061-0.303 
 

11 0.177 0.017-0.423 

  

Logan 2 2 0.046 0.037-0.055 
 

2 0.533 0.089-0.977 
 

2 0.458 0.293-0.624 

  

Piatt 15 15 0.040 0.002-0.127 
 

14 0.172 0.005-0.682 
 

15 0.428 0.018-1.261 

  

Pope 2 2 0.027 0.027-0.028 
 

2 0.114 0.079-0.150 
 

2 0.443 0.362-0.523 

  

St. Clair 1 1 0.038 

 

 
1 0.027 

 

 
1 0.510 
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Table 3.1. (cont.)     
 

   
 

   

2010 IL Champaign 15 14 0.398 0.009-3.898 
 

11 0.477 0.054-3.318 
 

14 0.383 0.018-0.963 

  

DeKalb 2 2 0.079 0.042-0.115 
 

2 0.121 0.027-0.214 
 

2 0.145 0.136-0.154 

  

Kane 1 1 0.063 

 

 
1 0.039 

 

 
1 0.340 

 

  

McLean 2 2 0.059 0.051-0.066 
 

2 0.038 0.031-0.044 
 

2 0.358 0.333-0.383 

  

Pike 1 1 0.025 

 

 
1 0.124 

 

 
1 0.222 

 

  

Pope 3 3 0.081 0.019-0.129 
 

3 0.315 0.123-0.490 
 

3 0.390 0.042-0.644 

  

Sangamon 5 5 0.033 0.014-0.047 
 

5 0.071 0.011-0.135 
 

5 0.306 0.095-0.499 

  

Warren 4 4 0.072 0.014-0.135 
 

   

 
4 0.132 0.025-0.286 

2011 IL Champaign 8 8 0.057 0.019-0.202 
 

7 0.135 0.043-0.273 
 

8 0.492 0.007-1.621 

  

Dewitt 5 5 0.115 0.025-0.194 
 

5 0.165 0.013-0.446 
 

5 0.864 0.236-1.699 

  

Ford 3 3 0.200 0.024-0.491 
 

2 0.054 0.051-0.058 
 

3 0.446 0.018-0.719 

  

McLean 8 8 0.059 0.021-0.188 
 

8 0.142 0.006-0.417 
 

8 0.524 0.284-0.946 

  

Piatt 6 6 0.022 0.015-0.032 
 

6 0.076 0.044-0.109 
 

6 0.650 0.111-1.909 

2012 IL Champaign 7 7 0.040 0.020-0.072 
 

7 0.148 0.047-0.336 
 

7 0.469 0.013-0.924 

  

DeKalb 4 4 0.025 0.012-0.047 
 

4 0.058 0.035-0.099 
 

4 0.084 0.041-0.116 

  

Piatt 3 3 0.035 0.018-0.062 
 

3 0.044 0.029-0.061 
 

3 0.108 0.019-0.232 

  

Warren 2 2 0.052 0.048-0.055 
 

2 0.360 0.166-0.555 
 

2 0.232 0.025-0.439 

  

NA 1 1 0.036 

 

 
1 0.422 

 

 
1 0.310 

 
2014 IL Champaign 2 2 0.035 0.031-0.040 

 
2 0.056 0.044-0.069 

 
2 0.509 0.179-0.840 

  

Gallatin 4 4 0.068 0.025-0.191 
 

4 0.110 0.042-0.300 
 

4 1.467 0.474-4.170 

  

Johnson 4 4 0.049 0.030-0.097 
 

3 0.051 0.050-0.053 
 

4 0.803 0.553-1.413 

  

Saline 2 2 0.031 0.028-0.033 
 

2 0.049 0.046-0.052 
 

2 0.440 0.348-0.533 

  

Sangamon 1 1 0.033 

 

 
1 0.105 

 

 
1 0.840 

 

 

IN Rush 1 1 0.013 

 

 
1 0.041 

 

 
1 0.517 

 

  

North IN 1 1 0.017 

 

 
1 0.057 

 

 
1 0.659 

 
Total isolates 170 168 0.038 0.001-3.898 

 
155 0.082 0.005-3.318 

 
168 0.270 0.007-4.170 

Fungicide sensitivity was determined by calculating the mean effective fungicide concentration that inhibited mycelia growth 

by 50% of the non-treated control (EC50 value; µg/ml).
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Figure 3.1.  Frequency distributions of effective metconcazole concentrations that inhibited 

mycelia growth by 50% (EC50 value; µg/ml) for baseline Exserohilum turcicum isolates.  

 
*Individual isolates are grouped in class intervals of 0.010 µg/ml; values on the X-axis indicate 

the midpoint of the interval.   
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Figure 3.2.  Boxplots of effective metconcazole concentrations that inhibited mycelia growth by 

50% (EC50 value; µg/ml) for baseline, 2009, 2010, 2011, 2012, and 2014 Exserohilum turcicum 

isolates.  

 
For each box, the diamond represents the mean, the solid line in the box represents the median, 

the top of each box represents the 75th percentile, the bottom of each box the 25th percentile of 

EC50 values. Whiskers represent the maximum observation below the upper fence (top) and the 

minimum observation below the lower fence (bottom) of EC50 values. Circles represent outliers.
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Figure 3.3.  Frequency distributions of effective propiconazole concentrations that inhibited 

mycelia growth by 50% (EC50 value; µg/ml) for baseline Exserohilum turcicum isolates. 

*Individual isolates are grouped in class intervals of 0.040 µg/ml; values on the X-axis indicate 

the midpoint of the interval.   
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Figure 3.4.  Boxplots of effective propiconazole concentrations that inhibited mycelia growth by 

50% (EC50 value; µg/ml) for baseline, 2009, 2010, 2011, 2012, and 2014 Exserohilum turcicum 

isolates. 

 
For each box, the diamond represents the mean, the solid line in the box represents the median, 

and the top of each box represents the 75th percentile, the bottom of each box the 25th percentile 

of EC50 values. Whiskers represent the maximum observation below the upper fence (top) and 

the minimum observation below the lower fence (bottom) of EC50 values. Circles represent 

outliers.
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Figure 3.5.  Frequency distributions of effective prothioconazole concentrations that inhibited 

mycelia growth by 50% (EC50 value; µg/ml) for baseline Exserohilum turcicum isolates. 

 
*Individual isolates are grouped in class intervals of 0.200 µg/ml; values on the X-axis indicate 

the midpoint of the interval.   
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Figure 3.6.  Boxplots of effective prothioconazole concentrations that inhibited mycelia growth 

by 50% (EC50 value; µg/ml) for baseline, 2009, 2010, 2011, 2012, and 2014 Exserohilum 

turcicum isolates. 

 
For each box, the diamond represents the mean, the solid line in the box represents the median, 

and the top of each box represents the 75th percentile, the bottom of each box the 25th percentile 

of EC50 values. Whiskers represent the maximum observation below the upper fence (top) and 

the minimum observation below the lower fence (bottom) of EC50 values. Circles represent 

outliers. 

  

 

L
o
g
 E

C
5

0
 



 

78 
 

Figure 3.7.  Relationship between in vitro mean effective fungicide concentration that inhibited 

mycelia growth by 50% (EC50; µg/ml) for metconazole and propiconazole of Exserohilum 

turcicum isolates. 

 
 

  

 

L
o
g
 p

ro
p
ic

o
n

az
o

le
 E

C
5
0
 (

µ
g
/m

l)

Log metconazole EC50 (µg/ml)

 

  

  

r = 0.3269     P < 0.0001     n = 153 
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Figure 3.8.  Relationship between in vitro mean effective fungicide concentration that inhibited 

mycelia growth by 50% (EC50; µg/ml) for metconazole and prothioconazole of Exserohilum 

turcicum isolates. 
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r = 0.1690     P = 0.0295     n = 166 
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Figure 3.9.  Relationship between in vitro mean effective fungicide concentration that inhibited 

mycelia growth by 50% (EC50; µg/ml) for propiconazole and prothioconazole of Exserohilum 

turcicum isolates. 
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CHAPTER 4: FIELD AND GREENHOUSE EVALUATION OF QUINONE OUTSIDE 

INHIBITOR AND DEMETHYLATION INHIBITOR FUNGICIDES FOR CONTROL OF 

NORTHERN LEAF BLIGHT OF CORN, CAUSED BY EXSEROHILUM TURCICUM 

Abstract 

Northern leaf blight (NLB), caused by Exserohilum turcicum, is a yield reducing foliar disease 

commonly found in field and sweet corn production.  Fungicides containing quinone outside 

inhibitor (QoI) and demethylation inhibitor (DMI) active ingredients alone or in combination are 

frequently applied to control NLB.  Field trials were conducted in Illinois at DeKalb, Monmouth, 

and Urbana in 2012 and Dixon Springs and Urbana in 2013 to evaluate NLB control of DMI, 

QoI, and QoI + DMI fungicides applied at the solo label rates and the reduced rates present in 

QoI + DMI premixed fungicides.  A moderately susceptible field corn hybrid (Pioneer 33W84) 

was planted at all site locations across years.  Trials were inoculated at the 4-leaf growth stage 

and fungicides were applied at silk emergence.  The mean NLB percent leaf infection for the ear 

leaf, leaf above the ear, and below the ear and the plot NLB percent severity were evaluated at 

corn reproductive stages R1, R2, R3, R4 and R5.  Stalk rot severity, plant maturity, and yield 

data were collected. Sweet corn trials were conducted in Urbana in 2012 and 2013 using the 

same methods.  NLB leaf and plot severities were evaluated at reproductive stages R1, R2, and 

R3 and mean ear weight was calculated at harvest.  In the greenhouse, trials were conducted to 

evaluate NLB percent leaf severity on plants inoculated with E. turcicum up to seven days before 

and after fungicide application with azoxystrobin, propiconazole, prothioconazole, or 

pyraclostobin.  In field trials with low disease severity, no significant differences in treatments 

were observed for NLB severity ratings, stalk rot severity, plant maturity, or yield.  In field corn 

trials with moderate disease severity, label rates of metconazole and azoxystrobin + 
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propiconazole significantly (P ≤ 0.05) reduced NLB leaf and plot disease severity compared to 

the non-treated control across reproductive stages.  DMI fungicides at high rates and QoI + DMI 

premixes offered greater NLB control than other treatments.  Fungicide treatments did not 

significantly affect stalk rot, plant maturity, or yield in field trials with moderate disease severity.  

In sweet corn trials, metconazole, propiconazole, and azoxystrobin + propiconazole significantly 

(P ≤ 0.05) reduced plot disease severity compared to the non-treated control at R2 and R3.  DMI 

fungicides controlled NLB better than other treatments when compared by fungicide chemical 

group and rates.  Ear weight was not significantly affected by treatments in sweet corn trials.  In 

greenhouse trials, all fungicides significantly (P ≤ 0.05) reduced disease severity when applied 3 

days, 1 day, and 3 hours before inoculation and 3 days and 7 days after inoculation.  QoI and 

DMI fungicides can control NLB when applied prior and post infection; however, products 

containing DMI fungicides offered better NLB control in the field.    
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Introduction 

Northern leaf blight (NLB) of corn, caused by Exserohilum turcicum, is a common foliar fungal 

disease in corn-producing areas in the U.S. (Carson, 1999).  Symptoms initially present as long, 

pale green-gray elliptical lesions on leaves, which expand and turn necrotic over time (Carson, 

1999; Ullstrup and Miles, 1957).  NLB is a polycyclic disease able to spread up the canopy in 

favorable cool, wet field conditions (Carson, 1999).  Significant grain yield reductions have been 

reported but vary based on disease severity, timing, and host susceptibility (Bowen and Pedersen, 

1988; Fisher et al., 1976; Raymundo and Hooker, 1981; Ullstrup and Miles, 1957).  Fisher et al. 

(1976) reported 0.2% yield reduction for each 1% increase in NLB severity measured 3 to 4 

weeks after corn silk emergence; although, disease early in the season (near pollination) has a 

greater effect on yield than late season infections (Ullstrup and Miles, 1957).  Yield losses 

greater than 50% have been reported (Bowen and Pedersen, 1988; Perkins and Pedersen, 1987; 

Raymundo and Hooker, 1981; Ullstrup and Miles, 1957).  Plants stressed by NLB have an 

increased potential for root and stalk lodging due to translocation of carbohydrates and increased 

susceptibility to stalk rot diseases, which can further reduce yields and harvestablity (Dodd, 

1980a; Dodd, 1980b; Fisher et al., 1976; Pedersen and Oldham, 1992; Raymundo and Hooker, 

1981).   

 Exserohilum turcicum overwinters as mycelia, conidia, and chlamydospores contained in 

conidia on corn residue (Boosalis et al., 1967; Carson, 1999; Levy, 1984).  Conidia serve as 

primary inocula and are wind- and rain-dispersed to the host (Carson, 1999; Ferguson and 

Carson, 2004).  Conidial germination and direct infection can occur in as little as five hours in 

the presence of free water on the host leaf and a dark environment.  Conidia, formed on NLB 

necrotic lesions under cool and wet conditions, act as secondary inocula and are spread up the 
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canopy by wind and rain.  Latent and incubation periods can vary based on environmental 

conditions and host susceptibility (Carson, 1995; Thakur et al., 1989; Welz and Geiger, 2000).  

 Several methods of NLB control are available to producers.  Rotations with non-host 

species and tillage practices, which reduce surface corn residue, can limit initial E. turcicum 

inoculum resulting in reduced disease (Boosalis et al., 1967; Summer et al., 1981; Lipps, 1983; 

de Nazareno et al., 1993).  Single-gene and multi-gene resistance is available and can offer 

various levels of disease control, though neither form of resistance appears to offer complete 

control of NLB (Welz and Geiger, 2000).  Foliar-applied fungicides also can provide NLB 

control, and their use has increased in the past decade due to higher corn prices and greater 

chemical availability (Bradley and Ames, 2010; Munkvold et al., 2008; Wise and Mueller, 

2011). Thus far, the majority of foliar-applied fungicides used on corn contain active ingredients 

from the demethylation inhibitor (DMI, a.k.a. triazole) and quinone outside inhibitor (QoI, a.k.a. 

strobilurin) chemical groups, either alone or in combination with each other.   

DMI fungicides were first introduced in the late 1960s and 1970s (Schwabe et al., 1984).  

DMI fungicides bind to the cytochrome P450 lanosterol 14α-demethylase (CYP51) enzyme, 

which interferes with ergosterol production in fungi (Köller, 1992; Yoshida, 1993).  Fungi 

cannot develop functional cell membranes without ergosterol leading to reduced mycelial growth 

and eventual death (Köller, 1992; Ma and Michailides, 2005; Yoshida, 1993).  Mycelial growth 

inhibition leading to death is considered the main mode of action for DMI fungicides; however, 

metconazole, prothioconazole, and tebuconazole (DMI fungicides) have been shown to inhibit 

spore germination, as well (Klix et al., 2007).  DMI fungicides are systemic within plants and 

demonstrate translaminar movement and movement through the xylem from the point of 

application up the plant from the base to the tips of leaves and from the stalk to new growth 
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(Edgington, 1981).  They are unable to move through the phloem and down into older growth, 

stalk, and roots (Edgington, 1981).   

QoI fungicides were first introduced in 1996 (Bartlett et al., 2002).  QoI fungicides target 

the cytochrome bc1 enzyme complex (complex III) at the quinol outer binding site in the 

mitochondrial respiration pathway of fungi, disrupting electron transport (Bartlett et al., 2002; 

Gisi et al., 2002).  This halts the energy cycle and interferes with spore germination, specifically, 

but can also inhibit mycelia growth (Bartlett et al., 2002; Gisi et al., 2002).  QoI fungicides vary 

in their level of systemic mobility within the host (Bartlett et al., 2002).  Some QoI fungicides, 

such as azoxystrobin and picoxystrobin, have translaminar movement and are xylem-systemic, 

similar to the DMIs (Bartlett et al., 2002; Godwin et al., 1999), while fungicides, such as 

kresoxim-methyl, trifloxystrobin, and pyraclostrobin, demonstrate translaminar movement only 

(Ammermann et al., 2000; Ammermann et al., 1992; Bartlett et al., 2002; Margot et al., 1998; 

Reuvini, 2001).   

NLB, caused by E. turcicum, has become more prevalent in the U.S. due to increased 

continuous corn production, reduced-tillage practices, and possible reduction in NLB resistance 

in production corn hybrids (Mallowa et al., 2015; Wise and Mueller, 2011).  DMIs, QoIs, and 

QoI + DMI fungicide mixtures are labeled for management of NLB on corn.  The QoI + DMI 

formulations often have reduced concentrations of the active ingredients (especially the DMI 

active ingredients) (Da Costa and Boller, 2008).  The objectives of this research were to: i) 

evaluate NLB control with DMI, QoI, and DMI + QoI fungicides at labeled rates, as well as, 

DMI and QoI fungicides at the rates contained in the DMI + QoI formulations in the field, and ii) 

evaluate DMI and QoI fungicide efficacies based on application timing relative to inoculation 

with E. turcicum in the greenhouse. 
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Materials and Methods 

Field experiment.  Field trials were conducted at University of Illinois research farms located 

near DeKalb, Monmouth, and Urbana, IL in 2012, and Dixon Springs and Urbana, IL in 2013.  

Field corn trials were carried out at all locations using a NLB moderately susceptible hybrid 

(‘Pioneer 33W84’, Pioneer Hi-Bred International, Inc., Johnston, IA).  At Urbana in 2012 and 

2013, the trials also were repeated on a NLB susceptible sweet corn hybrid (‘Merit’, Seminis 

Vegetable Seeds, St. Louis, MO).  Field corn trials were planted at a population of 84,014 

seeds/ha, while sweet corn trials were planted at 64,246 seeds/ha.  Field corn and sweet corn 

trials in Urbana received natural rainfall and were irrigated both years, while the other trials only 

received natural rainfall.  In Urbana trials, starting at approximately the 10 leaf vegetative growth 

stage and ending at maturity, overhead impact irrigation was applied for 15 minutes every 90 

minutes between 10am and 7pm each day to maintain free water on the leaves to promote disease 

development.  Impact sprinklers (model 14VH, Rain Bird Corporation, Azusa, CA) with code 04 

nozzle tips (1.59 mm orifice diameter) applied 3.3 L of water per minute at 4.1 bars of pressure. 

The sprinklers were on 3 m risers spaced on 9.1 m centers and had a spray radius of 9.8 m.  Plots 

were 4 rows wide (76 cm row spacing) and 7.6 meters long.  In all trials, all plots were arranged 

in a randomized complete block design (RCBD) with four replications. 

 Plants in all trials were inoculated with a E. turcicum mycelia and conidia suspension 

between the 4-leaf and 6-leaf growth stage.  Inoculum was prepared following methods 

described by Pataky et al. (1988), and inoculations were carried out according to Pataky (1992).  

Isolates of E. turcicum race 0 and 1 (provided by Dr. Jerald Pataky, previously at the University 

of Illinois) were grown on lactose-casein hydrolyslate agar (LCA) at 20° to 25°C with 12 hour 
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light/dark cycles for 2 to 3 weeks (Tuite, 1969).  Exserohilum turcicum cultures were then stored 

at 4°C until plants were at the proper growth stage.  Immediately prior to inoculation, E. 

turcicum race 0 and 1 cultures were ground at a 1:1 ratio in a blender with water and filtered 

through a 125 micron paint strainer to remove large particles of agar and mycelia which could 

plug the sprayer. Conidia suspensions were prepared separately for each trial when plants were 

the proper growth stage and ranged in concentration between 1.0 × 10
4
 to 2.0×10

4
 conidia per ml 

water containing Tween 20 (10 µl/L) (Fisher Scientific, Pittsburgh, PA).  Approximately 15 mls 

of conidia suspension was sprayed directly in the whorls of all plants in the trials using a hand 

pump backpack sprayer.  Each trial was inoculated twice within a week to increase the likelihood 

of infection. 

All fungicide treatments were applied at corn silk emergence (reproductive growth stage 

R1).  Fungicide applications were made using a CO2-pressurized backpack sprayer and boom set 

at 2.8 bars with 4 TJ-60 8002VS twinjet nozzles (Teejet Technologies, Urbandale, IA) on 50.8 

cm centers.  The spray volume applied was 281 L/ha to the center 2 rows of each plot.  A total of 

17 fungicide treatments were tested and a non-treated control was included.  Fungicide 

treatments were comprised of eight active ingredients (a.i.), including four DMI and four QoI 

fungicides.  Products containing both DMI and a QoI active ingredients were applied at labeled 

rates and included: fluoxastrobin + tebuconazole (Evito T, Arysta LifeScience North America, 

LLC, Cary, NC); pyraclostrobin + metconazole (Headline AMP, BASF Corp., Research Triangle 

Park, NC); azoxystrobin + propiconazole (Quilt Xcel, Syngenta Crop Protection, Greenboro, 

NC); and trifloxystrobin + prothioconazole (Stratego YLD, Bayer CropScience, Research 

Triangle Park, NC).  Products with formulations containing each individual a.i. also were applied 

at the companies’ suggested rates and the a.i. rates present in the DMI + QoI.  DMI products 
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were: metconazole (Caramba, BASF Corp.); tebuconazole (Folicur, Bayer CropScience); 

propiconazole (Tilt, Syngenta Crop Protection); and prothioconazole (Proline, Bayer 

CropScience).  The QoI fungicides were: fluoxastrobin (Evito, Arysta LifeScience North 

America, LLC, Cary, NC); trifloxystrobin (Gem, Bayer CropScience); pyraclostrobin (Headline, 

BASF Corp.); and azoxystrobin (Quadris, Syngenta Crop Protection).  The products and 

application rates are listed in Table 4.1. 

NLB disease severity was assessed for the effects of the fungicide treatments and the 

non-treated control.  NLB disease severity was initially scored at the time of fungicide 

application.  Five plants from the center 2 rows were selected arbitrarily and tagged for repeated 

disease evaluation.  NLB severity in field corn trials was rated 5 times after fungicide 

application, while sweet corn trials were rated only 3 times before harvest.  Disease was rated at 

late R1, R2, R3, R4 and R5 corn reproductive stages for field corn and R1, R2, and R3 corn 

reproductive stages for sweet corn.  In each plot, 5 plants were evaluated by quantifying disease 

severity (percent leaf area covered with lesions) on the ear leaf, one leaf above the ear leaf, and 

one leaf below the ear leaf.  The mean of the percent leaf lesion area was calculated for each plot 

(Mallowa et al., 2015).  The center 2 rows of plots also were given a percent disease severity 

score based on total leaf lesion area of all plants in their entirety.  Disease ratings were not 

collected at the R1 growth stage at Dixon Springs in 2013 and the R5 growth stage from DeKalb 

in 2012. 

Corn stalk rot severity, plant maturity, and yield were measured for plots in the field corn 

trials at all locations across years.  To evaluate stalk rot severity, 3 consecutive plants were 

selected for 1 of the center 2 rows of each plot at growth stage R6 (physiological maturity).  The 

stalk of each plant was split in half from the ear node to the soil surface to assess node and 
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internode stalk rot disease infection.  Stalk rot was scored on a 0 to 5 rating scale, where: 0 = no 

visible discoloration of the internal stalk nodes or pith; 1 = internal discoloration at the stalk 

nodes; 2 = internal discoloration at the stalk nodes and in the pith; 3 = pith separation from the 

rind; 4 = complete discoloration and decay of the pith between 2 or more nodes, but not lodged; 

and 5 = stalk is lodged due to stalk rot (Hines, 2007).  QoI fungicides have been shown to 

preserve green tissue and delay senescence (Byamukama et al., 2013; Wu and Von Tiedemann, 

2001).  To identify any delays in maturity, plots were rated at approximately R5 to R6 for ‘stay 

green effect’ which was scored on a 0 to 9 scale based on visual assessment of the center 2 rows: 

0 = a completely mature plant and 9 = a plant with completely green leaves and stalk.  Each 

increasing integer between 0 and 9 represented an approximate 10% increase in green tissue.  

Sweet corn harvest is prior to plant maturity, therefore, stalk rot and plant maturity were not 

evaluated for sweet corn trials.  The center 2 rows of field corn plots were harvested at maturity 

using a small plot combine (Kincaid 8-XP, Kincaid Equipment Manufacturing, Haven, KS) and 

grain yields were standardized to 13% seed moisture.  To measure yield for sweet corn, ears 

were harvested by hand from 10 consecutive plants in one of the center 2 rows of each plot and 

then weighed to determine the mean ear weight.  

Data were analyzed using the mixed models procedure (PROC MIXED) in SAS v. 9.4 

(SAS Institute, Cary, NC) to examine the effect of fungicide treatments on disease severity, stalk 

rot, plant stay green (maturity), and yield.  Fungicide was considered a fixed effect, while 

environment (trial location within year), replications, and the interaction between environment 

and fungicide were considered random effects.  Preliminary analysis of field corn trials indicated 

variations in disease severity; therefore, environments were separated by NLB disease severity of 

the non-treated control.  Environments where the non-treated control plots had NLB leaf and plot 
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disease severity means less than 10% and 15%, respectively, at the R5 growth stage were 

considered to have low disease severity.  Environments with greater non-treated control NLB 

leaf and plot disease severity means were considered to have moderate disease severity. 

Environments with low disease severity (Dixon Springs, 2013; Monmouth, 2012; and Urbana, 

2012) were analyzed separately from environments with moderate disease severity (DeKalb, 

2012 and Urbana, 2013).  The 2012 and 2013 sweet corn trials were combined but analyzed 

separately from field corn trials.  NLB severity leaf ratings in trials with low disease severity 

contained zeros in the data set.  To meet assumptions of normality and homogeneity of variance, 

the transformation (𝑥 =  √(% 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 + 0.1) ) was used for leaf disease ratings collected 

between R1 and R5 growth stages and square root transformations were used for plot disease 

ratings taken at R2 and R5 growth stages.  Square root transformations were used to meet 

assumptions of normality and homogeneity of variance for R3 leaf and plot disease ratings, R4 

leaf disease ratings, and R5 leaf disease ratings in the analysis of trials with moderate disease 

severity.  For the sweet corn trials, square root transformation was used for leaf disease ratings at 

the R3 rating time.  The test of -2log likelihood was used to compare models to determine if the 

environment by fungicide interaction could be removed from the model for each dependent 

variable.  The interaction effect of environment and fungicide was removed from the model for 

all dependent variables except the R5 leaf disease ratings in trials with low disease severity.  

Fungicide main effect was considered statistically significant at α = 0.05.  Fungicide treatments 

were compared and the ‘PDMIX800’ macro was used to format the pairwise differences from the 

PDIFF option in the LSMEANS statement in PROC MIXED, creating groups of similar means 

for fixed effects, designated by letters (Saxton, 1998).  Estimate statements were used to group 

treatments to determine least-squared means (lsmeans) and make comparisons between the non-
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treated control, DMI fungicides at high rates, DMI fungicides at low rates, QoI fungicides at high 

rates, QoI fungicides at low rates, and QoI + DMI fungicides.  Groups of similar means for 

estimates were designated by letters.  Terms and estimates were considered significant when P ≤ 

0.05. 

Greenhouse experiment.   The greenhouse trials were carried out on the same susceptible sweet 

corn hybrid that was used for the field trial (‘Merit’, Seminis Vegetable Seeds).  Seeds were 

planted in 3.8-liter plastic pots (Classic 300, Nursery Supplies Inc., Chambersburg, PA) with a 

steam-pasteurized soil mix (1:1:1 soil:peat:perlite).  Plants were irrigated as needed and fertilized 

with Osmocote Classic 13-13-13 (N-P-K) controlled release fertilizer (The Scott’s Company, 

Marysville, OH) to maintain plant health and growth.  The greenhouse was maintained at 21°C ± 

3° daytime and 18°C ± 3° nighttime temperatures.  Natural light and supplemental lighting, set at 

25 to 50 klux (325 to 650 µE m
-2

 s
-1

), was used with 15 hour daytime and 9 hour nighttime.  

Each individually potted plant represented a plot.   

 Exserohilum turcicum race 0 conidia suspensions were prepared immediately prior to 

plant inoculations, following the method previously described for the field trials.  The final 

concentrations of all conidial suspensions were calculated using a hemocytometer and diluted to 

1,000 conidia/ml in water containing Tween 20 (10 µl/L).  Prior to inoculation, all plant leaves 

were marked with a permanent felt tip pen near the base to identify where the conidial 

suspension was applied.  Entire plants were sprayed until runoff using a hand pump sprayer.  

Following inoculation, plants were placed in a humidity chamber for 24 hours to promote 

infection.  The humidity chamber, constructed in the greenhouse, consisted of an opaque plastic 

tent containing 2 humidifiers which maintained relative humidity at 100%.  Sets of plants (three 

replicates) for each fungicide tested were inoculated at 3 h, 1, 3, and 7 days prior to fungicide 
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application and 3 h, 1, 3, and 7 days after fungicide application.  Sets of non-treated control 

plants were inoculated at each timing, as well.  The earliest inoculation timing commenced at the 

corn 4-leaf growth stage (V4).   

 Fungicide applications were made at the 5-leaf to 6-leaf growth stage (V5 to V6), 7 days 

after the earliest inoculation timing.  Applications were performed using the methods described 

for the field trials.  The base of plant leaves were marked with a permanent felt tip pen prior to 

fungicide application to identify fungicide treated tissue, similar to when inoculated.  Fungicides 

were applied at labeled rates and included azoxystrobin at 112 g a.i./ha, pyraclostrobin at 112 g 

a.i./ha, propiconazole at 123 g a.i./ha, and prothioconazole at 202 g a.i./ha.   

 NLB severity was evaluated 21 days after inoculation.  The percent infected leaf area was 

assessed for each leaf where fungicide was applied.  Due to infections being fairly localized to 

leaves still in the whorl at the time of inoculation, the mean was calculated for the percent 

infected leaf area of the 2 leaves with the greatest disease severity of each plant.   

Trials were pooled for analysis.  Data were analyzed using the generalized linear mixed 

models procedure (PROC GLIMMIX) in SAS v. 9.4 (SAS Institute) to examine the effect of 

fungicide treatments on percent disease control.  Data for each fungicide timing interval were 

analyzed independently.  Fungicide was considered a fixed effect, while replications were 

consider random.  Terms were considered statistically significant when P ≤ 0.05.   
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Results 

Field Experiment.  Table 4.2 summarizes the probability values (P > F) of the fixed effect of 

fungicide in field corn trials with low disease severity, field corn trials with moderate disease 

severity, and sweet corn trials with moderate disease severity.  For trials with low disease 

severity, fungicide had no significant effect on leaf or plot disease severity, stalk rot, corn stay 

green (maturity), or yield.  For trials with moderate disease severity, fungicide had a significant 

effect on R2, R3, R4, and R5 leaf and plot disease ratings.  For sweet corn trials, fungicide had a 

significant effect on R2 plot disease severity and R3 plot disease severity.  Only significant terms 

will be discussed. 

Trials with moderate disease severity.  Significant differences among fungicide treatments were 

observed in leaf disease severity during the corn R2, R3, R4, and R5 growth stages (Table 4.3).  

At the R2 rating time, treatments of metconazole at 67 g a.i./ha and prothioconazole at 202 g 

a.i./ha significantly reduced leaf disease severity compared to the non-treated control.  At the R3 

rating time, significant treatment differences were observed, but no fungicide treatment was 

significantly different than non-treated control.  At R4 and R5 rating times, treatments with 

azoxystrobin at 112 g a.i./ha + propiconazole at 90 g a.i./ha and metconazole at 67 g a.i./ha had 

significantly lower leaf disease than the non-treated control. 

Estimates statements with treatments grouped by fungicide and rate identified significant 

differences in leaf disease severity at R2, R3, R4, and R5 rating times (Table 4.4).  High rate 

DMIs had significantly lower leaf disease severity than all other treatments except the non-

treated control at the R2 rating time.  At the R3 rating time, no fungicide group significantly 

varied from the control; however, high rate DMIs had significantly lower disease than the low 
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rate QoIs. At the R4 rating time, leaf disease severity for the QoI + DMI fungicides was 

significantly lower than disease severities from high rate QoI and low rate QoI treatments.  At 

the R5 rating time, disease severities in high rate DMI treatments and QoI + DMI treatments 

were significantly lower than disease severities in low rate QoI treatments. 

   Significant differences among fungicide treatments were observed in plot disease 

severity during the corn R2, R3, R4, and R5 growth stage (Table 4.3).  At the R2 rating time, 

azoxystrobin at 112 g a.i./ha + propiconazole at 90 g a.i./ha and metconazole at 45 g a.i./ha 

treatments significantly reduced total plot disease severity compared to the non-treated control.  

At the R3 rating time, plots treated with azoxystrobin at 112 g a.i./ha, azoxystrobin at 112 g 

a.i./ha + propiconazole at 90 g a.i./ha, metconazole at 67 g a.i./ha, propiconazole at 90 g a.i./ha, 

and propiconazole at 123 g a.i./ha showed significantly less disease severity than the non-treated 

control.  At R4 and R5 rating times, treatments with azoxystrobin at 112 g a.i./ha + 

propiconazole at 90 g a.i./ha and metconazole at 67 g a.i./ha had significantly lower leaf disease 

than the non-treated control, similar to observed leaf disease severity at the same rating times. 

Estimates statements for grouped treatments identified significant differences in leaf 

disease severity at R3, R4, and R5 rating times (Table 4.4).  At the R3 rating time, high rate DMI 

treatments had significantly lower plot disease severity than the non-treated and low rate QoI 

treatments.  At the R4 rating time, high rate DMI treatments had significantly lower plot disease 

than high rate QoI and low rate QoI treatments.  At the R5 rating time, leaf disease severities in 

the high rate DMI, QoI + DMI, and low rate QoI treatments were significantly lower than 

severities in the low rate DMI treatments. 
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Sweet corn trials.  Significant differences among fungicide treatments were observed in plot 

disease severity during the corn R2 and R3 growth stages (Table 4.5).  At the R2 rating time, 

azoxystrobin at 112 g a.i./ha + propiconazole at 90 g a.i./ha, metconazole at 45 g a.i./ha, 

metconazole at 67 g a.i./ha, propiconazole at 90 g a.i./ha, propiconazole at 123 g a.i./ha, 

pyraclostrobin at 112 g a.i./ha, and pyraclostrobin at 112 g a.i./ha + metconazole at 45 g a.i./ha 

treatments had significantly lower plot disease severity than the non-treated control.  At the R3 

rating time, treatments of azoxystrobin at 112 g a.i./ha + propiconazole at 90 g a.i./ha, 

metconazole at 45 g a.i./ha, metconazole at 67 g a.i./ha, and propiconazole at 123 g a.i./ha 

showed significantly lower plot disease severity than the non-treated control. 

 Estimate statements for groups identified significant differences in the plot disease 

severity at growth stages R2 and R3 in the sweet corn trial (Table 4.6).  When plot disease was 

rated at R2, the high rate DMI treatments, low rate DMI treatments, and QoIs + DMI treatments 

had significantly less disease than the high rate QoI treatments and non-treated control.  The R3 

ratings for plot disease severity for high rate DMI treatments and low rate DMI treatments were 

significantly lower than the high rate QoI treatments, non-treated control, and QoI + DMI 

treatments. 

Greenhouse Experiment.  Significant differences among treatments were observed when 

fungicides were applied 3 days, 1 day and 3 hours prior to inoculations with E. turcicum, as well 

as, 3 days and 7 days after inoculations (Table 4.7).  At inoculation times where significant 

differences were observed, all fungicides had significantly less disease than the non-treated 

control.   



 

103 
 

Differences also were observed among fungicides (Table 4.7).  When fungicides were 

applied 3 days prior to inoculation, pyraclostrobin significantly reduced leaf disease compared to 

prothioconazole.  When fungicides were applied 3 hours prior to inoculation, prothioconazole 

significantly reduced disease compared to propiconazole.  When fungicides were applied 7 days 

after inoculation, propiconazole significantly reduced disease compared to azoxystrobin and 

prothioconazole.   

 

Discussion 

Despite two inoculations with E. turcicum at the V4 to V6 growth stage to promote disease 

development, three of the field corn trials developed low levels of disease, while the other two 

field corn trials and the sweet corn trials had moderate levels of disease.  Similar inconsistencies 

in NLB disease development following inoculation have been previously reported (Mallowa et 

al., 2015) and, likely, are the result of differences in environmental conditions.   

Fungicides varied in NLB control depending on the level of disease present.  In 

environments with low disease severity, no significant differences in leaf and plot severity were 

observed between fungicides and the non-treated control.  In environments with moderate 

disease severity and sweet corn trials, significant fungicide effects were observed starting at the 

R2 growth stage and continuing through the rating period.  Variations in fungicide control at 

different disease severity have been observed.  Mallowa et al. (2015) were able to identified 

reductions in NLB disease severity in fields with low and moderate disease severity when 

fungicides were applied; however, control was not consistent between fields.  Similar results 

were found in a meta-analysis conducted by Paul et al. (2011).    
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Azoxystrobin at 112 g a.i./ha + propiconazole at 90 g a.i./ha and metconazole at 67 g 

a.i./ha provided significant disease control in field trials with moderate NLB severity and 

azoxystrobin at 112 g a.i./ha + propiconazole at 90 g a.i./ha, metconazole at 45 g a.i./ha, 

metconazole at 67 g a.i./ha, and propiconazole at 123 g a.i./ha provided significant control in 

sweet corn trials.  Though not all treatments were significantly different than the non-treated 

control, DMI fungicides at higher rates (solo application label rates) and QoI + DMI fungicides 

provided greater NLB control than other treatments, generally.  Exserohilum turcicum forms 

large lesions, capable of infecting much of the leaf area with relatively few lesions.  It is possible 

the DMI mode of action is more effective against E. turcicum than QoI fungicides, since it 

primarily limits mycelial growth, which may slow lesion expansion and limit sporulation.  In a 

field corn study, Bowen and Pedersen (1988) found that propiconazole controlled NLB more 

effectively than mancozeb, which only inhibited spore germination. 

Though several fungicides reduced foliar disease significantly, those symptom reductions 

were insufficient to significantly affect stalk rot, plant maturity, or yield.  In this study, stalk rot 

severity tended to be greater in trials where NLB was more severe.  High foliar disease has been 

associated with increased potential for stalk rot (Dodd, 1980a); however, Mallowa et al. (2015) 

also observed reductions in foliar disease using fungicides without reducing stalk rot, similar to 

results observed in this study.  QoI fungicide effects on plant maturity appear to be inconsistent, 

and reports of this phenomenon vary among studies (Blandino et al., 2012; Byamukama et al., 

2013).  While no significant differences in yield were found in this study, fungicide-treated plots 

tended to yield more than the non-treated control.  Research has proven yield responses to 

fungicide to be fairly variable, even when disease is reduced (Mallowa et al., 2015; Munkvold 

and Gorman, 2012; Paul et al., 2011, Shah and Dillard, 2010).   
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In the greenhouse experiment, fungicides reduced disease when inoculated before and 

after application.  This is similar to results reported by Mueller et al. (2004) who tested fungicide 

application relative to inoculation of ornamental plant species with rust fungi (Puccinia spp.).  

While inoculation times were not compared, there was some variation in the disease severity on 

the non-treated plants between inoculation times.  No fungicide proved to be consistently more 

effective than the others at controlling disease across all application times.  Mueller et al. (2004) 

observed reduced disease control with increased time between fungicide application and 

inoculation; however, that study included longer time intervals between fungicide application 

and inoculation than used in this experiment.  It may have been informative to include 

inoculation timings greater than 7 days; however, most E. turcicum infection took place on new 

growth near the whorl.  Inoculation dates would have been on new tissue where fungicides were 

not applied.  DMI and some QoI fungicides are capable of xylem movement toward leaf tips, 

while other QoI fungicides only have translaminar movement (Bartlett et al., 2002; Edgington, 

1981; Godwin et al., 1999; Vincelli, 2002).  Research has been conducted to test if fungicide 

applications made during early vegetative stages, like those tested in the greenhouse trial, is 

effective at controlling disease and increasing yield.  Blandino et al. (2012) evaluated 

azoxystrobin + propiconazole applied at several growth stages and did not observe significant 

difference in disease control between the V4 application and the non-treated control; however, 

they did report a small but significant yield increase.  

 Products containing DMI fungicides were more effective in managing NLB than QoI 

fungicides and could be a better option for producers when disease is moderately severe.  DMI 

and QoI fungicides were able to reduce disease when applied before and after inoculation with E. 

turcicum.  Reduction in disease due to fungicides did not result in improved yields.  Other 
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studies also have observed inconsistencies between disease control and yield; however, fungicide 

applications are more likely to be profitable when foliar disease severity is moderate to high 

(Mallowa et al., 2015; Paul et al. 2011).  Fungicides are a valuable tool in IPM and can be used 

for control of NLB in corn.    
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Table 4.1.  The fungicide group, commercial product name, active ingredient, and application rates for all field trials. 

Fungicide 

group
a 

Product name Active ingredient (a.i.) 

Product use rate 

(ml/ha) 

Fungicide use 

rate (g a.i./ha) 

DMI Caramba metconazole  497 45 

DMI Caramba metconazole  731 67 

DMI Tilt propiconazole 205 90 

DMI Tilt propiconazole 292 123 

DMI Proline prothioconazole 95 45 

DMI Proline prothioconazole 417 202 

DMI Folicur tebuconazole 292 123 

QoI Quadris azoxystrobin 438 112 

QoI Evito fluoxastrobin 146 67 

QoI Headline pyraclostrobin 438 112 

QoI Headline pyraclostrobin 446 112 

QoI Gem trifloxystrobin 256 123 

QoI Gem trifloxystrobin 270 134 

QoI + DMI Quilt Xcel azoxystrobin + propiconazole 767 112 + 90 

QoI + DMI Evito T fluoxastrobin + tebuconazole 292 56 + 78 

QoI + DMI Headline AMP pyraclostrobin + metconazole 731 112 + 45 

QoI + DMI Stratego YLD trifloxystrobin + prothioconazole 365 134 + 45 
a 
Fungicide groups included the demethylation inhibitors (DMI) and the quinone outside inhibitors (QoI).
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Table 4.2.  Probability values (P > F) associated with the main effect of fungicide on northern leaf blight severity at corn 

reproductive growth stages (R1-R5), stalk rot, plant maturity, and yield for low disease severity, moderate disease severity, and 

sweet corn trials.  

 Northern leaf blight severity (%)   

Stalk 

rot
e
 

  

Plant 

maturity
f
 

 

  Leaf
b  Plot

c 
  

Trial
a 

R1
d 

R2 R3 R4 R5  R1 R2 R3 R4 R5 Yield
g 

low disease 

severity 
0.3905

hi 
0.4359

h 
0.6470

h 
0.0770

h 
0.2660

h  
0.3950

j 
0.6569

ij 
0.4060

j 
0.4067

j 
0.1499

j 
0.6178 0.1771 0.5165 

moderate disease 

severity 
0.1320

k 
0.0472 0.0092

j 
0.0234

j 
0.0260

j  
0.1320

k 
0.0378 0.0106 0.0118 0.0113 0.4357 0.4094 0.2460 

sweet corn 0.3074 0.0909 0.1091
j 

  
 0.3074 0.0111 <0.0001 

    
0.5000 

a
 Trials grouped for analysis as low disease severity field corn trials (Dixon Springs, 2013; Monmouth, 2012; Urbana 2012), high 

disease severity field corn trials (DeKalb, 2012; Urbana, 2013), and 2012 and 2013 sweet corn trials for analysis.   
b 

Mean percent infected leaf area of the ear leaf, leaf below the ear, and leaf above the ear estimated for 5 plants per plot. 
c 
Percent of total plant leaf area infected estimated for all plants in the center two rows of plots. 

d 
Approximate reproductive growth stage at which disease severity was assessed: R1 = silk emergence, R2 = kernel blister, R3 = kernel 

milk, R4 = kernel dough, and R5 = kernel. 
e 
Stalk rot severity assessed on a 0 to 5 scale at plant maturity: 1 = internal discoloration a the stalk nodes; 2 = internal discoloration at 

the stalk nodes and in the pith; 3 = pith separation from the rind; 4 = complete discoloration and decay of the pith between 2 or more 

nodes, but not lodged; and 5 = stalk is lodged due to stalk rot. 
f
 Plant maturity (‘stay green’) rated on 0 to 9 scale: 0 = completely mature plant and 9 = a plant with completely green leaves and stalk. 

g 
Grain yield was calculated as kg/ha at 13% moisture for field corn trials. Mean ear weight (grams) was calculated for ten ears 

collected from consecutive plants. 
h 

Data were transformed to meet assumptions of variance using the formula: 𝑥 =  √(% 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 + 0.1). 
i
 Data did not include 2013 Dixon Springs disease ratings. 

j
 Data were square root transformed to meet assumptions of variance.  

k 
Data did not include 2012 DeKalb disease ratings. 
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Table 4.3.  Effects of fungicides on northern leaf blight leaf and plot disease severity observed at the corn growth stages R1 to R5 in 

field trials with moderate disease severity.  

  Northern leaf blight severity (%) 

  Rate  

(g a.i./ha) 

Leaf
a  Plot

b 

Fungicide R1
c 

R2 R3
d 

R4
d 

R5
de  R1 R2 R3

d 
R4 R5

e 

non-treated  3.6 a
f 

6.5 ab
 

9.1 abcde 17.7 abcd 28.5 abc  8.0 a 16.8 ab 16.9 a 25.0 ab 42.5 ab 

azoxystrobin 112 4.0 a 6 abcd 8.9 bcde 14.7 bcdef 23.5 bcde  9.1 a 13.4 bc 12.4 bcdef 24.8 abc 40.0 abc 

fluoxastrobin 67 4.8 a 7.2 a 11.7 ab 19.4 ab 34.3 a  7.9 a 16.6 ab 15.9 abc 27.5 a 46.3 a 

metconazole 45 4.6 a 6.8 ab 10.3 abc 17.5 abcd 32.7 ab  8.8 a 11.9 c 14.5 abcde 25.6 ab 42.5 ab 

metconazole 67 3.0 a 4.5 cd 6.3 e 12.1 f 17.5 e  7.6 a 14.4 

abc 

9.9 f 18.1 d 31.3 d 

propiconazole 90 4.2 a 5.9 abcd 8.3 cde 16.6 abcde 26.9 abcd  9.3 a 16 ab 11.9 def 23.1 abcd 43.8 ab 

propiconazole 123 3.2 a 4.9 bcd 7.3 de 14.3 cdef 22.7 cde  7.9 a 15.6 ab 12.0 cdef 21.3 bcd 40.0 abc 

prothioconazole 45 3.2 a 5.1 bcd 9.0 bcde 17.6 abcd 28.9 abc  8.9 a 16.4 ab 15.7 abcd 26.3 ab 45.0 a 

prothioconazole 202 2.3 a 4.1 d 7.8 cde 14.4 cdef 28.5 abc  8.3 a 16.4 ab 13.6 abcdef 25.6 ab 42.5 ab 

pyraclostrobin 112 3.8 a 6.4 ab 9.4 abcd 15.8 abcdef 25.9 abcd  8.8 a 17.6 a 15.5 abcd 26.3 ab 37.5 bcd 

pyraclostrobin 112 3.4 a 5.8 abcd 9.1 abcd 15.4 bcdef 26.6 abcd  8.5 a 15.8 ab 16.0 abc 25.6 ab 37.5 bcd 

tebuconazole 123 4.0 a 6.6 ab 10.8 abc 20.8 a 29.7 abc  9.1 a 16.0 ab 15.6 abcd 27.5 a 41.3 abc 

trifloxystrobin 123 4.5 a 7.4 a 12.3 a 17.8 abc 29.9 abc  8.9 a 16.9 ab 16.0 ab 28.1 a 41.3 abc 

trifloxystrobin 134 3.5 a 6.6 ab 10.5 abc 16.4 abcdef 31.1 abc  7.6 a 16.6 ab 15.0 abcd 25.6 ab 43.8 ab 

azoxystrobin + 

propiconazole 

112 + 90 3.7 a 5.7 abcd 6.8 de 12.6 ef 19.1 de  6.6 a 11.8 c 10.8 ef 19.4 cd 35.0 cd 

fluoxastrobin + 

tebuconazole 

56 + 78 3.4 a 5.6 abcd 9.6 abcd 15.9 abcdef 27.4 abcd  9.0 a 16.9 ab 15.4 abcd 28.1 a 40.0 abc 

pyraclostrobin + 

metconazole 

112 + 45 4.0 a 6.0 abc 9.4 abcd 15 bcdef 24.8 bcde  9.3 a 15.8 ab 14.0 abcde 23.8 abc 41.3 abc 

trifloxystrobin + 

prothioconazole 

134 + 45 3.5 a 5.5 abcd 8.7 bcde 13.2 def 23.1 cde  7.9 a 17.0 a 15.4 abcd 24.4 abc 40.0 abc 

a 
Mean percent infected leaf area of the ear leaf, leaf below the ear, and leaf above the ear estimated for 5 plants per plot. 

b 
Percent of total plant leaf area infected estimated for all plants in the center two rows of plots. 

c 
Approximate reproductive growth stage at which disease severity was assessed: R1 = silk emergence, R2 = kernel blister, R3 = 

kernel milk, R4 = kernel dough, and R5 = kernel. 
d
 Data were square root transformed to meet assumptions of variance.  Data shown are the back transformed least-squared means. 
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Table 4.3 (cont.) 
e 
Data did not include 2012 DeKalb disease ratings. 

Table 4.3. (cont.) 
f 
Values followed by the same letter within a column are not significantly different (α = 0.05). 
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Table 4.4.  Least-squared means and comparisons, calculated using estimate statements, of 

northern leaf blight leaf and plot disease severity for fungicide groups at corn growth stages R1 

to R5 in field trials with moderate disease severity.    

 Northern leaf blight severity (%) 

Treatment 

groups 

Leaf
a   Plot

b 

R1
c 

R2 R3
d 

R4
d 

R5
de  R1 R2 R3

d 
R4 R5

e 

non-treated 3.6 a
f 

6.5 ab 9.1 abc 17.7 ab 28.5 ab  8.0 a 16.8 a 16.9 a 25.0 ab 42.5 ab 

high rate DMIs
g 

3.1 a 5.0 b 8.0 c 15.3 ab 24.3 b  8.2 a 15.6 a 12.7 b 23.1 b 38.8 b 

high rate QoIs
h 

4.0 a 6.6 a 10.1 ab 16.5 a 28.5 ab  8.4 a 16.1 a 14.7 ab 26.0 a 41.9 ab 

low rate DMIs
i 

4.0 a 5.9 a 9.2 abc 17.2 a 29.5 a  9.0 a 14.8 a 14.0 ab 25.0 ab 43.8 a 

low rate QoIs
j 

3.9 a 6.6 a 10.7 a 16.6 ab 28.2 ab  8.7 a 16.3 a 16.0 a 26.9 a 39.4 b 

QoI + DMIs
k 

3.6 a 5.7 a 8.6 bc 14.1 ab 23.5 b  8.2 a 15.3 a 13.8 ab 23.9 ab 39.1b 
a 
Mean percent infected leaf area of the ear leaf, leaf below the ear, and leaf above the ear 

estimated for 5 plants per plot. 
b 

Percent of total plant leaf area infected estimated for all plants in the center two rows of plots. 
c 
Approximate reproductive growth stage at which disease severity was assessed: R1 = silk 

emergence, R2 = kernel blister, R3 = kernel milk, R4 = kernel dough, and R5 = kernel. 
d
 Data were square root transformed to meet assumptions of variance.  Data shown are the back 

transformed least-squared means. 
e
 Data did not include 2012 DeKalb disease ratings. 

f 
Values followed by the same letter within a column are not significantly different (α = 0.05). 

g 
Treatments included in the group are metconazole at 67 g a.i./ha, propiconazole at 123 g a.i./ha, 

prothioconazole at 202 g a.i./ha, and tebuconazole at 123 g a.i./ha. 
h 

Treatments included in the group are azoxystrobin at 112 g a.i./ha, fluoxastrobin at 67 g a.i./ha, 

pyraclostrobin at 112 g a.i./ha., and trifloxystrobin at 134 g a.i./ha. 
i 
Treatments included in the group are

 
metconazole at 45 g a.i./ha, propiconazole at 90 g a.i./ha, 

and prothioconazole at 45 g a.i./ha. 
j 
Treatments included in the group are pyraclostrobin at 112 g a.i./ha and trifloxystrobin at 123 g 

a.i./ha. 
k 

Treatments included in the group are azoxystrobin at 112 g a.i./ha + propiconazole 90 g a.i./ha, 

trifloxystrobin 134 g a.i./ha + prothioconazole 45 g a.i./ha, pyraclostrobin 112 g a.i./ha + 

metconazole 45 g a.i./ha, fluoxastrobin 56 g a.i./ha + tebuconazole 78 g a.i./ha.
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Table 4.5.  Effects of fungicides on northern leaf blight leaf and plot disease severity observed at different corn growth stages (R1 to 

R3) in 2012 and 2013 sweet corn field trials conducted at Urbana, IL. 

  Northern leaf blight severity (%) 

  Rate 

(g a.i./ha) 

Leaf
a  Plot

b 

Fungicide R1
c 

R2 R3
d  R1 R2 R3 

non-treated 

 

5.4 a
f 

11.6 a 21.0 a  18.3 a 28.1 a 41.3 abcd 

azoxystrobin 112 4.1 a 9.3 a 16.2 a  12.5 a 24.6 abcdefg 36.3 cdef 

fluoxastrobin 67 6.0 a 10.6 a 17.6 a  14.3 a 26.3 abcde 44.4 a 

metconazole 45 5.1 a 8.9 a 13.6 a  17.0 a 21.5 efg 35.0 ef 

metconazole 67 5.5 a 8.6 a  13.4 a  16.1 a 23.0 bcdefg 34.4 ef 

propiconazole 90 5.7 a 9.5 a 15.4 a  16.8 a 23.0 bcdefg 35.6 def 

propiconazole 123 3.8 a 7.3 a 13.0 a  18.0 a 20.1 fg 31.9 f 

prothioconazole 45 4.6 a 9.5 a 17.4 a  14.9 a 24.8 abcdefg 36.3 cdef 

prothioconazole 202 5.5 a 9.3 a 14.9 a  18.8 a 23.9 abcdefg 36.3 cdef 

pyraclostrobin 112 4.7 a 10.9 a 16.6 a  17.6 a 25.9 abcde 38.1 bcde 

pyraclostrobin 112 4.0 a 8.7 a 14.4 a  15.4 a 21.8 defg 36.3 cdef 

tebuconazole 123 6.2 a 11.3 a 19.4 a  15.1 a 26.8 abcd 41.9 abc 

trifloxystrobin 123 6.4 a 12.3 a 19.0 a  14.4 a 28.0 ab 41.3 abcd 

trifloxystrobin 134 6.0 a 11.5 a 18.4 a  13.9 a 27.5 abc 42.5 ab 

azoxystrobin + propiconazole 112 + 90 4.7 a 8.9 a 13.8 a  16.3 a 19.8 g 31.9 f 

fluoxastrobin + tebuconazole 56 + 78 5.8 a 9.6 a 16.0 a  14.9 a 26.4 abcde 42.5 ab 

pyraclostrobin + metconazole 112 + 45 5.8 a 10.8 a 17.9 a  15.8 a 22.9 cdefg 39.4 abcde 

trifloxystrobin + prothioconazole 134 + 45 5.3 a 10.4 a 16.2 a  15.5 a 25.1 abcdef 42.5 ab 
a 
Mean percent infected leaf area of the ear leaf, leaf below the ear, and leaf above the ear estimated for 5 plants per plot. 

b 
Percent of total plant leaf area infected estimated for all plants in the center two rows of plots. 

c 
Approximate reproductive growth stage at which disease severity was assessed: R1 = silk emergence, R2 = kernel blister, R3 = 

kernel milk, R4 = kernel dough, and R5 = kernel. 
d
 Data were square root transformed to meet assumptions of variance.  Data shown are the back transformed least-squared 

means. 
e
 Data did not include 2012 DeKalb disease ratings. 

f 
Values followed by the same letter within a column are not significantly different (α = 0.05). 
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Table 4.6.  Least-squared means and comparisons, calculated using estimate  

statements, of northern leaf bight leaf and plot disease severity for fungicide groups at 

corn R1 to R3 growth stages, in 2012 and 2013 sweet corn trials. 
 

a 
Mean percent infected leaf area of the ear leaf, leaf below the ear, and leaf above 

the ear estimated for 5 plants per plot. 
b 

Percent of total plant leaf area infected estimated for all plants in the center two 

rows of plots. 
c 
Approximate reproductive growth stage at which disease severity was assessed: 

R1 = silk emergence, R2 = kernel blister, and R3 = kernel milk. 
d
 Data were square root transformed to meet assumptions of variance.  Data shown 

are the back transformed least-squared means. 
e 
Values followed by the same letter within a column are not significantly different 

from each other (α = 0.05). 
f  

Treatments included in the group are metconazole at 67 g a.i./ha, propiconazole 

at 123 g a.i./ha, prothioconazole at 202 g a.i./ha, and tebuconazole at 123 g a.i./ha. 
g  

Treatments included in the group are azoxystrobin at 112 g a.i./ha, fluoxastrobin 

at 67 g a.i./ha, pyraclostrobin at 112 g a.i./ha., and trifloxystrobin at 134 g a.i./ha. 
h  

Treatments included in the group are
 
metconazole at 45 g a.i./ha, propiconazole 

at 90 g a.i./ha, and prothioconazole at 45 g a.i./ha. 
i 
Treatments included in the group are pyraclostrobin at 112 g a.i./ha and 

trifloxystrobin at 123 g a.i./ha. 
j 
Treatments included in the group are azoxystrobin at 112 g a.i./ha + 

propiconazole 90 g a.i./ha, trifloxystrobin 134 g a.i./ha + prothioconazole 45 g 

a.i./ha, pyraclostrobin 112 g a.i./ha + metconazole 45 g a.i./ha, fluoxastrobin 56 g 

a.i./ha + tebuconazole 78 g a.i./ha. 

 Northern leaf blight severity (%) 

Treatment group 

Leaf
a 

 Plot
b 

R1
c 

R2 R3
d 

 R1 R2 R3 

non-treated 5.4 a
e 

11.6 a 21.0 a  18.3 a 28.1 a 41.3 a 

high rate DMIs
f 

5.2 a 9.1 a 15.1 a  16.4 a 23.4 b 36.1 b 

high rate QoIs
g 

5.2 a 10.6 a 17.2 a  15.6 a 26.1 a 40.3 a 

low rate DMIs
h 

5.1 a 9.3 a 15.4 a  15.4 a 23.1 b 35.6 b 

low rate QoIs
i 

5.2 a 10.5 a 16.6 a  16.3 a 24.9 ab 38.8 ab 

QoI + DMIs
j 

5.4 a 9.9 a 15.9 a  15.0 a 23.5 b 39.1 a 
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Table 4.7.  Effect of fungicides applied at different times, relative to E. turcicum inoculation, on 

northern leaf blight severity scored 21 days after inoculation in greenhouse trials.   

   Northern leaf blight severity (%)
a 

 
Rate  

(g a.i. /ha) 

Fungicide applied before inoculation  Fungicide applied after inoculation 

Fungicide 7days 3 days 1 days 3 hours  3 hours 1 day 3 days 7 days 

non-treated  14.6 a
b 

24.1 a 13.4 a 12.1 a  14.8 a 20.5 a 27.3 a 28.9 a 

azoxystrobin 112 3.8 a 7.9 cb 2.9 b 3.1 cb  2.2 a 6.9 a 12.5 b 13.5 b 

propiconazole 123 5.8 a 10.6 cb 3.4 b 5.1 b  2.8 a 5.2 a 5.9 b 8.8 c 

prothioconazole 202 5.6 a 11.7 b 5.6 b 1.4 c  4.4 a 7.8 a 9.0 b 13.7 b 

pyraclostrobin 112 6.0 a 7.0 c 2.7 b 1.9 cb  1.4 a 7.0 a 8.1 b 11.9 cb 

P value
c 

 0.1261 <0.0001 0.0016 <0.0001  0.1343 0.0608 0.0009 <0.0001 
a 
Northern leaf blight disease severity was the mean of the % infected leaf area of the two most diseased 

leaves.  
b 

Values followed by the same letter within a column are not significantly different from each other at alpha 

= 0.05. 
c 
Treatment effects were not significant (P ≤ 0.05) according to the F-test.
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APPENDIX A 

 

Table A.1.  Effects of fungicides on northern leaf blight leaf and plot disease severity observed at the corn R1 to R5 growth 

stages in trials with low disease severity. Treatment effects were not significant (P ≤ 0.05) according to the F-test. 

   

Rate  

(g a.i./ha) 

Northern leaf blight severity (%) 

  Leaf
a  Plot

b 

Fungicide  R1
cef 

R2
e 

R3
e 

R4
e 

R5
e 

 R1
g 

R2
g 

R3
g 

R4
g 

R5
g 

non-treated 0.2 0.3 0.4 1.0 2.5  3.8 5.0 5.3 7 6.1 

azoxystrobin 112 0.3 0.5 0.7 1.4 3.3  3.3 4.8 5.3 7.2 4.5 

fluoxastrobin 67 0.0 0.2 0.3 0.9 2.4  3.6 4.9 4.8 7.3 5.3 

metconazole 45 0.1 0.3 0.5 1.0 1.6  3.4 4.2 4.6 6.6 4.7 

metconazole 67 0.1 0.2 0.3 0.6 1.5  3.1 3.6 4.5 5.6 4.0 

propiconazole 90 0.1 0.2 0.3 0.6 1.3  2.9 3.6 4.6 6.3 4.8 

propiconazole 123 0.2 0.4 0.6 1.1 1.7  3.5 4.7 4.9 6.7 4.7 

prothioconazole 45 0.1 0.3 0.5 1.2 2.6  3.3 4.0 4.1 7.6 5.0 

prothioconazole 202 0.1 0.2 0.3 0.8 1.8  3.1 4.2 4.2 7.0 4.2 

pyraclostrobin 112 0.1 0.3 0.5 1.1 2.4  3.1 4.4 4.6 6.7 4.5 

pyraclostrobin 112 0.2 0.2 0.4 1.0 1.8  3.9 4.6 5.1 6.8 5.4 

tebuconazole 123 0.1 0.2 0.4 1.0 2.2  3.8 4.5 4.4 7.4 5.9 

trifloxystrobin 123 0.2 0.4 0.7 1.6 2.7  3.3 5.2 6.2 7.9 5.6 

trifloxystrobin 134 0.1 0.3 0.6 1.4 2.9  3.1 4.3 5.8 7.3 6.1 

azoxystrobin + 

propiconazole 112 + 90 0.1 0.2 0.3 0.7 1.3  2.6 4.9 4.9 6.6 4.7 

fluoxastrobin + 

tebuconazole 56 + 78 0.1 0.2 0.4 0.9 2.4  3.1 4.2 4.5 6.5 4.4 

pyraclostrobin + 

metconazole 112 + 45 0.2 0.2 0.4 1.0 1.9  3.4 4.6 4.7 7.8 5.5 

trifloxystrobin + 

prothioconazole 134 + 45 0.0 0.2 0.2 0.7 1.8  3.3 4.1 4.0 6.1 4.2 
a 
Mean percent infected leaf area of the ear leaf, leaf below the ear, and leaf above the ear estimated for 5 plants per plot. 

b 
Percent of total plant leaf area infected estimated for all plants in the center two rows of plots. 

c 
Approximate reproductive growth stage at which disease severity was assessed: R1 = silk emergence, R2 = kernel blister, R3 = 

kernel milk, R4 = kernel dough, and R5 = kernel. 
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Table A.1 (cont.) 
e 
Data were transformed to meet assumptions of variance using the formula: 𝑥 =  √(% 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 + 0.1).  Data shown are the back 

transformed least-squared means. 
f
 Data did not include 2013 Dixon Springs disease ratings. 

g
 Data were square root transformed to meet assumptions of variance.  Data shown are the back transformed least-squared means. 
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Table A.2.  Least-squared means and comparisons, calculated using estimate statements, of 

northern leaf blight leaf and plot disease severity for fungicide groups at corn growth stages 

R2 to R5 in field trials with low northern leaf blight severity.  Treatment effects were not 

significant (P ≤ 0.05) according to the F-test.  

 Northern leaf blight severity (%) 

Treatment groups 

Leaf
a  Plot

b 

R1
cde 

R2
d 

R3
d 

R4
d 

R5
d  R1

f 
R2

f 
R3

f 
R4

f 
R5

f 

non-treated 0.2 0.3 0.4 1.0 2.5  3.8 5.0 5.3 7.0 6.1 

high rate DMIs
g 

0.1 0.2 0.4 0.9 1.8  3.4 4.2 4.5 6.7 4.7 

high rate QoIs
h 

0.1 0.3 0.5 1.2 2.8  3.3 4.6 5.1 7.1 5.1 

low rate DMIs
i 

0.1 0.3 0.4 0.9 1.8  3.2 3.9 4.4 6.8 4.8 

low rate QoIs
j 

0.2 0.3 0.5 1.3 2.2  3.6 4.9 5.6 7.3 5.5 

QoI + DMIs
k 

0.1 0.2 0.4 0.8 1.8  3.1 4.5 4.5 6.8 4.7 
a 
Mean percent infected leaf area of the ear leaf, leaf below the ear, and leaf above the ear 

estimated for 5 plants per plot. 
b 

Percent of total plant leaf area infected estimated for all plants in the center two rows of 

plots. 
c 
Approximate reproductive growth stage at which disease severity was assessed: R1 = silk 

emergence, R2 = kernel blister, R3 = kernel milk, R4 = kernel dough, and R5 = kernel. 
d 

Data were transformed to meet assumptions of variance using the formula: 𝑥 =

 √(% 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 + 0.1).  Data shown are the back transformed least-squared means. 
e
 Data did not include 2013 Dixon Springs disease ratings. 

f
 Data were square root transformed to meet assumptions of variance.  Data shown are the 

back transformed least-squared means. 
g 
Treatments included in the group are metconazole at 67 g a.i./ha, propiconazole at 123 g 

a.i./ha, prothioconazole at 202 g a.i./ha, and tebuconazole at 123 g a.i./ha. 
h 

Treatments included in the group are azoxystrobin at 112 g a.i./ha, fluoxastrobin at 67 g 

a.i./ha, pyraclostrobin at 112 g a.i./ha., and trifloxystrobin at 134 g a.i./ha. 
i 
Treatments included in the group are

 
metconazole at 45 g a.i./ha, propiconazole at 90 g 

a.i./ha, and prothioconazole at 45 g a.i./ha. 
j 
Treatments included in the group are pyraclostrobin at 112 g a.i./ha and trifloxystrobin at 

123 g a.i./ha. 
k 

Treatments included in the group are azoxystrobin at 112 g a.i./ha + propiconazole 90 g 

a.i./ha, trifloxystrobin 134 g a.i./ha + prothioconazole 45 g a.i./ha, pyraclostrobin 112 g 

a.i./ha + metconazole 45 g a.i./ha, fluoxastrobin 56 g a.i./ha + tebuconazole 78 g a.i./ha. 
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Table A.3.   Effects of fungicides on stalk rot severity, plant 

maturity, and yield in trials with low disease severity.  Treatment 

effects were not significant (P ≤ 0.05) according to the F-test. 

Fungicide 

Rate  

(g a.i./ha) Stalk rot
a 

Plant 

maturity
b 

Yield 

(kg/ha)
c 

non-treated 0.5 5.3 11,557 

azoxystrobin 112 0.3 5 11,909 

fluoxastrobin 67 0.5 5.6 12,245 

metconazole 45 0.6 5.3 12,115 

metconazole 67 0.3 5.3 11,915 

propiconazole 90 0.6 5.8 11,813 

propiconazole 123 0.5 5.6 12,044 

prothioconazole 45 0.6 5.3 11,843 

prothioconazole 202 0.5 5.3 12,326 

pyraclostrobin 112 0.5 6.1 12,488 

pyraclostrobin 112 0.2 6.1 12,316 

tebuconazole 123 0.2 5.4 12,178 

trifloxystrobin 123 0.3 5.3 12,154 

trifloxystrobin 134 0.7 5.3 11,846 

azoxystrobin + propiconazole 112 + 90 0.3 5.8 11,630 

fluoxastrobin + tebuconazole 56 + 78 0.3 5.3 12,124 

pyraclostrobin + metconazole 112 + 45 0.6 5.5 12,124 

trifloxystrobin + 

prothioconazole 134 + 45 0.6 5.3 11,999 
a 
Stalk rot severity assessed on a 0 to 5 scale at plant maturity: 1 = internal 

discoloration at the stalk nodes; 2 = internal discoloration at the stalk nodes 

and in the pith; 3 = pith separation from the rind; 4 = complete discoloration 

and decay of the pith between 2 or more nodes, but not lodged; and 5 = stalk 

is lodged due to stalk rot. 
b
 Plant maturity (‘stay green’) rated on 0 to 9 scale: 0 = completely mature 

plant and 9 = a plant with completely green leaves and stalk. 
c 
Grain yield was calculated at 13% moisture. 
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Table A.4.  Least-squared means and comparisons, calculated using estimate 

statements, of stalk rot, plant maturity, and grain yield in trials with low 

disease severity.  Treatment effects were not significant (P ≤ 0.05) according to 

the F-test.  

Treatment groups Stalk rot
a 

Plant maturity
b 

Yield 

(kg/ha)
c 

non-treated 0.5 5.3 11,557 

high rate DMIs
d 

0.4 5.4 12,115 

high rate QoIs
e 

0.5 5.5 12,122 

low rate DMIs
f 

0.6 5.4 11,924 

low rate QoIs
g 

0.2 5.7 12,235 

QoI + DMIs
h 

0.4 5.5 11,969 
a 
Stalk rot severity assessed on a 0 to 5 scale at plant maturity: 1 = internal 

discoloration at the stalk nodes; 2 = internal discoloration at the stalk nodes and 

in the pith; 3 = pith separation from the rind; 4 = complete discoloration and 

decay of the pith between 2 or more nodes, but not lodged; and 5 = stalk is 

lodged due to stalk rot. 
b
 Plant maturity (‘stay green’) rated on 0 to 9 scale: 0 = completely mature 

plant and 9 = a plant with completely green leaves and stalk. 
c 
Grain yield was calculated at 13% moisture. 

d 
Treatments included in the group are metconazole at 67 g a.i./ha, 

propiconazole at 123 g a.i./ha, prothioconazole at 202 g a.i./ha, and 

tebuconazole at 123 g a.i./ha. 
e 
Treatments included in the group are azoxystrobin at 112 g a.i./ha, 

fluoxastrobin at 67 g a.i./ha, pyraclostrobin at 112 g a.i./ha., and trifloxystrobin 

at 134 g a.i./ha. 
f 
Treatments included in the group are

 
metconazole at 45 g a.i./ha, 

propiconazole at 90 g a.i./ha, and prothioconazole at 45 g a.i./ha. 
g 
Treatments included in the group are pyraclostrobin at 112 g a.i./ha and 

trifloxystrobin at 123 g a.i./ha. 
h 

Treatments included in the group are azoxystrobin at 112 g a.i./ha + 

propiconazole 90 g a.i./ha, trifloxystrobin 134 g a.i./ha + prothioconazole 45 g 

a.i./ha, pyraclostrobin 112 g a.i./ha + metconazole 45 g a.i./ha, fluoxastrobin 56 

g a.i./ha + tebuconazole 78 g a.i./ha. 



 

126 
 

Table A.5.  Effects of fungicides on stalk rot severity, plant maturity, and grain 

yield in trials with moderate northern leaf blight severity.  Treatment effects were 

not significant (P ≤ 0.05) according to the F-test. 

Fungicide 

Rate  

(g a.i./ha) 

Stalk  

rot
a 

Plant 

maturity
b 

Yield  

(kg/ha)
c 

non-treated 

 

2.0 5.9 9,750 

azoxystrobin 112 2.1 5.5 10,551 

Fluoxastrobin 67 2.0 5.6 10,410 

Metconazole 45 2.4 5.1 9,907 

Metconazole 67 2.2 5.1 10,800 

propiconazole 90 1.8 5.6 10,396 

propiconazole 123 2.0 5.6 10,440 

prothioconazole 45 2.2 5.3 10,024 

prothioconazole 202 2.0 5.8 9,869 

pyraclostrobin 112 0.9 6.1 10,336 

pyraclostrobin 112 2.0 5.9 10,806 

tebuconazole 123 2.3 5.0 10,461 

trifloxystrobin 123 1.7 5.5 10,367 

trifloxystrobin 134 2.2 4.6 9,885 

azoxystrobin + propiconazole 112 + 90 1.6 5.8 11,149 

fluoxastrobin + tebuconazole 56 + 78 1.9 5.1 10,178 

pyraclostrobin + metconazole 112 + 45 2.3 6.4 10,885 

trifloxystrobin + prothioconazole 134 + 45 2.2 6.1 11,065 
a 
Stalk rot severity assessed on a 0 to 5 scale at plant maturity: 1 = internal 

discoloration at the stalk nodes; 2 = internal discoloration at the stalk nodes 

and in the pith; 3 = pith separation from the rind; 4 = complete discoloration 

and decay of the pith between 2 or more nodes, but not lodged; and 5 = stalk 

is lodged due to stalk rot. 
b
 Plant maturity (‘stay green’) rated on 0 to 9 scale: 0 = completely mature 

plant and 9 = a plant with completely green leaves and stalk. 
c 
Grain yield was calculated at 13% moisture. 
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Table A.6.  Least-squared means and comparisons, calculated using estimate 

statements, of stalk rot, plant maturity and grain yield in field trials with 

moderate northern leaf blight severity.  Treatment effects were not significant (P 

≤ 0.05) according to the F-test.  

Treatment groups Stalk rot
a 

Plant maturity
b 

Yield 

(kg/ha)
c
 

non-treated 2.0 5.9 9,750 

high rate DMIs
d 

2.1 5.4 10,392 

high rate QoIs
e 

1.8 5.5 10,296 

low rate DMIs
f 

2.1 5.3 10,109 

low rate QoIs
g 

1.9 5.7 10,587 

QoI + DMIs
h 

2.0 5.8 10,819 
a 
Stalk rot severity assessed on a 0 to 5 scale at plant maturity: 1 = internal 

discoloration at the stalk nodes; 2 = internal discoloration at the stalk nodes and in 

the pith; 3 = pith separation from the rind; 4 = complete discoloration and decay 

of the pith between 2 or more nodes, but not lodged; and 5 = stalk is lodged due to 

stalk rot. 
b
 Plant maturity (‘stay green’) rated on 0 to 9 scale: 0 = completely mature plant 

and 9 = a plant with completely green leaves and stalk. 
c 
Grain yield was calculated at 13% moisture. 

d 
Treatments included in the group are metconazole at 67 g a.i./ha, propiconazole 

at 123 g a.i./ha, prothioconazole at 202 g a.i./ha, and tebuconazole at 123 g a.i./ha. 
e 
Treatments included in the group are azoxystrobin at 112 g a.i./ha, fluoxastrobin 

at 67 g a.i./ha, pyraclostrobin at 112 g a.i./ha., and trifloxystrobin at 134 g a.i./ha. 
f 
Treatments included in the group are

 
metconazole at 45 g a.i./ha, propiconazole 

at 90 g a.i./ha, and prothioconazole at 45 g a.i./ha. 
g 
Treatments included in the group are pyraclostrobin at 112 g a.i./ha and 

trifloxystrobin at 123 g a.i./ha. 
h 

Treatments included in the group are azoxystrobin at 112 g a.i./ha + 

propiconazole 90 g a.i./ha, trifloxystrobin 134 g a.i./ha + prothioconazole 45 g 

a.i./ha, pyraclostrobin 112 g a.i./ha + metconazole 45 g a.i./ha, fluoxastrobin 56 g 

a.i./ha + tebuconazole 78 g a.i./ha. 
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Table A.7.  Effects of fungicides on sweet corn ear weight in 

2012 and 2013 field trials conducted in Urbana, IL.  Treatment 

effects were not significant (P ≤ 0.05) according to the F-test. 

Fungicide 

Rate  

(g a.i./ha) 

Ear weight  

(g)
a 

non-treated 206 

azoxystrobin 112 222 

Fluoxastrobin 67 227 

Metconazole 45 236 

Metconazole 67 225 

propiconazole 90 208 

propiconazole 123 218 

prothioconazole 45 213 

prothioconazole 202 221 

pyraclostrobin 112 208 

pyraclostrobin 112 230 

tebuconazole 123 198 

trifloxystrobin 123 206 

trifloxystrobin 134 216 

azoxystrobin + propiconazole 112 + 90 210 

fluoxastrobin + tebuconazole 56 + 78 210 

pyraclostrobin + metconazole 112 + 45 200 

trifloxystrobin + prothioconazole 134 + 45 237 
a 
Mean ear weight was calculated for ten ears collected from 

consecutive plants in one of the center two rows of each plot. 
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Table A.8.  Least-squared means and comparisons, 

calculated using estimate statements, of corn ear weight in 

2012 and 2013 sweet corn trials.  Treatment effects were 

not significant (P ≤ 0.05) according to the F-test. 

Treatment groups Ear weight (g)
a 

non-treated 206 

high rate DMIs
b 

211 

high rate QoIs
c 

222 

low rate DMIs
d 

221 

low rate QoIs
e 

204 

QoI + DMIs
f 

220 
a 
Mean ear weight was calculated for ten ears collected 

from consecutive plants. 
b  

Treatments included in the group are metconazole at 67 

g a.i./ha, propiconazole at 123 g a.i./ha, prothioconazole at 

202 g a.i./ha, and tebuconazole at 123 g a.i./ha. 
c  

Treatments included in the group are azoxystrobin at 112 

g a.i./ha, fluoxastrobin at 67 g a.i./ha, pyraclostrobin at 

112 g a.i./ha., and trifloxystrobin at 134 g a.i./ha. 
d  

Treatments included in the group are
 
metconazole at 45 g 

a.i./ha, propiconazole at 90 g a.i./ha, and prothioconazole 

at 45 g a.i./ha. 
e 
Treatments included in the group are pyraclostrobin at 

112 g a.i./ha and trifloxystrobin at 123 g a.i./ha. 
f 
Treatments included in the group are azoxystrobin at 112 

g a.i./ha + propiconazole 90 g a.i./ha, trifloxystrobin 134 g 

a.i./ha + prothioconazole 45 g a.i./ha, pyraclostrobin 112 g 

a.i./ha + metconazole 45 g a.i./ha, fluoxastrobin 56 g 

a.i./ha + tebuconazole 78 g a.i./ha. 

 

 

 


