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ABSTRACT 

 
 
 

This thesis presents a new non-invasive optical method for assessing biomechanical 

properties of tissues and cells in real time and with micron scale resolution, 

magnetomotive optical coherence elastography (MM-OCE).  Biomechanical properties 

are important because they relate to the tissues’ state of health and they can be utilized for 

monitoring changes due to pathological processes or therapeutic treatments.  In optical 

coherence tomography (OCT), the imaging technique that MM-OCE is based on, near 

infrared light penetrates a few millimeters into highly scattering biological tissues and the 

backscattered light is detected in real time with interferometry.  Post-processing of the 

optical signal renders structural images and displacement maps of dynamic processes 

within the specimens, which contain information about the mechanical signature of the 

tissues or cells. MM-OCE utilizes magnetic nanoparticles or microspheres that are 

embedded in the samples of interest, and which induce motion in the samples in the 

presence of an external magnetic field produced by a custom built solenoid coil.  Three 

studies are presented: the first one introduces the MM-OCE technology and demonstrates 

its feasibility and versatility on a set of tissue-mimicking silicone phantoms, the second 

one applies MM-OCE to excised rabbit tissues and reveals their intricate biomechanical 

behavior, and the third one explores the possibility of extending the technique to the 

study of cells.  Finally, I discuss aspects of this work that can be further advanced by 

future modeling of the biomechanical properties of different types of soft tissue. 
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1 INTRODUCTION  
 
 
In this thesis magnetomotive optical coherence elastography (MM-OCE) is introduced, a 

functional imaging technique where magnetic nanoparticles are embedded in the 

specimens to be imaged and, upon excitation with an external magnetic field, trigger 

motion in the surrounding specimen, and the resulting nanoscale displacements are 

measured with phase-resolved spectral domain optical coherence tomography.  

Biomechanical parameters of specimens of interest are directly measured this way. 

 

1.1 Background and motivation 
 
There has been a great deal of interest in imaging structure and function of specimens in 

biology and medicine, as well as in other science fields such as materials science, 

physics, geology, chemistry, etc.  Non-destructive, minimally invasive visualization in 

real time and with high resolution has been a main goal in engineering new tools that 

would allow unprecedented observations that would offer insight into the inner workings 

of nature’s processes.  

 

Optical coherence tomography (OCT) is an established biomedical imaging modality in 

the near-infrared range that uses low-coherence interferometry for non-invasive 

high-resolution measurements of morphological and functional features of biological 

samples in real time, both in vitro and in vivo [1].  Existing OCT methods rely on 

retrieval of object structure and dynamical information from the amplitude or the phase 

of the backscattered light.  OCT benefits from a variety of contrast agents that enhance 
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imaging contrast in the samples under study by local differentiation via different 

mechanisms, such as external mechanical modulation or change in optical properties 

(either scattering  or  absorption) [1, 2].   

 

In this study the focus is on a class of magnetic contrast agents whose magnetic 

susceptibility is a few orders of magnitude higher than that of biological tissues, and thus 

yields high contrast in OCT images. The magnetic agents are controlled in a way that is 

not harmful to the specimen, by applying an external magnetic field gradient.  The goal is 

to improve the imaging performance and sensitivity of detection in biological samples 

probed with these contrast agents, in a spectral-domain OCT system and using phase 

measurements.  The results detailed in the following chapters of the thesis show the 

versatility of this technique for studies of micromechanical properties of tissue samples 

and cells, rendering information that could potentially be utilized to diagnose the health 

of these specimens.   

 

The biomechanical properties of tissues and cells are known to contain information about 

the state of health of the organs or organism where they reside.  A well-known example is 

the physical palpation of the skin surface and underlying tissue structures to determine 

their gross biomechanical properties in relation to adjacent regions of tissue.  A small 

local hardening in the breast is often found in a number of pathologies, from benign 

sebaceous cysts to malignant breast cancer.  Thus, there is a great deal of interest in 

having access to versatile diagnostic tools that could differentiate pathological tissue 

from normal tissue in unique ways. 
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1.2 Elastography methods 
 
Elastography is a functional extension of medical imaging where the elastic/mechanical 

properties of a sample are imaged [3]. The mechanical properties of biological specimens 

are widely known to be correlated with the progression of disease [4].  Biological tissues 

are known to have a viscoelastic behavior. Viscoelastic materials, as their name suggests, 

have both elastic and viscous properties.  Namely, they store a portion of the energy they 

receive from external sources as potential energy, while the other portion is damped [5-

9].  Their mechanical properties are of crucial importance for their function and 

reliability. 

 

Current methods for the measurement of mechanical properties of viscoelastic materials 

include ultrasound elastography [8, 10-12], magnetic resonance elastography (MRE) [13-

16], vibro-acoustography [17, 18], atomic force microscopy (AFM) [19], and optical 

coherence elastography [20-26].  These methods are either static or dynamic, and aim to 

detect displacements in samples when an external or internal stress is applied.  

Computational cross-correlation algorithms are often employed for tracking image 

features or pixels, and used for mapping their displacement [14, 20].  Unfortunately, 

these algorithms are prone to error in accurately measuring displacements and tracking of 

scatterers [14].  The inability to obtain quantitative measurements and the need for 

reference samples that yield relative measurements are some of the more common 

disadvantages of some of these techniques.   
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Elastography imaging systems typically require high cost and long data acquisition and 

processing times [10-19].  A more traditional technique for measuring mechanical 

properties of samples is indentation, wherein controlled mechanical pressure is applied to 

samples with well-defined geometries and the strain-stress curves are used for inferring 

the bulk elastic moduli of the probed samples [4]. Elastography and rheology, both 

well-established fields, have been greatly advanced by new technologies for 

characterizing material properties, and in particular, viscoelastic parameters.  These 

advances have been limited, however, by challenges such as resolution or the need to 

isolate the samples for measurements.  The need for an inexpensive, real-time, non-

contact, non-destructive, and quantitative method for the assessment of highly localized 

micromechanical properties with few constraints on the geometry or dimensions of the 

samples is apparent.  

 

1.3 Optical elastography  
 
A number of methods have been reported to assess the biomechanical properties of 

tissues using optical methods. The high spatial resolution possible with optical methods 

offers the ability to provide greater displacement sensitivity compared to other 

elastography techniques based on ultrasound and MRE [22]. Optical coherence 

elastography (OCE) has been recognized as a versatile approach for measuring and 

mapping biomechanical properties of biological tissues on the micron scale [3, 27-33]. 

OCE measurements have been used to assess the biomechanical properties of a wide 

variety of tissues of interest, such as measuring the stiffness of arteries [34], different skin 

layers [35], tissue engineering constructs [36] and the cornea [37, 38].  OCE requires the 
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application of a mechanical load (stress) on the sample, and by measuring the resulting 

displacements, the viscoelastic properties of the sample can be extracted. Mechanical 

stresses are induced in the samples of interest through either dynamic or static methods. 

In dynamic methods, the excitation source could be external, such as mechanical 

compression using piezoelectric (PZT) actuators [39-41], or it could be an internal 

excitation, such as by using acoustic radiation force to displace the internal tissue 

structures [42, 43]. Various methods could be used to quantify the displacement of the 

tissues. Earlier methods for elastography using OCT relied on speckle-tracking 

algorithms to estimate tissue displacement, however, speckle de-correlation and spatial 

sampling limit the range of displacements that can be reliably measured [44]. 

Phase-resolved measurements, where the axial displacements are tracked based on the 

phase difference between adjacent A-scans, have been more widely employed to estimate 

small scale displacements [33]. The lower and upper limit on the displacement range 

using phase-resolved methods depends on the phase noise and phase wrapping, 

respectively. Some research groups have also used shear wave propagation [43] or 

surface acoustic waves [45] in tissue samples to measure the stiffness of the tissue. 

 

1.4 Optical coherence tomography 
 
Optical coherence tomography (OCT) forms depth-resolved images by 

interferometrically detecting the backscattered light from a sample [1, 46]. In principle 

OCT is very similar to ultrasound but instead of sound waves low coherence light is 

utilized. The light from a source is split into two arms, reference arm and sample arm, by 

a fiber optic coupler. The light in the sample arm is focused into the sample by a focusing 
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lens and is backscattered from different structures within the sample. This backscattered 

light combines with the light from the reference arm and forms an interference pattern. 

This interference pattern is detected by a spectrometer and further processed to generate a 

single axial-scan (a column in an OCT image). The beam is then scanned over the sample 

to generate two or three dimensional OCT images. The laser light used in OCT is in the 

near infrared regime in the so-called biological window (~700 nm – 1300 nm) where the 

light-tissue interaction is dominated by scattering rather than absorption. The penetration 

depth in OCT is limited by multiple scattering and, in highly scattering biological tissue, 

is around 1-2 mm. The axial and transverse resolutions in OCT are independent of each 

other. The axial resolution in OCT depends on the bandwidth of the laser source while 

the transverse resolution is dependent on the numerical aperture of the focusing lens in 

the sample arm.  

 

Figure 1.1 Representative experimental set-up for a time-domain OCT system. Δh represents the 

distance the reference mirror is moved in order to image an equal depth in the sample. 

 

Image reconstruction is based on the theory of inverse scattering; by inverse 

Fourier-transforming the autocorrelation signal from the demodulated detected intensity 
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at different times (time-domain OCT, Fig. 1.1) or wavelengths (spectral-domain OCT), 

one can retrieve the complex analytic signal that contains amplitude and phase 

information about the object.  For interference to occur in time-domain OCT, the optical 

paths of the reference and the sample arms need to differ by no more than the coherence 

length lc of the source.  This also sets the limit on the axial resolution of the system, 

which is equal to lc.  For a Gaussian probing spectrum, lc is inversely proportional to the 

bandwidth Δλ of the source, as shown in equation (1.1).  Therefore, the use of a very 

broad bandwidth source for high axial resolution imaging is desired.  The transverse 

resolution RT is given by the diameter of the probing beam 2w0 and can be expressed in 

terms of the focal length f of the focusing lens, the center wavelength of the source λ0, 

and the diameter of the focused beam D, incident on the lens (assuming a Gaussian 

probing beam), as shown in equation (1.2). 

 
2

00.44cl
l
l

=
∆

 (1.1) 

 0
02 2.44T

fR
D
λω= =  (1.2) 

OCT, when compared to other established medical imaging modalities such as ultrasound 

and MRI, offers a much higher resolution.  However, the tradeoff is much smaller 

penetration depth and field of view. The real-time, high resolution, and depth resolved 

imaging capabilities of OCT have found wide spread applications in numerous areas of 

biology and medicine such as in ophthalmology, cardiology, and dermatology, among 

many others [1]. 
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1.5 Magnetomotive optical coherence elastography (MM-OCE) 
 
Several classes of contrast agents have been shown to benefit OCT.  Magnetic 

nanoparticles (MNPs) are promising candidates for contrast agents in biomedical      

imaging [2, 47-49], and in particular for OCT [2, 47, 49], due to their versatility and 

compliance with biosafety requirements.  Superparamagnetic iron oxide (SPIO) 

nanoparticles have already been used extensively as contrast agents for MRI [50].  

Nanoparticles with small core sizes (less than 20 nm) are easily transported through the 

circulatory system and are able to extravasate, and are thus suitable for both in vivo and 

in vitro studies [2, 50].  Depending on their composition and size, nanoparticles can be 

very responsive to external, non-invasive manipulation or detection due to their strong 

magnetic susceptibility, which is five orders of magnitude higher than that of biological 

tissues.  Moreover, they can be functionalized to target antigens and thus enhance 

contrast at the molecular and cellular level, aiding in pathology localization and early 

diagnosis of disease.  Reliable and sensitive methods for characterizing the response of 

the magnetic nanoparticles to magnetic fields and that of the surrounding biological 

medium are presently needed.   

 

In elastography, externally-applied mechanical stresses using a load cell or piezoelectric 

actuators tend to be large in scale and coverage, which may limit the high-resolution 

mapping of the mechanical properties.  MNPs were employed in this study for dynamic 

mechanical actuation as these could provide localized mechanical perturbations enabling 

the high-resolution probing of the tissue viscoelastic properties. Their small size allows 

them to diffuse through the tissues of interest, thereby allowing these to be used as local 
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probes to assess the local mechanical environment of the tissues. It has been previously 

shown that they can enhance the contrast in OCT images [51] and can be effective 

transducers for sensitive MM-OCE measurements [52].  By measuring the response of 

the tissue to a step excitation at high spatial and temporal resolution, a new way of 

simultaneously measuring several biomechanical parameters of interest, such as the 

elastic modulus, tissue displacement rise time, creep factor, and the natural frequency of 

biological tissues, is proposed.   

 

When embedded in tissue that is subsequently probed with an external magnetic field, 

magnetic nanoparticles that are far from saturation move along the axis on which the 

field B has a dominant gradient, as it follows from the force equation: 

 
( ) 2

0

,
2

p p bg
p

V B
F

χ χ

µ

− ∇
=  (1.3)                                                                                                                                         

where Fp is the magnetic force acting on a magnetic nanoparticle with volume Vp and 

magnetic susceptibility χp, χbg is the magnetic susceptibility of the background sample, 

and μ0 is the space permeability [47].  The sample arm and the electromagnet 

coil/solenoid are positioned such that the magnetic field at the site being probed/imaged 

has a dominant vertical component (that is also parallel to the probing beam) along 

which it varies, engaging the magnetic nanoparticles in motion on this direction and 

creating magnetomotive contrast, as shown in Fig. 1.2.  Magnetomotive optical 

coherence tomography (MM-OCT) in a time-domain OCT (TD-MMOCT) system has 

been used for detecting the displacements in different samples caused by the 

modulation of the magnetic field and it has been subsequently shown that the 

magnetomotive response in the system is predictable [2].  In this scheme, axial scans in 
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a two-dimensional transversal sample plane were acquired with the magnetic field off 

and on, while allowing the particles and the sample sufficient time to complete motion 

and reach equilibrium between axial scans.  Thus, the images taken with the 

time-domain MM-OCT system represent a static description of the sample in the 

absence and in the presence of the magnetic field.  Experimental verification relied on 

analysis of amplitude changes that revealed magnetic field-induced motion in the 

samples of interest.  This MM-OCE study explores phase detection as an alternative, 

more sensitive method of detection of magnetomotive displacements. 

 

Figure 1.2 Schematic of: (Left) sample with electromagnet coil and (Right) single MNP and 

forces acting on it. z is the imaging axis and d is the diameter of an MNP; the elastic, drag, and 

magnetic forces acting on the MNP are indicated by the respective vectors. 

 

Phase measurements in common-path low-coherence light interferometry have been 

shown to render high sensitivity to sub-wavelength displacements or obstacles in the 

path of light [53, 54].  Path length sensitivities as low as 25 pm for spectral-domain 

optical coherence phase microscopy (SD-OCPM) [55] and 18 pm (equivalent phase 

stability = 0.4 mrad) for spectral-domain phase microscopy (SDPM) [53] have been 
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reported.  Phase-resolved methods [56-58] are often used in a dynamic regime, such as 

in measuring intralipid [59-61] or blood flow [62-66] velocities, nerve displacements 

[67], or monitoring cell activity [55].  These remarkable results suggest that phase 

measurements in a spectral-domain OCT system are an appropriate approach for 

studying the magnetomotion in MMOCT. 

 

Studying the dynamics of the magnetic nanoparticles could shed light onto the 

micromechanical properties of the tissue that hosts them and thus extend the 

capabilities of OCT to elastography.  The tissue exerts a restoring elastic force and a 

viscous drag force that oppose the magnetic force on the nanoparticles of mass m,  

 2
0| | ( / )( / 4)elasticF E z z dπ= ∆

r
 (1.4) 

 | | 3 ( / ),dragF d z tπ η= ∂ ∂
r

 (1.5) 

where d is the diameter of the nanoparticle and  E  and η are the elastic modulus and 

the viscosity, respectively, of the sample medium at the location of the nanoparticle.  

From Newton’s second law and the force expressions above, the equation of motion of 

the MNP is obtained, which turns out be the equation of a damped oscillator: 

 2
0 0.z z zβ ω′′ ′+ + =  (1.6) 

 
z is the vertical axis, and also the direction of motion of the MNP.  When 

 2 2
04 0β ω− <   (1.7) 

the oscillation is underdamped (for critical damping the expressions evaluates to 0, and 

for overdamping it is positive).  With MM-OCE, it is possible to measure the damping 

factor β and the resonant frequency ω0.  Thus, the regional elastic properties of the 
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sample on the micron scale, and throughout its volume, can be inferred [2]. 

 

When the nanoparticles displace in response to the magnetic field activity, they also 

engage the surrounding tissue in movement.  The phase changes Δφ in the complex 

analytic signal are related to the displacements Δz in the sample by the equation: 

 
0

4 .zπϕ
λ

∆ = ∆  (1.8) 

Thus one can easily calculate the displacement from the measured phase differences 

can be easily calculated. 

 

In order to study the dynamics of the magnetomotion one needs to take advantage of the 

capabilities of a spectral-domain OCT system:  fast acquisition rates, good phase stability 

for increased sensitivity of detection (the reference-arm mirror is fixed, unlike in 

TD-OCT systems), and, not least, better signal to noise ratios [68-71].  

 

The rest of the dissertation is organized as follows.  In Chapter 2 I demonstrate the proof 

of principle of MM-OCE using tissue-mimicking phantoms while in Chapter 3 I extend 

this method to biological specimens.  In chapter 4 I explain the adaptation of MM-OCE 

to study cellular biomechanics. Finally, I summarize this work and outline some future 

directions in chapter 5.  
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2 MAGNETOMOTIVE OPTICAL COHERENCE ELASTOGRAPHY OF 
SILICONE SAMPLES1 

 
 
 

2.1 Introduction  
 
The availability of a real-time non-destructive modality to interrogate the mechanical 

properties of viscoelastic materials would facilitate many new investigations.  In this 

chapter, I introduce a new optical method for measuring elastic properties of samples 

which employs magnetite nanoparticles as perturbative agents.  Magnetic nanoparticles 

distributed in silicone-based samples are displaced upon probing with a small external 

magnetic field gradient and depth-resolved optical coherence phase shifts allow for the 

tracking of scatterers in the sample with nanometer-scale sensitivity.  The scatterers 

undergo underdamped oscillations when the magnetic field is applied step-wise, allowing 

for the measurement of the natural frequencies of oscillation of the samples.  Validation 

of the measurements is accomplished using a commercial indentation apparatus to 

determine the elastic moduli of the samples.  This real-time non-destructive technique 

constitutes a novel way of probing the natural frequencies of viscoelastic materials in 

which magnetic nanoparticles can be introduced. 

 

In this study I introduce a novel optical elastography technique, MM-OCE, based on 

phase-resolved spectral-domain OCT [69], which affords the capability of imaging non-

invasively, non-destructively, and in real time.  By introducing MNPs in the medium to 

                                                           
1 Crecea V, Oldenburg AL, Liang X, Ralston TS, Boppart SA. Magnetomotive nanoparticle transducers for 
optical rheology of viscoelastic materials. Optics Express, 17:23114-23122, 2009. 
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be probed, and by applying a small, controlled, external magnetic field, one gains access 

to the nano- to micro-level interactions between the MNPs and the surrounding 

microenvironmental matrix [47, 72]. 

 

Micromechanical properties of samples can be determined from dynamic measurements 

when a controlled modulated mechanical response is triggered in the sample [2, 30, 47, 

73].  Magnetomotion is induced in silicone-based samples via the interaction of a small 

localized external magnetic field with MNPs distributed in the samples.  This novel 

technique combines the advantages of localized magnetomotive contrast on the micron 

scale with fast real-time depth-resolved optical imaging to quantify the dynamic 

micromechanical properties of viscoelastic materials.  Magnetomotive optical coherence 

elastography is conceptually different from magnetomotive OCT (MM-OCT) [2, 30, 47] 

because it quantitatively measures the time-dependent oscillations of MNPs and their 

surrounding microenvironment, and uses this information to determine the viscoelastic 

properties of the medium.  In contrast, MM-OCT only uses the MNP modulation as a 

means for contrast enhancement in OCT. 

2.2 Methods and results 
In order to assess the validity of MM-OCE for measuring dynamic elastic properties of 

materials with different stiffness, I examined a set of polymer-based samples with elastic 

mechanical properties that spanned a wide range.  Polydimethylsiloxane (PDMS)-based 

samples with optical and mechanical properties representative of soft polymers, 

composites, and biological tissues were prepared [74].  To vary the elasticity of the 

samples, the ratio (PDMS):(curing agent RTV 615 A) was varied in the range 25:1-10:1, 
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while the relative ratio of the curing agent and the crosslinker, RTV 615 A:RTV 615 B, 

was maintained at 10:1 for all samples.  Titanium dioxide (TiO2) microparticles 

(Sigma-Aldrich, #224227, average diameter 1 µm, < 5 µm) with a concentration of 4 

mg/g served as optical scatterers and magnetite MNPs (average diameter 25 nm, 

Sigma-Aldrich, #637106) with a concentration of 2 mg/g served as magnetomotive 

perturbative agents.  The average distance between the TiO2 particles was 10 µm and 200 

nm between MNPs.  The polymers and the TiO2 particles were thoroughly mixed with 

the aid of a magnetic stir plate.  Subsequently, the MNPs were added and the sample 

solution was homogenized in an ultrasonic sonicator for five hours. They were then 

poured into Petri dishes with a diameter of 38 mm and a height of 5 mm, curing 12 hrs at 

80°C, and subsequently 24 hr at room temperature (22 °C).  An indentation instrument 

(model TA.XT Plus Texture Analyzer, Texture Technologies Corp., Algonquin, IL) was 

used for independent validation measurements of the elastic moduli of the samples. 

 

The composition of these samples was varied, resulting in noticeable (by palpation) 

differences in their elasticity.  As confirmed by indentation measurements using a 

commercial indentation instrument, the static elastic moduli of these samples ranged from 

0.4-140 kPa.  The concentration of optical scatterers and MNPs as well as the geometry 

and dimensions of all samples were kept constant.  In this study, the MNPs are believed 

to be mechanically bound directly to the solid polymer matrix of the silicone medium.  

The consistency and repeatability of the MM-OCE measurements support this 

hypothesis.   
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Figure 2.1  Schematic diagram of the MM-OCE set up with MNPs.  (top left) The magnetic coil 

provides a magnetic field that is aligned axially with the imaging beam.  The field gradient 

engages the motion of MNPs in the sample.  (top right) Transmission electron micrograph of the 

magnetite MNPs.  (bottom) The near-infrared light provided by the titanium:sapphire laser is 

divided by the 50:50 fiber-optic beamsplitter between the reference and the sample arms of the 

interferometer.  The interference signal is wavelength-dispersed by a diffraction grating and 

recorded by a charged coupled device (CCD) line array.  The magnetic field activity is 

synchronized with the OCT data acquisition, and the resulting optical back-scattering data is 

acquired, processed, and displayed on a personal computer. 

 

A spectral-domain OCT system [30] was used to perform real-time interferometric 

imaging of the samples.  The sample arm was modified to accommodate a small 

electromagnetic coil custom-designed to optimize the magnetic field gradient within the 

focal region of the optical imaging system, as illustrated in Fig. 2.1.  The probing light 

was provided by a Nd:YVO4-pumped titanium:sapphire laser (KMLabs, Boulder, CO) 

with a center wavelength of 800 nm and a bandwidth of 120 nm, providing an axial 

resolution of 3 µm in the samples.  The average power incident on the samples was 

10 mW.  A 40 mm focal length lens was used to focus the light in the sample arm to a 16 

µm spot (transverse resolution).  Magnetic field modulation was synchronized with 
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optical data acquisition.  M-mode imaging data was acquired at a camera line rate of 

29 kHz (34 µs per axial depth scan) for a total acquisition time of 280 ms per M-mode 

image.  During the acquisition of each image the magnetic field was turned on shortly 

after the start of the acquisition and kept constant for 100 ms, and then switched off in a 

square-wave pattern, releasing the MNPs and resulting in the relaxation of the sample, as 

illustrated in Fig. 2.2.   

 

Figure 2.2  Scatterer response upon step-wise modulation of a magnetic field.  (a) Two-

dimensional (x-z) cross-sectional (B-mode) amplitude OCT image of a silicone sample 

containing MNPs and TiO2 optical scatterers.  The dashed line indicates the location in the 

sample where M-mode imaging was performed with MM-OCE.  (b) M-mode amplitude OCT 

image of a region of scatterers acquired while the magnetic field was applied step-wise.  (c) 

Average time-dependent scatterer changes along one axial position, illustrating both the changes 

in phase (red) and changes in amplitude (blue) as the magnetic field is applied step-wise, relative 

to an idle state with zero magnetic field. 
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The complex analytic signal obtained from the raw optical data acquired in M-mode was 

used to extract the phase associated with individual scatterers in the samples (at fixed 

positions in depth) as a function of time.  The phase variation was recorded as the 

magnetic field was applied step-wise to the sample, and the absolute displacement of the 

scatterers was deduced from Eq. (1.7) [75].  Based on the parameters of our system and 

of our samples, the displacement can be calculated directly from this equation.  The 

displacement sensitivity of the system, defined as the standard deviation of the measured 

position of a stationary mirror in the sample arm, was 11 nm.  Typical maximum 

displacements measured in the samples were in the order of a few hundred nanometers.   

  

Within 2-20 ms after the onset of the magnetic field, the scatterers were observed to reach 

a maximum displacement.  This was followed by an underdamped oscillation that 

eventually settled to a new static position as the scatterers reached equilibrium (Fig. 2.2).  

A similar behavior was observed when the field was removed and the MNPs in the 

sample were released from the magnetic force and allowed to return to their initial 

equilibrium position as a result of the binding/restoring force on the MNP from the 

microenvironment.  

 

The requirement for the linearity of the viscoelastic material behavior is that the 

displacements induced be at most 0.2% of the length of the sample [76].  In this study, 

the height of the samples was 5 mm, and therefore displacements of at most 10 μm would 

ensure a linear response and predict direct proportionality of natural frequencies with the 

square root of the elastic moduli.  Moreover, in order to avoid confounding phase 
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unwrapping, displacements did not exceed half the axial resolution of the OCT system, 

namely 1.5 μm.  Therefore, the strength of the magnetic field was adjusted in the range of 

100-600 Gauss for samples with different elasticities to ensure that this maximum 

displacement was not exceeded.  The graph in Fig. 2.3 shows the variation of the 

maximum phase change and displacement in a representative sample (with an 

(RTV A):(RTV B) ratio of 10:1, a concentration of 2.5 mg/g of MNPs, 4 mg/g TiO2 and 

with a measured elastic modulus of 3.1 kPa) as the magnetic field strength is increased.   

 

Figure 2.3 Scatterer response to different magnetic field strengths.  Direct measurements (points) 

of maximum change in unwrapped phase from an average scatterer, which are directly 

proportional to the average maximum displacements of the MNPs, as the electromagnet control 

voltage is changed.  The polynomial fit follows the law y=Cx1.7.  The applied voltage is directly 

proportional to the gradient of the square of the magnetic field.  MM-OCE data is acquired at 

displacements not exceeding 1.5 μm in order to avoid excessive phase wrapping of the phase 

signal.  

 

The natural frequency of oscillation of each sample was obtained from the time-resolved 

displacement of each scatterer, measured optically with the coherence ranging system.  
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The displacement curves of the scatterers were fitted to the equation of motion of an 

underdamped oscillator with two frequency components according to equation (2.1): 

 
2

1
( ) cos(2 )it

i i i
i

d t a e f t Cπγ π d−

=

= − +∑  (2.1) 

where d(t) is the displacement as a function of time, a1 and a2 are the amplitudes of the 

two frequency components, γ1 and γ2 are the corresponding damping coefficients, f1 and f2 

are the frequencies of oscillation, d1 and d2 are arbitrary phases, and C is a constant.  The 

R-values of the curve fittings were all above 85%.  The dominant natural frequencies of 

oscillation of the samples were plotted against the square root of the elastic modulus.   

 

Figure 2.4 Normalized measured displacements from samples of different elastic moduli 

following a step (off-to-on) transition of the applied magnetic field.  Three samples that span a 

wide range of elastic moduli (measured by indentation: 0.4 kPa [green], 6.4 kPa [red], 27 kPa 

[blue]) are shown.  These sample moduli are characteristic of soft biological tissue, and were 

chosen to illustrate the natural frequencies of oscillation measured by MM-OCE.  The “0/1” 

labels on the vertical axis are respectively indicating the minimum and maximum of the 

normalized amplitudes of the displacements traces.  As expected, it is observed that as the 

stiffness of the medium increases, the natural frequency of oscillation of the response increases.  
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Figure 2.4 illustrates the normalized scatterer traces when the field was applied on three 

samples with different elastic moduli, as validated by indentation measurements.  It is 

observed that the natural frequency of oscillation varies strongly with the elastic modulus 

and, as expected, stiffer samples exhibit higher frequencies.  Some of the recorded 

displacement traces have secondary frequency components whose amplitudes are 

consistently smaller than those of the main frequency components. 

 

2.3 Discussion 
Viscoelastic media can often be modeled as a Voigt body [77].  This model predicts a 

linear relationship between the natural frequency of oscillation of a material and the 

square root of its elastic modulus.  The graph in Fig. 2.5 summarizes the MM-OCE 

measurements of natural frequencies of oscillation for the range of samples investigated, 

with elastic moduli varying between 0.4 and 140 kPa, confirming this prediction.  The 

natural frequencies closely follow a linear dependence on the square root of the elastic 

moduli over this range that spans three orders of magnitude, reinforcing the validity and 

applicability of MM-OCE for elasticity measurements of various materials. 
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Figure 2.5 MM-OCE-measured natural frequencies of oscillation in samples of varying elastic 

moduli.  The natural frequency of oscillation of the viscoelastic medium depends linearly on the 

square root of the elastic modulus, as predicted by the Kelvin-Voigt model.  The MM-OCE 

relaxation frequency data (vertical axis) were collected as the samples relaxed following an on-to-

off step magnetic field transition.  The elastic moduli (horizontal axis) values were measured by 

indentation. 
 

The range of elastic moduli investigated here was representative of the majority of soft 

polymer composites and matrices.  It should be noted that studies have reported 

biological tissues also exhibit elastic moduli in a range similar to that investigated in this 

study, with representative values for adipose tissue (1.9 kPa), breast tumor (12 kPa) [78], 

and forearm skin (120 kPa) [79].  With the current MM-OCE technology, samples stiffer 

than 140 kPa exhibited an overdamped response when the magnetic field was applied, 

and the analysis presented in this study does not apply in such cases.  Samples softer than 

0.4 kPa are similar to a liquefied gel and their frequencies of oscillation are too low to be 

measured in real-time with the MM-OCE system.  However, the range of elasticities 

explored herein is representative for many materials of interest, demonstrating that 
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MM-OCE has the potential for a wide range of investigational and diagnostic studies in 

materials science, biology, and medicine.  MM-OCE requires that the magnetic 

nanoparticles be present in the samples.  The magnetic nanoparticles used in this study, 

however, had a negligible effect on the bulk elastic modulus of the samples, as 

demonstrated by measurements with a commercial indentation instrument.  Future 

modeling is needed to more precisely describe the dependence of the natural frequency of 

oscillation on the elastic modulus while taking into account the interactions between 

MNPs and their cooperative interactions with the external magnetic field, as well as how 

the binding of MNPs to the surrounding matrix affects the displacement of scatterers. 

 

MM-OCE benefits from nanometer displacement sensitivity due to phase stability in the 

optical ranging system and the fact that minute (sub-resolution) displacements of 

scatterers in the samples result in slight changes in phase.  The error in the measurements 

of the frequencies of oscillation was as small as 0.03% and no larger than 2%.  The main 

noise sources in the MM-OCE system are the small variations of the magnetic field 

gradient, the scatterer movement in the three-dimensional sample matrix, the optical 

detection electronics, and the fitting of the displacement traces.  Given the high resolution 

and high sensitivity of the imaging system, MM-OCE can readily measure real-time 

displacements non-invasively and non-destructively at the micron level, without the 

requirement of physical contact with the sample.  This offers a clear advantage over other 

mechanical methods that measure stress-strain characteristics and have these limitations. 
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The minimum concentration of magnetic particles that can be detected with 

MM-OCT/OCE depends on a number of factors, such as the noise in the OCT system and 

the magnetic and mechanical properties of the sample and of the MNPs. A previous study 

using a homogeneous PDMS-based tissue model found that MNP concentrations as low 

as 27 ug/g can be detected in tissue samples [30]. MM-OCE measurements, however, 

require the extraction of quantitative parameters form the magnetomotive response; 

hence, the MM signal levels must be sufficiently higher than the noise floor of the 

system. This would mean that a higher MNP concentration would be required in 

MM-OCE compared to MM-OCT, as the MM-OCT measurements merely require the 

detection of presence (and not necessarily extracting quantitative parameters such as 

displacement) of MNPs, and can thus tolerate lower SNRs. 

  

Boundary conditions (such as the geometry and the dimensions of a sample) are generally 

important in assessing the values of elastic moduli.  In this study, the boundary conditions 

were controlled and kept constant for all samples.  It has been suggested, however, that 

dynamic methods for probing mechanical properties have the potential for local 

characterization regardless of boundary conditions (when the boundaries are relatively far 

from the point of measurement [10]).  Efforts are currently being directed towards the 

development of analytical models that describe viscoelastic media and the dynamic 

regime that MM-OCE is probing, as well as towards the investigation of the effect of 

boundary conditions on the values of the natural frequencies of oscillation. 
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Phase-resolved methods employed for scatterer tracking in MM-OCE afford real-time 

nano- to micro-scale measurements, creating the possibility for mapping mechanical 

properties with high resolution, superior to that of most other rheology technologies.  The 

utilization of MNPs in MM-OCE and their nanometer-scale displacements enables the 

interrogation of a medium of interest at the nano-level and, given the cooperative action 

of the MNPs, at the micro-level of the sample.  MM-OCE can directly measure natural 

frequencies of oscillation of various samples.  With this versatility, MM-OCE could 

become a powerful tool with a wide range of applications in materials science. 
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3 MAGNETOMOTIVE OPTICAL COHERENCE ELASTOGRAPHY FOR 
MICRORHEOLOGY OF BIOLOGICAL TISSUES2 

 

3.1 Introduction 
 
In this chapter, a new development of a spectral domain OCE technique that enables 

simultaneous measurements of multiple biomechanical parameters of biological tissues is 

presented. This approach extends the capabilities of MM-OCE, which utilizes iron oxide 

MNPs distributed and embedded in the specimens as transducers for inducing motion. 

Step-wise application of an external magnetic field results in displacements in the tissue 

specimens that are deduced from sensitive phase measurements made with the MM-OCE 

system.  In this study, freshly excised rabbit lung and muscle tissues were analyzed.  It is 

observed that while they present some similarities, rabbit lung and muscle tissue 

displacements display characteristic differentiating features.  Both tissue types undergo a 

fast initial displacement followed by a rapidly damped oscillation and the onset of creep.   

However, the damping is faster in muscle compared to lung tissue, while the creep is 

steeper in muscle.  This approach has the potential to become a novel way of performing 

real time measurements of biomechanical properties of tissues, and to enable the 

development of new diagnostic and monitoring tools in biology and medicine. 

 

 

  

                                                           
2 Crecea V, Ahmad A, Boppart SA. Magnetomotive optical coherence elastography for microrheology of 
biological tissues. J Biomedical Optics, 18:121504, 2013. 
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3.2 Methods 
 

3.2.1 Tissue specimen preparation  

Under a protocol approved by the Institutional Animal Care and Use Committee at the 

University of Illinois at Urbana-Champaign, tissues were harvested from a New Zealand 

white rabbit (Covance, Princeton, NJ) and sectioned in cubes with a volume of 

~ 3.38 cm3.  The fresh tissues were then completely immersed for 4 hrs in a room 

temperature saline suspension of MNPs (average diameter 25 nm, Sigma-Aldrich, 

#637106) with a concentration of 10 mg/ml.  Prior to imaging, the tissues were rinsed 

with fresh saline solution and set at rest for 5 min in order to avoid fluid flow transients in 

the specimen during imaging.   

 

3.2.2 Imaging system 

The MM-OCE imaging system was previously described in detail [52].  In brief, a 

titanium:sapphire laser (KMLabs, Boulder, CO) with a center wavelength of 800 nm and 

a bandwidth of 120 nm provided the probing light for a spectral-domain OCT system.  

The average power incident on the specimens was 10 mW.  The axial resolution was 

1.7 μm and the transverse resolution was 16 μm in the specimens, assuming an average 

tissue index of refraction of 1.4. A small, custom-built, computer-controlled solenoid coil 

situated 2 mm above the specimen provided the switchable magnetic field for triggering 

the motion of the MNPs.  The strength of the magnetic delivered by the coil was 

approximately 400 Gauss.  Fig. 2.1 shows a schematic of the optical system that includes 

the solenoid coil. 
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3.2.3 Data acquisition  

Microrheology measurements were made from M-mode imaging data acquired at camera 

line rates of 5 kHz and 20 kHz to allow high time-resolution displacement measurements 

of the initial dynamic response of the tissues, as well as longer time measurements that 

would show the mechanical behavior of the tissue past the initial perturbation.  

Measurements were made from four different locations close to the center of each 

specimen.  Each M-mode image consisted of 10,000 axial lines and captured 4 cycles of a 

constant step magnetic field [52].  The phase content of the acquired signals was also 

used to determine the displacements occurring in the tissue specimens, as previously 

demonstrated [52].  The displacement sensitivity of the system was 11 nm, allowing us to 

detect very small displacements in real time and with high resolution.  As shown 

previously, this approach to displacement measurements is preferable to amplitude 

measurements, whose displacement sensitivity is much lower, on the order of 1 µm [52]. 

 

3.2.4 Data analysis 

The normalized displacement data was analyzed in Matlab to extract the following 

biomechanical parameters of interest: the natural frequency of oscillation from the 

underdamped oscillations, the rise time, defined as the interval between the magnetic 

field being switched on and the moment the tissue reached the first peak of the 

oscillation, and the exponential creep term of the displacement following the initial 

oscillation.   
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Figure 3.1. Representative lung tissue response. (Left) The displacement data acquired with a 20 

kHz camera line rate contains a fast underdamped oscillation from which the rise time is 

calculated. The natural frequency of the tissue can be calculated by fitting the data after the creep 

component is subtracted. (Right) The displacement data acquired with a 5 kHz camera line rate is 

fitted to determine the creep parameter, which describes how fast the tissue displaces over a large 

time scale compared to the initial oscillation. 

 

Fig. 3.1 shows representative data for lung tissue and highlights the relevant features of 

the signals that are utilized to calculate the above parameters.  The 20 kHz data describes 

the fast response of the tissue and the 5 kHz data characterizes the slow response.  In 

order to quantify the description of these regimes, the 20 kHz data is fitted to the equation 

 ( )*si 2 ,n * bty A ft eπ θ −= +  (3.1) 

 where y is the displacement, A is the amplitude of the oscillation, f is the natural 

frequency of oscillation, t is time, 𝜃𝜃 is a phase factor, and b is the damping parameter.  

The creep parameter c is calculated from fitting the 5 kHz data to the equation 

 1 * ,cty a e= −  (3.2) 

where a is the amplitude factor. 
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The Young’s moduli of the tissue specimens were calculated based on a Voigt model 

[77].  In brief, the Young’s modulus E is given by the equation 

 ,LE k
S

=  (3.3) 

where k is the elastic constant of the tissue specimen, L is the height of the tissue, and S is 

the cross-sectional area of the specimen. k is calculated from the expression  

 ( )2 2(2 ) * ,k f b mπ= +  (3.4) 

where m is the mass of the tissue specimen. 

 

3.3  Results and discussion 
 
The tissues measured with MM-OCE contained MNPs that had diffused into the 

specimens while being immersed in a concentrated suspension of MNPs in saline.  

Similar to the previous study with silicone tissue phantoms [52], the MNPs likely bind to 

the extracellular matrix of the tissue, or perhaps are internalized into some cells, and 

provide access to interrogate the biomechanical microenvironment of the tissue 

specimens when perturbed with an external magnetic field.  I chose to utilize a magnetic 

field applied in the form of a step function that would be kept on for a period of time 

sufficiently long so as to allow the observation of the dynamic response of the tissue 

specimen immediately after the MNPs are set in motion by a rapid-onset then constant 

magnetic force. 

 

In a preliminary set of experiments, several types of rabbit tissues (adipose, heart, kidney, 

muscle, lung, and liver) were harvested and MM-OCE was performed.  The displacement 
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data for this set of tissue specimens are shown in Fig. 3.2.  It is evident that each type of 

tissue has a distinctive response.  I chose to study the lung and muscle tissues in more 

depth because they illustrate distinctly different types of responses, appeared more 

uniform than the other types of tissue, and could be handled more easily, so that each 

could be sectioned into simple geometric shapes such as cubes. This is important because 

the boundary conditions can influence the measurements of the natural frequency of 

oscillation, based on which the Young’s moduli are calculated [31, 77]. 

 

 
Figure 3.2 Representative MM-OCE signals for different types of rabbit tissues.  The first 

transition corresponds to switch the B field from off to on, while the second one corresponds to 

switching the field from on to off. 

 

Magnetomotive OCT images (Figs. 3.3 and 3.4 (top)) of rabbit lung and muscle tissues 

acquired from the center of the specimens show the presence of the MNPs, as 

demonstrated by the green channel signal.  M-mode MM-OCE data was taken at four 

nearby locations in each specimen and the displacements from bright scatterers along the 

depth of the axial scans were calculated from the phase data [52].  Depending on the 
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tissue specimen and location, the number of bright scatterers varied from 6 to 20.  The 

displacement data from these scatterers was averaged and utilized for post-processing.  

Figs. 3.3 and 3.4 (center) shows two representative MM-OCE signals (normalized 

displacements) from the lung and muscle specimens.  Figs. 3.3 and 3.4 (bottom) shows 

the noise-level signals from the same specimens when no magnetic field was present.  

Similar noise-level signals were observed in tissue specimens without MNPs, both with 

and without the switched magnetic field (data not shown).  The noise fluctuations of the 

displacement are extremely small, compared to the signals recorded when the magnetic 

field is switched from off to on or vice versa, with a ratio of maximum displacement to 

noise level displacement of at least 100:1.   

 

Table 3.1 summarizes the averaged values of the natural frequency of oscillation from the 

underdamped oscillations, the rise time, the exponential creep term of the displacement 

following the initial oscillation, and the Young’s modulus.  The natural frequencies of 

oscillation are comparable to values measured previously in rat lung and muscle [80].  

The Young’s modulus values are also consistent with previous measurements, though it 

is to be noted that there is an acknowledged wide range of values in the literature, due to 

biological variability, physical constraints, chemical environment, and the geometry of 

the samples [32, 80]. 

 

In the previous study with silicone tissue phantoms, the displacements observed 

contained an underdamped oscillation followed by an equilibrium position [52].  Several 

cycles of the oscillation were present for these highly homogeneous samples.  The more 
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heterogeneous rabbit lung and muscle tissues exhibit a similar trend in that an 

underdamped oscillation is also present in their response.  However, the damping in these 

tissue specimens is much faster than in tissue phantoms as only one (in the case of lung) 

or less (in the case of muscle) cycle of oscillation is observed.  Moreover, the tissues 

undergo creep, as opposed to rapidly settling at an equilibrium position.  It is apparent 

that muscle experiences a steeper creep than lung, while the amplitude of its 

underdamped oscillation is relatively smaller.  Also, when the magnetic field is turned off 

and the MNPs (and thus the forces on the tissue) are released, the tissue does not revert to 

its initial position, and some residual strain is present, more so in muscle than in lung.   

 

In conclusion, I have demonstrated the application of MM-OCE in biological tissues, and 

how phase-sensitive measurements of the tissue response from an applied external step-

function magnetic field can yield several important biomechanical properties of the tissue 

under investigation. These differences observed demonstrate that the behaviors of 

different types of tissues carry a unique set of information that results from a multitude of 

factors, such as the physio-chemical constituents of the tissue, the micro-level bonds in 

the extracellular matrix, the types of cells that make up the tissue, etc.  Future studies will 

begin to elucidate the dependency of each of these factors in the extracted MM-OCE 

biomechanical data.  As a novel optical elastography technique, MM-OCE provides 

access to this biomechanical information with high resolution, both spatially and 

temporally, and with high sensitivity, and is a promising technique for advancing the 

study of biomechanics on the micro scale. 
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Figure 3.3 MM-OCT and MM-OCE of rabbit lung tissues. (Top) B-mode MM-OCT images of 

rabbit lung tissues (green channel is MM-OCT signal, red channel is structural OCT signal). 

(Center) Representative normalized displacements calculated from M-mode phase MM-OCE data 

taken with a line rate of 20 kHz from rabbit lung while the magnetic field B is modulated as in a 

step-wise manner (square wave) for 4 cycles (B off followed by B on).  (Bottom) Normalized 

displacement data of lung in the absence of magnetic fields. 
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Figure 3.4 MM-OCT and MM-OCE of rabbit muscle tissues. (Top) B-mode MM-OCT images of 

rabbit muscle tissues (green channel is MM-OCT signal, red channel is structural OCT signal). 

(Center) Representative normalized displacements calculated from M-mode phase MM-OCE data 

taken with a line rate of 20 kHz from rabbit muscle while the magnetic field B is modulated as in 

a step-wise manner (square wave) for 4 cycles (B off followed by B on).  (Bottom) Normalized 

displacement data of muscle in the absence of magnetic fields. 
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Table 3.1 Biomechanical parameters of rabbit lung and muscle tissue measured with MM-OCE. 

Biomechanical Parameter Muscle Lung 

Creep parameter (1/s) -8.6 ± 1.9 -6.0 ± 2.4 

Rise time (ms) 7.1 ± 0.7 11.3 ± 0.5 

Frequency  (Hz) 99.6 ± 8.9 57.5 ± 4.7 

Young’s modulus (kPa) 94.6 ± 15.2 28.5 ± 2.8 
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4 MAGNETOMOTIVE OPTICAL COHERENCE MICROSCOPY FOR 
CELLULAR BIOMECHANICS3 

 

4.1 Introduction 
 
Cellular mechanics play an important role in normal cell function, and numerous 

processes at the cellular level result in changes in the elastic properties of different cell 

components, along with biochemical changes [81-84].  Therefore, it is of great interest to 

develop technologies that enable measurements of these dynamic mechanical changes, as 

they would offer new fundamental insight into the inner workings of cells, and further 

our understanding of both normal and pathological processes.  These biomechanical 

measurements at the cellular level have the potential to lead to new diagnostic paradigms 

or biomarkers for detecting and treating disease. 

 

In general, cellular elastography techniques can be categorized into active and passive 

rheology, based on the excitation method employed.  In passive rheology, the intrinsic 

movement of particles internalized by cells or of cellular components is utilized, whereas 

in active rheology methods, external forces, such as magnetic or optical forces, are used 

for measuring the cellular mechanical properties.  In active rheology, magnetic particles 

have been widely utilized for measuring cellular mechanical properties.  Predominantly, 

larger sized (several microns) magnetic particles have been used for rheology purposes, 

as these particles can generate larger magnetic forces (proportional to R3, where R is the 

radius of a particle) and their motion can be easily tracked using light microscopy. In 

magnetic twisting cytometry (MTC), a high magnetic field strength is initially applied to 
                                                           
3 Crecea V, Graf BW, Kim T, Popescu G, Boppart SA. High-resolution phase-sensitive magnetomotive 
optical coherence microscopy for tracking manetic microbeads and cellular mechanics.  IEEE J Sel Topics 
Quantum Electronics – Biophotonics, 20:6800907, 2013. 
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magnetize the ferromagnetic beads and, once the beads are magnetized, a comparatively 

smaller magnetic field strength is used to impart a torque on the particles, which results in 

a rotational motion [11].  This technique has been extended by applying oscillating forces 

[12] and orienting the magnetic fields in different directions, enabling three-dimensional 

MTC [13].  

 

In another class of techniques termed as magnetic tweezers, a magnetic field gradient is 

applied under which the magnetic beads undergo predominantly translational motion in 

the direction of the magnetic field gradient.  Magnetic tweezers have been used to 

measure the local viscoelastic properties of cells [14].  Magnetic tweezers are also a well-

established platform for probing at the single-molecule level (particularly for DNA 

measurements) [85], and can also be implemented in the study of cell functions and 

processes [86-88].  While the use of magnetic tweezers is preferred for ease of use and 

robustness, magnetic tweezers suffer from limitations in time resolution and spatial 

resolution, inherent in the imaging systems utilized to monitor their motion [5].  

White-light bright-field video microscopy is the widely used imaging technique in 

magnetic tweezer studies.  However, its main drawback is the fact that it can only 

measure a 2D plane in real time, while inference of displacement in the third dimension is 

usually done in post-processing and suffers from lower precision and resolution 

compared to real-time data [85].   

 

All these techniques employ some form of an imaging method to measure the 

displacement of the particles. Wide field microscopy techniques measure the 
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displacements that are within the imaging plane and cannot measure out of plane 

movements, while techniques such as spectral domain phase microscopy [15] or optical 

coherence microscopy are only sensitive to the axial displacements [16].  

 

Once the displacements are quantified, a physical model needs to be employed that 

relates the displacement to the viscoelastic properties.  One of the most widely used 

relationships, especially in passive rheology techniques, are the Stokes-Einstein 

equations.  The particles (can be nanoparticles), once inside the cell cytoskeleton, 

undergo random fluctuations due to Brownian motion.  The mean square displacements 

(MSD) of these movements are then measured and the generalized Stokes-Einstein 

equations, which relate the MSD to the viscoelastic properties, are subsequently utilized 

to extract the viscoelastic parameters of the surrounding microenvironment [17].  Another 

common method used extensively in the cell mechanics literature is measuring the 

displacement of the particles under a constant static force applied for several seconds.  

Due to the viscoelastic nature of the cytoskeleton, the particles undergo a creep response 

that can be fitted to a number of mechanical models to extract the viscoelastic properties. 

 

In the previous chapters, I have shown that MM-OCE can accurately measure the natural 

resonant frequencies of silicone samples that mimic the opto-mechanical properties of 

tissue [52]; however, acquiring magnetomotive signals from single cells presents new 

challenges, and many investigative opportunities.  The current goal is to explore the 

potential of our imaging system for measuring real-time cellular-level mechanics, which 

would potentially reveal mechanisms of important cell functions and processes.  
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I propose a new real-time, multimodal optical imaging technique that incorporates phase-

sensitive MM-OCE with optical coherence microscopy (OCM).  In OCM the numerical 

aperture of the imaging objective is higher than in OCT, allowing for higher resolution 

imaging, on the order of 1 µm [89-91].  Raster scanning of thin biological samples, such 

as cells, enables two-dimensional imaging.  This technique provides fast high-resolution 

imaging of dynamic mechanical changes in cells probed with magnetic microbeads, 

which are similarly used in magnetic tweezer studies.  This technique has the potential to 

greatly improve the existing methodology and enable new investigative studies in cellular 

biomechanics. 

 

4.2 Methods 
 

4.2.1 Cell sample preparation 

Three types of cells were probed in this study:  mouse macrophages, cell line TIB-67 

(J774A.1, ATCC), human breast epithelial primary ductal carcinoma cells, cell line 

CRL-2314 (HCC38, ATCC), and healthy human breast epithelial cells, cell line 

CRL-4010 (hTERT-HME1, ATCC).  In the experiments using mouse macrophages, two 

types of magnetic microparticles were utilized.  The first type was multifunctional 

microspheres custom-fabricated in our lab, which have an average diameter and standard 

deviation of 2.2±1.3 µm.  These microspheres consist of a liquid core containing a 

suspension of iron oxide nanoparticles in vegetable oil, and an encapsulating albumin 

protein shell [92].  These microspheres have previously been shown to provide good 
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magnetomotive imaging contrast for OCT [92].  The second type of magnetic 

microparticles/microtransducers was fluorescent magnetic microbeads (ME04F /9486, 

Bang Labs, Fishers, IN), with a diameter between 1-2 µm.  These magnetic particles 

consist of iron oxide nanoparticles and a fluorescent dye embedded in a polystyrene 

matrix that allows for additional co-registered MPM imaging.   

 

In an experiment involving cancer and normal human breast cells, magnetic microbeads 

(3 µm diameter, Invitrogen Dynabeads®) composed of iron oxide nanoparticles in a 

polystyrene matrix were used. These magnetic microbeads were either left uncoated or 

were functionalized with an RGD ligand to target the alpha-v-beta-3 integrin receptors 

overexpressed on cancer cells.   

 

To facilitate targeting of the magnetic particles/beads to the cells, cultures of each cell 

type were incubated with magnetic microbeads for a period of four hours at room 

temperature in a 5% CO2 environment.  Prior to imaging, cell cultures were 

washed/rinsed with PBS in order to remove excess loose microbeads. 

 

4.2.2 Imaging system 

The imaging platform used for this experiment is an integrated optical coherence (OCM) 

and multiphoton microscope (MPM) [89, 91, 93].  OCM is a high resolution variation of 

optical coherence tomography (OCT) that uses a high numerical aperture (NA) beam to 

achieve high lateral spatial resolution.  The high NA also restricts the depth-of-field so 

images are typically acquired in an en face orientation, similar to confocal microscopy.  
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Unlike a confocal microscope that relies only on spatial filtering, OCM produces optical 

sections of samples using coherence gating in addition to the confocal gating from the 

high NA.  Images are based on optical scattering, which allows the microstructural 

features of cells or tissue to be visualized.  MPM is a nonlinear imaging technique that 

can be used to excite two-photon fluorescence within the focal volume of a high NA 

beam.  In this study, MPM was used to image multifunctional fluorescent and magnetic 

microspheres.  The integrated OCM-MPM microscope allows simultaneous co-registered 

imaging with both modalities [36].  This allows the microspheres to be visualized and 

their location within the cells to be determined.  For this study, a small, custom-fabricated 

magnetic solenoid was integrated below the sample plate to induce an alternating 

magnetomotive force on the magnetic beads in the cells.  The magnetic field strength at 

the location of the sample was ~400 Gauss, with a gradient of ~10 T/m.  The modulation 

frequency of the coil was 5 Hz. 

 

A schematic of the microscope is shown in Fig. 4.1(A).  A dual spectrum laser source is 

implemented by splitting the output of a tunable Ti-sapphire laser into two beams, one for 

OCM and one for MPM.  The details of this laser source have been previously    

described [93].   
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Figure 4.1 Schematic of integrated optical coherence and multiphoton microscope.  

(A) Dual-spectrum optical source.  (B) Sample arm. The red beam lines represent light coming 

from the laser source as well as light backscattered from the sample, while the green beam lines 

represent the two photon-excited fluorescence.  (C) Zoomed-in region showing the focused 

sample arm beam with the electromagnet coil, and the field lines generated at the culture of cells 

containing magnetic microbeads.  Abbreviations:   BS, beam splitter; DG, diffraction grating; 

PBS, polarizing beam splitter; SM, galvanometer scanning mirror).   

 

Briefly, the MPM beam is used directly for two-photon excited fluorescence, while the 

OCM beam is first coupled into a photonic crystal fiber (LMA-5, crystal fiber), where the 
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spectrum is broadened through supercontinuum generation.  The beams are recombined 

in the sample arm of the interferometer using a polarizing beam splitter.  This laser 

source enables tuning of the center wavelength of the laser to optimally excite 

fluorescence in MPM while maintaining a broad spectrum for enhanced optical 

sectioning in OCM.  The interference pattern between scattered light in the sample arm 

and the reference beam is detected by a linescan charge-coupled device (CCD) camera 

operating at a linescan rate of 33 kHz.  OCM processing consists of computational 

dispersion correction [91] and correction of coherence gate curvature [89] caused by 

scanning of the beam.   

 

A diagram of the sample arm is shown in Fig. 4.1(B).  The dual spectrum laser beam 

passes through a pair of scanning galvanometers before entering a beam-expanding 

telescope.  The beam is then focused by a 0.95 NA water immersion objective lens 

(XLUPLFL20XW, Olympus) onto the sample providing a transverse resolution of 2 µm 

[90].  Fluorescence generated at the focal volume is reflected by a dichroic mirror and 

focused onto a PMT.  Scattered light collected by the objective lens travels back along 

the beam path to the interferometer.  The electromagnet situated below the sample is used 

to modulate the magnetic microspheres.  Axial displacement of the particles and the cell 

are detected as phase shifts in the OCM signal, as a means for detecting the sample 

magnetomotive response.  The phase sensitivity, determined from the standard deviation 

of the signal measured from a fixed mirror, was 290 mrad, corresponding to a 

displacement sensitivity of 13 nm.  The amplitude and phase of the oscillations relative to 
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the driving waveform are determined by the local mechanical environment of the 

magnetic transducers. 

 

Figure 4.2 Phase-resolved MM-OCE from a single macrophage with phagocytosed microspheres.  

(A) OCM image of a single macrophage.  Arrows indicate locations where M-mode 

magnetomotive measurements were made in and around the cell (dotted line approximates the 

contour of the cell).  Protein-shell microspheres with a core suspension of magnetic nanoparticles 

in oil were custom-made in our lab for this experiment.  (B) Frequency spectra of the cell 

displacement data show a response at the magnetic field modulation frequency, 5 Hz, as well as at 

weaker harmonic modes at 10 Hz and 15 Hz.  Positions correspond to those indicated in 

(A) M-mode signal strength was strongest at the cluster of microspheres.  
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4.3 Results of magnetic microspheres study  
 
In the first set of experiments, mouse macrophages engulfed the magnetic microspheres 

that were produced in our lab. Fig. 4.2 shows an OCM image of a representative 

macrophage that has engulfed microspheres, clustered together at position (1), close to 

the cell nucleus, as indicated in the figure.  The modulation frequency of the magnetic 

field was 5 Hz, and M-mode OCM data was acquired while the magnetic field was being 

modulated.  Spectral analysis of the displacements measured at the cluster of 

microspheres, in their immediate vicinity, at the nucleus, away from the cluster of 

microspheres but still inside the cell, and outside the cell, shows that the signal is 

strongest at the location of the microspheres and decreases gradually as different 

locations further away from them are probed.  The phase amplitude data for positions (1), 

(2), and (3) were 10 rad, 5 rad, and 2 rad, respectively, corresponding to displacements of 

448 nm, 224 nm, and 90 nm.  Positions (4) and (5) did not show a response to the 

magnetic field.  This is to be expected and confirms the fact that the microspheres are the 

source for the mechanical dynamics measured in and around the cell.  The spectral data 

also show the presence of harmonics of the main 5 Hz mode, with a lower intensity 

compared to the former.  The cell response decreases with increasing distance from the 

microspheres, and clearly indicates that the measured signal is localized and not a bulk 

sample response. Validation measurements taken with diffraction phase microscopy [94] 

and transmission electron microscopy (TEM), shown in Fig. 4.3, confirm that the 

microspheres were engulfed by the macrophages. 
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Figure 4.3  Validation of magnetomotive microspheres engulfed by macrophages.  (A) 

Diffraction phase microscopy image of a macrophage exposed to magnetic microspheres, 

showing phagocytic inclusions of microspheres.  (B) Spatial map of phase variance from a video-

sequence of diffraction phase microscopy images collected during modulation of an applied 

magnetic field.  Regions of high variance correspond to locations of microspheres.  Color bar 

units are radians. (C) Transmission electron microscopy image of macrophages with engulfed 

microspheres. 

 

In a second experiment, mouse macrophages engulfed fluorescent magnetic microbeads 

(Bang Labs).  Fig. 4.4 shows a fluorescence image of a pair of microbeads overlaid on 

the OCM image of a macrophage containing the microbeads.  This image data illustrates 

one advantage of this multimodal optical imaging system, where co-registered images 

can be used to identify where fluorescently-labeled particles are spatially localized within 

cells that are structurally imaged with OCM. The dynamic nanometer-scale displacement 

of the microbeads and cell at the location corresponding to the microbeads is also shown 

in Fig. 4.4.  The measured displacements are sinusoidal, with the same frequency as that 

of the magnetic field modulation, 5 Hz, as evident by the spectrum in Fig. 4.4. 
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Figure 4.4 Co-registered multimodal imaging and MM-OCE.  (A) Simultaneously acquired and 

co-registered OCM/MPM images of a mouse macrophage that has phagocytosed two fluorescent 

microspheres (Bangs Labs).  The OCM image data is shown in grey-scale, while the two-photon 

excited fluorescence MPM image data is shown in red.  The location of the optical beam for 

recording MM-OCE displacements is indicated by the green arrow.  (B) Plot of sinusoidal axial 

displacement of the microspheres as calculated from phase data. (C) Frequency spectrum of the 

magnetomotive signal obtained by taking the Fourier transform of the displacement signal during 

5 Hz modulation by the external magnetic field. 
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Lastly, cancer and normal human breast epithelial cells were probed with RGD-targeted 

and non-targeted magnetic Dynabeads.  Fig. 4.5 shows bright field microscopy images of 

the four different combinations of cells and Dynabeads.   

 

 

Figure 4.5 Molecular targeting of Dynabeads for MM-OCE measurements.  Bright field 

microscopy images of cell cultures (human breast epithelial and primary ductal carcinoma cells) 

that were incubated with targeted and non-targeted magnetic Dynabeads (dark point-like objects). 

The targeted beads show preferential attachment to the cancer cells that over-express the 

alpha-v-beta-3 integrin receptor.   Inset images are zoomed-in regions to highlight the spatial 

location of the Dynabeads relative to the cells.  Scale bar indicates 25 µm. 

 

It is evident that the targeted beads attach strongly to the cancer cells, and less so to the 

normal cells, while the non-targeted beads do not adhere in any predictable or preferential 

manner to either of the two cell lines.  In these experiments, the magnetomotive signals 

were weaker than in previous experiments, with less than 20% of the Dynabeads that 

attached to cells responding to the magnetic field.  Video data captured by instantaneous 
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spatial light interference microscopy (iSLIM) [95], a quantitative phase imaging 

technique, of cancer cells with targeted Dynabeads show only two out of sixteen 

Dynabeads in the field of view responding to the magnetic field modulation.  A 

representative image of the signal standard deviation in time of the cell culture and 

Dynabeads is shown in Fig. 4.6.   

 

 

Figure 4.6 Validation of magnetic Dynabead response from cancer cells.  Instantaneous spatial 

light interference microscopy (iSLIM) image of cancer cells with targeted Dynabeads show high 

standard deviations in time at the location of the Dynabeads. The data were taken using iSLIM 

with a 40x/0.75NA objective.  The time lapse was taken at 13 Hz for two seconds, and then 

processed to map the standard deviation of each pixel.  The red and blue colors indicate areas 

with high and low standard deviations of the optical path length, respectively.  Scale bar indicates 

30 μm.  Color bar units are radians.  Dotted line approximates the contour of the cell. 
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High values are registered at the location of the beads.  No significant differences in 

magnetomotive signal amplitude or oscillation patterns were observed between the cancer 

cells with targeted Dynabeads and the normal cells with targeted Dynabeads, suggesting 

that the biomechanical properties of the targeted alpha-v-beta-3 integrin receptors are 

likely similar.  The cell cultures containing non-targeted beads that attached 

non-specifically to some of the cells also produced magnetomotive signals from a low 

percentage of cells.  Fig. 4.7 is representative of some relative displacements and 

frequency spectra of the magnetomotive signals from three neighboring non-targeted 

Dynabeads attached to cancer cells.  It is evident that bead number 3 does not produce a 

signal, while beads 2 and 3 do.  These different displacements oscillation patterns, and in 

some cases, no displacement, highlight the observed variability.   

 

4.4 Cellular biomechanics utilizing magnetic nanoparticles  
 

I have also explored the possibility of employing MNPs for cellular biomechanics.  

MNPs can offer significant advantages for measuring the cellular biomechanics.  Over 

the years, several studies have been conducted by research groups to systematically 

evaluate the cellular uptake of MNPs.  The cellular uptake of the MNPs depends on a 

number of factors such as the types of cells, the nature and surface-coating of the 

particles, the concentration and duration of the incubation period, etc.  Prussian blue 

staining or electron microscopy (e.g. TEM) have been typically used to evaluate the 

uptake of MNPs by the cells [96].  In one study, six different mammalian cell lines were 

incubated with Dextran coated MNPs for 48 hours at different concentrations.  As 

expected, the cellular uptake was different for different cell lines, and increased with 
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increasing concentration of MNPs.  At an MNP concentration of 100 ug/ml, the iron 

content in the different cell lines varied from approximately 2 pg/cell to 9 pg/cell [96].  In 

addition to the concentration, the surface coating on the MNPs can also significantly 

affect the cellular uptake.  The surface of the MNPs used for biological studies is 

chemically coated with a biocompatible material to increase their circulation time and 

reduce their toxicity.  In one study, the MNPs coated with PEG had a significant higher 

uptake in cancer cells (113 pg/cell after 4 days) compared to macrophages,[97] while in 

another study the uptake of MNPs in hepatocytes increased to as high as 743 pg/cell after 

surface coating with lactobionic acid [98].  All these studies suggest that there is a great 

variability in the amount of cellular uptake of MNPs, and that it would depend on 

numerous factors and experimental conditions. 

 

Magnetic particles within the cytoplasm experience several competing forces arising due 

to viscous drag, random Brownian forces, and magnetic forces.  The size of the magnetic 

particles strongly influences which forces dominate, as these forces scale differently with 

the size of the particle.  The magnetic force on a particle of radius R scales by R3, the 

viscous drag force by Rh (the hydrodynamic radius), while the Brownian displacement is 

proportional to Rh
-1/2 [99].  This suggests that smaller particles will have larger random 

steps (due to Brownian motion), while they would also be more difficult to manipulate in 

a controlled manner.  However, it is to be noted that although manipulating individual 

nanoparticles might be challenging, controlling clusters or aggregates of MNPs can be 

technically feasible.  Several studies have shown that when a magnetic field is applied to 
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MNPs, these tend to aggregate and the magnetic dipole-dipole interactions become 

dominant, moving the aggregates/clusters along the magnetic field gradients [100].  

 

Table 4.1 shows some typical values reported in literature of the forces experienced by 

different sized particles under a magnetic field gradient.  Typically a force of around 

100 pN on a 1 µm size bead is required to cause a displacement of about 100 nm inside 

the nucleus of the cell [101].  It is also noted that the magnetic field gradients used in 

these studies are significantly higher (1000 – 8000 T/m) than the magnetic field values of 

~ 0.04 Tesla and a gradient of ~ 10 T/m used in the MM-OCM studies presented in this 

thesis.  Using these values (i.e., B = 0.04 T, ∇B = 10 T/m), a 100 nm radius particle will 

experience a force of 0.004 pN, which is not enough to generate measurable displacement 

in MM-OCM, and explains the lack of a magnetomotive signal using MNPs in the 

MM-OCM studies.  

 

Table 4.1 Magnetic forces of varying size magnetic particles under different field gradients 

Diameter of particles 
(nm) 

Force (pN) Magnetic Gradient 
(T/m) 

Reference 

350 nm 12 8000 T/m [102] 
4500 nm 130  n.a. [103] 
38 nm 0.015 3000 T/m [99] 

2800 nm 1000 8000 T/m [101] 
100 nm 7 8000 T/m [101] 
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In PDMS-phantoms and biological tissues, efforts were made to distribute the MNPs 

evenly throughout the sample volume, either during the preparation phase (for the 

PDMS-tissue phantoms), or by soaking the biological tissue in a high concentration MNP 

solution (10 mg/ml) for several hours (4 – 8 hours), which allowed the diffusion of MNPs 

within the tissues. The high concentration of particles within the magnetic excitation 

volume results in a collaborative effect resulting in large measureable displacements in 

the tissues. On the other hand, the mechanism of MNP bonding to cellular components is 

based on biochemical interactions at the molecular level. The MNPs can either be 

functionalized to target specific cellular components and surface receptors, or they can be 

internalized by the cells. Because these MNPs are either bound to some cell surface 

receptors or aggregate in the form of vesicles inside the cytoplasm,[96] the cell-based 

magnetomotion is more localized compared to the bulk response measured in MM-OCE 

in tissue phantoms.  In addition, the MNPs, due to their small size, scatter very little light. 

The movement of the MNPs is not directly measured in MM-OCE; rather the MNPs, 

once perturbed, move the adjacent tissue scatterers, which are detected in tissues and 

phantom-based MM-OCE measurements.  In cell-based MM-OCM studies the MNPs 

might not be adjacent to any highly scattering structures.  Hence the signal measured 

directly from the MNPs inherently has a low SNR, which affects the consistency and 

reliability of the displacement measurements in cell-based MM-OCM studies. 

 

In MM-OCE measurements of PDMS-phantoms and tissues, the bulk response of the 

whole sample is measured and the magnetomotive response is characterized by the 

resonance frequency of the sample.  This resonance frequency is dependent not only on 
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the mechanical properties of the sample, but also on the sample geometry and size. 

Experiments using phantoms and biological tissues were performed with samples of 

controlled geometry and dimensions, which allowed the comparison between different 

sample and tissue types.  However, in the MM-OCM experiments on cells, I did not see 

any resonant frequencies due to the small sizes of cells.  Moreover, the lack of control of 

the dimensions and geometry of the cells limited the ability to perform a meaningful 

comparison between and across different cell lines. Furthermore, I did not find any 

evidence in the literature that cells exhibit any mechanical resonances.  

 

4.5 Discussion 
 
I have demonstrated a new real-time multimodal high-resolution imaging technique that 

combines OCM and MPM with magnetic actuation for dynamic nano-scale 

magnetomotive displacement measurements at the cellular level.  Magnetic 

microparticles act as transducers by attaching to or being engulfed by cells, thus enabling 

probing of the molecular receptor or cellular mechanical environment.  Microspheres and 

beads were chosen for this study because single or small aggregates of magnetic 

nanoparticles were found insufficient to generate a measurable magnetomotive signal, 

either because the magnetic force generated by our custom solenoid was too small to set a 

nanoparticle bound to the surrounding cellular medium in motion, or due to the fact that, 

even if the nanoparticle moved, its displacement would be too small to have a measurable 

effect. 
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Figure 4.7.  Magnetomotive response from cancer cells.  (A) Representative OCM image of 

cancer cells (dotted line approximates cell contours) showing non-targeted Dynabeads (indicated 

by arrows) attached to the cells.  M-mode magnetomotive signal data was taken at locations 1, 2, 

and 3.  (B) Representative phase displacement responses of the cells at the locations of the 

Dynabeads indicated in part (A).  The different amplitudes exemplify the variability of the signals 

from varying spatial positions on the cells.  (C) The frequency spectra (via the Fourier transform) 

of the displacement signals plotted in (B) during 5 Hz modulation by the external magnetic field. 

 

I initially chose macrophages for the proof-of-principle demonstration of this technique 

due to their versatile function that ensures phagocytosis of magnetic microspheres and 
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localization in the interior of the cell.  This platform constitutes a reliable model with a 

well-understood mechanism of microparticle phagocytosis.  When probed with an 

external magnetic field, the microspheres experience a force that sets them in motion, 

which engages the cellular architecture in a similar dynamic response.  The imaging 

system is capable of detecting this motion with nanometer-scale sensitivity, as shown in 

Fig. 4.3. Because the cyto-architecture and cellular membrane are elastic, it was expected 

that the largest displacements would be found at the location of the microspheres, and 

show gradually less displacement at points further away from the microsphere location.  

The acquired data confirmed this prediction.   

 

Two-photon excited fluorescence imaging (Fig. 4.4) enhances the structural imaging 

obtained with OCM by spatially locating the microparticles inside cells with high 

precision.  These results also demonstrate the possibility for more sophisticated, versatile, 

probing of cell mechanics with an emphasis on certain functional groups, based on 

specialized dyes that may be employed to reveal specific organelles or processes inside a 

cell. 

  

This technique is also appropriate for the study of the mechanical responses of molecular 

membrane-bound receptors on cells, using magnetic agents that are functionalized and 

targeted to these external membrane receptors, such as the alpha-v-beta-3 integrin 

receptors found on normal human breast epithelial cells and over-expressed on the human 

breast cancer cells (Fig. 4.5).  However, the measured magnetomotive displacement 

signals from these experiments were found to be more variable compared to the 

macrophage experiments.  This finding may be due to several different factors, such as 
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the strength of the molecular bond between the RGD-functionalized magnetic Dynabeads 

and the outer membrane-expressed integrin receptors of the cell (compared to the 

phagocytosed microspheres residing inside the macrophages in the first set of 

experiments), the stiffness of the breast epithelial cell membrane, possibly higher than 

that of macrophage membrane, and the potential inhomogeneity of the mechanical 

properties of the biological cell culture microenvironment. The oscillatory displacements 

patterns observed for the samples of breast cells with the Dynabeads have a rectified 

profile, different from the sinusoidal-type of displacement measured from macrophages.  

The difference in the mechanism of binding between the microspheres or beads and the 

host cell may account for this.  Further investigations are needed to elucidate the details 

of the physical biochemistry at play in these systems.  The technique presented here, 

however, is a novel platform for these future studies. 

 

The inherent variability of the biological samples results in variable signal strengths, a 

fact previously observed in similar cellular studies that employ magnetic tweezers [85, 

86].  However, responsive microspheres are reliable in that repeated measurements under 

the same conditions render similar magnetomotive signals that are always modulated at 

the same frequency as the solenoid coil driving frequency.  This demonstrates that the 

technique presented in this chapter is robust and appropriate for studies that would focus 

on characterizing the biological variability of well-controlled systems, while taking full 

advantage of the high sensitivity to nanometer-scale displacements.  These results will 

also lead to future research to determine the sources of the variability, which will greatly 

advance our understanding of cellular processes and support the further development of 
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novel methodologies for manipulating and interrogating the biomechanical properties of 

molecules and cells.  Other possible applications include drug testing, studies of 

fundamental metastatic changes in cells, and toxicology studies. 

 

Magnetic tweezers have become an established technique for measuring the mechanical 

properties of molecules and cells.  However, this technique offers limited axial 

displacement resolution, hampering its use in many applications.  The methodology of 

using phase-sensitive magnetomotive measurements in a multimodal microscope 

platform presented in this study has the potential for becoming a new paradigm for 

assessing molecular and cellular biomechanics.  The high nanometer-scale sensitivity to 

axial displacements facilitates access to probing macromolecular bonds and could enable 

measurements of biomechanical properties at the cellular level.  This novel approach for 

studying cellular processes and functions could offer new insight into how different 

mechanical processes, such as stretching of membranes or receptors that are attached to 

controllable magnetic beads, affect them.  Rigorous modeling and simulations of cellular 

and extracellular microenvironments, coupled with statistically significant experimental 

studies using magnetomotive forces, are further needed to rigorously investigate and 

spatially map the biomechanical properties of single cells and their associated molecular 

receptors. 
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5 CONCLUSIONS AND OUTLOOK 
 
The understanding of biological systems is of great interest for the advancement of basic 

sciences and medicine, in particular for disease detection and treatment. I have discussed 

the need for high resolution imaging tools that can capture minute details of biological 

components ranging from sub-cellular components, macromolecular groups, cells, to 

microscopic tissue morphology and macroscopic biological structures.  Besides taking 

snapshots of discrete states of this type of systems, the ability to monitor processes taking 

place within them in real time is also extremely valuable, as it offers insight into the 

dynamics and mechanisms of biological processes.  This can increase our understanding 

of a multitude of phenomena, such as cell growth or the onset and progression of disease 

at a cellular or tissue level, to name just a few.  Hopefully, researchers can apply this new 

knowledge and develop new therapies. Understanding nature could help us mimic it or 

even compete with it in ways that are beneficial to humanity. 

 

To this end, I combined the benefits and versatility of an advanced imaging technique, 

OCT, with the simple concept of the interaction of MNPs with a magnetic field, to 

develop a new functional imaging methodology, MM-OCE.  Magnetic particles that 

attach to cells or tissue help us gain access to the biological mechanical environment, 

which can then be interrogated by applying an external magnetic field that sets the 

magnetic particles/transducers in motion and solicits a mechanical response from the 

specimens under study.  The displacements of the samples are measured with OCT in real 

time and with nanometer-scale sensitivity (to be more precise, the sensitivity is 11 nm in 

the imaging system).   
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The proof of principle demonstration of MM-OCE involved the fabrication and testing of 

a set of samples with varying elastic properties. I used silicone phantoms that mimic 

biological tissue both optically and mechanically, and embedded magnetic nanoparticles 

throughout their volume.  I demonstrated that, when subjected to a constant magnetic 

force resulting from the step-wise application of an external magnetic field, these samples 

undergo nano to micro-scale underdamped oscillations that contain information about 

their resonant frequency and damping constant, parameters characteristic of viscoelastic 

materials.  The linear relationship between the resonant frequency of oscillation and the 

square root of the Young’s modulus of the samples, as predicted by a Kelvin-Voigt 

model, was confirmed. 

 

For the MM-OCE study of biological tissues I used a rabbit model.  In this case, the 

mechanical response was similar to that observed in the silicone phantoms, but two 

important distinctions were immediately apparent:  the oscillations were damped much 

faster, indicating larger viscosity, and there was also a creep component, characteristic of 

biological tissues but not of polymeric materials such as silicone.  Muscle tissue has a 

steeper creep profile and lower amplitude of oscillation.  This suggests that each type of 

tissue has a characteristic behavior, even though there are similarities in the 

tissues’ overall behavior.  Future studies should address the distinguishing features in the 

biomechanical profile of different types of tissues. 

 

I also explored the possibility of implementing MM-OCE concepts in the study of cell 

biomechanics.  I showed that different types of cells can be coupled with multimodal 
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magnetic microspheres that can be functionalized for targeting of specific cell receptors 

and that reliable biomechanical signals upon sinusoidal magnetic actuation of the 

cell-particle bonds can be obtained.  However, I also noticed a large variability of the 

signals collected, and in some cases the magnetic microspheres/beads did not seem to 

move.  It is understandable that cells would have a less uniform behavior than tissues 

when probed individually, given their lack of homogeneity on the micron scale.  Tissues 

have more of a bulk behavior and are less heterogeneous.  

 

 A number of models have been used to describe cellular mechanics; however, it has been 

widely acknowledged that no single model or theory can explain the intricacies and 

complexities of the cell mechanical environment, and the selection of an appropriate 

mechanical model is still a matter of open debate [81]. Standard mechanical models 

based on parallel and series combinations of springs and dashpots have been extensively 

employed in the literature.  However, recently, power law models [104, 105] or models 

that fit the creep response to a single or double exponential [106], have been generating 

considerable interest and have been shown to describe the cellular viscoelastic properties 

with success [81].  In the MM-OCM cells studies, I decided to apply a sinusoidal 

excitation with the hypothesis that the amplitude and phase of the magnetomotive 

response from magnetic particles in different cells lines will vary depending on the 

elasticity and viscosity of the cell microenvironment respectively.  However, I did not see 

any significant variation in the phase lag between the driving force and the 

magnetomotive response in the cell samples, and the phase lag was very small in all the 

experiments.  The measurement of the amplitude across different cells or at different bead 
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locations was also problematic.  The amplitude of displacement depends on the amount 

of magnetomotive force, the binding strength of the magnetic particle to the receptors, 

etc.  However, due to the large variation in the amplitude of the magnetomotive signal, it 

was difficult to quantitatively relate this to the cell mechanical properties.  Future 

MM-OCM cellular studies can benefit from the following: 

a) A coil with a higher magnetic field gradient will be highly desirable for future 

MM-OCM cellular studies.  Several studies have used custom-made coils with a 

tapered tip that can achieve magnetic field gradients of ~ 8000 T/m.   

b) Precise calibration of the magnetomotive force is necessary to quantitatively 

relate the magnetomotive response to the viscoelastic properties of the cell.  This 

can be done in several ways.  One way is by placing magnetic particles (to be 

used in experiments) with known sizes in a medium with known viscoelastic 

properties and measuring the displacement of the particle using a standard 

microscope under the influence of a given magnetic field strength.  The distance 

of the sample from the coil can be changed and a plot of magnetic force against 

distance can be used for calibration.  

c) From the literature it is apparent that the creep response of the particles under a 

constantly applied force can be a good metric for the viscoelastic properties of the 

cytoskeleton.  In future studies, a static magnetic field can be applied for more 

than one second.  The displacement of the particle as a function of time can be 

measured with OCM and fitted with power law models or single or 

double-exponential models to extract the viscoelastic properties. 
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d) If the magnetomotive force can be precisely calibrated, then techniques similar to 

MTC with oscillating forces can be utilized [104, 105].  The magnetomotive 

response over a broad range of frequencies, i.e. 1-300 Hz, can be applied, and the 

amplitude and phase can be utilized to estimate the viscoelastic parameters.   

 

The possibility of utilizing MNPs for the study of cell biomechanics should be further 

explored; however, there are several difficulties to overcome.  When cells are exposed to 

MNPs they preferentially attach to a relatively small fraction of them.  The forces acting 

on individual MNPs are on the order of pN, too small for individual MNPs to effect a 

dynamic mechanical change in the cell.  In tissues and tissue phantoms, relatively high 

concentrations of MNPs can be embedded through the process of diffusion or fabrication.  

These specimens are more homogenous than cells and have a bulk response to forces 

within their volume, whereas cells are more heterogeneous and when MNPs are attached 

to them, a very high local concentration of MNPs is needed for motion to be triggered.  It 

is hard to achieve such high concentrations in live culture cells because there is little 

control over how they interact with foreign agents, such as MNPs.  New study models 

that address this issue need to be developed. 

 

The main contribution of this thesis is the development of a highly sensitive versatile 

optical imaging technique that utilizes magnetic nanoparticle-induced motion to map out 

the elastic properties of biological samples. The feasibility of this approach was both 

theoretically justified and experimentally verified in tissue-mimicking phantoms, 

biological tissues, and cells. The inherent variability and complexity in biological tissues 
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and cells pose some unique challenges in assessing their biomechanical properties. To 

describe these complexities and variability in tissues and cells, future work should 

include development of rigorous biomechanical models and should couple these with our 

experimental technique for a thorough description of the biomechanics of biological 

specimens. 
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