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Abstract

The focus of the first part of the thesis commences with an examination of two pages in Ramanujan’s lost

notebook, pages 336 and 335. A casual, or even more prolonged, examination of the strange formulas on these

pages does not lead one to conclude that they are related to one another. Moreover, it does not appear that

they have any relationships with other parts of mathematics. On page 336 in his lost notebook, Ramanujan

proposes two identities. Here, it does not take a reader long to make a deduction – the formulas are obviously

wrong – each is vitiated by divergent series. Most readers encountering such obviously false claims would

dismiss them and deposit the paper on which they were written in the nearest receptacle for recycling (if they

were environmentally conscientious). However, these formulas were recorded by Ramanujan. Ramanujan

made mistakes, but generally his mistakes were interesting! Frequently, there were hidden truths behind his

not so precise or accurate claims – truths that were deep and influential for decades. Thus, it was difficult

for us to dismiss them.

We initially concentrate on only one of the two incorrect “identities.” This “identity” may have been

devised to attack the extended divisor problem. We prove here a corrected version of Ramanujan’s claim,

which contains the convergent series appearing in it. Our identity is admittedly quite complicated, and we

do not claim that what we have found is what Ramanujan originally had in mind. But there are simple and

interesting special cases as well as analogues of this identity, one of which very nearly resembles Ramanujan’s

version. The aforementioned convergent series in Ramanujan’s faulty claim is similar to one used by Voronöı,

Hardy, and others in their study of the classical Dirichlet divisor problem, and so we are motivated to study

further series of this sort. This now brings us to page 335, which comprises two formulas featuring doubly

infinite series of Bessel functions. Although again not obvious at a first inspection, one is conjoined with the

classical circle problem initiated by Gauss, while the other is associated with the Dirichlet divisor problem.

Berndt, Kim, and Zaharescu have written several papers providing proofs of these two difficult formulas in

different interpretations. In this thesis, We return to these two formulas and examine them in more general

settings.

The Voronöı summation formula appears prominently in our study. In particular, we generalize work of
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Wilton and derive an analogue involving the sum of divisors function σs(n).

Another part of the thesis is focused on the partial sums of Dedekind zeta functions and L-functions

attached to cusp forms. The motivation of the study of the partial sums of Dedekind zeta functions and

L-functions attached to cusp forms arise from their approximate functional equations. The partial sums of

the Dedekind zeta function of a cyclotomic field K is defined by the truncated Dirichlet series

ζK,X(s) =
∑
‖a‖≤X

1

‖a‖s
,

where the sum is to be taken over nonzero integral ideals a of K and ‖a‖ denotes the absolute norm of a.

We establish the zero-free regions for ζK,X(s) and estimate the number of zeros of ζK,X(s) up to height T .

We consider a family of approximations of a Hecke L-function Lf (s) attached to a holomorphic cusp

form f of positive integral weight with respect to the full modular group. These families are of the form

Lf (X; s) :=
∑
n≤X

a(n)

ns
+ χf (s)

∑
n≤X

a(n)

n1−s
,

where s = σ+ it is a complex variable. From the approximate functional equation one sees that Lf (X; s) is a

good approximation to Lf (s) when X = t/2π. To investigate such approximation in more general sense, we

compute the L2-norms of the difference of two such approximations of Lf (s). We work with a weight which

is a compactly supported smooth function. Mean square estimates for the difference of approximations of

Lf (s) can be obtained from such weighted L2-norms. We also obtain a vertical strips where most of the zeros

of Lf (X; s) lie. We study the distribution of zeros of Lf (X; s) when X is independent of t. For X = 1, 2 we

prove that all the complex zeros of Lf (X; s) lie on the critical line σ = 1/2. We also show that as T → ∞

and X = T o(1), 100% of the complex zeros of Lf (X; s) up to height T lie on the critical line and simple.

Here by 100% we mean that the ratio between the number of simple zeros on the critical line and the total

number of zeros up to height T approaches 1 as T →∞.
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Chapter 1

Introduction

1.1 Ramanujan’s claim

The Dirichlet divisor problem is one of the most notoriously difficult unsolved problems in analytic number

theory. Let d(n) denote the number of divisors of n. Define the error term ∆(x), for x > 0, by

∑′

n≤x

d(n) = x log x+ (2γ − 1)x+
1

4
+ ∆(x), (1.1)

where γ denotes Euler’s constant. Here, and in the sequel, a prime ′ on the summation sign in
∑′

n≤x
a(n)

indicates that only 1
2a(x) is counted when x is an integer. The Dirichlet divisor problem asks for the correct

order of magnitude of ∆(x) as x → ∞. At this writing, the best estimate ∆(x) = O(x131/416+ε), for each

ε > 0, as x → ∞, is due to Huxley [51] ( 131
416 = 0.3149 . . . ). On the other hand, Hardy [46] proved that

∆(x) 6= O(x1/4), as x→∞, with the best result in this direction currently due to Soundararajan [83]. It is

conjectured that ∆(x) = O
(
x1/4+ε

)
, for each ε > 0, as x→∞.

Let σs(n) =
∑
d|n d

s, and let ζ(s) denote the Riemann zeta function. For 0 < s < 1, define ∆−s(x)

(We use ∆−s(x) instead of ∆s(x), as is customarily used, so as to be consistent with the results in this

dissertation, most of which require Re s > 0) by

∑′

n≤x

σ−s(n) = ζ(1 + s)x+
ζ(1− s)

1− s
x1−s − 1

2
ζ(s) + ∆−s(x). (1.2)

The problem of determining the correct order of magnitude of the error term ∆−s(x), as x → ∞, is

known as the extended divisor problem (see Lau [61]). As x → ∞, it is conjectured that for each ε > 0,

∆−s(x) = O(x1/4−s/2+ε) for 0 < s ≤ 1
2 and ∆−s(x) = O(xε) for 1

2 ≤ s < 1.

The importance of the conditionally convergent series

x1/4

π
√

2

∞∑
n=1

d(n)

n
3
4

cos
(

4π
√
nx− π

4

)
(1.3)

1



in the study of the Dirichlet divisor problem was emphasized by Hardy [46, equation (6.32)]. Hardy’s

discernment came to fruition in the work of Hafner [45] and Soundararajan [83, equation (1.8)] in their

improvements of Hardy’s Ω-theorem on the Dirichlet divisor problem. However, we emphasize that Voronöı

[92, p. 218] first made use of (1.3) in the Dirichlet divisor problem.

As another example, we note that the series

∞∑
n=1

σk(n)

n
5
4+

k
2

sin
(

4π
√
nx− π

4

)
, (1.4)

for |k| < 3
2 , arises in the work of Legal [82, p. 282] and Kanemitsu and Rao [54] related to a conjecture of

Chowla and Walum [26], [25, pp. 1058–1063], which is an extension of the Dirichlet divisor problem. It is

conjectured that if a, r ∈ Z, a ≥ 0, r ≥ 1, and if Br(x) denotes the r-th Bernoulli polynomial, then for every

ε > 0, as x→∞, ∑
n≤
√
x

naBr

({x
n

})
= O

(
xa/2+1/4+ε

)
, (1.5)

where {x} denotes the fractional part of x. The conjectured correct order of magnitude in the Dirichlet

divisor problem is equivalent to (1.5) with a = 0, r = 1.

Our last example is as famous as the Dirichlet divisor problem. Let r2(n) denote the number of repre-

sentations of n as a sum of two squares. The equally celebrated circle problem asks for the precise order of

magnitude of the error term P (x), as x→∞, where

∑′

n≤x

r2(n) = πx+ P (x).

During the five years that Ramanujan visited Hardy at Cambridge, there is considerable evidence, from

Hardy in his papers and from Ramanujan in his lost notebook [80], that the two frequently discussed both

the circle and divisor problems. For details of Ramanujan’s contributions to these problems, see either the

book by Andrews and Berndt [2, Chapter 2] or the survey paper by Berndt, Kim, and Zaharescu [16].

It is possible that Ramanujan also thought of the extended divisor problem, for on page 336 in his lost

notebook [80], we find the following claim.

Let σs(n) =
∑
d|n d

s, and let ζ(s) denote the Riemann zeta function. Then

Γ

(
s+

1

2

){
ζ(1− s)

(s− 1
2 )xs−

1
2

+
ζ(−s) tan 1

2πs

2xs+
1
2

+

∞∑
n=1

σs(n)

2i

(
(x− in)−s−

1
2 − (x+ in)−s−

1
2

)}
(1.6)

= (2π)s
{
ζ(1− s)
2
√
πx

− 2π
√
πxζ(−s) tan 1

2πs+
√
π

∞∑
n=1

σs(n)√
n
e−2π

√
2nx sin

(π
4

+ 2π
√

2nx
)}

.

2



In view of the identities for (1.3) and (1.4), it is possible that Ramanujan developed the series on the

right-hand side of (1.6) to study the extended divisor problem. Unfortunately, (1.6) is incorrect, since the

series on the left-hand side, which can be written as

∞∑
n=1

σs(n) sin
((
s+ 1

2

)
tan−1

(
n
x

))
(x2 + n2)

s
2+

1
4

,

diverges for all real values of s since σs(n) ≥ ns. For further discussion one can follow the paper by Berndt,

Chan, Lim, and Zaharescu [12]. However, as we shall see in Chapter 2, there is a valid interpretation of

this series using the theory of analytic continuation. Also in Chapter 2, we obtain a corrected version of

Ramanujan’s claim, where we start with the series on the right-hand side, since we know that it converges.

1.2 Extended divisor problem and Voronöı summation formula

A celebrated formula of Voronöı [92] for
∑
n≤x d(n) is given by

∑′

n≤x

d(n) = x(log x+ (2γ − 1)) +
1

4
+
√
x

∞∑
n=1

d(n)√
n

(
−Y1(4π

√
nx)− 2

π
K1(4π

√
nx)

)
, (1.7)

where Yν(x) denotes the Bessel function of order ν of the second kind, and Kν(x) denotes the modified

Bessel function of order ν. Thus, the error term ∆(x) in the Dirichlet divisor problem (1.1) admits the

infinite series representation

∆(x) =
√
x

∞∑
n=1

d(n)√
n

(
−Y1(4π

√
nx)− 2

π
K1(4π

√
nx)

)
.

In [92], Voronöı also gave a more general form of (1.7), namely,

∑
α<n<β

d(n)f(n) =

∫ β

α

(2γ + log t)f(t) dt+ 2π

∞∑
n=1

d(n)

∫ β

α

f(t)

(
2

π
K0(4π

√
nt)− Y0(4π

√
nt)

)
dt, (1.8)

where f(t) is a function of bounded variation in (α, β) and 0 < α < β. Dixon and Ferrar [35] gave a proof

of (1.8) under the more restrictive condition that f has a bounded second differential coefficient in (α, β).

Wilton [97] proved (1.8) under less restrictive conditions. In his proof, he assumed f(t) has compact support

on [α, β] and V β−εα f(t) → V β−0α f(t) as ε tends to 0. Here V βα f(t) denotes the total variation of f(t) over

(α, β). In 1929, Koshliakov [59] gave a very short proof of (1.8) for 0 < α < β, α, β /∈ Z, for f analytic inside

a closed contour strictly containing the interval [α, β]. Koshliakov’s proof in [59] is based on the series ϕ(x),

3



defined in (2.8), and its representation

ϕ(x) = −γ − 1

2
log x− 1

4πx
+
x

π

∞∑
n=1

d(n)

x2 + n2
.

The reader is referred to papers by Berndt [8, 10] for Voronöı-type summation formulas for a large class of

arithmetical functions generated by Dirichlet series satisfying a functional equation involving the Gamma

function. For Voronöı-type summation formulas involving an exponential factor, see the paper by Jutila

[53]. The Voronöı summation formula has been found to be useful in physics too; for example, Egger and

Steiner [38, 40] showed that it plays the role of an exact trace formula for a Schrödinger operator on a certain

non-compact quantum graph. They also gave a short proof of the Voronöı summation formula in [39].

The extension of (1.8) for α = 0 is somewhat more difficult, since one needs to impose a further condition

on f(t). When f ′′(t) is bounded in (δ, α) and t3/4f ′′(t) is integrable over (0, δ) for 0 < δ < α, Dixon and

Ferrar [35] proved that

∑
0<n<β

d(n)f(n) =
f(0+)

4
+

∫ β

0

(2γ + log t)f(t) dt (1.9)

+ 2π

∞∑
n=1

d(n)

∫ β

0

f(t)

(
2

π
K0(4π

√
nt)− Y0(4π

√
nt)

)
dt.

Wilton [97] obtained (1.9) under the assumption that log xV x0+f(t) tends to 0 as x → 0+. Hejhal [50] gave

a proof of (1.9) for β → ∞ under the assumption that f is twice continuously differentiable and possesses

compact support. For other proofs of the Voronöı summation formula, the reader is referred to Meurman

[68] and Ivić [52].

Consider the following Voronöı summation formula in an extended form due to Oppenheim [76], and in

the version given by Laurinc̆ikas [62]. For x > 0, x /∈ Z, and − 1
2 < σ < 1

2 ,

∑
n<x

σ−s(n) = ζ(1 + s)x+
ζ(1− s)

1− s
x1−s − 1

2
ζ(s) +

x

2 sin
(
1
2πs

) ∞∑
n=1

σs(n) (1.10)

×
(√
nx
)−1−s(

Js−1(4π
√
nx) + J1−s(4π

√
nx)− 2

π
sin(πs)K1−s(4π

√
nx)

)
,

so that, by (1.2), ∆−s(x) is represented by the expression involving the series on the right-hand side of

(1.10). (Note that Laurinc̆ikas proved (1.10) for 0 < s < 1
2 . However, one can extend it to − 1

2 < σ < 1
2 .)

Wilton [98] proved the same result in a more general setting by considering the ‘integrated function’, that

4



is, the Riesz sum

1

Γ(λ+ 1)

∑′

n≤x

σ−s(n)(x− n)λ.

Laurinc̆ikas [62] gave a different proof of (1.10) many years later.

We will now explain the connection of Ramanujan’s series

∞∑
n=1

σs(n)√
n
e−2π

√
2nx sin

(π
4

+ 2π
√

2nx
)

and its companion with the extended form of the Voronöı summation formula.

As mentioned by Hardy [46], [47, pp. 268–292], if we use the asymptotic formulas (2.18) and (2.19) for

Y1(4π
√
nx) and K1(4π

√
nx), respectively, in (1.7), we find that

∆(x) =
x1/4

π
√

2

∞∑
n=1

d(n)

n3/4
cos
(

4π
√
nx− π

4

)
+R(x), (1.11)

where R(x) is a series absolutely and uniformly convergent for all positive values of x. The first series on the

left side of (1.11) is convergent for all real values of x, and uniformly convergent throughout any compact

interval not containing an integer. At each integer x, it has a finite discontinuity.

If we replace the Bessel functions in (1.10) by their asymptotic expansions, namely (2.17) and (2.19),

similar to what Hardy did, then the most important part of the error term ∆−s(x) is given by

x
1
4−

1
2 s cot

(
1
2πs

)
π
√

2

∞∑
n=1

σs(n)

n
s
2+

3
4

cos
(

4π
√
nx− π

4

)
.

This series, though similar to the one in (1.11) or in (1.3), is different from Ramanujan’s series (2.9) in that

the exponential factor, namely e−2π
√
2nx, is not present.

A generalization of (2.8), namely,

ϕ(x, s) := 2

∞∑
n=1

σ−s(n)n
s
2

(
eπis/4Ks

(
4πeπi/4

√
nx
)

+ e−πis/4Ks

(
4πe−πi/4

√
nx
))

, (1.12)

was studied by Dixit and Moll [34]. Note that ϕ(x, 0) = ϕ(x), and that ϕ(x) was used by Koshliakov [59] in

his short proof of (1.8).

Replacing the Bessel functions in (1.12) by their asymptotic expansions from (2.19), we find that the
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main terms are given by

√
2

x1/4
cos

(
π

4

(
s+

1

2

)) ∞∑
n=1

σs(n)

ns/2+1/4
e−2π

√
2nx sin

(π
4
− 2π

√
2nx

)
(1.13)

+

√
2

x1/4
sin

(
π

4

(
s+

1

2

)) ∞∑
n=1

σs(n)

ns/2+1/4
e−2π

√
2nx sin

(π
4

+ 2π
√

2nx
)
.

In our extensive study, the forms of the series in (1.13) are the closest that we could find that resemble the

series in Ramanujan’s original claim (1.6), or in our Theorem 2.1.1, or the companion series

∞∑
n=1

σs(n)√
n
e−2π

√
2nx sin

(π
4
− 2π

√
2nx

)
.

Note that the only place where they differ is in the power of n. Similar remarks can be made about (2.7)

and (1.13).

Series similar to these arise in the mean square estimates of
∫ x
1

∆−s(t)
2 dt by Meurman [69, equations

(3.7), (3.8)]. (An excellent survey on recent progress on divisor problems and mean square theorems has

been written by Tsang [91].) Similar series have also arisen in the work of Cramér [30], and in the recent

work of Bettin and Conrey [19, p. 220–223]. Thus it seems that the two series in (1.13) are more closely

connected to the extended Dirichlet divisor problem than are Ramanujan’s series and its companion. We

have found identities, similar to those in Theorems 2.1.1 and 2.1.2, for each of the series in (1.13). However,

we refrain ourselves from stating them as they are similar to the ones already proved.

Remark. It is interesting to note here that at the bottom of page 368 in [80], one finds the following

note in Hardy’s handwriting: “Idea. You can replace the Bessel functions of the Voronöı identity by circular

functions, at the price of complicating the ‘sum’. Interesting idea, but probably of no value for the study of

the divisor problem.” In view of the applications of such series mentioned in the above paragraph, we can

say that Hardy’s judgement was incorrect.

The series in (1.12) can be used to derive an extended form of the Voronöı summation formula (1.8)

in the form contained in the theorem in Chapter 3. This proof generalizes the technique enunciated by

Koshliakov in [59].
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1.3 Generalization of two entries on page 335 of Ramanujan’s

lost notebook

We begin this section by stating the two entries on page 335 in Ramanujan’s lost notebook [80]. Define

F (x) =


bxc, if x is not an integer,

x− 1
2 , if x is an integer.

(1.14)

Entry 1.3.1. If 0 < θ < 1 and F (x) is defined by (1.14), then

∞∑
n=1

F
(x
n

)
sin(2πnθ) = πx

(
1

2
− θ
)
− 1

4
cot(πθ) (1.15)

+
1

2

√
x

∞∑
m=1

∞∑
n=0

{
J1(4π

√
m(n+ θ)x)√

m(n+ θ)
−
J1(4π

√
m(n+ 1− θ)x)√

m(n+ 1− θ)

}
,

where Jν(x) denotes the ordinary Bessel function of order ν.

Entry 1.3.2. If 0 < θ < 1 and F (x) is defined by (1.14), then

∞∑
n=1

F
(x
n

)
cos(2πnθ) =

1

4
− x log(2 sin(πθ)) (1.16)

+
1

2

√
x

∞∑
m=1

∞∑
n=0

{
Ĩ1(4π

√
m(n+ θ)x)√

m(n+ θ)
+
Ĩ1(4π

√
m(n+ 1− θ)x)√

m(n+ 1− θ)

}
,

where

Ĩν(z) := −Yν(z) +
2

π
cos(πν)Kν(z), (1.17)

where Yν(x) denotes the Bessel function of the second kind of order ν, and Kν(x) denotes the modified Bessel

function of order ν.

Entries 1.3.1 and 1.3.2 were established by Berndt, Kim, and Zaharescu under different conditions on

the summation variables m,n in [14, 15, 18]. An expository account of their work along with a survey of

the circle and divisor problems can be found in an another paper of Berndt, Kim and Zaharescu [16]. See

also the book [2, Chapter 2] by Andrews and Berndt.

It is easy to see from (1.14) that the left-hand sides of (1.15) and (1.16) are finite. When x→ 0+, Entries

(1.15) and (1.16) give the following interesting limit evaluations:

lim
x→0+

√
x

∞∑
m=1

∞∑
n=0

{
J1(4π

√
m(n+ θ)x)√

m(n+ θ)
−
J1(4π

√
m(n+ 1− θ)x)√

m(n+ 1− θ)

}
=

1

2
cot(πθ),
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and

lim
x→0+

√
x

∞∑
m=1

∞∑
n=0

{
I1(4π

√
m(n+ θ)x)√

m(n+ θ)
+
I1(4π

√
m(n+ 1− θ)x)√

m(n+ 1− θ)

}
= −1

2
.

Direct proofs of these limit evaluations appear to be difficult.

As shown in [16, equation (2.8)], when θ = 1
4 , Entry 1.3.1 is equivalent to the following famous identity

due to Ramanujan and Hardy [46], provided that the double sum in (1.15) is interpreted as limN→∞
∑
m,n≤N ,

rather than as an iterated double sum (see [15, p. 26]):

∑′

0<n≤x

r2(n) = πx− 1 +

∞∑
n=1

r2(n)
(x
n

)1/2
J1(2π

√
nx).

Note that the Bessel functions appearing in (1.16) are the same as those appearing in (1.7). Indeed when

θ = 1
2 , Entry 1.3.2 is connected with Voronöı’s identity for

∑
n≤x d(n) as will be shown below. First,

following the elementary formula

∑
n≤x

d(n) =
∑
n≤x

∑
d|n

1 =
∑
dj≤x

1 =
∑
d≤x

[x
d

]
,

we see that the left-hand side of (1.16), for θ = 1
2 , can be simplified as

∞∑
n=1

F
(x
n

)
cos(πn) =

∑′

n≤x

∑
d|n

cos(πd).

Second, let

` =


0, if n is odd,

1, if n is even.

Note that

∑
d|n

cos(πd) = # even divisors of n−# odd divisors of n

= d
(n

2

)
−
{
d(n)− ad

(n
2

)}
= (1 + `)d

(n
2

)
− d(n).
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Hence,

∞∑
n=1

F
(x
n

)
cos(πn) = −

∑′

n≤x
n odd

d(n) +
∑′

n≤x
n even

{
2d
(n

2

)
− d(n)

}
= 2

∑′

n≤ x2

d(n)−
∑′

n≤x

d(n).

Now apply the Voronöı summation formula (1.7) to each of the sums above, and simplify to obtain

∞∑
n=1

F
(x
n

)
cos(πn) = −x log 2 +

1

4
−
√

2x

∞∑
n=1

d(n)√
n

(
Y1(2π

√
2nx) +

2

π
K1(2π

√
2nx)

)

+
√
x

∞∑
n=1

d(n/2)√
n/2

(
Y1(2π

√
2nx) +

2

π
K1(2π

√
2nx)

)

= −x log 2 +
1

4
−
√

2x

∞∑
k=1

1√
k

( ∑
d|k
d odd

1

)(
Y1(2π

√
2kx) +

2

π
K1(2π

√
2kx)

)
.

Now let k = m(2n+ 1) in the last sum, so that

∞∑
n=1

F
(x
n

)
cos(πn) = −x log 2 +

1

4
+
√
x

∞∑
m=1

∞∑
n=0

I1(4π
√
m(n+ 1

2 )x)√
m(n+ 1

2 )
, (1.18)

where I1(z) is defined by (1.17), provided that this double sum is interpreted as limN→∞
∑
m,n≤N , instead

of as an iterated double sum. Then (1.18) is exactly Entry 1.3.2 with θ = 1
2 .

It should be mentioned here that Dixon and Ferrar [36] established, for a, b > 0, the identity

aµ/2
∞∑
n=0

r2(n)

(n+ b)µ/2
Kµ(2π

√
a(n+ b)) = b(1−µ)/2

∞∑
n=0

r2(n)

(n+ a)(1−µ)/2
K1−µ(2π

√
b(n+ a)). (1.19)

Generalizations have been given by Berndt [6, p. 343, Theorem 9.1] and Oberhettinger and Soni [74, p. 24].

Using Jacobi’s identity

r2(n) = 4
∑
d|n
d odd

(−1)(d−1)/2,

we can recast (1.19) as an identity between double series

aµ/2
∞∑
n=0

∞∑
m=0


Kµ

(
4π
√
a
((
n+ 1

4

)
m+ b

4

))
((4n+ 1)m+ b)µ/2

−
Kµ

(
4π
√
a
((
n+ 3

4

)
m+ b

4

))
((4n+ 3)m+ b)µ/2


= b(1−µ)/2

∞∑
n=0

∞∑
m=0


K1−µ

(
4π
√
b
((
n+ 1

4

)
m+ a

4

))
((4n+ 1)m+ a)(1−µ)/2

−
K1−µ

(
4π
√
b
((
n+ 3

4

)
m+ a

4

))
((4n+ 3)m+ a)(1−µ)/2

 .
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In Chapter 4 , we establish one-variable generalizations of Entries 1.3.1 and 1.3.2, where the double sums

here are also interpreted as limN→∞
∑
m,n≤N , instead of as iterated double sums. It is an open problem to

determine if the series can be replaced by iterated double series.

1.4 Partial Sums of Dedekind Zeta functions

A first generalization of the Riemann zeta-function ζ(s) is provided by Dirichlet L-functions. Subsequently,

Dedekind studied the zeta function ζK(s) of a number field K/Q, defined for σ > 1 by

ζK(s) =
∑
a

1

‖a‖s
=

∞∑
n=1

aK(n)

ns
,

where the first sum is to be taken over all nonzero integral ideals a of K and where ‖a‖ denotes the absolute

norm of a. In the second sum, aK(n) is used to denote the number of integral ideals a with norm ‖a‖ = n.

As in the particular case K = Q, where ζ(s) = ζQ(s), the function ζK(s) is analytic everywhere except

solely for a simple pole at s = 1. (See Davenport [31] and Neukrich [72].) The residue of this pole is given

by the formula

Res
s=1

(ζK(s)) =
2rπn0−rRKhK

wK
√
|dK |

,

where r = r1 + r2 (with r1 is the number of real embeddings and r2 is the number of pairs of complex

embeddings of K), n0 = [K : Q] denotes the degree of K/Q, RK denotes the regulator, hK denotes the class

number, wK denotes the number of roots of unity in K, and dK denotes the discriminant of K. (See [72,

page 467].)

For ζ(s), Hardy and Littlewood [48] provided the approximate functional equation

ζ(s) =
∑
n≤X

1

ns
+ πs−1/2

Γ((1− s)/2)

Γ(s/2)

∑
n≤Y

1

n1−s
+O(X−σ) +O(Y σ−1|t|−σ+1/2),

where 0 ≤ σ ≤ 1, X > H > 0, Y > H > 0, and 2πXY = |t|, with the constant implied by the big-O term

depending on H only. Such approximate functional equation motivate the study of properties of partial

sums FX(s) of ζ(s) defined by

FX(s) =
∑
n≤X

1

ns
.

Gonek and Ledoan [41] studied the distribution of zeros of FX(s). They denote the number of typical

zeros ρX = βX + iγX of FX(s) with ordinates 0 ≤ γX ≤ T by NX(T ). In the case that T is the ordinate of

a zero, they define NX(T ) as limε→0+ NX(T + ε). In [41], the authors are concerned with results on NX(T )
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as both X and T tends to infinity.

Theorem 1 in [41] collects together a number of known results on the zeros of FX(s) (see Borwein, Fee,

Ferguson, and van der Waal [21], Montgomery [70], and Montgomery and Vaughan [71]), which can be

summarized as follows:

The zeros of FX(s) lie in the strip α < σ < β, where α and β are the unique solutions of the equations

1 + 2−σ + · · ·+ (X − 1)−σ = X−σ and 2−σ + 3−σ + · · ·+X−σ = 1, respectively. In particular, α > −X and

β < 1.72865. Furthermore, there exists a number X0 such that if X ≥ X0, then FX(s) has no zeros in the

half-plane

σ ≥ 1 +

(
4

π
− 1

)
log logX

logX
.

On the other hand, for any constant C satisfying the inequalities 0 < C < 4/π− 1 there exists a number X0

depending on C only such that if X ≥ X0, then FX(s) has zeros in the half-plane

σ > 1 +
C log logX

logX
.

Theorem 2 in [41] (see also Langer [60]) can be summarized as follows:

If X and T are both greater than or equal to 2, then one has

∣∣∣∣NX(T )− T

2π
log[X]

∣∣∣∣ < X

2
.

Here and henceforth, [X] denotes the greatest integer less than or equal to X. The approximate functional

equation for ζK(s) is (see Chandrasekharan and Narasimhan [24])

ζK(s) =
∑
n≤X

aK(n)

ns
+B2s−1A(1− s)

A(s)

∑
n≤Y

aK(n)

n1−s
+O(X1−σ−1/n0 logX), (1.20)

where A(s) = Γr1(s/2)Γr2(s), B = 2r2πn0/2/
√
|dK |, X > H > 0, Y > H > 0, XY = |dK |(|t|/2π)n0 , and

C1 < X/Y < C2 for some constants C1 and C2. The partial sum of ζK(s) is defined by

ζK,X(s) :=
∑
‖a‖≤X

1

‖a‖s
=
∑
n≤X

aK(n)

ns
,

which appears in the approximate functional equation (1.20). Our purpose is to determine whether ζK,X(s)
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exhibit similar properties. To this end, we denote the number of non-real zeros ρK,X = βK,X + iγK,X of

ζK,X(s) with ordinates 0 ≤ γK,X ≤ T by NK,X(T ). If T is the ordinate of a zero, then NK,X(T ) is to be

defined by limε→0+ NK,X(T + ε). In Chapter 5, we give an asymptotic formula for NK,X(T ).

1.5 Family of approximations of L-functions attached to cusp

forms

Let N ≥ 1 be an integer. Define

FN (s) :=
∑
n≤N

n−s and ζN (s) := FN (s) + χ(s)FN (1− s),

where χ(s) = πs−1/2Γ((1 − s)/2)/Γ(s/2). Spira [85, 86] appears to be the first author who considered the

functions ζN (s) and investigated the zeros of these functions. The behavior of the functions ζN (s) is not

completely unknown. From the approximate functional equation we have

ζ(s) = ζN (s) +O(|t|−σ/2),

where |t| ≥ 1, |σ − 1/2| ≤ 1/2, and N =
√
|t|/2π (see Titchmarsh[89]). In [85], Spira proved that all the

complex zeros of ζ1(s) and ζ2(s) lie on the line σ = 1/2. In [86], he presented a numerical computation

which suggests that infinitely many zeros are off the line σ = 1/2 for N ≥ 3. In the same paper, based on

numerical evidence, he suggested the following:

The zeros within the critical strip appear to lie outside the t range
√

2πeN ≤ t ≤ 2πeN for each

N . There is also a second, less obvious, t range free of zeros, corresponding to where the Riemann-

Siegel formula is used, N ≤ (t/2π)1/2 < N + 1. In this second region, gN (s) approximates ζ(s),

while in the first region, gN (s) is approximately 2ζ(s). . .

Here ζN (s) = gN (s). Since then very few related results have appeared in the literature. Very recently,

Gonek and Montgomery [42] studied thoroughly the zero distribution of ζN (s). First they provided a proof

of Spira’s aforementioned claim. In the same paper, Gonek and Montgomery found a zero free region for

ζN (s) and also obtained further results on the numbers of zeros of ζN (s). They proved the striking result

that 100% of the complex zeros of ζN (s) lie on the critical line, provided N is not too large with respect to

the height T . We will discuss this fact later.
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Gonek and Ledoan [41], Langer [60], and Wilder [96] proved asymptotic results for the number of zeros

of FN (s). If NF (T ) is the number of zeros of FN (T ) up to height T , then they found that

NF (T ) =
T

2π
logX +O(X).

This result is an indispensable ingredient to obtain good lower bounds for the number of zeros of ζN (s) on

the critical line. In fact the growth rate of the error term offers a comparison between the growth rate of

the number of zeros on the critical line up to height T vs the total number of zeros of ζN (s) up to height T .

In Chapter 5 (see also the paper by Ledoan, author and Zaharescu [63]), some instances are presented

where the error term can be improved. If we consider the partial sums of Dedekind zeta functions of a

cyclotomic field K/Q of degree q, then the corresponding error term is shown to be

�q x(log log x/ log x)1−1/φ(q).

An important factor in attempting to improve on the error term is to obtain good upper bounds for the

sign changes of aK(n) sin(T log n), where aK(n) are coefficients in the Dirichlet series representation of the

Dedekind zeta function.

Let Γ = SL(2,Z) be the full modular group. Let f ∈ Sk(Γ) be a holomorphic cusp form of even integral

weight k > 0 for Γ, with Fourier series given by

f(z) =

∞∑
n=1

af (n)e2πinz.

We also assume that f is a normalized primitive Hecke form with af (1) = 1. Let a(n) := af (n)n(1−k)/2 and

let Lf (s) be the L-function associated to f , defined by

Lf (s) :=

∞∑
n=1

a(n)

ns
, (1.21)

for σ > 1.

From Deligne’s proof [32, 33] of the Ramanujan-Petersson conjecture, which is a consequence of the

Riemann Hypothesis for varieties over finite fields, the coefficients a(n) satisfy the bound

|a(n)| ≤ d(n). (1.22)
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In particular

|a(p)| ≤ 2, (1.23)

for all primes p. The divisor function satisfies (see Apostol [3, p. 296])

d(n) ≤ cδnδ, (1.24)

for any δ > 0, and moreover by a result of Wigert [94],

log(d(n)) ≤ log 2 log n

log log n
+O

(
log n

(log log n)2

)
.

Rankin [81] gave a mean square estimate of coefficients a(n). He showed that

∑
n≤x

|a(n)|2 = αx+Of (x3/5), (1.25)

where

α =
(4π)k−1

Γ(k)

∫ ∫
yk−2|f(z)|2dxdy, (1.26)

the double integral being taken over any fundamental region of Γ and z = x+ iy.

Next, we consider the partial sums

∑
n≤X

a(n)

ns
.

Let N(X;T ) denote the number of complex zeros of
∑
n≤X a(n)n−s up to height T . Then as a special case

of Theorem 3 in [60], one obtains the following result.

Proposition 1.5.1. Let M be the largest integer less than or equal to X such that a(M) 6= 0. Then we have

N(X;T ) =
T

2π
logM +Of (X).

In order to improve the above error term, we will be interested to study non-trivial upper bounds for

the number of sign changes of the Fourier coefficients a(n). In [55], Knopp, Kohnen, and Pribitkin studied

the sign changes of the Fourier coefficients a(n) of a cusp form f for SL(2,R). They showed that these
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coefficients a(n) change sign infinitely often. Motivated by the work of Knopp, Kohnen, and Pribitkin one

may consider trying to improve on the error term in the above proposition. It is worthwhile to mention that,

in [67], Meher and Murty gave a lower bound for the number of sign changes of the coefficients a(n). The

reader may also find work in this direction in the work of Bruinier and Kohnen [22] and several other works

of Kohnen.

The L-function Lf (s) has an analytic continuation throughout the complex plane as an entire function,

by

(2π)−s−
k−1
2 Γ

(
s+ k−1

2

)
Lf (s) =

∫ ∞
0

f(iy)ys+
k−1
2 −1 dy,

and it satisfies the functional equation

Lf (s) = χf (s)Lf (1− s), (1.27)

where

χf (s) := (−1)k/2(2π)−(1−2s)
Γ
(
k+1
2 − s

)
Γ
(
k−1
2 + s

) . (1.28)

Now we recall below the functional equation, the reflection formula (along with its variant), and Legendre’s

duplication formula for the Gamma function Γ(s). To that end,

Γ(s+ 1) = sΓ(s), (1.29)

Γ(s)Γ(1− s) =
π

sin(πs)
, (1.30)

Γ

(
1

2
+ s

)
Γ

(
1

2
− s
)

=
π

cos(πs)
, (1.31)

Γ(s)Γ

(
s+

1

2

)
=

√
π

22s−1
Γ(2s). (1.32)

Using (1.29), (1.30), (1.31), and (1.32) one shows that

χf (s)χf (1− s) = 1. (1.33)

The Euler product representation of Lf (s) is

Lf (s) =
∏
p

(
1− a(p)p−s + p−2s

)−1
, (1.34)
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where σ > 1. The non-trivial zeros of Lf (s) lie within the critical strip 0 < σ < 1, symmetrically with

respect to the real axis and the critical line σ = 1/2. The Riemann hypothesis for Lf (s) states that, all the

non-trivial zeros of Lf (s) lie on the critical line σ = 1/2.

Let Nf (T ) denote the number of non-trivial zeros ρ of Lf (s) for which 0 < Im ρ < T , for T not equal to

any Im ρ; otherwise we put

Nf (T ) = lim
ε→0

1

2
{Nf (T + ε) +Nf (T − ε)}.

Then one can show that (see Lekkerkerker [64])

Nf (T ) =
T

π
log

T

2π
− T

π
+O(log T ).

An approximate functional equation of Lf (s) (see Apostol and Sklar [4], Chandrasekharan and Narasimhan

[23], and Good [43]) is given by

Lf (s) =
∑
n≤X

a(n)

ns
+ χf (s)

∑
n≤X

a(n)

n1−s
+O(|t|1/2−σ+ε), (1.35)

for ε > 0, |t| � 1, |σ − 1/2| ≤ 1/2 and X = |t|
2π . Let us define

Lf (N ; s) :=
∑
n≤N

a(n)

ns
+ χf (s)

∑
n≤N

a(n)

n1−s
. (1.36)

From (1.28) and (1.36), we have the following functional equation,

Lf (N ; s) = χf (s)Lf (N ; 1− s). (1.37)

Since f ∈ Sk(Γ) is a primitive Hecke form, then all a(n) ∈ R. Therefore Lf (N ; s) is real for all real

values of s. So the zeros of Lf (N ; s) are symmetric with respect to the real axis. Also from the functional

equation (1.37) we find that the zeros of Lf (N ; s) are symmetric with respect to the critical line σ = 1/2.

By a generalization of Descartes’s Rule of Signs (see Pólya and Szegö [78], Part V, Chapter 1, No. 77),∑
n≤N a(n)n−s has at most finitely many real roots for real values of s. Also from (1.28), χf (s) has simple

poles at all half-integers greater than or equal to (k + 1)/2. Therefore there exists a real number r, so that

all half-integers greater than r are simple poles of Lf (N ; s). Hence Lf (N ; s) is analytic everywhere except

possibly for simple poles at half-integers.
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From (1.35) and (1.37), we observe that Lf (N ; s) approximates Lf (s) for N < |t|
2π < N + 1, except

possibly at the critical line. From [4, Theorem 2] we have

Lf (s) =
∑
n≤N

a(n)

ns
+O(N1/4−σ), (1.38)

uniformly for σ ≥ σ1 > −1/4, provided N > B
(
t
4π

)2
for some B > 1. Now we need Stirling’s formula for

the Gamma function in a vertical strip [29, p. 224]. For σ1 ≤ σ ≤ σ2, as |t| → ∞,

|Γ(s)| =
√

2π|t|σ−1/2e−π|t|/2
(

1 +O

(
1

|t|

))
. (1.39)

From Stirling’s formula (1.39) one has

χf (t) =

(
|t|

2πe

)1−2σ (
1 +Of

(
1

|t|

))
, (1.40)

as |t| → ∞ (see (6.24) for a proof). From (1.36), (1.38), (1.33), and (1.40) we find that

Lf (N ; s) = 2Lf (s) +O(N1/4−σ) +O(|t|1−2σNσ−3/4), (1.41)

uniformly for min(σ, 1−σ) ≥ σ1 > −1/4, provided N > B
(
t
4π

)2
for some B > 1. Since |t| �

√
N , the error

terms in (1.41) are � |t|−min(1/2,2σ−1/2), uniformly for 1/4 < σ < 3/4. Hence

Lf (N ; s) = 2Lf (s) +O(|t|−min(1/2,σ−1/4)),

uniformly for 1/4 < σ < 3/4 and |t| �
√
N . This shows that Lf (N ; s) approximates 2Lf (s) near the

critical line for sufficiently large t in the range |t| �
√
N . Next we investigate such approximations in

more generality. A natural question that arises is how the sequence Lf (N ; s) converges in the L2-norm. In

particular we are interested in studying the integral

∫ T

0

∣∣∣∣Lf(N ;
1

2
+ it

)
− Lf

(
M ;

1

2
+ it

)∣∣∣∣2dt. (1.42)

We wish to obtain an asymptotic of the moment integral (1.42) for the family of approximations Lf (N ; s).

We shall obtain this in a slightly different way. In Chapter 6, we estimate the L2 distance between Lf (M ; s)

and Lf (N ; s), weighted by a smooth function which satisfies certain conditions and study several results

related to the zeros of Lf (N ; s).

17



Chapter 2

Ramanujan’s identity on page 336 of
his lost notebook

2.1 Main results

2.1.1 Corrected version of Ramanujan’s claim

Before stating the corrected version of Ramanujan’s claim, we need to define a general hypergeometric

function. Define the rising or shifted factorial (a)n by

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1), n ≥ 1, (a)0 = 1. (2.1)

Let p and q be nonnegative integers, with q ≤ p+ 1. Then, the generalized hypergeometric function qFp is

defined by

qFp(a1, a2, . . . , aq; b1, b2, . . . , bp; z) :=

∞∑
n=0

(a1)n(a2)n · · · (aq)n
(b1)n(b2)n · · · (bp)n

zn

n!
, (2.2)

where |z| < 1, if q = p+ 1, and |z| <∞, if q < p+ 1.

We set Ra(f) = Ra to denote the residue of a meromorphic function f(z) at a pole z = a.

Theorem 2.1.1. Let 3F2 be defined by (2.2). Fix s such that σ > 0. Let x ∈ R+. Let a be the number

defined by

a =


0, if s is an odd integer,

1, otherwise.

(2.3)

Then,

∞∑
n=1

σs(n)√
n
e−2π

√
2nx sin

(π
4

+ 2π
√

2nx
)

(2.4)

= 4π

(
ζ(1− s)
8π2
√
x

+
1

4
√

2π
ζ

(
1

2

)
ζ

(
1

2
− s
)
− 2−s−3

πs+
3
2

Γ(s+ 1/2) cot
(
πs
2

)
ζ(−s)

xs+
1
2

)

+

√
x

πs

{∑
n<x

σs(n)

ns+1

[
−
√
nΓ
(
1
4 + s

2

)
√

2xΓ
(
1
4 −

s
2

)
18



−
aΓ
(
s+ 1

2

)
cot
(
πs
2

)
2s+1
√
π

(n
x

)s+1
{(

1 +
in

x

)−(s+ 1
2 )

+

(
1− in

x

)−(s+ 1
2 )
}

+
n2−s

x sin
(
πs
2

)
Γ(1− s) 3F2

(
1
4 ,

3
4 , 1

1−s
2 , 1− s

2

;−n
2

x2

)]

+
∑
n≥x

σs(n)

ns+1

[
−
nΓ(s) cos

(
πs
2

)
2s−1πx

{
3F2

(
s
2 ,

1+s
2 , 1

1
4 ,

3
4

;−x
2

n2

)
− 1

}

−
i
√
nΓ
(
s+ 1

2

)
2s+1
√
πx

{
sin
(π

4
+
πs

2

)((
1 +

ix

n

)−(s+ 1
2 )

−
(

1− ix

n

)−(s+ 1
2 )
)

+ i cos
(π

4
+
πs

2

)((
1 +

ix

n

)−(s+ 1
2 )

+

(
1− ix

n

)−(s+ 1
2 )

− 2

)}]}
,

where, if x is an integer, we additionally require that σ < 1
2 .

If we replace the ‘+’ sign in the argument of the sine function in the series on the left-hand side of (2.4)

by a ‘−’ sign, then we obtain the following theorem.

Theorem 2.1.2. Fix s such that σ > 0. Let x ∈ R+. Then,

∞∑
n=1

σs(n)√
n
e−2π

√
2nx sin

(π
4
− 2π

√
2nx

)
= 4π

(√
x

2
ζ(−s) +

ζ
(
1
2

)
4π
√

2
ζ

(
1

2
− s
)

+
Γ
(
s+ 1

2

)
ζ(−s)

2s+3πs+
3
2xs+

1
2

)

+
Γ
(
s+ 1

2

)
2sπs+

1
2

{∑
n<x

σs(n)

ns+
1
2

[
− sin

(π
4
− πs

2

)
+

ns+
1
2

2xs+
1
2

×

((
1 +

in

x

)−(s+ 1
2 )

+

(
1− in

x

)−(s+ 1
2 )
)]

+
∑
n≥x

σs(n)

2ns+
1
2

[
cos
(π

4
+
πs

2

)((
1 +

ix

n

)−(s+ 1
2 )

+

(
1− ix

n

)−(s+ 1
2 )
− 2

)

+ i sin
(π

4
+
πs

2

)((
1 +

ix

n

)−(s+ 1
2 )
−
(

1− ix

n

)−(s+ 1
2 )
)]}

.

The special case s = 1
2 of Theorem 2.1.1 (see (2.73)) is very interesting, since the two sums, one over

n < x and the other over n ≥ x, coalesce into a single infinite sum. If Ks(x) denotes the modified Bessel

function or the Macdonald function [93, p. 78] of order s, and if we use the identities [93, p. 80, equation

(13)]

K1/2(z) =

√
π

2z
e−z (2.5)
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and [93, p. 79, equation (8)]

K−s(z) = Ks(z), (2.6)

we see that this special case of the series on the left-hand side of (2.4) can be realized as a special case of

the series

2

∞∑
n=1

σ−s(n)n
s
2

(
eπis/4Ks

(
4πeπi/4

√
nx
)
− e−πis/4Ks

(
4πe−πi/4

√
nx
))

(2.7)

when s = − 1
2 . If we replace the minus sign between the Bessel functions in the summands of (2.7) by a plus

sign, then the resulting series is a generalization of the series

ϕ(x) := 2

∞∑
n=1

d(n)
(
K0

(
4πeiπ/4

√
nx
)

+K0

(
4πe−iπ/4

√
nx
))

, (2.8)

extensively studied by N. S. Koshliakov (also spelled N. S. Koshlyakov) [59, 57, 56, 58]. See also [34] for

properties of this series and some integral transformations involving it. We feel that Koshliakov’s work

has not earned the respect that it deserves in the mathematical community. Some of his best work was

achieved under extreme hardship, as these excerpts from a paper written for the centenary of his birth

clearly demonstrate [20].

The repressions of the thirties which affected scholars in Leningrad continued even after the out-

break of the Second World War. In the winter of 1942 at the height of the blockade of Leningrad,

Koshlyakov along with a group . . . was arrested on fabricated . . . dossiers and condemned to 10

years correctional hard labour. After the verdict he was exiled to one of the camps in the Urals.

. . . On the grounds of complete exhaustion and complicated pellagra, Koshlyakov was classified

in the camp as an invalid and was not sent to do any of the usual jobs. . . . very serious shortage

of paper. He was forced to carry out calculations on a piece of plywood, periodically scraping

off what he had written with a piece of glass. Nevertheless, between 1943 and 1944 Koshlyakov

wrote two long memoirs . . .

A natural question arises – what may have motivated Ramanujan to consider the series

∞∑
n=1

σs(n)√
n
e−2π

√
2nx sin

(π
4

+ 2π
√

2nx
)

? (2.9)

We provide a plausible answer to this question in Chapter 3, demonstrating that (2.9) is related to a

generalization of the famous Voronöı summation formula and also to the generalization of Koshliakov’s

series (2.8) discussed above and its analogue. The contents of this chapter, Chapter 3, and Chapter 4 are
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taken from [13].

2.1.2 An important integral identity

The following lemma, which is interesting in its own right, is the main ingredient of our proof. We use the

notation
∫
(c)

to designate
∫ c+i∞
c−i∞ .

Lemma 2.1.3. Fix s such that σ > 0. Fix x ∈ R+. Let −1 < λ < 0 and let a be defined in (2.3). Define

I(s, x) by

I(s, x) :=
1

2πi

∫
(λ)

Γ(z − 1)Γ
(

1− z

2

)
Γ
(

1− z

2
+ s
)

sin2
(πz

4

)
sin
(πz

4
− πs

2

)
(4x)

− z2 dz. (2.10)

Then,

(i) for x > 1,

I(s, x) = − π

22−s

[
Γ
(
1
4 + s

2

)
√

2xΓ
(
1
4 −

s
2

) +
ax−s−1 cot

(
πs
2

)
2s+1
√
π

Γ

(
s+

1

2

){(
1 +

i

x

)−(s+ 1
2 )

(2.11)

+

(
1− i

x

)−(s+ 1
2 )
}
− 1

x2s sin
(
πs
2

)
Γ(1− s) 3F2

(
1
4 ,

3
4 , 1

1−s
2 ; 1− s

2

;− 1

x2

)]
,

(ii) for x ≤ 1,

I(s, x) = − π

22−s

[
Γ(s) cos

(
πs
2

)
2s−1πx

{
3F2

(
s
2 ,

1+s
2 , 1

1
4 ,

3
4

;−x2
)
− 1

}
(2.12)

+
iΓ
(
s+ 1

2

)
2s+1
√
πx

{
sin
(π

4
+
πs

2

)(
(1 + ix)−(s+

1
2 ) − (1− ix)−(s+

1
2 )
)

+ i cos
(π

4
+
πs

2

)(
(1 + ix)−(s+

1
2 ) + (1− ix)−(s+

1
2 ) − 2

)}]
,

where, if x = 1, we additionally require that σ < 1
2 .

We note in passing that each 3F2 in Theorem 2.1.1, as well as in Lemma 2.1.3, can be written, using the

duplication formula for the Gamma function (1.32), as a sum of two 2F1’s.
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2.2 Preliminary Results

The functional equation of the Riemann zeta function ζ(s) in its asymmetric form is given by [88, p. 24]

ζ(1− s) = 21−sπ−s cos
(
1
2πs

)
Γ(s)ζ(s), (2.13)

whereas its symmetric form yields

π−s/2Γ
(
1
2s
)
ζ(s) = π−(1−s)/2Γ

(
1
2 (1− s)

)
ζ(1− s).

Since ζ(s) has a simple pole at s = 1 with residue 1, i.e.,

lim
s→1

(s− 1)ζ(s) = 1, (2.14)

from (5.5) and (2.14), we find the value [88, p. 19]

ζ(0) = − 1
2 .

The Riemann ξ-function ξ(s) is defined by

ξ(s) := 1
2s(s− 1)π−s/2Γ

(
1
2s
)
ζ(s),

where Γ(s) and ζ(s) are the Gamma and the Riemann zeta functions respectively. The Riemann Ξ-function

is defined by

Ξ(t) := ξ
(
1
2 + it

)
.

For 0 < c = Re w < σ [44, p. 908, formula 8.380.3; p. 909, formula 8.384.1],

1

2πi

∫
(c)

Γ(w)Γ(s− w)

Γ(s)
x−w dw =

1

(1 + x)s
.

We note Parseval’s identity [77, pp. 82–83]

∫ ∞
0

f(x)g(x) dx =
1

2πi

∫ c+i∞

c−i∞
F(1− w)G(w) dw,
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where F and G are Mellin transforms of f and g, and which is valid for Re w = c lying in the common strip

of analyticity of F(1− w) and G(w). A variant of the above identity [77, p. 83, equation (3.1.13)] is

1

2πi

∫
(k)

F(w)G(w)t−w dw =

∫ ∞
0

f(x)g

(
t

x

)
dx

x
.

We close this section by recalling facts about Bessel functions. The ordinary Bessel function Jν(z) of

order ν is defined by [93, p. 40]

Jν(z) =

∞∑
m=0

(−1)m(z/2)2m+ν

m!Γ(m+ 1 + ν)
. (2.15)

As customary, Yν(z) denotes the Bessel function of order ν of the second kind. Its relation to Jν(z) is given

in the identity [93, p. 64]

Yν(z) =
Jν(z) cos(πν)− J−ν(z)

sinπν
. (2.16)

If Kν(z) denotes the modified Bessel function of order ν, then [93, p. 78]

Kν(z) =
π

2

I−ν(z)− Iν(z)

sinπν
,

where [93, p. 77]

Iν(z) =

∞∑
m=0

(z/2)2m+ν

m!Γ(m+ 1 + ν)
.

The asymptotic formulas of the Bessel functions Jν(z), Yν(z), and Kν(z), as |z| → ∞, are given by [93,

p. 199 and p. 202]

Jν(z) ∼
(

2

πz

) 1
2
(

cosw

∞∑
n=0

(−1)n(ν, 2n)

(2z)2n
− sinw

∞∑
n=0

(−1)n(ν, 2n+ 1)

(2z)2n+1

)
, (2.17)

Yν(z) ∼
(

2

πz

) 1
2
(

sinw

∞∑
n=0

(−1)n(ν, 2n)

(2z)2n
+ cosw

∞∑
n=0

(−1)n(ν, 2n+ 1)

(2z)2n+1

)
, (2.18)

Kν(z) ∼
( π

2z

) 1
2
e−z

∞∑
n=0

(ν, n)

(2z)n
, (2.19)
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for | arg z| < π. Here w = z − 1
2πν −

1
4π and

(ν, n) =
Γ(ν + n+ 1/2)

Γ(n+ 1)Γ(ν − n+ 1/2)
.

2.3 Proof of the corrected version of Ramanujan’s claim

Let

S(s, x) :=

∞∑
n=1

σs(n)√
n
e−2π

√
2nx sin

(π
4

+ 2π
√

2nx
)
. (2.20)

From [73, p. 45, equations (5.19), (5.20)], we have

1

2πi

∫
(c)

Γ(z)

(a2 + b2)z/2
sin
(
z tan−1

(a
b

))
x−z dz = e−bx sin(ax), (2.21)

1

2πi

∫
(c)

Γ(z)

(a2 + b2)z/2
cos
(
z tan−1

(a
b

))
x−z dz = e−bx cos(ax), (2.22)

where a, b > 0, and Re z > 0 for (2.21) and Re z > −1 for (2.22). Let a = b = 2π
√

2n, replace x by
√
x,

add (2.21) and (2.22), and then simplify, so that for c = Re z > 0,

1

2πi

∫
(c)

Γ(z)

(16π2n)
z
2

sin

(
π(z + 1)

4

)
x−z/2 dz = e−2π

√
2nx sin

(π
4

+ 2π
√

2nx
)
. (2.23)

Now replace z by z − 1 in (2.23), so that for c = Re z > 1,

1

2πi

∫
(c)

Γ(z − 1)

(4π)z−1nz/2
sin
(πz

4

)
x(1−z)/2 dz =

e−2π
√
2nx

√
n

sin
(π

4
+ 2π

√
2nx

)
. (2.24)

Now substitute (2.24) in (2.20) and interchange the order of summation and integration to obtain

S(s, x) =
2

i

∫
(c)

( ∞∑
n=1

σs(n)

nz/2

)
Γ(z − 1)

(4π)z
sin
(πz

4

)
x(1−z)/2 dz. (2.25)

It is well-known [88, p. 8, equation (1.3.1)] that for Re ν > 1 and Re ν > 1+ Re µ,

ζ(ν)ζ(ν − µ) =

∞∑
n=1

σµ(n)

nν
. (2.26)

Invoking (2.26) in (2.25), we see that

S(s, x) =
2

i

∫
(c)

Ω(z, s, x) dz, (2.27)
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where c > 2σ + 2 (since σ > 0) and

Ω(z, s, x) := ζ
(z

2

)
ζ
(z

2
− s
) Γ(z − 1)

(4π)z
sin
(πz

4

)
x(1−z)/2.

We want to shift the line of integration from Re z = c to Re z = λ, where −1 < λ < 0. Note that the

integrand in (2.27) has poles at z = 1, 2, and 2s + 2. Consider the positively oriented rectangular contour

formed by [c− iT, c+ iT ], [c+ iT, λ+ iT ], [λ+ iT, λ− iT ], and [λ− iT, c− iT ], where T is any positive real

number. By Cauchy’s residue theorem,

1

2πi

{∫ c+iT

c−iT
+

∫ λ+iT

c+iT

+

∫ λ−iT

λ+iT

+

∫ c−iT

λ−iT

}
Ω(z, s, x) dz = R1(Ω) +R2(Ω) +R2s+2(Ω), (2.28)

where we recall that Ra(f) denotes the residue of a function f at the pole z = a. The residues are calculated

below. First,

R2s+2(Ω) = lim
z→2s+2

(z − 2s− 2)ζ
(z

2
− s
)
ζ
(z

2

) Γ(z − 1)

(4π)z
sin
(πz

4

)
x(1−z)/2

= 2ζ(s+ 1)
Γ(2s+ 1)

(4π)2s+2
sin

(
π(2s+ 2)

4

)
x−s−

1
2

= −2−s−3

πs+
3
2

Γ(s+ 1
2 ) cot

(
1
2πs

)
ζ(−s)

xs+
1
2

,

where in the first step we used (2.14), and in the last step we employed (1.32) and (5.5) with s replaced by

s+ 1. Second and third,

R1(Ω) = lim
z→1

(z − 1)
Γ(z − 1)

(4π)z
ζ
(z

2

)
ζ
(z

2
− s
)

sin
(πz

4

)
x(1−z)/2 =

1

4
√

2π
ζ

(
1

2

)
ζ

(
1

2
− s
)
, (2.29)

R2(Ω) = lim
z→2

(z − 2)ζ
(z

2

)
ζ
(z

2
− s
) Γ(z − 1)

(4π)z
sin
(πz

4

)
x(1−z)/2 =

ζ(1− s)
8π2
√
x
, (2.30)

where, in (2.29) we utilized (1.29), and in (2.30) we used (2.14). Next, we show that as T →∞, the integrals

along the horizontal segments [c + iT, λ + iT ] and [λ − iT, c − iT ] tend to zero. To that end, note that if

s = σ + it, for σ ≥ −δ [88, p. 95, equation (5.1.1)],

ζ(s) = O(t
3
2+δ). (2.31)

Also, as |t| → ∞, ∣∣∣sin(πs
4

)∣∣∣ =

∣∣∣∣∣e
1
4 iπs − e− 1

4 iπs

2i

∣∣∣∣∣ = O
(
e

1
4π|t|

)
. (2.32)
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Thus from (2.31), (1.39), and (2.32), we see that the integrals along the horizontal segments tend to zero as

T →∞. Along with (2.28), this implies that

∫
(c)

Ω(z, s, x) dz =

∫
(λ)

Ω(z, s, x) dz (2.33)

+ 2πi

(
ζ(1− s)
8π2
√
x

+
1

4
√

2π
ζ

(
1

2

)
ζ

(
1

2
− s
)
− 2−s−3

πs+
3
2

Γ(s+ 1/2) cot
(
πs
2

)
ζ(−s)

xs+
1
2

)
.

We now evaluate the integral along the vertical line Re z = λ. Using (5.5) twice, we have

∫
(λ)

Ω(z, s, x) dz =

∫
(λ)

2z−sπz−s−2ζ
(

1− z

2

)
ζ
(

1− z

2
+ s
)

Γ
(

1− z

2

)
(2.34)

× Γ
(

1− z

2
+ s
) Γ(z − 1)

(4π)z
sin2

(πz
4

)
sin
(πz

4
− πs

2

)
x(1−z)/2 dz

=

√
x

2sπs+2

∞∑
n=1

σs(n)

ns+1

∫
(λ)

Γ(z − 1)Γ
(

1− z

2

)
Γ
(

1− z

2
+ s
)

× sin2
(πz

4

)
sin
(πz

4
− πs

2

)(4x

n

)−z/2
dz

=
i
√
x

2s−1πs+1

∞∑
n=1

σs(n)

ns+1
I
(
s,
x

n

)
,

where in the penultimate step we used (2.26), since λ < 0, and used the notation for I(s, x) in the lemma.

From (2.27), (2.33), and (2.34), we deduce that

S(s, x) =

√
x

2s−2πs+1

∞∑
n=1

σs(n)

ns+1
I
(
s,
x

n

)
+ 4π

(
ζ(1− s)
8π2
√
x

+
1

4
√

2π
ζ

(
1

2

)
ζ

(
1

2
− s
)
− 2−s−3

πs+
3
2

Γ(s+ 1/2) cot
(
1
2πs

)
ζ(−s)

xs+
1
2

)
.

The final result follows by substituting the expressions for I
(
s, xn

)
from the lemma, accordingly as n < x or

n ≥ x. This completes the proof.

2.4 Proof of the integral identity 2.1.3

Multiplying and dividing the integrand in (2.10) by Γ
(
1
2 (3− z)

)
and then applying (1.32) and (1.30), we

see that

I(s, x) = − π
3
2

4πi

∫
(λ)

sin2
(
1
4πz

)
sin
(
1
4πz −

1
2πs

)
sinπz

Γ
(
1− 1

2z + s
)

Γ
(
1− 1

2z + 1
2

)x− 1
2 z dz. (2.35)

26



We now apply (1.30), (1.31), and (1.32) repeatedly to simplify the integrand in (2.35). This gives

I(s, x) =
1

2πi

−π
22−s

∫
(λ)

F (z, s, x) dz, (2.36)

where

F (z, s, x) :=
tan

(
1
4πz

)
2z/2(1− z)

Γ
(
1
2 −

1
4z + 1

2s
)

Γ
(
1
2 (1 + z)

)
Γ
(
1
4z −

1
2s
) x−z/2. (2.37)

The poles of F (z, s, x) are at z = 1, at z = 2(2k + 1 + s), k ∈ N ∪ {0}, at z = 2(2m + 1),m ∈ Z, and at

z = −(2j + 1), j ∈ N ∪ {0}.

Case (i): When x > 1, we would like to move the vertical line of integration to +∞. To that end,

let X > λ be such that the line (X − i∞, X + i∞) does not pass through the poles of F (z). Consider the

positively oriented rectangular contour formed by [λ− iT,X − iT ], [X − iT,X + iT ], [X + iT, λ+ iT ], and

[λ+ iT, λ− iT ], where T is any positive real number. Then by Cauchy’s residue theorem,

1

2πi

{∫ X−iT

λ−iT
+

∫ X+iT

X−iT
+

∫ λ+iT

X+iT

+

∫ λ−iT

λ+iT

}
F (z, s, x) dz

= R1(F ) +
∑

0≤k< 1
2 ( 1

2X−1−Re s)

R2(2k+1+s)(F ) +
∑

0≤m< 1
2 ( 1

2X−1)

R2(2m+1)(F ).

We now calculate the residues. First,

R1(F ) = lim
z→1

(z − 1)
tan

(
1
4πz

)
2
z
2 (1− z)

Γ
(
1
2 −

1
4z + 1

2s
)

Γ
(
1
2 (1 + z)

)
Γ
(
1
4z −

1
2s
) x−

1
2 z = − 1√

2x

Γ
(
1
4 + 1

2s
)

Γ
(
1
4 −

1
2s
) . (2.38)

Second,

R2(2k+1+s)(F ) = lim
z→2(2k+1+s)

{z − 2(2k + 1 + s)}
tan

(
1
4πz

)
2
z
2 (1− z)

Γ
(
1
2 −

1
4z + 1

2s
)

Γ
(
1
2 (1 + z)

)
Γ
(
1
4z −

1
2s
) x−

z
2 (2.39)

=
4(−1)k+1 cot

(
1
2πs

)
k!22k+2+s

Γ
(
1
2 + 2k + s

)
Γ
(
1
2 (2k + 1)

) x−(2k+1+s)

=
(−1)k+1 cot

(
1
2πs

)
(2k)!2s

√
π

Γ

(
s+

1

2

)(
s+

1

2

)
2k

x−(2k+1+s),

where in the second calculation, we used the fact limz→−n(z + n)Γ(z) = (−1)n/n!, followed by (1.29) and

(1.32). Here (y)n denotes the rising factorial defined in (2.1). Note that we do not have a pole at 2(2k+1+s)
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when s is an odd integer. Also,

R2(2m+1)(F ) = lim
z→2(2m+1)

{z − 2(2m+ 1)}
tan

(
1
4πz

)
2z/2(1− z)

Γ
(
1
2 −

1
4z + 1

2s
)

Γ
(
1
2 (1 + z)

)
Γ
(
1
4z −

1
2s
) x−z/2 (2.40)

=
1

π22m
Γ
(
1
2s−m

)
Γ
(
2m+ 1

2

)
Γ
(
m− 1

2s+ 1
2

) x−(2m+1)

=
(−1)m

2s sin
(
1
2πs

)
Γ(1− s)

(
1
2

)
2m

(1− s)2m
x−(2m+1),

where we used (1.30) and (1.32). As in the proof of Theorem 2.1.1, using Stirling’s formula (1.39), we see

that the integrals along the horizontal segments tend to zero as T →∞. Thus,

1

2πi

∫
(X)

F (z, s, x) dz =
1

2πi

∫
(λ)

F (z, s, x) dz (2.41)

+R1(F ) + a
∑

0≤k≤ 1
2 ( 1

2X−1−Re s)

R2(2k+1+s)(F ) +
∑

0≤m< 1
2 ( 1

2X−1)

R2(2m+1)(F ),

where a is defined in (2.3). From (2.37), we see that

F (z + 4, s, x) = −
F (z, s, x)(z − 1)

(
1
2 (z + 1)

) (
1
2 (z + 3)

)
4x2(z + 3)

(
1
4z −

1
2 (s− 1)

) (
1
4z −

1
2s
) , (2.42)

so that

|F (z + 4, s, x)| = |F (z, s, x)|
x2

(
1 +Os

(
1

|z|

))
. (2.43)

Applying (2.42) and (2.43) repeatedly, we find that

|F (z + 4`, s, x)| = |F (z, s, x)|
x2`

(
1 +Os

(
1

|z|

))`
,

for any positive integer ` and Re z > 0. Therefore,

∣∣∣∣∣
∫
(X+4`)

F (z, s, x) dz

∣∣∣∣∣ =

∣∣∣∣∣
∫
(X)

F (z, s, x)

x2`

(
1 +Os

(
1

|z|

))`
dz

∣∣∣∣∣ (2.44)

=
1

|x|2`

(
1 +Os

(
1

|X|

))` ∣∣∣∣∣
∫
(X)

F (z, s, x) dz

∣∣∣∣∣ .

28



Since x > 1, we can choose X large enough so that

|x| >

√
1 +Os

(
1

|X|

)
.

With this choice of X and the fact that
∣∣∣∫(X)

F (z, s, x) dz
∣∣∣ is finite, if we let ` → ∞, then, from (2.44), we

find that

lim
`→∞

∫ X+4`+i∞

X+4`−i∞
F (z, s, x) dz = 0. (2.45)

Hence, if we shift the vertical line (X) through the sequence of vertical lines {(X+4`)}∞`=1, then, from (2.41)

and (2.45), we obtain

1

2πi

∫
(λ)

F (z, s, x) dz = −R1(F )− a
∞∑
k=0

R2(2k+1+s)(F )−
∞∑
m=0

R2(2m+1)(F ). (2.46)

Since x > 1, from (2.39) and the binomial theorem, we deduce that

a

∞∑
k=0

R2(2k+1+s)(F ) = −a
x−s−1 cot

(
1
2πs

)
2s
√
π

Γ

(
s+

1

2

) ∞∑
k=0

(
s+ 1

2

)
2k

(2k)!

(
i

x

)2k

(2.47)

= −a
x−s−1 cot

(
1
2πs

)
2s+1
√
π

Γ

(
s+

1

2

){(
1 +

i

x

)−(s+ 1
2 )

+

(
1− i

x

)−(s+ 1
2 )
}
.

From (2.40),

∞∑
m=0

R2(2m+1)(F ) =
1

x2s sin
(
1
2πs

)
Γ(1− s)

∞∑
m=0

(
1
2

)
2m

(1− s)2m

(
i

x

)2m

(2.48)

=
1

x2s sin
(
1
2πs

)
Γ(1− s) 3F2

(
1
4 ,

3
4 , 1

1
2 (1− s), 1− 1

2s
;− 1

x2

)
.

Therefore from (2.38), (2.46), (2.47), and (2.48) we deduce that

1

2πi

∫
(λ)

F (z, s, x) dz = a
x−s−1 cot

(
1
2πs

)
2s+1
√
πx

Γ

(
s+

1

2

){(
1 +

i

x

)−(s+ 1
2 )

+

(
1− i

x

)−(s+ 1
2 )
}

− 1

x2s sin
(
1
2πs

)
Γ(1− s) 3F2

(
1
4 ,

3
4 , 1

1
2 (1− s), 1− 1

2s
;− 1

x2

)
+

1√
2x

Γ
(
1
4 + 1

2s
)

Γ
(
1
4 −

1
2s
) .

Using (2.36), we complete the proof of (2.11).

Case (ii): Now consider x ≤ 1. We would like to shift the line of integration all the way to −∞. Let

X < λ be such that the line [X − i∞, X + i∞] again does not pass through any pole of F (z). Consider a
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positively oriented rectangular contour formed by [λ − iT, λ + iT ], [λ + iT,X + iT ], [X + iT,X − iT ], and

[X − iT, λ− iT ], where T is any positive real number. Again, by Cauchy’s residue theorem,

1

2πi

[∫ λ+iT

λ−iT
+

∫ X+iT

λ+iT

+

∫ X−iT

X+iT

+

∫ λ−iT

X−iT

]
F (z, s, x) dz

=
∑

0≤k< 1
2 (− 1

2X−1)

R−2(2k+1)(F ) +
∑

0≤j< 1
2 (−X−1)

R−(2j+1)(F ).

The residues in this case are calculated below. First,

R−2(2k+1)(F ) = lim
z→−2(2k+1)

{
(z + 2(2k + 1)) tan

(πz
4

)} 1

2z/2
(1− z) (2.49)

×
Γ
(
1
2 −

1
4z + 1

2s
)

Γ
(
1
2 (1 + z)

)
Γ
(
1
4z −

1
2s
) x−

z
2

=
(−1)k+1

√
π2s sin

(
1
2πs

) Γ
(
1
2 − 2(k + 1)

)
Γ (1− 2(k + 1)− s)

x(2k+1)

=
(−1)k+1

√
π2s sin

(
1
2πs

) Γ
(
1
2 + 2(k + 1)

)
Γ
(
1
2 − 2(k + 1)

)
Γ (2(k + 1) + s) Γ (1− 2(k + 1)− s)

x(2k+1) Γ (2(k + 1) + s)

Γ
(
1
2 + 2(k + 1)

)
=

(−1)k+1 cos
(
1
2πs

)
Γ(s)

2s−1πx

(s)2(k+1)(
1
2

)
2(k+1)

x2(k+1),

where in the last step we used (1.30) and (1.31). Second,

R−(2j+1)(F ) = lim
z→−(2j+1)

(z + (2j + 1))
tan

(
1
4πz

)
2z/2(1− z)

Γ
(
1
2 −

1
4z + 1

2s
)

Γ
(
1
2 (1 + z)

)
Γ
(
1
4z −

1
2s
) x−z/2 (2.50)

= − 2j+
1
2

(j + 1)!

Γ
(
5
4 + 1

2j + 1
2s
)

Γ
(
− 1

4 −
1
2j −

1
2s
)xj+ 1

2

=
1√

π2s(j + 1)!
Γ

(
s+

3

2

)(
s+

3

2

)
j

sin

(
π

(
j

2
+

1

4
+
s

2

))
xj+

1
2 ,

where we multiplied the numerator and denominator by Γ
(
3
4 + 1

2j + 1
2s
)

in the last step and then used

(1.30) and (1.32). Thus, by (2.49) and (2.50),

1

2πi

∫
(λ)

F (z, s, x) dz =
1

2πi

∫
(X)

F (z, s, x) dz (2.51)

+
∑

0≤k≤ 1
2 (− 1

2X−1)

R−2(2k+1)(F ) +
∑

0≤k≤ 1
2 (−X−1)

R−(2k+1)(F ).

From (2.42),

|F (z − 4, s, x)| = |x|2
(

1 +Os

(
1

|z|

))
|F (z, s, x)| ,
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and hence

|F (z − 4`, s, x)| = |x|2`
(

1 +Os

(
1

|z|

))`
|F (z, s, x)| , (2.52)

for any positive integer ` and Re z < 0. Therefore, from (2.52),

∣∣∣∣∣
∫
(X−4k)

F (z, s, x) dz

∣∣∣∣∣ =

∣∣∣∣∣
∫
(X)

F (z, s, x)x2`
(

1 +Os

(
1

|z|

))`
dz

∣∣∣∣∣
= |x|2`

(
1 +Os

(
1

|X|

))` ∣∣∣∣∣
∫
(X)

F (z, s, x) dz

∣∣∣∣∣ .
Since x < 1, we can find an X < λ, with |X| sufficiently large, so that

x2
(

1 +Os

(
1

|X|

))
< 1. (2.53)

With the given choice of X and the fact that
∣∣∣∫(X)

F (z, s, x) dz
∣∣∣ is finite, upon letting ` → ∞ and using

(2.53), we find that

lim
`→∞

∫ X−4`+i∞

X−4`−i∞
F (z, s, x) dz = 0. (2.54)

Thus if we shift the line of integration (X) to −∞ through the sequence of vertical lines {(X − 4k)}∞k=1,

from (2.51) and (2.54), we arrive at

1

2πi

∫
(λ)

F (z, s, x) dz =

∞∑
k=0

R−2(2k+1)(F ) +

∞∑
j=0

R−(2j+1)(F ). (2.55)

Since x ≤ 1, using (2.49), we find that

∞∑
k=0

R−2(2k+1)(F ) =
Γ(s) cos

(
1
2πs

)
2s−1πx

∞∑
k=0

(s)2(k+1)

(1/2)2(k+1)

(ix)2(k+1) (2.56)

=
Γ(s) cos

(
1
2πs

)
2s−1πx

{
3F2

(
s
2 ,

1+s
2 , 1

1
4 ,

3
4

;−x2
)
− 1

}
,

where for x = 1, we additionally require that σ < 1
2 in order to ensure the conditional convergence of the

3F2 [1, p. 62].

From (2.50),

∞∑
j=0

R−(2j+1)(F ) =
Γ
(
s+ 3

2

)
2s
√
π

∞∑
j=0

sin

(
π

(
j

2
+

1

4
+
s

2

)) (s+ 3
2

)
j

(j + 1)!
x(j+

1
2 )
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=
Γ
(
s+ 3

2

)
2s
√
π

√x sin

(
π

(
1

4
+
s

2

)) ∞∑
j=0

(
s+ 3

2

)
2j

(2j + 1)!
(ix)2j (2.57)

+ x3/2 cos

(
π

(
1

4
+
s

2

)) ∞∑
j=0

(
s+ 3

2

)
2j+1

(2j + 2)!
(ix)2j


=
iΓ
(
s+ 1

2

)
2s+1
√
πx

[
sin
(π

4
+
πs

2

){
(1 + ix)−(s+

1
2 ) − (1− ix)−(s+

1
2 )
}

+ i cos
(π

4
+
πs

2

){
(1 + ix)−(s+

1
2 ) + (1− ix)−(s+

1
2 ) − 2

}]
,

where in the last step we used the identities

∞∑
j=0

(a)2jx
2j

(2j + 1)!
=

(1 + x)1−a − (1− x)1−a

2x(1− a)
,

∞∑
j=0

(a)2j+1x
2j+1

(2j + 2)!
=
−
(
(1 + x)1−a + (1− x)1−a − 2

)
2x(1− a)

,

valid for |x| < 1. Combining (2.55), (2.56), and (2.57), we deduce that

1

2πi

∫
(λ)

F (z, s, x) dz =
cos
(
πs
2

)
Γ(s)

2s−1πx

{
3F2

(
s
2 ,

1+s
2 , 1

1
4 ,

3
4

;−x2
)
− 1

}

+
iΓ
(
s+ 1

2

)
2s+1
√
πx

[
sin
(π

4
+
πs

2

){
(1 + ix)−(s+

1
2 ) − (1− ix)−(s+

1
2 )
}

+ i cos
(π

4
+
πs

2

){
(1 + ix)−(s+

1
2 ) + (1− ix)−(s+

1
2 ) − 2

}]
.

Using (2.36), we see that this proves (2.12). This completes the proof of Lemma 2.1.3.

If x is an integer in Theorem 2.1.1, then the term corresponding to it on the right-hand side of (2.4) can

be included either in the first (finite) sum or in the second (infinite) sum. This follows from the fact that

the integral I(s, x) in the above lemma is continuous at x = 1. Though elementary, we warn readers that

it is fairly tedious to verify this by showing that the right-hand sides of (2.11) and (2.12) are equal when

x = 1, and requires the following transformation between 3F2 hypergeometric functions, which is actually a

special case when q = 2 of a general connection formula between pFq’s [75, p. 410, formula 16.8.8].

Theorem 2.4.1. For a1 − a2, a1 − a3, a2 − a3 /∈ Z, and z /∈ (0, 1),

3F2(a1, a2, a3; b1, b2; z) =
Γ(b1)Γ(b2)

Γ(a1)Γ(a2)Γ(a3)

(
Γ(a1)Γ(a2 − a1)Γ(a3 − a1)

Γ(b1 − a1)Γ(b2 − a1)
(−z)−a1 (2.58)

× 3F2

(
a1, a1 − b1 + 1, a1 − b2 + 1; a1 − a2 + 1, a1 − a3 + 1;

1

z

)
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+
Γ(a2)Γ(a1 − a2)Γ(a3 − a2)

Γ(b1 − a2)Γ(b2 − a2)
(−z)−a2

× 3F2

(
a2, a2 − b1 + 1, a2 − b2 + 1;−a1 + a2 + 1, a2 − a3 + 1;

1

z

)
+

Γ(a3)Γ(a1 − a3)Γ(a2 − a3)

Γ(b1 − a3)Γ(b2 − a3)
(−z)−a3

× 3F2

(
a3, a3 − b1 + 1, a3 − b2 + 1;−a1 + a3 + 1,−a2 + a3 + 1;

1

z

))
.

2.5 Coalescence

In the proofs of Theorems 2.1.1 and 2.1.2 using contour integration, the convergence of the series of residues

of the corresponding functions necessitates the consideration of two sums – one over n < x and the other

over n ≥ x. However, for some special values of s, namely s = 2m + 1
2 , where m is a nonnegative integer,

the two sums over n < x and n ≥ x coalesce into a single infinite sum. This section contains corollaries of

these theorems when s takes these special values.

Theorem 2.5.1. Let x /∈ Z. Then, for any nonnegative integer m,

∞∑
n=1

σ2m+ 1
2
(n)

√
n

e−2π
√
2nx sin

(π
4

+ 2π
√

2nx
)

(2.59)

=
ζ
(
1
2 − 2m

)
2π
√
x

−
(2m)!ζ

(
− 1

2 − 2m
)

√
2(2πx)2m+1

+
1√
2
ζ

(
1

2

)
ζ(−2m)

+

√
x

π2m+ 1
2

∞∑
n=1

σ2m+ 1
2
(n)

n2m+ 3
2

[
− (2m)!√

π

( n
2x

)2m+ 3
2

×

{(
1 +

in

x

)−(2m+1)

+

(
1− in

x

)−(2m+1)
}

+
(−1)mn

22mπx
Γ

(
2m+

1

2

)
3F2

(
1
4 ,

3
4 , 1

1
4 −m,

3
4 −m

;−n
2

x2

)]
.

Proof. Let s = 2m+ 1
2 , m ≥ 0, in Theorem 2.1.1. To examine the summands in the sum over n < x, observe

first that 1/Γ
(
1
4 −

1
2s
)

= 0. Since a = 1, the second expression in the summands is given by

−
σ2m+ 1

2
(n)

n2m+ 3
2

aΓ
(
s+ 1

2

)
cot
(
πs
2

)
2s+1
√
π

(n
x

)s+1
{(

1 +
in

x

)−(s+ 1
2 )

+

(
1− in

x

)−(s+ 1
2 )
}

(2.60)

= −
σ2m+ 1

2
(n)

n2m+ 3
2

(2m)!√
π

( n
2x

)2m+ 3
2

(
1− in

x

)2m+1
+
(
1 + in

x

)2m+1

(1 + n2/x2)
2m+1

= −
σ2m+ 1

2
(n)

n2m+ 3
2

(2m)!√
π

n2m+ 3
2x2m+ 1

2

22m+ 1
2 (x2 + n2)2m+1

m∑
k=0

(−1)k
(

2m+ 1

2k

)(n
x

)2k
.
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The third expressions in the summands become

σ2m+ 1
2
(n)

n2m+ 3
2

n2−s

x sin
(
1
2πs

)
Γ(1− s) 3F2

(
1
4 ,

3
4 , 1

1−s
2 , 1− s

2

;−n
2

x2

)
(2.61)

=
σ2m+ 1

2
(n)

n2m+ 3
2

(−1)mn2−2m

xΓ
(
1
2 − 2m

) 3F2

(
1
4 ,

3
4 , 1

1
4 −m,

3
4 −m

;−n
2

x2

)
.

Hence, by (2.60) and (2.61), the summands over n < x are given by

σ2m+ 1
2
(n)

n2m+ 3
2

{
− (2m)!√

π

n2m+ 3
2x2m+ 1

2

22m+ 1
2 (x2 + n2)2m+1

m∑
k=0

(−1)k
(

2m+ 1

2k

)(n
x

)2k
(2.62)

+
(−1)mn2−2m

xΓ
(
1
2 − 2m

) 3F2

(
1
4 ,

3
4 , 1

1
4 −m,

3
4 −m

;−n
2

x2

)}
.

For the summands over n > x, observe that the third expression is equal to zero, since cos
(
1
4π + 1

2π
(
2m+ 1

2

))
=

0. The first expression becomes

−
σ2m+ 1

2
(n)

n2m+ 3
2

nΓ(s) cos
(
1
2πs

)
2s−1πx

{
3F2

(
s
2 ,

1+s
2 , 1

1
4 ,

3
4

;−x
2

n2

)
− 1

}
(2.63)

=
σ2m+ 1

2
(n)

n2m+ 3
2

(−1)m+1n2−2m

xΓ
(
1
2 − 2m

) {
3F2

(
1
4 +m, 34 +m, 1

1
4 ,

3
4

;−x
2

n2

)
− 1

}
,

where we used (1.31) with s = 2m. The second expressions of the summands become

σ2m+ 1
2
(n)

n2m+ 3
2

i(−1)m+1
√
n(2m)!

22m+ 3
2
√
πx

(1− ix/n)
2m+1 − (1 + ix/n)

2m+1

(1 + x2/n2)
2m+1 . (2.64)

Note that

(
1− ix

n

)2m+1

−
(

1 +
ix

n

)2m+1

= −
2m+1∑
k=0

(
2m+ 1

k

)(
ix

n

)k (
1 + (−1)2m+1−k) .

These summands are non-zero only when k is odd, and so if we let 2j = 2m+ 1− k, we see that

(
1− ix

n

)2m+1

−
(

1 +
ix

n

)2m+1

= 2i(−1)m+1
(x
n

)2m+1 m∑
j=0

(−1)j
(

2m+ 1

2j

)(n
x

)2j
.

Thus, after simplification, the second expressions (2.64) equal

−
σ2m+ 1

2
(n)

n2m+ 3
2

(2m)!√
π

n2m+ 3
2x2m+ 1

2

22m+ 1
2 (x2 + n2)2m+1

m∑
j=0

(−1)j
(

2m+ 1

2j

)(n
x

)2j
. (2.65)
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Thus, by (2.63) and (2.65), the summands over n > x equal

σ2m+ 1
2
(n)

n2m+ 3
2

[
− (2m)!√

π

n2m+ 3
2x2m+ 1

2

22m+ 1
2 (x2 + n2)2m+1

m∑
j=0

(−1)j
(

2m+ 1

2j

)(n
x

)2j
(2.66)

+
(−1)m+1n2−2m

xΓ
(
1
2 − 2m

) {
3F2

(
1
4 +m, 34 +m, 1

1
4 ,

3
4

;−x
2

n2

)
− 1

}]
.

From (2.62) and (2.66), it is clear that we want to prove that

3F2

(
1
4 ,

3
4 , 1

1
4 −m,

3
4 −m

;−n
2

x2

)
+ 3F2

(
1
4 +m, 34 +m, 1

1
4 ,

3
4

;−x
2

n2

)
= 1, (2.67)

for x > 0 and n ∈ N. To that end, use (2.58) with a1 = 1
4 , a2 = 3

4 , a3 = 1, b1 = 1
4 −m, b2 = 3

4 −m, and

z = −n2/x2. This gives, for all x, n > 0,

3F2

(
1
4 ,

3
4 , 1

1
4 −m,

3
4 −m

;−n
2

x2

)
=

(4m+ 3)(4m+ 1)x2

3n2
3F2

(
7
4 +m, 54 +m, 1

7
4 ,

5
4

;−x
2

n2

)
. (2.68)

Now for n > x, we can use the series representation (2.2) for 3F2 on the right-hand side to obtain

3F2

(
7
4 +m, 54 +m, 1

7
4 ,

5
4

;−x
2

n2

)
= 1 +

∞∑
k=1

(
7
4 +m

)
k

(
5
4 +m

)
k

(1)k(
7
4

)
k

(
5
4

)
k
k!

(
−x

2

n2

)k
(2.69)

= 1− 3n2

(4m+ 3)(4m+ 1)x2

∞∑
k=1

(
3
4 +m

)
k+1

(
1
4 +m

)
k+1

(1)k+1(
3
4

)
k+1

(
1
4

)
k+1

(k + 1)!

(
−x

2

n2

)k+1

=
−3n2

(4m+ 3)(4m+ 1)x2

{
3F2

(
1
4 +m, 34 +m, 1

1
4 ,

3
4

;−x
2

n2

)
− 1

}
.

Combining (2.68) and (2.69), we obtain (2.67) for n > x.

Now set a1 = 1
4 +m, a2 = 3

4 +m, a3 = 1, b1 = 1
4 , b2 = 3

4 , and z = −x2/n2 in (2.58) and use, for n < x,

the series representation for the 3F2 on the right-hand side of the resulting identity to arrive at (2.67) for

n < x. This shows that (2.67) holds for all x > 0 and n ∈ N.

Hence, the summands in the sums over n < x and n > x in Theorem 2.1.1 are the same when s = 2m+ 1
2 .

Now slightly rewrite (2.62) to finish the proof of Theorem 2.5.1.

Similarly, when s = 2m+ 1
2 in Theorem 2.1.2, we obtain the following.

Theorem 2.5.2. For any nonnegative integer m,

∞∑
n=1

σ2m+ 1
2
(n)

√
n

e−2π
√
2nx sin

(π
4
− 2π

√
2nx

)
(2.70)
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=

(
2π
√
x+

(2m)!√
2(2πx)2m+1

)
ζ

(
−1

2
− 2m

)
+

1√
2
ζ

(
1

2

)
ζ(−2m)

+

√
π(2m)!

(2π)2m+ 3
2

∞∑
n=1

σ2m+ 1
2
(n)
{

(x− in)−(2m+1) + (x+ in)−(2m+1)
}
.

Notice the resemblance of the series on the right-hand side of (2.70) with the divergent series in Ramanu-

jan’s incorrect identity (1.6). Since the series on the right side above has a + sign between the two binomial

expressions in the summands, the order of n in the summand is at least − 3
2 + ε, for each ε > 0, unlike − 1

2 + ε

in Ramanujan’s series, because of which the latter is divergent.

When m ≥ 1, we can omit the term 1√
2
ζ
(
1
2

)
ζ(−2m) from both (2.59) and (2.70) since ζ(−2m) = 0.

In Theorem 2.5.1, we assume x /∈ Z, whereas there is no such restriction in Theorem 2.5.2, because

Theorems 1.1 and 2.5.1 involve 3F2’s that are conditionally convergent, with the restriction σ < 1
2 when x

is an integer. Thus, the condition σ ≥ 1
2 implies that x /∈ Z, which is the case when s = 2m+ 1

2 for m ≥ 0.

However, 3F2’s do not appear in Theorem 1.3, and so the restriction on x (other than the requirement x > 0)

is not needed.

Adding (2.59) and (2.70) and simplifying gives the next theorem.

Theorem 2.5.3. For x /∈ Z,

∞∑
n=1

σ2m+ 1
2
(n)

√
n

e−2π
√
2nx cos

(
2π
√

2nx
)

(2.71)

=
1

2π
√

2x
ζ

(
1

2
− 2m

)
+ π
√

2xζ

(
−1

2
− 2m

)
+ ζ

(
1

2

)
ζ(−2m)

+
(−1)m

π
√
x(2π)2m+ 1

2

Γ

(
2m+

1

2

) ∞∑
n=1

σ2m+ 1
2
(n)

n2m+ 1
2

3F2

(
1
4 ,

3
4 , 1

1
4 −m,

3
4 −m

;−n
2

x2

)
.

Subtracting (2.59) from (2.70) and simplifying leads to the next result.

Theorem 2.5.4. For x /∈ Z,

∞∑
n=1

σ2m+ 1
2
(n)

√
n

e−2π
√
2nx sin

(
2π
√

2nx
)

(2.72)

=
ζ
(
1
2 − 2m

)
2π
√

2x
−
√

2

(
π
√
x+

(2m)!√
2(2πx)2m+1

)
ζ

(
−1

2
− 2m

)
+

√
x√

2π2m+ 1
2

∞∑
n=1

σ2m+ 1
2
(n)

n2m+ 3
2

[
− 2

(2m)!√
π

( n
2x

)2m+ 3
2

×

{(
1 +

in

x

)−(2m+1)

+

(
1− in

x

)−(2m+1)
}
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+
(−1)mn

22mπx
Γ

(
2m+

1

2

)
3F2

(
1
4 ,

3
4 , 1

1
4 −m,

3
4 −m

;−n
2

x2

)]
.

In Theorem 2.5.1, as well as in (2.71) and (2.72), we should be careful while interpreting the 3F2-function.

For example, if n < x, then it can be expanded as a series. Otherwise, for n > x, the 3F2-function represents

the analytic continuation of the series. Of course, when n > x, one can replace the 3F2-function by

−

{
3F2

(
1
4 +m, 34 +m, 1

1
4 ,

3
4

;−x
2

n2

)
− 1

}
,

as can be seen from (2.67), and then use the series expansion of this other 3F2-function.

2.5.1 Some special cases

When m = 0 in Theorem 2.5.1, we obtain the following corollary.

Corollary 2.5.5. Let x /∈ Z and x > 0. Then,

∞∑
n=1

σ1/2(n)
√
n

e−2π
√
2nx sin

(π
4

+ 2π
√

2nx
)

(2.73)

=
1

2

{(
1

π
√
x
− 1√

2

)
ζ

(
1

2

)
− 1

πx
√

2
ζ

(
−1

2

)}
+

x

π
√

2

∞∑
n=1

σ1/2(n)
√
n

(
√

2x−
√
n)

x2 + n2
.

Proof. The corollary follows readily from Theorem 2.5.1. We only need to observe that when n < x,

3F2

(
1
4 ,

3
4 , 1

1
4 ,

3
4

;−n
2

x2

)
=

x2

x2 + n2
,

and when n > x,

3F2

(
1
4 ,

3
4 , 1

1
4 ,

3
4

;−n
2

x2

)
= −

{
3F2

(
1
4 +m, 34 +m, 1

1
4 ,

3
4

;−x
2

n2

)
− 1

}

= −
(

1

1 + x2/n2
− 1

)
=

x2

x2 + n2

to complete our proof.

Similarly, when m = 0 in Theorem 2.5.2, we derive the following corollary.

Corollary 2.5.6. For x > 0,

∞∑
n=1

σ1/2(n)
√
n

e−2π
√
2nx sin

(π
4
− 2π

√
2nx

)
(2.74)
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=

(
2π
√
x+

1

2
√

2πx

)
ζ

(
−1

2

)
− 1

2
√

2
ζ

(
1

2

)
+

x

π
√

2

∞∑
n=1

σ1/2(n)

x2 + n2
.

We now show that the two previous corollaries can also be obtained by evaluating special cases of the

infinite series

2

∞∑
n=1

σ−s(n)n
s
2

(
eπis/4Ks

(
4πeπi/4

√
nx
)
∓ e−πis/4Ks

(
4πe−πi/4

√
nx
))

.

Second Proof of Corollary 2.5.5. Use the remarks following (3.10) and then replace x by xeπi/2 and by

xe−πi/2 in (3.9), and then subtract the resulting two identities to obtain, in particular for x > 0,

2

∞∑
n=1

σ−s(n)n
s
2

(
eπis/4Ks

(
4πeπi/4

√
nx
)
− e−πis/4Ks

(
4πe−πi/4

√
nx
))

(2.75)

= − ix
s/2−1

2π
cot
(πs

2

)
ζ(s)− i(2π)−s−1

πx1+s/2
Γ(s+ 1)ζ(s+ 1)− ixs/2

2
tan

(πs
2

)
ζ(s+ 1)

+
iπx

6

ζ(2− s)
sin
(
1
2πs

) − ix3−s/2

π sin
(
1
2πs

) ∞∑
n=1

σ−s(n)

x2 + n2

(
ns−2 + xs−2 cos

(πs
2

))
.

Now let s = − 1
2 in (2.75). Using (2.5) and (2.6), we see that the left-hand side simplifies to

1√
2x1/4

∞∑
n=1

σ1/2(n)

n1/4

(
e−πi/4−4πe

πi/4√nx − eπi/4−4πe
−πi/4√nx

)
= − i

√
2

x1/4

∞∑
n=1

σ1/2(n)
√
n

e−2π
√
2nx sin

(π
4

+ 2π
√

2nx
)
. (2.76)

The right-hand side of (2.75) becomes

i

2πx5/4
ζ

(
−1

2

)
− i√

2πx3/4
ζ

(
1

2

)
+

i

2x1/4
ζ

(
1

2

)
(2.77)

− iπx5/4

3
√

2
ζ

(
5

2

)
+
ix3/4

π
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σ1/2(n)

x2 + n2
+
i
√

2x13/4

π

∞∑
n=1

σ1/2(n)

n5/2(x2 + n2)
.

Thus, from (2.76) and (2.77), we deduce that

∞∑
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√
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√
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(π
4

+ 2π
√
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)

(2.78)

=
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2
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π
√
x
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2

)
ζ

(
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)
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πx
√
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ζ

(
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2
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+
πx3/2

6
ζ

(
5

2

)
− x

π
√

2
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σ1/2(n)

x2 + n2
− x7/2

π
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n5/2(x2 + n2)
.
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From (2.73) and (2.78), it is clear that we want to prove that

πx3/2

6
ζ

(
5

2

)
− x7/2

π

∞∑
n=1

σ1/2(n)

n5/2(x2 + n2)
=
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π
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σ1/2(n)
√
n(x2 + n2)

. (2.79)

To that end, observe that

x7/2

π

∞∑
n=1

σ1/2(n)

n5/2(x2 + n2)
+
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π
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σ1/2(n)

x2 + n2
=
x3/2

π
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σ1/2(n)
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.

Finally, from (2.26) and the fact that ζ(2) = π2/6, we find that

∞∑
n=1

σ1/2(n)

n5/2
=
π2

6
ζ

(
5

2

)
.

This proves (2.79) and hence completes an alternative proof of (2.73).

Similarly, if we let s = − 1
2 in (3.11), then we obtain (2.74) upon simplification. Adding (2.73) and (2.74),

we obtain the following result.

Theorem 2.5.7. Let x /∈ Z. Then,

∞∑
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√
n

e−2π
√
2nx cos

(
2π
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)

=

(
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(
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)
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)
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π
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√
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.

Subtracting (2.73) from (2.74) gives the next result.

Theorem 2.5.8. Let x /∈ Z. Then,

∞∑
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√
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√
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(
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√
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)

=
1
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(
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x

π
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√
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(
√
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2n)
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.

2.6 An Interpretation of Ramanujan’s Divergent Series

Throughout this section, we assume x > 0, σ > 0, and Re w > 1. Define a function F (s, x, w) by

F (s, x, w) :=

∞∑
n=1

σs(n)

nw−
1
2

(
(x− in)−s−

1
2 − (x+ in)−s−

1
2

)
. (2.80)
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Ramanujan’s divergent series corresponds to letting w = 1
2 in (2.80). Note that

(x− in)−s−
1
2 − (x+ in)−s−

1
2 =

2i sin
((
s+ 1

2

)
tan−1 (n/x)

)
(x2 + n2)

s
2+

1
4

.

Since for σ > − 3
2 and n > 0 [44, p. 524, formula 3.944, no. 5]

∫ ∞
0

e−xtts−
1
2 sin(nt) dt = Γ

(
s+

1

2

)
sin
((
s+ 1

2

)
tan−1 (n/x)

)
(x2 + n2)

s
2+

1
4

, (2.81)

we deduce from (2.80)–(2.81) that

F (s, x, w) =
2i

Γ
(
s+ 1

2

) ∞∑
n=1

σs(n)

nw−
1
2

∫ ∞
0

e−xtts−
1
2 sinnt dt.

From [73, p. 42, formula (5.1)], for −1 < c = Re z < 1,

sin(nt) =
1

2πi

∫ c+i∞

c−i∞
Γ(z) sin

(πz
2

)
(nt)−z dz.

Hence,

F (s, x, w) =
1

πΓ
(
s+ 1

2

) ∫ ∞
0

e−xtts−
1
2

∞∑
n=1

σs(n)

nw−
1
2

∫ c+i∞

c−i∞
Γ(z) sin

(πz
2

)
(nt)−z dz dt (2.82)

=
1

πΓ
(
s+ 1

2

) ∫ ∞
0

e−xtts−
1
2

∫ c+i∞

c−i∞
t−zΓ(z) sin

(πz
2

)( ∞∑
n=1

σs(n)

nw+z− 1
2

)
dz dt,

where the interchange of the order of summation and integration in both instances is justified by absolute

convergence. Now if Re z > 3
2− Re w and Re z > 3

2− Re w + σ, from (2.26), we see that

∞∑
n=1

σs(n)

nw+z− 1
2

= ζ

(
w + z − 1

2

)
ζ

(
w + z − s− 1

2

)
.

Substituting this in (2.82), we find that

F (s, x, w) =
1

πΓ
(
s+ 1

2

) ∫ ∞
0

e−xtts−
1
2

∫ c+i∞

c−i∞
t−zΓ(z) sin

(πz
2

)
(2.83)

× ζ
(
w + z − 1

2

)
ζ

(
w + z − s− 1

2

)
dz dt

=
1

πΓ
(
s+ 1

2

) ∫ c+i∞

c−i∞
Γ(z) sin

(πz
2

)
ζ

(
w + z − 1

2

)
ζ

(
w + z − s− 1

2

)
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×
∫ ∞
0

e−xtts−z−
1
2 dt dz,

with the interchange of the order of integration again being easily justifiable. For Re z < σ + 1
2 , we have

∫ ∞
0

e−xtts−z−
1
2 dt =

Γ
(
s− z + 1

2

)
xs−z+

1
2

.

Substituting this in (2.83), we obtain the integral representation

F (s, x, w) =
x−s−

1
2

πΓ
(
s+ 1

2

) ∫ c+i∞

c−i∞
Γ(z) sin

(πz
2

)
ζ

(
w + z − 1

2

)
(2.84)

× ζ
(
w + z − s− 1

2

)
Γ

(
s− z +

1

2

)
xz dz.

Note that if we shift the line of integration Re z = c to Re z = d such that d = 3
2 + σ − η with η > 0, we

encounter a simple pole of the integrand due to Γ
(
s− z + 1

2

)
. Employing the residue theorem and noting

that, from (1.39) and (2.32), the integrals over the horizontal segments tend to zero as the height of the

rectangular contour tends to ∞, we have

F (s, x, w) =
x−s−

1
2

πΓ
(
s+ 1

2

) ∫ d+i∞

d−i∞
Γ(z) sin

(πz
2

)
ζ

(
w + z − 1

2

)
(2.85)

× ζ
(
w + z − s− 1

2

)
Γ

(
s− z +

1

2

)
xz dz

− 2ix−s−
1
2

Γ
(
s+ 1

2

)Γ

(
s+

1

2

)
sin

(
π

2

(
s+

1

2

))
ζ(w + s)ζ(w)xs+

1
2 .

Note that the residue in equation (2.85) is analytic in w except for simple poles at 1 and 1− s. Consider the

integrand in (2.85). The zeta functions ζ
(
w + z − 1

2

)
and ζ

(
w + z − s− 1

2

)
have simple poles at w = 3

2 − z

and w = 3
2 + s − z, respectively. However, since Re z = 3

2 + σ − η and σ > 0, the integrand is analytic

as a function of w as long as Re w > η. By a well-known theorem [87, p. 30, Theorem 2.3], the integral is

also analytic in w for Re w > η. Thus, the right-hand side of (2.85) is analytic in w, which allows us to

analytically continue F (s, x, w) as a function of w to the region Re w > η, and hence to Re w > 0, since η

is any arbitrary positive number.

As remarked in the beginning of this section, letting w = 1
2 in (2.80) yields Ramanujan’s divergent series.

However, the analytic continuation of F (s, x, w) to Re w > 0 allows us to substitute w = 1
2 in (2.85) and

thereby give a valid interpretation of Ramanujan’s divergent series. The only exception to this is when
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s = 1
2 , since then w = 1

2 = 1− s is a pole of the right-hand side of (2.85), as discussed above.

If we further shift the line of integration in (2.84) from Re z = 3
2 +σ−η to Re z = 5

2 +σ−η, and likewise

to +∞, we obtain a meromorphic continuation of F (s, x, w), as a function of w, to the whole complex plane.
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Chapter 3

Extended form of the Voronöı
summation formula

In this chapter, we present some extended form of Voronöı summation formulas (1.8) and (1.9).

3.1 Extension of Voronöı summation formulas

Theorem 3.1.1. Let 0 < α < β and α, β /∈ Z. Let f denote a function analytic inside a closed contour

strictly containing [α, β]. Assume that − 1
2 < σ < 1

2 . Then,

∑
α<j<β

σ−s(j)f(j) =

∫ β

α

(ζ(1 + s) + t−sζ(1− s))f(t) dt (3.1)

+ 2π

∞∑
n=1

σ−s(n)n
s
2

∫ β

α

t−
s
2 f(t)

{(
2

π
Ks(4π

√
nt)− Ys(4π

√
nt)

)
× cos

(πs
2

)
− Js(4π

√
nt) sin

(πs
2

)}
dt.

We wish to extend (3.1) to allow α = 0 so as to obtain (1.10) as a special case of Theorem 3.1.1. To do

this, we need to impose some additional restrictions on f . As an intermediate result, we state the following

theorem which generalizes Theorem 3 in [97].

Theorem 3.1.2. Let 0 < α < 1
2 , − 1

2 < σ < 1
2 , and 0 < θ < min

(
1, 1+2σ

1−2σ

)
. Let N ∈ N such that Nθα > 1.

If f is twice differentiable as a function of t, and is of bounded variation in (0, α), then as N →∞,

f(0+)
ζ(−s)

2
−
∫ α

0

f(t)(ζ(1− s) + tsζ(1 + s)) dt+ 2π

N∑′

n=1

σs(n)

ns/2

∫ α

0

f(t)t
s
2

{
Js(4π

√
nt) sin

(πs
2

)
+

(
Ys(4π

√
nt)− 2

π
Ks(4π

√
nt)

)
cos
(πs

2

)}
dt

�


(2γ + logN)(V N

−θ

0 f(t) +N (θ−1)/4(|f(α)|+ V α0 f(t))), if s = 0,

V N
−θ

0 f(t) + (N (1−θ)(2σ−1)/4 +N (θ(1−2σ)−(2σ+1))/4)× (|f(α)|+ V α0 f(t)), if s 6= 0.
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Additionally if we assume the limits

lim
x→0+

V x0 f(t) = 0, if s 6= 0 and lim
x→0+

log xV x0 f(t) = 0, if s = 0, (3.2)

then

f(0+)
ζ(−s)

2
−
∫ α

0

f(t)(ζ(1− s) + tsζ(1 + s)) dt + 2π

∞∑
n=1

σs(n)

ns/2

∫ α

0

f(t)t
s
2

{
Js(4π

√
nt) sin

(πs
2

)
(3.3)

+

(
Ys(4π

√
nt)− 2

π
Ks(4π

√
nt)

)
cos
(πs

2

)}
dt = 0.

Clearly, for 0 < α < 1
2 , we have

∑′

0<j≤α

σ−s(j)f(j) = 0. (3.4)

Also, if we substitute for Ys(4π
√
nt) via (2.16) and employ (2.6), we find that the kernel in (3.3), namely,

Js(4π
√
nt) sin

(πs
2

)
+

(
Ys(4π

√
nt)− 2

π
Ks(4π

√
nt)

)
cos
(πs

2

)

is invariant under the replacement of s by −s. Therefore replacing s by −s in (3.3), then replacing zero on

the right-hand side of (3.3) by −
∑

0<j≤α σ−s(j)f(j) using (3.4), and then finally subtracting the resulting

equation so obtained from (3.1), we arrive at the following result.

Theorem 3.1.3. Let 0 < α < 1
2 , α < β and β /∈ Z. Let f denote a function analytic inside a closed

contour strictly containing [α, β], and of bounded variation in 0 < t < α. Furthermore, if f satisfies the

limit conditions in (3.2), and − 1
2 < σ < 1

2 , then

∑
0<j<β

σ−s(j)f(j) = −f(0+)
ζ(s)

2
+

∫ β

0

(ζ(1 + s) + t−sζ(1− s))f(t) dt

+ 2π

∞∑
n=1

σ−s(n)n
s
2

∫ β

0

t−
s
2 f(t)

{(
2

π
Ks(4π

√
nt)− Ys(4π

√
nt)

)
× cos

(πs
2

)
− Js(4π

√
nt) sin

(πs
2

)}
dt.
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3.1.1 Oppenheim’s Formula (1.10) as a Special Case

Letting λ = −s+ 1, µ = s, and x = 4π
√
nt in [79, p. 37, equation (1.8.1.1)], [79, p. 42, equation (1.9.1.1)] 1

and [79, p. 47, equation (1.12.1.2)], and then simplifying, we see that

∫
t−

s
2

{(
2

π
Ks(4π

√
nt)− Ys(4π

√
nt)

)
cos
(πs

2

)
− Js(4π

√
nt) sin

(πs
2

)}
dt (3.5)

=
t
1−s
2

4π
√
n sin

(
1
2πs

) (Js−1(4π
√
nt) + J1−s(4π

√
nt)− 2

π
sin(πs)K1−s(4π

√
nt)

)
.

Let f(t) ≡ 1 and β = x /∈ Z in Theorem 3.1.3. Then,

∑
j<x

σ−s(j) = −1

2
ζ(s) +

∫ x

0

(ζ(1 + s) + t−sζ(1− s)) dt (3.6)

+ 2π

∞∑
n=1

σ−s(n)n
s
2

∫ x

0

t−
s
2

{(
2

π
Ks(4π

√
nt)− Ys(4π

√
nt)

)
× cos

(πs
2

)
− Js(4π

√
nt) sin

(πs
2

)}
dt.

Note that ∫
(ζ(1 + s) + t−sζ(1− s)) dt = tζ(1 + s) +

t1−s

1− s
ζ(1− s). (3.7)

Since − 1
2 < σ < 1

2 and the right-hand sides of (3.5) and (3.7) vanish as t tends to 0, from (3.5), (3.6), and

(3.7), we obtain (1.10).

Remark. The analysis above also shows that for α > 0, α /∈ Z,

∑
α<j<x

σ−s(j) = xζ(1 + s) +
x1−s

1− s
ζ(1− s)− αζ(1 + s)− α1−s

1− s
ζ(1− s) (3.8)

+
1

2 sin
(
1
2πs

) ∞∑
n=1

σs(n)

n
s+1
2

{
x

1−s
2

(
Js−1(4π

√
nx) + J1−s(4π

√
nx)− 2

π
sin(πs)K1−s(4π

√
nx)

)
1This formula, as is stated, contains many misprints. The correct version should read∫ x2

x1

yλYν(y) dy =
{−1

1

} cos(νπ)Γ(−ν)xλ+ν+1

2νπ(λ+ ν + 1)
1F2

(
λ+ ν + 1

2
; 1 + ν,

λ+ ν + 3

2
;−

x2

4

)
+
{−1

1

}2νΓ(ν)xλ−ν+1

π(λ− ν + 1)
1F2

(
λ− ν + 1

2
; 1− ν,

λ− ν + 3

2
;−

x2

4

)
−
{0

1

}2λ

π
cos

(
(λ− ν + 1)π

2

)
Γ

(
λ+ ν + 1

2

)
Γ

(
λ− ν + 1

2

)
.[{x1 = 0, x2 = x; Re(λ) > |Re(ν)| − 1

x1 = x, x2 =∞; Re(λ) < 1
2

}]
.

45



− α
1−s
2

(
Js−1(4π

√
nα) + J1−s(4π

√
nα)− 2

π
sin(πs)K1−s(4π

√
nα)

)}
.

From (1.10) and (3.8), we conclude that, for − 1
2 < σ < 1

2 ,

lim
α→0+

α
1−s
2

sin
(
1
2πs

) ∞∑
n=1

σs(n)

n
s+1
2

(
Js−1(4π

√
nα) + J1−s(4π

√
nα)− 2

π
sin(πs)K1−s(4π

√
nα)

)
= ζ(s),

which is likely to be difficult to prove directly.

3.2 Proof of the first extended form of the Voronöı summation

formula

We begin with a result due to H. Cohen [27, Theorem 3.4].

Theorem 3.2.1. Let x > 0 and s /∈ Z, where σ ≥ 0 2. Then, for any integer k such that k ≥ b(σ + 1) /2c,

8πxs/2
∞∑
n=1

σ−s(n)ns/2Ks(4π
√
nx) = A(s, x)ζ(s) +B(s, x)ζ(s+ 1) (3.9)

+
2

sin (πs/2)

 ∑
1≤j≤k

ζ(2j)ζ(2j − s)x2j−1 + x2k+1
∞∑
n=1

σ−s(n)
ns−2k − xs−2k

n2 − x2

 ,

where

A(s, x) =
xs−1

sin (πs/2)
− (2π)1−sΓ(s), (3.10)

B(s, x) =
2

x
(2π)−s−1Γ(s+ 1)− πxs

cos (πs/2)
.

By analytic continuation, the identity in Theorem 3.2.1 is valid not only for x > 0 but for −π < arg x < π.

Take k = 1 in (3.9). The condition b(σ + 1) /2c ≤ 1 implies that 0 ≤ σ < 3. We consider 0 ≤ σ < 1
2 . Note

that Koshliakov [59] has already proved the case s = 0, and the theorem follows for the remaining values of

σ, i.e., for − 1
2 < σ < 0, by the invariance noted in the previous footnote.

Replace x by iz in (3.9) for −π < arg z < 1
2π, and then by −iz for − 1

2π < arg z < π. Now add the

resulting two identities and simplify, so that for − 1
2π < arg z < 1

2π,

Λ(z, s) = Φ(z, s), (3.11)

2As mentioned in [27], the condition σ ≥ 0 is not restrictive since, because of (2.6), the left side of the identity in this
theorem is invariant under the replacement of s by −s.
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where

Λ(z, s) := z−s/2ϕ(z, s),

with ϕ(x, s) defined in (1.12), and

Φ(z, s) := −(2πz)−sΓ(s)ζ(s) +
ζ(s)

2πz
− 1

2
ζ(1 + s) +

z

π

∞∑
n=1

σ−s(n)

z2 + n2
. (3.12)

As a function of z, Φ(z, s) is analytic in the entire complex plane except on the negative real axis and at

z = in, n ∈ Z. Hence, Φ(iz, s) is analytic in the entire complex plane except on the positive imaginary axis

and at z ∈ Z. Similarly, Φ(−iz, s) is analytic in the entire complex plane except on the negative imaginary

axis and at z = n ∈ Z. This implies that Φ(iz, s)+Φ(−iz, s) is analytic in both the left and right half-planes,

except possibly when z is an integer. However, it is easy to see that

lim
z→±n

(z ∓ n)Φ(iz, s) =
1

2πi
σ−s(n) and lim

z→±n
(z ∓ n)Φ(−iz, s) = − 1

2πi
σ−s(n),

so that

lim
z→±n

(z ∓ n) (Φ(iz, s) + Φ(−iz, s)) = 0.

In particular, this implies that Φ(iz, s) + Φ(−iz, s) is analytic in the entire right half-plane.

Now observe that for z inside an interval (u, v) on the positive real line not containing any integer, we

have, using the definition (3.12),

Φ(iz, s) + Φ(−iz, s) = −2(2πz)−sΓ(s)ζ(s) cos
(
1
2πs

)
− ζ(1 + s). (3.13)

Since both Φ(iz, s)+Φ(−iz, s) and −2(2πz)−sΓ(s)ζ(s) cos
(
1
2πs

)
−ζ(1+s) are analytic in the right half-plane

as functions of z, by analytic continuation, the identity (3.13) holds for any z in the right half-plane. Finally,

using the functional equation (5.5) for ζ(s), we can simplify (3.13) to deduce that, for − 1
2π < arg z < 1

2π,

Φ(iz, s) + Φ(−iz, s) = −z−sζ(1− s)− ζ(1 + s). (3.14)

Next, let f be an analytic function of z within a closed contour intersecting the real axis in α and β, where

0 < α < β, m− 1 < α < m, n < β < n+ 1, and m,n ∈ Z. Let γ1 and γ2 denote the portions of the contour

in the upper and lower half-planes, respectively, so that the notations αγ1β and αγ2β, for example, denote
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paths from α to β in the upper and lower half-planes, respectively. By the residue theorem,

1

2πi

∫
αγ2βγ1α

f(z)Φ(iz, s) dz =
∑

α<j<β

Rj(f(z)Φ(iz, s)).

Since f(z)Φ(iz, s) has a simple pole at each integer j, α < j < β, with residue 1
2πiσs(j)f(j), we find that

∑
α<j<β

σ−s(j)f(j) =

∫
αγ2β

f(z)Φ(iz, s) dz −
∫
αγ1β

f(z)Φ(iz, s) dz

=

∫
αγ2β

f(z)Φ(iz, s) dz −
∫
αγ1β

f(z)
(
−Φ(−iz, s)− z−sζ(1− s)− ζ(1 + s)

)
dz

=

∫
αγ2β

f(z)Φ(iz, s) dz +

∫
αγ1β

f(z)Φ(−iz, s) dz

+

∫
αγ1β

f(z)
(
z−sζ(1− s) + ζ(1 + s)

)
dz,

where in the penultimate step, we used (3.14). Using the residue theorem again, we readily see that

∫
αγ1β

f(z)
(
z−sζ(1− s) + ζ(1 + s)

)
dz =

∫ β

α

f(t)
(
ζ(1 + s) + t−sζ(1− s)

)
dt.

Since Λ(z, s) = Φ(z, s) for − 1
2π < arg z < 1

2π, it is easy to see that Λ(iz, s) = Φ(iz, s), for −π < arg z < 0,

and Λ(−iz, s) = Φ(−iz, s), for 0 < arg z < π. Thus,

∑
α<j<β

σ−s(j)f(j) =

∫
αγ2β

f(z)Λ(iz, s) dz +

∫
αγ1β

f(z)Λ(−iz, s) dz (3.15)

+

∫ β

α

f(t)
(
ζ(1 + s) + t−sζ(1− s)

)
dt.

Using the asymptotic expansion (2.19), we see that the series

Λ(iz, s) = 2(iz)−
s
2

∞∑
n=1

σ−s(n)n
s
2

(
eiπs/4Ks

(
4πeiπ/4

√
inz
)

+ e−iπs/4Ks

(
4πe−iπ/4

√
inz
))

is uniformly convergent in compact subintervals of −π < arg z < 0, and the series

Λ(−iz, s) = 2(−iz)− s2
∞∑
n=1

σ−s(n)n
s
2

(
eiπs/4Ks

(
4πeiπ/4

√
−inz

)
+ e−iπs/4Ks

(
4πe−iπ/4

√
−inz

))

is uniformly convergent in compact subsets of 0 < arg z < π. Thus, interchanging the order of summation
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and integration in (3.15), we deduce that

∑
α<j<β

σ−s(j)f(j) = 2

∞∑
n=1

σ−s(n)n
s
2

∫
αγ2β

f(z)(iz)−
s
2

(
eiπs/4Ks

(
4πeiπ/4

√
inz
)

+e−iπs/4Ks

(
4πe−iπ/4

√
inz
))

dz

+ 2

∞∑
n=1

σ−s(n)n
s
2

∫
αγ1β

f(z)(−iz)− s2
(
eiπs/4Ks

(
4πeiπ/4

√
−inz

)
+e−iπs/4Ks

(
4πe−iπ/4

√
−inz

))
dz

+

∫ β

α

f(t)
(
ζ(1 + s) + t−sζ(1− s)

)
dt.

Employing the residue theorem again, this time for each of the integrals inside the two sums, and simplifying,

we find that

∑
α<j<β

σ−s(j)f(j) = 2

∞∑
n=1

σ−s(n)n
s
2 (3.16)

×
∫ β

α

t−
s
2 f(t)

(
Ks

(
4πi
√
nt
)

+Ks

(
−4πi

√
nt
)

+ 2 cos
(πs

2

)
Ks

(
4π
√
nt
))

dt

+

∫ β

α

f(t)
(
ζ(1 + s) + t−sζ(1− s)

)
dt.

Note that for −π < arg z ≤ 1
2π, the modified Bessel function Kν(z) is related to the Hankel function H

(1)
ν (z)

by [44, p. 911, formula 8.407.1]

Kν(z) =
πi

2
e
νπi
2 H(1)

ν (iz), (3.17)

where the Hankel function is defined by [44, p. 911, formula 8.405.1]

H(1)
ν (z) := Jν(z) + iYν(z). (3.18)

Employing the relations (3.17) and (3.18), we have, for x > 0,

Ks(ix) +Ks(−ix) =
πi

2
e
iπs
2

(
H(1)
s (−x) +H(1)

s (x)
)

(3.19)

=
πi

2
e
iπs
2 {(Js(x) + Js(−x)) + i (Ys(x) + Ys(−x))} .

For m ∈ Z [44, p. 927, formulas 8.476.1, 8.476.2]

Jν(emπiz) = emνπiJν(z), (3.20)
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Yν(emπiz) = e−mνπiYν(z) + 2i sin (mνπ) cot (νπ) Jν(z). (3.21)

Using the relations (3.20) and (3.21) with m = 1, we can simplify (3.19) and put it in the form

Ks(ix) +Ks(−ix) (3.22)

=
πi

2
e
iπs
2

{(
Js(x) + eiπsJs(x)

)
+ i
(
Ys(x) + e−iπsYs(x) + 2i cos (πs) Js(x)

)}
=
πi

2
e
iπs
2

{(
1− e−iπs

)
Js(x) + i

(
1 + e−iπs

)
Ys(x)

}
= −π

(
Js(x) sin

(πs
2

)
+ Ys(x) cos

(πs
2

))
.

Now replace x by 4π
√
nt in (3.22) and substitute in (3.16) to obtain (3.1) after simplification. This completes

the proof.

3.3 Proof of the second extended form of the Voronöı

summation formula

In this section we give a proof of Theorem 3.1.2. For any integer λ, define

Gλ+s(z) := −Jλ+s(z) sin
(πs

2

)
−
(
Yλ+s(z)− (−1)λ

2

π
Kλ+s(z)

)
cos
(πs

2

)
(3.23)

and

Fλ+s(z) := −Jλ+s(z) sin
(πs

2

)
−
(
Yλ+s(z) + (−1)λ

2

π
Kλ+s(z)

)
cos
(πs

2

)
. (3.24)

Remark. Throughout this section, we keep s fixed such that − 1
2 < σ < 1

2 . So while interpreting Fs+λ(z)

or Gs+λ(z), care should be taken not to conceive them as functions obtained after replacing s by s + λ in

Fs(z) or Gs(z), but instead as those where s remains fixed and only λ varies.

From [93, pp. 66, 79] we have

d

dz
{zνJν(z)} = zνJν−1(z), (3.25)

d

dz
{zνKν(z)} = −zνKν−1(z), (3.26)

d

dz
{zνYν(z)} = zνYν−1(z). (3.27)
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Using (3.25), (3.26), and (3.27) we deduce that

d

dt

{(
t

u

)(s+λ)/2

Gs+λ(4π
√
tu)

}
= 2π

(
t

u

)(s+λ−1)/2

Gs+λ−1(4π
√
tu), (3.28)

for u > 0. Similarly,

d

dt

{(
t

u

)(s+λ)/2

Fs+λ(4π
√
tu)

}
= 2π

(
t

u

)(s+λ−1)/2

Fs+λ−1(4π
√
tu), (3.29)

for u > 0.

From (1.2) and (1.10), recall the definition

∆−s(x) =
x

2 sin
(
1
2πs

) ∞∑
n=1

σs(n)
(√
nx
)−1−s

×
(
Js−1(4π

√
nx) + J1−s(4π

√
nx)− 2

π
sin(πs)K1−s(4π

√
nx)

)
,

for − 1
2 < σ < 1

2 and x > 0. If we replace s by −s in the above equation and use (2.16), we find by a

straightforward computation that

∆s(x) =

∞∑
n=1

(x
n

)(s+1)/2

σs(n)Gs+1(4π
√
nx), (3.30)

for − 1
2 < σ < 1

2 and x > 0. Fix x > 0. By the asymptotic expansions of Bessel functions (2.17), (2.18), and

(2.19), there exists a sufficiently large integer N0 such that

Gν(4π
√
nx)�ν

1

(nx)1/4
and Fν(4π

√
nx)�ν

1

(nx)1/4
, (3.31)

for all n > N0. Hence, for − 1
2 < σ < 1

2 and x > 0,

∑
n>N0

(x
n

)λ+ s
2

σs(n)Gs+2λ(4π
√
nx)� xλ+

2σ−1
4

∑
n>N0

σσ(n)

nλ+
1+2σ

4

� xλ+
2σ−1

4 ,

provided that 2λ > |σ|+ 3
2 . Therefore, for λ ≥ 1, − 1

2 < σ < 1
2 , and x > 0, the series

∞∑
n=1

(x
n

)λ+ s
2

σs(n)Gs+2λ(4π
√
nx)
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is absolutely convergent. Similarly, for λ ≥ 1, − 1
2 < σ < 1

2 , and x > 0, the series

∞∑
n=1

(x
n

)λ+ s
2

σs(n)Fs+2λ(4π
√
nx)

is absolutely convergent. Denote

Ds(x) :=
∑′

n≤x

σs(n) (3.32)

and

Φs(x) := xζ(1− s) +
x1+s

1 + s
ζ(1 + s)− 1

2
ζ(−s). (3.33)

Therefore, from (1.10), we write

Ds(x) = Φs(x) + ∆s(x) (3.34)

for − 1
2 < σ < 1

2 .

The following lemmas are key ingredients in the proof of Theorem 3.1.2. They are special cases of two

results in [98]. We note, however, that the definitions of G and F in [98] are different from those in (3.23)

and (3.24) that we use.

Lemma 3.3.1. If x > 0, N > 0, and − 1
2 < σ < 1

2 , then

∆s(x) =

N∑′

n=1

(x
n

)(s+1)/2

σs(n)Gs+1(4π
√
nx)−

( x
N

)(s+1)/2

Gs+1(4π
√
Nx)∆s(N) (3.35)

+
Nsζ(1 + s) + ζ(1− s)

2π

( x
N

)s/2
Fs(4π

√
Nx)

+
sζ(1 + s)

2π

∫ ∞
N

(x
t

)s/2
Fs(4π

√
xt)ts−1 dt

+ 2π

∞∑
n=1

σs(n)

∫ ∞
N

(x
t

)(s+2)/2

Fs+2(4π
√
xt)

(
t

n

)(s+1)/2

Gs+1(4π
√
nt) dt.

Proof. Take λ = 0, κ = 1, and θ = 1 in Theorem 2 of [98, p. 404], and make use of the notations (1.21) and

(3.13) given in it.

We wish to invert the order of summation and integration in the last expression on the right-hand side

of (3.35). In order to justify that, we need the following lemma.
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Lemma 3.3.2. If N > A, Nx > A, − 1
2 < σ < 1

2 , and

Is(x, n;N) := 2π

∫ ∞
N

(x
t

)(s+2)/2

Fs+2(4π
√
xt)

(
t

n

)(s+1)/2

Gs+1(4π
√
nt) dt,

then

∞∑
n=1

σs(n)Is(x, n;N) = Cs(x,N) +O

(
x1+ε√
N

)
,

for every ε > 0, where

Cs(x,N) = 0, if x < 1
2 or x ∈ N,

Cs(x,N) =
1

π

(
x

y

)(2s+5)/4

σs(y)

∫ ∞
4π
√
N |√y−

√
x|

sin(t sgn(y − x))

t
dt, if x 6= y = bx+ 1

2c ≥ 1.

Proof. This is the special case λ = 0, κ = 1 of Lemma 6 of [98, p. 412].

Proof of Theorem 3.1.2. By Lemma 3.3.2, we see that the last expression on the right-hand side of (3.35)

tends to 0 as N →∞. Hence, by interchanging the summation and integration in this expression, we deduce

that

∆s(x) =

N∑′

n=1

(x
n

)(s+1)/2

σs(n)Gs+1(4π
√
nx) +

Nsζ(1 + s) + ζ(1− s)
2π

( x
N

)s/2
Fs(4π

√
Nx) (3.36)

−
( x
N

)(s+1)/2

Gs+1(4π
√
Nx)∆s(N) +

sζ(1 + s)

2π

∫ ∞
N

(x
t

)s/2
Fs(4π

√
xt)ts−1 dt

+ 2π

∫ ∞
N

(x
t

)(s+2)/2

Fs+2(4π
√
xt)∆s(t) dt.

Let a ≥ 0 and b ≥ 0. From (3.32),

∑
a≤n≤b

f(n)σs(n) =

∫ b

a

f(t) dDs(t), (3.37)

where we write the sum as a Lebesgue-Stieltjes integral.

For a = 0 and b = α < 1
2 , the left-hand side of (3.37) equals 0. Therefore, from (3.28), (3.29), (3.33),

(3.34), (3.36), (3.37), and (3.30),

−
∫ α

0

f(t)(ζ(1− s) + tsζ(1 + s)) dt =

∫ α

0

f(t) d∆s(t) (3.38)
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= 2π

N∑′

n=1

σs(n)

ns/2

∫ α

0

ts/2Gs(4π
√
nt)f(t) dt

+
Nsζ(1 + s) + ζ(1− s)

N (s−1)/2

∫ α

0

t(s−1)/2Fs−1(4π
√
Nt)f(t) dt

− 2π

Ns/2
∆s(N)

∫ α

0

ts/2Gs(4π
√
Nt)f(t) dt

+
sζ(1 + s)

2π

∫ α

0

f(t)
d

dt

(∫ ∞
N

(
t

u

)s/2
Fs(4π

√
tu)us−1 du

)
dt

+ 2π

∫ α

0

f(t)
d

dt

(∫ ∞
N

(
t

u

)(s+2)/2

Fs+2(4π
√
tu)∆s(u) du

)
dt.

Using (3.29) twice, we see that

d

dt

(∫ ∞
N

(
t

u

)s/2
Fs(4π

√
tu)us−1 du

)
= 2π

∫ ∞
N

(tu)(s−1)/2Fs−1(4π
√
tu) du (3.39)

= ts/2−1us/2Fs(4π
√
tu)
∣∣∣∞
N

= −ts/2−1Ns/2Fs(4π
√
tN),

where in the last step we use (2.17)–(2.19), and the fact that σ < 1
2 . The interchange of differentiation and

integration above is justified from (3.31). Denote

Is(t,N) := 2π

∫ ∞
N

(
t

u

)(s+2)/2

Fs+2(4π
√
tu)∆s(u) du. (3.40)

Performing an integration by parts on the last expression on the right-hand side of (3.38) and using (3.39)

and (3.40), we find that

−
∫ α

0

f(t)(ζ(1− s) + tsζ(1 + s)) dt− 2π

N∑′

n=1

σs(n)

ns/2

∫ α

0

ts/2Gs(4π
√
nt)f(t) dt (3.41)

=
Nsζ(1 + s) + ζ(1− s)

N (s−1)/2

∫ α

0

t(s−1)/2Fs−1(4π
√
Nt)f(t) dt− 2π

Ns/2
∆s(N)

∫ α

0

ts/2Gs(4π
√
Nt)f(t) dt

− sζ(1 + s)Ns/2

2π

∫ α

0

f(t)ts/2−1Fs(4π
√
Nt) dt+ f(α)Is(α,N)−

∫ α

0

Is(t,N)f ′(t) dt,

where in the last step we made use of the fact that for − 1
2 < σ < 1

2 ,

lim
t→0

t(s+2)/2Fs+2(4π
√
tu) = 0.

Here again the limit can be moved inside the integral because of (3.31).
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Since α < 1
2 , by Lemma 3.3.2, Is(t,N)� N−1/2, for all 0 < t ≤ α. Also by hypothesis, f is differentiable,

so

V α0 f(t) =

∫ α

0

|f ′(t)| dt,

where V α0 f(t) is the total variation of f on the interval (0, α). Therefore the last two terms on the right-hand

side of (3.41) are of the form

O(N−1/2(|f(α)|+ V α0 f(t))). (3.42)

Recall the bound ∆s(N)� N
1
2 (1+σ) [98, Lemma 7]. From (3.28) and (3.31),

2π

Ns/2
∆s(N)

∫ α

0

ts/2Gs(4π
√
Nt) dt = ∆s(N)

( α
N

)(s+1)/2

Gs+1(4π
√
Nα)� α

σ
2

( α
N

) 1
4

. (3.43)

Here we also made use of the fact that

lim
t→0

t(s+1)/2Gs+1(4π
√
Nt) = 0.

Again, from (3.28) and (3.31),

Nsζ(1 + s) + ζ(1− s)
N (s−1)/2

∫ α

0

t(s−1)/2Fs−1(4π
√
Nt) dt =

Nsζ(1 + s) + ζ(1− s)
2πNs/2

αs/2Fs(4π
√
Nα) (3.44)

�


(2γ + logN)(αN)−1/4, if s = 0,

(αN)(2σ−1)/4 + α(2σ−1)/4N (−2σ−1)/4, if s 6= 0,

since limt→0 t
s/2Fs(4π

√
Nt) = 0. Finally,

sζ(1 + s)Ns/2

2π

∫ α

0

ts/2−1Fs(4π
√
Nt) dt =

sζ(1 + s)Ns/2

2π

(∫ ∞
0

−
∫ ∞
α

)
ts/2−1Fs(4π

√
Nt) dt = I1 − I2.

Using the functional equation of ζ(s), namely (5.5), and the formula [98, p. 409, equation 4.65], we find that

I1 =
sζ(1 + s)Ns/2

2π

∫ ∞
0

ts/2−1Fs(4π
√
Nt) dt = −(2π)−s−1 sin(πs/2)Γ(s+ 1)ζ(1 + s) =

ζ(−s)
2

.
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Using (3.31), we deduce that

I2 =
sζ(1 + s)Ns/2

2π

∫ ∞
α

ts/2−1Fs(4π
√
Nt) dt� (αN)(2σ−1)/4, (3.45)

since − 1
2 < σ < 1

2 . Using (3.42)–(3.45) in (3.41), we find that

f(0+)
ζ(−s)

2
−
∫ α

0

f(t)(ζ(1− s) + tsζ(1 + s)) dt (3.46)

− 2π

N∑′

n=1

σs(n)

ns/2

∫ α

0

ts/2Gs(4π
√
nt)f(t) dt

=
Nsζ(1 + s) + ζ(1− s)

N (s−1)/2

∫ α

0

t(s−1)/2Fs−1(4π
√
Nt)(f(t)− f(0+)) dt

− 2π

Ns/2
∆s(N)

∫ α

0

ts/2Gs(4π
√
Nt)(f(t)− f(0+)) dt

− sζ(1 + s)

2π

∫ α

0

(f(t)− f(0+))ts/2−1Ns/2Fs(4π
√
Nt) dt

+O((αN)(2σ−1)/4 + α(2σ−1)/4N (−2σ−1)/4) +O((2γ + logN)(αN)−1/4).

By the second mean value theorem for integrals in the form given in [97, p. 31],

∣∣∣∣∣
∫ b

a

f(t)φ(t) dt− f(b)

∫ b

a

φ(t) dt

∣∣∣∣∣ ≤ V ba f(t) maxa≤c<d≤b

∣∣∣∣∣
∫ d

c

φ(t) dt

∣∣∣∣∣ , (3.47)

where φ is integrable on [a, b].

Recall that Nθα > 1 for some 0 < θ < min
(

1, 1+2σ
1−2σ

)
. Dividing the interval (0, α) into two sub-intervals

(0, N−θ) and (N−θ, α), applying (3.47), and using an argument like that in (3.44), we see that

Nsζ(1 + s) + ζ(1− s)
N (s−1)/2

∫ α

N−θ
t(s−1)/2Fs−1(4π

√
Nt)(f(t)− f(0+)) dt (3.48)

�


(2γ + logN)N (θ−1)/4V αN−θf(t), if s = 0,

(N (1−θ)(2σ−1)/4 +N (θ(1−2σ)−(2σ+1))/4)V αN−θf(t), if s 6= 0,

and

Nsζ(1 + s) + ζ(1− s)
N (s−1)/2

∫ N−θ

0

t(s−1)/2Fs−1(4π
√
Nt)(f(t)− f(0+)) dt�


(2γ + logN)V N

−θ

0 f(t), if s = 0,

V N
−θ

0 f(t), if s 6= 0.
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By (3.47) and arguments similar to those in (3.43) and (3.45),

2π

Ns/2
∆s(N)

∫ α

N−θ
ts/2Gs(4π

√
Nt)(f(t)− f(0+)) dt� α

σ
2

( α
N

) 1
4

V αN−θf(t),

2π

Ns/2
∆s(N)

∫ N−θ

0

ts/2Gs(4π
√
Nt)(f(t)− f(0+)) dt� N

−2θσ−1−θ
4 V N

−θ

0 f(t),

sζ(1 + s)

2π

∫ α

N−θ
(f(t)− f(0+))ts/2−1Ns/2Fs(4π

√
Nt) dt� N

(1−θ)(2σ−1)
4 V αN−θf(t),

and

sζ(1 + s)

2π

∫ N−θ

0

(f(t)− f(0+))ts/2−1Ns/2Fs(4π
√
Nt) dt� V N

−θ

0 f(t). (3.49)

Combining (3.48)–(3.49) together with (3.46), we obtain

f(0+)
ζ(−s)

2
−
∫ α

0

f(t)(ζ(1− s) + tsζ(1 + s)) dt− 2π

N∑′

n=1

σs(n)

ns/2

∫ α

0

ts/2Gs(4π
√
nt)f(t) dt

�


(2γ + logN)(V N

−θ

0 f(t) +N (θ−1)/4V αN−θf(t)), if s = 0,

V N
−θ

0 f(t) + (N (1−θ)(2σ−1)/4 +N (θ(1−2σ)−(2σ+1))/4))V αN−θf(t), if s 6= 0,

�


(2γ + logN)(V N

−θ

0 f(t) +N (θ−1)/4(|f(α)|+ V α0 f(t))), if s = 0,

V N
−θ

0 f(t) + (N (1−θ)(2σ−1)/4 +N (θ(1−2σ)−(2σ+1))/4)(|f(α)|+ V α0 f(t)), if s 6= 0.

Furthermore, if log xV x0 f(t) → 0 as x → 0+ when s = 0, and if V x0 f(t) → 0 as x → 0+ when s 6= 0, then

the assumption 0 < θ < min
(

1, 1+2σ
1−2σ

)
implies that

f(0+)
ζ(−s)

2
−
∫ α

0

f(t)(ζ(1− s) + tsζ(1 + s)) dt− 2π

∞∑
n=1

σs(n)

ns/2

∫ α

0

ts/2Gs(4π
√
nt)f(t) dt = 0.

This completes the proof of Theorem 3.1.2.
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Chapter 4

Generalization of Entries on page 335
of Ramanujan’s lost notebook

4.1 Main results

In this chapter, we establish one-variable generalizations of Entries 1.3.1 and 1.3.2, where the double sums

here are also interpreted as limN→∞
∑
m,n≤N , instead of as iterated double sums. It is an open problem to

determine if the series can be replaced by iterated double series.

As in Entries 1.3.1 and 1.3.2, the series on the left-hand sides of Theorems 4.1.1 and 4.1.2 are finite.

4.1.1 Generalization of Entry 1

Theorem 4.1.1. Let ζ(s, a) denote the Hurwitz zeta function. Let 0 < θ < 1. Then, for |σ| < 1
2 ,

∞∑
n=1

F
(x
n

) sin (2πnθ)

ns
= −x sin(πs/2)Γ(−s)

(2π)−s
(ζ(−s, θ)− ζ(−s, 1− θ)) (4.1)

− cos(πs/2)Γ(1− s)
2(2π)1−s

(ζ(1− s, θ)− ζ(1− s, 1− θ)) +
x

2
sin
(πs

2

)
×
∞∑
m=1

∞∑
n=0

M1−s

(
4π
√
mx (n+ θ)

)
(mx)

1+s
2 (n+ θ)

1−s
2

−
M1−s

(
4π
√
mx (n+ 1− θ)

)
(mx)

1+s
2 (n+ 1− θ) 1−s

2

 ,

where

Mν(x) =
2

π
Kν(x) +

1

sin(πν)
(Jν(x)− J−ν(x)) =

2

π
Kν(x) + Yν(x) + Jν(x) tan

(πν
2

)
. (4.2)

We show that Entry 1.3.1 is identical with Theorem 4.1.1 when s = 0. First observe that [3, p. 264,

Theorem 12.13]

ζ(0, θ) =
1

2
− θ (4.3)

and

lim
s→0

(ζ(1− s, θ)− ζ(1− s, 1− θ)) = ψ(1− θ)− ψ(θ) = π cot(πθ),
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where ψ(z) = Γ′(z)/Γ(z) denotes the digamma function. Since, by (2.15), J−1(x) = −J1(x),

lim
s→0

sin(πs/2)M1−s(x) = J1(x). (4.4)

Now taking the limit as s→ 0 on both sides of (4.1) and using (4.3)–(4.4), we obtain Entry 1.3.1.

4.1.2 Generalization of Entry 2

Theorem 4.1.2. Let 0 < θ < 1. Then, for |σ| < 1
2 ,

∞∑
n=1

F
(x
n

) cos (2πnθ)

ns
= x

cos(πs/2)Γ(−s)
(2π)−s

(ζ(−s, θ) + ζ(−s, 1− θ)) (4.5)

−
sin( 1

2πs)Γ(1− s)
2(2π)1−s

(ζ(1− s, θ) + ζ(1− s, 1− θ))− x

2
cos
(πs

2

)
×
∞∑
m=1

∞∑
n=0

H1−s

(
4π
√
mx (n+ θ)

)
(mx)

1+s
2 (n+ θ)

1−s
2

+
H1−s

(
4π
√
mx (n+ 1− θ)

)
(mx)

1+s
2 (n+ 1− θ) 1−s

2

 ,

where

Hν(x) =
2

π
Kν(x)− 1

sin(πν)
(Jν(x) + J−ν(x)) =

2

π
Kν(x) + Yν(x)− Jν(x) cot

(πν
2

)
. (4.6)

We demonstrate that Entry 1.3.2 can be obtained from Theorem 4.1.2 as the particular case s = 0. First,

lim
s→0

Γ(−s)(ζ(−s, θ) + ζ(−s, 1− θ)) = lim
s→0

(−s)Γ(−s) (ζ(−s, θ) + ζ(−s, 1− θ))
−s

(4.7)

= ζ ′(0, θ) + ζ ′(0, 1− θ)

= − log(2 sin(πθ)),

where we used the fact that ζ ′(0, θ) = log(Γ(θ)) − 1
2 log(2π) [11]. Second, since s = 1 is a simple pole of

ζ(s, θ) with residue 1, then

lim
s→0

sin(πs/2)(ζ(1− s, θ) + ζ(1− s, 1− θ)) = lim
s→0

sin(πs/2)

s
s(ζ(1− s, θ) + ζ(1− s, 1− θ)) = −π.

Third, by (2.16),

lim
s→0

1

2 sin(πs/2)
(J1−s(x) + Js−1(x)) = −Y1(x). (4.8)

Taking the limit as s→ 0 in (4.5) while using (4.7)–(4.8), we obtain Entry 1.3.2.

59



4.2 Preliminary Results

Let us define the generalized twisted divisor sum by

σs(χ, n) :=
∑
d|n

χ(d)ds, (4.9)

which, for Re z > max{1, 1 + σ}, has the generating function

ζ(z)L(z − s, χ) =

∞∑
n=1

σs(χ, n)

nz
.

The following lemma from the papers of Voronöı [92] and Oppenheim [76] is instrumental in proving our

main theorems.

Lemma 4.2.1. If x > 0, x /∈ Z, and − 1
2 < σ < 1

2 , then

∑′

n≤x

σ−s(n) = − cos( 1
2πs)

∞∑
n=1

σ−s(n)
(x
n

) 1−s
2

H1−s
(
4π
√
nx
)

+ xZ(s, x)− 1

2
ζ(s),

where Hν(x) is defined in (4.6), and where

Z(s, x) =


ζ(1 + s) +

ζ(1− s)
1− s

x−s, if s 6= 0,

log x+ 2γ − 1, if s = 0,

(4.10)

is analytic for all s.

From the definition (4.6) of Hν and (4.8), we find that

H1(4π
√
nx) = Y1(4π

√
nx) +

2

π
K1(4π

√
nx) = −I1(4π

√
nx).

Note that, it is not difficult to show that

lim
s→0

Z(s, x) = log x+ 2γ − 1 = Z(0, x). (4.11)

Recall that the Laurent series expansion of ζ(s) near the pole s = 1 is given by

ζ(s) =
1

s− 1
+ γ +

∞∑
n=1

(−1)nγn(s− 1)n

n!
,
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where γn, n ≥ 1, are the Stieltjes constants defined by [9]

γn = lim
N→∞

(
N∑
k=1

logn k

k
− logn+1N

n+ 1

)
.

Thus, by (4.10), for s > 0,

Z(s, x) =
s− 1 + x−s

s(s− 1)
+ γ

(
1− x−s

s− 1

)
+

∞∑
n=1

(−1)nγns
n

n!
+

x−s

1− s

∞∑
n=1

γns
n

n!
.

Hence,

lim
s→0

Z(s, x) = lim
s→0

s− 1 + x−s

s(s− 1)
+ 2γ = − lim

s→0
(1− log xx−s) + 2γ = log x+ 2γ − 1,

which proves (4.11).

Lemma 4.2.2. Let F (x) be defined by (1.14). For each character χ modulo q, where q is prime, define the

Gauss sum

τ(χ) =
∑

n (mod q)

χ(n)e2πin/q. (4.12)

If 0 < a < q and (a, q) = 1, then, for any complex number s,

∞∑
n=1

F
(x
n

)
sin

(
2πna

q

)
ns = −iqs

∑
d|q
d>1

1

dsφ(d)

∑
χmod d
χ odd

χ(a)τ(χ̄)
∑′

1≤n≤dx/q

σs(χ, n),

where φ(n) denotes Euler’s φ-function.

Proof. First, we see that

∑′

n≤x

σs(n) =
∑′

n≤x

∑
d|n

ds =
∑
d≤x

ds
bx/dc∑′

m=1

1 =

∞∑
n=1

F
(x
n

)
ns. (4.13)

Similarly, for any Dirichlet character χ modulo q,

∑′

n≤x

σs(χ, n) =

∞∑
n=1

F
(x
n

)
χ(n)ns, (4.14)

where σs(χ, n) is defined in (4.9). We have

∞∑
n=1

F
(x
n

)
sin

(
2πna

q

)
ns =

∞∑
n=1

∑
d|q

∑
(n,q)=q/d

F
(x
n

)
sin

(
2πna

q

)
ns
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=
∑
d|q

∞∑
m=1

(m,d)=1

F

(
dx

qm

)
sin

(
2πma

d

)(qm
d

)s

=
∑
d|q
d>1

∞∑
m=1

(m,d)=1

F

(
dx

qm

)
sin

(
2πma

d

)(qm
d

)s
.

Now using the fact [17, p. 72, Lemma 2.5]

sin

(
2πma

d

)
=

1

iφ(d)

∑
χmod d
χ odd

χ(a)τ(χ̄)χ(m), (4.15)

we find that

∞∑
n=1

F
(x
n

)
sin

(
2πna

q

)
ns =

∑
d|q
d>1

1

iφ(d)

∞∑
m=1

(m,d)=1

F

(
dx

qm

)(qm
d

)s ∑
χmod d
χ odd

τ(χ̄)χ(m)χ(a)

= −iqs
∑
d|q
d>1

1

dsφ(d)

∑
χmod d
χ odd

τ(χ̄)χ(a)
∑′

n≤dx/q

σs(χ, n),

as can be seen from (4.14). This completes the proof of Lemma 4.2.2.

Lemma 4.2.3. If 0 < a < q and (a, q) = 1, then, for any complex number s,

∞∑
n=1

F
(x
n

)
cos

(
2πna

q

)
ns = qs

∑′

1≤n≤x/q

σs(n) + qs
∑
d|q
d>1

1

dsφ(d)

∑
χmod d
χ even

χ(a)τ(χ̄)
∑′

1≤n≤dx/q

σs(χ, n).

Proof. We have

∞∑
n=1

F
(x
n

)
cos

(
2πna

q

)
ns =

∞∑
n=1

∑
d|q

∑
(n,q)=q/d

F
(x
n

)
cos

(
2πna

q

)
ns

=
∑
d|q

∞∑
m=1

(m,d)=1

F

(
dx

qm

)
cos

(
2πma

d

)(qm
d

)s

=

∞∑
m=1

F

(
x

qm

)
(qm)s +

∑
d|q
d>1

∞∑
m=1

(m,d)=1

F

(
dx

qm

)
cos

(
2πna

d

)(qm
d

)s
.

Invoking (4.13) and (4.15) above, we find that

∞∑
n=1

F
(x
n

)
cos

(
2πna

q

)
ns = qs

∑′

n≤x/q

σs(n) + qs
∑
d|q
d>1

1

dsφ(d)

∞∑
m=1

(m,d)=1

F

(
dx

qm

)
ms

∑
χmod d
χ even

τ(χ̄)χ(a)χ(m)
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= qs
∑′

n≤x/q

σs(n) + qs
∑
d|q
d>1

1

dsφ(d)

∑
χmod d
χ even

τ(χ̄)χ(a)
∑′

n≤dx/q

σs(χ, n).

Thus, we have finished the proof of Lemma 4.2.3.

We need a lemma from [23, p. 5, Lemma 1].

Lemma 4.2.4. Let σa denote the abscissa of absolute convergence for

φ(s) :=

∞∑
n=1

anλ
−s
n .

Then for k ≥ 0, σ > 0, and σ > σa,

1

Γ(k + 1)

∑′

λn≤x

an(x− λn)k =
1

2πi

∫
(σ)

Γ(s)φ(s)xs+k

Γ(s+ k + 1)
ds,

where the prime ′ on the summation sign indicates that if k = 0 and x = λm for some positive integer m,

then we count only 1
2am.

We recall the following version of the Phragmén-Lindelöf theorem [66, p. 109].

Lemma 4.2.5. Let f be holomorphic in a strip S given by a < σ < b, |t| > η > 0, and continuous on the

boundary. If for some constant θ < 1,

f(s)� exp(eθπ|s|/(b−a)),

uniformly in S, f(a+ it) = o(1), and f(b+ it) = o(1) as |t| → ∞, then f(σ + it) = o(1) uniformly in S as

|t| → ∞.

We also need two lemmas, proven by K. Chandrasekharan and R. Narasimhan [23, Corollaries 1 and

2, p. 11] (see also Berndt [5, Lemmas 12 and 13]), that are based on results of A. Zygmund [99] for equi-

convergent series. We recall that two series

∞∑
j=−∞

aj(x) and

∞∑
j=−∞

bj(x)

are uniformly equi-convergent on an interval if

n∑
j=−n

[aj(x)− bj(x)]
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converges uniformly on that interval as n→∞ [5, Definition 5].

Lemma 4.2.6. Let an be a positive strictly increasing sequence of numbers tending to ∞, and suppose that

an = a−n. Suppose that J is a closed interval contained in an interval I of length 2π. Assume that

∞∑
n=−∞

|cn| <∞.

Then, if g is a function with period 2π which equals

∞∑
n=−∞

cne
ianx

on I, the Fourier series of g converges uniformly on J .

Lemma 4.2.7. With the same notation as Lemma 4.2.6, assume that

sup0≤h≤1

∣∣∣∣∣ ∑
k<an<k+h

cn

∣∣∣∣∣ = o(1),

as k →∞, and

∞∑
n=−∞

|cn|
an

<∞.

Let A(x) be a C∞ function with compact support on I, which is equal to 1 on J . Furthermore, let B(x) be a

C∞ function. Then, the series

B(x)

∞∑
n=−∞

cne
ianx

is uniformly equi-convergent on J with the differentiated series of the Fourier series of a function with period

2π, which equals

A(x)

∞∑
n=−∞

c(n)Wn(x)

on I, where Wn(x) is an antiderivative of B(x)eianx.

Let the Fourier series of any function f defined, say, in the interval (−π, π), be

S[f ] :=

∞∑
n=−∞

cne
inx.
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The following result of Zygmund [100, Theorem 6.6, p. 53] expresses the Riemann-Lebesgue localization

principle.

Lemma 4.2.8. If two functions f1 and f2 are equal in an interval I, then S[f1] and S[f2] are uniformly

equi-convergent in any interval I ′ interior to I.

For each integer λ define

G̃λ+s(z) := Jλ+s(z) cos
(πs

2

)
−
(
Yλ+s(z)− (−1)λ

2

π
Kλ+s(z)

)
sin
(πs

2

)
. (4.16)

By (3.25), (3.27), and (3.26),

d

dx

(x
u

)(1+k−s)/2
σs(n)G̃1+k−s(4π

√
xu) = 2π

(x
u

) k−s
2

σs(n)G̃k−s(4π
√
xu). (4.17)

Let us consider the Dirichlet series
∑∞
n=1 anµ

−s
n with abscissa of absolute convergence σa and

0 < µ1 < µ2 < · · · < µn →∞.

For y > 0 and ν = λ+ s, define

F̃ν(y) :=

∞∑
n=1

an

(
qy2

µn

)ν/2
G̃ν

(
4πy

√
µn
q

)

and

Fν(y) :=

∞∑
n=1

an

(
qy2

µn

)ν/2
Gν

(
4πy

√
µn
q

)
,

where Gλ+s(z) is defined in (3.23). Suppose that

∞∑
n=1

|an|

µ
ν
2+

3
4

n

<∞ (4.18)

and

sup0≤h≤1

∣∣∣∣∣∣
∑

m2<µn≤(m+h)2

an

µ
ν
2+

1
4

n

∣∣∣∣∣∣ = o(1), (4.19)

as m→∞.

The following lemma is similar to Theorem II in [23] and Lemma 14 in [5].
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Lemma 4.2.9. The function 2yF̃ν(y) is uniformly equi-convergent on any interval J of length less than 1

with the differentiated series of the Fourier series of a function with period 1, which on I equals A(y)F̃ν+1(y),

where I is of length 1 and contains J . Moreover, F̃ν(y) is a continuous function.

Proof. We examine the function

f(y) :=2qν/2y1+ν
∞∑
n=1

(
an
µn

)ν/2{
G̃ν

(
4πy

√
µn
q

)
(4.20)

− q1/4

πµ
1/4
n (2y)1/2

(
cos

(
4πy

√
µn
q
− πν

2
− π

4

)
d0 + sin

(
4πy

√
µn
q
− πν

2
− π

4

)
d′0

)
− q3/4

2π2µ
3/4
n y3/2

(
sin

(
4πy

√
µn
q
− πν

2
− π

4

)
d1 + cos

(
4πy

√
µn
q
− πν

2
− π

4

)
d′1

)}
,

where d0, d
′
0, d1, and d′1 are constants. Since y > 0, then by the definition (4.16), (2.17), (2.18), (2.19), and

(4.18), the function f(y) in (4.20) is a continuously differentiable function. Let g be a function with period

1 which equals f on I. Since f is continuously differentiable, the Fourier series of g is uniformly convergent

on J . By the hypothesis (4.18), (4.19), and Lemma 4.2.7, the series

2qν/2y1+ν
∞∑
n=1

(
an
µn

)ν/2
q1/4

πµ
1/4
n (2y)1/2

(
cos

(
4πy

√
µn
q
− πν

2
− π

4

)
d0 + sin

(
4πy

√
µn
q
− πν

2
− π

4

)
d′0

)

is uniformly equi-convergent on J with the derived series of the Fourier series of a function that is of period

1 and equals on I,

A(y)

∞∑
n=1

(
an
µn

)ν/2 ∫ y

α

2qν/2t1+ν
q1/4

πµ
1/4
n (2t)1/2

(4.21)

×
(

cos

(
4πt

√
µn
q
− πν

2
− π

4

)
d0 + sin

(
4πt

√
µn
q
− πν

2
− π

4

)
d′0

)
dt,

for some α > 0. Using Lemma 4.2.6, we can prove a result similar to that of (4.21) for the series

2qν/2y1+ν
∞∑
n=1

(
an
µn

)ν/2
q3/4

2π2µ
3/4
n (y)3/2

(
cos

(
4πy

√
µn
q
− πν

2
− π

4

)
d0 + sin

(
4πy

√
µn
q
− πν

2
− π

4

)
d′0

)
.

Hence, the series

2y

∞∑
n=1

an

(
qy2

µn

)ν/2
G̃ν

(
4πy

√
µn
q

)

is uniformly equi-convergent on J with the derived series of the Fourier series of a function that is of period
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1 and equals on I,

A(y)

∞∑
n=1

an

∫ y

0

2t

(
qt2

µn

)ν/2
G̃ν

(
4πt

√
µn
q

)
dt =

A(y)

2π

∞∑
n=1

an

(
qy2

µn

)(ν+1)/2

G̃ν+1

(
4πy

√
µn
q

)
.

In the last step we use (4.17). This completes the proof of the lemma.

The following lemma is proved by the same kind of argument.

Lemma 4.2.10. The function 2yFν(y) is uniformly equi-convergent on any interval J of length less than 1

with the differentiated series of the Fourier series of a function with period 1, which on I equals A(y)Fν+1(y),

where I is of length 1 and contains J . Moreover, Fν(y) is a continuous function.

4.3 Proof of the generalization of Entry 1

We prove the theorem under the assumption that the double series on the right-hand sides of (4.1) and

(4.5) are summed symmetrically, i.e., the product mn of the indices of summation tends to ∞. Under this

assumption, we prove that the double series in (4.1) and (4.5) are uniformly convergent with respect to θ

on any compact subinterval of (0, 1). By continuity, it is sufficient to prove the theorem for all primes q and

all fractions θ = a/q, where 0 < a < q. Therefore for these values of θ, Theorem 4.1.1 is equivalent to the

following theorem.

Theorem 4.3.1. Recall that Mν is defined in (4.2). Let q be a prime and 0 < a < q. Let

Ls(a, q, x) = −x
2

sin
(πs

2

)
(4.22)

×
∞∑
m=1

∞∑
n=0

M1−s

(
4π
√
mx (n+ a/q)

)
(mx)

1+s
2 (n+ a/q)

1−s
2

−
M1−s

(
4π
√
mx (n+ 1− a/q)

)
(mx)

1+s
2 (n+ 1− a/q) 1−s

2

 ,

where Ms(z) is defined in (4.2). Then, for |σ| < 1
2 ,

Ls(a, q, x) +

∞∑
n=1

F
(x
n

) sin (2πna/q)

ns
= −x sin(πs/2)Γ(−s)

(2π)−s

(
ζ(−s, a

q
)− ζ

(
−s, 1− a

q

))
− cos(πs/2)Γ(1− s)

2(2π)1−s

(
ζ

(
1− s, a

q

)
− ζ

(
1− s, 1− a

q

))
,

where ζ(s, a) denotes the Hurwitz zeta function.

First we need the following theorem.
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Theorem 4.3.2. If χ is a non-principal odd primitive character modulo q, x > 0, |σ| < 1/2, and k is a

non-negative integer, then

1

Γ(k + 1)

∑′

n≤x

σ−s(χ, n)(x− n)k

=
xk+1L(1 + s, χ)

Γ(k + 2)
− xkL(s, χ)

2Γ(k + 1)
+ 2

b k+1
2 c∑

n=1

(−1)n−1xk−2n+1

Γ(k − 2n+ 2)

ζ(2n)

(2π)2n
L(1− 2n+ s, χ)

+
i

τ(χ̄)(2π)k

∞∑
n=1

σ−s(χ̄, n)
(qx
n

) 1−s+k
2

G̃1−s+k

(
4π

√
nx

q

)
,

where G̃λ−s(z) is defined in (4.16). The series on the right-hand side converges uniformly on any interval

for x > 0, where the left-hand side is continuous. The convergence is bounded on any interval 0 < x1 ≤ x ≤

x2 <∞ when k = 0.

Proof. From (4.9) and Lemma 4.2.4, for a fixed x > 0, we see that

1

Γ(k + 1)

∑′

n≤x

σ−s(χ, n)(x− n)k =
1

2πi

∫
(c)

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
dw, (4.23)

where max{1, 1 − σ, σ} < c < 1 and k ≥ 0. Consider the positively oriented rectangular contour R with

vertices [c± iT, 1− c± iT ]. Observe that the integrand on the right-hand side of (4.23) has poles at w = 1

and w = 0 inside the contour R. By the residue theorem,

1

2πi

∫
R

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
dw (4.24)

= R1

(
ζ(w)L(w + s, χ)

Γ(w)xw+k

Γ(w + k + 1)

)
+R0

(
ζ(w)L(w + s, χ)

Γ(w)xw+k

Γ(w + k + 1)

)
,

where we recall that Ra(f(w)) denotes the residue of the function f(w) at the pole w = a. Straightforward

computations show that

R0

(
ζ(w)L(w + s, χ)

Γ(w)xw+k

Γ(w + k + 1)

)
=
ζ(0)L(s, χ)x1+k

Γ(k + 1)
(4.25)

and

R1

(
ζ(w)L(w + s, χ)

Γ(w)xw+k

Γ(w + k + 1)

)
=
xk+1L(1 + s, χ)

Γ(k + 2)
. (4.26)

We show that the contribution from the integrals along the horizontal sides (σ ± iT, 1 − c ≤ σ ≤ c) on the
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left-hand side of (4.24) tends to zero as |t| → ∞. We prove this fact by showing that

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
= o(1),

as |Im w| → ∞, uniformly for 1 − c ≤ Re w < c. The functional equation for L(s, χ) for an odd primitive

Dirichlet character χ is given by [31, p. 69]

(
π

q

)− 1+s
2

Γ

(
1 + s

2

)
L(s, χ) =

iτ(χ)
√
q

(
π

q

)− 2−s
2

Γ

(
2− s

2

)
L(1− s, χ), (4.27)

where τ(χ) is the Gauss sum defined in (4.12). Combining the functional equation (5.5) of ζ(w) and the

functional equation (4.27) of L(w + s, χ) for odd primitive χ, we deduce the functional equation

ζ(w)L(w + s, χ) =
iπ2w+s−1

τ(χ̄)qw+s−1 η(w, s)ζ(1− w)L(1− w − s, χ̄), (4.28)

where

η(w, s) =
Γ
(
1
2 (1− w)

)
Γ
(
1
2 (2− w − s)

)
Γ
(
1
2w
)

Γ
(
1
2 (1 + w + s)

) .

Since σ < 1
2 ,

ζ(c+ it)L(c+ it+ s, χ) = O(1),

as |t| → ∞. Using (1.39), we see that

Γ(w)

Γ(w + k + 1)
= O(|Im w|−1−k), (4.29)

uniformly in 1− c ≤ Re w < c, as |Im w| → ∞. Therefore, for w = c+ it,

ζ(w)L(w,χ)
Γ(w)xw+k

Γ(w + k + 1)
= o(1), (4.30)

as |t| → ∞. Again, using Stirling’s formula (1.39) for the Gamma function and the relation (4.28), we find

that, for w = 1− c+ it,

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
=

iπ2w+s−1

τ(χ̄)qw+s−1 η(w, s)ζ(1− w)L(1− w − s, χ̄)
Γ(w)xw+k

Γ(w + k + 1)
(4.31)

= Oq,s(t
2c−σ−k−2)
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= o(1),

as |t| → ∞, provided that k > 2c− σ − 2. From (4.29) and [31, pp. 79, 82, equations (2),(15)],

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
�q exp (C|w| log |w|), (4.32)

for some constant C and |Im w| → ∞. Since the function on the left-hand side of (4.32) is holomorphic for

|Im w| > η′ > 0, then, by using (4.30), (4.31), (4.32), and Lemma 4.2.5, we deduce that

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
= o(1),

uniformly for 1− c ≤ Re w ≤ c and |Im w| → ∞. Therefore,

∫ 1−c±iT

c±iT
ζ(w)L(w + s, χ)

Γ(w)xw+k

Γ(w + k + 1)
= o(1), (4.33)

as T → ∞. Using the evaluation ζ(0) = − 1
2 and combining (4.23), (4.24), (4.25), (4.26), and (4.33), we

deduce that

1

Γ(k + 1)

∑′

n≤x

σ−s(χ, n)(x− n)k =
xk+1L(1 + s, χ)

Γ(k + 2)
− L(s, χ)xk

2Γ(k + 1)
(4.34)

+
1

2πi

∫
(1−c)

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
dw,

provided that k ≥ 0 and k > 2c− σ − 2. Define

I(y) :=
1

2πi

∫
(1−c)

η(w, s)Γ(w)

Γ(w + k + 1)
yw dw. (4.35)

Using the functional equation (4.28) in the integrand on the right-hand side of (4.34) and inverting the order

of summation and integration, we find that

1

2πi

∫
(1−c)

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
dw (4.36)

=
ixkπs−1

τ(χ̄)qs−1
1

2πi

∫
(1−c)

η(w, s)Γ(w)

Γ(w + k + 1)
ζ(1− w)L(1− w − s, χ̄)

(
π2x

q

)w
dw

=
ixkπs−1

τ(χ̄)qs−1
1

2πi

∫
(1−c)

η(w, s)Γ(w)

Γ(w + k + 1)

(
π2x

q

)w ∞∑
n=1

σs(χ̄, n)

n1−w
dw
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=
ixkπs−1

τ(χ̄)qs−1

∞∑
n=1

σs(χ̄, n)

n1+k
1

2πi

∫
(1−c)

η(w, s)Γ(w)

Γ(w + k + 1)

(
π2nx

q

)w
dw

=
ixkπs−1

τ(χ̄)qs−1

∞∑
n=1

σs(χ̄, n)

n
I

(
π2nx

q

)
,

provided that k > 2c− σ − 1. We compute the integral I(y) by using the residue calculus, shifting the line

of integration to the right, and letting c→ −∞.

Let k be a positive integer and σ 6= 0. From (4.35), we can write

I(y) :=
1

2πi

∫
(1−c)

F (w) dw,

where

F (w) :=
Γ(w)Γ

(
1
2 (1− w)

)
Γ
(
1
2 (2− w − s)

)
yw

Γ(1 + k + w)Γ
(
1
2w
)

Γ
(
1
2 (1 + w + s)

) .
Note that the poles of the function F (w) on the right side of the line 1 − c + it,−∞ < t < ∞, are at

w = 2m+ 1 and w = 2m+ 2− s for m = 0, 1, 2, . . . . Thus,

R2m+1(F (w)) = (−1)m+1 2Γ(2m+ 1)Γ
(
−m− 1

2 (s− 1)
)
y2m+1

m!Γ(2 + k + 2m)Γ
(
m+ 1

2

)
Γ
(
1 +m+ 1

2 (s)
)

and

R2m+2−s(F (w)) = (−1)m+1 2Γ(2m+ 2− s)Γ
(
−m+ 1

2 (s− 1)
)
y2m+2−s

m!Γ(3 + k + 2m− s)Γ
(
m+ 1

2 (2− s)
)

Γ
(
m+ 3

2

) .
With the aid of the duplication formula (1.32) and the reflection formula (1.30) for Γ(s), we find that

R2m+1(F (w)) = − 2s−1

cos(πs/2)

(2
√
y)4m+2

(2m+ k + 1)!Γ(2m+ s+ 1)
(4.37)

and

R2m+2−s(F (w)) =
2(2y)2−s

cos(πs/2)

(2
√
y)4m

(2m+ 1)!Γ(2m+ k + 3− s)
. (4.38)

Now from [93, pp. 77–78], we recall that the modified Bessel function Iν(z) is defined by

Iν(z) :=

∞∑
m=0

(z/2)2m+ν

m!Γ(m+ 1 + ν)
, (4.39)
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and that Kν(z) can be represented as

Kν(z) =
π

2

I−ν(z)− Iν(z)

sin(πν)
. (4.40)

(We emphasize that the definition of Iν(z) given in (4.39) should not be confused with the definition of Iν(z)

given by Ramanujan in (1.17).) Therefore, from (2.15), (4.39), and (4.37), for k even,

∞∑
m=0

R2m+1(F (w)) = −2s−1−2ky−k

cos(πs/2)

∞∑
m=0

(2
√
y)4m+2k+2

(2m+ k + 1)!Γ(2m+ 1 + s)
(4.41)

= −2s−1−2ky−k

cos(πs/2)

{ ∞∑
m=0

(2
√
y)4m+2k+2

(2m+ 1)!Γ(2m+ 1 + s− k)

−
k/2∑
m=1

(2
√
y)4m−2

(2m− 1)!Γ(2m− 1 + s− k)

}
= −2−1−ky(1−s−k)/2

cos(πs/2)
(I−1+s−k(4

√
y)− J−1+s−k(4

√
y))

+
2s−1−2ky−k

cos(πs/2)

k/2∑
m=1

(2
√
y)4m−2

(2m− 1)!Γ(2m− 1 + s− k)

= −2−1−ky(1−s−k)/2

cos(πs/2)
(I−1+s−k(4

√
y)− J−1+s−k(4

√
y))

+
2s+1

cos(πs/2)

k/2∑
m=1

2−4my1−2n

Γ(k − 2m+ 2)Γ(1− 2m+ s)
.

Similarly, for k odd

∞∑
m=0

R2m+1(F (w)) = −2−1−ky(1−s−k)/2

cos(πs/2)
(I−1+s−k(4

√
y) + J−1+s−k(4

√
y)) (4.42)

+
2s+1

cos(πs/2)

(k+1)/2∑
m=1

2−4my1−2n

Γ(k − 2m+ 2)Γ(1− 2m+ s)
.

From (4.38), (2.15), and (4.39), we find that

∞∑
m=0

R2m+1−s(F (w)) =
2−1−ky(1−s−k)/2

cos(πs/2)
(−J1−s+k(4

√
y) + I1−s+k(4

√
y)). (4.43)

Invoking (4.40) in the sum of (4.41), (4.42), and (4.43), we deduce that

∞∑
m=0

(R2m+1(F (w)) +R2m+1−s(F (w))) = − sin(πs/2)

2ky(−1+s+k)/2

×
(
J1−s+k(4

√
y) + (−1)k+1J−1+s−k(4

√
y)

sinπs
− (−1)k+1 2

π
K1−s+k(4

√
y)

)
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+
2s+1

cos(πs/2)

b k+1
2 c∑

m=1

2−4my1−2n

Γ(k − 2m+ 2)Γ(1− 2m+ s)
.

Consider the positively oriented contour RN formed by the points {1− c− iT, 2N + 3
2 − iT, 2N + 3

2 + iT, 1−

c+ iT}, where T > 0 and N is a positive integer. By the residue theorem,

1

2πi

∫
RN

F (w) dw =
∑

0≤k≤N

R2k+1(F (w)) +
∑

0≤k≤N

R2k+1−s(F (w)). (4.44)

Recall Stirling’s formula in the form [31, p. 73, equation (5)]

Γ(s) =
√

2πe−sss−1/2ef(s),

for −π < arg s < π and f(s) = O (1/|s|), as |s| → ∞. Therefore, for fixed T > 0 and σ →∞,

Γ(s) = O
(
e−σ+(σ−1/2) log σ

)
. (4.45)

Hence, for the integral over the right side of the rectangular contour RN ,

∫ 2N+3/2+iT

2N+3/2−iT
F (w) dw �T,s y

2N+3/2e4N−(4N+2+k+σ) logN = o(1), (4.46)

as N →∞. Using Stirling’s formula (1.39) to estimate the integrals over the horizontal sides of RN , we find

that

∫ ∞±iT
1−c±iT

F (w) dw <<s

∫ ∞
1−c

yσT−2β−σ−k dσ <<s,y
y1−c

T 2c−σ−k−2 log T
= o(1), (4.47)

provided that k > 2c− σ − 2. Using (4.44), (4.46), and (4.47) in (4.35), we deduce that

I(y) =
sin(πs/2)

2ky(−1+s+k)/2

(
J1−s+k(4

√
y) + (−1)k+1J−1+s−k(4

√
y)

sinπs
(4.48)

−(−1)k+1 2

π
K1−s+k(4

√
y)

)
− 2s+1

cos(πs/2)

b k+1
2 c∑

m=1

2−4my1−2n

Γ(k − 2m+ 2)Γ(1− 2m+ s)
.

Using the functional equation (4.27), the reflection formula (1.30), and the duplication formula (1.32), for
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y = π2nx/q, we find that

∞∑
n=1

σs(χ, n)

n

{
2s+1

cos(πs/2)

b k+1
2 c∑

m=1

2−4my1−2n

Γ(k − 2m+ 2)Γ(1− 2m+ s)

}
(4.49)

= 2iτ(χ̄)
π1−s

q1−s

b k+1
2 c∑

n=1

(−1)n−1
x−2n+1

Γ(k − 2n+ 2)

ζ(2n)

(2π)2n
L(1− 2n+ s, χ).

With the aid of (2.16), we see that

sin(πs/2)

(
J1−s+k(4

√
y) + (−1)k+1J−1+s−k(4

√
y)

sinπs
− (−1)k+1 2

π
K1−s+k(4

√
y)

)
(4.50)

= G̃1+k−s(4
√
y).

Combining (4.34), (4.36), (4.48), and (4.49), we see that

1

Γ(k + 1)

∑′

n≤x

σ−s(χ, n)(x− n)k =
xk+1L(1 + s, χ)

Γ(k + 2)
− L(s, χ)xk

2Γ(k + 1)
(4.51)

+ 2

b k+1
2 c∑

n=1

(−1)n−1
xk−2n+1

Γ(k − 2n+ 2)

ζ(2n)

(2π)2n
L(1− 2n+ s, χ)

+
i

τ(χ̄)(2π)k

∞∑
n=1

σ−s(χ̄, n)
(xq
n

) 1−s+k
2

G̃1−s+k

(
4π

√
nx

q

)
,

provided that k ≥ 0, σ 6= 0, and k > 2c− σ − 1.

For x > 0 fixed, by the asymptotic expansions for Bessel functions (2.17), (2.18), and (2.19), there exists

a sufficiently large integer N0 such that

G̃1+k−s(4π

√
nx

q
)�q

1

(nx)1/4
,

for all n > N0. Hence, for x > 0,

∑
n>N0

(qx
n

) 1+k−s
2

σs(n)G̃1+k−s

(
4π

√
nx

q

)
�q x

2k−2σ−1
4

∑
n>N0

σσ(n)

n
2k−2σ+3

4

�q x
2k−2σ−1

4 ,

provided that k > |σ|+ 1
2 . Therefore, for k > |σ|+ 1

2 and x > 0, the series

∞∑
n=1

(qx
n

) 1+k−s
2

σs(n)G̃1+k−s

(
4π

√
nx

q

)

is absolutely and uniformly convergent for 0 < x1 ≤ x ≤ x2 <∞. Thus, by differentiating a suitable number
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of times with the aid of (4.17), we find that (4.51) may be then upheld for k > |σ| + 1
2 . Since |σ| < 1

2 , the

series on the left-hand side of (4.51) is continuous for k > |σ| + 1
2 . Conversely, we can see that the series

on the left-hand side of (4.51) is continuous when k > 0, which implies that |σ| < 1
2 . Thus, the identity

(4.51) is valid for k > |σ|+ 1
2 and σ 6= 0. Since the series on the right-hand side of (4.51) is absolutely and

uniformly convergent for 0 < x1 ≤ x ≤ x2 < ∞, we can take the limit as s → 0 on both sides of (4.51) for

|σ| < 1
2 and k > |σ|+ 1

2 . Hence, the identity (4.51) is valid for k > |σ|+ 1
2 with |σ| < 1

2 .

Suppose that the identity

1

Γ(k + 1)

∑′

n≤x

σ−s(χ, n)(x− n)k =
xk+1L(1 + s, χ)

Γ(k + 2)
− L(s, χ)xk

2Γ(k + 1)
(4.52)

+ 2

b k+1
2 c∑

n=1

(−1)n−1
xk−2n+1

Γ(k − 2n+ 2)

ζ(2n)

(2π)2n
L(1− 2n+ s, χ)

+
i

τ(χ̄)(2π)k

∞∑
n=1

σ−s(χ̄, n)
(xq
n

) 1−s+k
2

G̃1−s+k

(
4π

√
nx

q

)
,

is valid for some k > 0. Let β > max{1, 1− σ}. Then

∞∑
n=1

|σs(n)|
nβ

<∞

and

sup0≤h≤1

∣∣∣∣∣∣
∑

m2<n≤(m+h)2

σs(n)

nβ−1/2

∣∣∣∣∣∣ = o(1),

as m → ∞. Put x = y2 in the identity (4.52), where y lies in an interval J of length less than 1. By

Lemma 4.2.9, 2y times the infinite series on the right-hand side of (4.52), with x = y2, is uniformly equi-

convergent on J with the differentiated series of the Fourier series of a function with period 1 which equals

A(y)F̃2−s+k(y) on I, provided that k > |σ| − 1
2 . But then, k + 1 > |σ|+ 1

2 . Hence, from (4.51),

i

τ(χ̄)(2π)k+1
A(y)F̃2−s+k(y)

= A(y)

{∑′

n≤y2

σ−s(χ, n)(y2 − n)k+1

Γ(k + 2)
− y2(k+2)L(1 + s, χ)

Γ(k + 3)
+
L(s, χ)y2(k+1)

2Γ(k + 2)

− 2

b k+2
2 c∑

n=1

(−1)n−1
y2(k−2n+2)

Γ(k − 2n+ 3)

ζ(2n)

(2π)2n
L(1− 2n+ s, χ)

}
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= A(y)

{∫ y2

0

∑′

n≤t

σ−s(χ, n)(t− n)k

Γ(k + 1)
dt− y2(k+2)L(1 + s, χ)

Γ(k + 3)
+
L(s, χ)y2(k+1)

2Γ(k + 2)

− 2

b k+2
2 c∑

n=1

(−1)n−1
y2(k−2n+2)

Γ(k − 2n+ 3)

ζ(2n)

(2π)2n
L(1− 2n+ s, χ)

}
= A(y)

{∫ y

0

∑′

n≤t2

σ−s(χ, n)(t2 − n)k2t

Γ(k + 1)
dt− y2(k+2)L(1 + s, χ)

Γ(k + 3)
+
L(s, χ)y2(k+1)

2Γ(k + 2)

− 2

b k+2
2 c∑

n=1

(−1)n−1
y2(k−2n+2)

Γ(k − 2n+ 3)

ζ(2n)

(2π)2n
L(1− 2n+ s, χ)

}
.

Note that A(y) = 1 on J . Therefore, from Lemma 4.2.8 and the properties of the Fourier series of the

function

2y

Γ(k + 1)

∑′

n≤y2
σ−s(χ, n)(y2 − n)k

in I, we see that the identity (4.51) holds for k > |σ| − 1
2 , which completes the proof of Theorem 4.3.2.

From (4.2) and (4.50), we find that sin(πs/2)M1−s(z) = G̃1−s(z). The case k = 0 of Theorem 4.3.2 gives

the following corollary.

Corollary 4.3.3. If χ is a non-principal odd primitive character modulo q, x > 0, and |σ| < 1/2, then

∑′

n≤x

σ−s(χ, n) = xL(1 + s, χ)− 1

2
L(s, χ) +

i sin (πs)/2

τ(χ̄)

∞∑
n=1

σ−s(χ̄, n)
(qx
n

) 1−s
2

M1−s

(
4π

√
nx

q

)
,

where M1−s(z) is defined in (4.2).

Next, we show that Theorem 4.3.3 implies Theorem 4.3.1. We then finish this section and hence finish

the proof of Theorem 4.1.1 by proving that Theorem 4.1.1 implies Theorem 4.3.3.

Proof that Theorem 4.3.3 implies Theorem 4.3.1. Recall that Ls(a, q, x) and Mν(z) are defined in (4.22) and

(4.2), respectively. Thus,

Ls(a, q, x) = −x
2

sin
(πs

2

)

×
∞∑
m=1

∞∑
n=0


M1−s

(
4π

√
mx

(
n+ a

q

))
(mx)

1+s
2 (n+ a/q)

1−s
2

−
M1−s

(
4π

√
mx

(
n+ 1− a

q

))
(mx)

1+s
2 (n+ 1− a/q) 1−s

2


= −x

2
sin
(πs

2

)
76



×
∞∑
m=1


∞∑
n=1

n≡amod q

M1−s

(
4π
√

mnx
q

)
(mx)

1+s
2 (n/q)

1−s
2

−
∞∑
n=1

n≡−amod q

M1−s

(
4π
√

mnx
q

)
(mx)

1+s
2 (n/q)

1−s
2


= − (qx)

1−s
2

2φ(q)
sin
(πs

2

) ∞∑
m=1

∞∑
n=1

M1−s

(
4π
√

mnx
q

)
m

1+s
2 n

1−s
2

∑
χmod q

χ̄(n)(χ(a)− χ(−a))

= − (qx)
1−s
2

φ(q)
sin
(πs

2

) ∑
χmod q
χ odd

χ(a)

∞∑
m=1

∞∑
n=1

χ̄(n)ns
M1−s

(
4π
√

mnx
q

)
(mn)

1+s
2

= − (qx)
1−s
2

φ(q)
sin
(πs

2

) ∑
χmod q
χ odd

χ(a)

∞∑
n=1

∑
d|n

χ̄(d)ds
M1−s

(
4π
√

nx
q

)
n

1+s
2

= − (qx)
1−s
2

φ(q)
sin
(πs

2

) ∑
χmod q
χ odd

χ(a)

∞∑
n=1

σs(χ̄, n)
M1−s

(
4π
√

nx
q

)
n

1+s
2

.

Now, from Lemma 4.2.2 and Theorem 4.3.1,

Ls(a, q, x) +

∞∑
n=1

F
(x
n

) sin (2πna/q)

ns
= − ix

φ(q)

∑
χ 6=χ0 mod q
χ even

χ(a)τ(χ̄)L(1 + s, χ)

+
i

2φ(q)

∑
χ 6=χ0 mod q
χ even

χ(a)τ(χ̄)L(s, χ).

Using the functional equation (4.27) of L(s, χ) for odd primitive characters, we find that

Ls(a, q, x) +

∞∑
n=1

F
(x
n

) sin (2πna/q)

ns
=
xπs+1/2Γ

(
1
2 (1− s)

)
Γ
(
1
2 (2 + s)

) q−s

φ(q)

∑
χmod q
χ odd

χ(a)L(−s, χ̄) (4.53)

−
πs−1/2Γ

(
1
2 (2− s)

)
2Γ
(
1
2 (1 + s)

) q1−s

φ(q)

∑
χmod q
χ odd

χ(a)L(1− s, χ̄)

=
xπs+1/2Γ

(
1
2 (1− s)

)
2Γ
(
1
2 (2 + s)

) q−s

φ(q)

∑
χmod q

(χ(a)− χ(q − a))L(−s, χ̄)

−
πs−1/2Γ

(
1
2 (2− s)

)
4Γ
(
1
2 (1 + s)

) q1−s

φ(q)

∑
χmod q

(χ(a)− χ(q − a)L(1− s, χ̄).

From [3, p. 249, Chapter 12],

L(s, χ) = q−s
q∑

h=1

χ(h)ζ(s, h/q). (4.54)
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Multiplying both sides of (4.54) by χ̄(a) and summing over all characters χ modulo q, we deduce that

ζ(s, a/q) =
qs

φ(q)

∑
χmod q

χ̄(a)L(s, χ), (4.55)

where ζ(s, a) denotes the Hurwitz zeta function. Using the duplication formula (1.32) and the reflection

formula (1.30) for Γ(s), we find that

Γ
(
1
2s
)

Γ
(
1
2 (1− s)

) =
cos( 1

2πs)Γ(s)

2s−1
√
π

. (4.56)

Utilizing (4.55) and (4.56) in (4.53), we see that

Ls(a, q, x) +

∞∑
n=1

F
(x
n

) sin (2πna/q)

ns
= −x sin(πs/2)Γ(−s)

(2π)−s

(
ζ

(
−s, a

q

)
− ζ

(
−s, 1− a

q

))
− cos(πs/2)Γ(1− s)

2(2π)1−s

(
ζ

(
1− s, a

q

)
− ζ

(
1− s, 1− a

q

))
,

which completes the proof.

The proof that Theorem 4.1.1 implies Theorem 4.3.3 is similar to the proof that Theorem 4.1.2 implies

Theorem 4.4.3, which we give in the next section.

4.4 Proof of the generalization of Entry 2

Arguing as in the previous section, for 0 < a < q and q prime, we can show that Theorem 4.1.2 is equivalent

to the following theorem.

Theorem 4.4.1. Let q be a prime and 0 < a < q. Let

Gs(a, q, x) =
x

2
cos
(πs

2

)
(4.57)

×
∞∑
m=1

∞∑
n=0


H1−s

(
4π

√
mx

(
n+ a

q

))
(mx)

1+s
2 (n+ a/q)

1−s
2

+

H1−s

(
4π

√
mx

(
n+ 1− a

q

))
(mx)

1+s
2 (n+ 1− a/q) 1−s

2

 ,

where Hν(z) is defined in (4.6) and where we assume that the product of the summation indices mn tends

to infinity. Then, for |σ| < 1
2 ,

Gs(a, q, x) +

∞∑
n=1

F
(x
n

) cos (2πna/q)

ns
= x

cos( 1
2πs)Γ(−s)
(2π)−s

(
ζ

(
−s, a

q

)
+ ζ

(
−s, 1− a

q

))
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−
sin( 1

2πs)Γ(1− s)
2(2π)1−s

(
ζ

(
1− s, a

q

)
+ ζ

(
1− s, 1− a

q

))
.

We show that Theorem 4.4.1 is equivalent to Theorem 4.4.3, which is a special case of the following

theorem.

Theorem 4.4.2. If χ is a non-principal even primitive character modulo q, x > 0, |σ| < 1/2, and k is a

non-negative integer, then

1

Γ(k + 1)

∑′

n≤x

σ−s(χ, n)(x− n)k

=
xk+1L(1 + s, χ)

Γ(k + 2)
− xkL(s, χ)

2Γ(k + 1)
+ 2

b k+1
2 c∑

n=1

(−1)n−1xk−2n+1

Γ(k − 2n+ 2)

ζ(2n)

(2π)2n
L(1− 2n+ s, χ)

+
1

τ(χ̄)(2π)k

∞∑
n=1

σ−s(χ̄, n)
(qx
n

) 1−s+k
2

G1−s+k

(
4π

√
nx

q

)
,

where Gλ−s(z) is defined in (3.23). The series on the right-hand side converges uniformly on any interval

for x > 0 where the left-hand side is continuous. The convergence is bounded on any interval 0 < x1 ≤ x ≤

x2 <∞ when k = 0.

Proof. From (4.9) and Lemma 4.2.4, for a fixed x > 0, we see that

1

Γ(1 + k)

∑′

n≤x

σ−s(χ, n)(x− n)k =
1

2πi

∫
(c)

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
dw,

where max{1, 1−σ, σ} < c < 1 and k ≥ 0. Proceeding as we did in the proof of Theorem 4.3.2, we find that

1

Γ(k + 1)

∑′

n≤x

σ−s(χ, n)(x− n)k =
xk+1L(1 + s, χ)

Γ(k + 2)
− L(s, χ)xk

2Γ(k + 1)
(4.58)

+
1

2πi

∫
(1−c)

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
dw,

provided that k ≥ 0 and k > 2c−σ− 2. The functional equation for L(2s, χ) for an even primitive Dirichlet

character χ is given by [31, p. 69]

(
π

q

)−s
Γ(s)L(2s, χ) =

τ(χ)
√
q

(
π

q

)−( 12−s)
Γ

(
1

2
− s
)
L(1− 2s, χ), (4.59)

where τ(χ) is the Gauss sum defined in (4.12). Combining the functional equation (5.5) of ζ(2w) and the
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functional equation (4.59) of L(2w + s, χ) for even primitive χ, we deduce the functional equation

ζ(w)L(w + s, χ) =
π2w+s−1

τ(χ̄)qw+s−1 η(w, s)ζ(1− w)L(1− w − s, χ̄), (4.60)

where

η(w, s) =
Γ
(
1
2 (1− w)

)
Γ
(
1
2 (1− w − s)

)
Γ
(
1
2w
)

Γ
(
1
2 (w + s)

) .

Define

I(y) :=
1

2πi

∫
(1−c)

η(w, s)Γ(w)

Γ(w + k + 1)
yw dw. (4.61)

Using the functional equation (4.60) in the integrand on the right-hand side of (4.58) and inverting the order

of summation and integration, we find that

1

2πi

∫
(1−c)

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
dw (4.62)

=
xkπs−1

τ(χ̄)qs−1
1

2πi

∫
(1−c)

η(w, s)Γ(w)

Γ(w + k + 1)
ζ(1− w)L(1− w − s, χ̄)

(
π2x

q

)w
dw

=
xkπs−1

τ(χ̄)qs−1
1

2πi

∫
(1−c)

η(w, s)Γ(w)

Γ(w + k + 1)

(
π2x

q

)w ∞∑
n=1

σs(χ̄, n)

n1−w
dw

=
xkπs−1

τ(χ̄)qs−1

∞∑
n=1

σs(χ̄, n)

n1+k
1

2πi

∫
(1−c)

η(w, s)Γ(w)

Γ(w + k + 1)

(
π2nx

q

)w
dw

=
xkπs−1

τ(χ̄)qs−1

∞∑
n=1

σs(χ̄, n)

n
I

(
π2nx

q

)
,

provided that k > 2c− σ − 1. We compute the integral I(y) by using the residue calculus, shifting the line

of integration to the right, and letting c→ −∞.

Let k be a positive integer and σ 6= 0. By (4.61), we can write

I(y) :=
1

2πi

∫
(1−c)

F (w) dw,

where

F (w) :=
Γ(w)Γ

(
1
2 (1− w)

)
Γ
(
1
2 (1− w − s)

)
yw

Γ(1 + k + w)Γ
(
1
2w
)

Γ
(
1
2 (w + s)

) .

Note that the poles of the function F (w) on the right side of the line 1 − c + it,−∞ < t < ∞, are at
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w = 2m+ 1 and w = 2m+ 1− s, m = 0, 1, 2, . . . . Calculating the residues, we find that

R2m+1(F (w)) = (−1)m+1 2Γ(2m+ 1)Γ
(
−m− 1

2s
)
y2m+1

m!Γ(2 + k + 2m)Γ
(
m+ 1

2

)
Γ
(
m+ 1

2 (s+ 1)
)

and

R2m+1−s(F (w)) = (−1)m+1 2Γ(2m+ 1− s)Γ
(
−m+ 1

2s
)
y2m+1−s

m!Γ(2 + k + 2m− s)Γ
(
m+ 1

2 (1− s)
)

Γ
(
m+ 1

2

) .
With the aid of the duplication formula (1.32) and the reflection formula (1.30), we find that

R2m+1(F (w)) =
2s−1

sin(πs/2)

(2
√
y)4m+2

(2m+ k + 1)!Γ(2m+ 1 + s)
(4.63)

and

R2m+1−s(F (w)) = − (2y)1−s

sin(πs/2)

(2
√
y)4m

(2m)!Γ(2m+ k + 2− s)
. (4.64)

Consequently, from (2.15), (4.39), and (4.63), for k even,

∞∑
m=0

R2m+1(F (w)) =
2s−1−2ky−k

sin(πs/2)

∞∑
m=0

(2
√
y)4m+2k+2

(2m+ k + 1)!Γ(2m+ 1 + s)
(4.65)

=
2s−1−2ky−k

sin(πs/2)

{ ∞∑
m=0

(2
√
y)4m+2

(2m+ 1)!Γ(2m+ 1 + s− k)

−
k/2∑
m=1

(2
√
y)4m−2

(2m− 1)!Γ(2m− 1 + s− k)

}
=

2−1−ky(1−s−k)/2

sin(πs/2)
(I−1+s−k(4

√
y)− J−1+s−k(4

√
y))

− 2s+1

sin(πs/2)

k/2∑
m=1

2−4my1−2n

Γ(k − 2m+ 2)Γ(1− 2m+ s)
.

For each odd integer k,

∞∑
m=0

R2m+1(F (w)) =
2−1−ky(1−s−k)/2

sin(πs/2)
(I−1+s−k(4

√
y) + J−1+s−k(4

√
y)) (4.66)

− 2s+1

sin(πs/2)

(k+1)/2∑
m=1

2−4my1−2n

Γ(k − 2m+ 2)Γ(1− 2m+ s)
.
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Similarly, from (4.64), we find that

∞∑
m=0

R2m+1−s(F (w)) = −2−1−ky(1−s−k)/2

sin(πs/2)
(J1−s+k(4

√
y) + I1−s+k(4

√
y)). (4.67)

Utilizing (4.40) in the sum of (4.65), (4.66), and (4.67), we deduce that

∞∑
m=0

(R2m+1(F (w)) +R2m+1−s(F (w))) = − cos(πs/2)

2ky(−1+s+k)/2
(4.68)

×
(
J1−s+k(4

√
y)− (−1)k+1J−1+s−k(4

√
y)

sinπs
− (−1)k+1 2

π
K1−s+k(4

√
y)

)

− 2s+1

sin(πs/2)

b k+1
2 c∑

m=1

2−4my1−2n

Γ(k − 2m+ 2)Γ(1− 2m+ s)
.

Using (2.16), we can show that

cos(πs/2)

(
J1−s+k(4

√
y)− (−1)k+1J−1+s−k(4

√
y)

sinπs
− (−1)k+1 2

π
K1−s+k(4

√
y)

)
= G1+k−s(4

√
y). (4.69)

Consider the positively oriented contour RN formed by the points {1− c− iT, 2N + 3
2 − iT, 2N + 3

2 + iT, 1−

c+ iT}, where T > 0 and N is a positive integer. By the residue theorem,

1

2πi

∫
RN

F (w) dw =
∑

0≤k≤N

R2k+1(F (w)) +
∑

0≤k≤N

R2k+1−s(F (w)).

By (4.45), for the integral over the right side of the rectangular contour RN ,

∫ 2N+3/2+iT

2N+3/2−iT
F (w) dw �T,s y

2N+3/2e4N−(4N+2+k+σ) logN = o(1),

as N →∞. Using Stirling’s formula (1.39) to estimate the integrals over the horizontal sides of RN , we find

that

∫ ∞±iT
1−c±iT

F (w) dw �s

∫ ∞
1−c

yσT−2β−σ−k dσ �s,y
y1−c

T 2c−σ−k−2 log T
= o(1),

provided that k > 2c− σ − 2. Combining (4.58), (4.62), (4.68), and (4.69), we conclude that

1

Γ(k + 1)

∑′

n≤x

σ−s(χ, n)(x− n)k (4.70)
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=
xk+1L(1 + s, χ)

Γ(k + 2)
− xkL(s, χ)

2Γ(k + 1)
+ 2

b k+1
2 c∑

n=1

(−1)n−1xk−2n+1

Γ(k − 2n+ 2)

ζ(2n)

(2π)2n
L(1− 2n+ s, χ)

+
1

τ(χ̄)(2π)k

∞∑
n=1

σ−s(χ̄, n)
(qx
n

) 1−s+k
2

G1−s+k

(
4π

√
nx

q

)
,

provided that k ≥ 0, σ 6= 0, and k > 2c− σ − 1. By the asymptotic expansions for Bessel functions (2.17),

(2.18), and (2.19), Lemma 4.2.10, (3.28), and an argument like that in the proof in Theorem 4.3.2, we deduce

the identity (4.70) for k > |σ| − 1
2 , with |σ| < 1

2 . Thus, we complete the proof of Theorem 4.1.2.

From the definition (4.6) and (4.50), we find that cos(πs/2)M1−s(z) = G1−s(z). The case k = 0 of

Theorem 4.4.2 provides the following corollary.

Corollary 4.4.3. If χ is a non-principal even primitive character modulo q, x > 0, and |σ| < 1/2, then

∑′

n≤x

σ−s(χ, n) = xL(1 + s, χ)− 1
2L(s, χ) +

cos (πs)/2

τ(χ̄)

∞∑
n=1

σ−s(χ̄, n)
(qx
n

) 1−s
2

H1−s

(
4π

√
nx

q

)
,

where H1−s(z) is defined in (4.6).

Next we show that Theorem 4.4.3 implies Theorem 4.4.1.

Proof. First we write (4.57) as a sum over Dirichlet characters. To that end, for any prime q and 0 < a < q,

Gs(a, q, x) =
x

2
cos
(πs

2

)
(4.71)

×
∞∑
m=1

∞∑
n=0


H1−s

(
4π

√
mx

(
n+ a

q

))
(mx)

1+s
2 (n+ a/q)

1−s
2

+

H1−s

(
4π

√
mx

(
n+ 1− a

q

))
(mx)

1+s
2 (n+ 1− a/q) 1−s

2


=
x

2
cos
(πs

2

) ∞∑
m=1

∞∑
n=1

n≡±amod q

H1−s

(
4π
√

mnx
q

)
(mx)

1+s
2 (n/q)

1−s
2

=
(qx)

1−s
2

2φ(q)
cos
(πs

2

) ∞∑
m=1

∞∑
n=1

H1−s

(
4π
√

mnx
q

)
m

1+s
2 n

1−s
2

∑
χmod q

χ̄(n)(χ(a) + χ(−a))

=
(qx)

1−s
2

φ(q)
cos
(πs

2

) ∑
χmod q
χ even

χ(a)

∞∑
m=1

∞∑
n=1

χ̄(n)ns
H1−s

(
4π
√

mnx
q

)
(mn)

1+s
2

=
(qx)

1−s
2

φ(q)
cos
(πs

2

) ∑
χmod q
χ even

χ(a)

∞∑
n=1

∑
d|n

χ̄(d)ds
H1−s

(
4π
√

nx
q

)
n

1+s
2
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=
(qx)

1−s
2

φ(q)
cos
(πs

2

) ∑
χmod q
χ even

χ(a)

∞∑
n=1

σs(χ̄, n)
H1−s

(
4π
√

nx
q

)
n

1+s
2

,

where in the penultimate step we recall our assumption that the double series converges in the sense that

the product of the indices mn tends to infinity. For the principal character χ0,

∞∑
n=1

σs(χ0, n)
H1−s

(
4π
√

nx
q

)
n

1+s
2

=

∞∑
m=1

∞∑
n=1

χ0(n)ns
H1−s

(
4π
√

mnx
q

)
(mn)

1+s
2

(4.72)

=

∞∑
m=1

∞∑
n=1
q-n

ns
H1−s

(
4π
√

mnx
q

)
(mn)

1+s
2

=

∞∑
m=1

∞∑
n=1

ns
H1−s

(
4π
√

mnx
q

)
(mn)

1+s
2

− q
s−1
2

∞∑
m=1

∞∑
n=1

ns
H1−s (4π

√
mnx)

(mn)
1+s
2

=

∞∑
n=1

σs(n)
H1−s

(
4π
√

nx
q

)
n

1+s
2

− q
s−1
2

∞∑
n=1

σs(n)
H1−s (4π

√
nx)

n
1+s
2

.

Combining (4.71) and (4.72) and applying Lemma 4.2.1, we find that

Gs(a, q, x) =
(qx)

1−s
2

φ(q)
cos
(πs

2

) ∑
χ 6=χ0 mod q
χ even

χ(a)

∞∑
n=1

σs(χ̄, n)
H1−s

(
4π
√

nx
q

)
n

1+s
2

(4.73)

+
1

φ(q)

∑′

n≤x

σ−s(n)− xZ(s, x) +
1

2
ζ(s)

− q1−s

φ(q)

 ∑′

n≤x/q

σ−s(n)− x

q
Z(s, x/q) +

1

2
ζ(s)


=

(qx)
1−s
2

φ(q)
cos
(πs

2

) ∑
χ6=χ0 mod q
χ even

χ(a)

∞∑
n=1

σs(χ̄, n)
H1−s

(
4π
√

nx
q

)
n

1+s
2

+
1

φ(q)

∑′

n≤x

σ−s(n)− q1−s

φ(q)

∑′

n≤x/q

σ−s(n)

+
x

φ(q)qs
ζ(1 + s)

(
1− 1

q−s

)
− ζ(s)

2φ(q)qs−1

(
1− 1

q1−s

)
.

For each prime q, by Lemma 4.2.3,

∞∑
n=1

F
(x
n

) cos (2πna/q)

ns
= q−s

∑′

1≤n≤x/q

σ−s(n) +
1

φ(q)

∑
χmod q
χ even

χ(a)τ(χ̄)
∑′

1≤n≤x

σ−s(χ, n) (4.74)

= q−s
∑′

1≤n≤x/q

σ−s(n)− 1

φ(q)

∑′

1≤n≤x

σ−s(χ0, n) +
1

φ(q)

∑
χ6=χ0 mod q
χ even

χ(a)τ(χ̄)
∑′

1≤n≤x

σ−s(χ, n).
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Now,

∑′

1≤n≤x

σ−s(χ0, n) =
∑′

1≤n≤x

∑
d|n
q-d

d−s =
∑′

1≤n≤x

∑
d|n

d−s − q−s
∑′

1≤n≤x/q

∑
d|n

d−s (4.75)

=
∑′

1≤n≤x

σ−s(n)− q−s
∑′

1≤n≤x/q

σ−s(n).

Substituting (4.75) into (4.74), we find that

∞∑
n=1

F
(x
n

) cos (2πna/q)

ns
=
q1−s

φ(q)

∑′

1≤n≤x/q

σ−s(n)− 1

φ(q)

∑′

1≤n≤x

σ−s(n) (4.76)

+
1

φ(q)

∑
χ 6=χ0 mod q
χ even

χ(a)τ(χ̄)
∑′

1≤n≤x

σ−s(χ, n).

Adding (4.73) and (4.76) and using Theorem 4.4.3, we find that

Gs(a, q, x) +

∞∑
n=1

F
(x
n

) cos (2πna/q)

ns
=

x

φ(q)qs
ζ(1 + s)

(
1− 1

q−s

)
(4.77)

− ζ(s)

2φ(q)qs−1

(
1− 1

q1−s

)
+

x

φ(q)

∑
χ 6=χ0 mod q
χ even

χ(a)τ(χ̄)L(1 + s, χ)− 1

2φ(q)

∑
χ 6=χ0 mod q
χ even

χ(a)τ(χ̄)L(s, χ).

Recall that if χ0 is the principal character modulo the prime q, then

L(s, χ0) = ζ(s)

(
1− 1

qs

)
. (4.78)

Using the functional equations of ζ(s) and L(s, χ) for even primitive Dirichlet characters, (5.5) and (4.59),

respectively, and (4.78), we find from (4.77) that

Gs(a, q, x) +

∞∑
n=1

F
(x
n

) cos (2πna/q)

ns
=
xπs+1/2Γ

(
− 1

2s
)

Γ
(
1
2 (1 + s)

) q−s

φ(q)

∑
χmod q
χ even

χ(a)L(−s, χ̄) (4.79)

−
πs−1/2Γ

(
1
2 (1− s)

)
2Γ
(
1
2s
) q1−s

φ(q)

∑
χmod q
χ even

χ(a)L(1− s, χ̄)

=
xπs+1/2Γ

(
− 1

2s
)

2Γ
(
1
2 (1 + s)

) q−s

φ(q)

∑
χmod q

(χ(a) + χ(q − a))L(−s, χ̄)

−
πs−1/2Γ

(
1
2 (1− s)

)
4Γ
(
1
2s
) q1−s

φ(q)

∑
χmod q

(χ(a) + χ(q − a))L(1− s, χ̄).

We complete the proof of Theorem 4.4.1 by using (4.55) and (4.56) in (4.79).
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Next we prove that Theorem 4.1.2 implies Theorem 4.4.3.

Proof. Let χ be an even primitive character modulo q. Set θ = h/q, where 1 ≤ h < q. The Gauss sum

τ(n, χ) is defined by

τ(n, χ) =

q∑
m=1

χ(m)e2πimn/q.

Note that τ(1, χ) := τ(χ), which is defined in (4.12). For any character χ [3, p. 165, Theorem 8.9]

τ(n, χ) = χ̄(n)τ(χ).

Multiplying both sides of (4.5) by χ̄(h)/τ(χ̄) and summing over h, 1 ≤ h < q, we find that the left-hand

side yields

1

τ(χ̄)

q−1∑
h=1

χ̄(h)

∞∑
n=1

F
(x
n

) cos (2πnh/q)

ns
=

1

τ(χ̄)

∞∑
n=1

F
(
x
n

)
ns

q−1∑
h=1

χ̄(h) cos

(
2πnh

q

)
(4.80)

=
1

2τ(χ̄)

∞∑
n=1

F
(
x
n

)
ns

q−1∑
h=1

χ̄(h)
(
e2πinh/q + e−2πinh/q

)
=

1

2τ(χ̄)

∞∑
n=1

F
(
x
n

)
ns

τ(χ̄)(χ(n) + χ(−n))

=
∑′

n≤x

σ−s(χ, n).

On the other hand, summing over h, 1 ≤ h ≤ q, on the right-hand side of (4.5) gives

x

2τ(χ̄)
cos
(πs

2

) q−1∑
h=1

∞∑
m=1

∞∑
n=1

n≡±hmod q

χ̄(h)
H1−s

(
4π
√

mnx
q

)
(mx)

1+s
2 (n/q)

1−s
2

(4.81)

=
x

2τ(χ̄)
cos
(πs

2

) ∞∑
m=1

∞∑
n=1

H1−s

(
4π
√

mnx
q

)
(mx)

1+s
2 (n/q)

1−s
2

q−1∑
h=1

h≡±nmod q

χ̄(h)

=
x

τ(χ̄)
cos
(πs

2

) ∞∑
m=1

∞∑
n=1

χ̄(n)
H1−s

(
4π
√

mnx
q

)
(mx)

1+s
2 (n/q)

1−s
2

=
(qx)

1−s
2 cos( 1

2πs)

τ(χ̄)

∞∑
n=1

σs(χ̄, n)

n
1+s
2

H1−s

(
4π

√
nx

q

)
.

Combining (4.80), (4.81), and (4.54) with the functional equation (4.59) of L(s, χ) for even primitive χ, we

obtain the equality in (4.5), which completes the proof of Theorem 4.4.3.
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Chapter 5

Partial sums of Dedekind zeta
functions

5.1 Main results

5.1.1 Zero free region

We can summarize our first result in this chapter which give a zero free region for ζK,X(s) as follows. See

also [63].

Proposition 5.1.1. Let K be an arbitrary algebraic number field of degree n0 = [K : Q] over the field Q of

rational numbers, let X be a real number greater than or equal to 2, and denote by s the complex variable

σ+ it. Then there exist two real numbers α and β, with α depending on n0 and X only and with β depending

on n0 only, such that the zeros of ζK,X(s) all lie within the rectilinear strip of the complex plane given by

the inequalities α < σ < β.

As will be seen in the proof of Proposition 5.1.1 in Section 5.3, for any fixed δ0 > 0 and any X large

enough, an admissible choice for α is α = −3(δ0 + log 2)n0X logX/ log logX. As for β, an admissible choice

is of the form β = logCε0,n0
Dε0,n0

/ log 2, where ε0 is fixed and satisfies the inequalities 0 < ε0 < 1/n0,

Dε0,n0
=
∑∞
n=2 4/n2−ε0n0 , and Cε0,n0

is a constant defined in terms of the divisor function.

5.1.2 An asymptotic formula for NK,X(T )

Furthermore, we provide an asymptotic formula for NK,X(T ) when K is a cyclotomic field, which is sharper

than the one known in the case of ζ(s). Let K be any algebraic number field of degree n0 = [K : Q] over the

field Q of rational numbers. In a similar fashion to the case of ζ(s) (see [41] and [60]), it can be shown that

∣∣∣∣NK,X(T )− T

2π
logN

∣∣∣∣ ≤ X

2
, (5.1)

where T and X both go to infinity together, and N is the largest integer less than or equal to X for which

aK(N) 6= 0. However, if K = Q(ζq) is a cyclotomic field, we can significantly improve the error term in
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(5.1).

Theorem 5.1.2. Let q ≥ 2, let ζq be a primitive root of unity of order q, let K = Q(ζq), and let T,X ≥ 3.

Let, further, N be the largest integer less than or equal to X such that aK(N) 6= 0. We have

NK,X(T ) =
T

2π
logN +Oq

(
X

(
log logX

logX

)1−1/φ(q)
)
, (5.2)

where φ is Euler’s totient function.

Finally, we remark that the larger the degree of the cyclotomic field is, the better the asymptotic formula

(5.2) becomes.

5.2 Preliminary results

To prove Theorem 5.1.2, we will make use of two auxiliary lemmas.

Lemma 5.2.1. Fix a positive integer q ≥ 2. We have

#{n ≤ y : µ(n) 6= 0 and p |n imply p ≡ 1 (mod q)} = Oq

(
y

(
log log y

log y

)1−1/φ(q)
)
,

where µ denotes the Möbius function.

Proof. Fix a positive integer q ≥ 2 and define

B(q, y) = {n ≤ y : µ(n) 6= 0 and p |n imply p ≡ 1 (mod q)}.

We apply Brun’s pure sieve to estimate the size of the set B(q, y). (See Murty and Cojocaru [28, page 86].)

Let A be the set of all positive integers n ≤ y. Let P be the set of all primes p incongruent to 1 modulo q.

Let Ap be the set of elements of A which are divisible by p. Let, further, A1 = A and Ad =
⋂
p|dAp, where

d is a square-free positive integer composed of a list of prime factors from P. For any positive real number

z, we define

S(A,P, z) = A \
⋃

p|P (z)

Ap,

where

P (z) =
∏
p∈P
p<z

p.
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We consider the multiplicative function ω defined for all primes p by ω(p) = 1. We have

#Ad = #{n ≤ y : n ≡ 0 (mod d)} =
ω(d)

d
y +Rd,

where

|Rd| ≤ ω(d).

From Mertens’ estimates, we have

∑
p∈P
p<z

ω(p)

p
=
φ(q)− 1

φ(q)
log log z +O(1).

For the sake of brevity, we let

W (z) =
∏
p|P (z)

(
1− ω(p)

p

)
.

By Brun’s pure sieve, we have

#S(A,P, z) = yW (z)
(
1 +O

(
(log z)−A

))
+O(zη log log z), (5.3)

where A = η log η and, for some α < 1,

η =
α log y

log z log log z
.

Since ω(p) = 1, Mertens’ estimates yield

W (z) = Oq

(
1

(log z)1−1/φ(q)

)
. (5.4)

We now choose log z = c log y/ log log y. Then for a suitable positive and sufficiently small constant c and

from (5.3) and (5.4), we have

#S(A,P, z) = Oq

(
y

(
log log y

log y

)1−1/φ(q)
)
. (5.5)

Since B(q, y) ⊆ S(A,P, z), we have #B(q, z) ≤ #S(A,P, z). Employing this last inequality together with

(5.5), we complete the proof of Lemma 5.2.1.
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Lemma 5.2.2. Let q ≥ 2 and let K = Q(ζq). Let, further,

ζK(s) =

∞∑
n=1

aK(n)

ns
.

We have

#{n ≤ x : aK(n) 6= 0} = Oq

(
x

(
log log x

log x

)1−1/φ(q)
)
.

Proof. Let K = Q(ζq), where ζq is a primitive root of unity of order q. We have

ζK(s) =
∏
P|q

(
1− 1

‖P‖s

)−1
Fq(s),

where

Fq(s) =
∏

χ (mod q)

L(s, χ).

(See [72, page 468].) For σ > 1, we have

Fq(s) =
∏

χ (mod q)

∏
p prime
p-q

(
1− χ(p)

ps

)−1
.

Hence, for σ > 1, we have

logFq(s) = −
∑

χ (mod q)

∑
p prime
p-q

log

(
1− χ(p)

ps

)

=
∑

χ (mod q)

∑
p prime
p-q

∞∑
m=1

χ(pm)

mpms

=
∑

p prime
p-q

∞∑
m=1

∑
χ (mod q)

χ(pm)

mpms
,

where ∑
χ (mod q)

χ(pm) =

 φ(q), if pm ≡ 1 (mod q);

0, otherwise.

It follows that

logFq(s) =
∑

p prime, m≥1
pm≡1 (mod q)

φ(q)

mpms
.
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Hence, we have

Fq(s) = exp

 ∑
p prime, m≥1
pm≡1 (mod q)

φ(q)

mpms

 .

Now, for σ > 1,

Fq(s) =

∞∑
n=1

c(n)

ns
=

∏
p prime

(
1 +

c(p)

ps
+
c(p2)

p2s
+ . . .

)
.

Thus, we have

logFq(s) =
∑

p prime

log

(
1 +

c(p)

ps
+
c(p2)

p2s
+ . . .

)
=

∑
p prime

∞∑
m=1

(−1)m

m

(
c(p)

ps
+
c(p2)

p2s
+ . . .

)m
,

and hence

c(p) =

 φ(q), if p ≡ 1 (mod q);

0, if p 6≡ 1 (mod q).

For all n such that c(n) 6= 0, we have n = AB, where A is coprime to B, A is squareful, and B is

square-free, that is, µ(B) 6= 0. Furthermore, all the prime factors of B are congruent to 1 modulo q. Letting

H(x) =
∏

p≤x, p prime
p≡1 (mod q)

p,

we have

#{n ≤ x : c(n) 6= 0} ≤ #{(A,B) : A squareful, µ(B) 6= 0, AB ≤ x, B | H(x)}

=
∑
A≤x

A squareful

∑
B≤x/A
B|H(x)

1

=
∑
A≤x

A squareful

B
(
q,
x

A

)

=
∑

A≤
√
x log x

A squareful

B
(
q,
x

A

)
+

∑
√
x log x≤A≤x
A squareful

B
(
q,
x

A

)
.

We examine the sums on the far right-hand side separately.
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Using Lemma 5.2.1, we see that

∑
A≤
√
x log x

A squareful

B
(
q,
x

A

)
= Oq

 ∑
A≤
√
x log x

A squareful

x

A

(
log log x

log x

)1−1/φ(q)



= Oq

x( log log x

log x

)1−1/φ(q) ∑
A≤
√
x log x

A squareful

1

A


= Oq

x( log log x

log x

)1−1/φ(q) ∑
a≥1,b≥1

1

a2b3


= Oq

(
x

(
log log x

log x

)1−1/φ(q)
)
.

Furthermore, we have

∑
√
x log x≤A≤x
A squareful

B
(
q,
x

A

)
≤

∑
√
x log x≤A≤x
A squareful

x

A
≤

∑
√
x log x≤A≤x
A squareful

x√
x log x

≤
√
x

log x
#{A ≤ x : A squareful}

= O

(
x

log x

)
.

Suppose that P1, . . . ,Pr are the prime ideals in the ring of integers of K lying over the prime factors of

q and consider the Dirichlet series

∞∑
n=1

b(n)

ns
=
∏
P|p

(
1− 1

‖P‖s

)−1
.

For all z, we have

#{n ≤ z : b(n) 6= 0} ≤ #{n ≤ z with all prime factors of n in the sets P1, . . . ,Pr}. (5.6)

It is well-known that the right-hand side of (5.6) is Oq((log z)r). Thus, we have

#{n ≤ z : b(n) 6= 0} = Oq((log z)r).
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For brevity’s sake, we let

A = {n : aK(n) 6= 0}, B = {m : b(m) 6= 0}, C = {k : c(k) 6= 0},

and denote

Aω = A ∩ [1, ω], Bω = B ∩ [1, ω], Cω = C ∩ [1, ω].

Here, we note that

#Bω = Oq((logω)r)

and

#Cω = Oq

(
ω

(
log logω

logω

)1−1/φ(q)
)
. (5.7)

Furthermore, we have

ζK(s) =
∑
n∈A

aK(n)

ns
=
∑
m∈B

b(m)

ms

∑
k∈C

c(k)

ks
.

On noting that A ⊆ BC, where BC = {bc : b ∈ B, c ∈ C}, we have Ax ⊂ (BC)x. It follows that

#Ax ≤ #(BC)x, (5.8)

where

#(BC)x =
∑
b≤x
b∈B

∑
c≤x/b
c∈C

1 =
∑
b≤L
b∈B

∑
c≤x/b
c∈C

1 +
∑

L<b≤x
b∈B

∑
c≤x/b
c∈C

1, (5.9)

with 1 ≤ L ≤ x (to be chosen later). By (5.7), we have

∑
b≤L
b∈B

∑
c≤x/b
c∈C

1 ≤
∑
b≤L
b∈B

#Cx/b = Oq

∑
b≤L
b∈B

x

b

(
log log(x/b)

log(x/b)

)1−1/φ(q)
 .

Since b ≤ L, we have (
log

x

b

)1−1/φ(q)
>
(

log
x

L

)1−1/φ(q)
.

Hence, we have

∑
b≤L
b∈B

∑
c≤x/b
c∈C

1 = Oq

x( log log x

log x/L

)1−1/φ(q)∑
b≤L
b∈B

1

b

 = Oq

(
x

(
log log x

log(x/L)

)1−1/φ(q)
)
, (5.10)
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since ∑
b∈B

1

b
<∞.

Next, we have

∑
L<b≤x
b∈B

∑
c≤x/b
c∈C

1 =
∑

L<b≤x
b∈B

#Cx/b ≤
∑

L<b≤x
b∈B

x

b
≤ x

L
#Bx = Oq

(
x(log x)r

L

)
. (5.11)

In view of (5.8), we substitute (5.10) and (5.11) into (5.9) to obtain

#Ax = Oq

(
x(log x)r

L

)
+Oq

(
x

(
log log x

log(x/L)

)1−1/φ(q)
)
.

Then choosing L = (log x)r+1, we obtain

#Ax = Oq

(
x

(
log log x

log x

)1−1/φ(q)
)
.

This finishes the proof of Lemma 5.2.2.

5.3 Proof of the zero free region

We show separately that |ζK,X(s)| > 0 in the right half-plane σ ≥ β and in the left-half plane σ ≤ α. More

specifically, we want to find a β so that

1−
∑

2≤n≤X

aK(n)

nσ
> 0,

for σ ≥ β. Toward this end, we employ the upper bound aK(n) ≤ d(n)n0−1, where d(n) denotes the

number of divisors of n (see Chandrasekharan and Narasimhan [24], Lemma 9) and satisfies the upper

bound d(n) ≤ Cε0n
ε0 for all positive ε0 (see Hardy and Wright [49], Chapter XVIII, Theorem 317). Hence,

we have aK(n) ≤ Cε0,n0
nε0n0 .

It is enough to show that

Cε0,n0

∞∑
n=2

1

nσ−ε0n0
< 1. (5.12)

If we let ε0 < 1/n0, then for σ ≥ β we have

∞∑
n=2

1

nσ−ε0n0
≤
∞∑
n=2

1

nβ−ε0n0
≤ 1

2β
Dε0,n0

,
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where

Dε0,n0
=

∞∑
n=2

4

n2−ε0n0
.

In order to obtain (5.12), it is enough to have

β >
logCε0,n0Dε0,n0

log 2
.

We have
∞∑
n=2

d(n)n0

nβ
≤ Cε0,n0

∞∑
n=2

1

nβ−ε0n0
=

1

2β
Cε0,n0

Dε0,n0
.

Then for σ ≥ β, we have ∣∣∣∣∣∣
∑

2≤n≤X

aK(n)

ns

∣∣∣∣∣∣ ≤
∑

2≤n≤X

d(n)n0

nβ
< 1, (5.13)

and hence

|ζK,X(s)| ≥ 1−

∣∣∣∣∣∣
∑

2≤n≤X

aK(n)

ns

∣∣∣∣∣∣ > 0.

Therefore, ζK,X(s) 6= 0 on the right-half plane σ ≥ β.

Next, let N be the largest positive integer less than or equal to X for which aK(N) 6= 0. Since

|ζK,X(s)| ≥ aK(N)

Nσ
−

∣∣∣∣∣∣
∑

1≤n≤N−1

aK(n)

ns

∣∣∣∣∣∣ ,
it is enough to find an α such that

1

Nσ
>

∑
1≤n≤N−1

aK(n)

nσ
,

for σ ≤ α.

To this end, let us fix δ0 > 0. Then there exist constants Cδ0 > 0 and nδ0 ∈ Z+ such that for all

1 ≤ n < nδ0 , we have

d(n) ≤ Cδ0n(δ0+log 2)/ log logn,

and that for all n ≥ nδ0 , we have

d(n) ≤ n(δ0+log 2)/ log logn

(see [95]).
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It suffices to have

1

Nσ
> Cn0

δ0

∑
1≤n≤nδ0−1

n(δ0+log 2)n0/ log logn

nσ
+

∑
nδ0≤n≤N−1

n(δ0+log 2)n0/ log logn

nσ

= 1 + Cn0

δ0
SI(n0, δ0, nδ0 , σ) + SII(n0, δ0, σ),

for σ ≤ α, where

SI(n0, δ0, nδ0 , σ) =
∑

2≤n≤nδ0−1

n(δ0+log 2)n0/ log logn

nσ

and

SII(n0, δ0, σ) =
∑

nδ0≤n≤N−1

n(δ0+log 2)n0/ log logn

nσ
.

This would follow from the inequality

1

Nα
> 1 + Cn0

δ0
SI(n0, δ0, nδ0 , α) + SII(n0, δ0, α),

since, for any σ ≤ α,

1

Nσ
>

1

Nσ−α

[
1 + Cn0

δ0
SI(n0, δ0, nδ0 , α) + SII(n0, δ0, α)

]
=

1

Nσ−α + Cn0

δ0

∑
2≤n≤nδ0−1

n(δ0+log 2)n0/ log logn

Nσ−αnα
+

∑
nδ0≤n≤N−1

n(δ0+log 2)n0/ log logn

Nσ−αnα

> 1 + Cn0

δ0

∑
2≤n≤nδ0−1

n(δ0+log 2)n0/ log logn

nσ−αnα
+

∑
2≤n≤N−1

n(δ0+log 2)n0/ log logn

nσ−αnα

= 1 + Cn0

δ0
SI(n0, δ0, nδ0 , σ) + SII(n0, δ0, σ).

Thus, it is enough to find α such that

1

Nα
> 2 + 2Cn0

δ0
SI(n0, δ0, nδ0 , α) (5.14)

and such that

1

Nα
> 2SII(n0, δ0, α). (5.15)

It is enough to have

1

Nα
> 2 + 2Cn0

δ0

1

nαδ0

∑
2≤n≤nδ0−1

n(δ0+log 2)n0/ log logn, (5.16)

since the right-hand side of (5.16) is greater than the right-hand side of (5.14).
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The inequality in (5.16) holds for any fixed α < 0 and for all N large enough in terms of n0, δ0, nδ0 , Cδ0 ,

and α. Therefore, we may take any fixed α < 0 as a function of N , n0, and δ0 for which (5.15) holds true.

For nδ0 ≥ 16, we see that

∑
nδ0≤n≤N−1

n(δ0+log 2)n0/ log logn

nα
≤

∑
nδ0≤n≤N−1

N (δ0+log 2)n0/ log logN

nα
(5.17)

< N (δ0+log 2)n0/ log logN
∑

nδ0≤n≤N−1

1

nα
.

It remains to examine the sum on the far-right hand side of (5.17).

For α < 0, we have

∑
nδ0≤n≤N−1

1

nα
≤ (N − 1)−α +

∫ N−1

nδ0

dy

yα
< (N − 1)−α

(
N − α
1− α

)
.

It follows from (5.17) that (5.15) is consequence of

N−α > 2N (δ0+log 2)n0/ log logN (N − 1)−α
(
N − α
1− α

)
.

One sees that an admissible choice of α is given by

α = −3(δ0 + log 2)n0
N logN

log logN
.

Then ζK,X(s) 6= 0 in the left-half plane σ ≤ α. This completes the proof of Lemma 5.1.1.

5.4 Proof of the asymptotic formula for NK,X(T )

Assuming for simplicity’s sake that T does not coincide with the ordinate of any zero, we have

NK,X(T ) =
1

2πi

∫
R

ζ ′K,X(s)

ζK,X(s)
ds,

where R is the rectangle with vertices at α, β, β + iT , and α+ iT . Thus, we have

2πNK,X(T ) =

∫
R

Im

(
ζ ′K,X(s)

ζK,X(s)

)
ds = 4R arg ζK,X(s), (5.18)

where 4R denotes the change in arg ζK,X(s) as s traverses R in the positive sense.
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Since ζK,X(s) is real and nonzero on [α, β], we have

4[α,β] arg ζK,X(σ) = 0. (5.19)

As s describes the right edge of R, we observe from (5.13) that

|ζK,X(s)− 1| < 1.

It follows that Re ζK,X(β + it) > 0 for 0 ≤ t ≤ T . Hence, we have

4[0,T ] arg ζK,X(β + it) = O(1). (5.20)

Furthermore, along the top edge of R, to estimate the change in arg ζK,X(s) we decompose ζK,X(s) into

its real part and its imaginary part. We have

ζK,X(s) =
∑
n≤[X]

aK(n) exp{−(σ + it) log n} =
∑
n≤[X]

aK(n)[cos(t log n)− i sin(t log n)]

nσ
,

so that

Im(ζK,X(σ + iT )) = −
∑
n≤[X]

aK(n) sin(T log n)

nσ
.

By a generalization of Descartes’s Rule of Signs (see Pólya and Szegö [78], Part V, Chapter 1, No. 77), the

number of real zeros of Im(ζK,X(σ + iT )) in the interval α ≤ σ ≤ β is less than or equal to the number

of nonzero coefficients aK(n) sin(T log n). By Lemma 5.2.2, the number of nonzero coefficients aK(n) is

Oq(X(log logX/(logX)1−1/φ(q)) at most.

Since the change in argument of ζK,X(σ + iT ) between two consecutive zeros of Im(ζK,X(σ + iT )) is at

most π, it follows that

4[α,β] arg ζK,X(σ + iT ) = Oq

(
X

(
log logX

logX

)1−1/φ(q)
)
. (5.21)

As in the proof of Lemma 5.1.1, we let N be the largest integer less than or equal to X so that aK(N) 6= 0.

Along the left edge of R, we have

ζK,X(α+ it) =

[
1 +

1 + aK(2)2−α−it + . . .+ aK(N − 1)(N − 1)−α−it

aK(N)N−α−it

]
aK(N)N−α−it.
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Therefore, we have

4[0,T ] arg ζK,X(α+ it) = 4[0,T ] arg

[
1 +

1 + aK(2)2−α−it + . . .+ aK(N − 1)(N − 1)−α−it

aK(N)N−α−it

]
(5.22)

+4[0,T ] arg aK(N)N−α−it.

In the proof of Lemma 5.1.1, we noticed that

aK(N)

Nα
>

∑
1≤n≤N−1

aK(n)

nα
.

Thus, for any t, we have

∣∣∣∣1 + aK(2)2−α−it + . . .+ aK(N − 1)(N − 1)−α−it

aK(N)N−α−it

∣∣∣∣ < 1,

and hence

4[0,T ] arg

[
1 +

1 + aK(2)2−α−it + . . .+ aK(N − 1)(N − 1)−α−it

aK(N)N−α−it

]
= O(1). (5.23)

Finally, we have

4[0,T ] arg aK(N)N−α−it = 4[0,T ] arg aK(N)N−α exp{−it logN} (5.24)

= 4[0,T ] arg exp{−it logN}

= −T logN.

Then substituting (5.23) and (5.24) into (5.22), we obtain

4[0,T ] arg ζK,X(α+ it) = −T logN +O(1). (5.25)

Since

4R arg ζK,X(s) = 4[α,β] arg ζK,X(σ) +4[0,T ] arg ζK,X(β + it)

−4[α,β] arg ζK,X(σ + iT )−4[0,T ] arg ζK,X(α+ it),

we may now substitute (5.19), (5.20), (5.21), and (5.25) into (5.18) to obtain Theorem 5.1.2.
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Chapter 6

Family of approximations of
L-functions associated to cusp forms

6.1 Main results

6.1.1 Smooth L2 distance

Let h(t) be a smooth function with the following properties:

(1) 0 ≤ h(t) ≤ 1 for all t ∈ R,

(2) h(t) is compactly supported in a subset of (0,∞),

(3) ‖h(j)(t)‖∞ �j 1 for each j = 0, 1, 2, . . . .

The Fourier transform of h(t) is denoted by ĥ(s). Our first result is as follows.

Theorem 6.1.1. Let h be a smooth function satisfying (1)-(3). Then for any fixed ε0 > 0 and T ε0 ≤ N ≤

M ≤ T 1−ε0 , we have

∫ ∞
−∞

h

(
t

T

)∣∣∣∣Lf(N ;
1

2
+ it

)
− Lf

(
M ;

1

2
+ it

)∣∣∣∣2dt ∼ 2Tαĥ(0) log
M

N
,

where α is given by (1.26).

6.1.2 An inequality

For Re s > 1, let

Lτ (s) =

∞∑
n=1

τ(n)

ns
,

where τ(n) is the Ramanujan τ -function. In [7], Berndt obtained the inequality

|Lτ (12− s)| > |Lf (s)|,
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for |t| ≥ 6.8 and when Lτ (s) 6= 0. In [84], Spira proved the same inequality but improved the bound to

|t| ≥ 4.35. Very recently in [90], Trudgian improved this bound for t to |t| ≥ 3.8085. In this chapter, we

show that the similar inequality also holds for Lf (N ; s). We have the following theorem.

Theorem 6.1.2. Let N be a positive integer. Then the inequality |Lf (N ; 1− s)| > |Lf (N ; s)| holds for all

s with t > tk and 1/2 < σ < 1, if and only if all the zeros β + iγ of Lf (N ; s) with β ∈ (0, 1) and γ > tk lie

on the critical line. Here tk is a real number depending on the weight k of the cusp form f . In particular,

t12 = 3.8027, t14 = 1.8477, and tk = 0 for k ≥ 16.

6.1.3 Zero free region

As with the results in [85], one can prove that the non-trivial zeros of Lf (1; s) and Lf (2; s) lie on the critical

line. In the case of primitive Hecke forms the coefficients could be as big as the divisor function d(n), and

we will prove our theorem for some restricted primitive Hecke forms.

Theorem 6.1.3. All the zeros of Lf (1; s) with |t| > max(k, e16) lie on the critical line. Moreover, if

|a(2)| ≤ 1 then all the zeros of Lf (2; s) with |t| > max(k, e16) also lie on the critical line.

Remark: Numerical computation shows that a(2) = τ(2)2−11/2 = −.53033, thus the L-function attached

to the Ramanujan τ -function satisfies the above theorem.

We are interested to see whether for N ≥ 3, the non-trivial zeros of Lf (N ; s) lie on the critical line or

not. Although it is not clear whether all the non-trivial zeros of Lf (N ; s) for N ≥ 3 lie on the critical line

or not, one can prove that a positive proportion of the non-trivial zeros of Lf (N ; s) lie on the critical line,

provided N is not too large relative to the height T of the ordinates of the non-trivial zeros.

In the following theorem we obtain a ‘critical’ strip for Lf (N ; s). More precisely,

Theorem 6.1.4. Let λ > 1/2. There exists a constant N0 such that if N ≥ N0 and β + iγ is a zero of

Lf (N ; s) with |γ| ≥ 2πeNλ, then

∣∣β − 1/2
∣∣ ≤


1

2λ−1
(
1
2 + 4λ log logN

logN

)
, if 1/2 < λ ≤ 1

1
2 + 4 log logN

logN , if λ ≥ 1.

One also obtains a critical strip for N ≤ N0, provided that the ordinates of the zeros are sufficiently

large. We have

Theorem 6.1.5. There exists a constant T0 such that if N ≥ 1 and β + iγ is a zero of Lf (N ; s) with
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|γ| ≥ max(2πeN, T0), then

∣∣β − 1/2
∣∣ ≤ 3.

6.1.4 Zeros up to height T

Next we will estimate the number of zeros of Lf (N ; s) in an interval of the form (T, T + U ]. We define

N(T ) = #{ρ = β + iγ : 0 < γ < T and Lf (N ; ρ) = 0}

and

N0(T ) = #{ρ = 1/2 + iγ : 0 < γ < T and Lf (N ; ρ) = 0}.

We have the following theorem.

Theorem 6.1.6. Let λ > 1/2. There exists a constant N0 such that if N > N0, T > 2πeNλ and U ≥ 2,

then

N0(T + U)−N0(T ) ≥ N(T + U)−N(T ) +Of (U logN) +Of (N) (6.1)

+Of

((
λ

2λ− 1

)3

log(T + U)

)
.

Furthermore there exists a constant T0 such that if N ≥ 1 and T > max(2πeN, T0) then (6.1) holds with the

last error term replaced by Of (log(T + U)).

We end this section with the following result

Theorem 6.1.7. As T →∞ and N = T o(1) , 100% of the non-trivial zeros of Lf (N ; s) up to height T are

simple and lie on the critical line.

The results of this chapter are also discussed in [65].

6.2 Preliminary Results

The following lemmas which may be of independent interest are instrumental in the proof of the theorems.
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Lemma 6.2.1. For σ > 1 we have

(
σ − 1

σ

)2

< |Lf (s)| <
(

σ

σ − 1

)2

. (6.2)

Proof. Let σ > 1. From (4.22) and (1.22) we have

|Lf (s)| ≤
∞∑
n=1

|a(n)|
nσ

≤
∞∑
n=1

d(n)

nσ
=

( ∞∑
n=1

1

nσ

)2

<

(
1 +

∫ ∞
1

x−σ dx

)2

=

(
σ

σ − 1

)2

. (6.3)

For the other inequality in (6.2) we use the Euler product (1.34). From (1.22) we have

|Lf (s)| =
∏
p

|
(
1− a(p)p−s + p−2s

)
|−1 ≥

∏
p

(
1 + d(p)p−σ + p−2σ

)−1
.

Since d(p) = 2, we find that

|Lf (s)| ≥
∏
p

(
1 + 2p−σ + p−2σ

)−1
=
∏
p

(
1 + p−σ

)−2
=

(
ζ(2σ)

ζ(σ)

)2

>

( ∞∑
n=1

1

nσ

)−2
>

(
σ − 1

σ

)2

,

where in the ultimate step we used the last three inequalities in (6.3). This completes the proof of the

lemma.

Lemma 6.2.2. For σ > 1,

∣∣∣∣∣∑
n>N

a(n)

ns

∣∣∣∣∣ ≤ N1−σ

σ − 1

(
logN + 2γ +

1

σ − 1

)
+O

(
1√
N

)
. (6.4)

For σ ≤ 0 we have the following:

∣∣∣∣∣∣
∑
n≤N

a(n)

ns

∣∣∣∣∣∣ ≤ N1−σ(logN + 2γ − 1) +O(N−σ+1/2).

Proof. Let σ > 1. From (1.22) and by partial summation we have

∣∣∣∣∣∑
n>N

a(n)

ns

∣∣∣∣∣ ≤ ∑
n>N

d(n)

nσ
= σ

∫ ∞
N

D(t)t−1−σ dt−D(N)N−σ, (6.5)

where

D(t) =
∑
n≤t

d(n) = t(log t+ 2γ − 1) +O(
√
t). (6.6)
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Combining (6.5) and (6.6) we obtain the bound in (6.4).

For the second part of the lemma, let σ ≤ 0. We have

∣∣∣∣∣∣
∑
n≤N

a(n)

ns

∣∣∣∣∣∣ ≤
∑
n≤N

d(n)

nσ
(6.7)

By using (6.6) one sees that

∑
n≤N

d(n)

nσ
≤ N−σ

∑
n≤N

d(n) = N1−σ(logN + 2γ − 1) +O(N−σ+1/2), (6.8)

where in the penultimate step we use the fact that x−σ is increasing for σ ≤ 0. One finishes the proof of the

lemma by combining (6.7) and (6.8).

Lemma 6.2.3. If |t| > k and 1/2 < σ < (k − 1)/2 then

∂

∂σ

(
log

1

|χf (s)|

)
> 2 log |t| − 3.7.

Proof. By Stirling’s formula [37] we have

log Γ(s) = (s− 1/2) log s− s+
1

2
log 2π +

1

12s
− 2

∫ ∞
0

P3(x)

(s+ x)3
dx, (6.9)

where P3(x) is a function of period 1 and given by

P3(x) =
x

12
(2x2 − 3x+ 1),

for x ∈ [0, 1]. A straightforward computation shows that

|6P3(x)| ≤
√

3

36
, (6.10)

for x ∈ [0, 1]. Since

∂

∂σ

(
log

1

|χf (s)|

)
= − Re

(
∂

∂σ
logχf (s)

)
= − Re

(
∂

∂s
logχf (s)

)
,

then from (1.28) and (6.9) we find

∂

∂σ

(
log

1

|χf (s)|

)
= Re

(
− 1

2s+ k − 1
− 1

3(k + 2s− 1)2
+

1

2s− k − 1
− 1

3(k − 2s+ 1)2
(6.11)
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+ log

(
k − 1

2
+ s

)
+ log

(
k + 1

2
− s
)
− 2 log(2π)

+6

∫ ∞
0

P3(x)

(s+ (k − 1)/2 + x)
4 dx+ 6

∫ ∞
0

P3(x)

((k + 1)/2− s+ x)
4 dx

)
.

From the hypothesis we have t > k and 1/2 < σ < (k − 1)/2. Then from (6.11) we derive

∂

∂σ

(
log

1

|χf (s)|

)
> 2 log |t| − 2 log 2π − k

t2
−
√

3π

72|t|3
> 2 log |t| − 3.7.

Here we use the fact that k ≥ 12. This proves the lemma.

Lemma 6.2.4. If |t| > 20 and σ > 1/2 then

|χf (s)| < 1.02

(
|s|
2πe

)1−2σ

.

Proof. From [85, 84], we have

|Γ(s)| = (2π)1/2e−σ|s|σ−1/2e−t arg s| exp(R1(s) + 1/12s)|, (6.12)

where R1(s) < 1/6|s|. Hence by (1.28) and (6.12) we find

|χf (s)| =
(
|s|
2πe

)1−2σ

exp(t(arg((k + 1)/2− s) + arg((k − 1)/2 + s))))× (6.13)∣∣1− k+1
2s

∣∣k/2−σ∣∣1 + k−1
2s

∣∣(k−2)/2+σ | exp(R1((k + 1)/2− s) + 1/12((k + 1)/2− s))|
| exp(R1(((k − 1)/2 + s)) + 1/12((k − 1)/2 + s))|

.

Next we denote

z = R1

(
k − 1

2
+ s

)
−R1

(
k + 1

2
− s
)

+
1

12
(
k−1
2 + s

) − 1

12
(
k+1
2 − s

) .
Therefore

|z| ≤ 1

12
∣∣k−1

2 + s
∣∣ +

1

12
∣∣k+1

2 − s
∣∣ +

1

6
∣∣k−1

2 + s
∣∣ +

1

6
∣∣k+1

2 − s
∣∣ ≤ 1

2|t|
≤ 1

40
.
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Since |z| ≤ 1/40 < 1, we have

|ez| ≥ 1− |z|
(

1

1− |z|

)
≥ 38/39. (6.14)

Clearly

t

(
arg

(
k + 1

2
− s
)

+ arg

(
s+

k − 1

2

))
< 0. (6.15)

Combining (6.13), (6.14), and (6.15) we obtain

|χf (s)| < 1.02

(
|s|
2πe

)1−2σ

,

which proves the lemma.

6.3 Proof of theorem 6.1.1

First we define

hT (t) := h

(
t

T

)

and

I :=

∞∫
−∞

hT (t)

∣∣∣∣Lf(N ;
1

2
+ it

)
− Lf

(
M ;

1

2
+ it

)∣∣∣∣2dt.
From (1.36) one has

I =

∞∫
−∞

hT (t)

 ∑
N≤n≤M

a(n)n−
1
2−it + χf

(
1

2
+ it

) ∑
N≤n≤M

a(n)n−
1
2+it


×

 ∑
N≤m≤M

a(m)m−
1
2+it + χf

(
1

2
− it

) ∑
N≤m≤M

a(m)m−
1
2−it

 dt

=
∑

N≤m,n≤M

1√
mn

∞∫
−∞

hT (t)

(
a(n)n−it + χf

(
1

2
+ it

)
a(n)nit

)(
a(m)mit + χf

(
1

2
− it

)
a(m)m−it

)
dt

=
∑

N≤m,n≤M

a(n)a(m)√
mn

( ∞∫
−∞

hT (t)

((
n

m

)it
+

(
n

m

)−it)
dt

106



+

∞∫
−∞

hT (t)

(
χf

(
1

2
+ it

)
(nm)it + χf

(
1

2
− it

)
(nm)−it

)
dt

)
,

where in the last step we utilized the fact (1.33). Let us denote

I1 :=
∑

N≤m,n≤M

a(n)a(m)√
mn

∞∫
−∞

hT (t)

((
n

m

)it
+

(
n

m

)−it)
dt

and

I2 :=
∑

N≤m,n≤M

a(n)a(m)√
mn

∞∫
−∞

hT (t)

(
χf

(
1

2
+ it

)
(nm)it + χf

(
1

2
− it

)
(nm)−it

)
dt.

The diagonal terms m = n of I1 contribute

∑
N≤m≤M

2a(m)2

m

∞∫
−∞

h

(
t

T

)
dt = 2T ĥ(0)

∑
N≤m≤M

a(m)2

m
. (6.16)

The off-diagonal terms m 6= n of I1 can be written as

∑
N≤m6=n≤M

a(m)a(n)√
mn

∞∫
−∞

hT (t)

((
n

m

)it
+

(
n

m

)−it)
dt

=
∑

N≤m6=n≤M

a(m)a(n)√
mn

∞∫
−∞

hT (t)

(
eit log

n
m + e−it log

n
m

)
dt

=
∑

N≤m<n≤M

2a(m)a(n)√
mn

∞∫
−∞

hT (t)

(
eit log

n
m + e−it log

n
m

)
dt

=
∑

N≤m<n≤M

2a(m)a(n)√
mn

(S11(m,n) + S12(m,n)), (6.17)

where

S11(m,n) :=

∞∫
−∞

hT (t)eit log
n
m dt

and

S12(m,n) :=

∞∫
−∞

hT (t)e−it log
n
m dt.
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Integrating by parts one obtains

S11(m,n) =

∞∫
−∞

hT (t)eit log
n
m dt =

(−1)r

T r

∞∫
−∞

h(r)
(
t

T

)
eit log

n
m

(i log n
m )r

dt (6.18)

for any positive integer r. Note that

log(1 +
n−m
m

) ≥ log(1 +
1

m
) ≥ 1

2m
(6.19)

for large m. Using (6.19) in (6.18) we find

S11(m,n)�
(

2m

T

)r ∞∫
−∞

∣∣∣∣h(r)( t

T

)∣∣∣∣ dt� ‖h(r)‖∞( (2m)r

T r−1

)
.

Similarly

S12(m,n)� ‖h(r)‖∞
(

(2m)r

T r−1

)
.

Therefore

∑
N≤m<n≤M

2a(m)a(n)√
mn

(S11(m,n) + S12(m,n))� ‖h(r)‖∞

 ∑
N≤m<n≤M

2a(m)a(n)√
mn

(2m)r

T r−1


�f

(
Mr+3

T r−1

)
(6.20)

for any positive integer r. Combining (6.16), (6.17), and (6.20) we see

I1 = 2T ĥ(0)
∑

N≤m≤M

a(m)2

m
+Of

(
Mr+3

T r−1

)
. (6.21)

Next we estimate I2. Let

I2 =
∑

N≤m,n≤M

a(n)a(m)√
mn

(S21(m,n) + S22(m,n)),

where

S21(m,n) :=

∞∫
−∞

hT (t)χf

(
1

2
+ it

)
eit log(nm)dt (6.22)

108



and

S22(m,n) :=

∞∫
−∞

hT (t)χf

(
1

2
− it

)
e−it log(nm)dt.

Recall Stirling’s formula (6.9) in the form

log Γ(s) =

(
s− 1

2

)
log s− s+

1

2
log 2π +O

(
1

|s|

)
, (6.23)

as |s| → ∞ and | arg s| ≤ π − ε. Then from (1.28) and (6.23) we have

logχf (s) = (2s− 1) log 2π + log Γ

(
k + 1

2
− s
)
− log Γ

(
k − 1

2
+ s

)
= (2s− 1) log 2π +

(
k

2
− s
)(

log s− iπ − k + 1

2s
+O

(
1

|s|2

))
−
(
k + 1

2
− s
)

−
(
k

2
− 1 + s

)(
log s+

k − 1

2s
+O

(
1

|s|2

))
+

(
k − 1

2
+ s

)
+O

(
1

|s|

)
= (1− 2s) log

s

2π
− iπ

2
(k − 2s) + 2s+Ok

(
1

|s|

)
. (6.24)

In particular

χf

(
1

2
+ it

)
= exp

{
− 2it(log t− log(2eπ))− iπ

2
(k − 1)

}(
1 +O

(
1

|t|

))
(6.25)

for t ≥ 1. Combining (6.25) and (6.22) one has

S21(m,n) =

∞∫
0

hT (t) exp

{
− it(2 log t− logmn− 2 log(2eπ))− iπ

2
(k − 1)

}(
1 +O

(
1

|t|

))
dt

=

∞∫
0

hT (t)eiF (t)dt+O(‖h‖∞ log T ), (6.26)

where F (t) := −t(2 log t− logmn− 2 log(2eπ))− π
2 (k − 1). Note that

|F ′(t)| =
∣∣∣∣2 log

2π

t
+ logmn

∣∣∣∣�f,ε0 log T (6.27)

109



for all t in the support of the function hT and m,n ≤ T 1−ε0 . Then from (6.27) and by integrating by parts

we have

∞∫
0

hT (t)eiF (t)dt =

∞∫
T ε

hT (t)

iF ′(t)
d
(
eiF (t)

)

≤
∞∫
0

(
|h′ (t/T ) |
T |F ′(t)|

+
n0|h (t/T ) |
t|F ′(t)|2

)
dt

�f,ε0

1

log T
max(‖h‖∞, ‖h′‖∞). (6.28)

Combining (6.26) and (6.28) we have

S21(m,n)�f,ε0 log T.

Similarly one obtains

S22(m,n)�f,ε0 log T.

Putting these together we arrive at

I2 =
∑

N≤m,n≤M

a(m)a(n)√
mn

(S21(m,n) + S22(m,n))

�f,ε0,h log T
∑

N≤m,n≤M

a(m)a(n)√
mn

�f,ε0 M
1+ε log T. (6.29)

Hence from (6.21), (6.29), and using that M ≤ T 1/2−ε0 ≤ T 1−ε0 we have

I = 2T ĥ(0)
∑

N≤m≤M

a(m)2

m
+Of,ε0

(
T 4−ε0(r+3)

)
+Of,ε0

(
T (1−ε0)(1+ε) log T

)
.

Thus by choosing ε < ε0 and r large enough we deduce

I = 2T ĥ(0)
∑

N≤m≤M

a(m)2

m
(1 + of (1))
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for T →∞. Finally by partial summation, (1.25), and (1.26) we conclude

I ∼ 2αT ĥ(0) log
M

N

for M,N ≥ T ε0 and T →∞. This completes the proof of the theorem.

6.4 Proof of Theorem 6.1.2

We first prove the following theorem.

Theorem 6.4.1. There exists a number tk, such that for 1/2 < σ < 1 and |t| > tk we have

|Lf (N ; 1− s)| > |Lf (N ; s)|,

whenever Lf (N ; s) 6= 0. Moreover the above holds with t12 = 3.8027, t14 = 1.8477 and tk = 0 for t ≥ 16.

Proof. From (1.37) we have

Lf (N ; 1− s) = g(s)Lf (N ; s),

where g(s) = 1/χf (s). From (1.28) one can see that g(s) is analytic for all s with t 6= 0 and hence continuous

for such s. Let s0 = 1
2 + it. Then from (1.28) we have

|g(s0)| =
∣∣∣∣(2π)−2it

Γ(k/2 + it)

Γ(k/2− it)

∣∣∣∣ = 1.

Define h(s) = log
∣∣∣ g(s)g(s0)

∣∣∣. It suffices to prove that h(s) > 0 for 1/2 < σ < 1 provided |t| ≥ tk. We have

h(s) = log

∣∣∣∣∣(2π)−(2s−1−2it)
Γ
(
k−1
2 + s

)
Γ
(
k
2 − it

)
Γ
(
k+1
2 − s

)
Γ
(
k
2 + it

) ∣∣∣∣∣
= −(2σ − 1) log 2π + log

∣∣Γ (k−12 + s
)∣∣− log

∣∣∣Γ (k+1
2 − s

)∣∣∣
= −(2σ − 1) log 2π + log

∣∣Γ (k−12 + σ + it
)∣∣− log

∣∣Γ (k+1
2 − σ + it

)∣∣
= −(2σ − 1) log 2π + (2σ − 1)

∂

∂σ
log |Γ (σ + it)||σ=σ1

,

for some σ1 between k−1
2 and k+1

2 . Thus it suffices to prove that

∂

∂σ
log |Γ (σ + it)||σ=σ1

− log 2π > 0,
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for all k−1
2 ≤ σ1 ≤

k+1
2 . Now from (6.9) we have

∂

∂σ
log |Γ (σ + it)| = ∂

∂σ
Re log Γ (σ + it) (6.30)

= Re
∂

∂σ
log Γ (σ + it)

= Re
∂

∂s
log Γ (s)

= Re

(
log s− 1

2s
− 1

12s2
+ 6

∫ ∞
0

P3(x)

(s+ x)
4 dx

)

= log
√
σ2 + t2 − σ

2(σ2 + t2)
− σ2 − t2

12(σ2 + t2)2

+ 6

∫ ∞
0

P3(x)((σ + x)4 − 6(σ + x)2t2 + t4)(
(σ + x)

2
+ t2

)4 dx.

Using (6.10) in combination with the inequality (σ + x)4 − 6(σ + x)2t2 + t4 ≤
(

(σ + x)
2

+ t2
)2

and (6.30)

we derive

∂

∂σ
log |Γ (σ + it)| ≥ log

√
σ2 + t2 − σ

2(σ2 + t2)
− σ2 − t2

12(σ2 + t2)2
−
√

3

36

∫ ∞
0

dx(
(σ + x)

2
+ t2

)2 (6.31)

=: G(σ)− I(σ),

where I(σ) is the integral part and G(σ) is the non integral part of (6.31). Here I(σ) is a decreasing function

of σ and hence

I(σ) ≤
√

3

36

∫ ∞
0

dx((
x+ k−1

2

)2
+ t2

)2 =

√
3

72t3

(
tan−1

(
2t

k − 1

)
− 2t(k − 1)

4t2 + (k − 1)2

)
.

Next

G′(σ) =
σ3
(
6σ2 + 3σ + 1

)
+ 3σ

(
4σ2 − 1

)
t2 + (6σ − 3)t4

6 (σ2 + t2)
3 ,

thus G(σ) is increasing on k−1
2 ≤ σ ≤

k+1
2 for k ≥ 12. Hence

∂

∂σ
log |Γ (σ + it)| − log 2π ≥ G

(
k − 1

2

)
−
√

3

72t3

(
tan−1

(
2t

k − 1

)
− 2t(k − 1)

4t2 + (k − 1)2

)
− log 2π

≥ 4(4− 3k)t2 − (k − 1)2(3k − 2)

3 ((k − 1)2 + 4t2)
2 +

1

2
log

(
1

4
(k − 1)2 + t2

)
−
√

3

72t3

(
tan−1

(
2t

k − 1

)
− 2t(k − 1)

4t2 + (k − 1)2

)
− log 2π
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=: H(t, k).

Let us fix t > 0 and consider k as a real variable for a moment. Then

∂

∂k
H(t, k) =

9(k − 2)
(
(k − 1)2 + 4t2

)2
+ 2

(
9(k − 3)k +

√
3 + 18

) (
(k − 1)2 + 4t2

)
+ 24(k − 1)3

9 ((k − 1)2 + 4t2)
3 ≥ 0,

for k ≥ 12. Hence for every fixed t > 0, H(t, k) is monotonically increasing with respect to the variable k.

Next let k ≥ 12 be a fixed number and vary t. Let

M(t, k)

t4
:=

∂

∂t
H(t, k) (6.32)

=
384(3(k − 1)k − 1)t6 + 16(k − 1)

(
9k((k − 1)k + 1)− 5

√
3− 9

)
t4

36t3 ((k − 1)2 + 4t2)
3

− 32
√

3(k − 1)3t2 + 3
√

3(k − 1)5 − 2304t8

36t3 ((k − 1)2 + 4t2)
3 +

6
√

3

144t4
tan−1

(
2t

k − 1

)
.

One finds that

∂

∂t
M(t, k) (6.33)

=
4t4
(
48
(
33k2 − 60k + 25

)
t4 + 4(k − 1)

(
3k
(
39k2 − 81k + 25

)
+ 8
√

3 + 51
)
t2
)

9 ((k − 1)2 + 4t2)
4

+
4t4
(
(k − 1)3

(
45k((k − 1)k + 1) + 8

√
3− 45

)
+ 1728t6

)
9 ((k − 1)2 + 4t2)

4

≥ 0,

for all t > 0. Therefore combining (6.32), (6.33) and the fact that M(0, k) = 0, we conclude that H(t, k) is

monotonically increasing with respect to t for t > 0 and fixed k ≥ 12. One can check that H(3.8027, 12) > 0,

H(1.8477, 14) > 0 and H(t, 16) > 0 for al t > 0, which completes the proof of Theorem 6.4.1.

By the functional equation (1.37), Lf (N ; s) and Lf (N ; 1− s) have the same zeros for 0 < σ < 1. Hence

Theorem 6.4.1 implies Theorem 6.1.2.
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6.5 Proof of Theorem 6.1.3

The proof follows closely the approach from [85]. For the sake of completeness we provide the details below.

From (1.36) we have

Lf (1; s) = 1 + χf (s). (6.34)

Now from the proof of Theorem 6.4.1 we have for t > 3.8027 and σ > 1/2

|χf (s)| < 1. (6.35)

Therefore from (6.34) and (6.35) we find that for t > 3.8027 and σ > 1/2,

|Lf (1; s)| ≥ 1− |χf (s)| > 0.

From Theorem 6.1.7 and Theorem 6.1.2 we conclude that, all the complex zeros of Lf (1; s) lie on the line

σ = 1/2 for t > 3.8027.

Again from (1.36) we see that

|Lf (2; s)| ≥
∣∣∣∣1 +

a(2)

2s

∣∣∣∣− |χf (s)|
∣∣∣∣1 +

a(2)

21−s

∣∣∣∣ .
So it suffices to prove that for large enough t and σ > 1/2,

1/|χf (s)| >

∣∣∣∣∣1 + a(2)
21−s

1 + a(2)
2s

∣∣∣∣∣ . (6.36)

Let

g1(s) = χf (s)
1 + a(2)

21−s

1 + a(2)
2s

.

Then |g1(1/2 + it)| = 1. Define

l(s) = log

∣∣∣∣ g1(s)

g1(1/2 + it)

∣∣∣∣ .
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Proceeding as in the proof of Theorem 6.4.1 one can derives that

l(s) =

(
σ − 1

2

)
∂

∂σ

(
log

1

|χf (s)|
− log

∣∣∣∣∣1 + a(2)
21−s

1 + a(2)
2s

∣∣∣∣∣
)∣∣∣∣∣

σ=σ1

,

for some σ1 in [1/2, 1]. We want to show that

∂

∂σ

(
log

1

|χf (s)|

)∣∣∣∣
σ=σ1

>
∂

∂σ

(
log

∣∣∣∣∣1 + a(2)
21−s

1 + a(2)
2s

∣∣∣∣∣
)∣∣∣∣∣

σ=σ1

, (6.37)

for some σ1 ∈ (1/2, 1). We distinguish two cases according as to when 1/2 < σ ≤ 3/4 and respectively when

3/4 < σ < 1. We have

∂

∂σ

(
log

∣∣∣∣∣1 + a(2)
21−s

1 + a(2)
2s

∣∣∣∣∣
)

= Re
∂

∂s

(
log

1 + a(2)
21−s

1 + a(2)
2s

)

= a(2) log 2 Re

(
a(2) + 2s−1 + 2−s

(1 + a(2)2s−1)(1 + a(2)2−s)

)
.

Then for 1/2 < σ ≤ 3/4, using (1.23) we have

∂

∂σ

(
log

∣∣∣∣∣1 + a(2)
21−s

1 + a(2)
2s

∣∣∣∣∣
)
≤ log 2

(
1 + 2σ−1 + 2−σ

(1− 2σ−1)(1− 2−σ

)
< 27. (6.38)

Therefore for 1/2 < σ ≤ 3/4, by Lemma 6.2.3 and (6.38) we find that the inequality (6.37) holds when

2 log |t| > 27 + 3.7. In particular one can take t > e16. Now consider the case 3/4 < σ < 1. One can see by

(1.23) that

∣∣∣∣∣1 + a(2)
21−s

1 + a(2)
2s

∣∣∣∣∣ ≤
∣∣∣∣1 + 2σ−1

1− 2−σ

∣∣∣∣ ≤ 1 + 2

1− 2−3/4
< 5. (6.39)

Then from (6.39) and Lemma 6.2.4, it is enough to show that

.98

(
|s|
2πe

)2σ−1

> 5 (6.40)

in order to prove the inequality (6.36). Here (6.40) holds true for t > 445. For σ ≥ 1, 1 + 2σ−1 ≤ 2σ, and

(6.40) transforms to

.98

(
|s|

2
√

2πe

)2σ−1

>

√
2

1− 2−3/4
. (6.41)

Numerical computation shows that t > 86 satisfies (6.41) for σ ≥ 1. This completes the proof of the theorem.
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6.6 Proof of Theorems 6.1.4 and 6.1.5

Let ρN = βN + iγN be a complex zero of Lf (N ; s) with |γN | ≥ 2πeNλ. We will show that Lf (N ; s) never

vanishes for

βN >
λ

2λ− 1

(
1 +

4 log logN

logN

)
,

when 1/2 < λ ≤ 1 and is nonzero for

βN > 1 +
4 log logN

logN
,

when λ > 1. Then one concludes the proof of the theorem by using the functional equation (1.37). Let s be

such that |t| ≥ 2πeNλ with λ > 1/2 and

σ > max

(
1,

λ+ ε

2λ− 1

)(
1 +

c log logN

logN

)
, (6.42)

where ε > 0 is arbitrary and c is a positive constant which will be determined later. From (1.36) we have

|Lf (N ; s)| ≥

∣∣∣∣∣∣
∑
n≤N

a(n)

ns

∣∣∣∣∣∣− |χf (s)|

∣∣∣∣∣∣
∑
n≤N

a(n)

n1−s

∣∣∣∣∣∣ . (6.43)

Consider the right-hand side of (6.43), We will obtain an upper bound for the first sum and a lower bound

for the second sum. By Lemmas 6.2.1 and 6.2.2 we see that

∣∣∣∣∣∣
∑
n≤N

a(n)

ns

∣∣∣∣∣∣ ≥ |Lf (s)| −

∣∣∣∣∣∑
n>N

a(n)

ns

∣∣∣∣∣ (6.44)

>

(
σ − 1

σ

)2

− N1−σ

σ − 1

(
logN + 2γ +

1

σ − 1

)
+O

(
1√
N

)
.

Since by (6.42) we always have

σ > 1 +
c log logN

logN
,

then from (6.44) we have

∣∣∣∣∣∣
∑
n≤N

a(n)

ns

∣∣∣∣∣∣ >
(

c log logN

logN + c log logN

)2
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− 1

logcN

(
logN

c log logN

)(
logN + 2γ +

logN

c log logN

)
+O

(
1√
N

)
.

Therefore for c = 4 one find that ∣∣∣∣∣∣
∑
n≤N

a(n)

ns

∣∣∣∣∣∣ >
(

log logN

logN

)2

, (6.45)

for sufficiently large N . Now by Lemmas 6.2.2, 6.2.4, for |t| > 2πeNλ, and |t| > 20, we find that

|χf (s)|

∣∣∣∣∣∣
∑
n≤N

a(n)

n1−s

∣∣∣∣∣∣ < 1.02

(
|s|
2πe

)1−2σ

Nσ
(

logN + 2γ − 1 +O(N−1/2)
)
. (6.46)

Then from (6.46), fixed ε > 0 and large N we write

|χf (s)|

∣∣∣∣∣∣
∑
n≤N

a(n)

n1−s

∣∣∣∣∣∣ < 2.04

(
|s|
2πe

)1−2σ

Nσ+ε < 2.04Nλ(1−2σ)+σ+ε. (6.47)

If 1/2 < λ < 1 + ε, then by (6.42) the exponent of N in (6.47) can be written as

λ(1− 2σ) + σ + ε = λ+ ε− σ(2λ− 1) < −c(λ+ ε)
log logN

logN
< −c(1 + 2ε)

log logN

2 logN
.

If λ ≥ 1 + ε, then the exponent of N in (6.47) is

λ(1− 2σ) + σ + ε ≤ (1 + ε)(1− 2σ) + σ + ε = (1− σ)(1 + 2ε) < −c(1 + 2ε)
log logN

logN
.

By combining the above two cases and using (6.47), we derive

∣∣∣∣∣∣χf (s)
∑
n≤N

a(n)

n1−s

∣∣∣∣∣∣ < 2.04

logc/2N
. (6.48)

Finally choose c = 4. Then from (6.45) and (6.48) we have

|Lf (N ; s)| >
(

log logN

logN

)2

− 2.04

log2N
> 0,
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for N large enough. Therefore there exists a N0 > 0 such that when N > N0, then Lf (N ; s) 6= 0 in the

region

σ > max

(
1,

λ+ ε

2λ− 1

)(
1 +

4 log logN

logN

)
, |t| ≥ 2πeNλ,

for λ > 1/2 and any number ε > 0. Which complete the proof of Theorem 6.1.4.

We now prove Theorem 6.1.5. It is enough to consider the case N ≥ 2. Suppose T > T0 for some large

constant T0. Let σ ≥ 2 and |t| > max(2πeN, T0). From (6.43) and using the trivial bound d(n) ≤ n we have

|Lf (N ; s)| ≥ |Lf (s)| −
∑
n≤N

d(n)

nσ
− |χf (s)|

∑
n≤N

d(n)

n1−σ
(6.49)

>

(
σ − 1

σ

)2

− N2−σ

σ − 2
− 1.02

(
|s|
2πe

)1−2σ (
Nσ +

N1+σ

1 + σ

)
>

(
σ − 1

σ

)2

− 22−σ

σ − 2
− 1.02(2)1−2σ

(
2σ +

21+σ

1 + σ

)
,

where in the penultimate step we used Lemma 6.2.4. We assume in what follows that T0 > 20. A numerical

computation shows that the right-hand side of (6.49) is positive when σ ≥ 3.5. Thus Lf (N ; s) 6= 0 for

σ ≥ 3.5 and |t| > max(2πeN, T0). Also by the functional equation we see that Lf (N ; s) 6= 0 when σ ≤ −2.5,

which concludes the proof of the theorem.

6.7 Proof of Theorems 6.1.6 and 6.1.7

Let T > 0 be a large number. Then by Theorem 6.1.4, we conclude that the zeros of Lf (N ; s) with

ordinates T < γN < T + U , for some positive constant U , must lie in a rectangle with width 2d− 1, where

d = max(1, λ/(2λ− 1)). The following theorems will are the main ingredients in the proof of Theorem 6.1.7.

Theorem 6.7.1. Let λ > 1/2. There exists a constant N0 such that for N > N0, T > 2πeNλ, and U ≥ 2,

we have

N(T + U)−N(T ) =
T + U

π
log

T + U

2π
− T

π
log

T

2π
− U

π
+Of

((
λ

2λ− 1

)3

log(T + U)

)
. (6.50)

Furthermore there exists a constant T0 such that (6.50) holds with λ = 1 for all N ≥ 1 and T > max(2πeN, T0).

Proof. Let λ > 1/2 and w = max
(

2, 2λ
2λ−1

)
. Let R be a positively oriented rectangle with vertices w + iT ,

w + i(T + U), 1 − w + i(T + U) and 1 − w + iT . From Theorem 6.1.4, we observe that the complex zeros

will be inside the rectangle R for sufficiently large N . Without loss of generality we assume that the edges
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of the rectangle do not pass through any zeros of Lf (N ; s). Then by Littlewood’s lemma [89, Section 9.9]

we have

2π
∑
ρ∈R

(βN − 1 + w) =

∫ T+U

T

(log |Lf (N ; 1− w + it)| − log |Lf (N ;w + it)|) dt (6.51)

+

∫ w

1−w
(argLf (N ;σ + i(T + U))d− argLf (N ;σ + iT )) dσ,

where the argument of Lf (N ; s) is obtained by continuation of logLf (N ; s) leftward from the value 0 at

σ =∞. From (1.36) we have

Lf (N ; s) = 1 +
∑

2≤n≤N

a(n)

ns
+ χf (s)

∑
1≤n≤N

a(n)

n1−s
.

Then from (1.22) we may write

|Lf (N ; s)− 1| ≤
∑

2≤n≤N

d(n)

nσ
+ |χf (s)|

∑
1≤n≤N

|a(n)|
n1−σ

.

Since T ≥ 2πeNλ, applying (1.24) and (6.47) we find that

|Lf (N ; s)− 1| �ε

∑
2≤n≤N

1

nσ−ε
+ 2.04Nλ(1−2σ)+σ+ε (6.52)

≤ 1

2σ−ε
+

∫ N

2

1

xσ−ε
dx+ 2.04Nλ(1−2σ)+σ+ε

�ε

(
1

2

)min(σ−1−ε,λ(2σ−1)−σ−ε)

,

for σ ≥ w. Note that for σ ≥ w, both σ− 1− ε and λ(2σ− 1)− σ− ε are positive and increasing. Therefore

from (6.52), logLf (N ; s) is analytic and non-zero for σ ≥ w. Then by Cauchy’s theorem,

∫ T+U

T

logLf (N ;w + it) dt =

∫ ∞
w

logLf (N ;σ + iT ) dσ −
∫ ∞
w

logLf (N ;σ + i(T + U)) dσ. (6.53)

Again from (6.52), the integrals on the right-hand side of (6.53) are bounded. Therefore

−
∫ T+U

T

log |Lf (N ;w + it) |dt = − Re

∫ T+U

T

logLf (N ;w + it) dt = O(1). (6.54)
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Using the functional equation (5.5) we may write

∫ T+U

T

log |Lf (N ; 1− w + it)| dt =

∫ T+U

T

log |Lf (N ;w + it)| dt−
∫ T+U

T

log |χf (w + it)| dt. (6.55)

Note that

∫ T+U

T

log |χf (w + it)| dt = Re

∫ T+U

T

logχf (w + it) dt = Im

∫ w+i(T+U)

w+iT

logχf (s) ds. (6.56)

Also for t→∞

Re (log s) = log t+O

(
σ2

t2

)
and Im (log s) =

(π
2
− σ

t

)
+O

(
σ3

t3

)
. (6.57)

Therefore from (6.24), (6.56), (6.57), a straightforward computation shows that

∫ T+U

T

log |χf (w + it)| dt = (1− 2w)(T + U) log
T + U

2π
− (1− 2w)T log

T

2π
(6.58)

− (1− 2w)U +Of (w3 log(T + U)).

Hence from (6.54), (6.55) and (6.58) we find that

∫ T+U

T

log |Lf (N ; 1− w + it)| dt = (2w − 1)(T + U) log
T + U

2π
− (2w − 1)T log

T

2π
(6.59)

− (2w − 1)U +Of (w3 log(T + U)).

Next we consider the change in argLf (N ; s) along the bottom edge of R. Let q be the number of zeros of

Re (Lf (N ;σ + iT )) on the interval (1 − w,w). Then there are at most q + 1 subintervals of (1 − w,w) in

each of which Re (Lf (N ;σ + iT )) is of constant sign. Therefore the variation of argLf (N ;σ + iT ) is at

most π in each subinterval. So we have

argLf (N ;σ + iT )|w1−w ≤ (q + 1)π. (6.60)

To estimate q, first we define

g(z) := Lf (N ; z + iT ) + Lf (N ; z̄ + iT ). (6.61)
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If z = σ is a real number then we have

g(σ) = Re (Lf (N ;σ + iT )).

Let R = 2(2w − 1) and consider the disk |z − w| < R centered at w. Choose T large so that

Im (z + iT ) > T −R > 0.

Thus, Lf (N ; z + iT ), and hence also g(z), are analytic in the disk |z − w| < R. Let n(r) be the number of

zeros of g(z) in the disk |z − w| < r and R1 = R/2. Then we have

∫ R

0

n(r)

r
dr ≥ n(R1)

∫ R

R1

dr

r
= n(R1) log 2. (6.62)

By Jensen’s theorem,

∫ R

0

n(r)

r
dr =

1

2π

∫ 2π

0

log
|g(w +Reiθ)|
|g(w)|

dθ =
1

2π

∫ 2π

0

log |g(w +Reiθ)| dθ − log |g(w)|. (6.63)

A computation similar to (6.52) shows that

|Lf (N ;w + iT )| �ε 1−
(

1

2

)min(w−1−ε,λ(2w−1)−w−ε)

,

for T ≥ 2πλ and λ > 1/2. For λ ≥ 1, we have w = 2 and hence

|Lf (N ;w + iT )| �ε
1

2
.

For 1/2 < λ ≤ 1, we have w = 2λ/(2λ− 1). In this case,

|Lf (N ;w + iT )| �ε
1

2λ
.

From the definition (1.36) we have

|Lf (N ; s)| ≤
∑
n≤N

d(n)

nσ
+ |χf (s)|

∑
n≤N

d(n)

n1−σ
.
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By Lemma 6.2.4, we have

χf (s)� |s|(1−2σ).

One can show ( similar to Lemma 6.2.2) that

∑
n≤N

d(n)

nσ
�

 N1−σ logN if σ 6= 1

log2N if σ = 1
.

Thus,

|Lf (N ; s+ iT )| � logN(N1−σ + logN + T 1−2σNσ).

Therefore from (6.61), we have

|g(s)| ≤ |Lf (N ; s+ iT )|+ |Lf (N ; s− iT )| � logN(N1−σ + logN + T 1−2σNσ). (6.64)

Since |s−w| < R = 2(2w − 1), then 2− 3w < σ < 5w − 2. Also T ≥ 2πeNλ for λ > 1/2. So the expression

on the right-hand side of (6.64) is largest when σ = 3− 2w. Therefore

|g(s)| � logN(N3w−1 + logN + TN (2λ−1)(3w−2)

� log T (T (3w−1)/λ + T 1+(2λ−1)(3w−2)/λ)

� T 6w.

Finally

|g(w +Reiθ)| � T 6w.

Hence from (6.62) and (6.63), it follows that n(R1) � w log T . Now, the zeros of Lf (N ;σ + iT ) for

1−w < σ < w correspond to, and their number equals the number of, the zeros of g(σ) in the same interval.

Since the interval (1− w,w) is contained in the disk |s− w| < R1, then q ≤ n(R1). Since

w = max

(
2,

2λ

2λ− 1

)
≤ 4λ

2λ− 1
,
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then from (6.60) we conclude that

∫ w

1−w
argLf (N ;σ + iT ) dσ �

(
λ

2λ− 1

)3

log T. (6.65)

Similarly,

∫ w

1−w
argLf (N ;σ + i(T + U)) dσ �

(
λ

2λ− 1

)3

log(T + U). (6.66)

For smaller values of N one can obtain similar results as (6.52) to (6.66) by choosing the rectangular contour

R = [3.5 + iT, 3.5 + i(T + U),−2.5 + i(T + U),−2.5 + iT ] and T > max(2πeN, T0). Here T0 is the same as

in Theorem 6.1.5. Combining (6.51), (6.54), (6.59), (6.65), and (6.66), we have the following result.

Theorem 6.7.2. For λ > 1/2, N ≥ N0, and T ≥ 2πeNλ, we have

2π
∑
ρ∈R

(βN − 1 + w) = (2w − 1)(T + U) log
T + U

2π
− (2w − 1)T log

T

2π
− (2w − 1)U (6.67)

+Of

((
λ

2λ− 1

)3

log(T + U)

)
.

Furthermore there exists a constant T0 such that (6.67) holds with λ = 1 for all N ≥ 1 and T > max(2πeN, T0).

Now increasing w to w+1 in Theorem 6.7.2 and subtracting (6.67) from the corresponding relation where

w is replaced by w + 1 gives the conclusion of Theorem 6.7.1.

Theorem 6.7.3. There exists a constant T0 such that if N ≥ 1, T > max(2πeN, T0), and U ≥ 2, then

N0(T + U)−N0(T ) ≥ T + U

π
log

T + U

2πMa
− T

π
log

T

2πMa
− U

π
+Of (N) , (6.68)

where 0 ≤ a ≤ 1 is such that the number of zeros of
∑
n≤N a(n)n−s with real parts strictly greater than 1/2

is

≤ aT

2π
logM +Of (N),

M was defined in Proposition 1.5.1. Also, the right-hand side of (6.68) is a lower bound for the number of

distinct zeros of Lf (N ; s) on the critical line with T < t ≤ T + U . Here M is defined in Proposition 1.5.1.
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Proof. First of all we introduce some notation to simplify the proof. Rewrite (1.36) in the form

Lf (N ; s) = F (s)

(
1 + χf (s)

F (1− s)
F (s)

)
= F (s)Z(s), (6.69)

where

F (s) :=
∑
n≤N

a(n)

ns

and

Z(s) = 1 + χf (s)
F (1− s)
F (s)

.

Define

NF (T ) = #{ρ : F (ρ) = 0 and 0 < Im ρ ≤ T},

NZ(T ) = #{ρ : Z(ρ) = 0 and 0 < Im ρ ≤ T},

N0
F (T ) = #{ρ : F (ρ) = 0, Re ρ = 1/2 and 0 < Im ρ ≤ T},

N0
Z(T ) = #{ρ : Z(ρ) = 0, Re ρ = 1/2 and 0 < Im ρ ≤ T},

N+
F (T ) = #{ρ : F (ρ) = 0, Re ρ > 1/2 and 0 < Im ρ ≤ T},

and

N+
Z (T ) = #{ρ : Z(ρ) = 0, Re ρ > 1/2 and 0 < Im ρ ≤ T}.

Clearly N(X;T ) = NF (T ) for X = N . Also N0(T ) = N0
F (T ) +N0

Z(T ). From (6.69) we see that Lf (N ; 1
2 +

it) = 0 if and only if F ( 1
2 + it) = 0 or Z( 1

2 + it) = 0. If 1/2 + ig is a zero of F (s) then we write

Z(1/2 + ig) = 1 + χf (1/2 + ig) lim
t→g

F (1/2− it)
F (1/2 + it)

.

Our next goal is to provide a lower bound for N0
Z(T +u)−N0

Z(T ), or equivalently, obtain a lower bound for
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the umber of solutions of

χf (1/2 + it)
F (1/2− it)
F (1/2 + it)

= −1,

for T ≤ t ≤ T + U . Note that if

χf (1/2 + it)
F (1/2− it)
F (1/2 + it)

= −1,

then

arg

(
χf (1/2 + it)

F (1/2− it)
F (1/2 + it)

)
= (2m+ 1)π

and hence

argχf (1/2 + it)− 2 argF (1/2 + it) = (2m+ 1)π

for some integer m. Let

G(s) := argχf (s)− 2 argF (s).

Fix ε > 0. Construct a continuous curve L(ε) from 1/2 + iT to 1/2 + i(T + U) directed upward, which is

the union of line segments belonging to the same vertical line and any two consecutive segments joint by a

small semicircle of radius ε as follows. The semi circles have the same radius ε > 0, are centered exactly at

the zeros 1/2 + ig of F (s), and lie to the right of the critical line. Here we chose ε small enough so that the

semicircles do not overlap. Next consider a straight line segment of L(ε) between two consecutive zeros of

F (s), excluding the semicircle part. Each time the image under G(s) of this straight line segment crosses

the horizontal lines y = (2m+ 1)π for m ∈ Z, it gives rise to a distinct zero of Z(1/2 + it). Furthermore, by

the argument principle, as ε→ 0+ the image of the small semicircle under G(s) is a vertical line segment of

length πm(g), where m(g) is the multiplicity of the zero 1/2 + ig of F (s). In the limit, the function G(s)

has a jump discontinuity at each zero 1/2 + ig of F (s) with jump πm(g).

Consider a rectangle of height H with horizontal grid lines, such that the distance between any two

consecutive lines is equal to 2π. If a continuous curve intersects all the horizontal grid lines then the

minimum number of points of intersection is H/2π. Using this geometrical fact, we see that the number of

zeros of Z(s) arising from the image of the straight line segment of L(ε) crossing the lines y = (2m+ 1)π is
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at least

lim
ε→0+

1

2π
|∆L(ε)(argχf (s)− 2 argF (s)|+O(1).

In particular, if J is the total number of crossings of the set of jumps by the lines y = (2m+ 1)π then

lim
ε→0+

1

2π
|∆L(ε)(argχf (s)− 2 argF (s)| − J +O(1) (6.70)

gives a lower bound for the number of distinct zeros of Z(1/2 + it) with T ≤ t ≤ T + U . We take this

quantity as a lower bound for N0
Z(T + u)−N0

Z(T ). Since any vertical line of length πm(g) crosses the lines

y = (2m+ 1)π at most m(g) times then we have

J ≤
∑

T≤g≤T+U

m(g).

Hence

J ≤ N0
F (T + U)−N0

F (T ). (6.71)

To estimate 4L(ε) argF (s), we will consider a clockwise oriented contour C(ε) from by L(ε) and the line

segments ( 1
2 + i(T + U), 3.5 + i(T + U)], [3.5 + iT, 3.5 + i(T + U)], and (1

2 + i(T + U), 3.5 + iT ]. We have

∆C(ε) argF (s) = −2π(N+
F (T + U)−N+

F (T )).

From the definition of F (s) and an argument similar to (6.52) we find

|F (s)− 1| � 1

22.5
.

Hence

argF (3.5 + it)|T+U
T = O(1).

Note that

Im (F (σ + iT )) = −
∑
n≤N

a(n) sin(T log n)

nσ
.

By a generalization of Descartes’s Rule of Signs (see Pólya and Szegö [78], Part V, Chapter 1, No. 77), the
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number of real zeros of Im (F (σ + iT )) in the interval 1/2 ≤ σ ≤ 3.5 is less than or equal to the number of

sign changes in the sequence a(n) sin(T log n), 1 ≤ n ≤ N , which in turn is less than or equal to the number

of nonzero coefficients of a(n) sin(T log n). Therefore

argF (σ + iT )|w1/2 = Of (N).

Similarly

argF (σ + i(T + U))|w1/2 = Of (N).

Thus

4L(ε) argF (s) = −2π(N+
F (T + U)−N+

F (T )) +Of (N). (6.72)

Again by (6.24),

∆L(ε) argχf (s) = − argχf (1/2 + it)|T+U
T +Of (1) (6.73)

= −2(T + U) log
T + U

2π
+ 2T log

T

2π
+ 2U +Of (1).

Finally combining (6.70), (6.71), (6.72), and (6.73) we obtain

N0
Z(T + u)−N0

Z(T ) ≥ T + U

π
log

T + U

2π
− T

π
log

T

2π
− U

π
− 2(N+

F (T + U)−N+
F (T ))

− (N0
F (T + U)−N0

F (T )) +Of (N).

Now by Proposition 1.5.1 there exists a positive number a with 0 ≤ a ≤ 1 such that

N+
F (T + U)−N+

F (T ) ≤ a U
2π

logM +Of (N).

Thus

N0(T + U)−N0(T ) = N0
Z(T + u)−N0

Z(T ) +N0
F (T + U)−N0

F (T ) (6.74)

≥ T + U

π
log

T + U

2π
− T

π
log

T

2π
− U

π
− aU

π
logM +Of (N),

which proves Theorem 6.7.3.
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For λ > 1/2, one derives from (6.50) that

N0(T + U)−N0(T ) ≥ T + U

π
log

T + U

2πeMa
− T

π
log

T

2πeMa
− U

π
+Of (N) (6.75)

=
T + U

π
log

T + U

π
− T

π
log

T

2π
− U

π
+Of (U logN) +Of (N)

= N(T + U)−N(T ) +O(U logN) +Of (N) +Of

((
λ

2λ− 1

)3

log(T + U)

)
,

which completes the proof of Theorem 6.1.6. Now for N ≤ T o(1) and For U ≥ T β for some positive constant

β, we have

lim inf
T→∞

N0(T + U)−N0(T )

N(T + U)−N(T )
= 1. (6.76)

Since the right-hand sides of (6.74) and (6.75) are also lower bounds for the number of simple zeros of

Lf (N ; 1/2 + it) with T ≤ t ≤ T + U , then the lim inf in (6.76) continues to equal 1 when one replaces

N0(T + U) −N0(T ) on the left-hand side of (6.76) by the number of simple zeros of Lf (N ; 1/2 + it) with

T ≤ t ≤ T +U . This implies that as T →∞, 100% of the zeros of Lf (N ; s) are simple and lie on the critical

line, which concludes the proof of Theorem 6.1.7.
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[38] S. Egger né Endres and F. Steiner. A simple infinite quantum graph. Ulmer Seminare Funktionalanal-
ysis und Differentialgleichungen., (14):187–200, 2009.
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