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Abstract

Effective field theory is a very useful technique for understanding quantum many body

systems. We use this approach to study a certain class of critical quantum spin-1 chains

and symmetry protected topological phases of matter in two spatial dimensions.

In the first context we consider the SU(3) symmetric spin-1 chain with additional in-

teractions. We use bosonization to demonstrate that the effective field theories describing

the critical behaviour of these spin chains can be mapped to free compact boson confor-

mal field theories (CFTs) with central charge c = 2. We also describe how some predic-

tions from field theory can be verified in numerical calculations using exact diagonaliza-

tion (ED) and the density matrix renormalization group (DMRG) algorithm. In particular,

the bosonization method gives a formula for the evolution of four Tomonaga-Luttinger

liquid (TLL) parameters as a function of the lattice parameters. Using the analytic for-

mulae for the scaling dimensions in terms of the TLL parameters and matching of lowest

scaling dimensions, we numerically calculate these field-theoretic parameters and con-

firm that their evolution agrees with the prediction using bosonization.

We also tackle aspects of the challenging problem of understanding interacting topo-

logical phases. In this context, we aim to understand the effects if interactions in certain

classes of symmetry protected topological (SPT) phases of matter. We consider non-chiral

SPT phases in two spatial dimensions protected by a discrete symmetry such as ZK or

ZK ×ZK symmetry. We argue that modular invariance/noninvariance of the partition

function of the one-dimensional edge theory can be used to diagnose whether, by adding
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a suitable potential, the edge theory can be gapped or not without breaking the symmetry.

By taking bosonic phases described by Chern-Simons K-matrix theories and fermionic

phases relevant to topological superconductors as examples, we demonstrate explicitly

that when modular invariance is achieved, we can construct an interaction potential that

is consistent with the symmetry and can completely gap out the edge.

We also briefly discuss preliminary results of a numerical approach for simulating the

3 dimensional Landau Level problem. This includes a brief description of a potential

application of variational Monte Carlo to spin-orbit coupled ab initio systems.
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Chapter 1

Introduction

Given a strongly correlated quantum system, some basic properties that are important

to understand include the presence or absence of an energy gap, the presence of spon-

taneous symmetry breaking etc. One then asks for more specific information, and ulti-

mately, the complete description of the underlying low energy physics. Quite often, this

involves determining an effective field theory and using the properties of the deduced

field theory. Examples include conformal field theories (CFT), describing the set of in-

dependent critical exponents in gapless systems and topological field theories describing

the full braiding statistics in gapped quantum systems. The main goal of this thesis is to

describe original contributions to the study of critical spin-1 chains [72] and SPT Phases

of matter in 2-d (two spatial dimensions) [73]. We also include a brief description of pre-

liminary results of application of variational Monte Carlo (VMC) to the 3d Landau level

(LL) problem.

Critical spin chains and SPT phases in 2-d are quite different physical systems who

do not seem to have anything in common since the former are gapless and the latter are

gapped (in the bulk). However one of the usual signatures of gapped topological phases

of matter is the existence of boundary modes. In the field theory language these boundary

modes are necessary to define the full topological quantum field theory for the system on
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a manifold with a boundary. These boundary modes provide a way for us to theoretically

understand what is non-trivial about the physics of gapped topological phases whenever

there is a symmetry we would like to preserve. In this way one can think of the boundary

theory as encoding some aspects of non-triviality of the bulk.

For the type of gapped SPT phases that we consider in 2-d, the boundary modes are

gappless and can be described using 1+1-D CFT. Therefore in both problems that we

tackle we will encounter gapless degrees of freedoms described at long distances by 1+1-

D CFT. We provide some description of the results from CFT used as they come up. In

the next two sections we give a broader background and dicuss the specific issues that

are addressed in this thesis.

1.1 1-d Critical Systems

It is widely accepted that the critical physics of any 1-d quantum system at a continous

phase transition can be described by a 1+1 D CFT, this is reviewed for example in [15].

An interesting challenge is to deduce the CFT governing any given 1-d critical lattice sys-

tem. In this context, the entanglement entropy (EE), Renyi entropies and entanglement

spectrum [12,37,38,49,52,55,66,67,75] have proved to be useful probes. For example, the

finite-size scaling of the EE in one-dimensional critical systems, provides a precise esti-

mate of the central charge c of the corresponding CFT. Recent studies have also developed

other ways of using reduced density matrices [1,20,30,39,56,59] which reveal information

about complementary aspects of the low-energy theory (such as scaling dimensions and

operators).

Tomonaga-Luttinger liquids (TLL) in one dimension [2, 21, 30, 42, 43] arise in the de-

scription of electrons moving in one spatial dimension. The suprising result is that the

low energy excitations of a large class of gapless one dimensional systems are not fermionic

but bosonic quasiparticles. Therefore correlation functions exhibit anomalous power laws
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in space and time with interaction independent exponents. To demonstrate TLL physics,

one linearizes the dispersion close to the Fermi momentum kF. In the absence of any spin

degrees of freedom, the low-energy physics is summarized in terms of a scalar boson φ

and its canonical conjugate π as

H =
vF

2

∫
dx Kπ(x)2 + K−1 (∂xφ(x))2 . (1.1)

The bosonic field φ is compactified on a circle of radius R with the relationship K =

1/2πR2. K is called the TLL parameter and once it has been specified, it is an exercise in

CFT to write down the spectrum of operators, scaling dimensions etc. Therefore the TLL

parameter gives a complete characterization of the critical physics of an TLL liquid. The

TLL parameter can be directly calculated from the Renyi entropy [30] and other methods

involving reduced density matrices [43].

1.1.1 Quantum Spin-1 Chain

As described above the physics of a TLL with one parameter is quite well developed

and understood. An important quantity in a CFT is the central charge c, which roughly

accounts for the number of degrees of freedom. More precisely it arises as a central ex-

tension of the classical conformal algebra, the Witt algebra to the Virasoro algebra with

an extension parameter which is c > 0. To have a unitary CFT one requires c >= 1 or

a discrete set of possibilities with c < 1. The discrete possibilities with c < 1 have been

classified and are known as minimal models. The field theory in equation (1.1) has c = 1,

and one reason why the TLL theory is well understood is that the moduli space of c = 1

theories is well understood. This is discussed further in section (2.2.4). However the land-

scape of CFTs is abound with many theories with c > 1, and since there exist real physical

systems with this property [53, 69], it is important to extend our understanding to these

3



cases. In this thesis, we will consider examples of systems described by c = 2 CFTs, these

theories require four dimensionless parameters for their complete description.

In some special cases, a c = 2 CFT can be understood as a tensor product of two c = 1

CFTs: for example, the 1D Hubbard model has two TLL parameters, one for spin and

the other for charge. In general such a factorization is not possible. As an example, we

concentrate on studying the spin-1 lattice model whose Hamiltonian is,

H = ∑
〈ij〉

Si · Sj + ∑
〈ij〉

(
Si · Sj

)2
+ Qx (1.2a)

Qx = qx ∑
i

U†i
x Ui+1

x + h.c. (1.2b)

where Si is a spin-1 operator living on site i, while qx is a scalar constant. Ux is a 3× 3

matrix which in the Sz basis (−1, 0, 1) is given by,

Ux =


ω−1 0 0

0 1 0

0 0 ω

 , (1.3)

where ω = exp (i2π/3). For qx = 0, this model is the analytically solvable Lai-Sutherland

model [40, 45, 74], which serves as a useful guide for checking our calculations.

This model is of interest in the context of exotic phases such as Bose metals [58] on

three leg ladders, and the recently proposed quantum torus chain [65]. In section 2.1

we describe how this type of model arises in a Bose model on a three leg ladder at one

third filling. This family of models may also share common low-energy properties with

spin-1/2 quantum spin-tubes [17, 69]. A generalized version is the bilinear-biquadratic

model [60], whose phase-diagram includes a gapless phase and the gapped Haldane

phase [5, 35] and which has been experimentally realized in LiVGe2O6 [57].
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1.1.2 Specific Issues Addressed

In the first part of this thesis we describe a TLL parameter extraction procedure for a

c = 2 CFT that does not necessarily factorize as a product of two c = 1 theories. This is

explained in detail in chapter 2. In particular we deduce the evolution of the dimension-

less parameters which are a generalization of the TLL parameter as a function of qx that

appears in equation ( 1.2a). Our analysis depends on an expansion in terms of effective

fields close to the SU(3) point. We give some numerical evidence for why we believe our

results are correct in particular for qx < 0.5.

1.2 SPT Phases in 2-d

Since the discovery of the quantum Hall effects (QHEs) [62] a major problem of interest

in the study of many body systems is to understand and characterize different phases of

matter that are beyond the symmetry breaking paradigm pioneered by Landau. Distinct

quantum Hall systems have the same charge conservation U(1) symmetry but are dif-

ferent phases of matter as characterized by different values of the Hall conductivity. In

fractional quantum Hall systems there are no local order parameters that can be defined

to characterize the different phases that occur [79]. More recently the theoretical pre-

diction and experimental discovery of topological insulators (TIs) [36] in 2 and 3 spatial

dimensions (2d and 3d) provide more examples of systems where the symmetry break-

ing notion of Landau alone is not very useful for understanding the different phases. TIs

are gapped phases of matter (usually free electrons although bosonic versions have been

predicted to occur) which are insulating in the bulk but have gapless Dirac modes at their

boundary protected by symmetry (e.g time reversal symmetry for conventional TIs and

mirror symmetry for crystalline TIs). Topological insulators are an example of symme-

try protected topological (SPT) phases [18] which would be the focus in the second part
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of this thesis. The gapless edge modes in topological insulators are protected in the ab-

sence of interactions by symmetry. Another example of SPTs which feature in this thesis

are 2d topological superconductors (TSCs) [11] which host Majorana modes at their edge

protected by time reversal symmetry.

More generally a SPT phase of matter is a quantum system invariant under symmetry

group G, and has a gapped ground state which does not spontaneously break G. Fur-

thermore, the ground state cannot be adiabatically connected to a direct product state

without breaking G or closing the bulk gap. A final property is that the ground state

can be connected to a trivial direct product state without closing the bulk gap if G is al-

lowed to be broken. The classification of non-interacting SPT phases of free fermions has

been worked out in several related contexts using disorder properties of fermions on the

boundary [71], K-theory [44] etc. In some cases it has been explicitly shown that this clas-

sification is unstable to interactions [26]. Accordingly, an outstanding open problem is to

understand the classification of interacting SPT phases of matter.

1.2.1 Specific Questions and Techniques

Following the idea in Ref. [68] we demonstrate how modular invariance can be used to

understand interacting SPT phases in 2d systems protected by a finite unitary symmetry

group. Modular invariance is a basic constraint imposed on a CFTs derived from 1d lattice

systems [16]. At the basic level, if one considers thermal physics at finite temperature on

a periodic lattice so that Euclidean spacetime is a torus, modular invariance means that

the CFT is independent of what choice of basis is used to describe the torus viewed as

the unit cell of a lattice. A non modular invariant theory cannot exist on its own but

can be viewed as the boundary of a system in 2d. In the context we explore here, the

2d system is a cylinder. It is known [19] that SPT phases in 2d systems with a boundary

have gapless excitations localized on the boundary. We focus on non-chiral systems and

consider the non-chiral CFT describing gapless modes on one of the edges of the cylinder.
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After enforcing the symmetry, if modular invariance cannot be achieved we claim that

this implies that the edge must be viewed as the boundary of a non-trivial bulk SPT

which couples one edge to another so that the combined edges are modular invariant.

On the other hand, if modular invariance can be achieved then the edge can exist on its

own independently of the bulk and hence the other edge, and we view this as a trivial

SPT phase. Since a non-trivial SPT phase has a symmetry protected gapless edge, our

method may also be considered as a tool which can be applied to check if a 1+1 D CFT

can be gapped or not under a set of symmetry constraints. For the cases where modular

invariance can be achieved after enforcing symmetry we explicitly construct potentials

that can gap out the edge. This procedure is described fully in chapter 4.

1.3 SPT Phases in 3-d

In chapter 5 we briefly introduce numerical methods that may be useful for quantum

Monte Carlo simulations of spin-orbit coupled ab-initio system. In particular we discuss

variational Monte Carlo simulation of the 3 dimensional Landau Level problem. This is

an important problem because it is believed to be an example of a 3 dimensional topolog-

ical insulating system [50]. Therefore being able to simulate in correctly would be a good

first step to understanding what role interactions play. We discuss some preliminary re-

sults in this direction.
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Chapter 2

Spin-1 Chains

Many of the contents of this chapter are taken from what was reported in [72], however,

in some areas we try to provide some more details.

2.1 Boson Model On A Three Leg Ladder

To demonstrate how a system described by a Hamiltonian (1.2a) might arise in a real set-

ting. We consider a model that realizes a mulicomponent TLL. The most natural geometry

for doing this is a ladder (or tube), a quasi-one dimensional system made up of one di-

mensional legs which are additionally coupled in the transverse or rung direction, with

open (or periodic) boundary conditions. Fig. 2.1 shows an example with three legs, rele-

vant for modelling quasi one-dimensional compounds such as [(CuCl2tachH)3Cl]Cl2 [70]

and CsCrF4 [54], and to which recent theoretical works [17, 58, 69] have been devoted.

Following the work of Mishmash et al. [58] we consider a system governed by the
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Hamiltonian,

H = Hhop + HK (2.1a)

Hhop = −tx ∑
r

b†
r br+x̂ + h.c.− ty ∑

r
b†

r br+ŷ + h.c. (2.1b)

HK = K ∑
r

b†
r br+x̂b†

r+x̂+ŷbr+ŷ + h.c. (2.1c)

where ty and tx are the hoppings along the transverse (y) and length (x) directions respec-

tively, K is a correlated exchange on a square plaquette. The phase diagram of this model

is expected to be quite rich; here we only consider the case of tx, ty → 0 with 1/3 filling of

bosons. In this parameter regime, the low-energy theory of this model involves only one

boson per rung (column) allowing three distinct states on it. The number of bosons per

rung can not change because of the absence of hopping in the x direction.

On making a change of basis of the bosonic creation operators along the y direction, a

new basis at every x location is defined as,

|0〉x ≡
1√
3

(
b†

x,0 + b†
x,1 + b†

x,−1

)
|±〉x ≡

1√
3

(
b†

x,0 + ωb†
x,±1 + ω2b†

x,∓1

)
(2.2)

where ω = exp (i2π/3) is the same value as appearing in Eq. 1.3. The three components

can be thought of as those corresponding to a pseudospin-1 object, leading to the effective

spin-Hamiltonian. In the boson occupation number basis at 1/3 filling which we order

as {y = −1, y = 1, y = 0} (so that for example occupation on the −1 cite is given by

a three component vector with one in the first column and zero everywhere else), the

Hamiltonian on a neighboring pair of x lattice sites is represented by

HK = K
(

U−1,0 ⊗U†
−1,0 + U0,1 ⊗U†

0,1 + U1,−1 ⊗U†
1,−1

)
, (2.3)
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-ty K
-tx y= 0

y=+1

y=-1

Figure 2.1: A representative configuration of hard-core bosons on a three leg ladder with
periodic boundary conditions in the transverse or rung direction, with Hamiltonian given
by Eq. 2.1a. The hopping in the length (tx) and transverse (ty) directions respectively and
the correlated hop (K) on the square plaquette have been indicated by arrows. For tx = 0
and at 1/3 filling, the low energy model involves configurations with only with exactly
one boson per rung. The three configurations per rung, one of which has been enclosed
in a dotted rectangle, after an appropriate change of basis, are mapped to a spin-1 basis.
the form Eq. 1.2a

where U−1,0 represents b†
0b−1 and is given by

U−1,0 =


0 0 1

0 0 0

0 0 0

 . (2.4)

The other terms appearing in (2.3) can de deduced similarly based on the ordering of the

basis. A calculation of tensor products, for example in any convenient software package

reveals that under the change of basis (2.2),

HK → K
(

HSU(3) −
Qy

3
− 4

3

)
, (2.5)

where the term Qx which appears in (1.2a) transforms as Qx → Qy after applying this

change of basis globally on all lattice sites. To derive this result it may be useful to start

from the right hand side and note that HSU(3) is invariant. From this invariance it is clear

that the model on the right of (2.5) is equivalent to a model with Qy replaced by Qx, which

is the model (1.2a) with qx tuned to a particular value. We are going to work mostly in
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the spin-1 basis but the bosonic theme of the physics would be inherent in our treatment

in the next subsections.

2.2 Bosonizing the Chain at Criticality

2.2.1 Symmetries

In this section, we develop a continuum field theory description for the lattice Hamilto-

nian (1.2a), by closely following the treatment of the SU(3) point developed in Refs. [3,40].

First we consider the symmetry properties of the Hamiltonian (1.2a). We note that the

spin-1 part of the Hamiltonian (1.2a) can be written (up to a constant factor) in a mani-

festly SU(3) symmetric way in terms of 3× 3 elementary matrices Lα
β with one on row α

and column β, and zero everywhere else as

HSU(3) = ∑
〈ij〉

∑
α,β=0,1,2

Lα
β iL

β
α j. (2.6)

We can write this Hamiltonian in terms of fermionic operators by expressing Lα
β i = cα†

i cβ i,

with the constraint

∑
α=0,1,2

cα†
i cα i = ∑

α=0,1,2
nαi = 1, (2.7)

at each site i. The constraint prevents zero, double or triple occupancy on each lattice site.

It ensures that the fermionic operators like the spin operators act on a three dimensional

Hilbert space. The Hamiltonian HSU(3) conserves the particle numbers N1− N0 and N2−

N0, where Nα = ∑i cα†
i cαi. Defining the dual basis by c̃n = 3−1/2 ∑2

α=0 cαwn for n = 0, 1, 2,

and the corresponding particle numbers as Ñn = ∑i c̃n†
i c̃ni, the Hamiltonian HSU(3) also

conserves the dual particle numbers Ñ1 − Ñ0 and Ñ2 − Ñ0.
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On the other hand, the Qx perturbation in (1.2a) can be written as

Qx = 3qx ∑
i,α

Lα
α iL

α
α i+1. (2.8)

The Hamiltonian HSU(3) + Qx conserves the particle numbers N1 − N0 and N2 − N0, and

it conserves the dual particle numbers Ñ1 − Ñ0 and Ñ2 − Ñ0 both (mod 3).

2.2.2 Continuum theory

The low-energy effective field theory for the Hamiltonian HSU(3) can be developed by

noting that at low energies, only excitations close to the Fermi points propagate. The

Fermi point can be deduced for lattice fermions in the usual way by filling up states with

negative energies. The disperison relation in this case is E = −R0 cos ka0, (where a0 is

the lattice constant) and R0 is a positive constant which represents the expectation value

of lattice four fermion interactions in the mean field approximation [40]. The negative

energy states in the Brilloin zone |k| ≤ π satisfy |k| < π/a0, however, because of the

constraint (2.7), only one third of these states can be filled, therefore, kF = π/3a0. Thus

at low energies, we can approximate,

cα i ≈
√

a0[eikFxi ψRα(xi) + e−ikFxi ψLα(xi)]. (2.9)

Substituting this in the Hamiltonian and dropping oscillatory terms, the low energy the-

ory can be written in terms of the U(3) currents,

Jα
R,L β = ψα†

R,LψR,L β, (2.10)
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as

HSU(3) = πvF

∫
dx ∑

α,β
[Jα

R β Jβ
R α + Jα

L β Jβ
L α + 2Jα

R β Jβ
L α

− 2 cos(2kFa0)Jα
R α Jβ

L β], (2.11)

where vF is the Fermi velocity, which will be set to 1 henceforth. Beyond the mean field

approximation, it can be shown that the last term in Eq. 2.11 which only depends on the

charged modes is dynamically gapped. Also the third term is marginally irrelevant in the

renormalization group sense [40]. Thus the critical theory in the long distance limit is

HSU(3) ≈ HWZW = π
∫

dx ∑
α,β

[Jα
R β Jβ

R α + Jα
L β Jβ

L α]. (2.12)

We note that this is a U(3) Wess-Zumino-Witten (WZW) model and thus contains an

SU(3)1 and U(1) part [28]. The U(1) piece is precisely the charged mode which is gapped

and will be dropped later. (N.B. the above procedure can also be described instead of

dealing with the SU(3) Lai-Sutherland model, by starting with the Hubbard type model

H = −t ∑〈ij〉α[c
†
iαcjα + h.c.] + U ∑i,α 6=β niαniβ without constraint ∑α nαi = 1. This con-

straint is in fact generated dynamically and this model reduces to the SU(3) symmetric

spin model when expanded in t/U.)

Applying the same reasoning above which is valid close to SU(3) point, one deduces

the continuum approximation

Qx ≈ 3qx

∫
dx ∑

α

[
(Jα

R α)
2 + (Jα

L α)
2
]

, (2.13)

where again we have dropped the terms that only depend on the charged mode. Thus we

are considering Qx as a deformation of the Lai-Sutherland model which becomes (after

ignoring gapped degrees of freedom) in the continuum theory a marginal deformation of
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the SU(3)1 CFT.

2.2.3 Bosonization

Bosonization is a fascinating result in 1+1 D physics that relates fermions to bosons. The

general situation can be understood by appealing to the theory of affine Kac Moody al-

gebras [32, 80]. Physically, this kind of operator algebra are realized as the Laurent series

modes of conserved currents that appear in a CFT with global symmetry H, where H is

a Lie group. One can explicitly construct a representation of the theory where the fun-

damental field lives in H. This is the Wess Zumino Witten(WZW) [80] model denoted

Hk where k is an integer parameter knows as the level. In the case where the theory is

a WZW model with simply connected H, the theory factorizes into a holomorphic and

anitiholomorphic parts. The affine currents on both parts generate the whole spectrum

and the theory is integrable.

In this section we will see aspects of this structure arise in the case where the Lie group

H is U(3), although we will eventually be interested in the SU(3) subgroup obtained after

ignoring the diagonal U(1) generator which represents the charge mode.

One can introduce complex coordinates for 1+1 D space-time z = −i(x− t), and z̄ =

i(x + t). These coordinates are complex conjugates in terms of imaginary time τ = it, and

time evolution factorizes nicely so that the fields with an R(L) subscript depend only on

z(z̄) respectively and are holomorphic(anti-holomorphic). The continuum fermi fields in

Eq. (2.9) can be bosonized as follows

ψβL =
1√

2πa0
: e−i

√
4πφβL :, ψ

β†
L =

1√
2πa0

: ei
√

4πφβL :, (2.14)

where φL represents the holomorphic (left-moving) part of a free boson field. We focus on

the holomorphic parts of the theory (dropping the L subscript) with similar formulae for

the right moving fermions in terms of the anti-holomorphic part of the free boson field.
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We have introduced normal ordering of an operator O, denoted by : O :, which must be

used when two fields at the same point are multiplied together. We shall specify a pre-

scription for normal ordering below. Usually when bosonizing more that one species of

fermions, one introduces Klein factors to ensure that different fermi fields anticommute.

These Klein factors have been ignored here since they are not dynamical and do not play

a role in the Hamiltonian which is mainly what we are interested in here. The ground

state expectation value of the holomorphic part of the free boson fields satisfies

〈0|φα(z)φβ(w)|0〉 = −δαβ

4π
log
∣∣∣∣z− w

a0

∣∣∣∣ , (2.15)

where we have picked the lattice constant a0 as a short distance regulator. The kernel

appearing on the right of equation (2.15) is the holomorphic part inverse of the laplacian

operator in 1+1D. The normal ordered product is defined by

: φα(z)φβ(w) := φα(z)φβ(w)− 〈0|φα(z)φβ(w)|0〉 , (2.16)

With an implicit time or radial ordering in the first term. The normal ordered product is

holomorphic and non-singular as z→ w and we define the product

: φαφβ : (z) = lim
w→z

: φα(z)φβ(w) : . (2.17)

To define the normal ordered product with more than two terms in the product one

substracts all singularities as any two field positions approach each other. This results in

the famous Wick’s theorem for free fields. For us it is convenient to use Wick’s theorem

in the form

: F[φ]G[φ] := exp

(
∑
αβ

δαβ

4π

∫
dz1dz2 log

∣∣∣∣z1 − z2

a0

∣∣∣∣ δF

δφα(z1)

δG

δφβ(z2)

)
F[φ]G[φ], (2.18)
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where the F and G are any functionals of the bosonic fields. The subscript in a functional

derivative indicate what functional it acts on. The functional differentiation represent

contractions and exponentiation takes care of all possible contractions. The inverse of Eq.

2.18 is

F[φ]G[φ] = exp

(
−∑

αβ

δαβ

4π

∫
dz1dz2 log |z1 − z2

a0
| δF

δφα(z1)

δG

δφβ(z2)

)
: F[φ]G[φ] :, (2.19)

Applying this to (2.14) we obtain

ψα†(z)ψα(w) =
1

2π|z− w| : ei
√

4π(φα(z)−φα(w)) : . (2.20)

Taylor expanding inside the normal ordered product on the right, taking the limit as z→

w, and keeping only non-singular terms leads to a key identity, which can be regarded as

the inverse of Eq. 2.14:

: ψα†ψα : (z) =
−i√

π
∂φα(z), (2.21)

where ∂ denotes a derivative with respect to z. To understand the split into SU(3) and

U(1) WZW theories mentioned above we introduce the SU(3) and U(1) currents given

by

Ja = ∑
α,β

ψα†Ta
αβψβ, J = ∑

α

ψα†ψα, (2.22)

where Ta are generators of the SU(3) algebra. See [31] for a description of this algebra.

The U(1) piece in the boson language satisfies

J =
−i√

π
(∂φ0 + ∂φ1 + ∂φ2) . (2.23)
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The SU(3) currents associated to the Cartan sub-algebra are

H1 ∝ ψ0†ψ0 − ψ1†ψ1 ∝ ∂φ0 − ∂φ1,

H2 ∝ ψ0†ψ0 + ψ1†ψ1 − 2ψ2†ψ2 ∝ ∂φ0 + ∂φ1 − 2∂φ2. (2.24)

So we can make an OPE preserving orthogonal change of basis to introduce φ̃0,1,2 as

φ̃0 = (φ0 + φ1 + φ2)/
√

3, (2.25)

φ̃1 = (φ0 − φ1)/
√

2,

φ̃2 = (φ0 + φ1 − 2φ2)/
√

6.

In this basis the dynamics of the charged mode is now encoded in the single boson field

φ̃0. Thefore dropping the charged mode corresponds to setting φ̃0 = 0. This is indicated

with an arrow in the equations below. In this basis some of the SU(3) currents associated

with the Cartan subalgebra are simply (up to a constant factor) ∂φ̃1, ∂φ̃2, while those

associated with a choice of simple roots for SU(3) are

Jα1 ∝ ψ†
0ψ1 ∝ ei

√
4π(φ1−φ0) → ei

√
8πα1·φ̃,

Jα2 ∝ ψ†
0ψ2 ∝ ei

√
4π(φ2−φ0) → ei

√
8πα2·φ̃.

α1 and α2 together with a third root α3 are given by,

α1 = (1, 0), α2 =

(
1
2

,

√
3

2

)
, α3 =

(
1
2

,−
√

3
2

)
. (2.26)

All other roots of SU(3) can be obtained as integer linear combinations of α1 and α2, for

example α3 = α1 − α2. Similarly, the vertex operators associated with all other roots can

be obtained from operator products of Jα1 and Jα2 . These construction gives precisely the

vertex operators obtained in the purely bosonic construction of SU(3)1 where the boson
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fields φ̃1 and φ̃2 are compactifield on the root lattice of the SU(3) algebra [34]. All propor-

tionality constants can be fixed by a choice of normalization of the SU(3) generators.

We now obtain the purely bosonic description of the gapless degrees of freedom of

the spin-1 chain at criticality. The key identities are

∑
α

Jα
α Jα

α = −∑
α

∂φα∂φα

→ −(∂φ̃1∂φ̃1 + ∂φ̃2∂φ̃2), (2.27)

∑
α 6=β

Jα
β Jβ

α = ∑
α 6=β

∂φα∂φβ

→ −(∂φ̃1∂φ̃1 + ∂φ̃2∂φ̃2). (2.28)

The first of these is the square of the result obtained in Eq. 2.21. The second can be

obtained similarly, and by noting that when α 6= β there is no singularity in the products

of exponentials. Therefore we obtain the main result of this section,

HSU(3) ≈ −2
∫

dx(∂φ1∂φ1 + ∂φ2∂φ2 + antilhol),

Qx ≈ −3qx

∫
dx(∂φ1∂φ1 + ∂φ2∂φ2 + antilhol). (2.29)

where antihol denotes the antiholomorphic part. Note that the tildes have now been

dropped: the effective Hamiltonian of the spin-1 chain is now written in terms of SU(3)1

boson fields φ1 and φ2. We note that these quantities are all non-negative since we have

for any field φ,

∂φ∂φ + ∂̄φ∂̄φ = −1
2
(∂xφ∂xφ + ∂tφ∂tφ) . (2.30)

In the next section we rewrite the SU(3)1 bosonic theory in a more standard form and

we explore a certain landcape of c = 2 CFTs.
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2.2.4 General c = 2 Two component Boson theories

In the previous section, we derived the low-energy effective Hamiltonian that should

capture the critical dynamics of the spin-1 chain with the Qx perturbation. The low-

energy effective theory consists of two compactified boson fields and has central charge

c = 2. To put the effective theory in a general context, we discuss in this subsection a

generic two-component boson theory with c = 2.

For the case of the single-component Tomonaga-Luttinger liquid, the landscape of the

theory (often called “moduli space”) is well understood. Theory space is characterized

solely by a single parameter, the Luttinger parameter K or equivalently the compactifica-

tion radius R of the boson field. There is a boson-vortex duality in (1+1)d (also known

as “T-duality”) which relates the two regions K > 1 and K < 1. These regions are sepa-

rated by the self-dual point K = 1 where SU(2) symmetry is realized. With orbifolding,

theory space for c = 1 is described in terms of two axis, each describing the ordinary

free boson theory (the single-component Tomonaga-Luttinger liquid) and its orbifolded

counterpart, together with a few “exceptional cases” [4].

On the other hand, the moduli space for the c = 2 theories is more complicated.

Consider the action in 1+1 d space-time for two bosonic fields X1,2,

S =
1

4π

∫
dxdt (Gab∂µXa∂µXb + Babεµν∂µXa∂νXb), (2.31)

where µ, ν = 0, 1, for time and space, and G and B are a symmetric (non degenerate) and

antisymmetric 2 by 2 real matrix, respectively. Also the boson fields live on a unit torus

i.e.

Xa ∼ Xa + 2π. (2.32)
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The corresponding Hamiltonian is given by,

H = − 1
2π

∫
dx Gab(∂Xa∂Xb + antihol), (2.33)

Observe that the parameter B does not enter into the Hamiltonian: it is a topological term.

However, it affects the canonical commutation relations and hence the spectrum.

There are thus four independent parameters, G11, G12, G22 and B12, characterizing the

c = 2 action (2.31), as opposed to the c = 1 Tomonaga-Luttinger liquid parameterized

by a single parameter. (As in the case of c = 1, one can consider various orbifolds of

the two-component boson theory (2.31), leading to an even richer moduli space or phase

diagram [24]. )

For the case of c = 1 Tomonaga-Luttinger liquid, the duality relates the large and

small compactification radius (the Luttinger parameter). Similarly, there is a group of

duality transformations acting on the four parameters, and different values of G and B

do not necessarily correspond to different spectra [10,33]. To unveil this duality group, it

is convenient to trade the four real parameters in G and B for two complex parameters ξ

and ρ as follows

ξ ≡ G12

G22
+ i
√

det G
G22

,

ρ ≡ B12 + i
√

det G. (2.34)

These two parameters can be acted upon by independent SL(2, Z) transformations which

for ξ is given by

ξ → aξ + b
cξ + d

, (2.35)

where a, b, c, d ∈ Z and ad− bc = 1. There is a similar independent transformation for

ρ. These transformations change the parameters G and B but lead to the same spectrum.
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Effectively the target space of the boson fields corresponds to two tori, which are left

invariant by SL(2, Z) × SL(2, Z) transformations. There are two further discrete trans-

formations that leave the spectrum invariant:

(ξ, ρ)→ (ρ, ξ), (ξ, ρ)→ (−ρ̄,−ξ̄). (2.36)

When B12 = G12 = 0, we have a product of two c = 1 theories. In this case, the first

transformation sends G → G−1, which corresponds to two independent duality transfor-

mations for each c = 1 theory. Fig. 2.2 depicts a portion of the space of theories in the

ξ = ρ plane together with some points of enhanced symmetry. We anticipate that these

theories capture the critical behavior of the gapless degrees of freedom of spin-1 chains

such as the model in Eq. (1.2a).

To deduce the spectrum of these bosonic theories we switch to Euclidean signature

t → −it. We take space-time to be a torus of modulus τ = τ1 + iτ2 i.e we compactify

Euclidean space-time as x ∼ x + 2π and (x, t) ∼ (x, t) + (2πτ1, 2πτ2). One can quantize

using path integrals, the path integral yields a sum over instanton sectors. We can write

in each instanton sector

Xa
n,w = Xa

n,w, cl + Xa
q (2.37)

where

Xa
n,w, cl(x, t) = wax +

(na − waτ1)t
τ2

(2.38)

is a classical solution that winds n and w times along the two non trivial cycles on the
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torus. The partition function is

Z = ∑
n,w

e−Scl
n,w

∫
[DXq]e−S[Xq], (2.39)

where Scl
n,w is the classical action evaluated on shell for Eq. (2.38), and the quantum path

integral is over a continuous uncompactified variable Xq. The second term in Eq. (2.31) is

a total derivative for periodic functions Xq and can be neglected. Thus the integral over

Xq yields the determinant of the quadratic differential operator appearing in Eq. (2.31)

which is just the Laplacian in the spacetime index times the G matrix in the internal index

a. After applying a Poisson resummation in n for the classical contribution one finds

Z =
1

detG1/2

(
τ2

det′∇2

)c/2

∑
pL,pR

e2πiτ1(p◦p)−2πτ2(p·p), (2.40)

where c = 2,

p ◦ p = pT
L GpL − pT

RGpR,

p · p = pT
L GpL + pT

RGpR, (2.41)

and

pL =
1
2

(
G−1(n− Bw) + w

)
,

pR =
1
2

(
G−1(n− Bw)− w

)
. (2.42)

The Laplacian determinant can be regularized as det′∇2 = τ2|η(τ)|−4, where the prime

superscript indicates that the zero modes have been removed and η(τ) is the Dedekind

eta function.

Comparing with the standard formula for a CFT partition function on the torus [28],
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one can read off the spectrum of scaling dimensions

∆ = pT
L GpL + pT

RGpR + ∑
nL>0

nLNL
n + ∑

nR>0
nRNR

n , (2.43)

where the last two terms corresponds to the determinant of the Laplacian and represents

in canonical quantization harmonic oscillators indexed by a positive integer nL,R and NL,R
n

is the occupation number of oscillator nL,R.

In the representation (2.31), the SU(3)1 WZW theory can be obtained by choosing G

and B to be,

G =
1
2

2 1

1 2

 , B =
1
2

 0 1

−1 0

 . (2.44)

Here G is proportional to the inverse of the Cartan matrix of SU(3). The above choice

of parameters at the SU(3) point is consistent with that used in the numerical sections

below. The relationship to the fields used in the previous section (note they were tilded)

is simply a change of basis that diagonalizes G and rescales the diagonal elements to 1 i.e

φ1 =
1√
8π

(X1 − X2), φ2 =

√
3

8π
(X1 + X2). (2.45)

Since the terms in Eq. (2.29) correspond to the G term in the Hamiltonian (2.32) we deduce

that the continuum version of the transformation HSU(3) → HSU(3) + qxQx is

GSU(3) → GSU(3) + qx
3
2

GSU(3). (2.46)

This prediction will be tested with the help of accurate numerical calculations, discussed

at length in the next section. Fig. 2.3 depicts the portion of the space that we traverse

starting with our choice of parameters for the SU(3) model and varying G as a function
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of qx. The form of the G matrix in Eq. (2.46) is consistent with and expected from the Z3

symmetry, i.e., the conservation of Ñ1 − Ñ0 and Ñ2 − Ñ0 mod 3 – see Sec. 2.2.1. The Z3

symmetry can be thought of as a 2π
3 rotation in the root space of SU(3). In the effective

field theory this is represented by the transformation on the currents (Jα1 , Jα2 , Jα2) (with

superscripts defined in Eq. (2.26) ) as (Jα1 , Jα2 , Jα3) → (J−α2 , Jα3 , J−α1). In terms of the

boson fields φ1 and φ2 which live on the SU(3) root lattice, this amounts to

φ→ M ·φ, M =

 −1/2
√

3/2

−
√

3/2 −1/2

 . (2.47)

In the X basis the Z3 symmetry is represented by

X → M′ · X, M′ =

 0 1

−1 −1

 . (2.48)

The G matrix in Eq. (2.46) is left invariant under the Z3 transformation. i.e. we have

M′TGM′ = G. One can show generally that any symmetric matrix left invariant by M′ is

proportional to GSU(3).

2.3 Some numerical Techniques

In this section we discuss some numerical techniques 1 that complements the above study

of the perturbed SU(3) symmetric spin chain. Having described the field theory for c =

2 spin chains, we provide numerical evidence for the proposed correspondence. Our

dicussion first focus on various ways of calculating scaling dimensions (2.43), after which

we discuss the procedure for extraction of the TLL parameters Gab and Bab for a, b = 1, 2.

We numerically confirm an important prediction of the field theory, namely Eq. (2.46).

We carried out exact diagonalization (ED) and density matrix renormalization group
1The numerical results and figures were produced by Hitesh J. Changlani.
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Figure 2.2: Theory space of the two-component Tomonaga-Luttinger liquid with ρ = ξ.
The shaded region represents the “fundamental domain”; Because of the duality, different
points in the theory space that are related by the duality are isospectral. The fundamental
region is a set of representatives for all points related by the duality. I.e., starting from
points in the shaded region, by mapping these points by the duality group, the entire
theory space is covered. Some spectial points in the theory space are also marked: “SU(3)”
represents the SU(3) WZW theory, and “SU(2)2” consists of two copies of SU(2) WZW
theories, which may be realzed, e.g, as two copies of the XXX spin chain.
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Figure 2.3: Theory space of the two-component Tomonaga-Luttinger liquid with ξ =

1/2 +
√

3/2i. The point “qx = 0(SU(3))” corresponds to the SU(3) symmetric Lai-
Sutherland model. The red line with arrows represents the points in theory space tra-
versed as qx is increased from 0. (The arrows here do not indicate the renormalization
group flow.)
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(DMRG) calculations for periodic chains: finite size scaling of the energy gaps provides

estimates of the lowest scaling dimensions. For bigger open chains, we calculate the same

information from the mutual information for spatially disjoint blocks. The mutual infor-

mation measure is completely determined from the ground state wavefunction, making

it useful for situations where obtaining excited states is difficult.

The numerical calculations in this section were performed with a combination of our

own codes and the ALPS libraries [9].

2.3.1 Inferences from Exact Diagonalization and Density Matrix

Renormalization Group

For a one dimensional periodic chain of length L, the scaling dimensions xj, correspond-

ing to the jth excited state with energy Ej, are given by (to leading order),

Ej − E0 =
2πvxj

L
+

a
L log L

(2.49)

where a is a model specific constant, v is the TLL velocity obtained from the finite size

scaling of the ground state energy E0,

E0

L
= e∞ −

πcv
6L2 +

b
L2(log L)3 (2.50)

where e∞ is the energy per site in the thermodynamic limit and c is the central charge and

b is a constant. We note that the above formulae assume all excitations propagate with

the same velocity v, while for multi-component TLL, more than one velocity may appear

in general. (For more generic models, these formulae need modifications: for example see

the work of Itoi et al. [41] on a SU(2)× SU(2) model.) In our model, a naive continuum

limit and the bosonization analysis, (2.13) and (2.29), suggests that the excitations of the

system, even when qx 6= 0, should be described by a single velocity. We will take this
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as our working hypothesis. While our spectral analysis by ED/DMRG depends on this

assumption, our analyses based on the entanglement entropy and the mutual information

do not.
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Figure 2.4: Velocity of the coupled TLLs as a function of qx. The inset shows the energy
per unit length in the thermodynamic limit as a function of qx. The lines are guides to the
eye.

Fig. 2.4 shows the TLL velocity v and ground state energy per site (in the thermody-

namic limit) e∞ as a function of qx obtained by fitting our data to Eq. (2.50). Our results for

the SU(3) symmetric point are in excellent agreement with analytic results [25] and pre-

vious numerical studies [6,25,29,46]. For example, we get e∞ = 0.29679 and v = 2.107(1)

(close to the exact results of 2− ln 3− π
3
√

3
and 2π/3 respectively). Care must be taken

in comparing our results with studies which parameterize the bilinear and biquadratic

terms in the Hamiltonian 1.2a to be J cos θ and J sin θ with θ = π
4 , thus requiring an ad-

ditional factor of 1/
√

2. We have used the value of the central charge c = 2, which we
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established independently from the scaling of the entanglement entropy (EE), discussed

next.

Before we proceed, we mention an important subtlety associated with the choice of

system sizes used in finite-size scaling. In a previous DMRG study on the SU(3) sym-

metric model, Aguado et al. [6] showed the absence of the singlet ground state (scaling

dimension 0 in the CFT) for chains with lengths 6M+ 2 and 6M+ 4, where M is a positive

integer. 2 Thus, we restrict ourselves to analyzing chains with lengths that are multiples

of 6.

Central charge

We establish the relevant region in parameter space where the TLL physics is expected to

hold. For this purpose, we extract the central charge c, obtained from the scaling of the

EE of a subsystem or ”block” (readily available in DMRG) as a function of its size l. For

open chains, the analytic form for the EE, denoted by S(l), is,

S(l) =
c
6

log
( L

π
sin
(πl

L

))
+ S0, (2.51)

where S0 is a subleading correction. In Fig. 2.5 we show the profile of the EE and verify

that the c = 2 fit to it is very accurate for all qx > 0 3 (However, the EE profile has local

structure occurring on the scale of three sites, that arise due to open boundaries. These

are not captured by the leading term in Eq. (2.51). Other similar quality fits are possible

with a lower value of c: we estimate c = 1.96± 0.05). Also note that S0 is non-universal:

in this case dependent on qx alone. This explains why the various curves in Fig. 2.5 differ

despite having the same central charge.

We motivate an understanding of the TLL behavior for all qx > 0 by considering the

2This observation can possibly be better understood by extracting the scaling operators from numerics
(which need a coarse grained operator that spans three sites). This is a direction we will not explore in the
present paper.

3Practically this was checked for 0 < qx < 100
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Figure 2.5: Entanglement entropy as a function of block size (l) and its fit to the for-
mula (2.51) for c = 2 for a 150 site open chain for various qx.
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case qx → ∞ [65]. In this limit, the model is a purely classical one, with a macroscopically

large number of ground states. To see this, we write out the Qx term on a bond 〈i, j〉 in

terms of Sz and S2
z operators,

U†i
x U j

x + h.c. = 2− 3Si
z

2 − 3Sj
z

2
+

9
2

Si
z

2
Sj

z
2
+

3
2

Si
zSj

z. (2.52)

This expression indicates that the configurations | ∓ 1± 1〉 and the configurations | ± 1 0〉

(and |0 ± 1〉) are exactly degenerate and have the lowest energies possible. This means

that starting from a spin-1 ”Néel” state, for example | + 1− 1 + 1− 1〉, one can locally

replace each | + 1− 1〉 ”dimer” by a | + 1 0〉 without changing the total energy. Thus,

there is an exponentially large number of degenerate states. Adding the SU(3) symmetric

term lifts this degeneracy, but the model stays critical. Such a macroscopic degeneracy

does not exist in the spin-1/2 XXZ model in the Ising limit: this is why there is a finite

value of anisotropy at which the spin-1/2 XXZ model ceases to be critical.

Scaling dimensions and degeneracies

In order to obtain multiple excited states in the same symmetry sector (here sectors of

definite Sz), we perform a state averaging procedure with two target states in the finite

system DMRG method. A sequence of bond dimensions varying from m = 400 to m =

2000 states and periodic chains of lengths varying from 24 to 66 sites, were studied. For

the ED calculations (from 6 to 18 sites), multiple excited states were calculated to give us

a picture of the low energy degeneracy structure of this model.

A note about boundary conditions is now in order. Working with open boundary con-

ditions, favorable for DMRG, can complicate the mapping of a spin chain to a conformal

field theory: the notion of strict ”conformal invariance” is broken. Hence we do not rely

on open boundary conditions to give us a picture of the degeneracy structure of this sys-

tem. (That said, scaling dimensions can still be reliably numerically estimated from open
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chains.)

For the SU(3) symmetric model, it is analytically known that the first excited state is

18-fold degenerate in the ”conformal limit” and the second excited state is 16-fold degen-

erate. However, in finite size simulations, the conformal limit is reached rather slowly

as a function of system size. (The lattice model (2.6) flows into the SU(3)1 WZW critical

point only logarithmically fast). Thus, we rely only on trends seen in the ED results.
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Figure 2.6: Low energy manifold of the Hamiltonian (1.2a) for L = 12 (upper panels)
and L = 18 site chains (lower panels) for various values of qx. For qx = 0, shown in
panels (a),(d) the first excited state is known to be 18-fold degenerate in the conformal
limit. On increasing L, the inferred trend is that the two higher lying singlets (marked
by circles) descend to possibly join the 16-fold exactly degenerate states. (b),(e) and (c),(f)
show similar trends for qx = 0.2 and qx = 0.5: in these cases the degeneracy structure is
narrowed down to few possibilities.

For the 12 site ED results, we observe that the low energy manifold consists of a non-

degenerate singlet state, two sets of 16-fold degenerate states (a consequence of SU(3)

symmetry), followed by two degenerate singlets. As can be seen in Fig. 2.6(a),(d) on
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going from 12 to 18 sites, the two singlets descend below the second manifold of 16 states:

it is thus conceivable (though not rigorous), that these two states will join the 16-fold

degenerate first excited state resulting in a 18-fold degeneracy in the conformal limit.
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Figure 2.7: Finite size scaling of the second excited state energy gap for various qx. Two
independent DMRG calculations are performed, one each for the ground state in the Sz =
0 and Sz = 1 sectors. The fits to Eq. (2.49), along with the knowledge of the TLL velocity
give the second lowest scaling dimension.

Next, consider the effect of adding the Qx term with qx > 0. From ED, we find that

the (exact) 16-fold degeneracy of the first excited state splits: the first excited state is

now 4-fold degenerate (all corresponding to Sz = 0 states) and the next excited state

is 12-fold degenerate (corresponding to four sets of Sz = ±1 and two sets of Sz = ±2

states) states. Here too, the two degenerate singlets in the low energy spectrum descend

to lower values on increasing the length of the chain, as can be seen in Fig. 2.6(b),(e) and

(c),(f). Based on our experience with the SU(3) point, we conjecture that restoration of

conformal symmetry will result in the 4-fold degeneracy being transformed to a 6-fold

degeneracy (although other possibilities are not completely ruled out based on this data
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alone). We expect this degeneracy structure to hold only as long as the second excited

state does not become the third excited state. The field theoretic prediction (2.46) confirms

these inferences: once the second scaling dimension exceeds the value of 1, there is a

reorganization of energy scales. This occurs for qx . 0.5: the quantum numbers denoted

by {n1, n2, w1, w2} (see Eq. 2.42) corresponding to the lowest 6 states are {±1,±1, 0, 0},

{±1, 0, 0, 0} , {0,±1, 0, 0}. and the next 12 states are {∓1,∓1,±1,∓1}, {±1, 0, 0,±1} ,

{0, 0,±1, 0}, {0, 0, 0,±1}, {0,±1,∓1, 0} , {0, 0,±1,∓1}.

Fig. 2.7 shows fits to Eq. (2.49) (after taking logarithms) to extract the second scal-

ing dimension x2, for various qx (similar trends are seen for the first scaling dimension).

The corrections to scaling are found to increase on going from the qx = 0.0 to qx = 0.5:

whether these effects are genuine deviations from the TLL physics or a lack of sufficient

size to see ”true scaling” can not be definitively established within our present method-

ology. We attribute the deviations close to qx ≈ 0.5 to ”energy crossings” (i.e. changing

multiplet structure), which can cause additional level repulsions. Thus, one may need

very large sizes to get precise estimates in this region.

Despite this source of inaccuracy, the scaling dimensions vary within 10% when they

are computed using Eq. (2.49) for fixed L, over the range of lengths considered (24− 66

sites). The obtained values validate the correspondence between the lattice model and

the CFT and the general trends of their variations with qx support our main conclusions.

2.3.2 Extracting the lowest scaling dimensions from mutual

information

It is difficult to target multiple excited states in DMRG for long chains, especially for a

critical system where the entanglement entropy grows logarithmically with system size.

Thus it is extremely desirable to have a method to obtain scaling dimensions that involves

only the ground state.
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Typically this is achieved by measuring ground state correlation functions between

two distant regions. However, in the most general setting, we apriori do not know the

scaling operators on the lattice i.e. the operators whose expectations are to be measured.

To obtain generalized correlation functions between two regions (say A and B) we cal-

culate their combined reduced density matrix (for varying separations) and extract the

”mutual information”, denoted by IAB and formally defined as,

IAB ≡ SA + SB − SAUB, (2.53)

where SA,SB, SAUB is the EE of regions A, B and the union of A and B respectively. A

schematic of the geometry used for this computation is shown in Fig. 2.8(a).

The mutual information, unlike the block entanglement entropy, is not directly avail-

able in DMRG and must be calculated in a matrix product state (MPS) framework. (Prac-

tically, this is achieved by reshaping all left and right optimized transformation matrices

at the end of the DMRG calculation to get the MPS. Then, the reduced density matrix

of disjoint regions is calculated using a partial-contraction scheme discussed in Ref. [59].

More details of our calculations will be provided elsewhere.) The mutual information can

also be calculated with Monte Carlo methods in sign-problem free systems [56, 78].

We now discuss extraction of the lowest scaling dimension from IAB, for which we

briefly present known results from the literature. To do so, we closely follow Ref. [30],

whose notations we also use here.

For a CFT, Calabrese and Cardy (CC) [12] argued that the entanglement entropy of

two intervals A = [x1, x2] and B = [x3, x4] in an infinite lattice is given by,

SAUB =
c
3

log
(

x21x32x43x41

x31x42

)
+ 2s1, (2.54)

where xij ≡ xi − xj. The constant 2s1 is determined by demanding that SAUB → SA + SB
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Figure 2.8: (Color online): (a) Geometry used to compute the mutual information consists
of two 2-site blocks separated by distance r. The calculations were performed for a 150-
site chain with r < 30 (larger r data was discarded to avoid edge effects). (b) F2(x)− 1
(derived from the mutual information) vs the conformal ratio x calculated with DMRG
and fitted to the analytic form, Eq. (2.61) in the text.
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in the limit x21, x43 << x31, x42. Rewriting this formula in terms of the mutual informa-

tion (i.e. on subtracting out the single interval contributions), one gets,

ICC
AB =

c
3

log
(

x32x41

x31x42

)
. (2.55)

For a finite periodic chain, one replaces xij by the cord distance L/π sin
(
πxij/L

)
, this

results in,

ICC
AB =

c
3

log
(

sin(πx32/L) sin(πx41/L)
sin(πx31/L) sin(πx42/L)

)
. (2.56)

It is thus convenient to define the conformal ratio x as,

x ≡ sin(πx32/L) sin(πx41/L)
sin(πx31/L) sin(πx42/L)

. (2.57)

The notion of mutual information can be generalized beyond the von-Neumann entropy,

which is assigned an index n = 1, and thus denoted more generally by I(n)AB . This is

achieved by the following replacements in the CC formulae,

S1 → Sn, c→ 1 + n
6n

c. (2.58)

Furukawa et al. [30] found that the true mutual information and the CC mutual informa-

tion differ by a function f n(x),

I(n)AB − I(n)
CC
AB = f (n)(x), (2.59)

which is reparameterized as,

1
n− 1

F(n)(x) ≡ f (n)(x). (2.60)
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Calabrese and co-workers [7,13] have shown that for n > 1 and in the limit of small x,

F(n)(x)− 1 =
( x

4n2

)α
s2(n) +

( x
4n2

)2α
s4(n)

+ (higher order), (2.61)

where α is twice the lowest scaling dimension x1. The coefficients s2(n) and s4(n) are the

contributions in the small x expansion coming from the two and four-point functions of

the operator in the CFT with the lowest scaling dimension.

Two concerns when using equation (2.61) in numerical simulations are (1) it holds

only for an infinite lattice and (2) it assumes that the non-zero contributions are solely

from the operator with the lowest scaling dimension. However, for a finite system there

are contributions from all operators. Thus the lowest scaling dimension fitted is simply

an effective one trying to mimick the action of a linear combination of many (different

scaling) operators. Empirically, for an open chain of 150 sites, all the errors (systematic

and due to fitting) appear to be within 10%, which is roughly the error we also obtain

from fitting to energies.

Our results for fits to a power law for F2(x)− 1 for various qx are shown in Fig. 2.8(b).

The overall fits are reasonable, though there are local features not captured by Eq. (2.61):

just like the case of the EE, these are attributed to open boundaries. Such features are also

seen in the spin-1/2 XXZ model, studied independently by Barcza et al. [1].

2.3.3 Extraction of TLL parameters

Fig. 2.9 shows the lowest two scaling dimensions obtained from finite size scaling of

energy gaps as a function of qx. The inset shows the lowest scaling dimension from the

mutual information method. (With this metric, we were able to explore a larger range of

qx.) The general agreement (within errors) between these independent metrics confirms

our that we can reliably calculate lowest scaling dimensions. Thus we proceed to discuss
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Figure 2.9: The main panel shows the first two scaling dimensions, x1 and x2, as a function
of qx, obtained from finite size scaling of energy gaps obtained from a combination of
exact diagonalization (ED) and the density matrix renormalization group (DMRG) for
periodic chains (denoted by PBC). The c = 2 conformal field theory (CFT) prediction
is also shown. The inset shows the lowest scaling dimension obtained from the mutual
information (MI) measure (see text), computed within the DMRG/Matrix product state
framework for an open chain of 150 sites.
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the extraction method for the four TLL parameters.

Given a trial set of Gab and Bab, we calculate the lowest 18 scaling dimensions (which

need not be distinct), and denote them by xG,B
i . We then evaluate a cost function,

C(G,B) ≡∑
i
(xG,B

i − xDMRG
i )2 (2.62)

and minimize it with respect to G11, G12, G22 and B12 to obtain the best fit. We used the

Nelder-Mead simplex algorithm built into the GNU Scientific library for this purpose.

In order to confirm our inferences about the nature of the degeneracies in the low

energy manifold, we attempted to fit to two degeneracy structures for the first and second

excited states. First, we assumed that the degeneracy (denoted by gi) of the first two

distinct scaling dimensions to be (g1, g2) = (6, 12) and in the second case (g1, g2) =

(4, 12). In all cases, for qx < 0.5, we found the former gave a significantly better fit to the

CFT formulae (2.43). In fact, attempts to use the (4, 12) structure gave optimized solutions

closer to a (g1, g2, g3) = (4, 2, 12) degeneracy structure, hinting that the imposed structure

was incorrect. The quality of our fits are checked by how well the scaling dimensions

were reproduced (for the correct degeneracy structure, these agreed to within ±0.03).

The agreement of the values of the measured and expected scaling dimensions, shown

in Fig. 2.9, strongly indicates an internally consistent scenario for the lattice model to

CFT mapping. This is also equivalently seen in the extracted TLL parameters, shown in

Fig. 2.10, which are consistent with Eq. (2.46): they satisfy the expected relation G11 =

G22 = 2G12. (The relative error in the scaling dimensions propagates to these parameters:

for eg. the overall error in G11 is roughly twice the error in x2.) As expected from the

duality explained in section 2.2.4, the scaling dimensions depend on B12 up to an integer

shift. Thus we focus on a particular representation and find that B12 = 1/2 explains our

data for all qx. Finally, even though we have shown data only for qx < 0.5, the mutual

information data in Fig. 2.9 (inset) suggests the validity of the theory for larger qx.
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This concludes our explanation of our results for the spin 1 chain. In chapter 6, we

highlight the important points and discuss the outlook for our approach. In the next

chapter we switch gears and give a brief discussion of Laughlin’s argument for the integer

QHE which sets the state for our discussion of SPT phases in two dimensions.
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Figure 2.10: TLL parameters as a function of qx extracted from matching scaling di-
mensions to a c = 2 CFT. The main panel shows G11 as a function of qx and we find
G11 = G22 = 2G12. The inset shows B12 which is found to be constant. The CFT predic-
tion is shown by the solid lines.
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Chapter 3

Geometric version of Laughlin’s

Argument

This chapter draws extensively from what was reported in Ref. [73].

3.1 Quantum Hall Effect

3.1.1 Laughlin’s argument

Consider a quantum Hall system on a finite cylinder with two edges, I and II. If mag-

netic flux Φ is threaded adiabatically through the cylindrical hole, as the flux is increased

(adiabatically), starting from, say, zero flux, the Hamiltonian H(Φ) of the system is in

general not invariant under the flux insertion. However, after an increase by an inte-

gral multiple of the flux quantum Φ0, the Hamiltonian comes back to itself. That is,

H(Φ + nΦ0) = H(Φ), for any integer n. This is a symmetry of the system but it cannot

be achieved by successive applications of infinitesimal gauge transformations.

In the process of increasing the flux, an integer multiple of electric charge gets pumped

from one edge to the other due to the QHE. One can analyze this from the point of view of

the partition function for the excitation spectrum of the system. Since the transformation
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is adiabatic and the bulk spectrum is gapped it is enough to focus on the partition function

of the gapless edge excitations given by

Z(Φ) = ∑
a,b

NabχI
a(Φ)χII

b (Φ), (3.1)

where χI,II
a is a chiral contribution to the partition function for each edge and Nab are

constants. Under a large gauge transformation in general, the chiral parts of the partition

function are not invariant, χa(Φ + nΦ0) 6= χa(Φ), while the total partition function is

invariant.

This is to be expected for a system with non-trivial bulk and signals the non-conservation

of charge [14]. In the case of the quantum spin Hall effect, a similar flux threading argu-

ment [64] can be applied to show that a flux change by Φ0/2 pumps fermion number

parity and leads to spin charge separation.

In the cases we will be interested in, the total charge may not necessarily be conserved,

we look for an alternative to the flux Φ. A natural thing to do is to simply replace Φ by

the modular parameter of the torus τ. Let us explain this in further detail.

3.1.2 Modular Invariance

CFT’s are by definition invariant under a change of distance scale which can be thought

of as rescaling of the metric on spacetime. It can be shown [61] that in 1+1 D this is

equivalent to global conformal transformations. A low genus surface like the 2-sphere has

the special property that any two that are topologically equivalent are also conformally

equivalent. However at higher genus this is not the case. For tori one finds that there

is a correspondence between conformally inequivalent tori and points in the upper-half

plane. Every point τ(the modular parameter) on the upper half plane represents a torus,
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but under the modular transformation

τ → aτ + b
cτ + d

, a, b, c, d ∈ Z, ad− bc = 1 (3.2)

one gets a conformally equivalent torus. These transformations from the group SL(2, Z)

and are generated by the so called Dehn twists τ → τ + 1 and τ → −1/τ. Invariance

under the former known as the T modular transformation imposes a constraint on the

spectrum of dimensions of operators in a CFT [16], while the latter known as the S mod-

ular transformation exchanges the direction of space and time. Our proposal is to replace

the large gauge transformation of electromagnetism by modular transformations which

are large conformal gauge transformations on the torus.

The non-chiral edge theory of a SPT phase is modular invariant if symmetry condi-

tions are not enforced – without enforcing symmetries, a SPT phase can be adiabatically

connected to a trivial state. There may however be a conflict between modular invari-

ance and symmetry conditions, as the latter may forbid particular ways of combining the

left- and right-moving parts of the CFT. Our strategy to diagnose and characterize a SPT

phase is then, to impose the symmetry conditions strictly and ask if the system is invari-

ant under modular transformations or not. More specifically, we take only a single-edge

theory (edge I or II in the above notation) and ask if it can be made modular invariant. (If

we consider the two separate edges of the modular anomalous theories, they can be com-

bined in a modular-invariant way.) We achieve the strict enforcement of the symmetry by

considering a projection of the CFT by the symmetry group G. We now take a close look

at the projection procedure.

3.1.3 Orbifolding

We work in bosonic language (there are sign modifications for fermionic fields). Let S[φ]

be the action for the effective low energy modes at the edge of an SPT phase invariant un-
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der a symmetry transformation φ → g · φ, for g ∈ G (a finite group). Enforcing the sym-

metry means that we want to think of φ and g · φ as corresponding to the same physical

configuration. This is also known as gauging or orbifolding [22, 23]. In the Hamiltonian

formalism this means that we have to project the states of the theory onto G invariant

states, so that the partition function is

Z = Tr Pe−tH, (3.3)

where P = |G|−1 ∑g∈G ĝ is a projection operator satisfying P2 = P, as is easily verified.

In the path integral formalism this has the interpretation as a sum over all fields twisted

in the time direction of the torus i.e

Z = ∑
g∈G

∫
D[φg]e−S[φ], (3.4)

where the subscript g indicates that the path integral is over fields satisfying

φ(x + 2πτ1, t + 2πτ2) = ĝφ(x, t)ĝ−1. (3.5)

This is the meaning of twisting in the time direction, where the direction of the modular

parameter τ = τ1 + iτ2 in the upper-half plane represents time.

Since modular invariance is a constraint for a gapless edge theory we need to en-

sure that that the projected partition function is modular invariant. Considering that S

modular transformations interchange space and time it is clear that to achieve modular

invariance we have to explicitly include sectors in the path integral twisted in the spatial

direction. A general ansatz for the partition function of the orbifolded theory is given by

Z = ∑
(h,g)∈G2

εh
g

∫
D[φh

g]e
−S[φ], (3.6)
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where the superscript and subscript (h, g) indicates that the path integral is restricted to

fields twisted in the spatial and time directions by h and g respectively: In addition to the

boundary condition (3.5), the field also obeys

φ(x + 2π, t) = ĥφ(x, t)ĥ−1. (3.7)

where x represents spatial direction normalized to have a length of 2π. The εh
g are U(1)

phases which could arise since there is no a priori way to fix the relative amplitudes

between the different twisted sectors and one is free to choose relative phases εh
g for the

different sectors. The phase factors εh
g are also called discrete torsion [76] and can also

be viewed as different ways to assign the quantum number for the ground state in each

sector.

We consider the partition function orbifolded by the symmetry group of the problem,

and ask if the partition function is modular invariant or not. We view this as a gener-

alization of Laughlin’s flux threading argument. It is a generalization in the following

two ways: (i) it is a geometrical generalization (ii) symmetry plays an important role. We

discuss some examples below.
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Chapter 4

Applications to SPT phases

This chapter draws extensively from what was reported in Ref. [73].

4.1 K-matrix theory for Bosonic SPT phases

It is believed that the K-matrix formalism [79] of U(1) Chern-Simons theory gives a com-

plete classification of abelian fractional quantum Hall states. In this section we review the

K-matrix formalism for quantum Hall states and then specialize to bosonic abelian SPT

phases.

The low energy effective field theory for an abelian quantum hall state is given by the

Langrangian (there is no distinction between upper and lower internal indices I, J . . . )

L =
KI J

4π
εµνλaI

µ∂νaJ
λ + aI

µlI jµ. (4.1)

The aI
µ are internal gauge fields which couple to quasi particle currents jµ, and K ∈

GL(N, Z) is a symmetric matrix. The lI are components of an integer vector l specifying

the aµ charge of a quasiparticle and the set of quasiparticle charges form an integral lattice.

For states consisting fundamentally of bosons (e.g spins), all diagonal entries of K are

even integers, while for those consisting fundamentally of fermions, at least one diagonal
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entry is an odd integer. One can compute the self statistics and mutual statistics given

by θ = πlTK−1l and θ12 = 2πlT
1 K−1l2 respectively. By quantizating the theory [79] on a

closed surface of genus g, one finds that the ground state degeneracy (topological order)

is given by |det K|g. For SPT states which have no intrinsic topological order we require

|det K| = 1. By coupling to an electromagnetic U(1) field one can also compute the

quantized Hall conductance in terms of K. A change of labels l → Wl for W ∈ SL(N, Z)

accompanied by the transformation K → WTKW is a mere relabelling of quasiparticles

(a change of basis of the charge lattice), and leaves all physical properties unchanged. We

will refer to this fact as SL(N, Z) symmetry.

The effective Lagrangian describing the gapless edge modes of a fractional quantum

Hall state characterized by K can be derived using a gauge invariance argument on a

surface with boundary is given by [79]

S =
1

4π

∫
dtdx

(
KI J∂tφ

I∂xφJ −VI J∂xφI∂xφJ
)

, (4.2)

where φI ∼ φI + 2π and VI J is a positive definite (for positive energy) symmetric ma-

trix that is non-universal (we will later exploit this to tune the values of the V matrix

conveniently).

Symmetries in the K matrix formalism

We consider only unitary symmetries. A generic realization of a symmetry transforma-

tion g is given by [51]

φI →Wg
I JφI + δφ

g
I , (4.3)

where δ
g
I ∈ [0, 2π) are constants and the matrix Wg ∈ SL(N, Z) satisfies K = (Wg)TKWg.

To get a honest representation of the symmetry group G all the relations in the group must
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be satisfied. Moreover using SL(N, Z) symmetry one obtains a notion of equivalence

on the set of symmetry transformations {(Wg, δφg)}. The equivalence relation can be

summarized by stating that the transformation

Wg → X−1WgX,

δφ
g
I → X−1

(
δφ

g
I − ∆φI + Wg

I J∆φJ

)
(4.4)

results in an equivalent symmetry transformation for arbirtrary constants ∆φI and X ∈

SL(N, Z) as long as XTKX = K. The point is that this transformation is equivalent to a

SL(N, Z) relabelling of the quasiparticles and a global U(1) transformation of quasipar-

ticle operators. A trivial SPT phase is one in which a maximal set of commuting fields

at the edge can be localized (hence gapped by a semiclassical argument) by adding a

combination of potential terms of the form {Ca cos
(
kT

a + αa
)
} that are neutral under the

symmetry transformation. One can also define the notion of addition of phases by tak-

ing together multiple copies. One considers two SPT phases to be the same if they are

equivalent up to addition of a trivial phase, this is the notion of stable equivalence. The

inequivalent SPT phases are then the different inequivalent symmetry transformations

up to stable equivalence.

For 2× 2 K matrices using SL(2, Z) symmetry one can always choose for a non -chiral

bosonic phase K = σx. In this case for ZK symmetry a set of inequivalent symmetry

transformations are given by [51],

φ1 → φ1 +
2π

K
, φ2 → φ2 +

2πq
K

, q = 0, 1, . . . , K− 1. (4.5)

Also according to [51], q = 0 represents a trivial SPT phase while all others are non-trivial,

below we recover this result from a modular invariance standpoint. For an example of

how such a description could arise in a lattice system of spin 1/2 degrees of freedom see
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Ref. [48].

We will consider the even more general ZK ×ZK symmetry transformation

φ1 → φ1 +
2π

K
, φ2 → φ2 +

2π

K
(4.6)

and we will introduce flavors which amounts to taking direct sums K = σx
⊕

σx . . . (N f

copies).

4.2 Time Reversal Invariant Topological Superconductors

with additional ZK ×ZK symmetry.

In this section we consider 2d topological superconductors with Z2 ×Z2 symmetry and

later generalize to ZK ×ZK symmetry. If the microscopic details of how unconventional

superconductivity comes about are ignored, i.e the superconducting pairing potential is

taken as a background to which quasiparticles are coupled to. In the mean field approxi-

mation, one can write down the BdG Hamiltonian for the simplest model of a time rever-

sal invariant topological superconductor is 2d is which can be viewed as a copy of a chiral

p-wave superconductor together with its time reversed partner of opposite chirality [11].

This can be written as

HBdG =
1
2 ∑

p
Ψ†

p



p2

2m − µ 0 0 −∆(px + ipy)

0 p2

2m − µ ∆(px − ipy) 0

0 ∆∗(px + ipy) − p2

2m + µ 0

∆∗(px + ipy) 0 0 − p2

2m + µ


Ψp,

(4.7)
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where Ψp =

(
cp↑ cp↓ c†

−p↑ c†
−p↓

)T
, is a vector of fermion creation and annhila-

tion operators of the subscripted momenta and spins. Thus the system is time reversal

invariant and as usual in the BDG formalism particle-hole symmetric.

In the non-trivial phase a system with an edge would host gapless Majorana modes

of opposite chirality localized at the edge. At the quadratic level it is impossibe to open

up a gap at the edge without breaking time-reversal T (note we must preserve particle

hole symmetry C since it is a redundancy). If these were the only symmetries we are

interested in preserving then the classification is Z2 as can be seen by doubling the system

and observing that T and C invariant mass terms can be constructed at the edge [11].

We can consider systems with an extra Z2×Z2 symmetry where the spin up and spin

down quantum numbers are conserved mod 2 [68]. This is equivalent to conserving the

total fermion number and spin (in a particular direction) quantum number mod 2. With

this additional symmetries the classification is Z at the quadratic level [68]. With inter-

actions it is not obvious how to proceed, but it can be shown [26] that the system with 8

copies is unstable and can be gapped out due to interactions. Therefore the classification

is broken to Z8 due to interactions. We will recover this result from the perspective of

modular invariance after gauging the symmetry and later generalize to ZK×ZK symme-

try.

If we work in the continuum limit, the effective low energy theory at the edge is the

action:

H =
i

2π

∫
dx ηa

L∂xηa
L − ηa

R∂xηa
R, (4.8)

where the ηa
L,R are Majorana-Weyl fermions moving in the direction indicated by the sub-

script and we have generalized to a system with several bands by adding flavor indices
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a. The Z2 ×Z2 symmetry is generated by

ηL,R → −ηL,R. (4.9)

To uncover a larger symmetry, we assume the number of bands (copies) is even and

combine the Majorana fields in complex pairs as:

ψa = η2a−1 + iη2a. (4.10)

The Hamiltonian in terms of the Dirac fermion fields is given by

H =
i

2π

∫
dx
[
ψa†

L ∂xψa
L − ψa†

R ∂xψa
R

]
, (4.11)

this has a manifest U(N f )×U(N f )(2N f is the number of Majorana- Weyl fermions in any

particular direction) symmetry but we will only be interested in the ZK ×ZK subgroup

generated by

ψa
L → e−2πi/Kψa

L, ψa
R → e2πi/Kψa

R. (4.12)

For K = 2 this is equivalent to Eq.(4.9). The ZK ×ZK symmetry is generated by the oper-

ator (−1)
2FL

K × (−1)
2FR

K . Where FL and FR are the left and right-moving fermion number

operators respectively. In addition we impose (−1)FL × (−1)FR symmetry, combining

with ZK ×ZK symmetry requires K to be even.

This completes the discussion of our motivation for the systems that we consider, in

the next sections we give a summary of the results obtained.
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4.3 Results

4.3.1 bosonic SPTs

We rewrite the fields in Eq.(4.2 ) in terms of chiral modes φ1 =
√ r

2(φL + φR) and φ2 =√
1
2r (φL − φR) where we set V12 + V21 = 0 to obtain a non-chiral theory and r :=

√
V22
V11

.

The action is now written as

S =
1

4π

∫
dtdx

[
∂tφL∂xφL − v(∂xφL)

2 − ∂tφR∂xφR − v(∂xφR)
2
]

. (4.13)

We set the system size L = 2πv and v = 1 without loss of generality.

The quantity of interest is the gauged partition function

Z =
1

K2

K−1

∑
k1,k2,l1,l2=0

ε
(k1,l1)
(k2,l2)

Z(k1,l1)
(k2,l2)

(τ) (4.14)

with

Z(k1,l1)
(k2,l2)

= Trk1,l1

[
(k̂2, l̂2)e2πiPτ1−2πτ2H

]
(4.15)

being the partition function in the sector twisted by (k1, l1) and (k2, l2) in the spatial and

time directions respectively by the ZK × ZK group action (4.6). This can be obtained

by canonical quantization as detailed in [73]. The important properties are the modular

transformations given by:

Z(k1,l1)
(k2,l2)

(τ + 1) = e−
2πik1 l1

K2 Z(k1,l1)
(k1+k2,l1+l2)

(τ), Z(k1,l1)
(k2,l2)

(−1/τ) = e
2πi(l1k2+k1 l2)

K2 Z(k2,l2)
(−k1,−l1)

(τ).

(4.16)

We note that we have the following ZK ×ZK “ anomaly” under the relabelling of the
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lower indices

Z(k1,l1)
(k2±K,l2)

(τ) = e
±2πil1

K Z(k1,l1)
(k2,l2)

(τ), Z(k1,l1)
(k2,l2±K)(τ) = e

±2πik1
K Z(k1,l1)

(k2,l2)
(τ), (4.17)

while the lower indices are anomaly free. Since the modular action in equation (4.16)

sometimes transforms the lower indices outside the set {0, 1, . . . K − 1}, we may have to

apply equation (4.17) to land back in this set. This makes the analysis of the discrete

torsion phases complicated. The total partition function with N f flavors and ZK ×ZK

gauge invariance is given by

Z(τ) =
K−1

∑
k1,l1,k2,l2=0

ε
(k1,l1)
(k2,l2)

[
Z(k1,l1)
(k2,l2)

]N f
, (4.18)

with ε
(k1,l1)
(k2,l2)

having the same meaning as before. From equation (4.16) one determines the

following conditions for S modular invariance

ε
(k1,l1)
(k2,l2)

=

e−
2πiNf (l1k2+k1 l2)

K2 ε
(k2,l2)
(−k1,−l1)

if k1 = l1 = 0

e−2πiN f

[
(l1k2+k1 l2)

K2 − l2
K

]
ε
(k2,l2)
(−k1+K,−l1)

if l1 = 0, k1 > 0

e−2πiN f

[
(l1k2+k1 l2)

K2 − k2
K

]
ε
(k2,l2)
(−k1,−l1+K) if k1 = 0, l1 > 0

e−2πiN f

[
(l1k2+k1 l2)

K2 − k2+l2
K

]
ε
(k2,l2)
(−k1+K,−l1+K)

if k1, l1 > 0

(4.19)
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One also obtains the following conditions for T modular invariance:

ε
(k1,l1)
(k2,l2)

=

e
2πiNf l1k1

K2 ε
(k1,l1)
(k1+k2,l1+l2)

if k1 + k2, l1 + l2 ≤ K− 1

e2πiN f

[
l1k1
K2 −

l1
K

]
ε
(k1,l1)
(k1+k2−K,l1+l2)

if k1 + k2 > K− 1, l1 + l2 ≤ K− 1

e2πiN f

[
l1k1
K2 −

k1
K

]
ε
(k1,l1)
(k1+k2,l1+l2−K)

if k1 + k2 ≤ N − 1, l1 + l2 > K− 1

e2πiN f

[
l1k1
K2 −

l1+k1
K

]
ε
(k1,l1)
(k1+k2−K,l−1+l2−K)

if k1 + k2, l1 + l2 > K− 1

(4.20)

Let us analyze Eqs. (4.19) and (4.20) in general. First focus on Eq. (4.19) and observe

that when K is even

ε
(K/2,K/2)
(K/2,K/2) = eπiN f ε

(K/2,K/2)
(K/2,K/2), (4.21)

so this forces N f be even. For even K this is the only condition required while for odd K

there is no condition for consistency of Eq. (4.19) as is easily verified.
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Now Eq. (4.20) gives after few iterations

ε
(1,1)
(0,0) = e

2πiNf
K2 ε

(1,1)
(1,1) = · · · = e

2πiNf (K−1)

K2 ε
(1,1)
(K−1,K−1)

= e−
2πiNf

K ε
(1,1)
(0,0), (4.22)

which is consistent iff N f = 0 mod K.

For generic values of k1, k2, l1, l2 one obtains the following consistency condition

ε
(k1,l1)
(k2,l2)

= e
2πiNf l1k1 p

K2 ε
(k1,l1)
(k2,l2)

, (4.23)

for some integers p, s, t such that pk1 − Kt = 0 and pl1 − Ks = 0. Therefore T modular

invariance is possible iff N f = 0 mod K. It is not difficult to show that with this condi-

tion on N f and the phases, S and T modular invariance can be simultaneously achieved.

Hence we conclude that modular invariance is possible iff N f = 0 mod K.

Example: Z2 ×Z2

Equation (4.19) gives ε
(1,1)
(1,1) = eiN f πε

(1,1)
(1,1) which is possible, for non-zero ε

(1,1)
(1,1), iff N f = 0

mod 2. With these conditions (4.19) and (4.20) give

ε
(0,0)
(0,1) = ε

(0,1)
(0,0) = ε

(0,1)
(0,1), ε

(0,0)
(1,0) = ε

(1,0)
(0,0) = ε

(1,0)
(1,0),

ε
(0,0)
(1,1) = ε

(1,1)
(0,0) = ε

(1,1)
(1,1),

ε
(0,1)
(1,0) = ε

(0,1)
(1,1) = ε

(1,1)
(1,0) = ±ε

(1,1)
(0,1) = ±ε

(1,0)
(0,1) = ±ε

(1,0)
(1,1), (4.24)

with the minus signs when N f = 2 mod 4 and plus signs when N f = 0 mod 4. Therefore

modular invariance can be achieved iff N f = 0 mod 2. That is the edge theory is expected

to be unstable when N f = 0 mod 2. In Sec. 4.3.3, we will construct explicitly a potential

that gaps out the edge theory.
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4.3.2 ZK symmetry

To compare our results to that obtained for ZK SPT phases in [51], we consider the em-

bedding ZK → ZK×ZK given by k→ (k, kq) and N f = 1. To analyze this case we simply

set l1 = k1q and l2 = k2q and N f = 1 in the previous expressions above. Hence we can

write

Z(τ) =
K−1

∑
k1,k2=0

εk1
k2

Zk1
k2
(τ) (4.25)

with Zk1
k2

:= Z(k1,k1q)
(k2,k2q) and similarly for ε. Therefore in this case the large gauge anomaly is

Zk1
k2±K = Z(k1,qk1)

(k2±K,k2q±qK) = e±
4πiqk1

K Zk1
k2

. (4.26)

The T modular transformation is now given by

Zk1
k2
(τ + 1) = e−

2πiqk2
1

K2 Zk1
k1+k2

(τ), (4.27)

while the S modular transformation is

Zk1
k2
(−1/τ) = e

4πiqk1k2
K2 Zk2

−k1
(τ). (4.28)

Thus the S modular invariance condition is

εk1
k2
=


e−

4πiqk1k2
K2 εk2

−k1
if k1 = 0,

e−4πi( qk1k2
K2 −

qk2
N )

εk2
−k1+K if k1 > 0,

(4.29)
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while the T modular invariance condition is

εk1
k2
=



e
2πiqk1

2

K2 εk1
k1+k2

if k1 + k2 ≤ K− 1,

e
2πi
[

qk1
2

K2 −
2qk1

K

]
εk1

k1+k2−K if k1 + k2 > K− 1.

(4.30)

From Eq. (4.29) above, one obtains

ε0
k2
= εk2

0 = ε0
−k2+K = ε−k2+K

0 , (4.31)

if k1 = 0 and k2 6= 0, whereas

εk1
0 = ε0

−k1+K = ε−k1+K
0 = ε0

k1
. (4.32)

if k2 = 0 and k1 6= 0. Similarly, for even K and k1 = k2 = K/2 one gets

εK/2
K/2 = eπiqεK/2

K/2 (4.33)

which is consistent iff q = 0 mod 2. Finally, for other values of k1 and k2 different from

those considered above one gets

εk1
k2
= e−4πi( qk1k2

K2 −
qk2
K )

εk2
−k1+K

= e−
4πiqk1

K ε−k1+K
−k2+K

= e−
4πiqk1k2

K2 ε−k2+K
k1

(4.34)

where we have left out a self consistent further iteration. This shows that S modular

invariance is possible for even K iff q is even and for odd K there is no condition on q.
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Now we move on to analyze the T modular invariance conditions which imply

ε1
0 = e

2πiq
K2 ε1

1 = · · · = e
2πiq(K−1)

K2 ε1
K−1 = e−

2πiq
K ε1

0, (4.35)

which is self consistent iff q = 0 mod K. We now show that this condition is sufficient for

T modular invariance. When k1 6= 0 after several reiterations one gets the condition

εk1
k2
= e

2πiqk2
1 p

K2 εk1
k2

, (4.36)

where p is an integer such that k1p− Kt = 0 for an integer t whose actual value is irrele-

vant to us. So that with q = 0 mod K the phase in Eq. (4.36) is just 1.

Thus putting our results together we find that modular invariance is possible iff q = 0

mod K. I.e., the phase is trivial when q = 0 mod K and non-trivial (i.e., SPT phase)

otherwise.

4.3.3 Gapping potentials

In this section we show that there exist potentials that can fully gap our system without

explicitly or spontaneously breaking the Z2 ×Z2 symmetry iff N f = 0 mod 2. Thus we

confirm that we do indeed have a SPT phase when N f 6= 0 mod 2 and a trivial phase

otherwise.

Let us first consider the case when N f = 1, in this case a complete set of local operators

in the field theory is given by ∂Φ , ∂Θ, and cos(mΦ + nΘ + α), where ∂ denotes a generic

derivative and α is a constant. Here we have switched our notation, φ1 → Φ and φ2 →

Θ, to emphasize the dual (canonical conjugate) nature of these fields, [Φ, ∂Θ] ∼ 2πi.

The most general gapping potential terms that is Z2 ×Z2 symmetric is given by linear
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combinations of the form

cos(2mΦ + 2nΘ + α). (4.37)

Now we can do a semi-classical analysis to show that the ground state spontaneously

breaks Z2 ×Z2 symmetry once a strong enough gapping potential of the form (4.37) is

added. Without loss of generality we set α = 0, and since [Φ, ∂Θ] ∼ 2πi etc., we need to

consider independently potentials of the form cos(2mΦ) and cos(2nΘ). For cos(2mΦ) we

have that classical minima correspond to Φ = 2j+1
2m π (for a finite number of independent

j’s since Φ ∈ [0, 2π)) and the Z2 transformation Φ → Φ + π amounts to j → j + m. As

one can easily see when m = 1, for example, these classical minima transform under Z2

and a choice of any one of them would spontaneously break Z2 symmetry. The analysis

for potentials of the form cos(2nΘ) is similar and we reach the conclusion that when

N f = 1 it is not possible to gap our system without breaking Z2 ×Z2 symmetry.

When N f = 2 we have fields Φ1, Θ1, Φ2, Θ2 and the most general (Z2×Z2)-invariant

possible gapping potential is given by cos[m1(Φ1−Φ2) + n1(Θ1−Θ2) + 2l1Φ1 + 2l2Θ2 +

α] where m1, n1, l1, l2 ∈ Z. If we focus on two mutually commuting and (Z2 × Z2)-

symmetric bosonic fields Φ1 −Φ2 we can consider a gapping potential of the form

cos(m1(Φ1 −Φ2) + n1(Θ1 + Θ2)). If we consider − cos(Φ1 −Φ2)− cos(Θ1 + Θ2) we see

that the classical minima corresponds to

Φ1 −Φ2 = 0, Θ1 + Θ2 = 2π, (4.38)

since this is invariant under Z2 ×Z2 and [Φ1 − Φ2, Θ1 + Θ2] = 0 we conclude that we

can fully gap the system without spontaneously breaking the symmetry.

Most generally when N f = 2m we have fields Φi, Θi (i = 1, . . . , 2m) and the most

general (Z2×Z2) invariant possible gapping potential is given by a sum over potentials
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of the form

cos
{ 2m−1

∑
i=1

mi(Φi −Φ2m) +
2m−1

∑
i=1

ni(Θi −Θ2m)

+2l1Φ2m + 2l2Θ2m + α
}

. (4.39)

If we focus on two mutually commuting and (Z2×Z2)-symmetric bosonic fields then

a potential of the form

−
m

∑
i=1

[cos(Φ2i−1 −Φ2i) + cos(Θ2i−1 + Θ2i)] (4.40)

would be minimized classically by

Φ2i−1 −Φ2i = 0, Θ2i−1 + Θ2i = 2π, (4.41)

which is allowed since all the commutators between the different fields on the left-hand

side of (4.41) are zero. On the other hand when M = 2m + 1, by choosing a maximal set

of 2m commuting (Z2×Z2)-invariant fields (basically differences Φi−Φj etc) to localize,

one is always left with one field that cannot be localized and hence the system cannot be

fully gapped. This concludes our analysis of bosonic SPT phases with Z2×Z2 symmetry.

For general K the above analysis is easily generalized. For example, for K = 3 with

N f = 3 one can gap out the following independent, mutually commuting, and (ZK ×

ZK)-invariant combinations

Φ1 −Φ2, Φ2 −Φ3, Θ1 + Θ2 + Θ3, (4.42)
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while for K = 4 with N f = 4 one can gap out

Φ1 −Φ2, Θ1 + Θ2 −Θ3 −Θ4,

Φ3 −Φ4, Θ1 + Θ2 + Θ3 + Θ4. (4.43)

For generic K, one could consider, for example, a gapping potential ∑K−1
i=1 cos[mi(Φi −

Φi−1)] + cos[n ∑K
i Θi] that gaps K = N f mutually independent and (ZK×ZK) symmetric

combinations of bosonic fields.

4.4 Fermionic symmetry protected topological phases

In this section, we are interested in fermionic SPT phases which are relevant to the physics

of topological superconductors. We consider ZK ×ZK symmetry which is a generaliza-

tion of the Z2 ×Z2 symmetry discussed in Refs. [63, 68]. The relevant edge theory in the

absence of interactions with several flavors is described by the free Dirac action which

corresponds to the Hamiltonian in Eq.(4.11) is

S =
i

2π

∫
dxdt

N f

∑
a=1

ψ†
La(∂t − ∂x)ψLa + ψ†

Ra(∂t + ∂x)ψRa. (4.44)

where ψ†
L, ψL, ψ†

R, ψR are creation/annihilation operators of the fermionic nonchiral edge

modes that are supported by some topological bulk system. This action has a U(1)×U(1)

symmetry, which contains ZK ×ZK as its subgroup. As in the bosonic case we gauge this

ZK ×ZK subgroup to understand the corresponding SPT phases. Similar to the bosonic

case, the quantity of interest is the orbifold partition function after introducing flavors,

Z(τ) = ∑
k,l,m,n

ε(k,l,m,n)

[
Zk

l (τ)Z̄m
n (τ)

]N f
, (4.45)
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where k, l, m, n = 0, 1, . . . , K − 1 etc. denoting the spatial and temporal twists of ψL and

ψR. This corresponds to a sum over the most general combination of left and right twist-

ings of the spinors by the ZK ×ZK group action (4.12). The modular transformations

are:

Z(τ + 1) = ∑
k,l,m,n

ε(k,l,m,n)e
−πiN f (

k2−m2

K2 )
[

Zk′
l′−k′(τ)Z̄m′

n′−m′(τ)
]N f

,

Z(−1/τ) = ∑
k,l,m,n

ε(k,l,m,n)e
2πiN f (

mn−kl
K2 + k−m+n−l

2K )
[

Zl′
1−k′(τ)Z̄n′

1−m′(τ)
]N f

, (4.46)

where the bar denotes complex conjugation.

Instead of being exhaustive, we make an ansatz that the overall partition function is

holomorphically factorized so that

Z(τ) = ZL(τ)Z̄R(τ) = |ZL(τ)|2. (4.47)

In this case modular invariance is achieved as long as the left(right)-moving contribu-

tion transforms covariantly with a phase under a generic modular transformation U,

ZL(Uτ) = eiθZL(τ). So we can focus on the left-moving sector,

ZL(τ) =
K−1

∑
k,l=0

εk
l Zk′

l′ (τ). (4.48)

The condition for S modular invariance is then deduced from Eq. (4.46) to be (the

modular invariance conditions presented below are all up to an overall phase)

εk
l =


e2πiN f (

kl
K2 +

l−k
2K )

εl
K−k if k > 0

e2πiN f (
3l
2K )εl

−k if k = 0.

(4.49)
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Also from (4.46) the conditions for T modular invariance is found to be

εk
l =


e

πiNf k2

K2 εk
l−k if 0 ≤ l − k ≤ K− 1

e2πiN f

[
k2

2K2 +
1
2−

k
K

]
εk

l−k+K if l − k < 0

(4.50)

Let us analyze Eq. (4.49) in general. When K is even one gets

εk/2
k/2 = eπiN f /2εk/2

k/2 (4.51)

so this requires N f = 0 mod 4. One can check that this condition is enough for self

consistency of Eq. (4.49) while for odd K, no condition on N f is required. Equation (4.50)

gives after K iterations

ε1
0 = eπiN f

K−1
K ε1

0. (4.52)

When K is even this requires N f = 0 mod 2K while for odd K this requires N f = 0 mod

K. In general several iterations of Eq. (4.50) gives

εk
l = eπiN f (

k2 p
K2 +t− 2kt

K )
εk

l , (4.53)

for some integers p and t such that

Kt− kp = 0. (4.54)

For even K one sees that N f = 0 mod 2K is sufficient while for odd K with N f = 0 mod K

the phase in (4.53) is eπiN f t k+K
K . So one needs to consider only the case when k is even. In

this case (4.54) implies that t must be even. Hence the phase is one and we conclude that
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modular invariance is possible for even K iff N f = 0 mod 2K while for odd K iff N f = 0

mod K.

4.4.1 Z2×Z2 Example

For the case Z2×Z2, let us check that we recover the results in Ref. [68] from our analysis.

In this case Eq. (4.49) gives

ε0
1 = e

3πiNf
2 ε1

0, ε1
0 = e−

πiNf
2 ε0

1, ε1
1 = e

πiNf
2 ε1

1, (4.55)

while Eq. (4.50) gives

ε1
0 = e−

3πiNf
4 ε1

1, ε1
1 = e

πiNf
4 ε1

0. (4.56)

Clearly Eqs. (4.55) and (4.56) are consistent iff N f = 0 mod 4 which recovers the result in

Ref. [68] with N f = 2N being the number of flavors of Majorana modes. This result is,

of course, familiar from type II string theory [61] where the Z2 symmetry is generated

by the fermion number current on the world sheet and the Majorana modes corresponds

to directions in spacetime with two extra dimensions cancelling the ghosts modes that

result from gauge fixing. Thus the GSO left right assymmetric Z2 projection gives rise to

consistent modular invariant superstring theories in 8 + 2 spacetime dimensions.

4.4.2 Gapping potential perspective

To analyze the stability to interactions it is convenient to bosonize the fermionic fields as

follows:

ψL = AeiφL , ψR = AeiφR , (4.57)
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where an implicit normal ordering has been omitted on the right hand side. We would

also make use of

2φL = φ + θ, 2φR = φ− θ, (4.58)

so that the ZK ×ZK symmetry is generated by

φL → φL −
2π

K
, φR → φR +

2π

K
. (4.59)

Let us first consider the simplest case of Z2 ×Z2. With four flavors one can write

down the interaction term

V2 =
(

ψ†
R,1ψ†

R,2ψ†
L,3ψ†

L,4 + ψ†
R,1ψ†

R,3ψ†
L,2ψ†

L,4

+ψ†
R,1ψ†

R,4ψ†
L,2ψ†

L,3 + L↔ R
)
+ c.c. (4.60)

In the bosonized form this is just

V2 = 4A4 cos φ̃1
(
cos θ̃2 + cos θ̃3 + cos θ̃4

)
(4.61)

where

2φ̃1 = φ1 + φ2 + φ3 + φ4,

2θ̃2 = θ1 + θ2 − θ3 − θ4,

2θ̃3 = θ1 + θ3 − θ2 − θ4,

2θ̃4 = θ1 + θ4 − θ2 − θ3, (4.62)

using [φi, θj] ∼ iδij one sees that all the fields in Eq. (4.62) mutually commute and can

be simultaneously localized. Also one sees that there are two solutions for the classical
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minima given by

φ̃1 = πm1, θ̃2 = πn2, θ̃3 = πn3, θ̃4 = πn4, (4.63)

with either m1 odd and n2, n3, n4 even or m1 even and n2, n3, n4 odd. By using the peri-

odicity φi = φi + 2π and similarly for θi one sees that these two solutions are equivalent

and the invariance of φ̃1, θ̃2, θ̃3, θ̃4 implies that the system can be fully gapped without

explicitly or spontaneously breaking Z2 ×Z2 symmetry.

Let us now consider the case of Z4 ×Z4 symmetry as this would enable us to under-

stand the generalization to Z2K ×Z2K. In this case with N f = 8 one can write down the

following potential

V4 = ψ†
R,1ψ†

R,2ψ†
R,3ψ†

R,4ψ†
L,5ψ†

L,6ψ†
L,7ψ†

L,8

+ ψ†
R,1ψ†

R,2ψ†
R,6ψ†

R,8ψ†
L,3ψ†

L,4ψ†
L,5ψ†

L,7

+ ψ†
R,1ψ†

R,2ψ†
R,5ψ†

R,6ψ†
L,3ψ†

L,4ψ†
L,7ψ†

L,8

+ ψ†
R,1ψ†

R,3ψ†
R,5ψ†

R,7ψ†
L,2ψ†

L,4ψ†
L,6ψ†

L,8

+ ψ†
R,1ψ†

R,3ψ†
R,6ψ†

R,8ψ†
L,2ψ†

L,4ψ†
L,5ψ†

L,7

+ ψ†
R,1ψ†

R,4ψ†
R,5ψ†

R,8ψ†
L,2ψ†

L,3ψ†
L,6ψ†

L,7

+ ψ†
R,1ψ†

R,4ψ†
R,6ψ†

R,7ψ†
L,2ψ†

L,3ψ†
L,5ψ†

L,8. (4.64)

In terms of bosonized fields this is

V4 = 4A8 cos φ̃1

(
8

∑
i=2

cos θ̃i

)
(4.65)
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where

2φ̃1 =
8

∑
i=1

φi,

2θ̃2 = θ1 + θ2 + θ3 + θ4 − θ5 − θ6 − θ7 − θ8,

2θ̃3 = θ1 + θ2 + θ6 + θ8 − θ3 − θ4 − θ5 − θ7,

2θ̃4 = θ1 + θ2 + θ5 + θ6 − θ3 − θ4 − θ7 − θ8,

2θ̃5 = θ1 + θ3 + θ5 + θ7 − θ2 − θ4 − θ6 − θ8,

2θ̃6 = θ1 + θ3 + θ6 + θ8 − θ2 − θ4 − θ5 − θ7,

2θ̃7 = θ1 + θ4 + θ5 + θ8 − θ2 − θ3 − θ6 − θ7,

2θ̃8 = θ1 + θ4 + θ6 + θ7 − θ2 − θ3 − θ5 − θ8, (4.66)

since the tilded fields are mutually commuting they can be simultaneously localized with

φ̃1 = πm1 and θ̃i = πni with m1 odd and n1 even, or vice versa. Since the fields with

tildes are Z4 ×Z4 invariant we conclude that the system can be fully gapped without

breaking symmetry. It is clear that this structure can be generalized to Z2K ×Z2K with 4K

flavors, one finds the same conclusion that the system can be gapped without breaking

symmetry.
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Chapter 5

Towards a Quantum Monte Carlo

Simulation of Interacting Spin Orbit

Coupled Systems

5.1 3-D Continuum model of a Topological Insulator

Consider the many body Hamiltonian of non interacting electrons in 3-D

H = ∑
i
−
}2∇2

i
2m

+
1
2

mω2r2
i −ωσi · Li (5.1)

This Hamiltonian (5.1) can be exactly solved. The energy eigen wavefunctions exhibit

quaternionic analyticity and are a generalization of 2 dimensional Landau levels (LL). The

system exhibits time reversal symmetry and the LLs are flat with an infinite degeneracy

parameterized by angular momentum. On a system with a boundary each filled Landau

level contributes gapless helical Dirac surface states. When there is an odd number of

filled Landau levels the system is believed to be in the non-trivial Z2 class of the three

dimensional Topological insulator [50].
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When electronic interactions are turned on this system is not exactly solvable and it

remains an open question what happens to the surface states. Since this is a system in the

continuum a useful numerical technique to understand the interacting physics may be

quantum Monte Carlo (QMC). In the next section we give a brief review of the QMC tech-

nique that is inspired by the variational principle in quantum mechanics. This is called

variational Monte Carlo (VMC), and we explain how this technique may be extended to

systems where the spin degree of freedom is dynamical.

5.2 Variational Monte Carlo

VMC is closely related to Monte Carlo statistical method for evaluating an integral [27], it

relies on the variational principle in quantum mechanics which states that: for any system

described by a Hamiltonian H, and any allowable wavefunction |ψ〉, 〈ψ|H|ψ〉 ≥ E0,

where E0 is the ground state energy of the system. This imposes a lower bound on the

energy expectation value on the space of wavefunctions. The VMC technique consists

of writing down suitably parameterized sets of trial wavefunctions and minimizing the

energy expectation value over a set of parameters.

Without spin, given a trial wavefunction ψT, the variational energy expectation value

for a 3 dimensional system can be written as 3N dimensional integral

EV =

∫
d3NR |ψT(R)|2ψT(R)−1ĤψT(R)∫

d3NR|ψT(R)|2
, (5.2)

where N is the number of particles in the sytem. By the law of large numbers this integral

can be approximated as a sum EV ≈ ∑k
j=1 F(Rj), where F(R) = ψT(R)−1ĤψT(R) is the

so called local energy of the trial wavefunction and Rj are points in 3N dimensional real

space generated independently and according to the normalized probability distribution
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proportional to |ψT(R)|2. An estimate of the size of the error bar in the approximation of

the integral is σ2
F/k, where σF is the variance of F which can itself be estimated as

σ2
F ≈

1
k− 1

k

∑
j=1

(
F(Rj)−

1
k

k

∑
l=1

F(Rl)

)2

. (5.3)

The Rj’s are generated by Monte Carlo sampling such as the Metropolis method. The

Metropolis algorithm allows one to sample random possibly unnormalized probability

distributions p(R). It generates a sequence of points Rj called walkers according to the

follwoing rules [27]:

1. Start the walker at a random position R.

2. Make a trial move to a new position R′ chosen from some probability density function

T(R→ R)

3. Accept the trial move to R′ with probability

A(R→ R′) = Min(1,
T(R′ → R)p(R′)
T(R→ R′)p(R)

). (5.4)

If the trial move is accepted then R′ becomes the starting point for the next random

walk. If the trial move is rejected R becomes the starting point for the next random walk.

Intuitively if the point R and R′ are such that p(R) >> p(R′) then a move to R′ would be

rejected most of the time.

4. Return to step 2 and repeat.

The initial points generated by this algorithm depend on the staring point and should

be discarded. Eventually a diffusive equilibrium argument [27] shows that the final den-

sity of points is proportional to p(R).

71



5.2.1 VMC with Spin 1/2 degree of freedom

With Spin 1/2 degrees of freedom we have to evaluate 2N sums in addition to 3N dimen-

sional integral (5.2) i.e

EV =
∑{il}

∫
d3NR ψ(R)∗i1,i2,...iN

(R)(Ĥψ(R))i1,i2,...iN

∑{il}
∫

d3NR ψ(R)∗i1,i2,...iN
(R)ψ(R)i1,i2,...iN

, (5.5)

where each sum is over the spin up and down component and we have ommitted the trial

(T) subscript in the wavefunction. This is very inconvenient for VMC which thrives on

Monte Carlo sampling of points from a continuum. It turns out that the sums appearing

in (5.5) can be converted to integrals using a representation of the 2× 2 identity matrix

I2×2 given by

I2×2 =
1
π

∫ 2π

0
dθ|θ〉〈θ|, (5.6)

where |θ〉T = (sin θ, cos θ). As an example given a 2× 2 matrix M and a state |u〉T =

(u1, u2), using the representation (5.6), we have

< u|M|u >= ∑
i,j

u∗i Mijuj =
∫

dθu(θ)M · u(θ), (5.7)

where u(θ) = 〈θ|u〉. This is generalized to operators acting on the tensor product space

of all particles [8] so that we can write (5.5) as

EV =

∫
d3NRdNΘ |ψT(R, Θ)|2ψT(R, Θ)−1ĤψT(R, θ)∫

d3NRdNΘ |ψT(R, Θ)|2
. (5.8)

Here Θ ∈ (0, 2π)N is a continuum degree of freedom representing the spin degree

of freedom of the N particles. In this representation random points in R, Θ space can
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be generated using Monte Carlo sampling such as the Metropolis algorithm described

above.

5.3 Implementing and testing VMC with Spin degrees of

freedom in Qwalk

Some of the ideas discussed in the previous two sections have been implemented in

Qwalk which is C++ code developed by Lucas Wagner et al. Qwalk is designed for

doing large scale (up to a few hundred particles) simulations Monte Carlo on a cluster

of computers. It has been developed over a few years and tested on systems where the

spin degree of freedom is not dynamical [77]. Recently new modules have been added to

Qwalk to simulate Monte Carlo sampling of points in spatial and spin space.

We performed some preliminary tests of the new modules by simulating the 3-D Lan-

dau level problem. We have been able to correctly reproduce the ground state energy. For

example in the units } = m = ω = 1. The ground state energy of (5.1) is 1.5N where N

is the number of particles. This has been calculated for up to 10 particles with an accu-

racy of 0.00004%. While these numbers are encouraging we should mention that exact

energy eigen states where used and this greatly reduces the variance in the estimation

of the integrals according to the zero variance property of exact eigen states trial wave-

functions [27]. However, our results are still interesting and indicates that the integrals

over the continous spin degree of freedom is a promising idea. These trend of ideas can

potentially be used to understand what happens to the 3-D Landau level system when in-

teractions such as the Couloumb interaction ∑i<j− e2

|ri−rj
are added. More broadly it may

be used to simulate ab initio quantum mechanical systems where spin degree of freedom

cannot be ignored.
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Chapter 6

Conclusion

6.1 Summary

In conclusion, we have developed an analytic correspondence between c = 2 free boson

theories and microscopic spin-1 models, using bosonization techniques. For the particu-

lar form of Hamiltonian considered (Eq. (1.2a)), we made a prediction for the value of the

Tomonaga-Luttinger liquid (TLL) parameters as a function of qx, the parameter charac-

terizing the lattice model.

To build evidence on the numerical front, we performed exact diagonalization (ED)

and density matrix renormalization group (DMRG) calculations to obtain the lowest scal-

ing dimensions from the energetics of the system: a scheme feasible for short periodic

chains. However, our use of the mutual information entropy between disjoint blocks,

calculated solely from the ground state, provides a promising route to extend these cal-

culations to long chains.

Using this numerical data and the mapping from spin-chains to c = 2 theories, we

deduced the value of all four TLL parameters as a function of qx. We expect our analyses

to apply to more general situations, for example the model in Eq. (1.2a) with non zero

qy. In future work, we aim to extend these ideas to calculate multiple low-lying scaling
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operators and dimensions of the c = 2 CFT using the correlation density matrix [20, 59].

Our broader objective is an effort to develop generic methods to map lattice models to

multi-component field theories. We anticipate that this multi-scale modelling approach

will be useful for understanding the physics at very large length scales: sizes that may

not be directly accessible in numerical simulations. Once we have built confidence in the

mapping between the lattice and continuum descriptions, we can use the (often known)

predictions of the latter.

We have also proposed and developed a theoretical framework that allows us to de-

termine if a given (edge) CFT can be gapped out or not without breaking a given set of

symmetries. It is based on the modular invariance/non-invariance of the CFT with sym-

metry projection; it makes use of a way any 2D CFT couples to the background geometry

(complex structure of the torus) and hence can be applied to a wide range of systems.

There are a number of merits to our approach; It does not rely on the presence/absence

of a conserved U(1) charge such as particle number. Unlike topological invariants built

from single-particle electron wave functions, our method does not rely on single-particle

physics and hence is applicable to strongly interacting systems. It is simpler and more

convenient than actually looking for all possible perturbations that can potentially gap

out the edge theory on a case -by- case basis. For 2D SPT phases that have non-abelian

quasiparticles there is no K-matrix formulation but our approach can be extended to such

situations. For example, one could consider orbifolds of Wess-Zumino-Witten(WZW)

models with discrete torsion.

We have demonstrated that our scheme indeed works for bosonic and fermionic SPT

phases with ZK ×ZK or ZK symmetry. In particular, we have checked explicitly that for

the cases when the modular invariance is achieved, one can find an interaction potential

that can gap out the edge theory without breaking symmetry.

The validity of our approach based on the modular invariance is further supported by

a complementary point of view proposed in Refs. [47, 48]. In various cases, our method
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based on the modular invariance and the arguments in Refs. [47,48] that makes use of the

fractional statistics in the bulk also lead to the same conditions for the “gappability” of

the edge theory.

One immediate generalization of our work is to apply our method to symmetry-

enriched topological (SET) phases, i.e., topologically ordered phases that have a set of

symmetries. For example, our calculations for Bosonic SPT phases can be directly gener-

alized to the case with |det K| > 1, which has ground state degeneracy. We have checked

for a few simple cases with |det K| > 1 that when the modular invariance is achieved we

can construct an interaction potential to gap out the edge theory. Other interesting future

work would be to consider SET phases with non-abelian symmetry and(or) non-Abelian

statistics.

As discussed in the introduction, modular invariance is a global anomaly in CFT. On

the other hand, it is interesting to note that in CFT a local anomaly associated with rescal-

ing invariance occurs proportionately to the total central charge c. It is also instructive

to note that in string theory conformal invariance is a constraint and c is cancelled by

working in a critical dimension. In condensed matter and statistical physics applications

conformal invariance is a real symmetry (i.e., not a constraint) and the appearance of a lo-

cal anomaly is a quantum effect which does not spoil the consistency of the theory (since

there is no associated dynamical gauge degree of freedom).

– We have focussed entirely on modular (non-)invariance on the torus. One may won-

der if there are other constraints that come about at higher genus due to modular invari-

ance and unitarity. Examples on torodial compactifications of string theory are explored

in Ref. [76], where it is shown that modular invariance and unitarity at genus 2 enforces

more constraints on the phases with the various possible ways of achieving modular in-

variance corresponding to elements in the second group cohomology H2(G, U(1)) for

a finite Abelian group G. Perhaps one can make a connection between modular non-

invariance and group cohomology as well, in particular the third cohomology which is
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relevant for the classification of 2D SPT phases.

Finally we gave a brief preview of using quantum monte carlo to simulate spin orbit

coupled systems in particular the dimensional Landau level problem.
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