
c© 2015 by Fan Yang. All rights reserved.

OPTIMIZING THE POX CONTROLLER WITH DATABASE SYSTEMS

BY

FAN YANG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Advisor:

Associate Professor Philip Brighten Godfrey

Abstract

Software-defined networking (SDN) brings new opportunities and challenges to the current design of

networks and how networks can be managed. In comparison to the traditional network architecture, SDN

simplifies the control of the network by using a logically centralized controller and a set of OpenFlow switches.

Network administrators can program OpenFlow switches to behave like routers, firewalls, load balancers, etc.

by building different kinds of applications on top of the controller. On one hand, the controller maintains the

connection with each OpenFlow switch and pushes down any instructions specified by the control application

to the network. On the other hand, the controller provides a centralized view of the network state to control

applications, and control applications can make intelligent decisions based on the overall state of the network.

POX [4] is one of the early popular SDN controllers. In this project, we studied the key design decisions

made in POX and optimized the current implementation by building a new database module. Topology

dependent applications are now supported by both in-memory and persistent storage. Since the database

component updates the changes of the network in the database in real time, it also servers as the key step

to connect the Ravel project to the actual software OpenFlow switches. Ravel [14] is a database based

controller platform. After starting Ravel, all the network elements on Mininet need to be mapped into the

PostgreSQL database and constantly being monitored. This can be easily achieved using POX with the

database component enabled. Once the connection between the network and the database is established, a

SDN can be managed within the database by Ravel. We tested the database functionalities and evaluated its

performance on Mininet. From the test result, we conclude that the overhead of retrieving link and switch

information from the database is reasonably small.

ii

To Father and Mother.

iii

Acknowledgments

This project would not have been possible without the support of many people. I would like to gratefully

and sincerely thank my advisor, Dr. Brighten Godfrey, for his guidance, understanding, and continuous

support during my study at UIUC. I would also like to thank Anduo Wang, Chi-Yao Hong, and Mengjia

Yan for sharing their expertise, great insights, and many valuable advice on this project. Finally, I would

like to thank my parents for their love, support, and unwavering belief in me.

iv

Table of Contents

Chapter 1 Introduction . 1

Chapter 2 POX Design Overview . 3
2.1 Architecture . 3
2.2 POX core object and event handling . 3
2.3 Communicating with OpenFlow switches . 5

2.3.1 Datapaths . 5
2.3.2 OpenFlow events . 5
2.3.3 Sending control messages . 6

Chapter 3 Customizing Topology in Mininet . 7
3.1 Design principles . 7
3.2 Pros and cons . 7
3.3 Creating the testing environment . 8

Chapter 4 Connecting POX with Database . 10
4.1 Current limitations . 10
4.2 Design overview . 11
4.3 Implementation details . 12

4.3.1 Mapping a simple network . 12
4.3.2 Adapting the routing module . 16

4.4 Evaluation . 16
4.4.1 Testing connectivity . 17
4.4.2 Testing the database overhead . 17

4.5 Discussion . 18

Chapter 5 Related Work . 19
5.1 Database used in Ravel . 19
5.2 Database used in Onix . 19

Chapter 6 Conclusion and Future Work . 21
6.1 Conclusion . 21
6.2 Future work . 21

6.2.1 Changing flow table by SQL queries . 21
6.2.2 Computing routes inside the database . 22

References . 23

v

Chapter 1

Introduction

Computer Networks are complex and difficult to manage. They are composed by all different types

of equipments each running different sets of distributed protocols. Network administrators often face the

problem to configure and maintain each individual network device with its own standard, and adjust them

to work together through different interfaces [8]. Software-defined networking (SDN) aims to abstract away

the low-level details that are specific to each different network device and provides an uniformed control

over different network components [6]. SDN has two distinct characteristics. First, SDN explicitly separates

the control plane (which decides how to handle the traffic) from the data plane (which forwards the packets

with respect to the decisions made by the control plane). Second, SDN consolidates the control plane by

having a centralized controller over multiple data plane elements. The controller communicates with network

devices via a well-defined API called OpenFlow [13]. And by installing rules sent by control applications, the

controller is capable to instruct the OpenFlow switch to behave as a router, a switch, or a firewall as needed.

SDN inspires more modular and extensible design of the network architecture and provides opportunities to

invent new control applications.

The controller serves as the brain of SDN, and many efforts (e.g POX [4], Floodlight [1], Beacon [7], and

Ravel [14]) have been made in designing a good SDN controller. In this project, we studied the architecture of

POX and extended the current design by adding a new database component to support topology dependent

applications and to facilitate Ravel’s network monitoring. In the current implementation, each POX module

needs to maintains its own copy of the network state via data structures such as lists and maps in memory.

The network state is replicated and less efficiently maintained at multiple places. Developers are forced

to start by searching for every corresponding event in order to handle the topology update coming from

different network elements, rather than directly focusing on application logic. Moreover, if the network

state can be made available within the database, users can choose to use Ravel’s vertical and horizontal

orchestration services to manage SDN with standard SQL queries. To improve the existing POX framework

and to support Ravel features, we proposed to include a database component in the POX controller. The

1

database component is developed as a separate module and can be easily plugged into the POX controller.

With the database functionality enabled, POX will be more resilient to controller failure and richer database

based management schemes can be applied to manage SDN.

2

Chapter 2

POX Design Overview

A large part of POX’s development is based on NOX [9], which proposed the idea of an operating system

for networks. NOX used the analogy to argue that managing networks using a centralized controller is

like providing an operating system for running different programs and applications. In the past, programs

were written in assembly languages provided with no abstraction to memory, storage, or communication.

Programmers had to handle every low level detail in order to use system resources. Like in today’s network,

devices are vendor specific and each device requires separate configuration to plug them into the network.

What NOX offers for the network is similar to what an operating system offers for a personal computer. NOX

defines a network API for developers to program those low-level network devices using high-level policies.

POX is a python wrapper for the original NOX controller. It implements a SDN controller and provides

a well-defined API for programmers to develop control applications on top of the controller. This chapter

explores the key design decisions made in POX and the basic concepts of the OpenFlow protocol.

2.1 Architecture

POX provides an extremely flexible and extensible framework, which allows new user defined applications

to be easily built on top of it and be compatible with other existing modules. Figure 2.1 illustrates the basic

design of the POX controller. POX does not manage the network itself, instead it provides the connection

with all the OpenFlow switches and serves as a network OS. Developers have the flexibility to define their

own control applications such as a traffic monitor or a load balancer on top of POX.

2.2 POX core object and event handling

To support asynchronous communication among different components, POX has a special group of classes

that are commonly known as the core object. Together with the feature of raising events and setting up

event handlers, POX provides a convenient way for different components to interact with each other in POX.

3

Figure 2.1: The POX controller architecture

This design is also known as publisher and subscriber scheme.

Instead of using import statements to have one component import another so that they can interact,

components will ”register” themselves on the core object, and other components can query the core object

if an interesting event happens. This allows any old or new module to be easily added or removed without

affecting all other components. For instance, a control application can include the following to send and

receive notifications from other modules:

Listen to dependencies

def startup ():

core.openflow.addListeners(self, priority=0)

core.openflow_discovery.addListeners(self)

core.host_tracker.addListeners(self)

core.call_when_ready(startup, (’openflow’,’openflow_discovery’))

Attach to the core

def launch ():

core.registerNew(db)

4

If any of the listed dependencies cannot not be resolved during POX’s startup phase, an error message will

be displayed and POX will be waiting for the missing component.

2.3 Communicating with OpenFlow switches

One of the primary purposes of POX is to provide a platform that can support network developers to

easily build OpenFlow control applications. In order to facilitate programmers to focus on the application

logic rather than low level details of message passing, POX designed the openflow component to provide the

abstraction for control applications. Applications can then set up event handlers or send messages directly

through POX without knowing the details about how to talk to any of the switches.

2.3.1 Datapaths

OpenFlow uses DPID, which stands for data path identifiers, to identity each unique connection with

an OpenFlow switch. Internally, Mininet assigns a DPID to each switch and is communicated to the

controller during handshaking by ofp switch features. We converted DPIDs to integer identifiers to store

information about OpenFlow switch in the Postgres database.

Each datapath between the controller and the switch is a bi-direction channel represented by a connection

object . When messages coming from the switch and received at the controller, they show up as events.

The application sitting on top of the controller should set up event handler to specify what to do with

this type of event. When application wants to send instructions to the switches, they typically construct a

of.ofp flow mod message and invoke the connection.send method to send control message to the network.

2.3.2 OpenFlow events

An OpenFlow event will be raised in response to any updates on the network, or more specifically, in

response to OpenFlow switches. It contains many different attributes that developers can use to retrieve the

root cause or sender information about this event. For instance, if we want to map the host status into the

database, we can set up event handlers like the following to monitor hosts on the network in real time:

def _handle_HostEvent (self, event):

dpid = dpid_to_str(event.entry.dpid)

port = str(event.entry.port)

macaddr = str(event.entry.macaddr)

5

if event.join:

add host in db

if event.leave:

remove host in db

if event.move:

update host in db

2.3.3 Sending control messages

OpenFlow messages allow control applications to program how the switches should react with each incom-

ing packets. For instance, in POX’s routing module, after the path computation is finished, the routing mod-

ule will construct a ofp flow mod message, fill in the payload of the message, and call connection.send(msg)

to install the forwarding rules at each switch. In the payload of the message, users can specify if a flow

should be added, deleted, or modified in the forwarding information base, sets how long this rule is valid,

define how packets are matched against a group, etc.

6

Chapter 3

Customizing Topology in Mininet

We used Mininet to test the performance of the database module on simulated networks. To better

understand and interpret the experimental results, we studied the advantages and limitations of this tool,

and summarized our key findings in this chapter.

3.1 Design principles

Mininet [2] is a lightweight SDN prototyping environment. In contrast to testbed or virtual machines,

Mininet only requires local resources, i.e. a laptop, to simulate a SDN environment. As discussed in [8], this

tool has been performed surprisingly well since the early days for researchers and developers to invent and

test new network protocols. The underlying principle utilizes the two linux features: network namespaces

and virtual Ethernet pairs [12]. Mininet creates a virtual network by placing host processes in network

namespaces so that each host would have its own IP, ports and interface. Mininet connects the simulated

controller, switch, and hosts by virtual Ethernet paris. If a packet is sent from a host h1 to the other host

h2, in the Mininent simulation, this is equivalent to an ICMP echo request was sent out from h1’s private

eth0 network interface and enters the kernel through a virtual Ethernet pair. The request is then processed

by some switch in the root namespace and exits to h2 through a different virtual Ethernet pair [11]. Mininet

is packaged into a virtual machine and supports both a command line interface (CLI) and an application

programming interface (API).

3.2 Pros and cons

The main advantage for Mininet is that it supports rapid prototyping SDN applications on a single laptop.

Mininet is distributed as a virtual machine which comes with all dependencies already installed. Mininet also

provides great flexibility in creating and designing the network environment. Specifically, Mininet includes

many commonly used network topologies, supports external controllers, and allows users to adjust link

bandwidth and other network parameters.

7

However, since Mininet only provides the lightweight virtualization that runs on a single host, it can

support up to a few hundred of nodes. The size of the network is limited so performance evaluation on large

networks will be affected. The salability issue is discussed in detail in both [12] and [5], where the author

pointed out that the setup time can go up to 70+ seconds for a linear topology with 100 nodes. In our

experiments, we noticed a significant long delay after the number of nodes is above 80 for a linear topology.

Furthermore, Mininet does not provide guarantee that a packet will be scheduled promptly when issued

from a host when it is under high load. This could be a reason that caused some of the ping test returned

unreasonably large round trip time after the network size goes up to 80+ nodes. Mininet also has minor

issues where it’s simulated forwarding in software requires O(n) lookup time, but in hardware, this can be

done within O(1) time complexity.

3.3 Creating the testing environment

Users can interact with Mininet by the CLI in an ad-hoc way to create and to test the applications on a

SDN network. The command line interface allows user to compactly specify which controller the network

will be connected with, which topology the user is intreated in using, and the size of the network in the

virtual machines terminal. The following commands creates a linear topology with 3 nodes in Mininet using

the POX controller:

sudo mn --controller=remote,ip=192.17.160.85,port=6633 --mac --topo=linear,3

Mininet also supports python API to build customized networks. In the virtual machine that contains

Mininet, there is folder named custom that contains examples of customized topologies. The above linear

topology can be created by following code. Users have more freedom to express what actions should be

performed by the network elements with the python API.

from mininet.net import Mininet

from mininet.topo import LinearTopo

from mininet.node import RemoteController

from mininet.cli import CLI

from mininet.util import dumpNodeConnections

myTopo = LinearTopo(10)

net = Mininet(topo=myTopo,controller=None)

8

net.addController(’remote’, controller=RemoteController, ip=’192.17.160.85’, port=6633)

hosts = [None]*10

for i in range(10):

hosts[i] = net.hosts[i]

hosts[i].setIP(’10.’+str(i+1)+’.1.’+str(i+1))

#print "Host", hosts[i].name, "has IP address", hosts[i].IP()

net.start()

print "Dumping host connections"

dumpNodeConnections(net.hosts)

CLI(net)

net.stop()

The above code creates a linear topology with 10 hosts and assigned IP addresses to them. We created

customized testing environment for evaluation in similar ways. Figure 3.1 shows the output network created

by the above code followed by a ping test after the routing rules are installed.

Figure 3.1: A customized network with 10 hosts

9

Chapter 4

Connecting POX with Database

In this section, we focus on building the connection between the POX controller and the database. We iden-

tified several modules, such as forwarding.topo proactive, forwarding.l2multi, and misc.gephi topo,

etc. that all need to refer to the topology of the network. Currently, each of these modules needs to start by

creating maps and lists to maintain switches, links, and hosts information. This resulted in code duplication

and developers are forced to start by searching for each corresponding event to handle topology updates

rather than directly focusing on the application logic. Furthermore, if the controller is abruptly shut down,

the entire network state will be lost. We developed a new database module to provide a persistent storage

for POX to keep track of the current state of the network. To illustrate how topology dependent modules can

use the database module, we modified the original forwarding.topo proactive module to read topology

information from the database instead and then computes the routes for any given two end points. We mea-

sured the overhead introduced by the database module by recording time spent on each database operation

and detailed the result in the evaluation section.

4.1 Current limitations

There are mainly two potential drawbacks without using a database as a backend storage in POX. The

first problem is that the network state needs to be stored separately in every module that depend on it.

In other words, each new module that relies on topology updates has to first create it’s own copy before

implementing any module specific code. A more space-efficient and modular scheme would be to store the

network state at one place in a persistent storage, and all the other modules that need to use topology

information can then retrieve it using commonly used database operations. Having the network topology

available in the database also enabled richer database based management schemes to be applied in SDN.

Specifically, the Ravel system can be used here to coordinate SDN applications with standard SQL queries.

Furthermore, it can be problematic when the controller is abruptly shutdown, in which case the entire

network state is lost. To better handle controller failures, one strategy is to keep a checkpoint and constantly

10

update it to reflect the latest state of the network. If unexpected failure occurs, the controller can retrieve

the most recent information from the database and resume to learn new updates. The database module

is able to constantly detect topology change by listening to specific events from POX, and updates the

corresponding information in database.

4.2 Design overview

Since POX already provides an extensible framework to monitor and control OpenFlow switches, the

database functionality can be added into the controller by using the API. We also want to keep the database

module compatible with all existing components so topology dependent applications can choose which im-

plementation suits better for their needs. At first glance, we can embed the code into openflow.discovery,

openflow.topology, and host tracker.host tracker wherever it logs the link, switch, or host changes of

the network and prints it to the console. For example, we can change the log operations in openflow.discovery

to database updates.

if link not in self.adjacency:

self.adjacency[link] = time.time()

log.info(’link detected: %s’, link)

change to insert

cursor.execute("INSERT INTO link(in_switch,in_port,out_switch,out_port) VALUES

(%s,%s,%s,%s)",(l.dpid1,l.port1,l.dpid2,l.port2))

self.raiseEventNoErrors(LinkEvent, True, link)

else:

Just update timestamp

self.adjacency[link] = time.time()

Another approach is to bundle all the database operations into a new module and plug the module into

POX. Having a separate module has several advantages. First of all, it leaves the original implementation

of the POX modules untouched. Since we are building a separate module on top of POX using its standard

API, other modules who want to use the database component only need to include the module in the

command line when starting the controller. Moreover, developers can switch between the two according to

different requirements. Due to better modularity and maintainability of this approach, we implemented a

database module named ext.db and placed it under the ext directory which contains all the user defined

11

extensions in POX. The design overview is illustrated in figure 4.1. We now inserted an other module

between the application and the POX core layer to implement the database functionality. Network events

will be propagate to the database module through the POX core, and existing applications can then refer

to them by performing SQL queries.

Figure 4.1: Design overview

4.3 Implementation details

In this section, we present the implementation of the database component by first looking at a demo with

a simple network to check the basic functionalities. Then, we will discuss how other applications in POX,

such as a proactive routing module, can make use of the database module and tested the database overhead

on Mininet.

4.3.1 Mapping a simple network

The following topology shown in figure 4.2 is used to demonstrate the basic functionalities of the database

component. The simple network consists of 3 hosts each connecting to a switch in a liner fashion.

We begin by connecting to the Postgres database and create tables for the three basic network elements:

switch, host, and link. Those operations: obtaining a cursor, setting automatic commit, and table creation

will need to be completed at the time when the controller starts. We illustrated the initialization of the

database module in the following code:

class db ():

12

Figure 4.2: Example topology

def __init__ (self):

#Connect to Postgres

conn_string = "host=’localhost’ dbname=’testdb’ user=’fanyang’ password=’’"

conn = psycopg2.connect(conn_string)

conn.set_isolation_level(psycopg2.extensions.ISOLATION_LEVEL_AUTOCOMMIT)

global cursor

cursor = conn.cursor()

log.info("Connected to Database!\n")

cursor.execute("CREATE TABLE switch(id serial primary key, switch int, port int);")

...

Once the tables are created, all the network elements will be stored in Postgres and users can easily lookup

their states from the database.

Since POX uses publisher and subscriber scheme to manage the interaction among components, we need

to subscribe the database module to POX’s core object, and setup event handlers to receive the topology

updates after they are detected by the controller. Specifically, we are interested in listening to ConnectionUp,

ConnectionDown, LinkEvent, and HostEvent. The following code segment shows how to set up a handler

to detect newly joined switches and save their status into the database. Other event handlers can be set up

in a similar way.

def _handle_ConnectionUp (self, event):

s_dpid = dpid_to_str(event.dpid)

log.info("Switch Added: " + s_dpid)

ports = event.connection.ports.__str__();

log.info("Ports: " + ports)

13

Figure 4.3: The initial topology in pox

#Add all ports attached to this switch

for val in event.connection.ports.itervalues():

if "-eth" in val.name:

log.info("Port number: " + str(val.port_no))

port_no = str(val.port_no)

cursor.execute("INSERT INTO switch (switch,port) VALUES (%s,%s)",(s_dpid,val.port_no))

After finishing setting up different event handlers for monitoring different events on the network, we can

test the database module with the sample network. We expect to see that the corresponding state is mapped

into the database after the network has been created by Mininet. Furthermore, if there is any changes in

the network, such as a link goes down or a new switch shows up, that event should be immediately reflected

in the database as well.

Let us verify the functionalities with the simple network topology showed in figure 4.2. Given the topology,

we can expect to see 3 switches and 3 hosts are stored in the switch and host table respectively, and 6 links

(each line represents two directions, and there are 3 in total) stored in the link table. Part of the log

information for the initial topology from the POX controller is shown in figure 4.3. The green column shows

which source module gives the output that is shown in black. We can see that db detects switch, link,

and host updates of the network in the same way as open flow.discovery and host tracker detects the

changes of the network. The output of the database module for the initial topology is shown in Figure 4.4.

14

Figure 4.4: The initial topology in database

Figure 4.5: Link failure in pox

Figure 4.6: Link failure in database

15

From the three tables, we can see that all the information is captured correctly into the database.

Let us move on to examine what will happen if there is a change in the network. If we turned down the

link between s1 and s2 to simulate a link failure, we can see that this change is detected immediately by

the controller as shown in figure 4.5. So now if we examine the link table in the database, which is shown in

figure 4.6, the record for that link should also be deleted. After comparing the outputs of both situations,

we can conclude that the network is correctly mapped into the database by the db module.

4.3.2 Adapting the routing module

There are several modules, e.g. forwarding.l2 multi, forwarding.topo proactive, etc, in POX that

are topology dependent. We adapted the routing module forwarding.topo proactive to demonstrate the

use of the database component, and other applications can be modified in similar ways.

The routing module implements a proactive policy to route packets. Initially, the openFlow switches are

not aware of any routing rules. Upon start, as the controller discovers new links and switches on the network,

the shortest path between any given pair on the current topology will be calculated. Subsequent updates

from the network will trigger re-computes of all the routes. Once route computation is done, the forwarding

rules will be sent by the routing module to the switches by using ofp flow mod method with the proper

message payload.

The major changes we made in the routing module are primarily in calc paths() and get raw path()

function. The get raw path() will call calc paths() and recursively build a path between a given pair

of src and dst. The modified calc paths() function will read information about the switches, ports, and

links from the database instead.

4.4 Evaluation

To evaluate the performance the database module, we tested if the adapted module can correctly routes

a packet given a source and destination pair. Then, we measured the overhead of retrieving link and swich

information from the database by timing all the SQL queries made in the routing module.

16

Figure 4.7: Initially, switches are unaware of any routing rules

4.4.1 Testing connectivity

This test is done on the simple network shown in figure 4.2 by running the ping test between two hosts

H1 and H3. If we start POX without the routing component, we can expect to see no messages can be

delivered between the two hosts, which is shown in figure 4.7.

After adding the routing module, we can see that both implementation successfully computes the routes

and the round trip time (RTT) is returned as below:

Without database: rtt min/avg/max/mdev = 0.054/0.085/0.202/0.048 ms

With database: rtt min/avg/max/mdev = 0.055/0.380/2.309/0.787 ms

4.4.2 Testing the database overhead

One of the biggest concerns of moving the topology information into the database is how much delay the

database operation may cause as compare to in-memory implementations. We measured the overhead of

querying the database by inserting a timing method around each query and averaged over all queries. Figure

4.8 shows the execution time of the select query on a 20 nodes (10 hosts and 10 switches) network. There are

two places where we changed the in-memory access to database select operations, and after the 10 switches

all discovered by the controller, we plotted the graph of the 20 query execution time. We can see that the

latency is fairly stable around 0.00282 seconds, and since the algorithm computes the routes each time a link

is discovered, we also observed that the latency does not vary much across different iterations. The overall

overhead introduced by including the database component in this routing module is therefore given by the

total number of operations times the average latency per operation, which is approximately 0.00564 seconds.

17

Figure 4.8: Overhead of database operations

4.5 Discussion

Prior to evaluate the overhead of the database operations, we ran the ping test on different size of

networks provided with a randomly selected a source and a destination. This helped us to verify if indeed

both implementations have correctly installed routing rules at the switches. What we found was that the

RTT changes with respect to the given pair of nodes and the network size. In most cases, the test returns

a RTT ranging from 0.064 ms to 350 ms. Approximately up to more than 80 nodes, the ping test returned

unreasonably large RTT or gives Destination Host Unreachable. Our conclusion is that the overhead of

including the database component in the routing module is fairly small given the the size of the network is

under 80 nodes, and we would expect the change in general case is still reasonable given that per operation

cost is about 0.00282 seconds.

18

Chapter 5

Related Work

There has been many research papers focusing on improving the SDN controller platform by having the

database as their component. In this chapter, we review the core ideas from the most relevant work and

discuss how they relate to this project.

5.1 Database used in Ravel

Ravel [14] presents a database-centered SDN design to orchestrate various kinds of control applications.

In Ravel, the SDN controller is implemented using the PostgresSQL database. Network configurations

are stored as base tables, and the control is achieved by querying or updating virtual views derived from

the base tables. Ravel supports: (1) vertical orchestration which synchronizes the database view with the

actual network state; (2) horizontal orchestration which coordinates multiple control applications with user

specified priorities. Ravel demonstrates that using the relational database representation can lead to an

efficient solution for coordinating SDN applications with the average per-operation overhead less than 10ms.

Building the database component in POX is the key step to connect the Ravel project to the actual

software OpenFlow switches. During the setup phase of Ravel, all the network elements on Mininet need to

be mapped into Postgres. And while Ravel is running, the network state needs to be constantly monitored.

Both can be easily achieved using POX with the database component enabled. After the network state

is made available within the database, the Ravel system can behave as the SDN controller. Applications

and users can manage the network state through standard SQL queries with the vertical and horizontal

orchestration services provided in Ravel.

5.2 Database used in Onix

Using relational database to store network states was also explored in Onix. Onix [10] aims to build

a SDN platform as a distributed system to address the scalability issue of SDN. The controller platform

19

consists of several Onix instances each maintaining a Network Information Base (NIB) to keep track of the

network state. Onix implements a persistent SQL store in order to provide strong consistency and durability

of the network state among those instances. The updates from one NIB are disseminated to other NIBs via

database triggers. Onix shows the effectiveness of using the transactional database to maintain a consistent

view of the network state across many control applications.

The database module we developed applies similar strategies to the POX controller. With the database

component, different controller applications can refer to the same datastore for topology updates. More

importantly, the database module also provides the connection to Ravel, which can support rich application

orchestration features that Onix does not support.

20

Chapter 6

Conclusion and Future Work

6.1 Conclusion

SDN architecture decoupled the control plane from the data plan and enabled more extensible and modular

design of networks. POX implements a SDN controller, which provides developers with an simple and open

interface to build new applications. In this project, we studied the key design decisions made in POX and

optimized the controller by extending a database component to maintain the network state in a persistent

storage. Previously, developers had to begin by searching for all relevant event handlers in order to maintain

network state information. After mapping the network state into the database, the topology information

can be accessed all from one place and is stored persistently. Network administrators can use SQL queries

to manage which applications are allowed to access which part of the topology in the database. The basic

database functionalities are adapted in the routing module and are tested with Mininet. From the test

results, we can conclude that the database module can correctly map the network into the database and the

overhead of including this functionality is reasonably small.

6.2 Future work

Future optimizations can be added to directly manage the OpenFlow switches and computing routes inside

the database.

6.2.1 Changing flow table by SQL queries

To manage the topology information in a finer grain, we can explore the potential of using the POX web

API and the Postgres triggers to allow users to input SQL queries and change the flow table of the switches.

Besides switch, link, and topology table, we could also main a flow table for each switch and use Postgres

triggers to asynchronously pass user queries to those switches. This feature will allow users to have finer

control over the network within the database.

21

6.2.2 Computing routes inside the database

Another optimization we can do is to compute the routes within the database itself by using Postgres

extensions. Since the entire topology information is available in the database, we could use pgRouting to

further simply the task for topology dependent applications. pgRouting [3] supports A*, shortest path,

and many other well known routing algorithms. With the support of the database module, we can run

pgRouting over the topology table. The routing application only need to specify two end-points, all the path

computation is done within the database, and the path and be queried by SQL queries.

22

References

[1] Floodlight Project. http://www.projectfloodlight.org/floodlight/.

[2] Mininet API. http://mininet.org/.

[3] pgRouting Project. http://pgrouting.org/.

[4] POX API. https://openflow.stanford.edu/display/ONL/POX+Wiki.

[5] Teaching computer networking with Mininet. http://conferences.sigcomm.org/sigcomm/2014/doc/
slides/mininet-intro.pdf.

[6] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker. Ethane: Taking control of
the enterprise. In ACM SIGCOMM Computer Communication Review, volume 37, pages 1–12. ACM,
2007.

[7] D. Erickson. The beacon openflow controller. In Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking, pages 13–18. ACM, 2013.

[8] N. Feamster, J. Rexford, and E. Zegura. The road to sdn: an intellectual history of programmable
networks. ACM SIGCOMM Computer Communication Review, 44(2):87–98, 2014.

[9] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker. Nox: towards
an operating system for networks. ACM SIGCOMM Computer Communication Review, 38(3):105–110,
2008.

[10] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, et al. Onix: A distributed control platform for large-scale production networks. In
OSDI, volume 10, pages 1–6, 2010.

[11] B. Lantz, B. Heller, N. Handigol, V. Jeyakumar, and B. OConnor. Mininet-an instant virtual network
on your laptop (or other pc), 2015.

[12] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid prototyping for software-defined
networks. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, page 19.
ACM, 2010.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus networks. ACM SIGCOMM Computer Commu-
nication Review, 38(2):69–74, 2008.

[14] A. Wang, B. Godfrey, and M. Caesar. Ravel: Orchestrating software-defined networks. In SOSR Demo,
2015.

23

