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Abstract

The focus of the first part of the thesis commences with an examination of two pages in Ramanujan’s lost
notebook, pages 336 and 335. A casual, or even more prolonged, examination of the strange formulas on these
pages does not lead one to conclude that they are related to one another. Moreover, it does not appear that
they have any relationships with other parts of mathematics. On page 336 in his lost notebook, Ramanujan
proposes two identities. Here, it does not take a reader long to make a deduction — the formulas are obviously
wrong — each is vitiated by divergent series. Most readers encountering such obviously false claims would
dismiss them and deposit the paper on which they were written in the nearest receptacle for recycling (if they
were environmentally conscientious). However, these formulas were recorded by Ramanujan. Ramanujan
made mistakes, but generally his mistakes were interesting! Frequently, there were hidden truths behind his
not so precise or accurate claims — truths that were deep and influential for decades. Thus, it was difficult
for us to dismiss them.

)

We initially concentrate on only one of the two incorrect “identities.” This “identity” may have been
devised to attack the extended divisor problem. We prove here a corrected version of Ramanujan’s claim,
which contains the convergent series appearing in it. Our identity is admittedly quite complicated, and we
do not claim that what we have found is what Ramanujan originally had in mind. But there are simple and
interesting special cases as well as analogues of this identity, one of which very nearly resembles Ramanujan’s
version. The aforementioned convergent series in Ramanujan’s faulty claim is similar to one used by Voronoi,
Hardy, and others in their study of the classical Dirichlet divisor problem, and so we are motivated to study
further series of this sort. This now brings us to page 335, which comprises two formulas featuring doubly
infinite series of Bessel functions. Although again not obvious at a first inspection, one is conjoined with the
classical circle problem initiated by Gauss, while the other is associated with the Dirichlet divisor problem.
Berndt, Kim, and Zaharescu have written several papers providing proofs of these two difficult formulas in
different interpretations. In this thesis, We return to these two formulas and examine them in more general

settings.

The Voronoi summation formula appears prominently in our study. In particular, we generalize work of

ii



Wilton and derive an analogue involving the sum of divisors function o(n).

Another part of the thesis is focused on the partial sums of Dedekind zeta functions and L-functions
attached to cusp forms. The motivation of the study of the partial sums of Dedekind zeta functions and
L-functions attached to cusp forms arise from their approximate functional equations. The partial sums of

the Dedekind zeta function of a cyclotomic field K is defined by the truncated Dirichlet series

1
(kx(s)= Y el

lall <X

where the sum is to be taken over nonzero integral ideals a of K and ||a|| denotes the absolute norm of a.
We establish the zero-free regions for (x x(s) and estimate the number of zeros of (x x(s) up to height 7.
We consider a family of approximations of a Hecke L-function Ly(s) attached to a holomorphic cusp

form f of positive integral weight with respect to the full modular group. These families are of the form

Li(X;s)= ) % +xs(s) ) Z@
n<X n<X
where s = o+t is a complex variable. From the approximate functional equation one sees that L¢(X;s) isa
good approximation to Ly(s) when X = t/2m. To investigate such approximation in more general sense, we
compute the L2-norms of the difference of two such approximations of Lz(s). We work with a weight which
is a compactly supported smooth function. Mean square estimates for the difference of approximations of
L¢(s) can be obtained from such weighted L?-norms. We also obtain a vertical strips where most of the zeros
of L#(X;s) lie. We study the distribution of zeros of L¢(X;s) when X is independent of t. For X =1,2 we
prove that all the complex zeros of L(X;s) lie on the critical line ¢ = 1/2. We also show that as T — oo
and X = 7°M, 100% of the complex zeros of L#(X;s) up to height T lie on the critical line and simple.
Here by 100% we mean that the ratio between the number of simple zeros on the critical line and the total

number of zeros up to height T" approaches 1 as T — oco.
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Chapter 1

Introduction

1.1 Ramanujan’s claim

The Dirichlet divisor problem is one of the most notoriously difficult unsolved problems in analytic number

theory. Let d(n) denote the number of divisors of n. Define the error term A(z), for z > 0, by

Z/d(n) :xlogz+(2771)x+i+A(9:), (1.1)

n<zx

where v denotes Euler’s constant. Here, and in the sequel, a prime ' on the summation sign in Z/n<m a(n)
indicates that only Ja(x) is counted when z is an integer. The Dirichlet divisor problem asks for the ;orrect
order of magnitude of A(z) as  — oco. At this writing, the best estimate A(z) = O(x'3/416+¢) for each
€ >0, as ¢ — oo, is due to Huxley [51] (131 = 0.3149...). On the other hand, Hardy [46] proved that
A(z) # O(z'/*), as  — oo, with the best result in this direction currently due to Soundararajan [83]. Tt is
conjectured that A(x) = O (x1/4+5), for each € > 0, as x — oo.

Let o5(n) = > 4, d", and let ((s) denote the Riemann zeta function. For 0 < s < 1, define A_,(z)

(We use A_ () instead of Ag(x), as is customarily used, so as to be consistent with the results in this

dissertation, most of which require Re s > 0) by

S oatmy =t o+ U= Loy A @), (1.2

n<x
The problem of determining the correct order of magnitude of the error term A_ (x), as ¢ — oo, is
known as the extended divisor problem (see Lau [61]). As z — oo, it is conjectured that for each € > 0,
A_y(z) = O(z/*=/21¢) for 0 < s < 1 and A_,(z) = O(z°) for 3 <s < 1.

The importance of the conditionally convergent series

ji;; ni; d:;) cos (47T\/TT - %) (1.3)



in the study of the Dirichlet divisor problem was emphasized by Hardy [46] equation (6.32)]. Hardy’s
discernment came to fruition in the work of Hafner [45] and Soundararajan [83 equation (1.8)] in their
improvements of Hardy’s Q2-theorem on the Dirichlet divisor problem. However, we emphasize that Voronoi
[92] p. 218] first made use of in the Dirichlet divisor problem.

As another example, we note that the series

~—

o0
y ol
2+

n=1

sin (47r\/7T - %) : (1.4)

S
ol

for |k| < 2, arises in the work of Legal [82, p. 282] and Kanemitsu and Rao [54] related to a conjecture of
Chowla and Walum [26], [25] pp. 1058-1063], which is an extension of the Dirichlet divisor problem. It is
conjectured that if a,r € Z,a > 0,7 > 1, and if B,.(z) denotes the r-th Bernoulli polynomial, then for every

€ >0, as x — 00,

Z niB, ({%}) —0 (xa/2+1/4+6> 7 (1.5)

n<Vx
where {z} denotes the fractional part of z. The conjectured correct order of magnitude in the Dirichlet
divisor problem is equivalent to with a =0,r = 1.
Our last example is as famous as the Dirichlet divisor problem. Let ro(n) denote the number of repre-
sentations of n as a sum of two squares. The equally celebrated circle problem asks for the precise order of

magnitude of the error term P(z), as  — 0o, where

ZI ro(n) = max + P(x).

n<z

During the five years that Ramanujan visited Hardy at Cambridge, there is considerable evidence, from
Hardy in his papers and from Ramanujan in his lost notebook [80], that the two frequently discussed both
the circle and divisor problems. For details of Ramanujan’s contributions to these problems, see either the
book by Andrews and Berndt [2] Chapter 2] or the survey paper by Berndt, Kim, and Zaharescu [16].

It is possible that Ramanujan also thought of the extended divisor problem, for on page 336 in his lost
notebook [80], we find the following claim.

Let o5(n) =3 4, d°, and let ((s) denote the Riemann zeta function. Then

[N

(x — in)fsfé —(z+in)~°

7/~

r <5 n 1> {( C(L—s)  C(=s)tangms +7§:1 052(? ) } (1.6)

1 1
2 5 — %)xs*E 25tz

e 2mVINT gin (% + 27V 2nx) }

= (QW)S{C;I\/%;) — 2my/mz((—s) tan Sms + \/EZ Jj/(g)

[\]



In view of the identities for (|1.3)) and (L.4]), it is possible that Ramanujan developed the series on the
right-hand side of (|1.6)) to study the extended divisor problem. Unfortunately, (1.6]) is incorrect, since the

series on the left-hand side, which can be written as

Y

i os(n)sin ((s+ 3) tan™" (2))

— (xQ +n2)%+%

diverges for all real values of s since o4(n) > n°. For further discussion one can follow the paper by Berndst,
Chan, Lim, and Zaharescu [I2]. However, as we shall see in Chapter [2| there is a valid interpretation of
this series using the theory of analytic continuation. Also in Chapter [2] we obtain a corrected version of

Ramanujan’s claim, where we start with the series on the right-hand side, since we know that it converges.

1.2 Extended divisor problem and Voronoi summation formula

A celebrated formula of Voronoi [92] for " __d(n) is given by

n<z

Z d(n) = z(logz + (2vy — 1)) + + \fz (—Y1(47r\/7ﬂ) - iK1(47T\/TE)) , (1.7)

n<z

where Y, (z) denotes the Bessel function of order v of the second kind, and K,(z) denotes the modified
Bessel function of order v. Thus, the error term A(z) in the Dirichlet divisor problem (1.1)) admits the

infinite series representation

fz ( vi( 4ﬁm>—K1(4m/@>

In [92], Voronoi also gave a more general form of (1.7), namely,

> d(n)f(n):/j(%y—i—logt dt+27er / ( Ko(4mv/nt) — y0(4nf)) (1.8)

a<n<f

where f(t) is a function of bounded variation in («, 8) and 0 < o < 8. Dixon and Ferrar [35] gave a proof
of under the more restrictive condition that f has a bounded second differential coefficient in (¢, ).
Wilton [97] proved under less restrictive conditions. In his proof, he assumed f(¢) has compact support
on [a, 8] and V=€ f(t) — VS=Of(t) as € tends to 0. Here V2 f(¢) denotes the total variation of f(t) over
(a, ). In 1929, Koshliakov [59] gave a very short proof of for0 < a< B, a,B ¢ Z, for f analytic inside

a closed contour strictly containing the interval [a, §]. Koshliakov’s proof in [59] is based on the series ¢(x),



defined in (2.8]), and its representation

SD():_'V_*Ing_i 7Zx2+n2'

The reader is referred to papers by Berndt [8] [I0] for Voronoi-type summation formulas for a large class of
arithmetical functions generated by Dirichlet series satisfying a functional equation involving the Gamma
function. For Voronoi-type summation formulas involving an exponential factor, see the paper by Jutila
[53]. The Voronoi summation formula has been found to be useful in physics too; for example, Egger and
Steiner [38] [40] showed that it plays the role of an exact trace formula for a Schrodinger operator on a certain
non-compact quantum graph. They also gave a short proof of the Voronoi summation formula in [39].

The extension of for a = 0 is somewhat more difficult, since one needs to impose a further condition
on f(t). When f”(t) is bounded in (6, ) and t3/%f”(t) is integrable over (0,6) for 0 < § < «, Dixon and

Ferrar [35] proved that

8
> d(n)f(n) = f(‘j:F)JF/O (2y + logt) f(t) dt (1.9)

o<n<p

+2de / (K0(47T\ﬁ) Y0(47rf))

Wilton [97] obtained under the assumption that log V", f(t) tends to 0 as  — 0+. Hejhal [50] gave
a proof of for § — oo under the assumption that f is twice continuously differentiable and possesses
compact support. For other proofs of the Voronoi summation formula, the reader is referred to Meurman
[68] and Ivié [52].
Consider the following Voronoi summation formula in an extended form due to Oppenheim [76], and in
the version given by Laurinéikas [62]. For z > 0,z ¢ Z, and —% < 0 < 3,
1-s 1
ZO'_ C(1+s)z+ uxks —=C(s)+ 2s1n Z os(n (1.10)

1—s 2

n<x

() (Jsl(zm\/ﬁ) + (4T — ism(ws)Kls(zxw\/ﬂ)) ,

so that, by (1.2), A_s(x) is represented by the expression involving the series on the right-hand side of
(L.10). (Note that Laurinéikas proved (I.10) for 0 < s < 1. However, one can extend it to —1 < o < 1))

Wilton [98] proved the same result in a more general setting by considering the ‘integrated function’, that



is, the Riesz sum

1 1
o) > o s(n)(@ —n).

n<z

Laurincikas [62] gave a different proof of (1.10) many years later.

We will now explain the connection of Ramanujan’s series

Z 7s(n) e~ ImVInT gin (z + 27V an)
— vn 4

and its companion with the extended form of the Voronoi summation formula.
As mentioned by Hardy [46], [47, pp. 268-292], if we use the asymptotic formulas (2.18) and (2.19) for
Y: (4my/nz) and Ki(4m\/nx), respectively, in (L.7)), we find that

Az) =

o/t K d(n m
7 Z:l %cos (47r\/rT— Z) + R(x), (1.11)

™

where R(x) is a series absolutely and uniformly convergent for all positive values of x. The first series on the
left side of (|1.11)) is convergent for all real values of x, and uniformly convergent throughout any compact
interval not containing an integer. At each integer x, it has a finite discontinuity.

If we replace the Bessel functions in ([1.10) by their asymptotic expansions, namely (2.17) and (2.19)),

similar to what Hardy did, then the most important part of the error term A_(x) is given by

S%(n) cos (47r\/n7 - %) )

This series, though similar to the one in ((1.11)) or in (|1.3)), is different from Ramanujan’s series (2.9)) in that
the exponential factor, namely e=27V27% is not present.

A generalization of (2.8)), namely,
o . . . .
olx,s) =2 ZO'_S(?’I)’IL% (e’”s/‘le (471'67”/4\/’(1.1‘) + e T (471'6_7”/4\/711‘)) , (1.12)
n=1

was studied by Dixit and Moll [34]. Note that ¢(z,0) = ¢(z), and that ¢(x) was used by Koshliakov [59] in

his short proof of ([1.8)).
Replacing the Bessel functions in ((1.12]) by their asymptotic expansions from (2.19)), we find that the



main terms are given by

\/5 m 1 - 0'5(71) —2m\/2nx T N/
W COSs <4 (S —+ 2>> Z W@ Sin (Z — 271' 277,1') (113)
1

(T (1)) 3 i (T ).

rl/4 4 2 ‘ ns/2+1/4

In our extensive study, the forms of the series in (1.13]) are the closest that we could find that resemble the

series in Ramanujan’s original claim (1.6]), or in our Theorem or the companion series

Z Us(n) 67271'\/% sin <ﬁ — 27T\/%) .
n=1 \/ﬁ !

Note that the only place where they differ is in the power of n. Similar remarks can be made about
and (1.13).

Series similar to these arise in the mean square estimates of flz A_4(t)? dt by Meurman [69, equations
(3.7), (3.8)]. (An excellent survey on recent progress on divisor problems and mean square theorems has
been written by Tsang [91].) Similar series have also arisen in the work of Cramér [30], and in the recent
work of Bettin and Conrey [19, p. 220-223]. Thus it seems that the two series in are more closely
connected to the extended Dirichlet divisor problem than are Ramanujan’s series and its companion. We
have found identities, similar to those in Theorems and for each of the series in . However,
we refrain ourselves from stating them as they are similar to the ones already proved.

Remark. It is interesting to note here that at the bottom of page 368 in [80], one finds the following
note in Hardy’s handwriting: “Idea. You can replace the Bessel functions of the Voronoi identity by circular
functions, at the price of complicating the ‘sum’. Interesting idea, but probably of no value for the study of
the divisor problem.” In view of the applications of such series mentioned in the above paragraph, we can
say that Hardy’s judgement was incorrect.

The series in can be used to derive an extended form of the Voronoi summation formula

in the form contained in the theorem in Chapter This proof generalizes the technique enunciated by

Koshliakov in [59].



1.3 Generalization of two entries on page 335 of Ramanujan’s
lost notebook

We begin this section by stating the two entries on page 335 in Ramanujan’s lost notebook [80]. Define

lz], if « is not an integer,
F(z)= (1.14)

if = is an integer.

Entry 1.3.1. If0< 0 <1 and F(x) is defined by (1.14), then

Z ( ) sin(27nf) = Tz (; - 9) - icot(ﬂ'ﬁ) (1.15)
n fZZ{Jl (4m/m(n + 0)x) J1(47T\/m(n+19)z)}’

Vmin+0)  /mn+1-0)

m=1n=0

where J,(x) denotes the ordinary Bessel function of order v.

Entry 1.3.2. If0< 0 <1 and F(x) is defined by (1.14), then

Z F ( ) cos(2mnh) = i — zlog(2sin(nh)) (1.16)

Li(4ny/m(n+0)x) I (4m/m(n+1—0)z)
* \[ZZ{ vm(n+6) - vm(n+1—0) }’

m=1n=0

where

I,(2) :=-Y,(2) + %cos(wu)KV(z), (1.17)

where Y, (z) denotes the Bessel function of the second kind of order v, and K, (x) denotes the modified Bessel

function of order v.

Entries and were established by Berndt, Kim, and Zaharescu under different conditions on
the summation variables m,n in [14] [15] [I8]. An expository account of their work along with a survey of
the circle and divisor problems can be found in an another paper of Berndt, Kim and Zaharescu [16]. See
also the book [2, Chapter 2] by Andrews and Berndt.

It is easy to see from that the left-hand sides of and are finite. When « — 0+, Entries
and give the following interesting limit evaluations:

) Ji(dmy/m(n+0)x)  Ji(dmy/mn+1-0)z)| 1
JE&IZZ{ Jm(n 1 0) Jmns1=0) }‘ g ot(0),

m=1n=0



and

hm\fzz I( 47T\/m71+9))+[1(4ﬂ\/M) _ 1
ARV L 2T ) T 1-0) >

Direct proofs of these limit evaluations appear to be difficult.
As shown in [I6] equation (2.8)], when 6 = 1, Entry is equivalent to the following famous identity
due to Ramanujan and Hardy [40], provided that the double sum in (1.15) is interpreted as limpy_, Zmn <N

rather than as an iterated double sum (see [I5] p. 26]):

/

>

o<n<lz

ro(n) =mx — 1+ i ra(n) (%)1/2 J1(2m/nz).
n=1

Note that the Bessel functions appearing in (1.16]) are the same as those appearing in ((1.7). Indeed when

9 = 3, Entry is connected with Voronoi’s identity for Y. __d(n) as will be shown below. First,

n<zx

following the elementary formula

Yo=Y Y 1= 1=3[2].

n<z n<z din dj<z d<z

we see that the left-hand side of (T.16)), for 6 = 1, can be simplified as

iF( )cos7m ZZCOST(C[

n=1 n<z dln

Second, let

0, if n is odd,
e =

1, if n is even.

Note that

Z cos(wd) = # even divisors of n — # odd divisors of n

a(3) - fam e (2)}

—(1+0)d (%) —d(n).



Hence,

5 (2o =~ K00+ 5 fa(3) -t} =2 o - 5t

n<x n<z n< n<x
n odd n even

Now apply the Voronoi summation formula (1.7]) to each of the sums above, and simplify to obtain

ZF( )coswn) —xlog2+i—\ﬁz <Y1 (2mV2nx) + Kl(?ﬁr))

+ ﬁZl J% (Yl(zm/%) + WK1(2W\/%)>

= —zlog?2 + - Z ( > 1) (Yl(zm/%) + iKl(%\/%)) :
d|k

d odd

Now let &k = m(2n + 1) in the last sum, so that

Z ()coswn) —zlog2+ — +\f§ni)h 47\;% , (1.18)

where I (z) is defined by (1.17]), provided that this double sum is interpreted as limy_ Zm,ng > instead
of as an iterated double sum. Then (1.18) is exactly Entry with 6 = 1.

It should be mentioned here that Dixon and Ferrar [36] established, for a,b > 0, the identity

e ZB %KM(QW\/M) — 2y W’Z)(?WKW(%\/W). (1.19)

Generalizations have been given by Berndt [6l, p. 343, Theorem 9.1] and Oberhettinger and Soni [74, p. 24].
Using Jacobi’s identity
SPEE
dodd

we can recast (1.19) as an identity between double series

K, (amfa(tor Dm+ D) (1mfa (e D)

P (4n + L)m + b)n/2 - ((4n + 3)m + b)n/2

n=0m=0

< & [ K (4m b (e Hm+9)) K (4myfb((n+ D) m+9))

— p(-m)/2 -
Z Z ((4n + )ym + a)(1-1)/2 ((4n + 3)m + a)1-1)/2

n=0m=0




In Chapter [4], we establish one-variable generalizations of Entries and where the double sums
here are also interpreted as imy_,o0 Y, < x- instead of as iterated double sums. It is an open problem to

determine if the series can be replaced by iterated double series.

1.4 Partial Sums of Dedekind Zeta functions

A first generalization of the Riemann zeta-function ((s) is provided by Dirichlet L-functions. Subsequently,

Dedekind studied the zeta function (x(s) of a number field K/Q, defined for o > 1 by

oo

1 ag(n
CK(S)ZZWZZ 1;(5 ),

n=1

where the first sum is to be taken over all nonzero integral ideals a of K and where ||a|| denotes the absolute
norm of a. In the second sum, ax(n) is used to denote the number of integral ideals a with norm ||a|| = n.
As in the particular case K = Q, where ((s) = (g(s), the function (x(s) is analytic everywhere except
solely for a simple pole at s = 1. (See Davenport [31I] and Neukrich [72].) The residue of this pole is given
by the formula
_ 2'n™ "Rihk

13:61S(<K(8))_ wi+/|dKk]| ’

where r = r; + ro (with 7 is the number of real embeddings and ro is the number of pairs of complex
embeddings of K), ng = [K: Q] denotes the degree of K/Q, Ry denotes the regulator, hx denotes the class
number, wg denotes the number of roots of unity in K, and dx denotes the discriminant of K. (See [72]
page 467].)

For ((s), Hardy and Littlewood [48] provided the approximate functional equation

1 s—l/QF((l_S)/Q) 1 — —1yy—o+1
=) = O(X ™)+ O(Yo | ~o+1/2
¢(s) Z s T T(s/2) Z s T ( ) +0O( ] );

n<X n<Y
where 0 <o <1, X >H>0,Y > H >0, and 27 XY = |t|, with the constant implied by the big-O term
depending on H only. Such approximate functional equation motivate the study of properties of partial

sums Fx (s) of ((s) defined by
1

n<X
Gonek and Ledoan [41I] studied the distribution of zeros of Fx(s). They denote the number of typical
zeros px = Bx + iyx of Fx(s) with ordinates 0 < vx < T by Nx (7). In the case that T is the ordinate of

a zero, they define Nx (T) as lim,_,o+ Nx (T + ¢€). In [41], the authors are concerned with results on Nx (T)
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as both X and T tends to infinity.
Theorem 1 in [41] collects together a number of known results on the zeros of Fx(s) (see Borwein, Fee,
Ferguson, and van der Waal [2I], Montgomery [70], and Montgomery and Vaughan [71]), which can be

summarized as follows:

The zeros of Fx(s) lie in the strip a < o < B, where o and (B are the unique solutions of the equations
142774+ +(X—-1)"7=X"7and 27743774+ X7 =1, respectively. In particular, « > —X and
B < 1.72865. Furthermore, there exists a number X such that if X > Xy, then Fx(s) has no zeros in the

half-plane
4 loglog X
>1 ——1) ==
o=t (ﬂ' ) log X

On the other hand, for any constant C satisfying the inequalities 0 < C < 4/m — 1 there exists a number Xg

depending on C only such that if X > Xo, then Fx(s) has zeros in the half-plane

C'loglog X

1
o=t log X

Theorem 2 in [41] (see also Langer [60]) can be summarized as follows:

If X and T are both greater than or equal to 2, then one has

T X
Nx(T) — - loglX]| < -

Here and henceforth, [X] denotes the greatest integer less than or equal to X. The approximate functional

equation for (x(s) is (see Chandrasekharan and Narasimhan [24])

ls) =S “KT(”) +B281A(j<s>s) 3 ‘Zj(_?? +O(X1 7m0 log X), (1.20)
n<X n<Y

where A(s) = "1 (s/2)T"2(s), B = 2"21™0/2/\/|dg], X > H >0, Y > H > 0, XY = |dg/|(|t|/27)", and

Cy < XY < Oy for some constants Cy and Cy. The partial sum of (x(s) is defined by

1 ax(n
CK,X(S) = Z Ha”s = Z I;(S )7

llall<x n<X

which appears in the approximate functional equation ([1.20]). Our purpose is to determine whether (x x(s)

11



exhibit similar properties. To this end, we denote the number of non-real zeros px x = Bk, x + ¢Yk,x of
Ck . x(s) with ordinates 0 < yx x < T by Ng x(T). If T is the ordinate of a zero, then Nk x(T) is to be

defined by lim. ,o+ Ng x (T + €). In Chapter 5| we give an asymptotic formula for N x (7).

1.5 Family of approximations of L-functions attached to cusp
forms

Let N > 1 be an integer. Define
Fy(s):= Y n™" and (n(s):=Fn(s)+ x(s)Fn(1 - s),

where x(s) = 75~ Y/2T'((1 — s5)/2)/T(s/2). Spira [85] [86] appears to be the first author who considered the
functions (n(s) and investigated the zeros of these functions. The behavior of the functions {y(s) is not

completely unknown. From the approximate functional equation we have
((s) = Cn(s) + Ot ~7?),

where |t| > 1, |0 —1/2| < 1/2, and N = +/|t|/27 (see Titchmarsh[89]). In [85], Spira proved that all the
complex zeros of (;(s) and (5(s) lie on the line ¢ = 1/2. In [86], he presented a numerical computation
which suggests that infinitely many zeros are off the line o = 1/2 for N > 3. In the same paper, based on

numerical evidence, he suggested the following:

The zeros within the critical strip appear to lie outside the ¢ range v2meN <t < 2weN for each
N. There is also a second, less obvious, t range free of zeros, corresponding to where the Riemann-
Siegel formula is used, N < (t/27)Y/? < N 4 1. In this second region, gx(s) approximates ((s),

while in the first region, gy (s) is approximately 2((s). ..

Here (n(s) = gn(s). Since then very few related results have appeared in the literature. Very recently,
Gonek and Montgomery [42] studied thoroughly the zero distribution of {x(s). First they provided a proof
of Spira’s aforementioned claim. In the same paper, Gonek and Montgomery found a zero free region for
¢n(s) and also obtained further results on the numbers of zeros of (x(s). They proved the striking result
that 100% of the complex zeros of (x(s) lie on the critical line, provided N is not too large with respect to

the height T'. We will discuss this fact later.
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Gonek and Ledoan [41], Langer [60], and Wilder [96] proved asymptotic results for the number of zeros
of Fiy(s). If Np(T) is the number of zeros of Fy(T") up to height T, then they found that

T
Np(T) = %logXJrO(X).

This result is an indispensable ingredient to obtain good lower bounds for the number of zeros of {x(s) on
the critical line. In fact the growth rate of the error term offers a comparison between the growth rate of
the number of zeros on the critical line up to height T vs the total number of zeros of (x(s) up to height T.

In Chapter [5| (see also the paper by Ledoan, author and Zaharescu [63]), some instances are presented
where the error term can be improved. If we consider the partial sums of Dedekind zeta functions of a

cyclotomic field K/Q of degree g, then the corresponding error term is shown to be
<, z(loglog z/ log )1~/ ¢(@),

An important factor in attempting to improve on the error term is to obtain good upper bounds for the
sign changes of ax (n)sin(T logn), where ax(n) are coefficients in the Dirichlet series representation of the
Dedekind zeta function.

Let I' = SL(2,Z) be the full modular group. Let f € Si(T') be a holomorphic cusp form of even integral

weight k& > 0 for I', with Fourier series given by

F(2) =) ap(n)e’™n=.
n=1

1-k)/2

We also assume that f is a normalized primitive Hecke form with ay(1) = 1. Let a(n) := as(n)n' and

let L¢(s) be the L-function associated to f, defined by

Li(s) =" a(n) (1.21)

nS

n=1

for o > 1.
From Deligne’s proof [32, [33] of the Ramanujan-Petersson conjecture, which is a consequence of the

Riemann Hypothesis for varieties over finite fields, the coefficients a(n) satisfy the bound

la(m)] < d(n). (1.22)
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In particular

la(p)| <2, (1.23)

for all primes p. The divisor function satisfies (see Apostol [3, p. 296])
d(n) < csn®, (1.24)

for any 6 > 0, and moreover by a result of Wigert [94],

log2logn logn
log(d <—=—"+40|—F7—— ).
og(d(n)) < loglogn + ((1oglogn)2)

Rankin [8I] gave a mean square estimate of coefficients a(n). He showed that

Z la(n)|? = az + O (z*/%), (1.25)

n<z

where

T k—1
o= (4F(>k) / / Y52 f(2) Py, (1.26)

the double integral being taken over any fundamental region of I and z = = + iy.

Next, we consider the partial sums

S

Let N(X;T) denote the number of complex zeros of ) _  a(n)n™° up to height T'. Then as a special case

of Theorem 3 in [60], one obtains the following result.

Proposition 1.5.1. Let M be the largest integer less than or equal to X such that a(M) # 0. Then we have
T
N(X;T) = 2—logM—|—Of(X).
b

In order to improve the above error term, we will be interested to study non-trivial upper bounds for
the number of sign changes of the Fourier coefficients a(n). In [55], Knopp, Kohnen, and Pribitkin studied

the sign changes of the Fourier coefficients a(n) of a cusp form f for SL(2,R). They showed that these

14



coefficients a(n) change sign infinitely often. Motivated by the work of Knopp, Kohnen, and Pribitkin one
may consider trying to improve on the error term in the above proposition. It is worthwhile to mention that,
n [67], Meher and Murty gave a lower bound for the number of sign changes of the coefficients a(n). The
reader may also find work in this direction in the work of Bruinier and Kohnen [22] and several other works
of Kohnen.

The L-function L¢(s) has an analytic continuation throughout the complex plane as an entire function,

by

k=1

(2m) 77 2 T (s+ 5) Ly(s) = /Ooo fliy)y™ T Ly,

and it satisfies the functional equation

Ly(s) = xs(s)Ls(1 =), (1.27)
where
LS
Xz (s) = (1)’“/2(27r)<128>£2,€1+$. (1.28)

Now we recall below the functional equation, the reflection formula (along with its variant), and Legendre’s

duplication formula for the Gamma function I'(s). To that end,

I'(s+1) =sI'(s), (1.29)
T(s)[(1—s) = sz;s), (1.30)

r (; + s) r (; - s) = CO;(:TS), (1.31)

T(s)T <5 n ;) - %F(Qs). (1.32)

Using ([1.29)), (1.30]), (1.31), and (1.32)) one shows that

Xr(s)xs(1—s) =1 (1.33)

The Euler product representation of Ls(s) is

Li(s) = [[ (1= ap~* +p72) ", (1.34)

p
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where ¢ > 1. The non-trivial zeros of Ls(s) lie within the critical strip 0 < o < 1, symmetrically with
respect to the real axis and the critical line o = 1/2. The Riemann hypothesis for Ly (s) states that, all the
non-trivial zeros of L¢(s) lie on the critical line o = 1/2.

Let N¢(T) denote the number of non-trivial zeros p of L(s) for which 0 < Imp < T, for T' not equal to
any Im p; otherwise we put

1
Ny (T) = 11_1}1(1) §{Nf(T +e)+ Ni(T—e)}.
Then one can show that (see Lekkerkerker [64])

T T T
Ny(T) = P log vl + O(logT).

An approximate functional equation of Ly (s) (see Apostol and Sklar [4], Chandrasekharan and Narasimhan

[23], and Good [43]) is given by

L) = Y0 M) 3 A oo, (1.35)

n<X n<X

for e > 0,[t| > 1,]0 —1/2| < 1/2 and X = % Let us define

Li(N5s):= 3 "f;j) +xils) Y “Y_LZ. (1.36)

n<N n<N

From (1.28) and (1.36)), we have the following functional equation,
Ly(N;s) = xys(s)Ly(N;1—s). (1.37)

Since f € Si(I') is a primitive Hecke form, then all a(n) € R. Therefore L;(N;s) is real for all real
values of s. So the zeros of L;(NN;s) are symmetric with respect to the real axis. Also from the functional
equation we find that the zeros of L;(N;s) are symmetric with respect to the critical line o = 1/2.
By a generalization of Descartes’s Rule of Signs (see Pdlya and Szego [78], Part V, Chapter 1, No. 77),
> n<n a(n)n”® has at most finitely many real roots for real values of s. Also from (1-28), xy(s) has simple
poles at all half-integers greater than or equal to (k + 1)/2. Therefore there exists a real number t, so that
all half-integers greater than v are simple poles of L;(N;s). Hence L;(N;s) is analytic everywhere except

possibly for simple poles at half-integers.

16



From (1.35) and (1.37), we observe that L;(N;s) approximates L(s) for N < % < N + 1, except

possibly at the critical line. From [4, Theorem 2] we have

Li(s)= > @ + O(NY4=9), (1.38)
n<N

uniformly for ¢ > 01 > —1/4, provided N > B (ﬁ)2 for some B > 1. Now we need Stirling’s formula for

the Gamma function in a vertical strip [29] p. 224]. For 01 < 0 < 09, as |t| = oo,

IT(s)| = V2r|t|7~1/2emIH/2 <1+0 (é)) (1.39)

From Stirling’s formula (1.39)) one has

= () (01 (3)

as [t| = oo (see (6.24]) for a proof). From (1.36)), (1.38), (1.33)), and (1.40) we find that

L(N;s) = 2L(s) + O(NY4=7) 4 O([t|* "2 No=3/4), (1.41)

uniformly for min(o,1—0) > 01 > —1/4, provided N > B (ﬁf for some B > 1. Since |t| < VN, the error

terms in (T.41)) are < |t|~ ™in(1/2:20-1/2) "yniformly for 1/4 < o < 3/4. Hence
Ly(Nss) = 2Ly(s) + O([t| /20 =1/4),

uniformly for 1/4 < ¢ < 3/4 and |t| < VN. This shows that Ls(N;s) approximates 2Lf(s) near the
critical line for sufficiently large ¢ in the range |t| < V' N. Next we investigate such approximations in
more generality. A natural question that arises is how the sequence Ly(N;s) converges in the L?-norm. In

particular we are interested in studying the integral

r 1 I
Lf N;*+Zt 7Lf M;*+’Lt
0 2 2

We wish to obtain an asymptotic of the moment integral (1.42) for the family of approximations L (N;s).

2
dt. (1.42)

We shall obtain this in a slightly different way. In Chapter |§|, we estimate the L? distance between L¢(M; s)
and L;(N;s), weighted by a smooth function which satisfies certain conditions and study several results

related to the zeros of Lf(N;s).
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Chapter 2

Ramanujan’s identity on page 336 of
his lost notebook

2.1 Main results

2.1.1 Corrected version of Ramanujan’s claim

Before stating the corrected version of Ramanujan’s claim, we need to define a general hypergeometric

function. Define the rising or shifted factorial (a), by
(a)n =ala+1)(a+2)---(a+n—1), n>1, (a)o = 1. (2.1)

Let p and g be nonnegative integers, with ¢ < p 4+ 1. Then, the generalized hypergeometric function 4F), is

defined by

> (al)n(QQ)n"'(a )n "
oFplar,as, ... aq;b1,bo, ... by 2) ::Z G0 (o) 4 ok (2.2)

n=0
where |z|] < 1,if g=p+1, and |z]| < 00, if ¢ < p+ 1.

We set R,(f) = R, to denote the residue of a meromorphic function f(z) at a pole z = a.

Theorem 2.1.1. Let 3F» be defined by (2.2). Fiz s such that o > 0. Let x € RT. Let a be the number

defined by
0, if s is an odd integer,
1, otherwise.
Then,
3 05(1) —2nyEmz 4 (% +Qm/%) (2.4)
n

n=1

C(l—s < ) <1 )253 (s +1/2) cot (ﬂ;)g(-@)

87T 7TS+% 1‘5+%

5 s(n) | vl (5 +3)
{Zns+llmr( )

n<x




n2=° 131 n?
+ R, vy I
xSin(%)F(].*S)g 2 (1_5,1 x

o) [ nl(s)cos () [ (5551 a2
n>x

_ iVl (s+3) an () (e gy oD
28-’1—1\/7-[-733 4 2 n "

c N — (D) o\ —(s+3)
. i s 1T 1xr
+”°S(4+2)<(1+n) +<1‘n> ‘2>H }

where, if x is an integer, we additionally require that o < %

If we replace the ‘4’ sign in the argument of the sine function in the series on the left-hand side of ([2.4))

by a ‘=’ sign, then we obtain the following theorem.

Theorem 2.1.2. Fix s such that o > 0. Let v € Rt. Then,

i os(n)e_zwm sin ( — 27rx/%)

B x ¢(3 1 L (s+3)¢(—s)
_471‘( 5 C(—S)+4W\2/§C(2—S)+W

1) os(n) T TS nstz
+ 2 2 | —sin ( — —) + —
2sst 3 {T; nsta 4 2

275+3

The special case s = % of Theorem m (see 1) is very interesting, since the two sums, one over

n < x and the other over n > z, coalesce into a single infinite sum. If K (x) denotes the modified Bessel

function or the Macdonald function [93] p. 78] of order s, and if we use the identities [93], p. 80, equation
(13)]
s

Ki2(2) = 2Z€7Z (2.5)
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and [93, p. 79, equation (8)]
K_i(2) = K(2), (2.6)

we see that this special case of the series on the left-hand side of ([2.4)) can be realized as a special case of

the series

Qi o_s(n)n? (6”5/4K8 (471'6”/4\/@) —e K, (4#6_”/4\/%)) (2.7)
n=1

when s = —%. If we replace the minus sign between the Bessel functions in the summands of ([2.7) by a plus

sign, then the resulting series is a generalization of the series

o(z) =2 i d(n) (KO (47re”/4\/@) + K, (ma”“ﬁ)) , (2.8)

extensively studied by N. S. Koshliakov (also spelled N. S. Koshlyakov) [59, 57, 56, 58]. See also [34] for
properties of this series and some integral transformations involving it. We feel that Koshliakov’s work
has not earned the respect that it deserves in the mathematical community. Some of his best work was
achieved under extreme hardship, as these excerpts from a paper written for the centenary of his birth

clearly demonstrate [20].

The repressions of the thirties which affected scholars in Leningrad continued even after the out-
break of the Second World War. In the winter of 1942 at the height of the blockade of Leningrad,
Koshlyakov along with a group ...was arrested on fabricated ...dossiers and condemned to 10
years correctional hard labour. After the verdict he was exiled to one of the camps in the Urals.
... On the grounds of complete exhaustion and complicated pellagra, Koshlyakov was classified
in the camp as an invalid and was not sent to do any of the usual jobs. ...very serious shortage
of paper. He was forced to carry out calculations on a piece of plywood, periodically scraping
off what he had written with a piece of glass. Nevertheless, between 1943 and 1944 Koshlyakov

wrote two long memoirs ...

A natural question arises — what may have motivated Ramanujan to consider the series

— 05(77,) —27V2nx : z 2
nz::l NG e sin <4 + 27V 2nx>. (2.9)

We provide a plausible answer to this question in Chapter demonstrating that (2.9)) is related to a
generalization of the famous Voronoi summation formula and also to the generalization of Koshliakov’s

series ([2.8) discussed above and its analogue. The contents of this chapter, Chapter [3] and Chapter |4 are
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taken from [I3].

2.1.2 An important integral identity

The following lemma, which is interesting in its own right, is the main ingredient of our proof. We use the

fc+ioo

c—1i00 °

notation f(c) to designate

Lemma 2.1.3. Fiz s such that 0 > 0. Fiz v € RT. Let —1 < XA < 0 and let a be defined in (2.3). Define

I(s,z) by
.71 z z .o (TZ\ . (T2 TS —z
I(s,7) = 5 (}\)F(Z - (1 2)F(1 2+s) sin (4 )sm( - 2)(493) dz. (2.10)
Then,
(i) forx > 1,

oo (:+3%) ax ™"t cot (%) 1 i\ (s+3)
I(s,x) = [@F(i;) M= F<s+) {<1+$> (2.11)

(ii) for x <1,

7 [T(s)cos (Z£ s 1ds 9
I(s,z) = 22_3[ 23_177(:52) {3F2 (2 LGt 1 (2.12)
47 4
+

where, if x =1, we additionally require that o < %

We note in passing that each 3 F% in Theorem as well as in Lemma [2.1.3] can be written, using the

duplication formula for the Gamma function ([1.32]), as a sum of two o F}’s.
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2.2 Preliminary Results

The functional equation of the Riemann zeta function ((s) in its asymmetric form is given by [88| p. 24]
C(1—s)=2""*r"%cos (3ms) T(s)((s), (2.13)
whereas its symmetric form yields
2T (Ls) ((s) = a7 (L1 - 5)) ¢(1 — 9).
Since ((s) has a simple pole at s = 1 with residue 1, i.e.,
Sh_}n%(s —1)¢(s) =1, (2.14)

from (5.5) and ([2.14]), we find the value [88], p. 19]

£(s) == Ls(s — Dm /2T (1s) ¢(s),

where T'(s) and {(s) are the Gamma and the Riemann zeta functions respectively. The Riemann Z-function

is defined by

[1]

(t) =& (5 +it).
For 0 < ¢ = Re w < o [44] p. 908, formula 8.380.3; p. 909, formula 8.384.1],

1 I(w)'(s — w)

— — " Ydw = -
210 J () T'(s) (14 x)°
We note Parseval’s identity [77, pp. 82-83]
) 1 c+i00
| f@@is= o [ 50— wew) du,
0 2mi c—100
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where § and & are Mellin transforms of f and g, and which is valid for Re w = ¢ lying in the common strip

of analyticity of §(1 —w) and &(w). A variant of the above identity [77), p. 83, equation (3.1.13)] is

We close this section by recalling facts about Bessel functions. The ordinary Bessel function J,(z) of
order v is defined by [93] p. 40]
= (D)D)

Julz) = mil(m+1+v)’ (2.15)

m=0
As customary, Y, (z) denotes the Bessel function of order v of the second kind. Its relation to J,(z) is given

in the identity [93] p. 64]

Jy(z) cos(mv) — J_,(2) .

sin v

Y, (2) = (2.16)

If K, (z) denotes the modified Bessel function of order v, then [93] p. 78]

Tl ,(2) —1,(2)

Kz/ - -
(2) 2 sin v

where [93] p. 77]

B o0 (Z/2)2m+1/
W& =2 om0y

The asymptotic formulas of the Bessel functions J,(2),Y,(2), and K,(z), as |z| — oo, are given by [93

p.- 199 and p. 202]

0 (2)7 (oSS G0y 35 CORBED)
(sinwi( 1()2 ()Qn —i—costW), (2.18)

(TN e ()
K,(2) ( ) e Z (2.19)
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for |arg z| < m. Here w = z — 37 — 7 and

I'(v+n+1/2)
F(n+1)I(v—n+1/2)

(Vv TL) =

2.3 Proof of the corrected version of Ramanujan’s claim

Let

S(s,x) := i Uj/(g) e 2TV gipy (% + 2wm> . (2.20)

From [73] p. 45, equations (5.19), (5.20)], we have

1 I'(z2) . 1 /0 _ Cbe

3 “ DR sin (z tan~! (g)) r7%dz = e " sin(ax), (2.21)
1 I'(z) 1 /a _, b

ot /(C) e cos (z tan~! (5)) 7% dz = e cos(ax), (2.22)

where a,b > 0, and Re z > 0 for 1) and Re z > —1 for || Let a = b = 2mv/2n, replace x by /z,
add (2.21)) and (2.22)), and then simplify, so that for ¢ = Re z > 0,

1 r 1
1 (2) _cin (W(Z + )) =2 gy — =27V G (f + 2m/%> , (2.23)
2mi J () (1672n)2 4 4

Now replace z by z — 1 in (2.23)), so that for ¢ = Re z > 1,

1 I'(z—1 —27V/2nx
ﬂ/ (4321)/2 sin (%) 21=2/2 4, = 67 sin (% + 27V 2nx> . (2.24)
T () (4T)*7 N7 n

Now substitute (2.24)) in (2.20) and interchange the order of summation and integration to obtain

2 os(n)\I'(z—1) . /7= .

n=1

It is well-known [88] p. 8, equation (1.3.1)] that for Re v > 1 and Re v > 1+ Re p,

L o,(n
e - =3 2, (2.26)
n=1
Invoking (2.26]) in (2.25)), we see that
2
S(s,x) = f/ Oz, s,x) dz, (2.27)
v J(e)
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where ¢ > 20 + 2 (since o > 0) and

0w = (5)¢ (5 -9) e on () 207

We want to shift the line of integration from Re z = ¢ to Re z = A, where —1 < A < 0. Note that the
integrand in has poles at z = 1,2, and 2s + 2. Consider the positively oriented rectangular contour
formed by [¢c — iT,c+iT],[c+iT, A +iT], [\ +iT, A —iT], and [A —iT,c — iT], where T is any positive real
number. By Cauchy’s residue theorem,

1 c+iT AT A—1T c—iT
1 / + / + / + / Q(z, 5,2) d = R1(Q) + Ra(Q) + Rasra(S), (2.98)
2mi c—iT c+iT A+iT A—iT

where we recall that R,(f) denotes the residue of a function f at the pole z = a. The residues are calculated

below. First,

Rosi2(Q) = lim (2 —2s—2)¢ (5 - s) ¢ (f) -1 o (LZ) L(1-2)/2

z—25+2 2 2 (47T)z 4
I'2s+1) . (7m(2s4+2)\ _ 1
=2((s+1) (Um)Ee in ( 1 x 572
23T (s + %) cot (%ws) ¢(—s)
T petd asts ’

where in the first step we used (2.14)), and in the last step we employed (1.32)) and (5.5 with s replaced by
s+ 1. Second and third,

Ri(Q) = lim (s — 1) LE= D¢ (f) ¢ (g — s)sin (%) 21272 = 4\}%4 <;> ¢ (; - s> . (2.29)
r

z2—1 (471’)z 2
o 26 (5)¢ (3 -) Mo () - ) o

where, in ([2.29)) we utilized ([1.29), and in (2.30]) we used (2.14]). Next, we show that as ' — oo, the integrals

along the horizontal segments [c + iT, A\ + iT] and [A — iT,c — iT] tend to zero. To that end, note that if

s =0 +it, for o > —§ [88] p. 95, equation (5.1.1)],
C(s) = O(t2™). (2.31)

Also, as [t| — oo,

-0 (e%’f'”) . (2.32)
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Thus from ([2.31)), (1.39)), and (2.32)), we see that the integrals along the horizontal segments tend to zero as

T — oo. Along with (2.28)), this implies that

/Q(z,s,x)dz:/ Oz, s,x)dz (2.33)
(e) ()

o <<(1_s) L] C(l) i (; _S> B 27r+3 r(s+1/2)xcso+t%(’§) C(—s)>_

stz | avoro \2

We now evaluate the integral along the vertical line Re z = \. Using (5.5)) twice, we have

/(A) Oz, 8,2) dz = /(A) 9s—spa=s=2¢ (1 - g) ¢ (1 - g + s) r (1 - g) (2.34)
x T (1 - g + S) FEZW_ZU sin’ (%) sin (% - g) z(1=2)/2 g

— 25\7{312720;;111) /(/\)F(z—l)f‘ (1—§)F(1—§+8>

x sin? (E) sin (E — E) o o dz
4 4 2 n

VT = 0g(n) x
gt L ! ()
n=1

where in the penultimate step we used (2.26]), since A < 0, and used the notation for I(s,z) in the lemma.

From (2.27)), (2.33]), and (2.34)), we deduce that

S(S, m) = 25*\2/7fs+1 Zl (;ss(Jrnl)[ (S, %)

¢(1—y9) 1 1 1 27573 (s +1/2) cot (27s) ((—s)
(S e (o) Tt ee)

The final result follows by substituting the expressions for I (s, %) from the lemma, accordingly as n < x or

n > x. This completes the proof.

2.4 Proof of the integral identity

Multiplying and dividing the integrand in (2.10) by I (3(3 — z)) and then applying (1.32) and (1.30), we

see that
1 1

3 201 : 1
B 772‘ / sin (Zﬁz) Slln (ZTFZ - §7Ts) r (1 — 52+ s) ke gy (2.35)
47y ) sinmz I (1 — %z + %)

I(s,x) =
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We now apply (1.30)), (1.31]), and (1.32)) repeatedly to simplify the integrand in (2.35)). This gives

1 -
I(s,z) = 2m22—9/( F(z,s,x)dz, (2.36)

where

Py ) T e 1T (0 2) -
T 22/2(1 — 2) I (iz-1s) ' .

The poles of F(z,s,x) are at z = 1, at 2 = 2(2k+ 1+ s),k € NU {0}, at z = 2(2m + 1),m € Z, and at
z=—(2j+1),j e NU{0}.

Case (i): When = > 1, we would like to move the vertical line of integration to +oco. To that end,
let X > A be such that the line (X — ic0, X + ico) does not pass through the poles of F'(z). Consider the
positively oriented rectangular contour formed by [A —iT, X —iT|,[X —iT, X +iT], [X +¢T, A+ 4T}, and

[A+ T, A\ — iT], where T is any positive real number. Then by Cauchy’s residue theorem,

1 X —iT X+iT AHiT A—iT
— / +/ + +/ F(z,s,x)dz
2mi A—iT X—iT A

X+iT +iT

=Ri(F) + Z Rypt145)(F) + Z Roam1)(F).
0<k<i(iX-1-Res) 0<m<3(3Xx-1)

We now calculate the residues. First,

tan (172) T (2 — L2+ 1) T (A (1 + 1 D(:+14
Ri(F) = lim (> — 1) an (3m2) T (3 — 32 2° 1(2( ) e L (§ fs). (2.38)
z—1 23(1—2) r Zz—ﬁs) \/2xf(1—§8)
Second,
tan (372) T' (3 — 2+ 3s) T (3(1 + 2))
R F)= i -2(2k+1 4 2 4.2 -
22k +1+s) (F) z—>2(2ll£r~l‘r1+s){z (2k+1+s)} a1

1
z 5 z
. (2
25(1—2) T (12— Ls) ! (2.39)
_A(=D ot (3ms) T (3 +2k+5)
B k122k+2+s I (3(2k+1))

_ (71)k+1 cot (%TI'S)F st 1 s+ 1 x_(2k+1+5)
@125/ ) 5) 0 ’

2k+1+s)

where in the second calculation, we used the fact lim,_,_,,(z + n)I'(z) = (—1)"/n!, followed by (1.29) and
(1.32). Here (y),, denotes the rising factorial defined in (2.1). Note that we do not have a pole at 2(2k+1+s)
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when s is an odd integer. Also,

B . tan (iwz) F(% —iz—l—%s F(%(l—&—z)) —22
Roam41)(F) = z_>21(12121+1){z —-2(2m+ 1)}2z/2(1 ) T x (2.40)
1 I(is—m)T (2m+3)

_ 2 x—(2m+1)
m22m F(m— %s—i—%)

(_1)m (%)Qm x—(2m+1)
2ssin (37ms) T(1 —s) (1 = 8),,, ’

where we used ([1.30) and (1.32). As in the proof of Theorem [2.1.1} using Stirling’s formula (1.39), we see

that the integrals along the horizontal segments tend to zero as T'— oo. Thus,

1 1
— F(z,s,2)dz=— F(z,s,x)dz (2.41)
2me (X) 21 )
+ Ri(F) +a Z Ry(apq145)(F) + Z Ro(am41)(F),
0<k<i(LiX—1-Res) 0<m<3(3x-1)

where a is defined in (2.3]). From (2.37)), we see that

F(z,s, —1) (% 1)) (L 3
F(z+4,5,2) = — (j 52)(z )(ﬁ(w ) (§ i ). (2.42)
422(2+3) (32— 2(s — 1)) (32— 3)
so that
|F(z,s,x)]| 1
Applying (2.42) and (2.43)) repeatedly, we find that
|F(z,5,2) 1V
|F(z+4€,s,z)|:T 1404 |7 ,
for any positive integer £ and Re z > 0. Therefore,
F(z,s,x) 1\\*
/ F(z,8,2)dz| = / — (1 + Oq ()) dz (2.44)
(X+48) x) = |2

e (10 (537))

/ F(z,s,x)dz

(X)
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Since = > 1, we can choose X large enough so that

1
|x] > /14 Os < )
RY

With this choice of X and the fact that )f(X) F(z,s,x)dz

is finite, if we let ¢ — oo, then, from (2.44)), we

find that
X +40+4i00

lim F(z,s,2)dz =0. (2.45)
=00 J X 4 a0—ico

Hence, if we shift the vertical line (X)) through the sequence of vertical lines {(X +4¢)}22,, then, from (2.41])

and (2.45]), we obtain

1

i o F(z,s,7)dz = =Ry (F) — CLZ Ro(ot146)(F Z Roamy1)(F (2.46)

k=0
Since z > 1, from (2.39) and the binomial theorem, we deduce that

—s—1

= x cot (27s > (s+3 i\
QZR2(2k+1+s)(F) = az,s\/t%(?)l“ (s + ;) Z ((;I:)?zk (a:) (2.47)

k=0 k=0

_ _“xszif?tf(fm)r (S . ;) {(1 . i)(s+é) . (1 - ;)(s%)} |

From ([2.40)),

) (2.48)

. 1)
1
Therefore from ([2.38]), (2.46), (2.47)), and (2.48]) we deduce that

% " F(z,s,2)dz = awr (s N ;) {(1 . ;>(s+é) . <1 - ;)(Hé)}

il
- A 3P& 1 1 :
228 sin (37s) [(1 — s) L1—s),1—4s a2

:O

0 1 00 %
F =
mz::ORQQmH)( ) 228 sin ($7s) [(1 — s) Z - <
1
, 1=

1
:E2Ssm(2 )F(l— ) 3b2 <%(

\
| —
N———
+
5
8
|
S
I

+
SIS
V)
S—

V)
~—

Using (2.36)), we complete the proof of (2.11]).

Case (ii): Now consider z < 1. We would like to shift the line of integration all the way to —oco. Let

X < X be such that the line [X — ico, X + i00] again does not pass through any pole of F(z). Consider a
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positively oriented rectangular contour formed by [A — T, A +iT], [\ +iT, X +iT], [X + T, X — iT], and

[X —iT,\ —iT], where T is any positive real number. Again, by Cauchy’s residue theorem,

1 AT X4iT X —iT A—iT
2 | Jazir AT X+iT X—iT

= Z R72(2k+1)<F> + Z R*(2j+1)(F)'

0<k<$(-3X-1) 0<j<i(—-X-1)

F(z,s,z)dz

The residues in this case are calculated below. First,

. mZ 1
Rosn(F) = lm {(z +2(2k + 1)) tan (Z) } Sr(1—2) (2.49)
Tl 9T G0+s)
(32— 39)
_ (=Dt (3 —2(k+1)) L2k D)
Vr2ssin (37s) T (1 —2(k+1) — s)
_ (ot PG AR+ DT (G -2k 1) oy PR+ 1) +5)
V2ssin (3ms) T(2(k +1) +5) T (1 =2(k+1) — s) L(+2(k+1))
_ (71)k+1 cos (%WS) F(S) (f)z(k-&-l) xg(k_H)
s—1 ’
27 im (§)z(k+1)
where in the last step we used (|1.30) and (1.31). Second,
tan (372) T (2 — 124+ 4s) T (3(1+2))
o (F)= Tk 9271+ 1 4 2 4% 3 2 /2 9.
R_2j41)(F) Z%,l(gljﬂ)(z + (25 + ))2z/2(1 ) T (12— 1s) (2.50)

2+ T(3+3i+3)
GO (-1 1i- b)

_1F(8+3> (S+3> Sin<ﬂ-(j+1+s>>xj+;
Vr25(j 4+ 1)! 2 2 j 2 4 2

where we multiplied the numerator and denominator by I' (% +i54 %s) in the last step and then used

2
(1.30) and (1.32). Thus, by (2.49) and (2.50),

_ 2t

1 1
- F(z,s,x)dz = — F(z,s,x)dz (2.51)
271 ()\) 271 (X)
+ E R_5or41)(F) + E R_ (g 41)(F).
0<k<i(-1x-1) 0<k<i(-X-1)

From (2.42)),

F(z — 4,5,2)| = [z (1+os ( y

)) 1Pl

|z
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and hence

|F(z—4L,s, x)|—|xﬁf<1-+c> (||>>£LF(as,xﬂ7 (2.52)

for any positive integer £ and Re z < 0. Therefore, from (2.52]),

= | [, Fesm (140, (1)) =
=lef* (140, (ulf))e

Since z < 1, we can find an X < A, with |X| sufficiently large, so that

(1+O <;|)><1. (2.53)

With the given choice of X and the fact that ‘f(X) F(z,s,x) dz‘ is finite, upon letting / — oo and using

(2.53)), we find that

/ F(z,s,x)
(X —4k)

F(z,s,2)dz|.

(X)

X —4l+1i00
lim F(z,s,2)dz=0. (2.54)

£=00 J X _40—ico

Thus if we shift the line of integration (X) to —oo through the sequence of vertical lines {(X — 4k)}2,,

from (2.51) and (2.54)), we arrive at

1
% " F(Z S, SC dZ = kZOR 2k+1) + Z R_ (2j+1) (255)

Since z < 1, using ([2.49)), we find that

iR—Q(%H)(F) _ D(e)con (5] i ((5)2(k+1) (i) 2+ (2.56)
=0

27 e = (1/2) 50
I'(s)cos (37s s s g
_ ()281(27T){3F2<2 2 ;—332)—1},
T

where for x = 1, we additionally require that ¢ < % in order to ensure the conditional convergence of the

From ([2.50)),

T (s+3) o . i1 s\ (5+3)
ZR (2g+1) —(\/7?2)23111(77 <2—|—4—|—2>)(j+21)!] (G+3)
i=
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_T6+) ) (w (1 + 8)) 3 (8;3)2{@3@)% (2.57)

25/ 4 2 = (25 +1)
= (51 9)
.75 ( ( +3>> 2/2j+1 2j
xz?/“cos |7 113 jz:;) 2j +2)! (i)
T TS (sl (sl
Rl o ) sy )

!
-
=

—
Vo)
+
[
N—
r
ELJ
=
+ o~

i (a)2jz% (1+z)l7¢—(1—a)t™°

j=0 (2] +1)! B 2z(1 — a) ’
= (a)2j+1$2j+1 - ((1 +a)r (1 — )l — 2)

valid for |z| < 1. Combining (2.55)), (2.56)), and (2.57)), we deduce that

TS\ s lts
1 F(z,s,x)dzzicos(Q) (s) {3F2<2’ 2 ;—x2>—1}

% () 25— lng %’

»

PN

+ 2003 fon (T4 Z) (i D — (1 i)+
+ icos (% + %) {(1 +iz) ") 4 (1 — )~ +e) - 2}] .

Using , we see that this proves . This completes the proof of Lemma m

If x is an integer in Theorem then the term corresponding to it on the right-hand side of can
be included either in the first (finite) sum or in the second (infinite) sum. This follows from the fact that
the integral I(s,z) in the above lemma is continuous at = 1. Though elementary, we warn readers that
it is fairly tedious to verify this by showing that the right-hand sides of and are equal when
x = 1, and requires the following transformation between 3F5 hypergeometric functions, which is actually a

special case when ¢ = 2 of a general connection formula between ,F,’s [75l, p. 410, formula 16.8.8].

Theorem 2.4.1. For ay — as,a1 — ag,as —as ¢ Z, and z ¢ (0,1),

. . _ F(bl)F(bZ)
3}7‘2(61,17 as,as; by, ba; Z) - F(al)r‘(a2)1—‘(a3) <

1
X 3 (al,al—b1+1,a1—b2+1;a1—a2+1,a1—a3+1;)
z

F(a1)r(&2 — CL1)F(CL3 — al)
F(bl — al)F(bQ — al)

(—z)~™ (2.58)
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) e
b1 — ag)r(bg — a2) ( )
1
X 3k (02,02 —bi+1,a2 —ba+1;—a; +azx+1,a9 a3+1;z)

F(ag)F(al — ag)F(OQ — (13)
(

+
r b1 — ag)r(bg — ag)

(—2)7

1
X 3F% (ag,ag—b1+1,a3—b2+1;—a1+a3+17—a2+a3+1;Z>).

2.5 Coalescence

In the proofs of Theorems and using contour integration, the convergence of the series of residues
of the corresponding functions necessitates the consideration of two sums — one over n < x and the other
over n > x. However, for some special values of s, namely s = 2m + 1 5, where m is a nonnegative integer,
the two sums over n < x and n > x coalesce into a single infinite sum. This section contains corollaries of

these theorems when s takes these special values.

Theorem 2.5.1. Let x ¢ Z. Then, for any nonnegative integer m,

g m
Z 2 + e ImVINT gin (% + 27V an) (2.59)

_<<r2m> )¢ (<4 =2m) 1 (1
=T ﬁzm)%“ *# (3) 2

\/‘E O'2m+ n) >2m+2

ﬂ_27n+ 3 2m+ 5 7T
n=1

in —(2m+1) in —(2m+1)
X 14+ — +(1—-—
x X

(-1)™n 1 il n’
C P (om 4 2 ) 4R LI
+22m’ﬂ'$ m+2 342 %7777,,%*7717 sz

Proof. Let s =2m+ %, m > 0, in Theorem To examine the summands in the sum over n < x, observe

first that 1/T (i — %s) = 0. Since a = 1, the second expression in the summands is given by

) Ulg++(n) al (s ;él)\;;t (%) (%)™ {(1 N i;l)_(”é) + (1 - Z‘)_(Hé)} (2.60)

B _U2m+%(”) (2m)! (£>2m+% (1- %‘)27"“ +(1+ )

2z (1+ n2/$2)2mJrl
Ooms1(n) (2m)!  p2mtsgp2mts i( )i 2m +1 (E)%
n2m+3 Nz 92m+3 (22 + n2)2m+1 prs 2k ’

2m—+1

T
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The third expressions in the summands become

Oom+1 (1) 9-s 13 2
2 z:zi(é - 3k <1_‘§ T (2.61)

n 2 x81n(§778)1"(1—3) S 1—5

ey ) (e (1

— n2m+% "EF(%— m)3 2 i—m,%—m’ .1?2

Hence, by (2.60)) and (2.61)), the summands over n < x are given by
Oom41 (N 2m)! 2m+3§ p2m+ g m 2 1 2%k
2 +2(3){_( m) n1 3 3 Z(_l)k<m+ )(n) (2.62)
n2m+3 VT 22mE s (g2 4 p2)2ml Pt 2% z

-1 mn2_2m 137 n2

For the summands over n > x, observe that the third expression is equal to zero, since cos (i?T + %77 (Zm + %)) =

0. The first expression becomes

O-Q'm—&-%(n) TLF(S) COS (%’R’S) { F (S’ 1J2rS’ 1. 'T2> 1} (2 63)
— : 3L'2 T | T ’

n2m+3 251y

1

4
 Oampa(n) (1) Hp 2—2m{ - <1+
- 342

n?mts 2l (5 —2m)

where we used (|1.31)) with s = 2m. The second expressions of the summands become

Tom+1 () i(=1)™ 1 /n2m)! (1 —iz/n)*" " — (1 + iz /n)*™ !
n2m+3 92m+% /o (1+ xz/nz)QmH '

(2.64)

Note that

()T ) () e

These summands are non-zero only when k is odd, and so if we let 25 = 2m + 1 — k, we see that

(1 - Z:>2m+1 - <1 + Z:>2m+1 = 2i(—1)"™ ! (7)2’"“ Z <2m + 1) <x> 2j .

=0

Thus, after simplification, the second expressions (2.64]) equal

7) 7 (2.65)

X

0o (0) 2m)! pPmtig?mts i <2m+ 1) (

n2m+3 N 92m+3 2 (22 4 n2)2m+l
J=
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Thus, by (2.63) and (2.65)), the summands over n > x equal

oms (n)[ @2m)!  n2mt3g2mtd i(_l)jcmfl) (2)” (2.66)

_ ﬁ 22m+%(x2+n2)2m+1 .

—1)ymtipg—2m Lim,34m, 1 22
+% sP | 1 el B ]
xF(§—2m) I3 n

for x > 0 and n € N. To that end, use (2.58)) with a; = i,ag = %,a;; =1,b = i —m,by = % — m, and

z = —n?/x?. This gives, for all z,n > 0,
33,1 n? (4m + 3)(4m + 1)22 Tom34m1 g2
stz | 3 T2 | T 32 3k 75 i—— |- (2.68)
Z_m,z—m X n 11 n

Now for n > z, we can use the series representation (2.2)) for 3F5 on the right-hand side to obtain

Toim. 21m.1 22 oo (Z+m) (§+m) (1)k 22 k
F 1 ' 4 ) . =14+ 4 k 4r k (_) (269
a () < e (0 |
—1_ 3n? (G ) G Wi (x2>k+1
(4m + 3)(dm + 1)2? £ (2) o (i)k+1 (k+1)! n?

k
—3n? 14+m3+m1 22

= 3F2 Yy T 5 —15.
(4m + 3)(4m + 1)z 1,3 n?

Combining and 7 we obtain for n > x.

Now set a; = i—i—m, ag = %—l—m, az=1,b1 = %7 by = %, and z = —2?/n? in and use, for n < z,
the series representation for the 3Fs on the right-hand side of the resulting identity to arrive at for
n < z. This shows that holds for all x > 0 and n € N.

Hence, the summands in the sums over n < x and n > x in Theoremare the same when s = 2m+ %

Now slightly rewrite (2.62)) to finish the proof of Theorem m O
Similarly, when s = 2m + % in Theorem we obtain the following.

Theorem 2.5.2. For any nonnegative integer m,

< o m-1\n
Z 2\—;%()6_% V2T gin (g — 271V 2nx> (2.70)
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_ (27n/§:+ %) ¢ (—; - 2m) + s (;) ¢(~2m)

2m+3 Z Tom+1 { —in) "M 4 (2 4 in)*(2m+1)} )

Notice the resemblance of the series on the right-hand side of (2.70) with the divergent series in Ramanu-
jan’s incorrect identity (1.6). Since the series on the right side above has a + sign between the two binomial
expressions in the summands, the order of n in the summand is at least —% + ¢, for each € > 0, unlike —% +€

in Ramanujan’s series, because of which the latter is divergent.

When m > 1, we can omit the term %C (3) ¢(—2m) from both 1) and ll since ((—2m) = 0.
In Theorem we assume x ¢ 7, whereas there is no such restriction in Theorem [2.5.2] because

Theorems 1.1 and involve 3F,’s that are conditionally convergent, with the restriction o < & when
is an integer. Thus, the condition ¢ > 3 implies that x ¢ Z, which is the case when s = 2m + § for m > 0.
However, 3F5’s do not appear in Theorem 1.3, and so the restriction on x (other than the requirement = > 0)

is not needed.

Adding (2.59) and ([2.70) and simplifying gives the next theorem.

Theorem 2.5.3. Forz ¢ Z,

i UQLl() —2mV2nw (271’\/%) (2.71)

(b oo (3 ) e G

—1)m 1\ X Ogpppi(n) 137 n?
7T-\/5(271-)2mjLE 2 — n2mtz i m,z—m x
Subtracting (2.59) from (2.70) and simplifying leads to the next result.

Theorem 2.5.4. For x ¢ Z,

i UZm\—;%(n) e~ 2TV gi (27T\/%) (2.72)
_ G2 (2m) 1
= -2 (W\/E-F \f(27r:c)2m+1> ¢ ( - 2m>

Z 02m+ |: (Qm)' ( n )2m+%
2
2m+2 n2m+3 \/77- 21
n—1

in —(2m+1) in —(2m+1)
X 1+ — +11-—
T x
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—1)ym 1 l7§71 2
+(2)nl"(2m+>3F2 1 4 43 ;—% ]
22mpuy 2 i—myi—m X

In Theorem as well as in (2.71)) and (2.72)), we should be careful while interpreting the 3 F»-function.
For example, if n < x, then it can be expanded as a series. Otherwise, for n > x, the 3F5-function represents

the analytic continuation of the series. Of course, when n > x, one can replace the 3Fs-function by

{ j2 <i+m,i+m,1’ ”52) 1}
— \34£2 1 3 T o ) T )
11 n
as can be seen from (2.67)), and then use the series expansion of this other 3F-function.
2.5.1 Some special cases

When m = 0 in Theorem [2.5.1] we obtain the following corollary.

Corollary 2.5.5. Let x ¢ Z and x > 0. Then,

; 01(/2%”) e 2TVINT gin (% + 27V an) (2.73)

GO (D S

Proof. The corollary follows readily from Theorem We only need to observe that when n < x,

13 2 2
F Z’Z’l. n _ <
342 139 2| 2 27

7 x e +mn

and when n > z,

to complete our proof. O

Similarly, when m = 0 in Theorem [2.5.2] we derive the following corollary.

Corollary 2.5.6. Forxz >0,

> 01/2(n) —2nv2nz o (T
Z NG e bm(4 27T\/2nx) (2.74)

n=1
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(27Tf+2\fm><(_;> 2\1[ ( ) W\[ZZ;/j_nz

We now show that the two previous corollaries can also be obtained by evaluating special cases of the

infinite series

(o)
2 Z o_s(n)n? (e”s/‘le (47Te7ri/4\/nx) Te ™K, (471'677”-/4\/77,33)) .
n=1

Second Proof of Corollary[2.5.3. Use the remarks following (3.10) and then replace = by xe™/2? and by

ze~ ™2 in (3.9)), and then subtract the resulting two identities to obtain, in particular for z > 0,

2 i o_s(n)n? (e”is/4K5 (471'6”/4\/@) — e AR, (471'6_7”/4\/%)) (2.75)
n=1

,L'xs/Z—l

= cot (%) ¢(s) — %F(s—l—l)ds—i—l)— tan (%) C(s+1)

iz ((2— ) ix3 =2 SN o_y(n) 9 9 TS
+ —= — — (ns + x2°7 % cos (—)) .
6 sin(ims) wsin(3ms) ; x2 +n? 2

i,%‘s/Q

Now let s = f% in (2.75). Using (2.5) and (2.6), we see that the left-hand side simplifies to

S

\/>1 § 0-1/12/(;1”) (6771‘2-/4747!‘67i/4\/71$ _ e'n’i/474ﬂ'e’”/4\/nm>
2z1/4 n

n=1

_ 7;17/3 ngl 0152 ,27“/% ( + 27T\/7> (2.76)

The right-hand side of (2.75)) becomes

7 1 7 1 7 1
2rai <_2> T Vet (2) ot (2) (2.77)

B imcs/‘lc 5 N i3/t i 01/2(n) n i/2213/4 i o1/2(n)
3V2 T a4 n? m — n®/2 (2?2 +n?)’
Thus, from (2.76)) and (2.77), we deduce that
> Ty ™
Z e 2TVINT gin <Z + 27V 2nx> (2.78)
1 1 1 1 1 ~1 mad/? (5
={(—)<()—<()}+ (3)
AN o2\ 2 6 °\2

272 &

Z 01/2 B Z 01/2(”)
2 2 :
7r\f 2 +n —~ nd/2(x2 4 n2)
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From (2.73) and (2.78), it is clear that we want to prove that

/% (5 z7/? & o1/2(n) o1/2(n
9/ = . 2.
6 C(Q) T Zn5/2(932+n2 Z 3;‘2+n2 (2.79)

To that end, observe that

z7/? i o1/2(n) N 2372 i o12(n) x3/2 i o1/2(n)
T A= nb2(2% + n?) T o attn? o7 nb/2 °

Finally, from (2.26)) and the fact that ((2) = 7%/6, we find that

—01/2(n) @ (5
Z nd/2 EC (2) '

n=1

This proves (2.79) and hence completes an alternative proof of (2.73]). O

Similarly, if we let s = —% in 1] then we obtain upon simplification. Addlng and -7

we obtain the following result.

Theorem 2.5.7. Let x ¢ Z. Then,

o0
Z Ul/z(n) eT2TVINT (g (277\/%)
n=1 \/ﬁ

1 1 1 —1 232 SN oy
P - V9 -
<2W2z 2)§<2>H xC(?) Z\Fﬂﬂﬂ
Subtracting (2.73)) from (2.74]) gives the next result.

Theorem 2.5.8. Let © ¢ 7. Then,

“avme (3) - (s (45) e e

2.6 An Interpretation of Ramanujan’s Divergent Series

Throughout this section, we assume z > 0, ¢ > 0, and Re w > 1. Define a function F(s,z,w) by

(s,z,w) Z 7s nl ( x—in)_s_é —(x+in)” s_%>. (2.80)

w—=

3

n=1
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Ramanujan’s divergent series corresponds to letting w = % in (2.80). Note that

2isin ((s + 3) tan™! (n/z))

1 1
r—1in) 72 —(x+in)” T2 =
(o —in) ™4 = (a4 in) e

Since for o > —% and n > 0 [44, p. 524, formula 3.944, no. 5]

o0 1 M l t —1
/ e "5 2 sin(nt)dt =T (s + 1) o ((s * 2) ans l(n/x)) , (2.81)
0 2 (22 4+ n2)5ta

we deduce from (2.80)—(2.81)) that

n o
s( )/ e~ T2 gin nt dt.
0

From [73] p. 42, formula (5.1)], for -1 <c¢=Re z < 1,

sin(nt) = ! /CCHOO I'(z) sin (%Z) (nt)~*dz.

2% Joioo
Hence,

F(s,z,w) = 1) /0 ety i # / e I'(2)sin (%) (nt)~* dz dt (2.82)

1
7TF(8+§ :1n 2 —ioco

1 (e c+ioco . e o] <
)/O efzttsfé/c  t°T(2)sin (%Z) (Z Z+(H)> dz dt,

1
L (S + 2 oo n=1 n

where the interchange of the order of summation and integration in both instances is justified by absolute

convergence. Now if Re z > 32— Re w and Re z > 3— Re w + o, from (2.26), we see that
— os(n) 1 1

Substituting this in ([2.82), we find that

_ 1 * —xtys—1 eioe —z . (T2
F(S’x’w)wf(s—i—é)/o e "'t 2/67”0 t I‘(z)sm<2) (2.83)

X<<W+Z;)C<w+zs;> dzdt
1 cree . (TZ 1 1
:7TF(5+;)/(' F(z)sm(2)C<w+z—2>g(w+z_s_2>

—100
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o 1
X / e TET3 dt d,
0

with the interchange of the order of integration again being easily justifiable. For Re z < o + %, we have

/OO efwttsfzfé dt = I (S -zt %) .
0

msfz+%

Substituting this in (2.83)), we obtain the integral representation

Fls.ouw) = 20 /:HOO r(z)sin () ¢ (w 4o ;) (2.84)

T D) S

Note that if we shift the line of integration Re z = ¢ to Re z = d such that d = % + o0 —n with n > 0, we
encounter a simple pole of the integrand due to I' (s —z4+ %) Employing the residue theorem and noting
that, from (1.39) and (2.32)), the integrals over the horizontal segments tend to zero as the height of the

rectangular contour tends to oo, we have

x5 2

F(s,z,w) = 7rr(s+;) /ddﬂoo I'(2)sin (%Z) ¢ (w o ;) (2.85)

—100

x((w+zsé)F(sz+;>xzdz
iz o2 1\ . 1 il
—Mr<s+2>51n<g (s+2>>C(w+s)§(w)x T2,

Note that the residue in equation is analytic in w except for simple poles at 1 and 1 —s. Consider the
integrand in . The zeta functions ¢ (w +z— %) and ¢ (w +z—s— %) have simple poles at w = % —z
and w = % + s — z, respectively. However, since Re z = % + o0 —n and o > 0, the integrand is analytic
as a function of w as long as Re w > 7. By a well-known theorem [87, p. 30, Theorem 2.3], the integral is
also analytic in w for Re w > n. Thus, the right-hand side of is analytic in w, which allows us to
analytically continue F'(s,z,w) as a function of w to the region Re w > 7, and hence to Re w > 0, since 7
is any arbitrary positive number.

As remarked in the beginning of this section, letting w = % in yields Ramanujan’s divergent series.
However, the analytic continuation of F(s,z,w) to Re w > 0 allows us to substitute w = % in and

thereby give a valid interpretation of Ramanujan’s divergent series. The only exception to this is when
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s = %7 since then w = % = 1 — s is a pole of the right-hand side of (2.85]), as discussed above.
If we further shift the line of integration in (2.84]) from Re z = % +o—ntoRez= % + 0 —n, and likewise

to 400, we obtain a meromorphic continuation of F'(s,z,w), as a function of w, to the whole complex plane.
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Chapter 3

Extended form of the Voronoi
summation formula

In this chapter, we present some extended form of Voronoi summation formulas (1.8]) and (1.9).

3.1 Extension of Voronoi summation formulas

Theorem 3.1.1. Let 0 < a < B and o, B ¢ Z. Let f denote a function analytic inside a closed contour

strictly containing [, B]. Assume that —% <o< % Then,

B
S o)1) = / (C(1+8) +°C(1— )£ (1) dt (3.1)

a<j<pB

B
+2WZU f/ t"?f(){( < (4mv/nt) — (MW))
«
X COS (%S) — J.(47V/nt) sin <%3) } dt.
We wish to extend (3.1)) to allow o = 0 so as to obtain (1.10] as a special case of Theorem To do

this, we need to impose some additional restrictions on f. As an intermediate result, we state the following

theorem which generalizes Theorem 3 in [97].

Theorem 3.1.2. Let 0 < a < 3, -3 <o <1, and 0 <6 < min (1, ifgg) Let N € N such that N« > 1.

If f is twice differentiable as a function of t, and is of bounded variation in (0, ), then as N — oo,

/f C(1—s)+t°¢(1+s)) dt+2ﬂ'z J:/Z / £(1) ;{Js(hm)sm(ﬂ;)
( (47rf)—K(4mﬁ)>cos(2)}dt

(27 +1og N)(V " £(t) + NOD/4(| f(a)| + VE (1)), if s =0,
<
VN (1) + (NO=0Ce=D/4 4 NOO=20)=Rot)/8) o (| f(a)| + Vi f (1), if s #0.
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Additionally if we assume the limits

Il_i)r(IJlJr Vif(t)=0, if s#0 and xl_if(r)lJr logz Vi f(t) =0, if s =0, (3.2)
then
f(0 / F@OECA=s)+t°¢C(1+s))dt +2rm 2058/2 / f@) 2{ 47T\F)sm<2> (3.3)

( (4wf)—K(47r\F)>cos(2)}dt_o

Clearly, for 0 < a < %, we have

S o ()fG) =0 (3.4)

0<j<a

Also, if we substitute for Y (4mv/nt) via ([2.16) and employ (2.6), we find that the kernel in (3.3)), namely,
. s s
Js(4m\/nt) sin <7> ( (4mv/nt) — fK (47T\F)> cos ( 5 )

is invariant under the replacement of s by —s. Therefore replacing s by —s in , then replacing zero on

the right-hand side of (3.3) by — 3 y_;<, 0—s(j)f(j) using (3.4), and then finally subtracting the resulting

equation so obtained from (3.1)), we arrive at the following result.

Theorem 3.1.3. Let 0 < a < %,a < B and B ¢ Z. Let f denote a function analytic inside a closed
contour strictly containing [a, 8], and of bounded variation in 0 < t < «. Furthermore, if [ satisfies the

limit conditions in , and f% <o < %, then
B
> o) = ~fo0 G+ [t s+ e - s

vanYoatnt [ o] (2Kamyin - v

X COS (%) — J,(47v/nt) sin (%) }dt.

44



3.1.1 Oppenheim’s Formula ([1.10) as a Special Case

Letting A = —s+ 1, p = s, and & = 4wy/nt in [79, p. 37, equation (1.8.1.1)], [79] p. 42, equation (1.9.1.1)]

and [79, p. 47, equation (1.12.1.2)], and then simplifying, we see that

/t‘{ ( s(4mv/nt) — (47r\/>)> COS( 5 ) Js(4m\/nt) sm( 5 ) }dt (3.5)
= 477\/7;5“1(57@ (J51(4wm) + Ji_s(4mv/nt) — isin(m)Kls(sz/rE)) .

Let f(t)=1and 8 = ¢ Z in Theorem [3.1.3] Then,
. 1 ‘ —s
S o) =56+ [ ()4 - ) (36)

+27r§ja_s<n>n [ ] (Btanvin - vanvim)

xcos(ﬂ-Q) (47T\F)sm(2)}dt.

vl

Note that

1—s

Jets s +eoca -9y =1+ )+ 1—c ) (3.7)

Since —% <o< % and the right-hand sides of (3.5) and (3.7) vanish as ¢ tends to 0, from (3.5)), (3.6]), and
(13.7), we obtain (|1.10]).

Remark. The analysis above also shows that for a > 0, ¢ Z,

> o) =21 8+ (1) — el )~ S ) (35)

a<j<z

oo

1 ) Usfﬁ) {w12 <J31(47r\/rﬂ) + Ji_s(Am/nz) — isin(ws)K1s(47T\/%))

2sin (%7‘(’8) ney1 N2

I This formula, as is stated, contains many misprints. The correct version should read

cos(vm)T V) Atrtl A+rv+1 A+v+3 22
/ VY (y) dy_{ } )L (=v) 1F2( 1+, ;ff>
T

vr(A+v+1) 2 2 4
{ }2“1" o V+1 71/+1 )\71/+3. x2
A—v+1) 2 4

n (=
_{1}7(:05((%1/“ ) ()\+1/+1)F()\712/+1).

[{ 1 =0,22=2; Re(}) > [Re(v)| — 1}].

T1 = T, Ty = OO; Re(/\)<f
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1—s

- 0% (dislan i) + (i) - 2sinGro s (i) )

From (1.10) and (3.8)), we conclude that, for —% <o< %7

) 15 > os(n) 2 . B
Jim — (1) nz::l e <J8_1(47r\/m) + Ji_s(4my/na) — - sm(m)Kl_s(zm\/M)) = ((s),

which is likely to be difficult to prove directly.

3.2 Proof of the first extended form of the Voronoi summation
formula

We begin with a result due to H. Cohen [27, Theorem 3.4].

Theorem 3.2.1. Let z >0 and s ¢ Z, where ¢ > 0P| Then, for any integer k such that k > | (o +1) /2],

870%/2 3"y (n)n*2 K (dm /) = Als,2)C(s) + Bls,2)C(s + 1) (3.9)
5 ‘ 00 n572k o x572k
+ s | D 22— )T 42y o () ————5— |,
sin (7s/2) 1 Soek n=1 o
where
A(s,z) = sin(r5/2) (2m) 7L (s), (3.10)
Bls,z) = 2(2m) s 1) - o (a7}

By analytic continuation, the identity in Theorem [3.2.1]is valid not only for > 0 but for —7 < argz < 7.
Take k =1 in (8.9). The condition |(o + 1) /2] < 1 implies that 0 < ¢ < 3. We consider 0 < ¢ < . Note
that Koshliakov [59] has already proved the case s = 0, and the theorem follows for the remaining values of
o, i.e., for —% < 0 < 0, by the invariance noted in the previous footnote.

Replace = by iz in for —m < argz < %7?7 and then by —iz for —%77 < argz < m. Now add the

resulting two identities and simplify, so that for —%w <argz < %m

A(z,s) = ®(z,s), (3.11)

2As mentioned in [27], the condition o > 0 is not restrictive since, because of (2.6), the left side of the identity in this
theorem is invariant under the replacement of s by —s.
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where

A(z,5) = 2~/ %(z, 5),
with ¢(z, s) defined in (1.12)), and

D(z,5) = ~(272) " T()C(8) + )~ 2C 8+ 23

o_s(n)
22 +n?’

(3.12)

As a function of z, ®(z,s) is analytic in the entire complex plane except on the negative real axis and at
z =in,n € Z. Hence, ®(iz, s) is analytic in the entire complex plane except on the positive imaginary axis
and at z € Z. Similarly, ®(—iz, s) is analytic in the entire complex plane except on the negative imaginary
axis and at z = n € Z. This implies that ®(iz, s) +®(—iz, s) is analytic in both the left and right half-planes,

except possibly when z is an integer. However, it is easy to see that

. . 1 . ‘ 1
zgriln(z Fn)d(iz,s) = %J_s(n) and Zgriln(z Fn)d(—iz,s) = 72—7”,0_3(71),

so that

lim (z Fn)(®(iz,s) + (—iz,s)) =0.

z—En

In particular, this implies that ®(iz, s) + ®(—iz, s) is analytic in the entire right half-plane.
Now observe that for z inside an interval (u,v) on the positive real line not containing any integer, we

have, using the definition (3.12)),
®(iz, s) + ®(—iz,s) = —2(2m2) *T'(s)((s) cos (3ms) — ((1 + s). (3.13)

Since both ®(iz, s)+®(—iz, s) and —2(272) ~*T(s)((s) cos (37s) —((1+s) are analytic in the right half-plane
as functions of z, by analytic continuation, the identity (3.13]) holds for any z in the right half-plane. Finally,

using the functional equation (5.5)) for ((s), we can simplify (3.13)) to deduce that, for —in < argz < im,
g y 2 g 2
D(iz,8) + P(—iz,8) = —27°C(1 —s) — {(1 + 9). (3.14)

Next, let f be an analytic function of z within a closed contour intersecting the real axis in a and 3, where
O<a<fm—-1l<a<m,n<pf<n+1,and m,n € Z. Let y; and 5 denote the portions of the contour

in the upper and lower half-planes, respectively, so that the notations ay; 8 and a2, for example, denote
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paths from « to 5 in the upper and lower half-planes, respectively. By the residue theorem,

L_ f(z)®(iz, s) Z R;( D(iz,s)).

2mi ay2fBvia a<j<fB

Since f(z)®(iz, s) has a simple pole at each integer j, o < j < 3, with residue %mos(j)f(j), we find that

> os(NfG) = F(2)®(iz,5) dz — F(2)®(iz, 5) dz
a<j<pB ay2f3 ay1fB
_ / @Rz | ) (=®(—iz,8) — 2*C(1—5) — C(1+5)) d=

_ / @R ek | iz ) de

ay1B

s R E-s +e) da
amp
where in the penultimate step, we used (3.14). Using the residue theorem again, we readily see that
3 ﬁ 3
/ , f(2) (275¢C(1=s)+C¢(1+s)) dz = / f@) (C(L+s)+t7°¢(1 —s)) dt.
a1 «@

Since A(z,s) = ®(z,s) for —im < argz < i, it is easy to see that A(iz, s) = ®(iz, s), for —7 < argz < 0,

and A(—iz,s) = ®(—iz,s), for 0 < argz < m. Thus,
S o) = [ FeNEsds [ oA (315)
a<j<pB ay2f a1
B
+/ F@) (CA+s)+t75¢(1 —s)) dt.
Using the asymptotic expansion (2.19)), we see that the series
A(iz, s) = 2(iz) Z o_s(n n2 (e”s/‘lKS (471'6”/4\/@'712') + e imsIAR, (47re_i”/4\/inz>)
is uniformly convergent in compact subintervals of —m < arg z < 0, and the series

A(—iz, s) ’% Z n2 (ei”8/4Ks (47re”/4\/—inz) +e /AR (47re*”/4\/ —mz))

is uniformly convergent in compact subsets of 0 < argz < w. Thus, interchanging the order of summation
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and integration in (3.15]), we deduce that

[NIFY

> o ()fG) =2 i o_s(n)n f(2)(iz)" % (em/ﬁg (4mi7r/4¢m7)

a<j<p
femimHR (4we—“’/4\/ﬁ)) dz
+2 ias(n)ng /Mlﬁ f(z)(—iz)~3 (emsﬂKS (4%”/4\/%)
e K, (47”37”/ WT”Z)) dz
[0 e ) i

Employing the residue theorem again, this time for each of the integrals inside the two sums, and simplifying,

we find that

S oG =23 o (3.16)
a<lj<p n=1
x‘/ﬁtgfﬁ)<Ks<&ﬁVGm>4<Ks(4whﬂn)+Qam<i;)K;<4quw)>dt

w [ a9 a

Note that for —7 < argz < im, the modified Bessel function K, (z) is related to the Hankel function Hl(,l)(z)

by [44] p. 911, formula 8.407.1]

K,(2) = %’e* HWY (iz), (3.17)
where the Hankel function is defined by [44] p. 911, formula 8.405.1]

HW (2) = J,(2) + iV, (2). (3.18)

Employing the relations (3.17) and (3.18), we have, for > 0,

Ko (iz) + Ky(—iz) = %e (HO () + HO (@) (3.19)

For m € Z [44], p. 927, formulas 8.476.1, 8.476.2]

J,(eMTiz) = ™™, (2), (3.20)
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Y, (™™ %) = e ™Y, (2) 4 2isin (myn) cot (vm) J,(2). (3.21)
Using the relations (3.20)) and (3.21) with m = 1, we can simplify (3.19)) and put it in the form

K, (iz) + K,(—iz) (3.22)

T ins

= e 2 {(Js(x) + e Js(x)) +i (Ya(z) + e ™Y, (x) + 2icos (ns) Js(z)) }
= T (1= ™) Jy(w) 4 (14 e Vi()}

=7 (Js(x) sin (?) + Y, (x) cos (?)) .

Now replace by 4mv/nt in (3.22)) and substitute in (3.16]) to obtain (3.1]) after simplification. This completes

the proof.

3.3 Proof of the second extended form of the Voronoi
summation formula

In this section we give a proof of Theorem For any integer A, define

Gaps(2) == —Jyps(2) sin (%‘9) - <YA+S(Z) - (1)’\72TKA+S(z)) cos (%s) (3.23)
and
Fris(2) = —Joss(2) sin (%) - (Y,\+S(z) + (—1)’\72TK,\+S(,2)) cos (%) . (3.24)

Remark. Throughout this section, we keep s fixed such that —% <o < % So while interpreting Fiy)(2)
or G412 (z), care should be taken not to conceive them as functions obtained after replacing s by s + A in
Fs(z) or Gs(z), but instead as those where s remains fixed and only A varies.

From [93, pp. 66, 79] we have

L) = 2T (2), (3.25)
dilz (2K, (2)} = 2" K1 (2), (3.26)
Ly, (2} = V(o) (3:27)

50



Using ([3.25)), (3-26), and (3.27) we deduce that

d £ 510)/2 £\ (sHA-1/2
{ () Gs+)\(4’ﬂ'\/t>u)} =21 <) Gopr1(d4mvtu), (3.28)
dt U U
for v > 0. Similarly,
d " (s+X)/2 " (s+A=1)/2
dt{ (u> FS+,\(47T\/£)} =2 (u) Fypa_1(4nv'tu), (3.29)

for u > 0.

From (1.2]) and ([1.10)), recall the definition

A_g(z) =

—1—s
2sm Z os(n
y (Js_l(zm\/%) (AT — isin(m)Kl_s(zm\/@)) ,

for —% <o < % and x > 0. If we replace s by —s in the above equation and use (2.16]), we find by a

straightforward computation that

i( )(s+1 05(n)Gsi1(dmv/nz), (3.30)

for —% <o < % and z > 0. Fix z > 0. By the asymptotic expansions of Bessel functions (2.17)), (2.18]), and

(2.19)), there exists a sufficiently large integer Ny such that

1

and Fy(47T\/’rLZZ?) <y W’

G, (4m/nz) <, (3.31)

1
(nz)1/4
for all n > Ny. Hence, for —% <o < % and x > 0,

Z (E)AJF% 05(n)Gspon(dmyv/nz) <

n
n>Ng n>No ¥

1 > o) < M

1420
pWRESE]

provided that 2\ > |o| + 2. Therefore, for A > 1, =% <o < 1, and z > 0, the series

S (5 ou0)Gusan v

n=1

o1



is absolutely convergent. Similarly, for A > 1, —% <o < %, and x > 0, the series

i (%))‘-&-% Us(n)Fs+2,\(47T\/@)

n=1

is absolutely convergent. Denote
Dy(x) := Z os(n) (3.32)

and

lers
@ (o) i aG(1 = 5) + T (1 +5) - %C(fs). (3.33)

Therefore, from (|1.10), we write
Dy(z) = D5(z) + As(x) (3.34)

1 1
fOr -3 <o < 5-
The following lemmas are key ingredients in the proof of Theorem They are special cases of two

results in [98]. We note, however, that the definitions of G and F in [98] are different from those in (3.23))
and (3.24) that we use.

Lemma 3.3.1. Ifx >0, N >0, and f% <o < %, then

(s+1)/2

Alz) = Z (%)(S“)/ ()G (A /AT) — (%) Gosr (4 NT) Ay (N) (3.35)

Nt ) £=8) 2V p (e y)

+ 2 N
sC(1+5) /°° 2o/ »
_ — F. (47 8

+ o . (t) s(AmvVat)t® ™ dt

t

) oo (s+2)/2 £\ 5HD/2
+ 27 Z os(n) /N (E) FS+2(47T\/:E) (n) G5+1(47T\/7’E) dt.
n=1

Proof. Take A=0, k =1, and # = 1 in Theorem 2 of [98], p. 404], and make use of the notations (1.21) and
(3.13) given in it. O

We wish to invert the order of summation and integration in the last expression on the right-hand side

of (3.35)). In order to justify that, we need the following lemma.
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Lemma 3.3.2. I[f N > A, Nz > A, — < o< 7, and

00 (s+2)/2 £ 511D/2
I(z,m; N) := 2 / (f) Fopo(4my/at) (> Gop1(4m/nt) dt
N t n
then
> s V) = Cule N) 0 (e
os(n)ls(z,n; N) = Cs(x, N +O( ),
n=1 \/N
for every e > 0, where
Cs(z,N)=0, if z<i or z€N,
(2545)/4 oo .
1 /x sin(tsgn(y — x )
T™\Y anv/N|/T—/a| L
Proof. This is the special case A = 0,k = 1 of Lemma 6 of [98] p. 412]. O

Proof of Theorem[3.1.34 By Lemma we see that the last expression on the right-hand side of ([3.35)
tends to 0 as N — oco. Hence, by interchanging the summation and integration in this expression, we deduce

that

N
Az =3 (f)(s+ 2 ()G (/) + L) +C(1 =) (%)/ F,(4nVNz)  (3.36)

n 2

N 2w t
0 (s+2)/2
o / (%) Fvo(4nV/al) A (1) dt

N

-(5) T Gty + 22 [ () R vane

Let a > 0 and b > 0. From (3.32)),

b
> foun) = [ f®)aD. () (3.37)

a<n<b

where we write the sum as a Lebesgue-Stieltjes integral.

For a = 0 and b = o < £, the left-hand side of (3.37) equals 0. Therefore, from (3.28), (3.29), (3.33),

©-34), (3:36), (3.37), and (3.30),

/f C(1— ) +£°¢(1+8)) dt = /f ) dA, (1) (3.38)
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= 2n Z oL / £9/2G (4 /i) (1)

S RS L

- %AS(N) /Oa 5/2G (AnV/NE) £ (t) dt

+ SC(;:S)/OQ f(t)% (/NOO (2)8/2 FS(4w¢tZ)us—1du> dt
+27 /Oa f(t)% (/NOO <i>(s+2)/2 Fiypo(dmvtu) Ag(u) du) dt.

Using (3.29) twice, we see that

d
dt

N u

/ OO (t)w F,(4mv/fu)u du) - /Noo<tu><“>/2Fs-1<47r\@> du (3.39)

oo
= 3/27 W82 B (Amv/t) N

—t3/27AN3/2F (4N,

where in the last step we use (2.17)—(2.19), and the fact that o < 1. The interchange of differentiation and
integration above is justified from (3.31]). Denote

o) (s+2)/2
L(t,N) := 27 / (t) Fyo(dmvin) Ay () du. (3.40)

N U

Performing an integration by parts on the last expression on the right-hand side of (3.38) and using (3.39)
and (3.40)), we find that

/ FOCA = s)+t°¢(1 +5))dt — 27 Z n/2) /ats/QGs(M\/ﬁ)f(t)dt (3.41)

0

= N5<(1$<i)_3/§(1_5) J A R N Y O N AR NN D HOR

[e3

1 Ns /2
g(+73/ FOEP VR (AnV/ Nty dt + f(a) (o, N) — / I (t, N) f'(t) dt,
0
where in the last step we made use of the fact that for f% <o < %
lim ¢+2/2F, o (4mv/tu) = 0.
t—0

Here again the limit can be moved inside the integral because of (3.31]).
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Since a < %, by Lemma I(t,N) < N71/2 for all 0 < t < a. Also by hypothesis, f is differentiable,

SO

Ve £(r) = / 1P,

where Vi f(t) is the total variation of f on the interval (0, a). Therefore the last two terms on the right-hand
side of (3.41)) are of the form

O(N~Y2(|f(a)| + V5 £(1)))- (3.42)

Recall the bound A,(N) < N2(1+9) [98 Lemma 7]. From ) and (3.31)),

2m * o (s+1)/2 o 1
o s/2 — ad $(2
o AY) /O #5/2G, (4nv/Nt) dt = A (N) ( N) Gop1(4mVNa) < af (N) . (3.43)
Here we also made use of the fact that
lim ¢+)/2G 4 (4nV/Nt) =
t—0
Again, from (|3.28)) and -7
N*C(1+5)+¢(1—s) s—1)/2 N*C+s)+C(1—s)
NG /0 t6=V2F,_ (4nV/Nt)dt = ST o*/?F,(4mVNa) (3.44)
(27 +log N)(aN)~1/4, if s =0,

<
(aN)(2a—1)/4 + CV(QU_l)/4N(_2U_1)/47 if s # 0,

since lim;_q t*/2F,(47v/Nt) = 0. Finally,

s/2 o 5/2 00 o0
M/ 521 B, (4ny/NT) dt = M (/ —/ ) /271 F, (4ny/Nt) dt = I — Io.
™ 0 [

27 0
Using the functional equation of {(s), namely (5.5)), and the formula [98] p. 409, equation 4.65], we find that

- SC(1+2i‘°‘/2 /oo t3/27 F (AnV/Nt) dt = —(2m) ™V sin(rs/2)T(s + 1)C(1 + s) = C(;S)'
™ 0
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Using (3.31)), we deduce that

1 Ns/2 [
I = %/ /271 (4 /NE) dt < (o) 27174, (3.45)
™ «@

since —1 < o < 1. Using (3.42)(3.45) in (3.41)), we find that

/f COL—8) +#5C(1 + ) dt (3.46)

—2r Z ns/z / £/2G (4 /) £ (t) dt

_ NSC(ljJ\r[(i)_j)/CZ( —5) /Oa t6=V2E | (4nV/ N (f(t) — £(0+)) dt

—%AS(N)/O t*2G (4 VNE) (f(t) — f(0+)) dt
St / (D)~ SO N (4 N di
™ 0

+ O((aN)(Qa—l)/4 + a(20—1)/4N(—20—1)/4) + O((Z’}/ + IOg N)(aN)_1/4)
By the second mean value theorem for integrals in the form given in [97) p. 31],
b d

Dt 1(0) [ ot de [ owal,

< V7 f(t) maxe<e<ass (3.47)

where ¢ is integrable on [a, b].

7 1-2

(0,N~%) and (N~%, «), applying (3.47)), and using an argument like that in (3.44]), we see that

Recall that N%a > 1 for some 0 < < min (1 HQZ). Dividing the interval (0, a) into two sub-intervals

Ns(“;(j)j) LED) /N afgt(“”_l)/QF L(AnVND(f(8) — £(04)) dt (3.48)
(2v +log N)NE-D/4ye | f(¢), if s =0,
<

(N(l—e)(Qa—l)/AL + N(e(l_Qg)_(20+1))/4)V]€;_gf(t), if s # 0,
and

(2y +log NV f() if s =0,

S S — S N76
I S

F®), if s 0.
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By (3.47) and arguments similar to those in ) and (| -7

2w
Ns/2

Bl

AS(N)/NQGWG (arVRD(F(0) ~ £(04)) dt < of () Ve £0),

2w
Ns/2

2(716

As(N) /ON t2G(4n VN (f (1) — f(0+)) dt < N V' F ),

D [ 00— S0/ N2 (VR di < N 0,
2w N—©
and
N—f
Sggj / (F(8) = FONE2IN2F (an VN dt < VY £ (8). (3.49)
a 0

Combining (3.48 - 3.49)) together with -, we obtain

/ FO(C(L =) +t5¢(1+ s)) dt — 27 Z n/2) /ats/2G3(4m/7E)f(t)dt

0

(27 +1og N) (VN " f(t) + NO-D/Ava_ £(1)), if s =0,
<

VON—Gf(t) + (N<170)(2071)/4 + N(0(172U)7(2U+1))/4))Vﬁ,gf(t), if s 7& 0,

(27 +log N)(VE¥ " £(t) + NOV/A(| f (o) + Vi £ (1)), if 5 =0,
<

VeV (1) + (NO=0Cr-/4  NOO-20)-@ot0)/4) (f(a)] + Vi (1)), i s #0.

Furthermore, if logz Vi f(t) — 0 as © — 04+ when s = 0, and if V¥ f(t) — 0 as « — 0+ when s # 0, then

the assumption 0 < 6 < min (1, }*2"> implies that

/ FO(CA=s) +tsC(1+s))dt—27r§: ‘2(}? /a 512G (4mv/nt) f(t) dt =
n=1 0

This completes the proof of Theorem [3.1.2 O
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Chapter 4

Generalization of Entries on page 335
of Ramanujan’s lost notebook

4.1 Main results

In this chapter, we establish one-variable generalizations of Entries [1.3.1] and [1.3.2] where the double sums
here are also interpreted as limy o0 ), ,<n» instead of as iterated double sums. It is an open problem to

determine if the series can be replaced by iterated double series.

As in Entries [1.3.1] and [1.3.2] the series on the left-hand sides of Theorems [£.1.1] and [£.1.2] are finite.

4.1.1 Generalization of Entry 1

Theorem 4.1.1. Let {(s,a) denote the Hurwitz zeta function. Let 0 < 0 < 1. Then, for |o| < %,

Z I ( ) sin 27m9) _ xW(C(sﬁ) — ((=5,1— ) 1)
cos(7rs/2)F(1 —5) v ms
- (C(1=5,0) = (1 —5,1=0)) + 5 sin <?)

o {MH (snymetas®) M, (mW) }

(ma) % (n +60)"= (ma) = (n+1—0)=

—s

where
1

sin(7v)

M, (z) = %Ku(x) + () — J_o(2)) = %Ku(x) FY() + Tl tan (). (4.2)

We show that Entry is identical with Theorem when s = 0. First observe that [3| p. 264,
Theorem 12.13]
1
C(0,0)=5 0 (4.3)

and

lim (¢(1 —5,0) —¢(1 —s,1—0)) = (1 —0) —(0) = 7 cot(nh),

s—0
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where ¥(z) =I(2)/T'(z) denotes the digamma function. Since, by (2.15), J_1(z) = —J1(x),

lim sin(ws/2)M;_4(x) = Ji(x). (4.4)

s—0

Now taking the limit as s — 0 on both sides of (4.1)) and using (4.3))—(4.4), we obtain Entry [1.3.1

4.1.2 Generalization of Entry 2

Theorem 4.1.2. Let 0 < 0 < 1. Then, for |o] < %,

> x\ cos (2mnf)  cos(ms/2)'(—s)
;F ) === G s 0+ (=5 1-0) (4.5)
- G- 5.0) + 61— 51 - 0) — S oos ()

oo o0
XE:E: 1+ s
2

m=1n=0 (m:c) 2 (7?,+0)

1+s

(ma) = (n+1—0)

1—s
2

Hios (4 (4 0)) | Hie (4 (0 £ 1-0)) }

where
1

 sin(7v)

nz

Hy(z) = %K,,(x) (Jo(2) + J_p(2)) = %Ky(x) +Y, () — Ju () cot (7) . (4.6)

We demonstrate that Entry can be obtained from Theorem as the particular case s = 0. First,

lim T'(—8)(C(—3,0) + C(—s,1 — 8)) = lim (—s)(—s) 2O T8 12 0))

s—0 s—0 —S

= CI(O,Q) + C/(0> 1- 9)

(4.7)

= —log(2sin(70)),

where we used the fact that ¢(0,6) = log(I'(9)) — % log(27) [11]. Second, since s = 1 is a simple pole of

¢(s,0) with residue 1, then

lig(l)sin(ws/Q)(g‘(l —5,0)+¢1-s1-0))= 2136 MS(CO —5,0)+C¢1-s51-0))=—m.
Third, by (2.16),
li (Ji—s(z) + Js-1(x)) = =Yi(2). (4.8)

202 sin(ms/2)

Taking the limit as s — 0 in (4.5) while using (4.7)—(4.8), we obtain Entry
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4.2 Preliminary Results

Let us define the generalized twisted divisor sum by

as(x,m) ==Y _ x(d)d*, (4.9)

dn

which, for Re z > max{1,1 + o}, has the generating function

The following lemma from the papers of Voronoi [92] and Oppenheim [76] is instrumental in proving our

main theorems.

Lemma 4.2.1. Ifz >0, 2 ¢ Z, and —% <o < %, then

oo 1-s 1
nZ;/ o_s(n) = —cos(%ﬂs)nz::la_s(n) (%) Y (4mv/nz) + xZ(s,x) — 5{(3),
where H,(x) is defined in (4.6]), and where
1—
cat)+ Do ipszo,
Z(s,z) = 1—s (4.10)
logz + 2y —1, if s =0,

is analytic for all s.
From the definition of H, and , we find that
Hy (/) = Vi (4 /) + Ky (/) = — I (/).
Note that, it is not difficult to show that
gig(l)Z(s,x):10gx+2’y—1:Z(O,x). (4.11)

Recall that the Laurent series expansion of ((s) near the pole s =1 is given by

C(s) = 3_% > —(_1)717:58 mbiy
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where 7, n > 1, are the Stieltjes constants defined by [9]

N n n+1
, log"k  log"t' N

Thus, by (4.10)), for s > 0,

s—1+a% - > T75 o= s
A = - = .
(s,) s(s—1) +’y< s—l)JrZ 1—sn:1 n!

n=1

Hence,

148
lim Z(s,x) = lim Rk
5—0 520 s(s—1)

which proves (4.11)).

+2y=— lin%)(l —logza™®) + 2y =logx + 2y — 1,
S—r

Lemma 4.2.2. Let F(x) be defined by (1.14). For each character x modulo q, where q is prime, define the

Gauss sum

7(x) = Z x(n)e2 in/a, (4.12)

n (mod q)

If0 < a < q and (a,q) = 1, then, for any complex number s,

!

> AN 2mna s s 1 _
;F(T)sm( . )n = —iq dzq:d%@l) Z x(a)T(X) Z os(x,n),

x mod d 1<n<dz/q
d>1 x odd
where ¢(n) denotes Euler’s ¢-function.
Proof. First, we see that
, , lz/d] 0
DRAUED 3D UED 3D WED W GO (113
n<z n<z dln d<z m=1

Similarly, for any Dirichlet character y modulo ¢,

S oo i ( ) X, (4.14)

n<x n=1

where o5(x, n) is defined in (4.9). We have

f: ( )S.n<27ma>n —ZZ 3 F( ) (27rqna>n

n=1 n=1 d|q (n,q)=q/d
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I
3
[~
|
VRS
<[
E
N———
&,
=]
VRS
y
=13
8
N———
/N
a3
3
SN—
w

dlq ot
> d 2 s
:Z Z F @ sin Tma (ﬁ)
qm d d
dlq m=1
d>1 (mv ):1
Now using the fact [I7, p. 72, Lemma 2.5]
sin (Z9) = 2 S (@)r(@)x(m) (4.15)
in = a)T m .
d Z(b(d) X X)X )
x mod d
x odd

we find that

n=1 dlq m=1 xmod d
d>1 m,d)=1 X odd
s 1 B /
S L
\ x mod d n<dz/q
d>1 x odd
as can be seen from (4.14). This completes the proof of Lemma m O

Lemma 4.2.3. If0 < a < q and (a,q) = 1, then, for any complex number s,

!/ /

as(n)+qszds¢l(d) Y x@r(m Y. ouxn).
dlg

x mod d 1<n<dz/q
d>1 X even

iF (%) cos (27:;1&) n® = ¢° Z
n=1

1<n<z/q

Proof. We have

ilF (%) coS (ZFqna) n® = i Z F %) coS (27ana> n®

Y

lg  m=l
d>1 (m,d)=1

Invoking (4.13) and (4.15) above, we find that

n=1 n<z/q m=1
- (m,d)=1 X even

= x 2mna o o s 1 = dx s _
Z F (ﬁ) cos < . ) n® =gq Z os(n)+q % m Z F <qm> m Z T(x)x(a)x(m)
d>1
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/

—¢ S as<n>+qszﬁ(d) S @) Y eun).
n<z/q dlq

x mod d n<dx/q
d>1 X even

Thus, we have finished the proof of Lemma [4.2.3 O
We need a lemma from [23] p. 5, Lemma 1].

Lemma 4.2.4. Let o, denote the abscissa of absolute convergence for
o0
o(s) := Zan/\;s.
n=1

Then for k>0, 0 >0, and 0 > 0,

!

1 k_ 1 [ T(s)¢(s)zstk
T(k + 1);% an(@ = An)" = 55 ) T+ k+1) ds,

where the prime I on the summation sign indicates that if k = 0 and x = A, for some positive integer m,

then we count only %am.
We recall the following version of the Phragmén-Lindel6f theorem [66, p. 109].

Lemma 4.2.5. Let f be holomorphic in a strip S given by a < o < b, |t| > n > 0, and continuous on the

boundary. If for some constant 6 < 1,
f(s) < exp(e‘gﬂ\sl/(b—a))’

uniformly in S, f(a+it) = o(1), and f(b+it) = o(1) as |t| = oo, then f(o +it) = o(1) uniformly in S as

[t| — oo.
We also need two lemmas, proven by K. Chandrasekharan and R. Narasimhan [23 Corollaries 1 and

2, p. 11] (see also Berndt [B, Lemmas 12 and 13]), that are based on results of A. Zygmund [99] for equi-

convergent series. We recall that two series
o0 o0
Z a;(xz) and Z b;(x)

j=—00 j=—c0

are uniformly equi-convergent on an interval if



converges uniformly on that interval as n — oo [5, Definition 5].

Lemma 4.2.6. Let a,, be a positive strictly increasing sequence of numbers tending to oo, and suppose that

Gp = G_yn. Suppose that J is a closed interval contained in an interval I of length 27. Assume that

oo
Z len] < oo.

n=—oo

Then, if g is a function with period 2w which equals

o0
2 : cnelanx

n=—00
on I, the Fourier series of g converges uniformly on J.

Lemma 4.2.7. With the same notation as Lemma[{.2.6, assume that

SUPg<h<1

k<an,<k+h
as k — oo, and
= |cn|
E — <0
a
n=—oco 1

Let A(x) be a C* function with compact support on I, which is equal to 1 on J. Furthermore, let B(x) be a

C*° function. Then, the series

B(x) f: Ccpelon®

n=—oo

is uniformly equi-convergent on J with the differentiated series of the Fourier series of a function with period

27, which equals

on I, where W, () is an antiderivative of B(x)e!n®.

Let the Fourier series of any function f defined, say, in the interval (—m, ), be

S[f] = Z Cpe'™.

n=—oo
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The following result of Zygmund [I00, Theorem 6.6, p. 53] expresses the Riemann-Lebesgue localization

principle.

Lemma 4.2.8. If two functions f1 and fa are equal in an interval I, then S[f1] and S[f2] are uniformly

equi-convergent in any interval I' interior to I.

For each integer A define

~ TS 2 . (TS
Crss(2) = Jass(2) cos (7) - (YHS(Z«) - (_1)A7TKHS(Z)> sin (?) . (4.16)
By (B.25), (3:27), and (3:20),
k—s

2

0s(n)Gh_s(4m\/zu). (4.17)

() o tamy/im = 27 (2)

u

s with abscissa of absolute convergence o, and

Let us consider the Dirichlet series Y7 | anp;,

0<pg < pg <+ < by = 00

For y > 0 and v = A + s, define

and

3 |Z’+L|§ < o0 (4.18)
n=1 ,Uf’rzt 4
and
an
SUPg<p<1 Z | = o(1), (4.19)
m2<py, <(m+h)? /’L7’2L
as m — oo.

The following lemma is similar to Theorem II in [23] and Lemma 14 in [5].
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Lemma 4.2.9. The function 2y13’,,(y) 18 uniformly equi-convergent on any interval J of length less than 1
with the differentiated series of the Fourier series of a function with period 1, which on I equals A(y)ﬁ‘,,ﬂ(y),

where I is of length 1 and contains J. Moreover, E, (y) is a continuous function.

Proof. We examine the function

fly) :=2¢"2y" " g:l (Z:) " {éy (4wyﬁ> (4.20)

1/4
- [P TV T i [P TV TN
71-,[1':7,/4(23/)1/2 (cos (47Ty . 5 4> dp + sin (47ry . 5 4) dO)
3/4
B R [Hn TV T [Hn TV T
27T2,u§/4y3/2 <sm (47ry p 5 4> dy + cos (47ry . 5 4> d1> },

where dy, dj),dy, and d} are constants. Since y > 0, then by the definition (4.16)), (2.17), (2.18)), (2.19), and

(4.18), the function f(y) in (4.20) is a continuously differentiable function. Let g be a function with period

1 which equals f on I. Since f is continuously differentiable, the Fourier series of ¢ is uniformly convergent

on J. By the hypothesis (4.18)), (4.19), and Lemma [4.2.7] the series
972 1+yi<an>u/2 g4 ( (4 Iy TV W)d i (4 y TV 7r> ,)
g%y — ——F——|cos|4dny,/— — — — = | do +sin | dmy, | — — — — =
=\ lin e (2y)1/2 g 2 4 g 2 4)°°

is uniformly equi-convergent on J with the derived series of the Fourier series of a function that is of period

1 and equals on I,

1/4

A(y)i(%>y/2/y2qu/2tl+ul/qél (421)
o apll (20172

n=1 P

X (cos (47#”/1; - % — Z) do + sin (47Tt\/§— % - Z) 6) dt,

for some o > 0. Using Lemma we can prove a result similar to that of (4.21) for the series
o v/2 3/4
an q [y, v m . Ln, v’ s ,
2y S () (cos (m [ T B Y s (m [ T T ).
nz::l Lhn, 2W2ui/4(y)3/2 q 2 4 q 2 4)0
Hence, the series
o 2\ V/2
qy ~ Hn
2y an <> G, (471'y1 /)
ngl Hn q

is uniformly equi-convergent on J with the derived series of the Fourier series of a function that is of period
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1 and equals on I,

2 o 2\ (v+1)/2
Zan/ 2t (qt > G (zm,/ ) dt = AQ(y) > an (qy) G (47ry “”).
q S 1220 q

n=1

In the last step we use (4.17). This completes the proof of the lemma.

The following lemma is proved by the same kind of argument.

Lemma 4.2.10. The function 2yF,(y) is uniformly equi-convergent on any interval J of length less than 1
with the differentiated series of the Fourier series of a function with period 1, which on I equals A(y)F,+1(v),

where I is of length 1 and contains J. Moreover, F,(y) is a continuous function.

4.3 Proof of the generalization of Entry 1

We prove the theorem under the assumption that the double series on the right-hand sides of and
are summed symmetrically, i.e., the product mn of the indices of summation tends to co. Under this
assumption, we prove that the double series in and are uniformly convergent with respect to 6
on any compact subinterval of (0,1). By continuity, it is sufficient to prove the theorem for all primes ¢ and
all fractions § = a/q, where 0 < a < q. Therefore for these values of 8, Theorem is equivalent to the

following theorem.

Theorem 4.3.1. Recall that M, is defined in (4.2)). Let q be a prime and 0 < a < q. Let

Ly(a,q,z) = fg sin (%8) (4.22)
) i i Mi_, (mJM) M (47:\/771:10 (n+i— a/q))

S| (ma)F (ntafe) (mz) 3 (n+1-a/q)="

where M(z) is defined in ([1.2)). Then, for |o| < %,
(a,q,x) + ZF( ) sin(2mna/q) _ 27T:La/q) = xSin(TZ{TQ))_E(_S) (C(s, g) —¢ (s, 1-— Z))

S () <),

where ((s,a) denotes the Hurwitz zeta function.

First we need the following theorem.
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Theorem 4.3.2. If x is a non-principal odd primitive character modulo q, x > 0, |o| < 1/2, and k is a

non-negative integer, then

!

1
m Z o_s(x,n)(zr — ”)k

n<zx

CaMIL(1+s,x)  aFL(s,x) (=1)n—tghk=2nt1 ((2n)
T(k+2)  2T(k+1) T2 ) T(k—2n+2) (2m)2n

bt ia_s<x,n> (%) e (4m/=).

where C:')\,S(z) is defined in (4.16)). The series on the right-hand side converges uniformly on any interval

L(1—2n+s,x)

for x > 0, where the left-hand side is continuous. The convergence is bounded on any interval 0 < z1 < x <

ro < 0o when k = 0.

Proof. From (4.9) and Lemma for a fixed z > 0, we see that

1 ! I'(w)xwtk
mz U—S(X? )(x—n 27” / C w+5,x)mdw, (423)

n<zx

where max{l,1 — 0,0} < ¢ < 1 and k > 0. Consider the positively oriented rectangular contour R with
vertices [c +4T,1 — ¢+ 4T]. Observe that the integrand on the right-hand side of (4.23]) has poles at w =1

and w = 0 inside the contour R. By the residue theorem,

w)xvtk
w)zWtk w)z T
=R, <C(w)L(w =+ s, X)Fl(;()—ik;—&—l)) + Ro (((w)L(w + s, X)Fl(ﬂu(w:k—l—l)>

where we recall that R,(f(w)) denotes the residue of the function f(w) at the pole w = a. Straightforward

computations show that

w xw-&-k s J}l+k
Ry (C(w)L(w + 5,X) FEE} 42 [ 1)> = C(O)I[‘l((k fi) (4.25)
and
D(w)z® ™ \ 2" L1+ s,x)
& (C(w)L(w+s’X)r(w+k+ 1)) T T(k+2) (426)

We show that the contribution from the integrals along the horizontal sides (o £iT,1 — ¢ < o < ¢) on the
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left-hand side of (4.24)) tends to zero as |t| — co. We prove this fact by showing that

w)zvtk
L+ 5.0 5T = o)

as |Im w| — oo, uniformly for 1 — ¢ < Re w < ¢. The functional equation for L(s,x) for an odd primitive

Dirichlet character x is given by [31, p. 69]

<7qr>_1;5 . (128) L(s,x) = iT(\/;f) (D_ZQS r (2 ; 8) L(1 - s,%), (4.27)

where 7(x) is the Gauss sum defined in (4.12). Combining the functional equation (5.5 of {(w) and the

functional equation (4.27)) of L(w + s, x) for odd primitive y, we deduce the functional equation

Z',n_2w+sfl

——wraN(w, 8)¢(1 —w)L(1 —w — s, %), (4.28)

) Lw + 5,0 =

where
F(31—w)T(32—w—s))
F(%w)F(%(1+w+s)) ’

n(w7 8) =

Since o < %,
Cle+it)Lic+ it +s,x) = O(1),

as [t| = oo. Using (|1.39)), we see that

I'(w)

Twthyn Ol w77, (4.29)

uniformly in 1 — ¢ < Re w < ¢, as |Im w| — oco. Therefore, for w = ¢ + it,

wxwk
o) Lo, ) 2

Twirrs ~ oY (4.30)

as [t| = oco. Again, using Stirling’s formula ((1.39)) for the Gamma function and the relation (4.28)), we find
that, for w =1 — ¢+ it,
F(w)xw—&-k iﬂ.2w+s—1 F(w)xw+k

C(w)L(w + S’X)F(w oy S 3 PR n(w, s)¢(1 —w)L(1 —w — s, X)m

(4.31)

— Oq7s(t2cfofk72)
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=o(1),
as [t| = oo, provided that k > 2¢ — o — 2. From (4.29) and [31} pp. 79, 82, equations (2),(15)],

w)r? k
)L + )

Tlwt b1 oo (Clw|log w]), (4.32)

for some constant C' and |Im w| — oo. Since the function on the left-hand side of (4.32) is holomorphic for

[Im w| > n’ > 0, then, by using (4.30), (4.31)), (4.32), and Lemma we deduce that

[(w)zwtk

C(w)L(w + Sax)m

= 0(1>7
uniformly for 1 — ¢ < Re w < ¢ and |Im w| — co. Therefore,

1—ctiT F(w)xw+k
/CM Cwk(w+sX) a5+ ~ oW (4.33)

as T — oo. Using the evaluation ((0) = —% and combining (£.23), (£.24), (£25), (£.26), and (4.33)), we

deduce that

1 / . TFTIL(1+s,x)  L(s,x)x®
) )k _ 4.34
T(k+1) Z; o-s0n)(@ —n) T(k+2) 2T (k + 1) (4:34)
1 [(w)zwtk
- I wr
g L e e T
provided that £ > 0 and k > 2¢ — 0 — 2. Define
1 r

I(y) = Myw duw. (4.35)

C2mi Sy Tw+k+1)

Using the functional equation (4.28)) in the integrand on the right-hand side of (4.34)) and inverting the order

of summation and integration, we find that

1 [(w)zwtk
irkmsl 1 n(w, s)T'(w) _(m2x\"Y
ey T o w0 ()

()¢t 27 (1—¢) N(w+k+1) g nl-w

n=1
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= ST Z os(X;m) 1 n(w, s)T(w) <7T2n33>w N

nitk 2mi [ o T(w+k+1) q

ksloo
os(X,n Tne
- SIZ <q>’

provided that k > 2¢ — 0 — 1. We compute the integral I(y) by using the residue calculus, shifting the line
of integration to the right, and letting ¢ — —oc.

Let k be a positive integer and o # 0. From (4.35)), we can write

I = — F(w) dw,
W)i=5g |, F@
where
_Tr(GU-w)r(52-w-s)y”
Flw):= (1+k:+w) (3w );(%(1+w+3))'

Note that the poles of the function F'(w) on the right side of the line 1 — ¢ 4 it,—co < ¢t < oo, are at

w=2m+1land w=2m+2—sform=0,1,2,.... Thus,

2 (2m + 1)L (—=m — 3(s — 1)) y?m+!
mIL(2+k+2m)I (m+ )T (1+m+ 3(s))

Romy1 (F(w)) = (=1)™*

and

ar(2m+2—s)r <_m + %(S _ 1)) y2m+2—s
mTB+k+2m—s) L' (m+3(2—3)T(m+3)

R2m+2—S(F(w)) = (_1)m+1

With the aid of the duplication formula (1.32)) and the reflection formula (1.30]) for I'(s), we find that

2571 (2\/@)4771—&-2
cos(ms/2) 2m+k+ 1)IT(2m+ s+ 1)

Rom i1 (F(w)) = - (4.37)

and

_ 202y 2yy)'™
Ramvz-s(F(w)) = cos(ms/2) 2m + D)ID2m+k+3—s) (4.38)

Now from [93, pp. 77-78], we recall that the modified Bessel function I, (z) is defined by

s 2/2 2m+v
I,(2) = mgo mlé(fnlw (4.39)
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and that K, (z) can be represented as

7l (z) — L,(z).

Ku(2) = 2 sin(7v)

(4.40)

(We emphasize that the definition of I,,(z) given in (4.39) should not be confused with the definition of I, (z)

given by Ramanujan in ([1.17).) Therefore, from (2.15)), (4.39)), and (4.37)), for k even,

S Roin(Flu)) = -2 s 2y
2 2m+1 ~ cos(ms/2) = (2m+k+1)I0(2m+1+s)

2512kyk{ oo (2@)4m+2k+2
= (

cos(ms/2) ( (2m+1IP@2m+1+ s — k)
S 2y/5)m }
= (2m—=1)T(@2m —1+s5—k)
k)2
= *W(I—Hs—k(‘l\/@) = Jo1ts-k(4V/Y))
9s—1-2k —k k/2 EN
cos(ms/2) = 2m—-DIT2m—-1+s—k)
kb2
*W(I—Hs—k(‘l\/@) — J_ 15—k (4VY))
gs+1 k2 9—dmy1-2n
+ cos(ms/2) = T'(k —2m +2)[(1 — 2m + s) '

Similarly, for £ odd

S —1—k, (1—s—k)/2
> Raa (F(w) = = Lokl 4+ T i(447)
m=0

23+1 (k+1)/2 274my172n
* cos(ms/2) = T'(k—2m+2)I'(1—-2m+ s)’

From (4.38), (2.15)), and (4.39), we find that

S —1-k, (1—s—k)/2
> Raveir ol () = e (<TiastldVD) + Diosil4V).
m=0

Invoking (4.40) in the sum of (4.41)), (4.42)), and (4.43]), we deduce that

>~ (Fansa(F(0) + BasPl0) = e
X <J1—8+’f(4\/?7) + (S;nl:jlt]—1+s—k(4\/?7) _ (_1)k+172rK1_s+k(4\/§))
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[ ]
25+1 2 274my172n
+ .
cos(ms/2) “= D(k—2m+2)[(1-2m+s)

Consider the positively oriented contour R formed by the points {1 —c¢—4T,2N + % —iT,2N + % +4iT,1—

¢+ 14T}, where T > 0 and N is a positive integer. By the residue theorem,

L, Z Rop1 (F Z Ropq1—s(F(w)). (4.44)

211
RN 0<k<N 0<k<N

Recall Stirling’s formula in the form [31l p. 73, equation (5)]
[(s) = V2me 55~ 1/2e/(5),
for —m < args < m and f(s) = O (1/]s|), as |s| = co. Therefore, for fixed T' > 0 and ¢ — oo,
I'(s)=0 (e*”("*l/?) log“) . (4.45)
Hence, for the integral over the right side of the rectangular contour Ry,

2N+3/2+iT
/ F(w) dw <7 y2N+3/264N—(4N+2+k+0) log N _ 0(1)’ (446)
2N+3/2—iT

as N — oo. Using Stirling’s formula ([1.39)) to estimate the integrals over the horizontal sides of Ry, we find

that

oco+iT 0 e
F(w)dw << UL PP ——— 447
/1—ciiT (w) duw /kcy 7 Y T2—0—k-2]og T o(1) (4.47)

provided that k > 2¢ — o — 2. Using (4.44), (4.46), and (4.47) in , we deduce that

1) = sin(rs/2) ([ Jimsr(4y/y) + (=D 1k (44/9) (4.48)
Y)= kg (—1+s+k)/2 sinms )
E3
9 25+1 2—4my1—2n
—(=DFEK k(4 :
(-1 — +k( \/@) cos(ms/2) Z_: (k—=2m+2)I'(1 —2m +s)

Using the functional equation ([4.27]), the reflection formula (1.30), and the duplication formula (|1.32]), for
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y = mnx/q, we find that

0o \_% - -
O.S(Xan) 2S+1 2 4my1 2n
nZ::l n {cos(ws/2) — F(k—2m+2)r(1_2m+s)} (4.49)
L i
RPN o 22 ((2n)
= 27(0) i ; V" g e L1~ 20 50,

With the aid of (2.16)), we see that

sin(rs/2) (‘] 1srk(4VF) + (DR ek (4vD)

sin s

- (_1)k+172TK1s+k(4\/§)> (4.50)

- é1+k75(4\/§)‘

Combining (4.34), (4.36), (4.48)), and (4.49)), we see that

1 / B o*L(1+s,x)  L(s,x)x"
m; 7@ =) = TG T G ) (4.51)
I—%J l,k72n+1 n
+ 2 ngl (*1)71*1F(k Y (2(5)221 L(1—-2n+s,x)
i o0 . gy _
: W;LS(X’”) (Z) G1ostk <4W\/?> :

provided that £ >0, 0 £ 0, and k > 2¢c — o — 1.
For = > 0 fixed, by the asymptotic expansions for Bessel functions (2.17)), (2.18)), and (2.19)), there exists

a sufficiently large integer Ny such that

~ Inx 1
G1+k_5(471' F) <<q W,

for all n > Ny. Hence, for x > 0,

1+k—s
qx 2 ~ nx 2k—20—1 Os(N 2k—20—1
E ( n ) O—S(n)GlJrk*S <47T\/ q > <<q T 4 E 2:7(2513 <<q x 4 )
£

n>Ny n>No T

provided that k > |o| + 5. Therefore, for k > || + 3 and z > 0, the series

) it ()
— n S S q

is absolutely and uniformly convergent for 0 < z; < z < x5 < co. Thus, by differentiating a suitable number
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of times with the aid of (£.17), we find that may be then upheld for k > |o| + 3. Since |o| < 3, the
series on the left-hand side of is continuous for k > |o| 4+ 1. Conversely, we can see that the series
on the left-hand side of is continuous when &k > 0, which implies that |o| < % Thus, the identity
([#.51) is valid for k > |o| + % and o # 0. Since the series on the right-hand side of is absolutely and
uniformly convergent for 0 < z; < x < x5 < 00, we can take the limit as s — 0 on both sides of for
lo| < 1 and k > |o| 4+ 4. Hence, the identity is valid for k > |o| + £ with |o] < 1.

Suppose that the identity

1 ' _a*L(1+s,x)  L(s, )"
T(k+1) 2 o=sbem)(@—n)* = T(k+2)  20(k+1) (452)

n<zx

5
2 mk—2n+1 <(2n)

T2 ) (0 T(k—2n +2) (2m)2"
+ T()Z)Zw > o u(x,n) (%) E Grosik (477\/7) ;

is valid for some k > 0. Let § > max{1,1 — o}. Then

L(1—-2n+s,x)

o0

Z |Us(:)| < 00
T

n=1

and

SUPp<h<i Z %(?/)2 =o(1),
m2<n<(m+h)?
as m — oo. Put x = y? in the identity , where y lies in an interval J of length less than 1. By
Lemma 2y times the infinite series on the right-hand side of , with & = y?, is uniformly equi-
convergent on J with the differentiated series of the Fourier series of a function with period 1 which equals
A(y)Fa_ o1 x(y) on I, provided that k > |o| — 1. But then, k+1 > |o| + 4. Hence, from (4.51)),

i N
T AW Pk (y)

() (2m)F+T

_ ro_Oon) @ =)t P L 45 x) | L(s, x)yAR Y

- A(y){n%;z I'(k+2) - I'(k+3) o0 (k + 2)
I.%J y2(kf2n+2) <(2n)

_9 n; O 3 Gy L1~ 20+ s X)}

(0]



y? ro_g(x,n)(t— n)k y2(k+2)L(1 +s5,x)  L(s, X)yQ(k+1)
_A(y){/o Th+D T TH+9) T (k + 2)

2 o
-2 T; (*1)71*111?]@) ey (%(j)Q)n L(1—2n+s, X)}

7 y ro_g(x,n)(t* —n)*2t y2(k+2)L(1 +5,X) L(S,X)yQ(kJrl)
- A(y){/o 2 Ik +1) A N () 20 (k + 2)

n<t2

L#J 2(k—2n+2) m
) ; (_1)n_1FZJk} TS (<2(7r)221 L(1 —2n + s, X)}.

Note that A(y) = 1 on J. Therefore, from Lemma and the properties of the Fourier series of the

function

% ZI 0—5(X7 n) (y2 - n)k

n<y?
in I, we see that the identity (4.51)) holds for k > |o| — %, which completes the proof of Theorem O

From (4.2) and (£.50), we find that sin(rs/2)M;_,(z) = G1_s(2). The case k = 0 of TheoremMgives

the following corollary.

Corollary 4.3.3. If x is a non-principal odd primitive character modulo q, x > 0, and |o| < 1/2, then

Z/ o_s(x,n) =zL(1+s,x) — %L(&X) + me((m)m i o-s(X,n) (%) - M- (M\/?) ’

n<x T X) n=1

where My_s(2) is defined in (4.2)).

Next, we show that Theorem [£.3.3] implies Theorem We then finish this section and hence finish
the proof of Theorem by proving that Theorem implies Theorem

Proof that Theorem implies Theorem[[.3.1] Recall that Ls(a,q, ) and M, (z) are defined in (4.22) and

(4.2), respectively. Thus,

Ly(a,q.2) = =% sin (%)
oo (mz) =" (n+a/q) = (mz)F (n+1 - a/q)="
g (%)
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() T E S )
g

(qZ()w sin (S)X%ﬂa)i”s(“)%sgi %)
g

Now, from Lemma and Theorem [4.3.1}

(a,q,7) + ZF (x) sin ZWHG/Q) _ _(bz(xq) Z @)L+ 5,%)

X7#Xo mod g
X even
) _
+ > x(@7(0L(s,x)-
2¢(q)
X#Xo mod g

X even

Using the functional equation (4.27)) of L(s,x) for odd primitive characters, we find that

sin (2mna/q) a2 (31— 5)) ¢° .
(a,q, +ZF( ) ns T r(i@2+s) 9 X;Oqu(a)L( #%) (4.53)
x odd

B P 1/21’\( (2—8)) ql—s .
TG0+ ol 2 NP

odd”
{I?’]TS+1/2 1 _s _s
Tor (f(gifls)) : ;(q) Z; (x(a) = x(q — @) L(~s,%)
P 1/2 _s 1—s
oo (F<(1 (+2 ) : @ 2 (o)~ xla - o)Lt = 5.0
From [3, p. 249, Chapter 12],
a7 D x(h)(s,h/q). (4.54)

h=1
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Multiplying both sides of (4.54) by ¥(a) and summing over all characters xy modulo ¢, we deduce that

C(s,a/q) = 2

5@ > x(@)L(s,x), (4.55)

x mod q

where ((s,a) denotes the Hurwitz zeta function. Using the duplication formula (1.32) and the reflection
formula (1.30) for I'(s), we find that

I (1s) cos(1ms)I(s) A
_ 56
TGO-s) 27 (4:36)
Utilizing (4.55)) and (4.56)) in (4.53)), we see that
sin (2mna/q) sin(ms/2)I'(—s) a a
b (=t - A () ()
cos(ms/2)T(1 — s) a a
- (1w ) -e(om=9))
which completes the proof. O]

The proof that Theorem implies Theorem [4.3.3] is similar to the proof that Theorem implies

Theorem |4.4.3) which we give in the next section.

4.4 Proof of the generalization of Entry 2

Arguing as in the previous section, for 0 < a < ¢ and ¢ prime, we can show that Theorem [{.1.2]is equivalent

to the following theorem.

Theorem 4.4.1. Let q be a prime and 0 < a < q. Let

Gula,g.) = 5 cos (5) wsn
) i i H_, (47r\/m> . H_, (4ﬂ\/m)
mSiaso | (ma) (et a/g) ) E a0 [

where H,(z) is defined in (4.6)) and where we assume that the product of the summation indices mn tends

to infinity. Then, for |o| < %

e ZF< ) cos 2;:1(1/!1) _ ICOS(%;;)>2~(_S> << <57 Z) +¢ (s,l - Z))

n=1
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A (1 2) < (-0-3))

We show that Theorem is equivalent to Theorem |4.4.3] which is a special case of the following

theorem.

Theorem 4.4.2. If x is a non-principal even primitive character modulo q, x > 0, |o| < 1/2, and k is a

non-negative integer, then

1 I

T(k+1) Z a_s(x,n)(x —n)*

n<x

k1
L) L) |, e
- T(k+2) 2I'(k+1)

(71)n71xk72n+1 <(27’l)

L(1-2
Tth—2n+2) @nz it 2n+sx)

n=1
1 > g\ 5" nx
g o () G (1m 7).

where Ga_s(2) is defined in (3.23). The series on the right-hand side converges uniformly on any interval

for x > 0 where the left-hand side is continuous. The convergence is bounded on any interval 0 < 1 < x <

Ty < 00 when k = 0.
Proof. From (4.9) and Lemma for a fixed = > 0, we see that

1 / 1 D(w)zwtk

T 2 - eme—m = oo | (w05,

)

n<z

where max{l,1—o0,0} < ¢ <1 and k > 0. Proceeding as we did in the proof of Theorem we find that

1 / K oFHIL(14+5,x)  L(s,x)x"
Nk+n2;0*“”mx_m T T Tk+2) 2kt 1) (4.58)
1 I'(w)zwtF
i 1o C(w)L(w + S,X)mduh

provided that & > 0 and k& > 2¢ — o — 2. The functional equation for L(2s, x) for an even primitive Dirichlet

character x is given by [31, p. 69]

(3) oo =12 (1) e (e e

where 7(x) is the Gauss sum defined in (4.12)). Combining the functional equation (5.5 of ((2w) and the
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functional equation (4.59)) of L(2w + s, x) for even primitive y, we deduce the functional equation

,].(.2w+871 ~
C(w)L(w +s,x) = Wﬁ(w» $)C(1 —w)L(1 —w — s, %), (4.60)
where
(G0 -w)l(5(1 —w—s))
18) = T T L wts)
Define
fy e L [ mwsTw)

¥ dw.

_— 4.61

Using the functional equation (4.60) in the integrand on the right-hand side of (4.58)) and inverting the order

of summation and integration, we find that

1 [(w)zwtk
' Lot s 05w k1) 4,62
211 (1—) C(w) (w+s X)F(w Y w ( )
Zhas—1 1 n(w, s)I'(w) 220\ Y
T (Va5 2mi —— = (1 —-w)L(l—w—s5,%) | — d
T(X)q* ! 2mi (1_C)F(w+k+1)C( w)L(1 —w 87X)< . ) w
k._s—1 1
= Li Q US(X7 )dw
T X)qsfl 2mi J(1—) F (w + k —|— 1 q nl—w
Ty o Zas X n L n(w, s)I'(w ) m’nz wdw
qus 1 nltk  omg (1—¢) T(w+k+1) q
ket os(X,n T“ne
’7' q -1 Z ( q ) 5

provided that k& > 2¢ — o — 1. We compute the integral I(y) by using the residue calculus, shifting the line
of integration to the right, and letting ¢ — —oc.

Let k be a positive integer and o # 0. By (4.61)), we can write

where

F(w) = L(w)l (5(1 — w)) 1; (51 —w—s)) y“’.

Note that the poles of the function F(w) on the right side of the line 1 — ¢ + it,—00 < t < oo, are at
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w=2m+1landw=2m+1—-s, m=0,1,2,.... Calculating the residues, we find that

2L (2m + )T (—m — 1s) y?m+!
mID2+k+2m)T (m+ 3T (m+ (s +1))

Romy1 (F(w)) = (=1)™*

and

m 2F(2m +1-— s)I‘ —m+Lis y2m+1—s
Romy1-s(F(w)) = (—1)™*! (=m + 35)

With the aid of the duplication formula (1.32]) and the reflection formula (1.30)), we find that

2571 (2\/@)4m+2

Romy1 (F(w)) = sin(7s/2) (2m + k + 1)I0(2m + 1 + s)

and

(2y)'~* vy
sin(ms/2) 2m)IT2m+k+2—s)

R2m+1—S(F(w)) = -

Consequently, from (2.15)), (4.39), and (4.63), for k even,

25—1—2k: —k (2\/@)4m+2k+2

— Y
n;) Rom 1 (F(w)) = =520 mz;o Cm+k+)ITEm+1+s)

9s—1— 2k: —k{ i 2\/*)4m+2
sin(ms/2) = 2m+D)IT2m+1+s—k)
Z (2yy)*m 2 }
= 2m—1)IT@2m —1+5—k)
| gmlky(ms—k)/2
sin(mrs/2)

2s+1

k/2

(o141 (A1) — J-14s-1(4/7))

k/2 274my172n

~sin(rs/2) £ T(k—2m+2)T(1 —2m + )’

For each odd integer k,

9—1—ky(1=s—k)/2

Z Romi1(F W(I—1+s—k(4\/§) + J71+s—k(4\/§))
2s+l (k+1)/2 2—4my1—2n
 sin(ms/2) T(k—2m+2)T(1—2m+s)

m=1
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Similarly, from (4.64)), we find that

[ 2—17ky(1757k)/2
> Ramsro(F) = =2 U4V + Bt (4D, (467)
m=0

Utilizing (4.40)) in the sum of (4.65)), (4.66), and (4.67), we deduce that

> B cos(ms/2)
z:o Romi1(F(w)) + Romy1—s(F(w))) = TRy (—1sR)2 (4.68)

Ji—sar (/) — (DRI (40/) ka1 2

— ()M IR k(4
< — (1 2K alayB)
i
28+1 2—4my1—2n
~ sin(ws/2) mZ:: I'(k—2m+2)L(1—2m+s)’

Using (2.16)), we can show that

COS

sin s

o \k+1
(rsf2) (LI ”+J‘“S"““@—<—1>k+1jz<1_s+k<4\/y>)—Gl+k_s<4\/§>. (4.69)

Consider the positively oriented contour Ry formed by the points {1 — ¢ —iT,2N + % —iT,2N + % 4T, 1—

¢+ T}, where T > 0 and N is a positive integer. By the residue theorem,

1

2 J = Y Rupa(Fw)+ Y Ropgrs(F(w)).

R 0<k<N 0<k<N

By (4.45), for the integral over the right side of the rectangular contour Ry,

IN+3/2+iT
/ F(w) dw LT y2N+3/2e4N7(4N+2+k+U) logN _ 0(1)’
IN+3/2—iT

as N — oo. Using Stirling’s formula (1.39)) to estimate the integrals over the horizontal sides of Ry, we find

that

cotT ) yl—c
F(w)d op—28-0-k g4 I ——
Jp P00 [ 7 o Tro i Tlogr ~ W)

provided that k& > 2¢ — 0 — 2. Combining (4.58]), (4.62)), (4.68)), and (4.69)), we conclude that

!

ST L e ' (4.70)

n<x
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+

7 Ik+1L(1+S,X) kL S X Z n 1 k 2n+1 C(Qn)
T'(k +2) o (k + 1 — —2m+2) (2m)%n

+M§}vs<x7n><a> o)

provided that £ > 0, 0 # 0, and k > 2c — 0 — 1. By the asymptotic expansions for Bessel functions (2.17)),

(2.18), and (2.19), Lemmal4.2.10} (3.28), and an argument like that in the proof in Theorem we deduce
the identity (4.70) for k > |o| — %, with |o| < 3. Thus, we complete the proof of Theorem m O

L(1—-2n+s,x)

From the definition (4.6)) and (4.50), we find that cos(ws/2)Mi_s(2) = G1_s(2). The case k = 0 of

Theorem .42 provides the following corollary.

Corollary 4.4.3. If x is a non-principal even primitive character modulo q, x > 0, and |o| < 1/2, then

Z/ o_s(x,n) = zL(1 +5,x) — LL(s,x) + COST(Z;S))/Q ioswm (%) N - <4W\/?> 7

n<x

where Hy_4(z) is defined in (4.6]).
Next we show that Theorem implies Theorem

Proof. First we write (4.57)) as a sum over Dirichlet characters. To that end, for any prime ¢ and 0 < a < ¢,

Gs(a,q,x) gcos (?) (4.71)
Xii Hi_, <4ﬂ,/mx<n+‘;>) +H1 s<47r,/m:c(n+1 ))
S ma)Fmta/gT (maz) 5 (n+1—a/q)
o oo Hyi_ 4 (4m m;””
@S § )

m=1n= x mod g
()T 7 S, s (4my/75%)
=g (3 )erénqx(a);;x(n)n o
= (a2) = cos <7LS> Z x(a) i x(d)d? e (47T zx)
o ’ xmodg  n=ldln s
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where in the penultimate step we recall our assumption that the double series converges in the sense that

the product of the indices mn tends to infinity. For the principal character xq,

ias(XO,n)ilis <47r\/nqz) = i 3 Xo(n)n® e (4W\/@) (4.72)
n=1

n's =1n=1 (mn)™

m=1n=1 (mn) ™
gtn
B i in H_, (47r /7"1;@) q5;1 i i cHi_s (4my/mnx)
- 1+s 1+s
m=1n=1 (mn) 2 m=1n=1 (mn) 2
00 Hl—s (47T\/%) L 00 H (4
s=1 1—s (4my/nx)

n=1

Combining (4.71) and (4.72) and applying Lemma we find that

(q:z:)lgs ] > _ Hi—s (47T %Z)
Gs 5y = . sOON)—1% 4.73
(0.0,) = <70 cos (5 )X;éxozmodf(a);a (Xom) (4.73)
X even
b (S o) - 220+ 2e) ) - Lo [ S o) - E2(s,/a) + e0s)
o(a) \ = 2 o0\, 5, ’ 2
@)'F s ~  He, (47r %)
= cos (- x(a) ) os(x;n)—1—"
$(q) ( 2 )X?ﬁ%%:ggdq nz::l n-2
+ ! Z/O' (n) — ¢ Z/ o_s(n)
olg) = o), S
x 1LY () ( 1 >
" o(q) (1) (1 q‘s) 2¢(q)g* 1 ! gt
For each prime ¢, by Lemma [£.273]
Sop(Z) R e § s S @) Y oon) (4.74)
n=1 n n 1<n<z/q ¢( )xxrgsélnq 1<n<z
/ 1 / 1 /
=q* —s(n) — — —s(x0,n) + — (a)7(x) —s(x, ).
! 1<nz<:x/qa ' ¢(q)1§nz:§aza e o(q) X;é%%gdqx v 13%: o
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Now,

S oo =3 Sdar= Y a3 Sa (4.75)

1<n<z 1<n<z d|n 1<n<z d|n 1<n<z/q d|n
qtd
/ /
= Z o_s(n)—q~* Z o_s(n).
1<n<z 1<n<z/q

Substituting (4.75)) into (4.74)), we find that

= cos (2mna/q)  ¢*~* Z/ 1 /
M F - o_s(n)—— > o_i(n) (4.76)
n=1 ( ) " ¢(q)1<n§a¢/q ¢(q)1§n§w
1 B ’
+m Z x(a)7(x) Z (x,n)
U \#xgmodq 1<n<a
X even
Adding (4.73) and (4.76]) and using Theorem 4.4.3] we find that
> x\ cos (2mna/q) x ( 1 )
Gs(a,q,x) + F(- = 1+s)(1— 4.77
(@q.2)+ 3 (5) == TRl U= (4.77)
¢(s) ( 1 > z _ 1 _
1- + Y x@rL+sx) -5 > x(@7(X)L(sX).
s—1 1—s
2¢(q)q q oa) |, o 20(a) | o0,
X even X even
Recall that if x is the principal character modulo the prime g, then
1
Lis.xa) = <o) (1 ). (4.78)

Using the functional equations of {(s) and L(s, ) for even primitive Dirichlet characters, (5.5) and (4.59)),
respectively, and (4.78]), we find from (4.77) that
) —s

x(a)L(=s,X) (4.79)

q
¢(q)

x mod g
X €

cos (2mna/q) zrst/2T (s
s(a,q,x +ZF( ) = )

S x@)L(l - 5,%)

e
- ;f(/(fi))) b 2 () +xa—a)i-s.
R j:(; szwqu(a) +x(a - @)L~ 5,0
We complete the proof of Theorem “ 4.4.1| by using and ( in O
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Next we prove that Theorem implies Theorem

Proof. Let x be an even primitive character modulo q. Set 8 = h/q, where 1 < h < ¢q. The Gauss sum

7(n, x) is defined by
q

TL X Z X Qﬂimn/q.

Note that 7(1, x) := 7(x), which is defined in (4.12)). For any character x [3, p. 165, Theorem 8.9]

Multiplying both sides of (4.5) by x(h)/7(%) and summing over h, 1 < h < ¢, we find that the left-hand
side yields

)

>
Il

1

>_< i (Z) Cos 27rsnh/Q) 1 i F (?) q_lg(h) o (27mh> (4.80)

FEry (4.81)

2 o T
h=+nmod q
N e = Hi (47rﬁ)
— 7—(_) COS( B )mzjln_lX( (mx)lgs (n/q) =
(gz) = cos(375) o= os(X, ) nx
7(X) ; nxi s (47T Q>

Combining (4.80), (4.81)), and (4.54)) with the functional equation (4.59) of L(s,x) for even primitive y, we
obtain the equality in (4.5)), which completes the proof of Theorem m O
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Chapter 5

Partial sums of Dedekind zeta
functions

5.1 Main results

5.1.1 Zero free region

We can summarize our first result in this chapter which give a zero free region for (x x(s) as follows. See

also [63].

Proposition 5.1.1. Let K be an arbitrary algebraic number field of degree ng = [K: Q] over the field Q of
rational numbers, let X be a real number greater than or equal to 2, and denote by s the complex variable
o+it. Then there exist two real numbers o and B, with « depending on ng and X only and with 8 depending
on ng only, such that the zeros of (x x(s) all lie within the rectilinear strip of the complex plane given by

the inequalities a < o < .

As will be seen in the proof of Proposition in Section for any fixed 69 > 0 and any X large
enough, an admissible choice for a is & = —3(dp + log 2)ne X log X/loglog X. As for 8, an admissible choice
is of the form B = log Ce; nyDey.ny/ 1082, where € is fixed and satisfies the inequalities 0 < ey < 1/ng,

Deyng = e p4/n?=<0™ and C¢, ,, is a constant defined in terms of the divisor function.

5.1.2 An asymptotic formula for Ny x(7)

Furthermore, we provide an asymptotic formula for Ng x (T') when K is a cyclotomic field, which is sharper
than the one known in the case of {(s). Let K be any algebraic number field of degree ng = [K: Q] over the

field Q of rational numbers. In a similar fashion to the case of {(s) (see [4I] and [60]), it can be shown that

T X
Nix(T) = 5-log N| < T, (5.1)

where T" and X both go to infinity together, and N is the largest integer less than or equal to X for which

ax(N) # 0. However, if K = Q((,) is a cyclotomic field, we can significantly improve the error term in
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(5.1)-

Theorem 5.1.2. Let ¢ > 2, let {, be a primitive root of unity of order q, let K = Q((,), and let T, X > 3.

Let, further, N be the largest integer less than or equal to X such that ax(N) # 0. We have

T loglog X 1-1/¢(q)
im0, (x (M) ),

log X
where ¢ is Euler’s totient function.

Finally, we remark that the larger the degree of the cyclotomic field is, the better the asymptotic formula

(5.2) becomes.

5.2 Preliminary results

To prove Theorem [5.1.2] we will make use of two auxiliary lemmas.

Lemma 5.2.1. Fiz a positive integer ¢ > 2. We have

. log log y 1-1/¢(q)
#{n <y:pn)#0and p|n imply p=1(modq)} =0, |y Togy ,

where p denotes the Mébius function.

Proof. Fix a positive integer ¢ > 2 and define
B(q,y) = {n < y: p(n) # 0and p|n imply p=1(modq)}.

We apply Brun’s pure sieve to estimate the size of the set B(g,y). (See Murty and Cojocaru [28], page 86].)
Let A be the set of all positive integers n < y. Let P be the set of all primes p incongruent to 1 modulo g.
Let A, be the set of elements of A which are divisible by p. Let, further, A; = A and A, = ﬂpl 4 Ap, where
d is a square-free positive integer composed of a list of prime factors from P. For any positive real number

z, we define

S(AP.2)=A\ | A,

pIP(2)

where

P(z) = H .

peEP
p<z
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We consider the multiplicative function w defined for all primes p by w(p) = 1. We have

#Ai=#{n <y:n=0(modd)} = @y—i—Rd,

where

|Ra| < w(d).

From Mertens’ estimates, we have

Z % = %10g10g2+0(1)~
peEP

For the sake of brevity, we let

p|P(2)
By Brun’s pure sieve, we have
#S(A,P,2) =yW(z) (1+ O ((logz)~?)) 4+ O(z7'8182), (5.3)
where A = nlogn and, for some a < 1,
alogy

= log zloglog

Since w(p) = 1, Mertens’ estimates yield

1
W(z) =0y ((logz)l—l/w) . (5.4)

We now choose log z = clogy/loglogy. Then for a suitable positive and sufficiently small constant ¢ and

from (5.3)) and (5.4), we have

logy

1-1/¢(q)
#S(AP,2) =0, (y (Reer) ) . (55)

Since B(q,y) € S(A, P, z), we have #B(q,z) < #S(A, P, z). Employing this last inequality together with
(5.5)), we complete the proof of Lemma O
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Lemma 5.2.2. Let ¢ > 2 and let K = Q(¢,). Let, further,

nS

C(s) = Z aK(n)’

We have

loel 1-1/¢(q)
#{n <z:ak(n) #0} =0, <x<01igoix) )

Proof. Let K = Q((,), where (, is a primitive root of unity of order q. We have

o) =TI (1 ;)FU

Plg

where

Fys)= J[ Lsx).

X (mod q)

(See [72], page 468].) For o > 1, we have

Fs)= ] 11 (1—X]§f)>_l.

X (mod q) p prime
ptq

Hence, for 0 > 1, we have

ogFys)=— > % 1og<1_><;§>)

X (mod q) p prime
ptq

_ o X(»™)
p1q

_ - x(@™)
p%ne’;ﬂmzmiq) mp
pla

where
o(q), if p™ =1(modg);

x (mod q) O, otherwise.

It follows that

log Fy(s) = Z ¢(q)‘ .

p prime, m>1
p"™ =1 (mod q)
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Hence, we have

Fy(s) =exp Z Wf(q)

p prime, m>1
p"™=1 (mod q)

Now, for ¢ > 1,

Fq(8)=2622)= 11 (1+C$)+Cg;s)+...).
n=1

p prime

Thus, we have

log Fy(s) = Z 10g<1+cz(§)+0g:,)+...) Z Z(iib)m (CI()]‘Z)+C](?€?)+> ,

p prime

and hence
#(q), if p=1(modg);
0, if p # 1 (mod q).

For all n such that ¢(n) # 0, we have n = AB, where A is coprime to B, A is squareful, and B is

square-free, that is, u(B) # 0. Furthermore, all the prime factors of B are congruent to 1 modulo ¢. Letting

Hxz)= [ »

p<z, p prime
p=1 (mod q)

we have

#{n <z:c¢(n) #0} <#{(A, B): A squareful, u(B) # 0, AB <z, B| H(z)}

- Y 3o

A<z B<z/A
A squareful B|H ()

X
> B(s3)
A<z

A squareful

xz X
X Blag)r X 8(eg):
A<{/Tlogx Vzlogz<A<z
A squareful A squareful

We examine the sums on the far right-hand side separately.
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Using Lemma [5.2.1} we see that

T z (loglogx 1-1/¢(a)
> s()-o| ¥ 4
A A log
A<{zlogzx A<z logzx
A squareful A squareful

logl 1-1/¢(q) 1
. < og ogx> Z

log x
A<z logzx
A squareful

loglog z\ ! /¢ 1
=0q |2 log = Z a2b?
a>1,6>1

—0, (x (10g 10gx>11/¢(q)> :
log x

Furthermore, we have

IIRICS ) ENED DI E D DI

Vzlogrz<A<z Vzlogr<A<z vz logrz<A<z
A squareful A squareful A squareful
NG
< #{A < z: A squareful}

~ logx
(i)
log

Suppose that P, ..., P, are the prime ideals in the ring of integers of K lying over the prime factors of

q and consider the Dirichlet series

I |73|5)_1'

Plp

n=1
For all z, we have
#{n < z: b(n) # 0} < #{n < z with all prime factors of n in the sets P1,..., P} (5.6)

It is well-known that the right-hand side of (5.6) is O4((log 2)”). Thus, we have

#{n < 2: b(n) # 0} = O,((log 2)").
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For brevity’s sake, we let
A={n:ag(n) #0}, B={m:b(m)#0}, C={k:c(k)#0},
and denote
A, =AN[lLw], B,=BnN[lw], C,=CN[l,w].

Here, we note that

#B., = Og((logw)")
and

log w

1-1/6(a)
#C, = O, (w (loglog”) ) . (5.7)

Furthermore, we have

Gel) = Y0 2 5 M) gm el

neA meB keC

On noting that A C BC, where BC = {bc: b € B,c € C}, we have A, C (BC),. It follows that
# Az < #(BC)q, (5.8)

where

#BC=> > 1= > 1+ > S, (5.9)

b<z c<z/b b<L c<z/b L<b<z c<z/b
beB ceC beB ceC beB ceC

with 1 < L < z (to be chosen later). By (5.7), we have

z (loglog(z/b)\ ~Y/*@
> Y ey sen=on| 35 (R00)

b<Lc<z/b b<L b<L
bEB ceC beB beB

Since b < L, we have

Hence, we have

log log = 1-1/¢(a) 1 log log = 1-1/¢(a)
E E 1=04 |2 < ) E —| =04 2| ——F— , (5.10)
ey logz/L = b log(x/L)
beB ceC beB
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since

Next, we have

33 z(log x)
Y Yo Y seus Y Leten o, (L)) -
L<b<z c<z/b L<b<lz L<b<lzx
beB  ceC beB beB
In view of (5.8)), we substitute (5.10)) and (5.11)) into (5.9) to obtain
z(log x)" log log = 1-1/¢(a)
Tz = O B — O —_— .
#e =0, (TFT) o, (”” (ol
Then choosing L = (logz)"*!, we obtain
log'1 1-1/¢(q)
44, =0, <x (W) .
log x
This finishes the proof of Lemma [5.2.2] O

5.3 Proof of the zero free region

We show separately that |(x x(s)| > 0 in the right half-plane ¢ > 8 and in the left-half plane o < a. More

specifically, we want to find a [ so that

-y iy,
n
2<n<X
for o > (. Toward this end, we employ the upper bound ax(n) < d(n)™~!, where d(n) denotes the
number of divisors of n (see Chandrasekharan and Narasimhan [24], Lemma 9) and satisfies the upper
bound d(n) < C, n® for all positive ¢y (see Hardy and Wright [49], Chapter XVIII, Theorem 317). Hence,
we have ag (n) < Ce non™.

It is enough to show that

=1
Cemo D o < 1 (5.12)
n=2
If we let €9 < 1/ng, then for o > 8 we have
Z no—€ono = Z nB—eono < 27;3D€07n0a
n=2 n=2
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where
oo

4
Deo,no = g n72_50n0 .

n=2

In order to obtain (5.12)), it is enough to have

log Cec; g Deg,no

>
g log 2
We have
oo P o0
d(n)mo 1 1
Z 5 < Cepino Z Feomo 2?060,7101)60,”0‘
n=2 n=2

Then for o > 3, we have

and hence

Crx(s)=1-] 3 ax()| g

2<n<X

Therefore, (x, x(s) # 0 on the right-half plane o > .

Next, let N be the largest positive integer less than or equal to X for which ax(N) # 0. Since

[k x(s)] > afjéiv) _ Z ak(n) 7

it is enough to find an « such that

for o < a.

(5.13)

To this end, let us fix dp > 0. Then there exist constants C5, > 0 and ns, € Z" such that for all

1 <n < ns,, we have

d(n) < Cj,nl%o+loe2)/loglogn

and that for all n > ng,, we have

d(n) < n(60+log 2)/ loglogn

(see [95]).

95



It suffices to have

n(60+10g 2)ng/ loglogn n(60+log 2)no/ loglogn

1
~ > D e + > -

1<n<ns,—1 nsgy <n<N-—1

=1+ C5S1(no, 6o, néy, o) + S11(no, do, o),

for 0 < a, where
n(éo—HOg 2)ng/ loglogn

Sl(n0750)n6070) = Z

2<n<ngs,—1

nO’

and
n(50 +log 2)ng/loglogn

Sr1(no,do,0) = Z

ngo SNSN—1

nO’

This would follow from the inequality

1 mn
Na > 1+ C50S1(no, do, sy ) + Srr(no, do, @),

since, for any o < «,

1
n
N~ No—a [1 4 C5°51(no, 80, sy, @) + Srr(no, do, )]
1 n(60+log 2)no/ loglogn n(60+log 2)ngo/ loglogn
— o
T No—a + 050 Z No—apa + Z No—apa
2<n<ns,—1 ngy <n<N-—1
n(60+log 2)ng/ loglogn n(5o+log 2)ng/ loglogn
o
> 1+ 050 Z c—apa + c—apa
n n n n
2<n<ns,—1 2<n<N—1

=1+ C50S1(no, 60, nsy, o) + S11(no, 8o, 7).

Thus, it is enough to find « such that

1
W > 2+2C£)051(n0,60,n507a) (514)
and such that
1
W > 25[](710,60,0{). (515)
It is enough to have
1 1
W >24 20(751007 Z n(&g—i—log 2)n0/10glogn’ (516)

do 2<n<ns,—1
since the right-hand side of (5.16|) is greater than the right-hand side of ((5.14]).
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The inequality in ((5.16)) holds for any fixed a < 0 and for all N large enough in terms of ng, dg, ns,, Cs,,

and «. Therefore, we may take any fixed a < 0 as a function of N, ng, and dg for which (5.15)) holds true.

For ns, > 16, we see that

n(50+log 2)ng/ log logn N(60+10g 2)ng/ loglog N

2 e < > e

ngy <n<N-—1 ngy <n<N-—1

< N(6o+log 2)ng/ loglog N § 1
ne’
Nsg<n<N-—1

It remains to examine the sum on the far-right hand side of (5.17]).

For o < 0, we have

e [ e (1),

n
ngy <n<N-—1

It follows from (5.17)) that (5.15) is consequence of

N~ > 2N Gotlog2)no/loglog Ny __ 1)—« (N - O‘) .
1—«a

One sees that an admissible choice of « is given by

Nlog N

= —3(do + log 2)ng————.
“ (80 +log )nologlogN

Then (x x(s) # 0 in the left-half plane ¢ < a. This completes the proof of Lemma

5.4 Proof of the asymptotic formula for Nk x(7)

Assuming for simplicity’s sake that T does not coincide with the ordinate of any zero, we have

1 [ Gex(®)
271 RCK,X(S)

Nk x(T)

9

where R is the rectangle with vertices at «, 8, 8+ ¢T', and a + iT". Thus, we have

m (S

27TNK7)((T):/ m ng(S)

) ds = Aparg(x x(s),
R

where A g denotes the change in arg (i x(s) as s traverses R in the positive sense.

97

(5.17)

(5.18)



Since (x, x(s) is real and nonzero on [«, 8], we have

Ao arg (k. x (o) = 0. (5.19)

As s describes the right edge of R, we observe from (5.13]) that

ICr,x(s) = 1] < 1.

It follows that Re Cx x (8 + it) > 0 for 0 < ¢ < T. Hence, we have

Ap,rarg Cr x (B +it) = O(1). (5.20)

Furthermore, along the top edge of R, to estimate the change in arg (x x(s) we decompose (x x(s) into

its real part and its imaginary part. We have

ax (n)[cos(tlogn) — isin(tlogn)]

)

Cr,x(s) = Z ax(n)exp{—(c +it)logn} = Z

n<[X] n<[X]

so that
) sin(T log n)

Im(Cx, x (0 +4T)) Z

By a generalization of Descartes’s Rule of Signs (see Pélya and Szego [78], Part V, Chapter 1, No. 77), the
number of real zeros of Im({x, x (o + ¢T)) in the interval & < ¢ < 3 is less than or equal to the number
of nonzero coefficients ag (n)sin(Tlogn). By Lemma the number of nonzero coefficients ax(n) is
0,(X (loglog X/(log X )'~1/¢(@) at most.

Since the change in argument of (x, x (o +iT") between two consecutive zeros of Im(Cx x (o + ¢T")) is at
most 7, it follows that

) loglog X \ 171/@
Ao arg Cic x (0 +iT) = O, (X (igi) , (5.21)

As in the proof of Lemmal5.1.1} we let N be the largest integer less than or equal to X so that ax (N) # 0.

Along the left edge of R, we have

_ 14 ar(2)27°% 4. +ag(N — 1)(N — 1)~ o
Crx(a+it)= |1+ x(2) x i ) ]GK(N)N "

ax (N)N—a—it
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Therefore, we have

. 14+ar(2)27"% £ +ap(N—=1)(N —1)"a"it
Aoy arg e x (a4 i) = Ay gy g |14 22 aK(N)NI_{CE_it D (5.22)

+ A[O,T] argag (N)Niaiit.

In the proof of Lemma[5.1.1] we noticed that

Thus, for any ¢, we have

14 ax(2)27°7 " + .. 4 ag(N —1)(N — 1)

, 1
ax(N)N-a=it <5
and hence
14+ ag(2)27* "+ . +ag(N —1)(N—1)">"
A 1 - = 0(1). 5.23
[0,T] &T& [ + ax (N)N—o—7t (1) (5.23)
Finally, we have
A, argag(N)N~*" = A pyargag (N)N~* exp{—itlog N} (5.24)
= Ao, argexp{—itlog N}
= —TlogN.
Then substituting (5.23) and (5.24) into (5.22)), we obtain
Ao,y arg (k. x (a + it) = —T'log N + O(1). (5.25)

Since

Aparg (kg x(s) = Na,g arg (k. x (0) + A,y arg Cx,x (8 + it)

~ Dag a8 (e x (0 +1T) — Apryarg (e x (o + it),

we may now substitute (5.19), (5.20), (5.21)), and (5.25)) into (5.18)) to obtain Theorem
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Chapter 6

Family of approximations of
L-functions associated to cusp forms

6.1 Main results

6.1.1 Smooth L? distance
Let h(t) be a smooth function with the following properties:
(1) 0<h(t)<1forallteR,
(2) h(t) is compactly supported in a subset of (0, c0),
(3) ||h9)(t)]|oo <; 1 for each j =0,1,2,....
The Fourier transform of h(t) is denoted by h(s). Our first result is as follows.

Theorem 6.1.1. Let h be a smooth function satisfying (1)-(3). Then for any fized eg > 0 and T < N <

M < T'=¢0, we have

< [t I .
/Ooh<T)‘Lf<N,2+Zt)Lf(M,2+Zt>

where a is given by (1.26]).

2
. M

dt ~ 2Tah(0) log —
ah(0) g

6.1.2 An inequality

For Re s > 1, let

L-,—(S) _ Z 7'727:)7

where 7(n) is the Ramanujan 7-function. In [7], Berndt obtained the inequality
1Lr(12 = s)| > [L(s)],
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for |t| > 6.8 and when L,(s) # 0. In [84], Spira proved the same inequality but improved the bound to
[t| > 4.35. Very recently in [90], Trudgian improved this bound for ¢ to |t| > 3.8085. In this chapter, we

show that the similar inequality also holds for L(N;s). We have the following theorem.

Theorem 6.1.2. Let N be a positive integer. Then the inequality |L¢(N;1 — s)| > |L¢(N;s)| holds for all
s witht >ty and 1/2 < o < 1, if and only if all the zeros B+ iy of Ly(N;s) with 5 € (0,1) and v >ty lie
on the critical line. Here ty is a real number depending on the weight k of the cusp form f. In particular,

t1o = 3.8027, t14 = 1.8477, and t, = 0 for k > 16.

6.1.3 Zero free region

As with the results in [85], one can prove that the non-trivial zeros of L(1;s) and Lf(2;s) lie on the critical
line. In the case of primitive Hecke forms the coefficients could be as big as the divisor function d(n), and

we will prove our theorem for some restricted primitive Hecke forms.

Theorem 6.1.3. All the zeros of Ly(1;s) with |[t| > max(k,e'®) lie on the critical line. Moreover, if

la(2)| <1 then all the zeros of Ly(2;s) with |t| > max(k,e'®) also lie on the critical line.

Remark: Numerical computation shows that a(2) = 7(2)27 /2 = —.53033, thus the L-function attached
to the Ramanujan 7-function satisfies the above theorem.

We are interested to see whether for N > 3, the non-trivial zeros of L;(N;s) lie on the critical line or
not. Although it is not clear whether all the non-trivial zeros of Ly(N;s) for N > 3 lie on the critical line
or not, one can prove that a positive proportion of the non-trivial zeros of L;(N;s) lie on the critical line,
provided N is not too large relative to the height T" of the ordinates of the non-trivial zeros.

In the following theorem we obtain a ‘critical’ strip for L(NN;s). More precisely,

Theorem 6.1.4. Let A > 1/2. There exists a constant No such that if N > Ny and B + iy is a zero of
L¢(N;s) with |y| > 2meN?*, then

1 (1 , 4\loglogN )
8-1/2| < mot(z+ Ten )y #1/2<Aa<1
- 4loglog N A1

1
2 + logN

One also obtains a critical strip for N < Ny, provided that the ordinates of the zeros are sufficiently

large. We have

Theorem 6.1.5. There exists a constant Ty such that if N > 1 and 5+ iy is a zero of Ly(N;s) with
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|v| > max(2reN,Ty), then
|3 —1/2] <3.

6.1.4 Zeros up to height T

Next we will estimate the number of zeros of L¢(N;s) in an interval of the form (7,7 4 U]. We define
NT)=#{p=p+iy:0<y<T and Ly(N;p) =0}
and
NUT)=#{p=1/2+iy:0<~vy < T and L;(N;p)=0}.

We have the following theorem.

Theorem 6.1.6. Let A > 1/2. There exists a constant Ny such that if N > Ng, T > 2xeN* and U > 2,

then

NYT +U)—~ N°T) > N(T +U) — N(T) + O (Ulog N) + Oy (N) (6.1)

v0r((5) e v,

Furthermore there exists a constant Ty such that if N > 1 and T > max(2meN,Ty) then (6.1) holds with the

last error term replaced by Oy (log(T + U)).
We end this section with the following result

Theorem 6.1.7. As T — oo and N = T°M) | 100% of the non-trivial zeros of L(N;s) up to height T are

simple and lie on the critical line.

The results of this chapter are also discussed in [65].

6.2 Preliminary Results

The following lemmas which may be of independent interest are instrumental in the proof of the theorems.
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Lemma 6.2.1. For o > 1 we have

(";1>2<|Lf(s)|< (L)z (6.2)

Proof. Let o > 1. From (4.22)) and (1.22)) we have

L5 (5) Sgl \ar(:;)l Sgdg) _ (i ;)2 < (H/loox"dx)Q = (U‘il)z. (6.3)

n=1

For the other inequality in (6.2]) we use the Euler product (1.34]). From (1.22)) we have

i)l = [T1 Q= a@p+p72) [ > [ +dwp~ +p72) "

Since d(p) = 2, we find that

=Tl Tl = ()1 (£2) (5

where in the ultimate step we used the last three inequalities in (6.3)). This completes the proof of the

lemma. ]

Lemma 6.2.2. Foro > 1,

<N ogn 24— ) ro (= (6.4)
Soo1 % R N '

For o <0 we have the following:

> @ < N'9(log N + 2y — 1) + O(N—°F1/2),
n<N

Proof. Let o > 1. From ([1.22)) and by partial summation we have

3 “(f) <3 d@ =0 / T D@ dt — D(N)N, (6.5)
nonN non N
where
D(t) = d(n) =t(logt+ 2y — 1) + O(V1). (6.6)
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Combining (6.5)) and we obtain the bound in (6.4).

For the second part of the lemma, let 0 < 0. We have

a(n) d(n)
— <
p e B D (6.7)
n<N n<N
By using one sees that
> dgj) <N d(n)=N""(logN +2y—1) + O(N~7H/?), (6.8)
n<N n<N

where in the penultimate step we use the fact that £~ is increasing for ¢ < 0. One finishes the proof of the

lemma by combining (6.7) and . O

Lemma 6.2.3. If|t| >k and 1/2 < o < (k—1)/2 then

o (s )
— | log > 2log |t| — 3.7.
do Ixr(s)l

Proof. By Stirling’s formula [37] we have

logF(s)—(s—1/2)10gs—8+§10g2ﬂ+@—2/0 Gt dz, (6.9)

where Ps(z) is a function of period 1 and given by

Psy(z) = 132(21;2 — 3z +1),

for x € [0,1]. A straightforward computation shows that

V3
6P3(2)] < ==, (6.10)
for x € [0,1]. Since
s, 1 9] 0
2 (1 — 7 . 7,
2 i) () e (2o
then from (1.28) and we find
0 1 1 1 1 1
— |1 = — — — A1
90 (Og |Xf(s)|> Re ( 2t h—1 Bh+t25—12 2s—k—1 3Bk—25+1)7 (6.11)
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-1 1
+ log (k2 + s) + log (k;_ — s) — 2log(27)

+6/Oo Ps(z) d:z:+6/oo Ps(z) dz | .
0o (s+(k—-1)/2+2)" o (k+1)/2—s+2)

From the hypothesis we have ¢t > k and 1/2 < o < (k — 1)/2. Then from (6.11]) we derive

0 1 k \/§7r
— | log —— 21 t|—2log2mr — — — —— 21 t| — 3.7.
ao<°g|xf<s>|)> og il = 2log2m =35 = 7opp > 2losll

Here we use the fact that k£ > 12. This proves the lemma.

O
Lemma 6.2.4. If |t| > 20 and o > 1/2 then
Ixr(s)| < 1.02 sl o
Xt ’ 27e '
Proof. From [85] 84], we have
ID(s)| = (2m)"/2e7 5|7 /27" 28 5| exp(Ry (s) + 1/12s)], (6.12)
where R;(s) < 1/6|s|. Hence by (1.28)) and (6.12)) we find
|S| 1-20
sl ={5 exp(t(arg((k +1)/2 — 5) +arg((k — 1)/2 + 5)))) X (6.13)

1 B2 Ry ((k +1)/2 — 5) + 1/12((k + 1)/2 — 5))]
11+ 1 2725 [exp(Ri((k = 1)/2+ 9) + 1/12((k = /2 + s

Next we denote

Therefore
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Since |z| < 1/40 < 1, we have

1
Al >1— | > .
le*| > |z] (1 — |z|) > 38/39

Clearly

1 -1
t(arg(k; —s)+arg<s+k2 )) < 0.

Combining (6.13]), (6.14)), and (6.15)) we obtain

1-20
Ixr(s)| < 1.02 <|S|> ,

2me

which proves the lemma.

6.3 Proof of theorem [6.1.1]

First we define

(6.14)

(6.15)

% — it) a(m)m“) dt

and
T 1 1
I:= [ hp(t)|Ly N;§+zt — Ly M;§+Zt
From (|1.36) one has
T 1 1 . S
I= / hr(t) Z a(n)n_%_lt + X7 <2 +2t> Z a(n)n-2 1"
s N<n<M N<n<M
X Z a(m)m_%'“t +xf (2 - it) Z a(m)m_%_” dt
N<m<M N<m<M
= 3 [ (a3 i aton) (atmm o
N<mn<M WM%_&] 2

- NS%:LSM a(%m) <4 ) <(:”L>n " (ZL) _it> o
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+ 7 he(t) (Xf (; + it) (nm)" + xy (; - it) (nm)‘”) dt) :

— 0o

where in the last step we utilized the fact (1.33]). Let us denote

we 2 o) () )

and
I = NSmZ;W “(%m Z ho(t) <X y ( + it> (nm)™ + X ( - it) (nm)ﬂf) dt

The diagonal terms m = n of I; contribute

3 (s 5 -

N<m<M e

The off-diagonal terms m # n of I; can be written as

) Fr((2) e (2) )

_ a(m)a(n) 7 it log ™= —itlog -
= > = ho(t)( e +e dt
N<m#n<M oo
_ Z 2a(m)a(n) /hT(t) (eitlog:; +e—it10g 77:'>dt
N<m<n<M VI o
2
_ Z a(m)a(n) (S11(m,n) + S1a(m,n)), (6.17)
N<m<n<M v
where
S11(m,n) = /hT(t)emogﬁdt
and
Si2(m,n) = / hy(t)e 18 m gt
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Integrating by parts one obtains

o0 - iy it log =~
— itlog - — ( l)T (r) i 76” "
Sy (m,n) / et = L [0 () s (6.18)

for any positive integer r. Note that

n—m 1 1
log(1 >log(l+ —) > — 6.19
og(1+ ") >log(14+ ) > oL (6.19)
for large m. Using (6.19)) in (6.18)) we find
Sy (m,n) < (2 ' 7 ho (LY a4 < noy (B
11 y T T o Tr—1 :
Similarly
2m)"
Sia(m,n) < ||h"] s <(TT)1 ) .
Therefore
2a(m)a(n) 2a(m)a(n) (2m)"
———=—(S11(m,n) 4+ S12(m, n)) K ||h(r)||oo Z — —1
N<m<n<M mn N<m<n<M mn T
r+3
for any positive integer . Combining (6.16)), (6.17]), and (6.20]) we see
. a(m)Q Mr+3
Iy =2Th(0) ) ——+ 0y (TH : (6.21)
N<m<M
Next we estimate I5. Let
a(n)a(m
L= > (\/)7()(3’21(171,11) + S22(m,n)),
N<mn<M mn
where
So1(m,n) := / hr(t)x ¢ (2 + it) ettlos(nm) gy (6.22)

108



and

o0

S22(m7n) = / hT(t)Xf <; — zt) eii“Og(”m)dt.

— 00

Recall Stirling’s formula in the form

logT'(s) = (s - ;) logs — s+ %log 2r+ 0 <|1|> , (6.23)
s

as |s| = oo and |arg s| < 7 — €. Then from ([1.28)) and (6.23]) we have

1 -1
log xs(s) = (25 — 1)log 27 + log T’ (k_; — s) —logDl (k2 —i—s)

k k41 1 k+1
= (2s —1)log2m + (2—s> (10gs—z71‘—25+0<52)> - (2—8>
k k—1 1 k—1 1
— <2—1+s) <logs+28 +O<32>) + (2 +s> +O(|S|>

s i 1
= (1—2s)log 7 g(k —2s) +2s + O (|s> . (6.24)

In particular

X (; + it) _ exp{ — 2it(logt — log(2er)) — %T(k - 1)} (1 +0 <1|)> (6.25)

for t > 1. Combining (6.25) and (6.22) one has

o0

Sa1(m,n) = /hT(t) exp{ — it(2logt — log mn — 2log(2er)) — %”(k - 1)} <1 +0 <1|)> dt
0

o0

_ / he (e POt + (|| log T), (6.26)
0

where F(t) := —t(2logt — logmn — 2log(2em)) — 5 (k —1). Note that

2
|F'(t)] = QIOgT7r +logmn| >y, logT (6.27)
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for all ¢ in the support of the function hy and m,n < T'=¢. Then from (6.27) and by integrating by parts

we have

W (t/T)|  nolh (t/T)]
(T|Ff<t>| MO )‘”

o o sl 1] (6.28)
Combining and we have
Sa1(m,n) K e logT.
Similarly one obtains
Saa(m,n) Kt e, logT.

Putting these together we arrive at

a(m)a(n)
I = ———"(S21(m,n) + Sa2(m, n))
2 NSmZ;SM — 2 22

Lfreon logT Z M
N<mn<M Vi
oo M log T. (6.29)

Hence from (6.21)), (6.29), and using that M < T/2—¢ < T'=< we have

1=21h(0) Y a(m)”

N<m<M

+ Oy (T17009) 4 Oy, (T l0g T) .

Thus by choosing € < €y and r large enough we deduce

a(m)?

I=2Th(0)

N<m<M

(1+05(1))
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for T'— oo. Finally by partial summation, (1.25)), and (1.26)) we conclude
- M
I ~2aTh(0)log —
aTh(0)log —

for M, N > T and T — oo. This completes the proof of the theorem.

6.4 Proof of Theorem [6.1.2]

We first prove the following theorem.

Theorem 6.4.1. There exists a number ty, such that for 1/2 < o <1 and |t| > t;, we have
|[Lf(N;1—s)| > |Lf(N;s)l,

whenever Ly(N;s) # 0. Moreover the above holds with t1o = 3.8027, t14 = 1.8477 and t;, = 0 for ¢t > 16.

Proof. From (1.37)) we have

Ly(N;1—s) = g(s)Ls(N;s),
where g(s) = 1/xy(s). From (1.28)) one can see that g(s) is analytic for all s with ¢ # 0 and hence continuous
for such s. Let so = % + it. Then from (L.28) we have

lg(s0)| = <27r>‘2“W‘ -

. Tt suffices to prove that h(s) > 0 for 1/2 < o < 1 provided |t| > tx. We have

Define h(s) = log ‘%

(5 +9)
F(mfs)

—~

ISIESINTES]
<
~

S—

|
. ~.
5
SN—

h(s) = log |(2m)~(2s=1=21)

=

—~

=—(20 — 1)10g27r+log‘I‘ (% +s)| —log‘m‘
= —(20 — 1) log2m +log |T" (55 + o +it)| — log [T (&L — o +it)|

= —(20 —1)log 27 + (20 — 1)2 log |T' (o + it)|]

0o o=0o1’
for some o7 between % and % Thus it suffices to prove that
4 log |T° i log 2
50 108 T (0 +it)||,—y, —log2m >0,
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for all % <o < % Now from we have

0 , 0 ,
P log T (0 + it)| = e Re logT (o + it) (6.30)

= Re glogF(chrit)

0
Re 95 logT (s)

B 1 1 *  Ps(x)
= Re <logs 95 1252 +6/0 (s+o:)4 dx)
0.2_t2
— oo /o2 + 12 — _
VTl +t2) 12(0% +12)2
4 2,2 | 44
+6/ Ps(z)((0 + x) 6(0—1—:11)1& +t)d;v.
0 ((a+x)2+t2)

2
Using ([6.10) in combination with the inequality (o + z)* — 6(c + z)%t? +t* < ((O’ +a) + t2) and (6.30))

we derive

27152 e s} d
—log|I‘(U—|—zt|>log\/U2—|—t2 o = 02 22—§ i 5 (6.31)
+t) 12002 +2)2 36 J, ((a+x)2+t2)

— G(o) - I(o),

where I(0) is the integral part and G(o) is the non integral part of (6.31). Here I(o) is a decreasing function

of o and hence

Io) < \3/63/000 (( ;de - 7\2/53 (tanl (k2—t1) N 4t22:(]zk:—1)1)2> '

Next

Co) = 0? (60 + 30 + 1) + 30 (40 — 1) t* + (60 — 3)t*
6 (02 +t2)° ’

thus G(o) is increasing on % <o < % for £ > 12. Hence

2log|F( +zt)1og27r>G<k1>\/g(tanl(k% ) 2t(k— 1) >log27r

9o > 7263 1) i (k1)
A4 (PR 1 (1 o
3((k— 1) + 462)° 21g<4(k b H)

V3 L 2t 2t(k — 1)
T (tan (k—l) N 4t2+(k—1)2> ~ log2m



=: H(t, k).

Let us fix t > 0 and consider k as a real variable for a moment. Then

0 e AE=2) ((k—1)2+4t2)* +2(9(k — 3)k + V3 + 18) ((k — 1)2 + 412) + 24(k — 1)3
ar (k) = 9((k—1)2 +412)°

>0,
ok -

for k > 12. Hence for every fixed ¢t > 0, H(t, k) is monotonically increasing with respect to the variable k.

Next let k£ > 12 be a fixed number and vary t. Let

M (ti k) o %H(t,k) (6.32)
 384(3(k — 1)k — 1)t% +16(k — 1) (9k((k — 1)k + 1) — 5v/3 — 9) ¢4
a 363 ((k — 1)2 + 4¢2)°
32v3(k — 1)% + 3V3(k — 1)° — 23044 N 6v/3 - (2t> .
363 ((k — 1)2 + 412)° 1444

k—1
One finds that

0
Mt k) (6.33)

4t* (48 (33K — 60K + 25) t* + 4(k — 1) (3k (39k2 — 81k + 25) + 8v/3 + 51) t2)
B 0 (k— 1) +412)"
LA (- 1P (45k((k — Dk +1) +8V3 — 45) + 1728¢°)
9((k—1)2 + 4t2)*

>0

)

for all ¢ > 0. Therefore combining (6.32]), (6.33) and the fact that M (0, %) = 0, we conclude that H (¢, k) is
monotonically increasing with respect to ¢ for ¢ > 0 and fixed k¥ > 12. One can check that H(3.8027,12) > 0,
H(1.8477,14) > 0 and H(¢,16) > 0 for al ¢t > 0, which completes the proof of Theorem

O

By the functional equation (1.37), Ly(N;s) and Lf(N;1 — s) have the same zeros for 0 < o < 1. Hence
Theorem implies Theorem [6.1.2
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6.5 Proof of Theorem [6.1.3

The proof follows closely the approach from [85]. For the sake of completeness we provide the details below.

From we have
Ls(1;8) =1+ xy(s). (6.34)
Now from the proof of Theorem we have for ¢ > 3.8027 and o > 1/2
Ixs(s)] <1. (6.35)
Therefore from and we find that for ¢t > 3.8027 and o > 1/2,
[Lp(Ls)] =1 = |xs(s)| > 0.

From Theorem and Theorem we conclude that, all the complex zeros of L¢(1;s) lie on the line
o =1/2 for t > 3.8027.

Again from ((1.36)) we see that

a(2)
9s

a(2)
21—s|"

1Lp(2:9)] > ]1 n

Sl

So it suffices to prove that for large enough ¢ and o > 1/2,

1+ 22
Ylr(s)] > |2 (6.36)
T+ =55
Let
14 22
91(3) = Xf(S) a(2
14 242
Then |g1(1/2 4 it)| = 1. Define

l(s) = log

g1(s) ‘
g1(1/2+t) |
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Proceeding as in the proof of Theorem [6.4.1 one can derives that

1\ @ 1 1+ 78
I(s) = (O’— > — | log - C— ,
2) 0o Ix7(s)] 1+ 02(3) o
for some o7 in [1/2,1]. We want to show that
) ( 1 ) ) 1+ 22
— (log —— > — (log | —++ , (6.37)
oo X)) loey, 00 < 1+ 02(3) o

for some o1 € (1/2,1). We distinguish two cases according as to when 1/2 < o < 3/4 and respectively when

3/4 < o < 1. We have

— a(2)log2 Re ( a(2) + 27 +27° > .

(1+a(2)2571) (1 +a(2)27)

Then for 1/2 < o < 3/4, using ([1.23)) we have

B 1+ 42 149201490
9 1og | 22222 | ) < 10g2 927 6.38
Z (Og e || =T ) (0:3%)

Therefore for 1/2 < o < 3/4, by Lemma and (6.38) we find that the inequality (6.37) holds when

2log |t| > 27 + 3.7. In particular one can take t > e'®. Now consider the case 3/4 < o < 1. One can see by

[T23) that

1+ 22| 14200 142
T | < | Toa < 5 <5 (6.39)
Then from (6.39)) and Lemma it is enough to show that
o (121 o >5 (6.40)
' 27e )

in order to prove the inequality (6.36). Here (6.40)) holds true for ¢ > 445. For o > 1, 1 +2°7! < 27 and
(6.40) transforms to

|S| 20—1 \/§
. _ 41
. <2\/§7re - 1—2-3/4 (641)

Numerical computation shows that ¢ > 86 satisfies (6.41]) for & > 1. This completes the proof of the theorem.
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6.6 Proof of Theorems [6.1.4] and [6.1.5]

Let px = BN + iyn be a complex zero of Lf(N;s) with |yy| > 2meN*. We will show that L;(N;s) never

vanishes for

A 4loglog N
By > <1+08:0g>7

22 -1 log N
when 1/2 < A <1 and is nonzero for

4loglog N

1
BN >1+ IOgN 3

when A > 1. Then one concludes the proof of the theorem by using the functional equation ([1.37)). Let s be

such that [t| > 2reN* with A > 1/2 and

a>max<1 ’\+€)<1+61°g10gN>, (6.42)

T2X -1 log N

where € > 0 is arbitrary and c¢ is a positive constant which will be determined later. From ([1.36]) we have

L) = |3 )| 3D A (6.43)

nl—s
n<N n<N

Consider the right-hand side of ((6.43)), We will obtain an upper bound for the first sum and a lower bound
for the second sum. By Lemmas and we see that

> %”) (6.44)

n>N
oc—1\? Nl-° 1 1

— log N + 2 _ — .

>< > > U_l(og + 7+J_1)+O( ﬁN)

Since by (6.42) we always have

cloglog N

>1 ,
7 + log N

then from (6.44]) we have

Z a(n) - ( cloglog N )2
= ns log N + cloglog N
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1 log N log N 1
— log N + 2 _ Ol —|.
loch(cloglogN> <og * 7+clog10gN)+ (\/N)

Therefore for ¢ = 4 one find that

Z a(@) - <log10gN>2, (6.45)

nH ns log N

for sufficiently large N. Now by Lemmas for [t| > 2meN?, and [t| > 20, we find that

a(n) R _ e
|Xf(s)|n§<;vnl_s <1.02<2m> N (logN+27 1+ O(N )). (6.46)

Then from (6.46]), fixed € > 0 and large N we write

1-20
sy Z@ <2.04 (;L) No+e < 2,04 NA(1-20)+o+e, (6.47)
n<N

If 1/2 < A <1+, then by (6.42) the exponent of N in (6.47) can be written as

loglog N loglog N
Ml—20)+o0+e=A+e—0c(2X\-1)< —c()\—i—e)% < —c(l+2e)%.
If A > 1+ ¢, then the exponent of N in (6.47)) is
loglog N
AMl—=20)+o0+e<(14+€)(l—20)+c+e=(1—0)(1+2€) < *C(].‘FQE)W.
o
By combining the above two cases and using (6.47)), we derive
s . .
Xf nl—s 10gc/2 N

n<N

Finally choose ¢ = 4. Then from (6.45)) and (6.48) we have

loglog N\>  2.04
ogog> >0,

L¢(N;s)| > —
L)l > (BT ) - o
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for N large enough. Therefore there exists a Ny > 0 such that when N > Ny, then L¢(N;s) # 0 in the

region

> > max (1 At+e > (1 4loglog N

e t| > 2meN*
oA 1 log N > tl 2 2meN7,

for A > 1/2 and any number € > 0. Which complete the proof of Theorem
We now prove Theorem It is enough to consider the case N > 2. Suppose T > Ty for some large
constant Tp. Let o > 2 and || > max(2weN,Tp). From (6.43) and using the trivial bound d(n) < n we have

L) 2 125~ 0 21 S

n<N n<N
—1 2 NQ,U 1—20 N1+o_
> (2 - “ 1oz (5L N° +
o o—2 2me l1+o
2 2—0 140
o—1 2 2
> — —1.02(2)17% (27 ,
( o ) o—2 (2) < + 1+ O’)

where in the penultimate step we used Lemma We assume in what follows that Ty > 20. A numerical

d(n)

(6.49)

computation shows that the right-hand side of (6.49) is positive when ¢ > 3.5. Thus L(N;s) # 0 for
o > 3.5 and |t| > max(2meN,Tj). Also by the functional equation we see that Ls(N;s) # 0 when o < —2.5,

which concludes the proof of the theorem.

6.7 Proof of Theorems [6.1.6] and

Let T > 0 be a large number. Then by Theorem [6.1.4] we conclude that the zeros of L;(N;s) with
ordinates T' < vy < T 4 U, for some positive constant U, must lie in a rectangle with width 2d — 1, where

d = max(1,\/(2\ —1)). The following theorems will are the main ingredients in the proof of Theorem

Theorem 6.7.1. Let A > 1/2. There exists a constant Ng such that for N > Ny, T > 2reN>, and U > 2,

we have

T 27 2 T

3
N(T+U)-N(T) = T—I—UlogT-l-U _§1Og£_g+0f ((2/\{1) 1og(T+U)>. (6.50)

Furthermore there exists a constant Ty such that (6.50) holds with A = 1 for all N > 1 and T' > max(2meN, Tj).

Proof. Let A > 1/2 and w = max (2, %) Let R be a positively oriented rectangle with vertices w + i7",
w+i(T+U),l —w+i(T+U) and 1 —w + ¢T. From Theorem we observe that the complex zeros

will be inside the rectangle R for sufficiently large N. Without loss of generality we assume that the edges
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of the rectangle do not pass through any zeros of L¢(N;s). Then by Littlewood’s lemma [89, Section 9.9]

we have

T+U
27TZ(5N*1+U)):/ (log |Ly(N;1 —w +it)| — log |Ls(N;w + it)|) dt (6.51)
PER T

+/ (arg L(N;0o +i(T +U))d —arg Ly(N;0 +iT)) do,
1

—w

where the argument of L¢(N;s) is obtained by continuation of log Ly(N;s) leftward from the value 0 at

o = 0o. From (|1.36) we have

v =14 Y Wy A4

2<n<N 1

IA
3
IA
Z

Then from (1.22) we may write

|Ly(N;s)—1] < Z d,,(LZ)+|Xf(5)| Z |a(n)‘

2<n<N 1<n<N

Since T' > 2meN?, applying (1.24)) and (6.47) we find that

1
ILp(Nis) = 1] e Y —— + 204N 17200 Foke (6.52)
2<n<N n

N
< 1 + / L dx + 2.04NM1—20)Fo+e
€ 2 :L»O'—S

1 min(c—1—e,A(20—1)—0—¢)
-0 ,

for o > w. Note that for ¢ > w, both 0 —1 — € and A(20 — 1) — 0 — € are positive and increasing. Therefore

from (6.52)), log L#(N;s) is analytic and non-zero for o > w. Then by Cauchy’s theorem,

o0

T+U [e%s)
/ logLf(N;w+it)dt:/ logLf(N;U—i-iT)da—/ log Ly(N;o+i(T +U))do. (6.53)

T w w

Again from (6.52)), the integrals on the right-hand side of (6.53) are bounded. Therefore

T+U T+U
—/ log |Ly(N;w +it) |[dt = — Re / log Ly (N;w 4+ it) dt = O(1). (6.54)
T T
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Using the functional equation (5.5) we may write

T+U

T+U T+U
/ 10g|Lf(N;1—w+it)|dt:/ 10g|Lf(N;w+it)|dt—/ log |x ¢ (w + it)| dt.
T T T

Note that

T+U T+U wti(T+U)
/ log |x(w +it)| dt = Re / log x s(w + it) dt = Im / log x ¢ (s) ds.
T T wHiT

Also for t — oo

2

o T o o3
Re (logs) =logt + O (t2> and Im (logs) = (5 - ?> +0 (t3> .

Therefore from ((6.24]), (6.56)), (6.57)), a straightforward computation shows that

T+U T
Y (1= 2w)Tlog —
21

T+U
/ log |xf(w + it)| dt = (1 — 2w)(T + U) log
T

— (1 = 2w)U + O (w*log(T + U)).

Hence from (6.54), (6.55)) and (6.58) we find that

T+U

T
— (2w —1)Tlog —

T+U
/ log|Ls(N;1—w+it)|dt = (2w — 1)(T + U) log 5
T v

— (2w — 1)U + O (w?log(T + U)).

(6.55)

(6.56)

(6.57)

(6.58)

(6.59)

Next we consider the change in arg L;(N;s) along the bottom edge of R. Let ¢ be the number of zeros of

Re (Ly(N;o +14T)) on the interval (1 —w,w). Then there are at most g + 1 subintervals of (1 — w,w) in

each of which Re (Lj(N;o + ¢T)) is of constant sign. Therefore the variation of arg L;(N;o + iT) is at

most 7 in each subinterval. So we have

arg Ly(N;o +iT)| , < (¢+ )7

To estimate ¢, first we define

9(2) :=Ly(N;z+1iT)+ Ly(N;zZ +1iT).

120

(6.60)

(6.61)



If 2 = o is a real number then we have

g(o) = Re (Ly(N;o +14T)).

Let R = 2(2w — 1) and consider the disk |z — w| < R centered at w. Choose T large so that

Im (z+iT) >T — R > 0.

Thus, Ly(N;z+4T), and hence also g(z), are analytic in the disk |z — w| < R. Let n(r) be the number of

zeros of g(z) in the disk |z — w| < r and R; = R/2. Then we have

R R

d
/@dTZH(Rl)/ == n(Ry)log2. (6.62)

0 T Ry r

By Jensen’s theorem,
R 27 i0 2
n(r) 1/ lg(w + Re™)| 1/ "

——Zdr=— [ log=——F——>df=— [ loglg(w+ Re')|df — log |g(w)|. 6.63
| ar= g [ e TS 5 | lozla )ldo—loglg(w).  (6.63)

A computation similar to (6.52]) shows that

)

1 min(w—1—e,A(2w—1)—w—¢)
2

|Lf(N;w+iT)| > 1 — (
for T'> 27X and A > 1/2. For A > 1, we have w = 2 and hence
. 1
Ly (Niw +4T)| > £
For 1/2 < A <1, we have w = 2)A/(2\ — 1). In this case,
. 1
|Lf(N;w+14iT)| > %

From the definition (1.36) we have

n

ILy(N;s)| < > d(Z) +xr9) > dl@f
n<N
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By Lemma we have
xp(s) < |s|1729),
One can show ( similar to Lemma [6.2.2) that

d(n) Nl=%logN ifoc#1
> <

n<N log® N ifo=1
Thus,
|L;(N;s+iT)| < log N(N'™7 +log N + T*"2 N?).
Therefore from , we have
19(s)] < |Ls(N;s+iT)| +|Ly(N;s —iT)| < log N(N'™7 +1log N + T' 727 N7). (6.64)

Since |s —w| < R =2(2w — 1), then 2 — 3w < 0 < 5w — 2. Also T' > 2weN> for A > 1/2. So the expression

on the right-hand side of (6.64]) is largest when o = 3 — 2w. Therefore

l9(s)| < log N(N3*~1 4 log N + TN@A-1HEw=2)
< logT(T(‘gw*U/’\ JrT1+(2,\71)(3wfz)/,\)

< T,
Finally
|9(w + Re™)| < T

Hence from (6.62) and (6.63), it follows that n(R;) < wlogT. Now, the zeros of L;(N;o + iT) for
1—w < o < w correspond to, and their number equals the number of, the zeros of g(o) in the same interval.

Since the interval (1 — w, w) is contained in the disk |s — w| < Ry, then ¢ < n(R;). Since

B 2SR !
WEMAXA%oNT1) S a1
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then from we conclude that

3
5 = 1> logT. (6.65)

/ argLf(N;a+iT)da<<(
1

—w

Similarly,

w 3
/ arg Ly(N;o +i(T+U))do < ( ) log(T 4+ U). (6.66)

—w

22 -1

For smaller values of N one can obtain similar results as (6.52)) to by choosing the rectangular contour
R=[35+iT,35+iT+U),-25+iT +U),—2.5+4T| and T > max(2weN, Tp). Here Tj is the same as

in Theorem Combining (6.51)), (6.54), (6.59), (6.65), and (6.66)), we have the following result.

Theorem 6.7.2. For A >1/2, N > Ny, and T > 2re N>, we have

T+U

— (2w — 1)Tlog % - 2w-1)U (6.67)

+0y ((%ﬂ)slog(T—i— U)) .

Furthermore there exists a constant Ty such that (6.67) holds with A\ =1 for all N > 1 and T' > max(2meN, Tj).

27 Z(ﬁN —14+w)=Q2uw—-1)(T+U)log
PER

Now increasing w to w+1 in Theorem and subtracting (6.67)) from the corresponding relation where

w is replaced by w 4 1 gives the conclusion of Theorem [6.7.1

O
Theorem 6.7.3. There exists a constant Ty such that if N > 1, T > max(2weN,Ty), and U > 2, then
T+U, T+U T T U
NYT - N°%T) > 1 - =1 - = N .
@+0)-N@) > T 0g T Thog Yo, (), (6.65)

where 0 < a <1 is such that the number of zeros of >, . a(n)n™* with real parts strictly greater than 1/2

8
al
< —logM N
< 5 log M+ Oy(N),

M was defined in Proposition|1.5.1. Also, the right-hand side of (6.68)) is a lower bound for the number of
distinct zeros of Ly(N;s) on the critical line with T <t <T + U. Here M is defined in Proposition m
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Proof. First of all we introduce some notation to simplify the proof. Rewrite (1.36) in the form

)= FA-s)\ _
L5(¥:9) = Fo) (14 x0T 5 5 ) = Fz(o) (6.69)
where
LRI
n<N
and
B F(l1-ys)
Z(s) =14 xy(s) FG)
Define
Np(T)=#{p: F(p) =0and 0 < Im p < T},
N (T) = #{p: Z(p) =0 and 0 < Im p < T},
NUT)=#{p:F(p) =0, Rep=1/2and 0 < Im p < T},
NUT)=#{p:Z(p) =0, Rep=1/2and 0 < Im p < T},
Ni(T)=#{p: F(p) =0, Rep>1/2and 0 < Im p < T},
and

NI(T)=#{p:Z(p)=0, Rep>1/2and 0 < Im p < T}

Clearly N(X;T) = Ng(T) for X = N. Also N°(T) = N%(T) + N(T). From we see that Ly(N; 1 +
it) = 0 if and only if F(§ 4 it) =0 or Z(1 +it) = 0. If 1/2 +ig is a zero of F(s) then we write

Z(1/2 +ig) =1+ x;(1/2 + ig) Jim m

Our next goal is to provide a lower bound for N2(T +u) — N9(T'), or equivalently, obtain a lower bound for
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the umber of solutions of

F(1/2 —it)

1/24+it) —r—-—2=-1
xs(1/ +Z)F(1/2+it) ’
for T <t < T+ U. Note that if
L F(1/2 —at)
1/2 t)————= =—1
xs(1/ +Z)F(1/2+it) ’
then
L F(1/2 —idt)
24 it)———-L ) = (2 1
arg(xf(l/ +Z)F(1/2+it)> 2m+ D7
and hence

arg xs(1/2+it) —2arg F(1/2 +it) = 2m + 1)7

for some integer m. Let

G(s) := argxy(s) —2arg F'(s).

Fix € > 0. Construct a continuous curve L(€) from 1/2 +iT to 1/2 + i(T + U) directed upward, which is
the union of line segments belonging to the same vertical line and any two consecutive segments joint by a
small semicircle of radius € as follows. The semi circles have the same radius € > 0, are centered exactly at
the zeros 1/2 +ig of F(s), and lie to the right of the critical line. Here we chose € small enough so that the
semicircles do not overlap. Next consider a straight line segment of L(€) between two consecutive zeros of
F(s), excluding the semicircle part. Fach time the image under G(s) of this straight line segment crosses
the horizontal lines y = (2m + 1)7 for m € Z, it gives rise to a distinct zero of Z(1/2 + it). Furthermore, by
the argument principle, as e — 07 the image of the small semicircle under G(s) is a vertical line segment of
length 7mm(g), where m(g) is the multiplicity of the zero 1/2 + ig of F(s). In the limit, the function G(s)
has a jump discontinuity at each zero 1/2 + ig of F(s) with jump 7wm(g).

Consider a rectangle of height H with horizontal grid lines, such that the distance between any two
consecutive lines is equal to 2w. If a continuous curve intersects all the horizontal grid lines then the
minimum number of points of intersection is H/2w. Using this geometrical fact, we see that the number of

zeros of Z(s) arising from the image of the straight line segment of L(e) crossing the lines y = (2m + 1) is
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at least

. 1
51~I>r(§l+ %\Aﬁ(e)(arg xf(s) —2arg F(s)| + O(1).

In particular, if J is the total number of crossings of the set of jumps by the lines y = (2m + 1)7 then

1
lim §|A£(E) (arg xs(s) —2arg F(s)| — J + O(1) (6.70)

e—0t

gives a lower bound for the number of distinct zeros of Z(1/2 + it) with T < ¢ < T + U. We take this
quantity as a lower bound for N3(T + u) — N2(T). Since any vertical line of length wm(g) crosses the lines

y = (2m + 1) at most m(g) times then we have

J< Y mlg).

T<g<T+U
Hence

J < NXNT +U) - NXT). (6.71)

To estimate A, () arg F'(s), we will consider a clockwise oriented contour C(e) from by L(e) and the line

segments (1 +i(T+U),3.5+i(T +U)], [3.5+4T,3.5 +i(T + U)], and (3 +i(T + U), 3.5 +iT]. We have
Ac(oarg F(s) = =2n(NA (T + U) — N£(T)).
From the definition of F(s) and an argument similar to (6.52)) we find

|F(s) — 1] <

22.5°

Hence
arg F(3.5 +it)[ 277 = O(1).

Note that
Im (F(o +iT)) = — Z a(n) sm(Tlogn).

n<N

no’
By a generalization of Descartes’s Rule of Signs (see Pélya and Szeg6 [78], Part V, Chapter 1, No. 77), the
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number of real zeros of Im (F(o +4T)) in the interval 1/2 < ¢ < 3.5 is less than or equal to the number of
sign changes in the sequence a(n)sin(T logn), 1 < n < N, which in turn is less than or equal to the number

of nonzero coefficients of a(n)sin(7" logn). Therefore

arg F(o +iT)|},, = Of(N).

Similarly
arg F(o +4(T + U)o = Of(N).
Thus
Aparg F(s) = =2a(NE (T + U) — N£(T)) + Oy (N). (6.72)
Again by ,
Ape arg xy(s) = — arg x(1/2 +it)| .Y + 04 (1) (6.73)

T
=-2(T+U)log _;_U

T
+ 2Tlog% +2U + Of(1).

Finally combining (6.70)), (6.71)), (6.72), and (6.73) we obtain

T+U. T+U T. T U
> T g Y D g = Y o(NEH(T 1+ U) - NE(T))
i

NYU(T — NY(T
Z( +u) Z( )_ T 2T T 2

— (Np(T +U) = Np(T)) + O(N).
Now by Proposition there exists a positive number a with 0 < a < 1 such that
+ + u
Ni(T+U)—-NE(T) < aglongL Of(N).

Thus

NYT +U) - N°T) = NY(T +u) — Ny(T) + Ny (T +U) — NX(T) (6.74)
> T+U10gT+U —Zlogz—g—glogM+Of(N),
us 27 T 2 w T

which proves Theorem [6.7.3]
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For A > 1/2, one derives from (6.50) that

T+U T+U T T U
NO(T — NY%T) > 1 - =1 - = N .
(T+0) (T) 2 T Og27reM“ T Og27TeMa 7T+Of( ) (6.75)
T+U T+U T T U
_ -t log + ——log———+0;UlogN)+ Os (N)

T T T 2 T

3
=N(T+U)-N(T)+OUlogN)+ O (N)+ Oy ((2)\)\_1) log(T+U)>,

which completes the proof of Theorem Now for N < T°M) and For U > T? for some positive constant

B, we have

OT)

0 _
lim inf N(T+U)-N
— N(T)

~1. (6.76)

Since the right-hand sides of and are also lower bounds for the number of simple zeros of
L{(N;1/2 +it) with T < t < T 4 U, then the liminf in continues to equal 1 when one replaces
NO(T +U) — N°(T) on the left-hand side of by the number of simple zeros of L;(N;1/2 4+ it) with
T <t <T+U. This implies that as T' — 0o, 100% of the zeros of L(N;s) are simple and lie on the critical

line, which concludes the proof of Theorem [6.1.
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