

i

A LARGE-SCALE NEIGHBORHOOD SEARCH APPROACH TO VEHICLE ROUTING

PICK-UP AND DELIVERY PROBLEM WITH TIME WINDOWS UNDER
UNCERTAINTY

BY

PRAVEEN TUMULURI

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Industrial Engineering
in the Graduate College of the

University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Assistant Professor Lavanya Marla

ii

ABSTRACT

The vehicle routing problem with shipment pick-up and delivery with time windows

(VRPPDTW) is one of the core problems that is addressed by a package delivery

company in its operations. Most often, this problem has been addressed from the

point of view of cost-cutting, to achieve the lowest cost possible under a

given/predicted demand and service time scenario. This thesis aims to study a real-

world VRPPDTW problem with side-constraints and build solutions that are cost-

effective as well as robust to stochasticity in demands and service times. Even

without the additional side constraints, the VRPPDTW is NP-hard. In particular, we

consider the solution of VRPPDTW with side-constraints adopted by a carrier.

Because of the nature as well as the size of the problem and the network, we

demonstrate that the problem is combinatorially explosive. We therefore develop a

large-scale neighbourhood search heuristic combined with a break-and-join

heuristic and a clustering heuristic. We use this heuristic to build a set of schedules

with far lower operating costs than the existing solution and effectively decrease the

costs by 15% by reducing the number of routes needed to serve the shipments. We

then build a framework to evaluate the performance of the solutions under

stochasticity, and present results related to under stochasticity in service times.

iii

ACKNOWLEDGEMENT

 It is my privilege and honor to work with Dr. Lavanya Marla. I would like to

express my deepest gratitude to her for her constant understanding and support. I

would like to thank her whole-heartedly for being patient with me, even during the

toughest of my time, for taking time out of her busy schedule in teaching me some

aspects of the code and for her constant guidance. This thesis could not be

completed without her invaluable advice. Thank you, Dr. Marla, for being a great

mentor.

 I am grateful to Ashish Khetan Date and Aaron Williams, who lent me their

constant support and for their patience in hinting out some problems in my thesis.

Thanks are due to Parasara Sridhar Duggirala for his insightful advice on

Randomized Algorithms, providing some of the key structure to this thesis. I would

also like to thank my friends Bhargava Reddy and Virajith Jalaparthi for constantly

providing me with all the support I very much needed.

 I would like to also thank Dr. Ramavarapu Sreenivas and Dr. Carolyn Beck for

providing a new direction to my thought process in my thesis, my colleague Garrick

Li to have the patience in waiting on the server until my code ran to completion. I

would like to thank my friends Sree Kalyan, Sasidhar, Raghavendra, Sweta Yamini,

Yashwant and Lakshmi, whose friendship made my stay at UIUC much more

enjoyable and memorable. Also, I would like to thank all UIUC friends who have

indirectly contributed in making this thesis possible.

 I am deeply indebted to all of my teachers. Without any of them, I would not be

where I am today. More importantly, I owe my deepest gratitude to my parents and

family members for their love and support. They are my everything and I love them

all.

iv

TABLE OF CONTENTS

Chapter 1: Introduction .. 1

1.1 Statement of the problem .. 1

1.1.1 Objective ... 2

1.1.2 Detailed Description of the Problem and Side-Constraints ... 3

1.2 Data Set and Computational Complexity ... 4

1.3 Outline of the Thesis ... 6

Chapter 2: Literature Review .. 7

2.1 Genetic Algorithm and Grouping Algorithm Heuristics for a vehicle routing problem

with delivery and pickup with time windows ... 7

2.2 Branch-Cut-Price approaches, Insertion heuristics and Large Scale Neighbourhood

Search methods for a vehicle routing problem with delivery and pickup with time

windows ..13

2.3 Robust Vehicle Routing Problem with Stochastic Demands and Uncertainty 17

Chapter 3: Modelling Approach..20

3.1 Description of the problem, dataset and model ...20

 3.1.1 Description of the breaks and Feasibility Function ...22

 3.2 Description of the cost function ..23

3.3 Model Proposed By Tardy [3] ...24

3.3.1 Pricing problem model ...25

3.3.2 Description of the range of sets and Objective function ...26

3.3.3 Description of the constraints involved in pricing problem ..27

3.3.3.1 Shortest path constraints ..28

3.3.3.2 Domicile constraints ..28

3.3.3.3 Origin and Destination of leg and leading load: constraints29

3.3.3.4 Choice of the leading load: constraints ..29

3.3.3.5 Pickup and delivery: constraints ...30

3.3.3.6 Time in and Time Out: constraints ...31

3.3.3.7 Work Time: constraints ..33

v

3.3.3.8 Extra Time: constraints ..33

3.3.3.9 Latest arrival and earliest Departure: constraints34

3.3.3.10 Breaks: constraints ..34

3.3.3.11 Time: constraints ..37

3.4 Our Modeling Approach...38

3.4.1 Break and rejoin heuristic ..38

3.4.2 Combining Metaloads into Feasible Routes ..43

 3.4.3 Randomized Algorithms for Graphs ...48

 3.4.4 Set Covering Model ..52

Chapter 4: Simulation Framework for Evaluation of Robustness55

4.1 Simulation Framework ..55

4.2 Simulation Results for Robustness under Travel Time Uncertainty55

Chapter 5: Conclusions and Future Scope of Research ...58

References ..59

1

CHAPTER 1 INTRODUCTION

1.1 Statement of the problem

In this thesis we study the problem of vehicle routing with pickup and

delivery with time windows, commonly referred to as VRPPDTW. As defined in Toth [1],

‘The vehicle routing problem with pickup and delivery with time windows

(VRPPDTW) is a combinatorial optimization and integer programming problem which

generalizes Travelling Salesman Problem (TSP). The objective of the VRPPDTW is to minimize

the total route cost with the constraints that since a number of goods need to be moved from

certain pickup locations to other delivery locations, we find optimal routes for a fleet of

vehicles to visit the pickup and drop-off locations and the delivery locations have time

windows within which the deliveries (or visits) must be made’. The VRPPDTW problem has a

fleet of vehicles that has to be routed to serve a set of shipments that have to be picked up

and delivered at multiple points in the network. In particular, given a set of trailers with

units in trailer loads denoted by their origins and destinations by their earliest available

times and latest arrival times, we first find cost-minimizing routes and schedules for both

the drivers and the tractors.

The VRPPDTW is NP hard. According to Leewuen [2], ‘ NP-hard (Non-

deterministic Polynomial-time hard), in computational complexity theory, is a class of

problems that are, informally, "at least as hard as the hardest problems in NP" ’. More

precisely, a problem H is NP-hard when every problem L in NP can be reduced in

polynomial time to H. As a consequence, finding a polynomial algorithm to solve any NP-

hard problem would give polynomial algorithms for all the problems in NP, which is

2

unlikely as many of them are considered hard. Therefore, it is difficult to prove that there

exists an algorithm that can produce an optimal or close-to-optimal solution in a bounded

time, unless enumeration is used. Additionally, as we will describe in the future sections,

the problem has several side-constraints which make the modeling and solution process

even more complex.

1.1.1 Objective

The objective of this thesis is this to come up with a robust modeling and

solution framework that can generate solutions that are cost-effective, and additionally,

robust to uncertainties in the package demands and service times. In particular, our

primary objective is to find the minimum number of vehicles needed to pick up and drop

off the set of demands (shipments) within the specified time- windows. The constraints of

the model are as follows: given a set of trailer demands and units in trailer loads denoted

by their origins and destinations by their earliest available times and latest arrival times,

and service times in the form of travel and transfer times, we first find routes and

schedules for both the drivers and the tractors. We then study the set of solutions (routes)

obtained by the modeling framework. As a secondary objective, we study the robustness

properties of the solutions obtained from the model. That is, we would like to understand

the performance of the solutions obtained, under stochasticity in trailer demands and

service times.

3

1.1.2 Detailed description of the Problem and Side-Constraints

In this section, we will describe the main parameters and constraints

involved in the vehicle routing problem with time windows. The underlying network is

described as a directed graph G=(N,A) with N the set of nodes and A the set of arcs. The set

of nodes correspond to the locations used by the company. These locations are of various

types where some locations correspond to hubs, others to sorting facilities, railyards etc.

The arcs connect two different locations such that the location at the head of the arc can be

directly reached upon leaving the location of the tail of the arc, through the specified route.

For each such arc in the network, both travel time and travel distances are known.

The next step involves the requirement to route correctly the different loads.

Here, a load corresponds to a trailer full of packages. Each load is associated with a time

window, that is an earliest available time (EAT) and a latest delivery time (LDT). The two

times are determined apriori in order to follow this set of constraints: 1) the schedules of

the carrier sorting facilities; 2) other time windows; for example if a load is sent over more

than one arc length, the time windows affecting the load will be defined to satisfy any time

restrictions of the regions involved. The EAT and LDT are used as input to our VRPPDTW

model.

There exist two different types of trailers. There are short and long trailers.

Due to its capacity constraints, a tractor can hold either one short trailer, one long trailer or

two short trailers. When the tractor hauls only one load, Tractor/Trailer configuration is

denoted as Single; where the tractor contains two trailers; its configuration is denoted as

Double. In this thesis, we used the words ‘tractor’ and ‘load’ interchangeably. Thus, the

adjective ‘short’ or ‘long’ is directly applied to the loads.

 It is allowed that two drivers can exchange loads. This means that a driver

can drop a load at a location (that is not the destination of the load), from which it is later

4

picked up by another driver. Within a driver's route, various work rules have to be in

compliance. First of all, a driver has to begin and to finish his work schedule from and to

the same point which is called a domicile. Only a small subset of locations is allowable

domiciles. Next, work rules also imply that the working time cannot exceed a working time

limit which depended on the domicile to which the driver is associated. Furthermore,

within a work day, a driver must have up to two breaks and one meal break. The length of

the aforesaid breaks and the time at which they occur, also depend on the domicile

associated with the driver.

Finally, other secondary constraints exist. In particular, when a truck arrives

or exits a location, a parameter called turn time is associated with unloading and loading

operations on the tractor and for turning around the location among other things.

Furthermore, there may be local laws that govern on trailers that prohibit their allowance

on some of the arcs. We describe these constraints in further detail in Chapter 3, along with

their mathematical formulations.

1.2 Data Set and Computational Complexity

In this thesis, we focus our experiments on the large-scale, real-world network of a large

postal delivery carrier. There are 98 locations and 347 shipments need to be transported

from their origins to destinations. There are 496 arcs connecting possible direct paths

between the 98 locations. For each arc, we are given the distance and mean travel time. Six

of the locations are bases where vehicles should begin and end their routes, and also serve

to transfer shipments across vehicles. Each trailer (shipment) can be picked up after its

EAT and should be dropped off before its LDT. The loads are correspondingly given a trlr

Type ID and also whether it could be included as short or Long, short requiring a capacity of

one and long requiring a capacity of two. Overrides correspond to movements which are

5

made at a particular location (moving trailers inside a facility). The thesis also incorporates

parameters a. isOverride, which indicates whether there is some override time as a

requirement for the load. b. overrideTime, which is the length of the override and c.

trlrTypeID, ID of the trailer associated with the load.

The time frame in which the schedule is developed corresponds to a two day

period. There are 6 domiciles out of 98 locations and that work rules are not homogenous

within domiciles. There is a specified guaranteed paid day denoted minDay and a maximum

legal work day denoted maxDay. Any work beyond minDay will be considered as over time

work, and there is a maximum of maxDay-minDay of possible allowable overtime.

Due to the large size of the data set as well as the complex side-constraints,

this becomes a computationally complex problem to solve. The primary complexity in the

problem is initially observed through the time windows which dictate the feasibility of

whether two loads can travel together (taking into account the waiting time, delivery time,

pickup time and break constraints). The subsequent step involves combining the loads to

form parts of routes, and subsequently, full routes. These combinations of loads further

increase the complexity.

 Specifically, we adopt an approach based on large-scale neighbourhood

search within which an optimization module is embedded. This allows us to create

combinations of loads that we refer to as metaloads. We then further combine the

metaloads using clustering methods, which exponentially increases the complexity. We use

combinations of break-and-rejoin heuristic, an insertion heuristic and a clustering heuristic.

Finally we check for the robustness of the solutions using a simulator, under varying

demands and service times. The objective function itself poses an interesting problem

because of non linearity of the feasibility function.

6

1.3 Outline of the Thesis

In Chapter 2, we present existing literature and discuss the various developments that have

taken place over the years in the context of the VRPPDTW. Chapters 3 and 4 describe our

modeling approach and solution approach respectively. Chapter 4 discusses the solutions.

We conclude in Chapter 5 by summarizing our results and describing the future scope of

this research.

7

CHAPTER 2 LITERATURE REVIEW

2.1 Genetic Algorithm and Grouping Algorithm Heuristics for a vehicle

routing problem with delivery and pickup with time windows

The vehicle routing problem with pick-up and delivery time windows (henceforth

referred to as VRPPDTW or PDPTW) has been one of the most exhaustively studied

problems in literature. Because this problem is NP-hard [2], there have been a variety of

approaches, including heuristic approaches, to solve it. This chapter is dedicated to

discussing such existing approaches. Xiaolan and Rodriguez [4] give their insights using

the vehicle routing formulation applied to health care departments. They consider a

scenario with four types of demand leading upto the depot and medical lab respectively. In

this model, the time windows between the patients and the vehicular capacity are

considered crucial. Two mixed-integer programming models are proposed in this paper viz.,

an MIP derived from the model of Dell’Amico et al. [5] and Ropke and Cordeau [6] in which

four types of decision variables are used. The paper also presents a Genetic Algorithm (GA)

and a Tabu Search (TS) method to find the neighbourhood of all nearest materials required

to carry to the patients, their respective pick-up (characterized as D1 and D2) and their

treatment at the hospital. The limitation of this method is in effectively defining the

stopping criteria for the Genetic Algorithm.

Li and Lin [7] propose a metaheuristic for the PDPTW problem. The main idea is to

use a simulated annealing (SA) method which takes into account a current best solution

and iterates upon a set of parameters to arrive at a non-improving best solution. The

improvement in this paper is that the goods must be collected at a predetermined specified

customer location. Hence two additional side constraints called precedence constraints and

coupling constraints are introduced in this paper, which require that “any paired pickup

8

and delivery locations must be serviced by the same vehicle and the pickup location must be

scheduled before the corresponding delivery location in the route”. The authors argue that SA

algorithm used in this paper is improved upon such that the simulated annealing

procedure restarts from the current best solution after K simulated annealing iterations

without any improvement.

Bent and Hentenryck [8] describe a two stage hybrid algorithm for the PDPTW. The

first stage of the algorithm uses a simple simulated annealing algorithm to decrease the

number of routes, while the second stage uses Large Neighborhood Search (LNS) to

decrease total travel cost. The overall structure of the algorithm is motivated by the

recognition that minimizing the objective function directly may not be the most effective

way to decrease the number of routes in vehicle routing problems. The authors argue that

the objective function often drives the search toward solutions with low travel cost, which

may make it difficult to reach solutions with fewer routes but higher travel cost. To

overcome this limitation, their algorithm divides the search in two steps: (1) the

minimization of the number of routes and (2) the minimization of total travel cost using

LNS. This two-step approach makes it possible to design algorithms tailored to each sub-

optimization. They also answer positively the open issue in the original LNS paper, which

advocated the use of LNS for the PDPTW and argue for the robustness of LNS with respect

to side constraints. However, a solution to robustness under uncertainty was not discussed

as the scope of the paper and the SA algorithm becomes useful only when the relationship

between customers and the evaluation function is explicitly defined.

 Jin et. al [9] proposed a particle swarm optimization for the VRPPDTW,

which is a generalization of three existing time window formulations. A random key-based

solution representation and decoding method is proposed for implementing (PSO) Particle

Swarm Optimization for the problem, which means that the optimal solution is arrived at

by iteratively trying to improve the candidate solution. The solution representation for the

9

problem with n customers and m vehicles is a (n+2m)-dimensional particle. The decoding

method starts by transforming the particle to a priority list of customers to enter the route

and a priority matrix of vehicles to serve each customer. The vehicle routes are constructed

based on the customer priority list and vehicle priority matrix. The particle search

algorithm (PSO) is used to solve the VRPSPD, which consists of designing a set of at most m

routes such that

- Each route starts and ends at the depot;

- Each customer is visited exactly once by exactly one vehicle; and

- The total vehicle load in any arc does not exceed the capacity of the vehicle assigned;

the total duration of each route (including travel and service times) does not exceed

a preset limit D; and

- The total routing cost is minimized.

The limitation of this method is that the metaheuristics such as PSO do not guarantee an

optimal solution

 A lot of advances have been made of which some of the advancements in the

methods have been detailed so far. Solomon [10] described the various algorithms used in

practice for scheduling problems with time window constraints by using Approximation

algorithms. Christofides, Mingozzi and Toth [14] discuss state space relaxations for

dynamic programming approaches to the traveling salesman problem with time windows,

while Baker [12] and Baker and Rushinek [13] present a branch-and-bound algorithm for a

new, time-oriented formulation of the problem. Developments have been made by Swersey

and Ballard [15] where they discuss an optimal approach to this problem with the time

window discretized. Desrosiers, Soumis and Derochers [16] developed exact methods for

this problem. One algorithm uses a column generation approach in which the columns are

generated by using a shortest-path-with-timewindows algorithm. Two other branch-and-

10

bound algorithms involve relaxations of the time-window-related constraints. The nature

of the heuristics are described as :

(a) Savings heuristics: This procedure begins with n distinct routes in which each

customer is served by a dedicated vehicle. The parallel version of this tour-

building heuristic is characterized by the addition at every iteration of a link of

distinct, partially formed routes between two end customers, guided by a

measure of cost savings

(b) Time oriented, Nearest neighbor Heuristic: Belongs to the class of sequential,

tour-building algorithms. The nearest-neighbor heuristic starts every route by

finding the unrouted customer "closest" (in terms of a measure to be described

later) to the depot. At every subsequent iteration, the heuristic searches for the

customer "closest" to the last customer added to the route. This search is

performed among all the customers who can feasibly (with respect to time

windows, vehicle arrival time at the depot, and capacity constraints) be added to

the end of the emerging route. A new route is started any time the search fails,

unless there are no more customers to schedule. The metric used in this

approach tries to account for both geographical and temporal closeness of

customers

(c) Insertion heuristics: Belongs to a class of sequential, tour-building heuristics

initializes every route using one of several criteria to be described later After

initializing the current route, the method uses two criteria, cl(i, u, j) and c2(i, u, j),

at every iteration to insert a new customer u into the current partial route,

between two adjacent customers i and j on the route

(d) Removal heuristics

(e) Time Oriented Sweep Heuristic: This heuristic can be viewed as a member of a

broad class of approximation methods that decompose the problem into a

11

clustering stage and a scheduling stage. In the first phase, customers are

assigned to vehicles as in the original sweep heuristic. In the second phase, the

authors create a one-vehicle schedule for the customers in this sector, using a

tour-building heuristic. Due to the time window constraints, some customers in

this cluster could remain unscheduled. After eliminating scheduled customers

from further consideration, the clustering-scheduling process is repeated. The

intuition for partitioning the unscheduled customers in the sector into two

subsets is that the customers in the more clockwise half-sector will be relatively

far away from the new cluster. By inserting these customers at a later stage, a

better schedule may be created and the process is repeated until all customers

have been scheduled.

The main drawback identified is the definition of the parameters that would lead to

scheduling of the customers. It is quite difficult to quantify the nature of the clusters since

there is a possibility that a local solution is continuously stuck.

Mingyong [17] found that an optimally integrating forward (good

distribution) and reverse logistics (returning materials) for cost saving and environmental

protection is the key for the problem at hand and thus proposed an improved differential

evolution algorithm as a mixed integer programming model. The objective function seeks

to minimize total distance traveled. Constraints ensure that each customer is visited by

exactly one vehicle; and also guarantee that the same vehicle arrives and departs from each

customer it serves. The author also defined restrictions that at most k vehicles are used

restriction and are flow equations for pick-up and delivery demands, respectively

constraints establish that pick-up and delivery demands will only be transported using arcs

included in the solution. Finally, time windows constraints and maximum distance

constraints are used. A fitness value is proposed based on total length of the route and the

12

corresponding offspring replaces the parent chromosome in terms of best “fitness”. Like

the GA, it has difficulties in initialization and computational time complexity.

Catay [18] proposed an ant colony optimization (ACO) population-based

metaheuristic. ACO applied to the Vehicle Routing Problem with Pickups and Deliveries

(VRPPD) determines a set of vehicle routes originating and ending at a single depot and

visiting all customers exactly once. The vehicles are not only required to deliver goods but

also to pick up some goods from the customers. The objective is to minimize the total

distance traversed. The author first provides an overview of the ACO approach.

Pankratz [19] proposed a grouping genetic algorithm which features a

group-oriented genetic encoding in which each gene represents a group of requests instead

of a single request. Till that time, very few approaches existed which applied Genetic

Algorithms to variants of the time windows problem, most of them treating simplified

special cases of the time windows problem. Probably the major reason why Genetic

Algorithms for solving the PDPTW are rare is the fact that it is very difficult to find an

appropriate genetic representation for this complex problem. The population size, npop, is

a parameter of the group genetic algorithm (GGA). Unlike the classical GA, which employs

generational replacement, the author mentioned that the population management is done

following the steady-state approach without duplicates. According to this approach, each

newly generated pair of offspring is inserted immediately into the current population

where it replaces the two worst individuals. This incremental approach ensures the

survival of the best solution over the whole search and prevents the occurrence of

duplicate individuals.

Two main drawbacks are identified in this model: 1) Detection of duplicates

is very complex. To alleviate the problem of detecting duplicates, a simple comparison of

objective values proved satisfactory for the proposed GGA, so it was preferred over any

other time consuming procedure seeking genotypical or phenotypical differences between

13

individuals. The crossover operator is applied to each selected pair of parent chromosomes

with probability pcross, whereas the mutation operator is applied to each offspring with

probability pmut. Both pcross and pmut are parameters of the GGA. 2) Reproducibility of

the parent in the child: If the crossover GGA for the PDPTW operator is not applied

according to its execution probability pcross, the children are simply clones of their parents.

Similarly, if the mutation operator is not applied, the offspring leave the mutation operator

unchanged. The search terminates after a given total number, ˜nmax, of individuals has

been generated without improvement but no later than after a given maximum number,

nmax, of generated individuals has been reached.

The adaptation of the described genetic search scheme to the problem at hand involves the

following components of the algorithm:

– The genetic encoding, i.e. the way solutions to the problem are represented by

chromosomes (strings);

– The genetic operators, i.e. selection, crossover and mutation;

– The embedded heuristic, i.e. the subordinate heuristic procedure that is employed by the

GGA in order to generate an initial population and to produce feasible offspring.

2.2 Branch-Cut-Price approaches, Insertion heuristics and Large Scale

Neighbourhood Search methods for a vehicle routing problem with

delivery and pickup with time windows

There were several new solution approaches implemented that use the

concept of branch-and-price. Ropke et.al. [28] brought extensively delved in the pickup and

delivery problem with time windows. The main principle is to formulate using three

mathematical models for the PDPS and a branch-and-cut-and-price algorithm to solve it.

The pricing sub-problem, an Elementary Shortest Path Problem with Resource Constraints

14

(ESPPRC), is solved with a labeling algorithm enhanced with efficient dominance rules.

Three families of valid inequalities are used to strengthen the quality of linear relaxations.

Cortés et al. [31] present a mathematical formulation of the problem that is

solved using a branch-and-cut algorithm. Scenarios with six requests and two vehicles are

solved, where every request can be split and transferred from one vehicle to another at

every node of the problem.

Gauvin, Desaulinears and Gendrau [20] propose a branch-cut-and-price

algorithm with stochastic demands. The model of Christiansen and Lysgaard is adapted and

formulated as a set partitioning model with additional constraints. Some important

assumptions made in the paper is that a) goods are divisible and are all collected (or

delivered) along routes.

b) Routes designed a priori must be feasible on average, i.e., the cumulative expected

demand must not exceed the vehicle capacity.

c) Demands are independent, follow an additive probability distribution and have a

positive expected value less or equal to the vehicle capacity. The demands are independent

and follow well- known distributions such as the Normal or Poisson distributions. Feasible

routes are generated using a dynamic programming algorithm executed over a state space

graph. The method combines 2-cycle elimination with ng-routes. In addition, the pricing

problem is significantly accelerated by the introduction of an aggregate dominance rule.

Tabu search heuristic and a bi-directional labeling algorithm is also used in this paper. The

authors also add capacity and subset-row inequalities dynamically in order to strengthen

the linear relaxation of the master problem.

 Desaulniers, Lessar and Hadjar [21] proposed the Tabu search, Partial

Elementarity and Generalized k-Path Inequalities for the Vehicle Routing Problem with

Time Windows. The approach is to develop a tabu search heuristic for the problem that

allows the generation of negative reduced cost columns in a short computation time.

15

Second, to further accelerate the subproblem solution process, it is proposed to relax the

requirements for a subset of the nodes. This relaxation, however, yields weaker lower

bounds. Third, a generalization of the k-path inequalities and highlight that these

generalized inequalities can, in theory, be stronger than the traditional ones. For the

VRPTW, two main research streams were recently explored. First, dynamic programming

algorithms for solving the ESPPRC were developed and improved. These algorithms, which

can be relatively efficient for some of the difficult instances, offer the possibility of

modeling the subproblem as an ESPPRC in branch-and-price algorithms, yielding tight

lower bounds. On the other hand, they can still be impractical for very hard-problems that

can occur almost at any iteration of the column generation process. Second, valid

inequalities for the VRPTW were introduced to strengthen its formulation. These cutting

planes have been used in branch-and-price methods and, more recently, in branch-and-cut

methods that rely on a compact (non-decomposed) formulation of the problem.

To avoid as much as possible having to solve very difficult subproblems using dynamic

programming, introduction of a simple tabu search algorithm that succeeds in rapidly

generating negative reduced cost columns most of the time. Second, to further accelerate

the subproblem solution process, relaxing the elementarity requirements for a subset of

the nodes leads to a more optimal and fast solution. The resulting subproblem, called the

partially elementary shortest path problem with resource constraints, offers a compromise

between the difficulty of solving the problem and the quality of the lower bounds.

Potvin and Rosseau [22] proposed one of the earliest Tabu search heuristics

for the vehicle routing problem with Backhauls and Time Windows with a greedy insertion

heuristic and 2 opt procedure, which is derived from Solomon's work on the Vehicle

Routing Problem with Time Windows (VRPTW), which describes many different route

construction heuristics for the VRPTW. Among these, an insertion heuristic called II

provided the best results. Heuristic II constructs the routes one by one. At the start, a

16

"seed" customer is selected to create the first route. That is, the initial route only services

this customer (i.e., the vehicle leaves the depot, services the seed customer and comes back

to the de pot). Then, the remaining customers are inserted one by one in this route until it

is full with respect to the capacity or time window constraints. At this point, a seed

customer is selected to create a second route, and this route is filled again with the

remaining unrouted customers. The procedure is repeated until all customers are serviced.

At each step, the next customer to be inserted, as well as its insertion place within the

current route, must be chosen. The best place for inserting a given customer u between two

consecutive customers i and j in the route is obtained by minimizing a weighted sum of

detour and service delay at customer j over all feasible insertion places. The next customer

to be inserted is the one that maximizes a generalized savings measure.

Dumas and Desrosiers [23] propose an exact algorithm for PDPTW which can

handle multiple depots and different types of vehicles. This algorithm works well for

problems for which the demand at each customer is large, i.e., when the capacity

constraints are restrictive. This algorithm uses a column generation scheme with a

constrained shortest path as a subproblem. This algorithm can handle multiple depots and

different types of vehicles.

Lu and Dessouky [24] propose a new insertion based heuristic for the

VRPTW. Procedure differs from the classical insertion methods in two aspects. First, the

classical insertion methods typically choose the next insertion by selecting a feasible

insertion that has the minimal increase in travel distance or time, with respect to both the

time window and capacity constraints. They do not directly take into consideration the

degree of feasibility when determining which node and location to insert next. This

characteristic prevents the insertion-based heuristic from constructing higher quality

solutions, especially when more restricted feasibility constraints are considered such as

time window constraints.

17

To overcome this characteristic, the authors discuss a new insertion evaluation function,

which takes into consideration the increase of travel time as well as the reduction in the

slack in the time window due to the insertion operation. The parameter is referred to the

time difference between the time window and the service time as the slack in the time

window. For example, instead of always choosing the node and location with the lowest

cost as the next insertion, it may be better to select an insertion, which does not use much

of the available slack so that more opportunities are left for future insertions. Second, in

practice, operational planners tend to prefer more visually attractive solutions. This has

been observed and confirmed by researchers who have implemented commercial routing

software for industry. Their work reveals that more visually attractive solutions tend to

have less total length of distance.

2.3 Robust Vehicle Routing Problem with Stochastic Demands and

Uncertainty

Agra et al. [26] have addressed the robustness in VRPTW and have proposed two

new formulations. The first formulation extends the well-known resource inequalities

formulation by employing adjustable robust optimization. They propose two techniques,

which, using the structure of the problem, allow to reduce significantly the number of

extreme points of the uncertainty polytope. The second formulation generalizes a path

inequalities formulation to the uncertain context. The uncertainty appears implicitly in this

formulation, so that the authors develop a new cutting plane technique for robust

combinatorial optimization problems with complicated constraints. The classical approach

for robust programming relies on static models where the variables of the problem are not

allowed to vary to account for the different values taken by the uncertain parameters. The

travel times are not known with precision and belong to an uncertainty set. So the routes

18

proposed for the ships are feasible in most situations. The main formulation is often called

an adjustable robust program.

Agra et al. [27] also proposed a primitive version of the Robust formulation

which is called as the Layered Formulation for the Robust Vehicle Formulation. They argue

that the two stage formulation presents better results in comparison. They also state that

the only known work in robustness of VRPTW assumption leads to all travel times taking

their maximum values, which is an over-conservative model. In fact, it mainly focus on the

robust capacitated vehicle routing problem. They consider the dualization approach to the

robustness formulation.

Laporte et al. [29] provides an Adaptive Large Scale Neighbourhood Search

Heuristic for Capacitated Arc-Routing Problem with Stochastic Demands. In this paper, the

authors propose to minimize an expected cost of a solution with the help of heuristic

namely, Large Neighbourhood (obtained via Shaw removal and insertion heuristics),

Adaptive Search by weighted insertion and removal heuristics and the corresponding

weight and score adjustments given for a penalty objective function (a pseudocode is

provided in the Algorithm section). This method serves as the closest possible

computational approach to estimating solutions under demand uncertainty in capacitated

Arc Routing problems.

Marla [30] proposes a novel modeling framework called Decomposition

Approach for Commodity Pickup and Delivery with Time Windows under Uncertainty. The

decomposition approach follows a sequential process of network preprocessing by labeling

the time windows. The next step is the Flow Master problem, which generates a set of cost-

minimizing (but possibly schedule-infeasible) routes for shipments. The Scheduling Sub-

problem checks if the routes that are output from the Flow Master Problem are schedule-

feasible with respect to the time-windows. If the routes are schedule-infeasible, the

subproblem generates a set of constraints to eliminate the infeasible solution(s). This

19

process iterates between the Flow Master problem and Scheduling Sub-problem until a

schedule-feasible solution is found or no solution exists. To make the iterations more

efficient, the authors also use the notion of cliques. The approach states that when the

algorithm terminates, we always find a feasible solution. The solution contains feasible

schedules for the routes; and moreover, all possible feasible schedules are found. To find

feasible solutions more easily, warm start procedures with solutions used by the carrier

(even if partially infeasible) can be used. The algorithm, even if terminated midway, can

still help generate solutions, though far from optimal.

20

CHAPTER 3 MODELLING APPROACH

In this chapter we first describe the problem and side constraints in greater

detail. We then present an existing approach to this problem, proposed by Tardy [3], which

focuses on minimizing the route-related costs. We then discuss our modeling approach,

which can be created using a construction heuristic or by using Tardy’s solution [3] as a

warm-start solution and improving upon it using a set of improvement heuristics.

3.1 Description of the problem, dataset and model

We model the VRPPDTW problem along with the side constraints related to

the carrier, on a network. Each node on the network is one of the following: the location of

a domicile (start point of the tractors/vehicles), a pickup point for a shipment (trailer) or a

delivery point for a shipment (trailer), or a transfer location where vehicles (tractors) can

exchange shipments. Arcs connect nodes between which travel is possible. For each

shipment that is to be picked up and dropped off, are associated an earliest arrival time of

the load (EAT) and a latest delivery time (LDT). Tractors can be stationed at domiciles and

should return to the domicile after executing their routes. Each load or shipment is denoted

as short or long,

The dataset from the real-world operator of interest, contains 98 locations.

498 arcs represent possible connections between these locations, for which the distances

and mean travel times are given. Among the locations, 6 are domiciles from which trailers

should begin and end their routes. There are 347 loads that need to be transported

between their origin and destination, within a 2-day time horizon. Among these 102 are

long loads and 245 are short loads.

In order to describe the side-constraints, we first define the following notation.

21

a. locID: ID of the location

b. toIn : time to enter the location if we have a tractor without a trailer

c. toOut: time to depart at the location if we have a tractor without a trailer

d. sIn: time to enter the location if we have a tractor with one trailer

e. sOut: time to depart at the location if we have a tractor with one trailer

f. dIn: time to enter the location if we have a tractor with two trailers

g. dOut: time to depart at the location if we have tractor with two trailers

h. doWash: equals Y if we have to wash the tractor at the location; N otherwise;

i. washTime: duration of the washing

The loads are correspondingly given a trlr Type ID and also whether it could be included as

short or Long. Overrides correspond to movements which are made at a particular location

(moving trailers inside a facility). Additional parameters include (a). isOverride, which

indicates whether there is some override time as a requirement for the load. (b).

overrideTime, which is the length of the override and (c). trlrTypeID, ID of the trailer

associated with the load.

The time frame in which the schedule is developed corresponds to a two day period.

Additionally, the following parameters help define the work rules:

a. domID: ID of the domicile

b. locID: ID of the location corresponding to the domicile

c. minDrivers: minimum number of drivers located at the domicile

d. maxDrivers: maximum number of drivers located at the domicile

e. maxDay: max number of hours which can be worked in a day

f. minDay: min guaranteed number of hours paid

g. sw: time needed for starting the work

h. fw: time needed for finishing the work

22

i. unpaidBr: amount of non-paid time for the breaks

j. paidBr: amount of paid time for the breaks

Work rules are not homogenous within domiciles. There is a specified guaranteed paid day

denoted minDay and a maximum legal work day denoted maxDay. Any work beyond

minDay will be considered as over time work, and there is a maximum of maxDay-minDay

of possible overtime.

Slack time sw represents the elapsed time between the arrival of the driver at work and the

time the driver actually start working. The second slack time denoted fw equals the elapsed

time between the moment the driver finishes work and the time at which the driver leaves

work. Finally, there is at least 1 hour of non-paid break, denoted by unpaidBr, and 0.17

hour of paid break, denoted by paidBr.

3.1.1 Description of the breaks and Feasibility Function

The allowable break combinations are:

a. B1Early: minimum elapsed time of the route at which the first break can occur

b. B1late: maximum elapsed time of the route at which the first break can occur

c. B1Dura: duration of the first break

d. B3Early: minimum elapsed time of the route at which the third break can occur

Similarly, we have B2Early, B2Late and B2Dura as the corresponding elapsed time for the

second break. There are three breaks namely, first second and third breaks which have a

specified duration.

The cost function is slightly modified to incorporate the feasibility to include the

loads in a particular route. The parameters were condensed to variables x1 and x2 to include

23

the feasibility of the problem (i.e. how many loads can be carried on a particular route

taking into account the slack and all the above parameters described above). The

parameters that were combined include:

a. Cost per mile in tractor only configuration

b. Cost per mile in Single and Double configuration

c. Cost per hour of regular hours in Tractor only, Single and Double configurations

d. Cost per hour overtime in Tractor only, Single and Double configurations

x1 is defined to be a boolean variable, which gives 1 if the load j is transported on leg i in the

route in trailer position 1 and 0 otherwise. Similarly, x2 is defined to be a Boolean variable,

which gives 1 if load j is transported on leg i in the route in trailer position 2 and 0

otherwise. We also define time variables t1 and t2 which are also Boolean variables

corresponding to the fact that if load j is carried in position 1 (or position 2 respectively) on

leg i, which in turn, starts on day k.

3.2 Description of the cost function

The objective of the thesis is to describe a framework that helps characterize the features

that lead to robustness. The primary objective is to minimize the total schedule cost and

the secondary objective is to examine the level of robustness of the obtained solution(s)

under stochasticity in the demand and service time parameters. In order to solve a large

combinatorial problem with the use of real world data, we first characterize the total

schedule cost as the sum of the costs of all the routes included in the schedule. The total

schedule cost might be reasonably approximated as a linear function of the number of its

drivers with the reasoning that the main component of the cost comes from the wages of

the drivers and that the paid driver time is roughly the same for each driver. Paid time per

24

driver is typically between 8 and 11 hours and if overtime, most drivers are paid at the

double rate. True costs are then used after generating a solution to compute the actual cost

of the schedule.

3.3 Model proposed by Tardy [3]

Tardy [3] builds the routes that the options for building the routes were through column

generation by employing the cutting stock problem approach and through the pricing

problem approach. A route can be described as the set of loads it carries. So assembling

loads into routes and cutting smaller width rolls from a larger width roll in the cutting

stock problem can be thought of in the same way. Just as there is a pricing problem for the

cutting stock problem to find patterns, a pricing problem is solved to assemble loads into a

route.

The routes to be present in a solution are chosen by solving the master problem

Where represents the number of routes generated, is the number of loads; equals 1

if load is carried by route and equals 0 otherwise; and is a decision variable equal to 1

if load is included in the solution and equals 0 otherwise. This is often referred to as a set

covering problem.

 The initial set of routes is generated by solving a shortest path problem and

assigning each load to the shortest cost route. However, this results in a very large number

of tractor routes, which we would like to minimize. Therefore, the column generation

approach adopts a pricing problem. Thus upon formulation, we have:

 , (3.3)

(3.1)
)
(3.2)

25

where represents the dual value associated with the constraint , which will define a

route feasibility condition as a function of the loads it contains; equals 1 if load is

transported in the route and equals 0 otherwise. The approach is that the author tries to

bring about a sequential approach to solve the pick-up and delivery problem by using

clusters (compilations) of loads and hence we can better determine which of the choice of

loads can be transported (as opposed to a single choice of loads) at the same time.

The concept of time windows is used, which is defined by the earliest departure

times and latest arrival times. The objective is to come up with a series of optimal routes.

By forming clusters, we can create instances where we determine which combinations of

loads are feasible.

3.3.1 Pricing Problem Model

The pricing problem aims to generate a set of feasible routes to add to the Master

Problem. Because of the side-constraints, the schedule for a set of routes can be extremely

cumbersome to generate within the Master Problem. Therefore, the pricing problem

considers a set of loads and examines if they can be fit into one single route in a schedule

feasible manner. The Pricing Problem, thus, determines the feasibility of a given set of loads

to travel in a single route and generates a feasible schedule for these loads, thus generating

one feasible route. This route can then be used as a part of the Master Problem to find the

best way to cover all loads.

 A route is defines as “a succession of legs in which the first leg starts as a domicile

and the last leg ends at the same domicile” (closed path). The leg takes into account all the

information (time windows, distance, etc.) of the loads transported. The number of legs is

decided to be 7 beforehand and is called as , numbered chronologically. The following

key rules are to be observed:

26

1. If the tractor hauls one short load, it is assigned to any trailer position

2. If the tractor hauls two short loads, then both trailer positions are occupied.

3. If the tractor hauls a long load, it is assigned by default to trailer position 1 and

trailer position 2 is blocked and unable to accommodate another load.

With the conditionality that if a break occurs between any two legs, it could be assigned to

either one of them and the load remains the same throughout the journey.

1. A route is consistent in time (departure should precede arrival in the same leg and

arrival of the previous leg should precede departure of the next leg)

2. A route is consistent in space (arrival of previous leg is same as departure of next leg)

3. Removing one or more load to a route creates a feasible route, since it is

independent of the truck configuration.

4. The concept of leading load limits the number of legs considered in generating the

optimal routes. If both trailer positions are available (truck in Tractor Only

configuration) then the driver must pick up at least one load at the next leg. If there

is exactly one trailer position available (truck in Single configuration), the leading

load is either the load currently being carried. If there is no trailer position available

the destination of a given leg must correspond to the destination of one of the loads

transported on that leg.

3.3.2 Description of the range of sets and Objective function

The general notation used in the Pricing Problem is described as:

1. : set of loads

2. : set of locations

3. : set of domiciles

4. : set of arcs

27

5. : set of legs in a route;

6. : set of legs in route excluding the last leg:

7. : set of legs in route excluding the first leg:

The objective function is described as

 (3.4)

We need to start off with a basic feasible solution to have initial values for , which

can be done by assigning each load to a single route (which is highly suboptimal) or by

using a warm-start technique from an existing feasible solution.

3.3.3 Description of the constraints involved in pricing problem

Similar to the Cutting Stock pricing Problem, routes should not violate any feasibility.

Because, the number of constraints involved is large. So variables are defined and the

necessary notations when needed and we aggregate constraints in different sets depending

on their functions. The different sets of constraints are:

1. Shortest path;

2. Domicile;

3. Origin and destination of a leg;

4. Origin and destination of the leading load;

5. Choice of the leading load;

6. Pick-up and delivery;

7. Time in and out;

8. Work time;

9. Extra time;

10. Latest arrival and earliest available;

11. Break; and General Time

28

3.3.3.1 Shortest path constraints

Corresponding to the least travel time, the set of corresponding constraints are:

 (3.8)

(3.9)

where is defined as the travel time along arc ; equals -1 if

location is the origin of arc , and equals 1 if location if the destination of arc ; and

equals 0 otherwise; is a decision variable equal to -1 if the origin of leg is

location and equal to 0 otherwise; is a decision variable equal to 1 if the

destination of leg is location n and equal to 0 otherwise; is a decision variable equal

to 1 if arc is present in the path of leg and equal to 0 otherwise; and is a

decision variable equal to the total travel time at leg

3.3.3.2 Domicile constraints

 (3.10)

 (3.11)

 (3.12)

 (3.13)

 (3.14)

 (3.15)

 (3.16)

29

where equals 1 if domicile corresponds to location and equals 0

otherwise; equals �1 if the origin of load is location and equals 0

otherwise; equals 1 if the destination of load is location and equals 0

otherwise;
 is a decision variable equal to 1 if load is transported in trailer position

during leg and equal to 0 otherwise; and is a decision variable equal to 1 if domicile

 is the domicile of the route and equal to 0 otherwise.

3.3.3.3 Origin and Destination of leg and leading load: constraints

 (3.17)

 (3.18)

 (3.19)

 (3.20)

 (3.21)

 is a decision variable equal to 1 if load leads leg and equal to 0 otherwise

3.3.3.4 Choice of the leading load: constraints

 (3.22)

 (3.23)

 (3.24)

 (3.25)

 (3.26)

 (3.27)

 (3.28)

30

 (3.29)

 (3.30)

 (3.31)

 (3.32)

 (3.33)

 (3.34)

 (3.35)

 (3.36)

 (3.37)

 (3.38)

 (3.39)

where LONGj equals 1 if load j is a long load and equals 0 otherwise; choiceLeadingi is a

decision variable equal to 1 if load in trailer position 1 can be the leading load at leg i and

equal to 0 otherwise; noLoadi is a decision variable equal to 1 if there is no load transported

on leg i and equal to 0 otherwise; bothFreei is a decision variable equal to 1 if trailer

position trailer position 1 and 2 are free at the beginning of leg i; and
 is a decision

variable equal to 1 if load j is transported somewhere in the route in trailer position k and

equal to 0 otherwise.

3.3.3.5 Pickup and delivery: constraints

 (3.40)

31

 (3.41)

 (3.42)

 (3.43)

 (3.44)

 (3.45)

 (3.46)

 (3.47)

 (3.48)

 (3.49)

 (3.50)

 (3.51)

with
 is a decision variable equal to 1 if the load in trailer position k is picked up

the beginning of leg i; and delivery i is a decision variable equal to 1 if the load in trailer

position k is delivered at the end of leg i.

3.3.3.6 Time in and Time Out: constraints

 (3.52)

 (3.53)

 (3.54)

 (3.55)

 (3.56)

32

 (3.57)

 (3.58)

 (3.59)

 (3.60)

 (3.61)

 (3.62)

 (3.63)

 (3.64)

 (3.65)

 (3.66)

where M is the size of the largest time window, here roughly 50 hours; TOINn is the time to

enter location n when the truck is in Tractor Only configuration; SINn is the time for coming

into location n when the truck is in Single configuration; DINn is the time for coming into

location n when the truck is in Double configuration; TOOUTn is the time for coming out of

location n when the truck is in Tractor Only configuration; SOUTn is the time for coming out

of location n when the truck is in Single configuration; DOUTn is the time for coming out of

location n when the truck is in Double configuration; nbLoadsInOuti is decision variable

equal to the number of loads being transported between two different location at leg i;

moveInOuti is decision variable equal to 1 if there is the leg's origin differs from its

destination and equal to 0 otherwise; toInOuti is decision variable equal to 1 if the leg's

origin differs from its destination and if the truck is in Tractor Only configuration and equal

to 0 otherwise; sInOuti is decision variable equal to 1 if the leg's origin differs from its

destination and if the truck is in Single configuration and equals 0 otherwise; dInOuti is

33

decision variable equal to 1 if the leg's origin differs from its destination and if the truck is

in Double configuration, and equal to 0 otherwise; timeIni is decision variable equal to the

time needed to enter the location at leg i; and timeOuti is decision variable equal to the time

needed to exit the location at leg i.

3.3.3.7 Work Time: constraints

 (3.67)

 (3.68)

 (3.69)

where SWj is the elapsed time for briefing at domicile j before a route can depart; FWj is the

elapsed time for debriefing at domicile j; sw is a decision variable equal to the elapsed time

before a route can depart; and fw is a decision variable equal to the elapsed time before the

driver's work day end.

3.3.3.8 Extra Time: constraints

 (3.70)

 (3.71)

 (3.72)

where WASHn is the washing time at location n; OVERRIDETIMEj is the override time for

load j; overridei is a decision variable equal to time spent in override at leg i; washingi is a

decision variable equal to the time spent washing a vehicle after leg i; extraTimei is a

decision variable equal to total extra times at leg i; and edpti is a decision variable equal to

the earliest departure time from the origin of leg i:

34

3.3.3.9 Latest arrival and earliest Departure: constraints

 (3.73)

 (3.74)

 (3.75)

 (3.76)

 (3.77)

 (3.78)

where, EATj is the earliest available time for load j; LDTj is latest arrival time for

load j; MAXDAYi is the maximum working time for a route starting at domicile i; edpti is a

decision variable equal to the earliest departure time from the origin of leg i; and LDTi is

the decision variable equal to the latest arrival time at the destination of leg i.

3.3.3.10 Breaks: constraints

 (3.79)

 (3.80)

 (3.81)

 (3.82)

 (3.83)

 (3.84)

 (3.85)

 (3.86)

35

 (3.87)

 (3.88)

 (3.89)

 (3.90)

 (3.91)

(3.92)

 (3.93)

(3.94)

(3.95)

 (3.96)

 (3.97)

 (3.98)

 (3.99)

 (3.100)

 (3.101)

where,
 describes the breaks for the combination k, now if

m = 1, it equals the minimum elapsed time of the route at which first break can occur;

m = 2, it equals the maximum elapsed time of the route at which first break can occur;

m = 3, it equals the duration of the first break;

36

m = 4, it equals the minimum elapsed time of the route at which the meal break

can occur;

m = 5, it equals the maximum elapsed time of the route at which the meal break

can occur;

m = 6; it equals the duration of the meal break;

m = 7, it equals the minimum elapsed time of the route at which the second break

can occur;

m = 8, it equals the maximum elapsed time of the route at which the second break

can occur; and

m = 9, it equals the duration of the second break;

 is a decision variable equal to the elapsed time of the route at which the first

break occurs if the break occurs during leg i and if we have chosen break combination k,

and equal to 0 otherwise;
 is a decision variable equal to the elapsed time of

the route at which the second break occurs if the break occurs during leg i and if we have

chosen break combination k, and equal to 0 otherwise;

 is a decision variable equal to the elapsed time of the route at which the

second break occurs if the break occurs during leg i and if we have chosen break

combination k, and equal to 0 otherwise; breakChoice is a decision variable equal to 0 if

break combination 1 is chosen and equal to 0 if break combination 2 is chosen; aBreaki is a

decision variable equal to 1 if there is a break occurring at leg i and equal to 0 otherwise;

and noBreak is a decision variable equal to 0 if there is no break occurring at leg i and equal

to1 otherwise.

37

3.3.3.11 Time: constraints

 (3.102)

 (3.103)

 (3.104)

 (3.105)

 (3.106)

 (3.107)

 (3.108)

 (3.109)

 (3.110)

 (3.111)

 (3.112)

 (3.113)

 (3.114)

 (3.115)

38

 (3.116)

 (3.117)

Fig 3.1 Flowchart of solution process used by Tardy [3]

3.4 Our Modelling Approach

3.4.1 Break and Rejoin Heurisitic

The model explained in this thesis is based on break and rejoin type of

heuristic. The solution obtained from Tardy [3] gave a minimum of 90 routes from the

iterative framework or the pricing problem. However, the algorithm was terminated due

to time constraints. Therefore, we believe a quicker heuristic can improve significantly

upon the solution proposed by Tardy [3]

39

So in order to improve the solution starting from this starting solution, we

came up with the break and rejoin type of heuristic where the first step is to break up the

routes from Tardy’s original solution and create sub-routes or clusters of loads. We then

insert other loads into these sub-routes to create routes that we refer to as metaloads. We

describe how we generated the metaloads.

For the set of loads in the cluster, we find the corresponding time windows

(earliest possible arrival and latest possible departure) at each location using the matrix of

the shortest paths, between any two locations in the network. We use the Djikstra’s

algorithm with arc costs as the travel times to find the shortest paths between each pair of

locations. Because the time needed for traveling along an arc depends on the direction of

travel, therefore we generate a non-symmetrical matrix of shortest path. The table of

shortest paths will thus have the form as the first column denotes the origin and the first

line the destination. We compute for each load a vector representing the earliest visit times

and the latest visit times at every location in the network. Based on loads earliest

availability and latest delivery time, the earliest visit time corresponds to the earliest time

at which the load can be at a given location and the latest visit time corresponds to the

latest time at which a load can be at a given location. We take into accounts the amount of

time to enter and exit each location and compute the earliest and latest visit vectors at

location X for load i as follows:

 (3.118)

(3.119)

40

where EAT is the earliest availability of the load; LDT is the latest delivery time of the load;

earliest(X) is the earliest visit time at location X; latest(X) is the latest visit time at location X;

origin is the origin of the load; destination is the destination of the load; d(X; Y) is the

shortest path in time between location X and location Y ; In(X) is the time to enter location

X; Out(X) is the time to exit location X; and Wash(X) is the washing time at location X

Knowing the time windows (EAT, LDT) for a load and the shortest-path

matrix, we can determine time windows for visiting all the other locations in the graph. We

note that In(X) and Out(X) not only depends on the location but also on the configuration of

the tractor. In a cluster, the tractor will never travels empty, hence, we only have to

consider the Single and Double configurations. We do not know beforehand, however, what

the configuration will be.

We construct clusters in a gradual manner. The first way is to start with a

load which defines the first cluster and subsequently adding loads one by one. The second

way is to cut the routes in the solution obtained by Tardy [3] into groups of loads that can

travel together simultaneously. Note that because the capacity of the tractor is two trailers,

the sub-routes obtained from these routes contain at most two loads. We then perform

insertion heuristics to increase the size of the cluster and create the metaloads. The

property of each metaload is such that it represents loads that are ‘close’ in time and space,

with small gaps between the pickup and delivery load of another, or the loads can be

simultaneously transported by a trailer. This restricts the number of combinations of loads

in the insertion procedure. We perform two types of insertions, which we refer to as Type

1 and Type 2 insertions.

Denote load 1 as the existing set of loads (called pseudo load) of the cluster. A

Type 1 insertion involves the addition of load 2 whose path is totally included in the path of

the pseudo load. A Type 2 insertion involves the addition of load 2 whose path is not totally

41

included in the path of the pseudo-load. Successive loads are added to the cluster on the

basis of compatibility of loads which is checked in the following manner

The first thing we do is to check whether the load added to the cluster is

compatible with the cluster. The conditions of compatibility differ with respect to the type

of addition considered. Let P designate the pseudo-load; L designate the load to be added;

earliest(U;X) designate the earliest visit time for load U at location X, latest(U;X) designate

the latest visit time for load U at location X; origin(U) designates the origin of load U and

destination(U) the destination of load U; and d(X; Y) designate the shortest path between

location X and location Y.

Figure 3.2 Types of insertion heuristics [3]

For a Type I addition, it must be ensured that:

 (3.120)

Note that if the pseudo-load and the load to be added have the same origin, we compute the

earliest visit vector with In() and Out() for a Double configuration. If the origins are

different then we use the values for the Single configuration. Moreover, if the pseudo-load

of the cluster and the load to be added have the same destination, we compute the latest

42

visit vector with In() and Out() for a Double configuration; if the origins are different then

we use the values for the Single configuration.

For a type II addition, it must be ensured that

 (3.121)

However, to avoid ‘too long’ clusters, given that multiple clusters are

combined into a route, we restrict clusters to a maximum of seven loads. Note that in spite

of time-related considerations being incorporated in the creation of the metaloads, they

might still be feasible if the other side-constraints described in Section 3.3.3 are not

satisfied. Therefore, for each of the clusters thus obtained, we perform a feasibility check

on the cluster by running the Pricing Problem. That is, we check if the loads in the cluster

have a feasible solution by running the constraints described in Section 3.3.3.

 A simple approach is to construct an initial solution in which each route

remains at a domicile during nVar legs. Although this initial basis indeed does provide an

initial solution, it is far away from optimal. Another idea is to build routes in a gradual

manner. We start from a small value of nVar for which we can easily find a good route with.

Next, we translate this route into a set of constraints (which will be detailed subsequently)

and we plug these constraints into a new model with a larger value of nVar. We increase

nVar by one or two units and solve the model again.

 In order to generate the desirable instance of metaloads, we can add a

penalty term to the objective function and generate a set of metaloads, within which all

loads lie in the same temporal neighbourhood. That is, once the solver has found a route, it

43

can generate additional routes of interest to us by adding to the objective function the

following penalty term.

 (3.122)

Using this process, 796 Metaloads were identified. Also, because the loads

within each metaload are clustered closely in time, the Pricing Problem runs quickly for

small values of nVar. Also, a particular load can be present in multiple metaloads, because

the metaloads represent feasible combinations of loads. Hence the number of metaloads is

higher than the number of loads. By the construction of the metaloads, the loads contained

in a metaload are close to eah other temporally or spatially in terms of pickup and delivery

times. Among the 796 metaloads, the first 36 metaloads contain 7 loads and the remaining

740 metaloads contain either one or two loads. We now combine these 796 metaloads

using a graphical approach, as we describe next.

3.4.2 Combining Metaloads into Feasible Routes

In the previous subsection, we described how the metaloads are created.

When we solve the set-covering Master Problem to cover all the loads, using the metaloads

as routes, we see that more than a hundred routes are obtained. Therefore we see that the

metaloads have to be further combined to create feasible routes that will result in a smaller

number of total routes.

We model the combinations of the 796 metaloads as a graph network. Each

of the nodes represent a metaload and we create an arc between two nodes if the two

metaloads can be combined to form one route or sub-route with a feasible schedule. The

first feasibility matrix is modeled as a graph network.

To construct this network, we need to determine the arcs in the network.

Suppose you are trying to determine if there should exist an arc between nodes i and j, we

44

solve the Pricing problem with a zero objective function with all the loads contained in the

metaloads i and j. Once we determine the set of arcs in this graph, we then find the sets of

metaloads that can be combined further to generate feasible routes. Figures 3.2, 3.3 and

3.4 describe the graph with nodes as metaloads and arcs describing route-and-schedule-

feasible pairings of metaloads

 On the metaload graph, to minimize the number of routes, we can find

candidate routes by finding cliques on this graph. A clique or a strongly connected

component of the graph is a set of nodes among which each pair has an arc present

between them. Because each pair is a feasible combination, a clique presents a candidate

for a route in which the loads present in all the nodes (metaloads) are present in the same

route. Therefore, we now try to solve the k-clique problem on this graph.

We now consider the notion of a k-clique. A k-clique on this graph is a set of k

nodes (represented by metaloads) in which each pair of nodes is schedule-feasible with

each other. Ideally, the larger the size of cliques we can find, the more number of metaloads

(and correspondingly, loads) that can be combined into one route. This will help minimize

the number of routes. However the problem of finding and enumerating cliques in itself is

NP-hard and the computation time required to compute 3- cliques is of the order of

where n is the number of nodes present (796 in this case). Therefore, we restrict our

search to 3-cliques in this network, for two reasons: (i) because of the involved complexity

in enumerating all the cliques, (ii) because each metaload contains atleast two loads, the

number of loads in a 3-clique will be at least 6, which is a large number ,from the routes

observed .

From the graphs in Figures 3.3, 3.4 and 3.5, we can see that the metaload

network is densely connected and it is very difficult to segregate the parts that are of

interest for creating 3-clique combinations of metaloads. Figures 3.8 and 3.9 provide

pictorial views of the 3-clique graph. The number of combinations that can arise is of the

45

order of and the computational time required to complete one iteration is one hour

on a 20GB RAM Java-integrated IBM OPL model program, which is prohibitive. Hence we

apply Randomized Algorithms to simplify the feasibility problem.

Figure 3.3: Expanded view of the metaload graph

46

Figure 3.4 Graph with node labels for the metaload graph

47

Figure 3.5 Condensed view with nodes for metaload graph

48

3.4.3 Randomized Algorithms for Graphs

A randomized algorithm is an algorithm that employs some randomness as a

part of its construction. Because of the complexity and dense connectedness of the

metaloads graph seen in Figures 3.3 – 3.5, we would like to use algorithms that can

efficiently explore the cliques in the graph. Our randomized algorithm is inspired by

Karger’s algorithm for finding minimum cuts.

To illustrate we present Karger’s algorithm [32], which is a randomized

algorithm to compute the minimum cut of the graph. By sectioning (partitioning) the graph

at strategic edges, we can condense the properties of the graph into the required subset.

This is called as edge contraction, which is best described in the figure below.

Figure 3.6: Successful spanning of Karger’s algorithm [32]

Given a graph, we address the problem of how many edges have to be

loosened (broken) before the graph breaks into two disconnected components. There are

deterministic methods to finding the arcs in the minimum cut, however, we examine a

randomized way of picking the min-cut, as follows.

1. Choose a link in the network (uniformly) at random.

2. Combine/merge the two hosts on either sides of this link, and remove any selflinks that

result from this merge.

49

3. Repeat the above two steps till only two hosts are left in the network, and present the

links between them as the Min-cut.

Figure 3.7 Step wise depiction of the Karger’s algorithm [32]

Hochbaum [33] describes the randomized algorithm as “An illustration of

step 2 is shown in Fig 3.7. We notice that the set of edges presented in the final step are

definitely a cut of the network (i.e. if you remove them the network will break into

disconnected components). But there is no guarantee that it is going to be the cut with the

smallest size (i.e. it is going to be a Min-Cut). Stated differently, we might have more edges in

the cut presented in the last-step of the above procedure as compared to a Min-Cut of the

network. If the random selection resulted in merging b and e the min-cut of the new graph is

also a min-cut of the old graph. But, if we merged c and d, the min-cut of the resulting graph

says nothing about the min-cut of the original graph.”

 If we want to find the Min-Cut with probability (1 - €), then we run the above

procedure

 times, where k > - ln €. That is, we can make the probability of failure

as small as we like by running many copies of the procedure.

The Min-Cut algorithm presented above falls into a class of Randomized

Algorithms called Monte Carlo Algorithms. The running-time of these algorithms are not

random, but the solutions they provide are not always the optimal solutions. That is, the

randomness in the procedure is not associated with running-time, instead it is associated

with the quality of the solution. In contrast, the Randomized version of QuickSort falls into

the class of Las Vegas Algorithms. With these algorithms, the randomness is associated

50

with the running-time, but the solution is always guaranteed to be the best/optimal. A Las

Vegas algorithm is called efficient if the average running-time is a polynomial in the input

size. A Monte Carlo Algorithm is called efficient if the worst-case running-time on any

instance is bounded by a polynomial in the input size.

In the context of our problem, to find the 3-cliques in the metaload network,

we first try to enumerate the possible combinations with each metaload present. On an

average, there are 100,000 combinations present, that is, each metaload (node) can be a

part of about 100,000 3-cliques. Notice that due to the density of the graph, this is

combinatorially explosive. However, also notice that not all these combinations will result

in feasible routes and schedules. Therefore, we plan to examine those 3-cliques among the

100,000 that are more likely to generate feasible routes and schedules. In particular, we

wish to choose 3-cliques such that each metaload is contained in a good number of these

cliques, to ensure the presence of each load in some subset of feasible schedules. Note that

for each metaload , a 3-clique forms a triangle with the metaload of interest. Suppose we

are interested in generating cliques containing node (metaload) i. Therefore, we use

Karger’s algorithm to repeatedly condense parts of the network not containing node i, until

only a small number of nodes are remaining. We then easily find cliques on this graph using

a standard algorithm. We repeat this randomized procedure for each node (metaload) in

the network. Because the graph is very dense, on an average we can reduce the 100,000

combinations of cliques that each metaload is a part of, to about 20,000. We then run the

feasibility check constraints in Section 3.3.3 to identify schedule-feasible cliques among

these 20,000. After completion of this procedure, we identify a total of 23,869 feasible 3-

cliques as shown in Figure 3.8 and Figure 3.9.

51

Fig 3.8 Three clique graph in the original form

52

Fig 3.9: Expanded view of the three cliques graph

3.4.4 Set Covering Model

After we obtain the feasibility of 23,869 feasible cliques, we propose to solve

the set covering model on these feasible set of cliques. Note that each clique can be a route,

as it satisfies the constraints for feasibility, described in Section 3.3.3. We solve the

following set covering model with the set Routes containing all the feasible cliques.

 (3.124)

 (3.125)

53

Each element aij takes on value 1 if load i is present in route j and 0 otherwise.

Constraint (3.125) specifies that each load should be present in at least one route in the

solution. Additionally, because each load is contained in multiple cliques, it can belong to

multiple routes, and hence there could be multiple optimal solutions to this problem, all

with the same number of total routes, but with different routes and schedules associated

with each of them. A summary of our solution approach to this problem is given in the form

of a flow chart in Figure 3.10

In order to solve the integer program, we use Java-integrated IBM OPL

STUDIO v3.5. Our solutions contain 76 routes, which significantly improves upon the

existing solution to this real-world problem. The improvement is of the order of 15% cost

reduction from 90 routes to 76 routes. Also, we find 20 multiple optimal solutions, which

are schedule different. To differentiate these solutions, we present a framework to evaluate

them under uncertainty, as we discuss in the following chapter.

54

Fig 3.10 Flowchart for our modeling and solution approach

N
o

Y
es

N
o

Set covering problem

55

CHAPTER 4 SIMULATION FRAMEWORK FOR EVALUATION OF

ROBUSTNESS

4.1 Simulation Framework

The resultant set of 20 solutions (each containing 76 routes) are compared

using a simulator in order to evaluate their properties based on robustness criteria. In

particular, we are interested in the performance of the solutions in scenarios of travel time

uncertainty and demand uncertainty. The simulator generates builds scenarios in which

the uncertain parameters vary according to different distributions. Our simulator

framework samples from a specified random distribution to generate scenarios of realized

uncertainty. This framework is built in a JAVA based environment integrated with IBM OPL

STUDIO. The scenarios are generated using a randomized function in MATLAB for 10%, 20%

and 30% variation in traveltime and the corresponding data files were created with the

help of MATLAB. The feasibility of all the scenarios is tested by checking each solution

against the model in Section 3.3.3 with parameters corresponding to the realized scenario

(under stochasticity).

4.2 Simulation Results for Robustness under Travel Time Uncertainty

Scenarios have been generated by varying the travel-time between the

locations to , and respectively. Each of these variations was created

assuming different distributions - Normal distribution, Poisson distribution and Gamma

distribution. The scenarios generated are described in Figures 4.1 and 4.2.

56

Figure 4.1: Gamma distribution scenarios for travel times

Figure 4.2 : Normal distribution scenarios for travel times

In total, 200 scenarios for each variation and each type of distribution was

generated (200 x 3 x 3) and the set of 20 solutions (each containing 76 routes) is tested

against each of the scenarios for feasibility. The results are tabulated in Tables 4.1, 4.2 and

4.3.

Travel times of scenarios

Travel times of scenarios

F
req

u
n

cie
s o

f trav
el tim

e
s

F
req

u
n

cie
s o

f trav
el tim

e
s

57

Solution 1 10% variation 20% variation 30% variation

Normal 98.05% 98.04% 98.04%

Poisson 96.49% 96.37% 96.19%

Gamma 95.95% 95.94% 95.91%

Table 4.1: Feasibility Percentages for all scenarios corresponding to solution1 for three

distributions in travel times

Solution 2 10% variation 20% variation 30% variation

Normal 98.05% 98.03% 98.02%

Poisson 96.48% 96.37% 96.18%

Gamma 95.95% 95.91% 95.91%

Table 4.2: Feasibility Percentages for all scenarios corresponding to solution2 for three

distributions in travel times

Solution 3 10% variation 20% variation 30% variation

Normal 98.34% 98.34% 98.33%

Poisson 96.33% 96.33% 96.2%

Gamma 96% 95.98% 95.99%

Table 4.3: Feasibility percentages for all scenarios corresponding to solution3 for three

distributions in travel times

It is seen that the performance of the different solutions does not vary much with the

changing scenarios. Also each solution has a high level of robustness, with a percentage

feasibility of above 95% even under 30% uncertainty in travel times. We propose to

evaluate these solutions also under scenarios of demand uncertainty.

58

CHAPTER 5 CONCLUSIONS AND FUTURE SCOPE OF RESEARCH

In this thesis, we have developed a large-scale neighborhood search-based

approach to VRPPDTW with side-constraints. The inherent complexity is NP-hard and we

attempt at solving the problem using a combination of heuristic approaches. Our modeling

and solution approach involves an insertion heuristic followed by generation of load

clusters called metaloads. We then model combinations of metaloads by modeling it as a

graph problem and using a randomized algorithm to find feasible cliques of metaloads.

After generating feasible combinations of metaloads, we solve a set covering problem to

obtain feasible routes. Because of the dense connectivity of the graph, we find that there

exist multiple optimal solutions to the set-covering problem. We build upon the approach

used by Tardy [3] and help improve considerably upon the solutions obtained by the

earlier approach.

We then evaluate the obtained solutions using a simulation framework. We

also propose to investigate more sophisticated ways of exploring the metaload graph by

more efficient algorithms. Additionally, we propose to explore the performance of the

different solutions obtained under highly skewed distributions of travel time uncertainty as

well as under scenarios of demand uncertainty, to study their robustness properties.

Additionally we can investigate if the existence of transfer points in a network can help

generate more robust solutions that are less vulnerable to uncertainty. We also hope to link

properties of the solutions such as total slack time in schedule, distribution of slack time,

and spare capacity on legs of the network to relate these features to the level of robustness

of the solution. We envision that this will help in identifying rules of thumb to identify and

develop robust and cost-effective solutions to VRPPDTW and other problems arising in

transportation and logistics.

59

REFERENCES

1) Toth, P. , 2002. The vehicle routing problem. Philadelphia: Society for Industrial and

Applied Mathematics. pp. 157-193

2) Leeuwen, Jan van, ed. (1998). Handbook of Theoretical Computer Science. Vol. A,

Algorithms and complexity. Amsterdam

Elsevier . ISBN 0262720140. OCLC 247934368

3) Tardy, Raphael, 2005. Optimization Models and Algorithms for Large-Scale,

 Capacity Constrained Pick-up and Delivery Problems with Time Windows (Masters

dissertation). Retrieved from http://dspace.mit.edu/handle/1721.1/7582

4) R. Liu, Xiaolan X., Augusto,V., Rodriguez C., 2013. Heuristic algorithms for a vehicle

routing problem with simultaneous delivery and pickup and time windows in home

health care, European Journal of Operational Research, 230 (3), pp. 475–486

5) Dell’Amico, M., Righini, G., Salani, M., 2006. A branch-and-price approach to the

vehicle routing problem with simultaneous distribution and collection.

Transportation Science 40, 235–247.

6) Ropke, S., Cordeau, J.F., 2009. Branch and cut and price for the pickup and delivery

problem with time windows. Transportation Science 43, 267–286.

7) Li, H., Lim ,A., 2001. A Metaheuristic for the Pickup and Delivery Problem with Time

Windows, 13th IEEE International Conference on Tools with Artificial Intelligence

(ICTAI'01), pp.07 -09

8) Bent, R., & Hentenryck, P. 2004. A two-stage hybrid algorithm for pickup and

delivery vehicle routing problems with time windows. Computers & Operations

Research 40, 875-893.

9) Ai, T., & Kachitvichyanukul, V. 2009. A particle swarm optimization for the vehicle

routing problem with simultaneous pickup and delivery. Computers & Operations

Research 36, 1693-1702.

https://en.wikipedia.org/wiki/OCLC
http://dspace.mit.edu/handle/1721.1/7582

60

10) Solomon, M. 1987. Algorithms for the Vehicle Routing and Scheduling Problems

with Time Window Constraints. Operations Research 35, 254-265.

11) Toth, P., Vigo, D., 2001. The vehicle routing problem. Philadelphia, PA: SIAM

Monographs on Discrete Mathematics and Applications, Society for Industrial and

Applied Mathematics

12) Baker, E. 1983. An Exact Algorithm for the Time- Constrained Traveling Salesman

Problem. Opns. Res. 31, 938-945.

13) Baker, E., S. Rushinek. 1982. Large Scale Implementation of a Time Oriented Vehicle

Scheduling Model. U.S. Department of Transportation, Urban Mass Transit

Administration

14) Christofides, N., Mingozzi, A., Toth, P. 1979. The Vehicle Routing Problem. In

Combinatorial Opti-mizations, N. Christofides, R. Mingozzi, P. Toth, and C. Sandi

(eds.). John Wiley & Sons, New York

15) Swersey, A., Ballard, W.. 1982. Scheduling School Buses. Working Paper, Yale

School of Organization and Management.

16) Desrosiers, J., Soumis F., Desrochers, M.. 1983a. Routing With Time Windows by

Column Generation. Working Paper 277, Centre de Reserche sur les Transports,

University of Montreal

17) Mingyong, L., Erbao, C., 2010. An improved differential evolution algorithm for

vehicle routing problem with simultaneous pickups and deliveries and time

windows. Engineering Applications of Artificial Intelligence 23, 188–195

18) Çatay, B. 2009. Ant Colony Optimization and Its Application to the Vehicle Routing

Problem with Pickups and Deliveries. Natural Intelligence for Scheduling, Planning

and Packing Problems Studies in Computational Intelligence 250, 219-244.

19) Pankratz, G. 2005. A Grouping Genetic Algorithm for the Pickup and Delivery

Problem with Time Windows. OR Spectrum, 21-41.

61

20) Gauvin, C., Desaulniers, G., & Gendreau, M. 2014. A branch-cut-and-price algorithm

for the vehicle routing problem with stochastic demands. Computers & Operations

Research, 141-153.

21) Desaulniers, G., Lessard, F., Hadjar, A. 2008. Tabu search, partial elementarity and

generalized k-path inequalities for the vehicle routing problem with time windows.

TranspSci;45:387–404.

22) Duhamel, C., Potvin, J., & Rousseau, J. 1997. A Tabu Search Heuristic for the Vehicle

Routing Problem with Backhauls and Time Windows.Transportation Science 41, 49-

59.

23) Dumas, Y., Desrosiers, J., Soumis, F. 1991, The pickup and delivery problem with

time windows. European Journal of Operational Research 54:7–22.

24) Lu, Q., & Dessouky, M. 2006. A new insertion-based construction heuristic for

solving the pickup and delivery problem with time windows. European Journal of

Operational Research 175, 672-687.

25) Parragh, S., Doerner, K., & Hartl, R. (2008). A survey on pickup and delivery

problems. Journal Für Betriebswirtschaft, 81-117.

26) Agra, A., Christiansen, M., Figueiredo, R., Hvattum, L., Poss, M., & Requejo, C. 2013.

The robust vehicle routing problem with time windows. Computers & Operations

Research, 856-866.

27) Agra A, Christiansen M, Figueiredo R, Magnus Hvattum L, Poss M, Requejo C. 2013.

Layered formulation for the robust vehicle routing problem with time windows. In:

Lecture Notes in Computer Science, vol. 7422/2012; 2012, p. 249–60.

28) Ropke, S., Cordeau, J., & Laporte, G. 2007. Models and branch-and-cut algorithms for

pickup and delivery problems with time windows. Networks 49(4) , 258-272.

62

29) Laporte, G., Musmanno, R., & Vocaturo, F. 2010. An Adaptive Large Neighbourhood

Search Heuristic for the Capacitated Arc-Routing Problem with Stochastic

Demands. Transportation Science 44(1), 125-135.

30) Marla, L., Barnhart, C., & Biyani, V. 2013. A decomposition approach for commodity

pickup and delivery with time-windows under uncertainty. J Sched Journal of

Scheduling, 489-506.

31) Cortés, C., Matamala, M., & Contardo, C. 2010. The pickup and delivery problem with

transfers: Formulation and a branch-and-cut solution method. European Journal of

Operational Research, 711-724.

32) Karger, David. 1993. Global Min-cuts in RNC and Other Ramifications of a Simple

Mincut Algorithm. Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms.

33) Hochbaum,D.S., .1997. Approximation Algorithms for NP-Hard Problems. PWS

Publishing Company, Boston.

