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ABSTRACT

Speech processing refers to a set of tasks that involve speech analysis and

synthesis. Most speech processing algorithms model a subset of speech pa-

rameters of interest and blur the rest using signal processing techniques and

feature extraction. However, evidence shows that many speech parameters

can be more accurately estimated if they are modeled jointly; speech synthe-

sis also benefits from joint modeling.

This thesis proposes a probabilistic generative model for speech called the

Probabilistic Acoustic Tube (PAT). The highlights of the model are threefold.

First, it is among the very first works to build a complete probabilistic model

for speech. Second, it has a well-designed model for the phase spectrum of

speech, which has been hard to model and often neglected. Third, it models

the AM-FM effects in speech, which are perceptually significant but often

ignored in frame-based speech processing algorithms. Experiment shows that

the proposed model has good potential for a number of speech processing

tasks.
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CHAPTER 1

INTRODUCTION

1.1 Motivation of Joint Modeling

Speech analysis/synthesis refers to a family of speech processing applications,

such as speech modification, coding, enhancement, and recognition [1]. Most

speech analysis/synthesis systems are based on the basic physical model of

speech production - the acoustic tube model, also known as the source-filter

model [1].

To better study speech processing techniques and speech modeling, it is

useful to take a look at how speech is produced. Figure 1.1 shows an anatomic

view of the human speech system [1]. The lungs push air through the trachea,

and the air passes the vocal folds, which modulate it into a quasi-periodic

signal, normally called a glottal wave, or vocal excitation. The vocal exci-

tation then passes through the vocal tract, which consists of oral cavity and

nasal cavity. The articulators of the vocal tract, such as tongue, jaw and

teeth, are placed in certain positions to form some resonance frequencies.

These frequencies are called formant frequencies, which are very important

for speech recognition. The filtered sound wave is emitted at the lips and

radiates, becoming what we call speech.

The paragraph above describes speech excited by vocal fold vibration

(voiced speech), which dominates, both in energy and duration, human ut-

terances and mostly corresponds to vowels. In other cases, however, air flow

does not get modulated by the vocal folds before it passes through the vocal

tract, and forms unvoiced speech, which roughly corresponds to consonants.

In some situations, e.g. plosives and fricatives in English, some part of the

vocal tract gets contracted, forcing high speed, irregular turbulent air flow.

If we define the vocal tract as a system, and glottal vibration as the source,

then the production system just described constitutes a source-filter model.
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Figure 1.1: Human speech systema

a“Sagittalmouth”. Licensed under Public Domain via Wikimedia Commons - http-
s://commons.wikimedia.org/wiki/File:Sagittalmouth.png#/media/File:Sagittalmouth.png
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Therefore, speech, as the output of the source-filter model, contains the in-

formation of the source, including pitch, GCI, glottal wave and aspiration,

and the filter, which is the vocal tract.

In analysis, most tasks only focus on a part of the above information.

Therefore, a common design paradigm is to build a special-purpose signal-

processing front-end that extracts the most relevant features for the target

task while suppressing the interference induced by the rest. Here we give two

examples.

Pitch Tracking

Pitch tracking essentially extracts the voiced/unvoiced states. For voiced

speech, it further estimates F0, which is the frequency of the glottal wave.

A common approach to pitch tracking [2, 3, 4, 5, 6, 7] is through autocor-

relation function R(τ), defined as

R(τ) =
∑
t

s(t)s(t− τ) (1.1)

where s(t) is the (framed) time-domain speech signal. It can be easily shown

that R(τ) achieves a maximum at τ = 0, but for a voiced signal with fun-

damental period T0, R(τ) will achieve local maxima at τ = kT0 for integer

k.

A problem of this approach is false peaks, i.e. besides peaks at multiples

of T0, there are many other peaks, which can be easily mistaken as the

peaks at multiple pitch periods. To alleviate this problem, some research

studies perform center clipping of the speech signal before calculating its

autocorrelation [8].

But the key to this problem lies in the interference of the glottal wave

shape and the filter. Center clipping itself is essentially a method to remove

the interference.

Speech Recognition

Vowel identity and consonant place of articulation are encoded largely in

the filter, or the vocal tract transfer function, which roughly shows in the

spectrum as the spectral envelope. A common method to estimate spectral

envelope is MFCC [9], which essentially blurs the fine structure by smoothing,

which suppresses the pitch information.

However, the drawback of this paradigm is that the omitted information,

though suppressed, can still bring significant interference, whereas in fact it
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can actually help the target task if properly modeled. For example, Kameoka

et al. [10] noted that pitch and spectral envelope have a chicken and egg

relationship and should be estimated jointly. Stephenson [11] pointed out

that cepstral-based features are sensitive to auxiliary information such as

pitch and energy.

Previous work also showed evidence of glottal wave impacting on spectral

envelope. For example, Klatt and Klatt [12] point out that different glottal

activities (breathy, modal, laryngealized) would introduce different levels of

spectral tilt and positions of glottal formant. Therefore vocal tract and

glottal information can be more accurately estimated if considered together.

Therefore, speech processing tasks can be greatly benefited if a complete

model of speech that jointly models all the aforementioned speech parameters

is available.

1.2 Previous Work on Joint Modeling

There are a few existing works on joint modeling of speech parameters. Some

works focuses on deconvolution of the source excitation and filter for high-

quality speech reconstruction and manipulation. For example, Degottex et

al. [13] proposed a speech model called SVLN, using pitch, glottal source

and vocal tract as its main variables. The STRAIGHT model [14, 15] is a

source-filter-based speech model for speech modification. It jointly models

pitch, spectral envelope and aspiration. Achan et al. [16] proposed a time-

domain probabilistic speech model that infers the excitation and the impulse

response jointly from speech. Kameoka et al. [17] proposed a harmonic tem-

poral structured clustering (HTC) method that jointly models the harmonic

structure (excitation) and spectral envelop, which can be used for speech

reconstruction and other tasks.

Other related works focus on fine modeling of glottal activities such as

glottal wave and aspiration. For example, Jackson and Shadle [18] proposed

a joint model for voiced and unvoiced excitation. Alku [19] proposed an itera-

tive algorithm that simultaneously estimates the glottal wave and vocal tract

response. Drugman et al. [20] proposed a causal-anticausal decomposition

scheme that jointly estimates the vocal tract and glottal wave.

In speech enhancement, increasing attention has been paid to apply joint
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models of speech to improve naturalness of the enhanced signal. The NMF-

based [21, 22, 23, 24, 25] and ICA based [26, 27, 28, 29, 30] source separation

blindly decompose speech into a base matrix, which can be interpreted as the

excitation, and a coefficient matrix, which can be interpreted as the system.

Tirumala and Mandel [31] and Mandel et al. [32] propose a source-filter-based

speech denoising algorithm that obtains noise-robust estimates of pitch and

spectral envelope and resynthesizes clean speech using the estimates.

In speech synthesis, jointly modeling glottal wave, aperiodicity and vocal

tract is becoming an increasingly popular approach to improve naturalness

of synthetic speech. For example, Rosenberg [33] noted that using different

glottal waves for synthesis results in differences in perception and subjec-

tive preference. Raitio et al. [34, 35] proposed a HMM-based parametric

speech synthesizer that builds a library of glottal waves obtained from a

speech vocoder. Maia et al. [36] and Sang-Jin and Minsoo [37] proposed a

mixed-excitation synthesis system that jointly models voiced and unvoiced

excitation to improve the naturalness of synthetic speech. Cabral et al. [38]

proposed a HMM-based speech synthesis system that uses the LF-model [39]

for the glottal source.

There are three major limitations regarding the existing works, partially

due to the scope of their target applications. First, some of these models

still mix some speech parameters. For example, the STRAIGHT model and

Tirumala’s denoising scheme still mix glottal wave and vocal tract response.

Second, although the models jointly consider different speech parameters,

the estimations of these parameters are still performed separately, which, as

previously discussed, still suffers from mutual interference.

Finally, these models either neglect or only partially model phase. In

particular, in most NMF- and ICA-based source separation approaches, only

the magnitude spectrogram is modeled. The estimated separated signal is

obtained by masking [40] on the magnitude spectrum and directly applying

the phase spectrum of the mixture signal. This paradigm is the most common

scheme for other separation algorithms, including deep learning [41, 42] and

probabilistic models [43, 44]. This paradigm suffers from residual noise, also

called music noise [45], and artifacts.
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1.3 The Probabilistic Acoustic Tube (PAT) Model

In this thesis, we propose a probabilistic generative model of speech, called

the Probabilistic Acoustic Tube (PAT) model [46, 47, 48]. There are several

highlights regarding this model.

First, it is among the very first works to build a complete probabilistic

model for speech. In particular, it jointly considers pitch, glottal wave, glot-

tal closure instance (GCI), aspiration and vocal tract response as hidden

variables. The model can potentially be applied to both speech analysis and

synthesis. For speech analysis, statistical inference techniques are applied to

jointly infer the hidden variables, which makes the model unlike the separate

estimation in existing works. For speech synthesis, the values of the hidden

variables are specified as input to the generative model, whose output is thus

synthetic speech. Our study in this thesis is in spirit similar to the generative

modeling approach to computer vision [49] that successfully accounts for dif-

ferent sources of variability in images and relies on learning and inference to

perform various image analysis tasks. We demonstrate the capability of PAT

for a number of speech analysis/synthesis tasks, such as pitch tracking un-

der both clean and additive noise conditions, speech synthesis, and phoneme

clustering.

Second, it has a well-designed model for the phase spectrum of speech,

which has been hard to model and often neglected. The difficulty of phase

modeling lies in aliasing and its poor noise robustness. One of the traditional

approaches to phase modeling is phase unwrapping [50], but this method

fails when SNR is low. The PAT model overcomes the difficulty by properly

parameterizing the complex spectrum of each speech component, which has

been well-studied over the past century. This idea is in principle similar to

a number of speech models, such as the mixed-phase model [51, 52], but we

incorporate this idea in a probabilistic generative manner.

Third, it models the AM-FM effects in speech, which are perceptually

significant [1] but ignored in frame-based speech processing algorithms. Tra-

ditional approaches to AM-FM modeling/analysis of speech include Hilbert

transform [53], sinusoid models [54] and probabilistic amplitude and frequen-

cy demodulation (PAFD) [55, 56]. However, it is hard to incorporate these

approaches into the frame-based probabilistic framework of PAT. The PAT

model approximates the stochastic AM-FM behavior with multivariate nor-
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mal distribution by similar assumptions to those in Bayesian spectral esti-

mation (BSE) [57].

1.4 Thesis Organization

The remainder of the thesis is organized as follows: chapter 2 introduces the

relevant signal processing theories on speech and formulates the signal model

of PAT; chapter 3 describes the probabilistic model of PAT by introducing

probabilistic assumptions on the signal model introduced in chapter 4; and

chapter 5 concludes the thesis and discusses future research directions.

7



CHAPTER 2

SIGNAL MODELING OF PAT

The signal model of PAT is based on some classical speech signal processing

theories. This chapter goes through these theories before introducing the

signal model of PAT.

2.1 Notations

Before the signal model is formally introduced, it is useful to define the

notations that will be frequently used within this section.

Lower case letters with parentheses, such as h(t), denote discrete time do-

main signals. Upper case letters with parentheses, such as H(ω) and H(z),

denote the DTFT and Z-transform respectively. Lower case letters with

brackets, such as h[n], denote cepstrum. Z−1(·) denotes inverse Z-transform

operation; DTFT(·) denotes DTFT operation. ~ denotes circular convolu-

tion.

2.2 The Source-Filter Model

Speech can be modeled as the output of a source-filter model, where the

source is glottal vibration and aspiration, and the filter is the vocal tract.

To show that the vocal tract can be modeled as a filter, we need to show

it is linear and time-invariant (LTI) within a short time period.

First, within a short time frame, typically 30 ms, articulators move little,

and therefore the system response can be regarded as time invariant. Second,

if we assume that the air velocity v(x, t) inside the vocal tract is small, the

viscosity is negligible, the air density ρ remains constant, and the air only

moves along the axial direction of the vocal tract, then the air pressure p(x, t)
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and velocity satisfy the following set of linear equations [58, 59]:

− ∂p

∂x
= ρ

∂v

∂t

− ∂p

∂t
= ρc2

∂v

∂x

(2.1)

which is linear w.r.t. v(x, t) and p(x, t).

The LTI nature enables us to apply linear system theories to process speech

[60]:

S(z) = E(z)H(z) (2.2)

where S(z), E(z) and H(z) are Z-transforms of the speech signal, the exci-

tation and the system respectively.

The study of speech boils down to the study of the system, i.e. the vocal

tract, and the excitation, i.e. the glottal wave.

2.3 Vocal Tract and Radiation

The oral tract, which dominates the vocal tract, can be modeled by a con-

catenation of P hard, lossless uniform tubes with different area Ak. It can

be shown that if we sample the signal by τ = 2L/Nc, where L is the total

length of the oral tract, the vocal tract system is approximately all-pole [60],

namely

H(z) =
G

1−
∑P

k=1 αkz
−k

(2.3)

and that the radiation at the lips can be approximated by 1st-order difference

[61], namely

R(z) = 1− z−1 (2.4)

where R(z) is the transfer function of radiation.

Equation (2.3) implies that the vocal tract system can be well modeled by

an all-pole system. It can be shown that if the reflection coefficient between

the k-th and (k+1)-th tube

rk =
Ak+1 − Ak
Ak+1 + Ak

(2.5)

is less than 1, which holds in reality, then the system is stable, i.e. all the
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poles are within the unit circle.

If we take into account the impact of the nasal tract, which can be modeled

as an all-pole system similarly, then the transfer function becomes

H(z) = Ho(z) +Hn(z) =
Go

Po(z)
+

Gn

Pn(z)

=
GnPo(z) +GoPn(z)

Po(z)Pn(z)

(2.6)

where Ho(z) and Hn(z) are transfer functions of oral tract and nasal tract

respectively, Po(z) and Pn(z) are their pole polynomials. The system is no

longer all-pole. The poles still fall inside the unit circle. It can be proved

that the zeros, which are the roots of GnPv(z) +GvPn(z) also fall inside the

unit circle. Therefore the resulting system is minimum-phase.

2.4 Cepstral Analysis

The minimum-phase H(z) can be well-parameterized by cepstral coefficients

[62], which is the most popular feature for speech and speaker recognition

systems [63, 64, 65, 66]. While a more detailed derivation is given in [67],

here we give a brief overview of the theory. Rewrite equation (2.6) into the

pole-zero representation

H(z) =

∏N
k=1 (1− nkz−1)∏P
k=1 (1− pkz−1)

(2.7)

where N and P are number of zeros and poles respectively; nk and pk are

the k-th zero and pole respectively. Since the system is minimum-phase, |nk|
and |pk| are both smaller than 1.

Taking the logarithm of both sides and applying Taylor expansion, we have

logH(z) =
N∑
k=1

log
(
1− nkz−1

)
−

P∑
k=1

log
(
1− pkz−1

)
=
∞∑
n=0

[
N∑
k=1

(−nk)n

n
z−n −

P∑
k=1

(−pk)n

n
z−n

] (2.8)

The complex cepstrum is defined as the inverse Z-transform of logH(z).
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According to the definition of Z-transform, we have

h[n] = Z−1 (logH(z))

=

{ ∑N
k=1(−nk)

n−
∑P

k=1(−pk)n
n

if n ≥ 0

0 otherwise

(2.9)

As can be seen, h[n] decreases at the rate of at least 1/n, and is right-

sided. Therefore, the vocal tract system can be parameterized by the cepstral

coefficients at low quefrency, i.e.

H(ω) = exp
[
DTFT(ĥ[n])

]
(2.10)

where ĥ[n] is the truncated and zero-padded h[n]:

ĥ[n] =

{
h[n] if n ∈ [0, C] for some C > 0

0 otherwise
(2.11)

2.5 Glottal Wave

In the voiced case, the glottal wave excites the vocal tract system. The

glottal pressure wave is a quasi-periodic signal, whose circular frequency ω0 =

2πF0/Fs is called the fundamental frequency. Figure 2.1 top panel shows a

typical glottal pressure wave g[n] within each period. As can be seen, there

are three phases: glottal open phase, glottal return phase, and glottal closed

phase. The instant of maximum derivatives between the open phase and

return phase is called GCI (glottal closure instant). The periodic signal

can be expressed as a periodic pulse train p[τ ] convolved with some impulse

response g[τ ], in which g[τ ] is compactly represented if one places impulses

at the locations of the GCI, and thus the time of the first GCI is considered

as the group delay.

According to the sampling-periodic duality, the DTFT of the periodic glot-

tal wave Sg(ω) can be denoted as

Sg(ω) = aP (ω)G(ω) (2.12)

where P (ω) is a pulse train with interval 1/ω0, G(ω) roughly corresponds to
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Figure 2.1: Glottal flow (upper panel) and its derivative (lower panel)[68].

the DTFT of the glottal wave within a single period, and a is the amplitude.

Further, denote the DTFT of the output speech wave as SV (ω). According

to the convolution theorem, we have the following relation:

SV (ω) = aP (ω)G(ω)H(ω)R(ω) (2.13)

By convention, the radiation effect and glottal wave are merged; namely,

we often regard EV (ω) = P (ω)G(ω)R(ω) as the equivalent voiced excitation

of the system H(ω). Then we have

SV (ω) = aEV (ω)H(ω) (2.14)

In the time-domain, this can be written as

sV (t) =
∑
d

|αd| exp (j (dω0(t− τ) + ∠αd)) (2.15)

where d is harmonic number, τ is the group delay of P (ω), i.e. the time

instance when the first pulse occurs, | · | and ∠ denote magnitude and angle

of a complex number, respectively, and

αd = aG(dω0)H(dω0)R(dω0) (2.16)

Notice that R(ω) is a first-order difference operator, so EV (ω) is essentially

the 1st-order difference of the glottal wave G(ω). A typical EV (ω) in a single

12



period is shown in figure 2.1 bottom panel.

There have been research efforts to derive a parametric glottal model. For

example, Holmes [69] and Michaels et al. [70, 71] studied the waveform

shapes obtained by inverse filtering and high-speed motion pictures.

The LF model [39] is so far the most popular model of glottal wave within

1 period. It can be shown that the LF model can be further simplified as

a three-pole model [72, 52]. According to the three-pole model, EV (ω) can

be characterized as passing a periodic pulse train P (ω) to an ARMA system

G(ω)R(ω) with a pair of anti-causal poles, which correspond to the opening

phase, and a causal pole, which corresponds to the return phase. Formally,

G(ω)R(ω) =
1

(1− 2g1 cos(β1) exp(−jω) + g21 exp(−2jω)) (1− g2 exp(−jω))
(2.17)

where g1 and β1 are the norm and absolute value of angle of the anti-causal

pole pair, and g2 is the real part of the causal pole.

The frequency representation of the glottal system, G(ω)R(ω), is charac-

terized by a distinct energy band in low frequency, called the glottal formant,

and decreasing energy as frequency increases, called spectral tilt. Therefore,

SV (ω) is low-passy and contains a glottal formant.

It should be noted that these glottal wave models only capture the coarse

structure of the glottal wave, but in actuality there exist ripples and fluctua-

tions in the glottal wave, which introduce high frequency variations [68, 73].

In unvoiced cases, the air wave does not vibrate the vocal chords. A typical

paradigm is to assume that the excitation EU(ω) is white noise. This is not

quite true for explosives and fricatives in theory, where the power spectrum

may not be flat [74], but in practice it provides reasonable approximation.

2.6 AM-FM Effects in Speech

So far we have assumed that speech is perfectly periodic inside a frame,

while in fact there exist significant AM-FM effects. There are many sources

of AM-FM effects, and two important sources are pitch jitter and amplitude

shimmer [1]. Pitch jitter refers to the pitch fluctuations around the steady

target that the speaker intends to maintain. Amplitude shimmer refers to

amplitude variations that may be due to the time varying characteristics of
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vocal tract and vocal fold.

In particular, the special glottal wave patterns would introduce AM-FM

effects. These patterns include creaky voice, where only a portion of vocal

chords vibrate, causing low and irregular pitch; vocal fry [75, 76], where there

is a secondary pulse at the start of the major pulse; and diplophonic [12],

where there is a small pulse preceding each major pulse.

With AM-FM effects, equation (2.14) can be rewritten as

SV (ω) =
∑
d

|αd|ηd(t) exp (j (dω0(t− τ) + ∠αd + dφ(t))) (2.18)

where the additional terms ηd(t) and φ(t) refer to the amplitude modulation

of the d-th harmonic and phase modulation at the fundamental frequency re-

spectively. Here we impose an important assumption that phase modulation

at higher harmonics is proportional to that at the fundamental frequency.

2.7 The Signal Model of PAT

Now we are ready to introduce the signal model of PAT, which is essentially

the summary of the above sections.

The proposed PAT model is a frame-based speech model. We introduce the

subscript k to denote the DTFTs of the k-th frame. Then, the signal model

assumes the speech of frame k, Sk(ω), can be decomposed in two components

- the voiced part and the unvoiced part.

Sk(ω) = SV k(ω) + SUk(ω)

= (akEV k(ω) + bkEUk(ω))Hk(ω) ~W (ω)
(2.19)

where the second equality is consistent with equation (2.14). Hk(ω) is the

vocal tract transfer function, defined by equation (2.10). EUk(ω) is the un-

voiced aspiration excitation, which, as discussed, is white Gaussian noise.

EV k(ω) is the quasi-periodic glottal wave, whose single cycle is defined by e-

quation (2.17), and the resulting amplitude and frequency modulated SV k(ω)

is given by (2.18). W (ω) is the frequency response of the rectangular window

function.
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CHAPTER 3

PROBABILISTIC MODELING OF PAT

The probabilistic model of PAT essentially involves defining the random vari-

ables and imposing probabilistic assumptions on the signal model.

3.1 Notation

Now we will introduce some notation that will be used frequently within this

section. Denote lower case letters, a, as scalars; lower case bold letters, b,

as vectors; and upper case bold letters, A, as matrices. The terms real[·]
and imag[·] denote real and imaginary parts of their argument, respective-

ly, and diag[·] denotes converting the column vector in its argument into a

diagonal matrix. The colon in the subscript, am:n, denotes a column vector

[am,am+1, · · · ,an−1,an]T .

3.2 The Real DFT Vector Form

To facilitate probabilistic representation using vectors and matrices, we will

switch from the DTFT domain to the DFT domain, with real and imaginary

parts separated. Specifically, for some DTFT X(ω), denote its real DFT

vector x as

x =

√
2

T

[
1√
2
X(0), real

[
X

(
2π

T

)
, X

(
4π

T

)
, · · · , X

(
(T − 2)π

T

)]
1√
2
X (π) , imag

[
X

(
2π

T

)
, X

(
4π

T

)
, · · · , X

(
(T − 2)π

T

)]]T
(3.1)

where T is the frame length, and also the length of the real DFT vector.

The reason we define the real DFT vector this way is to preserve Parseval’s
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theorem [67], i.e. the real DFT vector norm is equal to the time-domain

vector norm. Before further mathematical details are given, here are some

intuitions. If the time-domain signal is real, then X(ω) is conjugate symmet-

ric with respect to π. So the DFT between 0 and π is sufficient to represent

and recover the whole DFT; that is why the real DFT vector only contains

frequency points between 0 and π. Also, under conjugate symmetry, X(0)

and X(π) must be real, so no imaginary parts of X(0) and X(π) are included

in the real DFT vector.

Now define the time-domain vector as

xtime = [x(0), x(1), · · · , x(T − 1)]T (3.2)

and define the real DFT transform matrix as

D =

√
2

T



1√
2

1√
2

1√
2

· · · 1√
2

1 cos
(
2π
T

)
cos
(
4π
T

)
· · · cos

(
2(T−1)π

T

)
1 cos

(
4π
T

)
cos
(
8π
T

)
· · · cos

(
4(T−1)π

T

)
...

...
...

...

1 cos
(

(T−2)π
T

)
cos
(

2(T−2)π
T

)
· · · cos

(
(T−1)(T−2)π

T

)
1√
2

− 1√
2

1√
2

· · · − 1√
2

0 sin
(
2π
T

)
sin
(
4π
T

)
· · · sin

(
2(T−1)π

T

)
0 sin

(
4π
T

)
sin
(
8π
T

)
· · · sin

(
4(T−1)π

T

)
...

...
...

...

0 sin
(

(T−2)π
T

)
sin
(

2(T−2)π
T

)
· · · sin

(
(T−1)(T−2)π

T

)


(3.3)

It can be shown that

x = Dxtime (3.4)

by noticing that D is simply rearranging and scaling the real and imaginary

parts of each row of the DFT matrix the same way equation (3.1) rearranges

and scales the true DFT.

Also, it can be shown that D is orthonormal, i.e.

DDT = DTD = I (3.5)
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and therefore Parseval’s theorem holds for the real DFT vector, i.e.

xTx = xTtimeD
TDxtime = xTtimextime (3.6)

3.3 Model Overview

Denote sk, sV k and sUk as the real DFT vector of Sk(ω), SV k(ω) and SUk(ω)

respectively. Then the observed variable in frame k is sk.

Denote zk as a set of hidden variables, whose elements will be defined soon.

Then the probabilistic model is defined as a hidden Markov model.

p({sk, zk}) =
K∏
k=1

p(sk|zk)p(zk|zk−1) (3.7)

where p(z1|z0) denotes p(z1) for notational simplicity. So the probabilistic

model boils down to defining p(sk|zk) and p(zk|zk−1).
Then according to equation (2.19),

sk = sV k + sUk (3.8)

and therefore p(sk|zk) can be determined by p(sV k|zk) and p(sUk|zk).
Section 3.4 defines p(sUk|zk); section 3.5 defines p(sV k|zk); section 3.6

defines p(zk|zk−1).

3.4 The Unvoiced Model

Denote eUk and hk as the real DFT vectors of EUt(ω) and Ht(ω) respectively.

According to (2.19),

sUk = bkdiag (hk) eUk (3.9)

where bk is one hidden variable. hk can be completely determined by the

complex cepstral coefficients at positive low quefrencies, i.e.

ĥk = [h[0], · · · , h[C]]T (3.10)
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according to equation (2.11), and thus ĥk is a hidden variable. The win-

dowing function can be omitted because it is a rectangular window. Since

the time-domain signal of eUk is white Gaussian noise and the real DFT

transform D is orthogonal, eUk is also white Gaussian noise, i.e.

eUk ∼ N (0, I) (3.11)

Combining equations (3.9) and (3.11) we have

p(sUk|zk) = N (sUk;0, b
2
kdiag(hk)

2) (3.12)

3.5 The Voiced Model

For notational ease, the frame subscript k will be omitted throughout this

section, when there is no ambiguity introduced.

3.5.1 Adapted Bayesian Spectral Estimation Model

The major randomness in sV k lies in its AM-FM effect. Formally, rewrite

equation (2.18) as

sv(t) =
∑
d

xd(t)
Tξd(t) (3.13)

where

xd(t) =

[
|αd| cos(dω0(t− τ) + ∠αd)

|αd| sin(dω0(t− τ) + ∠αd)

]
(3.14)

which is essentially the vector form of the clean signal, and

ξd(t) =

[
ηd(t) cos(dφ(t))

ηd(t) sin(dφ(t))

]
(3.15)

which is essentially the vector form of the AM-FM random variations.

In Bayesian spectral estimation (BSE)[57], if dφ(t) is uniformly distributed

in [−π, π], ξd(t) can be modeled as a multivariate Gaussian with 0 mean

and diagonal identity covariance matrix. However, in PAT, the uniform

distribution of dφ(t) is not a reasonable assumption. Nevertheless, ξd(t) can

still be reasonably approximated by a joint Gaussian with matched first and
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second moments, as will be shown in the next subsection.

3.5.2 The Model of ξd(t)

Before deriving the appropriate moments for ξd(t), we first state our assump-

tions on ηd(t) and φ(t):

• The distribution of ηd(t) is symmetric and centered at 0.

• φ(t) is small with respect to π, and has symmetric and unimodal dis-

tribution centered at 0.

With these assumptions, it can be shown that ξ
(1)
d and ξ

(2)
d , the two ele-

ments of ξd, are uncorrelated and both 0 mean, which can then be reasonably

assumed to satisfy independent Gaussian distribution:

ξd(t) ∼ N

(
0, σ2

ξ

[
1 0

0 ρ2d

])
(3.16)

where ρd is the ratio of their standard deviation. The reason why ρd depends

on d is that dφ(t) depends linearly on d. Intuitively, if d is very small, dφ(t)

is close to 0. From (3.15), the variance of ξ
(2)
d is close to 0, and therefore ρd

is close to 0. On the other hand, if d goes to infinity, dφ(t) will approach a

uniform distribution, and therefore ρd will approach 1 (the model becomes

the standard BSE).

Formally, notice that by (3.15)

A[0,π]dφ(t) = arctan

(
ξ
(2)
d (t)

ξ
(1)
d (t)

)
def
= ψd(t) (3.17)

where A[0,π] denotes the principal value within the interval [0, π]. We need

to find a distribution of unaliased dφ(t) such that its aliased distribution,

i.e. the distribution of A[0,π]dφ(t), fits that of ψd(t) under the Gaussianity

assumption in (3.16).

Now we will find such a distribution. The marginal distribution of ψd(t)

is given by

p(ψd(t) = θ) =
ρd

ρ2d + (1− ρ2d) sin2 θ
· 1

2π
, θ ∈ [−π, π] (3.18)
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Rewrite equation (3.18) as

p(ψd(t) = θ) ∝ 1

[1− f(ρd)e2jθ] [1− f(ρd)e−2jθ]
, θ ∈ [−π, π] (3.19)

where

f(ρd) =

√
1 + ρd
1− ρd

(3.20)

Now we can borrow the correspondence between Fourier transform (FT)

and DTFT to find an unaliased distribution. Note that DTFT is the aliased

version of FT within the interval [0, fs], where fs is the sampling frequency.

For right-sided exponential signals, we have the following correspondence:

1

a+ jω
↔ 1

1− αe−jω
(3.21)

where the left-hand side is FT, and the right-hand side is DTFT; a and α

are related by time-domain sampling:

α = exp

(
− a

fs

)
or a = −fs logα (3.22)

Plugging equation (3.21) into equation (3.19), we can see that one of the

unaliased distributions is a Cauchy distribution, namely

pdφ(t)(ϕ) =
1

πγd
· γ2d
ϕ2 + γ2d

(3.23)

where the parameter γd satisfies

γd = −fs log

(√
1 + ρd
1− ρd

)
(3.24)

Cauchy distribution has a scaling property: if φ(t) ∼ Cauchy(γ1), then

dφ(t) ∼ Cauchy(dγ1). Therefore

γd = dγ1
def
= dω0γ

By (3.24), we have

ρd = tanh(2dω0γ) (3.25)

which agrees with our intuitive notion of its asymptotic behavior as d varies.

20



Equations (3.16) and (3.25) characterize the model of ξd(t).

3.5.3 Relation of ξd(t) across t

Since vocal tract movement, glottal fold variation and pitch variation are

slowly time varying, ξd(t) should also be slowly time varying. BSE proposed

a solution which is adopted in PAT: ξd(t)’s are modeled as a first-order

autoregressive process.

ξd(t) = λdξd(t− 1) + εd(t) (3.26)

where

εd(t) ∼ N

(
0, σ2

ε

[
1 0

0 ρ2d

])
(3.27)

and is independent of ξ(t− 1).

By quasi-stationarity of speech, it is reasonable to assume that the autore-

gressive process in (3.26) is close to a stationary distribution. It can be shown

that a stationary distribution of ξ(t) implies (3.16), with σξ determined by

σξ =
σε√

1− λ2d
(3.28)

where λd is the first-order autoregressive coefficient. Again, the reason why

λd depends on d is that dφ(t) depends linearly on d. Intuitively, as d goes up,

the AM/FM variation becomes larger, and therefore λd(d) becomes closer to

0.

It is generally hard to determine the relationship between λd and d. With

some approximating assumptions [48], we could approximate that λd decreas-

es exponentially with d, i.e.

λd = exp(−dδ) (3.29)

where δ is the parameter of the Cauchy-distributed increment of φ(t). Equa-

tion (3.29) agrees with our intuitive notion of its asymptotic behavior.
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3.5.4 The PDF of sV k

With the above derivation, we are ready to summarize the PDF of sV k con-

ditional on zk. Since ξd(t) is also a zero-mean Gaussian process and sV k is

its linear transformation, sV k is a zero-mean multicovariate Gaussian, whose

distribution is determined once its second moment is specified. Now we will

derive its second moment.

From equation (3.26), we know that

E
(
ξd(t)ξd(t− t′)T

)
= λ2t

′

d σ
2
ε

[
1 0

0 ρ2d

]
(3.30)

From (3.13), we can obtain the autocorrelation function of the time domain

signal sV (t)

RsV (t′)
def
= E (sV (t)sV (t− t′))

= xd(t)
TE
(
ξd(t)ξd(t− t′)T

)
xd(t− t′)

= |αd|2λ2t
′

d σ
2
ε

(
cos (dω0(t− τ) + ∠αd) cos (dω0(t− t′ − τ) + ∠αd)

+ ρ2d sin (dω0(t− τ) + ∠αd) sin (dω0(t− t′ − τ) + ∠αd)
)

(3.31)

Hence, the distribution of sV k, the real DFT vector of sV (t), is given by

p(sV k|zk) = N
(
sV k;0,DRsVD

T
)

(3.32)

where RsV is the autocorrelation matrix of sV (t), which is a Toeplitz matrix

whose t′-th subdiagonal elements are RsV (t′). The hidden variables include

all the variables that determine the signal vector xd(t), i.e. ak in equation

(2.19), g1k, β1k, g2k in equation (2.17), ĥk as specified in section 3.4, ω0k and

τk as in equation (3.14). As a reminder, subscript k is added to distinguish

the hidden variables in different frames.

3.6 Hidden Variables Transitions

As a summary, all the hidden variables are given as follows:

zk =
[
ak, bk, g1k, β1k, g2k, ĥ

T
k , ω0k, τk

]T
(3.33)
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Since articulators and pitch are slowly time varying, zk tends to transit

smoothly among frames. Therefore, we apply a random walk to model this

behavior:

p(zk|zk−1) = N
(
zk; zk−1, diag(σ2

z)
)

(3.34)

where σ2
z is the variance of the innovation of each dimension of zk. No-

tice that the last dimension, i.e. the innovation variance of τk, is set to

∞ because τk does not transit smoothly. This is equivalent to imposing a

non-informative transition prior on τk.

3.7 Model Summary

To sum up, the observed variable of PAT is sk, and the hidden variables zk

are defined in (3.33). The joint probability of all the variables is given in

(3.7), where according to equations (3.8), (3.12) and (3.32),

p(sk|zk) = N
(
sk;0,DRsVD

T + b2kdiag(hk)
2
)

(3.35)

and p(zk|zk−1) is given in equation (3.34). The model parameters include

Θ =
{
γ, δ,σ2

z

}
(3.36)

3.8 Model Inference

The task of model inference is to infer the value of hidden variables {zk}
given the observed {sk}. To reduce computational complexity, we adopt the

online MAP criteria:

ẑk =argmax
zk

p (zk|s1:k, z1:k−1 = ẑ1:k−1)

=argmax
zk

p(zk|zk−1 = ẑk−1)p(sk|zk)
(3.37)

We use gradient ascent to solve the optimization problem. To avoid get-

ting trapped in local optima, specifically for ω0k and τk, we have special

initialization schemes for them.

For ω0k, we incorporate the information in the autocorrelation function
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RSv(t
′) as defined in equation (3.31). It is well-known that for quasi-periodic

signal, RSv(t
′) would have peaks at multiples of the period. Therefore, the

initial values of ω0k are set such that their corresponding pitch period lies

at the highest peaks of RSv(t
′). In practice, we choose the 5 highest peaks

to avoid double and half pitch errors that are commonly encountered in

autocorrelation-based pitch tracking algorithms.

For τk, we incorporate the information in the short-time energy function

e(t), which is defined as

e(t) =
t+r∑

t′=t−r

s(t′)2 (3.38)

It has been shown that GCIs occur where the glottal opening is maximum,

and therefore the short-time energy reaches local maxima. So the initial

values of τ are set to the 5 highest peaks of the short-time energy function.

Unlike the case with pitch, where different autocorrelation peaks correspond

to different pitches, two values of τ are equivalent if they differ by multiples

of the pitch period, and thus the initialization of τ is less sensitive to picking

a wrong peak.

There are a total of 25 (5 for ω0k and 5 for τk) different initialization

combinations, and therefore the optimization would run 25 times for each

frame, and the local optimum with the highest posterior probability is chosen

as the inferred values of the hidden variables.
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CHAPTER 4

EXPERIMENTS

This chapter presents some experiment results that demonstrate the poten-

tial of PAT in various speech processing tasks. The experiments will demon-

strate the capability of the PAT model of inferring the hidden variables and

reconstructing speech, including the phase spectrum.

4.1 Configuration

Except for the experiment introduced in section 4.2, all the experiments are

performed on the Edinburgh speech corpus [3]. The sampling rate is 10 kHz.

Speech is segmented into 30 ms frames with 10 ms frame shift. All the figures

demonstrated are from speaker 1, utterance 1. The dimension of ĥ(t̂) is set

to 26.

4.2 The “Glottal Free” Vocal Tract Estimate

According to chapter 1, current vocal tract representations such as LPC

and MFCC essentially mix glottal wave and vocal tract transfer function,

and their separation cannot be obtained without a unified model like PAT.

Therefore, PAT provides some insights into disentangled vocal tract. To

illustrate this, 2 extreme utterances of /ah/ are recorded, one uttered with

voiced excitation and the other whispered. The idea is that the vocal tract

shapes in both cases are similar, but according to section 2.5, one has spectral

tilt and the other does not. It is expected that the PAT model would give

more consistent estimates of the vocal tract of the two cases than MFCC

does.

Figure 4.1 compares the mean of the envelope estimates (the estimate of

hk) of both cases by the two methods. It turns out that both MFCC and
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Figure 4.1: The means of the estimated vocal tract frequency response /
spectral envelope for a voiced-excited and a whispered utterance of /ah/

PAT have almost the same envelope estimates for the whispered case, but

very different for voiced. PAT has much more consistent estimates for both

cases, especially in the mid-frequency. The norm of the differences between

the means of the estimates for the two cases is 10.93 for PAT, as opposed to

13.15 for MFCC.

4.3 Phase Reconstruction

As mentioned in chapter 1, the synthesis using parameters estimated sepa-

rately does not necessarily resemble original speech. The second experiment

shows that PAT is able to yield parameter estimates that are accurate for

synthesis.

Figure 4.2 compares both real and imaginary spectra of the voiced speech

frame taken from the Edinburgh speech corpus reconstructed by PAT pa-

rameter estimates (namely xk in equation 3.14) and those of the original

speech. We can see that the reconstruction almost overlaps with the original

in low frequencies in both spectra, which shows that PAT models speech very
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Figure 4.2: Comparison of real and imaginary spectrum for a voiced speech
frame.

accurately.

4.4 Reconstruction of Speech with Heavy AM/FM

Effect

This section demonstrates the effect of AM/FM modeling. Speech frames

with significant AM/FM effect are studied. Figures 4.3 and 4.4 display the

reconstructed magnitude spectrum sV k of some speech frames. The left panel

is reconstructed by the PAT with AM/FM modeling, the right by the PAT

without. The black solid line is the reconstructed magnitude spectrum, the

blue line is the original magnitude spectrum, and the dashed line is the

estimated spectral envelope. Our first observation is that in the original

magnitude spectrum, the bandwidth of the pitch pulses is small when the

frequency is low, and increases as frequency goes up. This widening of pitch

pulses is the major effect of AM/FM, and it becomes more significant in mid

and high frequencies, which agrees with (3.25) and (3.29).

As for reconstruction accuracy, the PAT significantly underestimates voiced
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energy in mid and high frequencies. This is because without AM/FM mod-

eling, the PAT does not account for the widening of the pitch pulses, and

ascribes this variation to unvoiced energy. On the other hand, the AM/FM

model is able to more accurately estimate the spectral envelope.

4.5 GCI Location

GCI estimation is indicative of PAT’s ability in phase modeling and pitch

tracking. According to chapter 2, τk is the delay of the first GCI relative

to the beginning of frame k. Also, we know that GCI are periodic at the

fundamental frequency. Estimated GCI locations of frame t are thus τk +

2mπ/ω0k, where m is nonnegative integer. Since GCIs of different frames are

estimated separately, we can judge the accuracy by checking: 1) if GCIs of

different frames are consistent, i.e. if they form a quasi-periodic sequence; 2)

if they appear at the energy bursts of the original speech.

Figure 4.5 plots GCI locations as impulses against original speech wave-

form. As can be seen, GCIs, around 3 or 4 instances in each frame, form

a quasi-periodic signal with rare exceptions. What is more, they tend to

appear consistently at the largest negative to positive jump within a period

in the original speech wave, where short-time energy is generally greatest.

This result shows that PAT can control well for group delay and pitch, and

thus achieves similar performance to pitch-synchronous analysis.

4.6 Pitch Tracking

Pitch tracking by PAT is essentially the inference of f0,n. Since a U/V de-

cision scheme for PAT has yet to be developed, we extract pitch on labeled

voiced segments only, and compare against a pitch-tracking benchmark, Get-

F0 [4]. Both algorithms are run over the complete Edinburgh dataset. For

fair comparison, we compare the pitch tracking results of all the voiced frames

that are also correctly classified as voiced by GetF0, in terms of the following

2 criteria:

Gross Pitch Error (GPE): The percentage of frames whose pitch esti-

mates deviate from ground truth by more than 20%.
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Table 4.1: Pitch tracking results on Edinburgh dataset

PAT GetF0
GPE (%) 2.10 2.07
RMS (Hz) 5.052 5.780

Root Mean Squared Error (RMS): The averaged mean squared error in

Hz over the frames free of GPE.

Table 4.1 shows the results. As can be seen, PAT has GPE level comparable

to that of GetF0, but much smaller RMS, which means PAT inference is more

accurate.
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Figure 4.3: Magnitude spectrum of reconstructed voiced speech (black line)
against original magnitude spectrum (blue line) for frame 32. AM/FM
modeling (right panels) is able to reclaim much of the voiced energy
overlooked by the model without AM/FM modeling (left panels), especially
in mid-frequencies.
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Figure 4.4: Magnitude spectrum of reconstructed voiced speech (black line)
against original magnitude spectrum (blue line) for frame 60.

Figure 4.5: Estimation of GCI location of the utterance ‘park’.
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CHAPTER 5

CONCLUSION AND FUTURE
DIRECTIONS

This thesis proposes a probabilistic generative model of speech, which jointly

models pitch, glottal wave, aspiration, vocal tract and AM/FM effect. The

PAT model applies the well-founded theories on speech signal processing

and imposes theoretically reasonable probabilistic assumptions among the

variables. A couple of experiments demonstrate that the inference of the

hidden variables is accurate and the joint modeling is able to control for the

interference induced by the variations of other variables.

Here we discuss some future directions. First, many probabilistic assump-

tions are trade-offs between theoretical plausibility and inference tractability.

Sometimes the model accuracy is compromised for a more tractable inference

scheme. For example, the Gaussian assumption on the AM/FM effect makes

the conditional probability a closed-form expression by approximating the

smooth transition of AM and FM components, i.e. ηd(t) and φ(t) as in

equation (2.18), to that of ξd(t) as in equation (3.15). However, according

to [55], this approximation suffers from significant error when ηd(t) is small.

As another example, the three-pole model of glottal wave is a simplification

of the LF model by reducing the number of parameters, and thus computa-

tional complexity. Yet the approximation error is non-negligible. Therefore,

we would like to find a better inference scheme so that some of these approx-

imations can be eliminated. The Monte-Carlo based approaches [77] have

gained popularity to evaluate complex distributions, and can be potentially

applied to the PAT model.

Second, in order for the PAT model to be applied to more sophisticated

speech processing tasks, such as speech enhancement and source separation,

it should be adapted to accommodate interference and noise. Currently the

PAT model only considers perfectly clean speech, and assumes that all the

variations are due to variations of speech signal. To incorporate environment

noise, both the probabilistic assumptions and the inference algorithm should
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be adapted.

To sum up, our ultimate goal is to develop a probabilistic acoustic model for

speech, which accurately defines the probabilistic space spanned by speech,

and can be applied to speech enhancement, source separation, pitch tracking

and speech recognition with improved performance and efficiency.
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