
c© 2015 Di Fan



CONTROL OF QUAD-ROTOR UAVS USING SWITCHED-SYSTEM
SYNTHESIS METHODS

BY

DI FAN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Professor Geir E. Dullerud



ABSTRACT

This thesis applies switched systems synthesis and linear quadratic regulator

(LQR) theory to control of a quad-rotor unmanned aerial vehicle (UAV). The

thesis presents the development of the system dynamics, the theory of LQR

and its implementation, the synthesis and simulation results of switched con-

trol of the UAV, which consists of a central rigid body and four propellers

in a cross configuration. Since first introduced in 1917, UAVs have been ex-

tensively studied and utilized in various circumstances that prefer no human

pilots aboard, due to safety, expenses, etc. Stability is crucial in controller

design, while other parameters also draw great concerns, depending on the

environment.

The methodologies of LQR control and semidefinite programming (SDP)

are discussed to provide preliminary knowledge of the switched control. Ben-

efits of the LQR control include tracking of reference trajectories and cost

function minimization. The core of switched control methods is the design

and analysis of systems whose dynamical models and performance specifica-

tions are governed by the modes of an automaton. By assigning the weights

properly on the performance states, the controller allows transitions between

modes with stability guaranteed. The model of the UAV was established by

analyzing the equations of motions based on kinemics and dynamics, then

linearized and discretized for design purposes. Both the LQR and switched

controllers were generated and simulated using MATLAB, and the LQR con-

troller was transferred to the physical UAV for test and data collection. To

incorporate with reality, lags to commands and saturation of the motors were

taken into consideration.
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CHAPTER 1

INTRODUCTION

1.1 A.R. Drone

An unmanned aerial vehicle (UAV), also known as a drone, is an aircraft

without presence of human pilots aboard that can be controlled either man-

ually or autonomously. Beyond applications in military areas, UAVs also

participate in the fields of search and rescue, filmmaking and scientific re-

search. Various sensors and cameras can be attached from which data are

collected for controllers and external devices. All work presented in this the-

sis is based on one common class of UAVs – the quad-rotor drone. System

parameters are extracted from a Parrot A.R. Drone 1.0 with PX4 control

platform, as shown in Fig. 1.1.

Figure 1.1: A.R. Drone 1.0

Technical specifications that are of interest include [1]:

• carbon fiber tubes: total weight 420 g with indoor hull

• 4 brushless in-runner motors with 14.5 W and 28500 RPM
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• Linux 2.6.32 system

• 3 axis gyroscope 2000 ◦/second precision

• 3 axis accelerometer ±50 mg precision

• HD camera with 720p resolution

The drone consists of a rigid central body with four beams to which the four

motors are attached. Each motor has two rotating wings at the far extreme.

Two propellers rotate clockwise and the other two counterclockwise, in order

to prevent the potential horizontal movements. A quad-rotor drone has six

degrees of freedoms (DOFs): roll angle, pitch angle, yaw angle, x position, y

position and z position. The system states are composed of these six variables

and their derivatives. The model also takes the dynamics of the wings into

consideration and therefore results in a nonlinear system.

1.2 CVX

Although both the design of the LQR control and switched control was per-

formed in the environment of MATLAB, the switched controller required a

special solver for semidefinite programming – CVX. CVX is a modeling sys-

tem that constructs and solves disciplined convex programs, including SDPs.

It is implemented in MATLAB, which transfers MATLAB into a language for

optimization models using common MATLAB functions and operations [2].

In this thesis, CVX was set in SDP mode using solver SDP3 that evaluated

linear matrix inequalities (LMIs) to test stability of the system given certain

weights on the performance states, then generated controllers if the system

could be stabilized. Unfortunately, CVX is not designed to determine if the

optimization problem is convex or not. But this is not a great concern since

linearized systems are automatically convex.

1.3 Overview

Following this brief introduction chapter, this thesis continues to Chapter 2,

which discusses the preliminaries and notations used in the development of
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the controllers. The theory of LQR control and semidefinite programming

are presented in this chapter.

Chapter 3 focuses on the switched system: problem synthesis, design

model, synthesis results and illustrative examples. It includes the conditions

for the existence of stabilizing controllers and derivations of the control gains.

Chapter 4 establishes the dynamic model of the quad-rotor drone based

on differential equations of motion. Since both the implementation of LQR

and switched control require linear system, this chapter further explains lin-

earization around equilibrium points.

Chapter 5 provides the design procedure and simulation results of the LQR

controller and switched controller, and the implementation of the LQR con-

troller. Simulations of the switched controller are analyzed to compare with

expectations. Practical factors that differ from the ideal model are also dis-

cussed here.

Chapter 6 concludes the thesis and suggests future work.
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CHAPTER 2

PRELIMINARIES AND NOTATIONS

In this chapter, the statement and solution of the LQR problem are intro-

duced. The original model is extended to incorporate with the reference

signals. The theory of semidefinite programming, which is used to solve for

the switched controller, is discussed in the second section.

2.1 LQR

LQR control is a method to determine the optimum solution for a minimiza-

tion problem that guarantees stability of a closed-loop system. By solving

the Algebraic Riccati Equation (ARE), the solution exists uniquely if the

system is stabilizable and detectable. Consider the general form of a linear,

time-invariant (LTI) system:

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0

y(t) = Cx(t)
(2.1)

with x(t) ∈ Rn and u(t) ∈ Rm.

The design goal is to find a state feedback controller u(t) = −Kx(t) such

that the system is stabilized, and in the mean time, minimizing the quadratic

cost function that is given by

J =

∫ tf

t0

(xT (t)Qx(t) + uT (t)Ru(t))dt (2.2)

where Q = MTM � 0 and R � 0. Apparently, the design of the feedback is

a tradeoff between the transient response and the control effort.

Then, given that (A,B) is stabilizable and (A,M) is detectable, the opti-

mal stabilizing control is calculated as
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u(t) = −R−1BTPx(t) (2.3)

where P is the positive semidefinite solution (P � 0) of the Algebraic Riccati

Equation (ARE):

PA+ ATP +Q− PBR−1BTP = 0 (2.4)

The value of K can be determined using the MATLAB command K =

lqr(A,B,Q,R). Since matrices A and B are fixed system dynamics, the

weights on the state and input (Q and R) need to be chosen appropriately

for the optimal solution to exist.

However, tacking certain signals requires more than just convergence to

the origin. Additional state xI(t) is defined to accommodate the reference

r(t). Therefore, the original system model is generalized as [3]

[
ẋ(t)

ẋI(t)

]
=

[
A 0

−C 0

][
x(t)

xI(t)

]
+

[
B

0

]
u(t) +

[
0

I

]
r(t) (2.5)

with

xI(t) =

∫ tf

to

(r(t)− Cx(t))dt =

∫ tf

to

(r(t)− y(t))dt (2.6)

x̄(t) =

[
x(t)

xI(t)

]
(2.7)

and the new cost function is given by

J̄ =

∫ tf

to

(x̄T (t)Qx̄(t) + uT (t)Ru(t))dt (2.8)

Thus, the controller gain becomes

u(t) = −
[
K KI

] [ x(t)

xI(t)

]
= −K̄x̄(t) (2.9)

Once the optimal u(t) is found, the loop is closed by following the diagram

in Fig. 2.1. Detailed design of the LQR controller is presented in Chapter 4.
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Figure 2.1: Diagram of LQR control with integral effects

2.2 SDP

Semidefinite programming (SDP) is a subfield of convex optimization that

minimizes a linear function subject to the constraints of an affine combi-

nation of positive semidefinite matrices. Such constraint may be nonlinear

or non-smooth, but convex. SDPs are more general than linear program-

ming (LP), but add little computational complexity. SDP has applications

in various fields, such as convex constrained optimization, control theory, and

combinatorial optimization [4].

Consider minimizing a linear function of x(t) ∈ Rm:

minimize cTx

subject to F (x) ≥ 0
(2.10)

where

F (x) = F0 +
m∑
i=1

xiFi (2.11)

Define the feasible region as {x | F (x) ≥ 0}, which consists of a boundary

curve along with the region it encloses. In Fig. 2.2, it shows an example of

SDP for x ∈ R2. Roughly speaking, the SDP problem is to move as far as

possible in the direction of −c.
Although SDP may appear quite specialized, it proves to be a generalized

version of many critical optimization problems. Take the linear programming

(LP) as an example:

minimize cTx

subject to Ax+ b ≥ 0
(2.12)
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Figure 2.2: A simple SDP

A vector v � 0 if and only if the matrix diag(v) � 0 where diag(v) is the

diagonal matrix with the components of v on its diagonal; thus, we can define

F (x) = diag(Ax+ b).

There are several types of algorithms for solving SDPs. The SDP3 solver

in CVX is based on the interior point method, which is a robust and efficient

approach for general linear SDPs.
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CHAPTER 3

SWITCHED SYSTEMS

This chapter presents the switched control problem, model establishment

and synthesis results of a discrete-time linear system with finite memory and

foreknowledge. The system is subject to exponential stability with distur-

bance attenuation and windowed variance minimization. The resulted SDP

is solved using CVX to arrive at a suitable controller. Simple examples of

the switched problem are also discussed in this chapter.

3.1 Theory and Model

A switched system is defined to be a multi-model system that allows tran-

sitions among operation modes, where each mode corresponds to a distinct

state-space model [5]. A possible trajectory of the modes is called an admis-

sible sequence. We consider the system dynamics that are in the form:

xt+1 = Aθ(t)xt +Bθ(t)ut

yt = Cθ(t)xt +Dθ(t)ut
(3.1)

where θ(t) denotes the mode at which the system is operated at time t. Note

that a nonlinear, continuous-time system, like the drone dynamics, needs

to be linearized and discretized first in order to apply the switched control

theory. An illustration of the switched system and its possible trajectories is

shown in Fig. 3.1.

Let L be the length of past system parameters and H be the length of

future parameters. Thus, at current time t, the controller has access to the

system model from time t − L to time t + H, represented by θ(t−L:t+H). In

this thesis, all stability refers to uniformly exponentially stability.
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Figure 3.1: Switched system and the corresponding switching sequences

It can be proved that for a simple switched system of the form

xt+1 = Aθ(t)xt (3.2)

with H ≥ 0, L ≥ 0, it is uniformly exponentially stable if and only if there

exist an integer M ≥ 0 and matrices Xj � 0 for j ∈ [N ]L+M+H , such that

for all admissible i(−L−M :H) and φ, we have

ATφ(i(−L:H))
Xi(−L−M+1:H)

Aφ(i(−L:H)) −Xi(−L−M :H−1)
≺ 0 (3.3)

where φ(i(−L:H)) = i0 and [N ] denotes the set of indices {1, . . . , N}.
We now apply this result to the system in Eq. 3.1 with a feedback controller

given by

x̂t+1 = Âtx̂t + B̂tyt

ut = Ĉtx̂t + D̂tyt
(3.4)

Define

Ãi =

[
Ai 0

0 0

]
; B̃i =

[
0 Bi

I 0

]
; C̃i =

[
0 I

Ci 0

]
(3.5)

for i ∈ [N ] and

Kt =

[
Ât B̂t

Ĉt D̂t

]
(3.6)

Then the closed-loop system is represented by

xC(t+ 1) = AC(t)xC(t) (3.7)
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where

xC(t) =

[
xt

x̂t

]
(3.8)

and

AC(t) = Ãθ(t) + B̃θ(t)KtC̃θ(t) (3.9)

By applying Eq. 3.3 to the closed-loop system, we have

ATC(i(−L:H))
Xi(−L−M+1:H)

AC(i(−L:H)) −Xi(−L−M :H−1)
≺ 0 (3.10)

Now the original system is generalized by introducing the disturbance w(t)

and performance z(t):

xt+1 = Aθ(t)xt +B1,θ(t)wt +B2,θ(t)ut

zt = C1,θ(t)xt +D11,θ(t)wt +D12,θ(t)ut

yt = C2,θ(t)xt +D21,θ(t)wt

(3.11)

Note that D22,θ(t) = 0. Otherwise, the system cannot be uniformly exponen-

tially stable.

The feedback controller keeps the form in Eq. 3.4. Then the system is

closed using:

Ãi =

[
Ai 0

0 0

]
; B̃1,i =

[
B1,i

0

]
; B̃2,i =

[
0 B2,i

I 0

]
(3.12)

C̃1,i =
[
C1,i 0

]
; D̃12,i =

[
0 D12,i

]
(3.13)

C̃2,i =

[
0 I

C2,i 0

]
; D̃21,i =

[
0

D21,i

]
(3.14)

and
AC(i(−L:H)) = Ãi0 + B̃2,i0Ki(−L:H)

C̃2,i0

BC(i(−L:H)) = B̃1,i0 + B̃2,i0Ki(−L:H)
D̃21,i0

CC(i(−L:H)) = C̃1,i0 + D̃12,i0Ki(−L:H)
C̃2,i0

DC(i(−L:H)) = D11,i0 + D̃12,i0Ki(−L:H)
D̃21,i0

(3.15)
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which gives

xC(t+ 1) = AC(θ(t−L:t+H))xC(t) +BC(θ(t−L:t+H))w(t)

z(t) = CC(θ(t−L:t+H))xC(t) +DC(θ(t−L:t+H))w(t)
(3.16)

Consider the T -step uniform performance level γ for a finite forward win-

dow T ≥ 0: for some γ > 0, x(0) = 0 and t ≥ 0, we have

1

T + 1

t+T∑
s=t

‖ z(s) ‖2< γ2 (3.17)

For systems with stochastic disturbance, instead of averaging ‖ z(s) ‖2, we

need to average E[‖ z(s) ‖2].

Analogous to Eq. 3.3, for H ≥ 0, L ≥ 0, the system is uniformly exponen-

tially stable and satisfies the T -step uniform performance level γ if and only

if there exists an integer M ≥ 0 and matrices Yj � 0 for j ∈ [N ]L+M+H such

that for all admissible i(−L−M :H) and ι̂(−L−M :H+T )

Aφ(i(−L:H))Yi(−L−M :H−1)
ATφ(i(−L:H))

− Yi(−L−M+1:H)
≺ −Bφ(i(−L:H))B

T
φ(i(−L:H))

(3.18)

1

T + 1

T∑
t=0

Tr(Cφ(ι̂(t−L:t+H))Yι̂(t−L−M :t+H−1)
CT
φ(ι̂(t−L:t+H))

+Dφ(ι̂(t−L:t+H))D
T
φ(ι̂(t−L:t+H))

) < γ2 (3.19)

Equivalently,

AC(i(−L:H))Yi(−L−M :H−1)
ATC(i(−L:H))−Yi(−L−M+1:H)

≺ −BC(i(−L:H))B
T
C(i(−L:H))

(3.20)

1

T + 1

T∑
t=0

Tr(CC(ι̂(t−L:t+H))Yι̂(t−L−M :t+H−1)
CT
C (ι̂(t−L:t+H))

+DC(ι̂(t−L:t+H))D
T
C(ι̂(t−L:t+H))) < γ2 (3.21)

for the closed-loop system in Eq. 3.16.
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3.2 Synthesis Results

To further evaluate the stability and performance level conditions, we take

advantage of the Schur complement [6]. Consider a portioned matrix given

by

X =

[
X11 X12

X21 X22

]
(3.22)

Then the followings are equivalent:

• X � 0

• X22 � 0 and X11 −X12X
−1
22 X21 � 0

• X11 � 0 and X22 −X21X
−1
11 X12 � 0

Applying the Schur complement to Eq. 3.1 and Eq. 3.21, we have [7] −Y
−1
i(−L−M :H−1)

ATC(i(−L:H)) 0

AC(i(−L:H)) −Yi(−L−M+1:H)
BC(i(−L:H))

0 BT
C(i(−L:H)) −I

 ≺ 0 (3.23)

 −Y
−1
ι̂(−L−M :H−1)

CT
C (ι̂(L:H)) 0

CC(ι̂(L:H)) −Zι̂(−L−M :H−1)
DC(ι̂(L:H))

0 DT
C(ι̂(L:H)) −I

 ≺ 0 (3.24)

1

T + 1

T∑
t=0

Tr(Zι̂(t−L−M :t+H−1)
) < γ2 (3.25)

where Yj has the form

Yj =

[
Rj Tj

T Tj ·

]
; Y −1

j =

[
Sj Uj

UT
j ·

]
(3.26)

and it can be proved that

Uj = (Sj −R−1
j )

1
2 (3.27)

Tj = −RjUj (3.28)
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Define

Wi =

[
Si(−L−M+1:H)

Aj0Ri(−L−M :H−1)
0

0 0

]

+

[
Ui(−L−M+1:H)

Si(−L−M+1:H)
B2,i0

0 I

]
Ki(−L:H)

[
T Ti(−L−M :H−1)

0

C2,i0Ri(−L−M+1:H)
I

]
(3.29)

for all i(−L−M :H). Based on the value for Wi’s, a stabilizing controller Ki(−L:H)

can be determined for each switching sequence.

Finally, we arrived at the solution to the switched control synthesis: there

exists a path-dependent controller with horizon H ≥ 0 such that the system

in Eq. 3.11 is uniformly exponentially stable and satisfies the T -step uniform

performance level γ if and only if there exists an integer L̄ ≥ 0, matrices

Rj � 0, Sj � 0 for j ∈ [N ]L̄+H , and matrices Zi, Wi for i ∈ [N ]L̄+H+1 such

that for all admissible i(−L̄:H) and ι̂(−L̄:H+T ) [8]

Hi + F T
i0
WiGi0 +GT

i0
W T
i Fi0 ≺ 0 (3.30)

Ĥi + F̂ T
i0
WiĜi0 + ĜT

i0
W T
i F̂i0 ≺ 0 (3.31)

1

T + 1

T∑
t=0

Tr(Zι̂(t−L̄:t+H)
) < γ2 (3.32)

with i− = i(−L̄:H−1), i+ = i(−L̄+1:H) and

Gi0 =

[
0 I 0 0 0

C2,i0 0 0 0 D21,i0

]
; Ĝi0 =

[
0 I 0 0

C2,i0 0 0 D21,i0

]
(3.33)

Hi =


−Si− −I ATi0 ATi0Si+ 0

−I −Ri− Ri−A
T
i0

0 0

Ai0 Ai0Ri− −Ri+ −I B1,i0

Si+Ai0 0 −I −Si+ Si+B1,i0

0 0 BT
1,i0

BT
1,i0
Si+ −I

 (3.34)

13



Ĥi =


−Si− −I CT

1,i0
0

−I −Ri− Ri−C
T
1,i0

0

C1,i0 C1,i0Ri− −Zi D11,i0

0 0 DT
11,i0

−I

 (3.35)

Here i(−L̄:H) refers to the modes that the controller have access to and

ι̂(−L̄:H+T ) is the path on which performance is evaluated. Given all conditions

are satisfied, a controller can be constructed with L ≤ L̄. For simplicity, the

controller in this thesis is designed with L = L̄.

3.3 Examples

Two examples are given in this section to demonstrate how to establish the

switched control model, and each corresponding controller is calculated based

on the performance level, length of memory and horizon.

Consider the following system [9]:

Mode 1 :


x(t+ 1) = 0.3x(t)

z(t) = x(t) + u(t)

y(t) = x(t)

(3.36)

Mode 2 :


x(t+ 1) = 3x(t) + 0.5w(t) + u(t)

z(t) = x(t) + u(t)

y(t) = x(t)

(3.37)

Assume the transition diagram is complete, which means all modes are

connected and the system can continuously stay in one mode. The controller

is designed with knowledge of the past one mode (M = 1), zero horizon

(H = 0), zero performance window (T = 0) and a performance level (γ)

of 0.8 and 0.9. We can see that in this model, the system dynamics vary

between modes while the performance states remain the same.

The result showed that a performance level of 0.8 is too small for a stabiliz-

ing controller to exist, which is reasonable since γ characterizes how bounded

the performance z(t) is with respect to the disturbance w(t).
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However, after increasing the limit to 0.9, the system became stabilizable

and the four controllers are given by

K11 :

x̂t+1 = 0.0059x̂t − 0.4076yt

ut = −0.0001x̂t − 1.0002yt
(3.38)

K12 :

x̂t+1 = 0.0107x̂t − 1.3794yt

ut = −0.0028x̂t − 2.6344yt
(3.39)

K21 :

x̂t+1 = −0.0021x̂t − 0.4043yt

ut = −0.0000x̂t − 0.9999yt
(3.40)

K22 :

x̂t+1 = 0.0000x̂t − 1.8971yt

ut = −0.0000x̂t − 2.4972yt
(3.41)

where Kij represents the controller corresponding to a transition from the

past mode i to the current mode j.

Consider a continuous-time system that is a simplified model for a small

spacecraft. Based on the location of the aircraft in the environment, three

modes are defined: the unobstructed mode, obstacle-in-x-direction mode and

obstacle-in-y-direction mode, which are characterized by

ẋ = vx

v̇x = −0.5vx + ux + 0.1uy

ẏ = vy

v̇y = −0.5vy + 0.1ux + uy

(3.42)

where

z1 =
[
x y 0.5ux 0.5uy

]T
(3.43)

z2 =
[

5x 0.5y 0.5ux 0.5uy

]T
(3.44)

z3 =
[

0.5x 5y 0.5ux 0.5uy

]T
(3.45)

In this model, universal system dynamics are constructed for all modes,

while the performance is evaluated inconsistently in each case. The state x is

penalized much more heavily than state y in mode 2, but much less in mode 3.
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In order to apply the switched control, the system was first discretized with

time interval 0.1 s. Then the controllers were designed with L = H = T = 1

and γ = 1. This setup resulted in 17 different paths, 2 of which are shown

in Fig. 3.2 and Fig. 3.3.

Figure 3.2: Switched controller for path 111
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Figure 3.3: Switched controller for path 131
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CHAPTER 4

DYNAMICS AND MODELING

The derivation of the system dynamics of the quad-rotor drone, using the

body and earth reference systems, is presented in this chapter. Due to the

property of the LQR control and switched control, the model needs to be

linearized with respect to the equilibrium positions.

4.1 Drone Dynamics

Several assumptions are required in order to construct the model: the inertia

matrix should be time-invariant. The origin and axes of the body frame

coincide with the center of mass and principal axes of inertia, respectively,

so that the inertia matrix is diagonal.

As shown in Fig. 4.1, the A.R. drone used for this thesis has an ’X’ configu-

ration, which means the axes of body frame lie between motors. Motor 1 and

3 rotate clockwise while 2 and 4 counterclockwise to balance the movements

in the xy plane.

Figure 4.1: Reference frame of quad-rotor drone

For a rigid body with 6 degrees of freedom (DOFs), it is common to use

two reference systems to describe its motion: body frame and earth frame.

The kinemics of a generic 6 DOF system are determined by [10]
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ξ̇ = Jθν (4.1)

ξ consists of the linear and angular position vectors in the earth frame,

where the angles stand for roll, pitch, and yaw, respectively.

ξ =

[
ΓE

ΘE

]
=



x

y

z

φ

θ

ψ


(4.2)

ν is composed of the corresponding linear and angular velocity vectors in

the body frame.

ν =

[
vB

ωB

]
=



u

v

w

p

q

r


(4.3)

Due to the inconsistency in the reference frames, a generalized matrix Jθ

is introduced, which is given by

Jθ =



Rθ

 0 0 0

0 0 0

0 0 0


 0 0 0

0 0 0

0 0 0

 Tθ


(4.4)

with rotational matrix
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Rθ = cosψ cos θ cosψ sin θ sinψ − sinψ cosφ cosψ sin θ cosφ+ sinψ sinφ

sinψ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− cosψ sinφ

− sin θ cos θ sinφ cos θ cosφ


(4.5)

and translational matrix

Tθ =

 1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

 (4.6)

Therefore, the linear velocities in the earth frame and body frame are

related by

vE = Γ̇E = Rθv
B (4.7)

Similarly, we have

Θ̇E = Tθω
B (4.8)

Next, the dynamics of the drone is studied. From Newton’s second law:

FE = mΓ̈E = m ˙(RθvB) (4.9)

⇒ RθF
B = m(Rθv̇

B + Ṙθv
B) = mRθ(v̇

B + ωB × vB) (4.10)

⇒ FB = m(v̇B + ωB × vB) = mv̇B + ωB × (mvB) (4.11)

where FB represents the force vector in body frame.

For the angular components of body motion:

τE = IΘ̈E = I ˙(TθωB) (4.12)

⇒ Tθτ
B = I(Tθω̇

B + Ṫθω
B) = ITθ(ω̇

B + ωB × ωB) (4.13)

⇒ τB = Iω̇B + ωB × (IωB) (4.14)

where τB stands for the torque vector in body frame.
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Combining Eq. 4.11 and Eq. 4.14 leads to

Λ =



Fx

Fy

Fz

τx

τy

τz


=



m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 Ixx 0 0

0 0 0 0 Iyy 0

0 0 0 0 0 Izz





u̇

v̇

ẇ

ṗ

q̇

ṙ



+



0 0 0 0 mw −mv
0 0 0 −mw 0 mu

0 0 0 mv −mu 0

0 0 0 0 Izzr −Iyyq
0 0 0 −Izzr 0 Ixxp

0 0 0 Iyyq −Ixxp 0





u

v

w

p

q

r


(4.15)

where

Λ = GB(ξ) +OB(ν)
−→
Ω + EB

−→
Ω 2 (4.16)

The generalized force vector Λ is decomposed into three parts: the grav-

itational vector GB, gyroscopic propeller matrix OB and moment matrix

EB [11].

The gravitational vector takes into account the acceleration due to gravity

so it only affects the linear equations.

GB(ξ) =



−mg sin θ

mg cos θ sinφ

mg cos θ cosφ

0

0

0


(4.17)

The gyroscopic propeller matrix is responsible for the gyroscopic effects

caused by propeller rotation. When the drone is in a perfect hovering state,

the matrix should be zero. But for nonzero roll or pitch rates, the quad-rotor

drone experiences a gyroscopic torque.
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OB(ν)
−→
Ω = JTP



0 0 0 0

0 0 0 0

0 0 0 0

q −q q −q
−p p −p p

0 0 0 0




Ω1

Ω2

Ω3

Ω4

 (4.18)

where JTP represents the overall motor rotational moment of inertia, and

−→
Ω =


Ω1

Ω2

Ω3

Ω4

 (4.19)

is the propeller speed vector in rad/s. And denote the overall propeller speed

by

Ω = −Ω1 + Ω2 − Ω3 + Ω4 (4.20)

Finally the moment matrix considers the forces and torques produced di-

rectly by the movement inputs throttle, roll, pitch and yaw. From aerody-

namics, the forces and moments are proportional to the squared propeller

speed.

EB
−→
Ω 2 =



0

0

u1

u2

u3

u4


=



0

0

−b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)
1√
2
bl(Ω2

1 − Ω2
2 − Ω2

3 + Ω2
4)

1√
2
bl(Ω2

1 + Ω2
2 − Ω2

3 − Ω2
4)

d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)


(4.21)

with aerodynamic drag d in Nms2, aerodynamic thrust b in Ns2, and l being

the distance between the center of the drone and the center of the propeller.

And the u’s denote the throttle, roll, pitch and yaw inputs, respectively.

Now the complete quad-rotor drone model can be written as
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

u̇ = (vr − wq)− g sin θ

v̇ = (wp− ru) + g cos θ sinφ

ẇ = (uq − vp) + g cos θ cosφ+ u1

m

ṗ = Iyy−Izz
Ixx

qr − JTP

Ixx
qΩ + u2

Ixx

q̇ = Izz−Ixx
Iyy

pr + JTP

Iyy
pΩ + u3

Iyy

ṙ = Ixx−Iyy
Izz

pq + u4

Izz

(4.22)

Alternatively, the drone model can be constructed using a hybrid system of

linear states in the earth frame and angular states in the body frame. Thus,

the dynamics are characterized by

ẍ = (sinψ sinφ+ cosψ sin θ cosφ)u1

m

ÿ = (− cosψ sinφ+ sinψ sin θ cosφ)u1

m

z̈ = g + cos θ cosφu1

m

ṗ = Iyy−Izz
Ixx

qr − JTP

Ixx
qΩ + u2

Ixx

q̇ = Izz−Ixx
Iyy

pr + JTP

Iyy
pΩ + u3

Iyy

ṙ = Ixx−Iyy
Izz

pq + u4

Izz

(4.23)

with 

u1 = −b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

u2 = 1√
2
bl(Ω2

1 − Ω2
2 − Ω2

3 + Ω2
4)

u3 = 1√
2
bl(Ω2

1 + Ω2
2 − Ω2

3 − Ω2
4)

u4 = d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)

(4.24)

Then the control inputs are distributed to the motors following the relation

given by

front left motor : u1 + 1√
2
(u2 + u3)− u4

front right motor : u1 + 1√
2
(−u2 + u3) + u4

rear right motor : u1 − 1√
2
(u2 + u3)− u4

rear left motor : u1 + 1√
2
(u2 − u3) + u4

(4.25)

From control theory, we know that a system with four independent inputs

can fully control no more than four independent states. In the design of the

LQR and switched controller, the x position, y position, z position and yaw
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angle are selected to follow the reference trajectory.

4.2 Linearization

Based on the model established in the previous section, it is obvious that

linearity does not exist in the drone dynamics. To convert the system into

the following form:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(4.26)

the original system needs to be linearized with respect to the equilibrium

points.

Define the system state as

x = [ p q r ẋ ẏ ż φ θ ψ x y z ]T (4.27)

By setting all velocities and accelerations to zero, the equilibrium point is

given by

xe = [ 0 0 0 0 0 0 0 0 ψref xref yref zref ]T (4.28)

and

ue =
[
−mg 0 0 0

]T
(4.29)

which means the drone can reach equilibrium at any position with arbitrary

yaw angle ψref .

According to the theory of nonlinear system, given that

x =
[
x1 x2 . . . xn

]T
(4.30)

and

ẋi = fi(x) (4.31)

where f is a nonlinear function in x, then the linearized matrix is determined

by [12]

Aij =
∂fi
∂xj
|x=xe (4.32)
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where Aij denotes the ij-th entry in matrix A, such that

ẋ ≈ Ax (4.33)

in a small neighborhood of the equilibrium point.

Following this method, the state matrices in Eq. 4.26 are written as

A =



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −g cosψref 0 0 0 0

0 0 0 0 0 0 g cosψref −g sinψref 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0



(4.34)

B =



0 1
Ixx

0 0

0 0 1
Iyy

0

0 0 0 1
Izz

0 0 0 0

0 0 0 0
1
m

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



(4.35)
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C =



0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1


(4.36)

and D is a matrix of zeros with 12 rows and 4 columns.

With this linear state-space model, we are ready to generate the LQR

controller and switched controller. Since the linearized dynamics are valid

approximations only at a bounded area around the initial point, the transit

response of the original nonlinear model is expected to differ from the lin-

ear one. But in the long term, they should converge to the same reference

trajectory.
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CHAPTER 5

CONTROLLER DESIGN AND
SIMULATION

In this chapter, the detailed design procedure of the LQR controller and

switched controller is provided. For LQR, the controller was simulated on

both the linear and nonlinear systems. Furthermore, the saturation of motors

and lag of commands were taken into account to better construct the physical

model. We also included an observer to estimate the immeasurable states.

Experimental data was collected to compare with the simulation results and

we analyzed the problems that occurred during implementation. For switched

control, all admissible paths were generated as well as their corresponding

controllers, based on the method discussed in Chapter 3. Simulation results

displayed how the performance varied on each path, which perfectly matched

with expectations.

5.1 LQR Controller

As presented in Chapter 2, the design of a LQR controller depends on the

system dynamics and proper weights (Q and R) on the states and control

inputs. For better tracking of the reference signals, the integral states (xI(t))

were penalized most heavily, since they account for the difference between

current states and desired trajectories. We also applied large weights to the

control inputs, with an aim to avoid motor saturation. But a tradeoff was

made due to the fact that the system may not be stabilizable for large R.

Since we are most interested in the drone position, all derivative states (linear

velocities and angular velocities) were designed to have little contribution in

the cost function. Based on this methodology, the weighting matrices are

given by
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R =


3 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3

 (5.1)

and

Qtot =

[
Q 0

0 QI

]
(5.2)

where

Q =



10 0 0 0 0 0 0 0 0 0 0 0

0 10 0 0 0 0 0 0 0 0 0 0

0 0 10 0 0 0 0 0 0 0 0 0

0 0 0 10 0 0 0 0 0 0 0 0

0 0 0 0 10 0 0 0 0 0 0 0

0 0 0 0 0 20 0 0 0 0 0 0

0 0 0 0 0 0 5 0 0 0 0 0

0 0 0 0 0 0 0 5 0 0 0 0

0 0 0 0 0 0 0 0 5 0 0 0

0 0 0 0 0 0 0 0 0 5 0 0

0 0 0 0 0 0 0 0 0 0 5 0

0 0 0 0 0 0 0 0 0 0 0 5



(5.3)

QI =



100 0 0 0 0 0

0 100 0 0 0 0

0 0 100 0 0 0

0 0 0 100 0 0

0 0 0 0 100 0

0 0 0 0 0 100


(5.4)

which result in a stabilizing controller in the form:

K =


−0.0000 0.0000 −0.0000 −0.0000 −0.0000 3.5350

1.8401 −0.0000 0.0000 0.0000 4.5766 −0.0000

−0.0000 1.8368 −0.0000 −4.5747 −0.0000 0.0000

0.0000 −0.0000 1.8349 0.0000 −0.0000 −0.0000
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−0.0000 −0.0000 −0.0000 −0.0000 0.0000 6.5181

12.9052 −0.0000 0.0000 0.0000 7.3833 0.0000

−0.0000 12.8936 −0.0000 −7.3818 0.0000 −0.0000

−0.0000 −0.0000 4.7806 −0.0000 0.0000 0.0000

 (5.5)

and

KI =


0.0000 −0.0000 −0.0000 0.0000 0.0000 5.7735

0.0000 0.0000 0.0000 0.0000 5.7735 −0.0000

0.0000 −0.0000 −0.0000 5.7735 0.0000 0.0000

0.0000 0.0000 5.7735 −0.0000 −0.0000 0.0000

 (5.6)

Now the feedback loop has been completed, but not all states are accessible

since there are no sensors on the drone directly measuring the linear velocities

in the x, y and z directions. Thus, an observer is required to estimate the

immeasurable states based on the output y. An estimator x̂(t) is introduced

which follows the same dynamics of the original system, and also includes the

difference between the estimated output and the measured output [13] [14].

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− ŷ(t))

ŷ(t) = Cx̂(t) +Du(t)
(5.7)

Define the error state as

e(t) = x̂(t)− x(t) (5.8)

⇒ ė(t) = (A− LC)e(t) (5.9)

If the system in Eq. 5.9 is stabilizable, the error e(t) will converge to zero

exponentially fast, so that the estimator provides an accurate approximation

for the actual state. Then the observer gain L was determined by placing

the poles about five times larger than the poles of the original system, which

all lie in the left half of the complex plane.
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L =



1.2210 0 0 0 0 0

0 1.0920 0 0 0 0

0 0 1.1227 0 0 0

0 −0.0010 0 1.1016 0 0

0.0010 0 0 0 1.0807 0

0 0 0 0 0 1.0600

0.0221 0 0 0 0 0

0 0.0209 0 0 0 0

0 0 0.0212 0 0 0

0 0 0 0.0210 0 0

0 0 0 0 0.0208 0

0 0 0 0 0 0.0206



× 104 (5.10)

After acquiring all gains, the controller and observer were simulated on

both the linear system and original nonlinear system, as shown in Fig. 5.1

and Fig. 5.2. The initial values for all states are zero, and some system

parameters of the drone are listed below:

m = 0.4472 kg

Ixx = 0.0020Nms2

Iyy = 0.0016Nms2

Izz = 0.0035Nms2

l = 0.1778m

d = 1× 10−7 Nms2

b = 192.32× 10−7 Ns2

(5.11)

Saturation blocks were included in the linear model and the motors in the

nonlinear model. The reference signals fed into the system are given by

r(t) =
[

0 0 π
6

0.2 0.5 0.8
]

(5.12)

equivalently, point (0.2, 0.5, 0.8) in the xyz space with a yaw angle of 30 ◦.

In a simulation of 10 s, the positions and angles of the linear and nonlinear

systems are presented in Fig. 5.3.
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Figure 5.1: Block diagram of the linear system with LQR controller and
observer
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Figure 5.2: Block diagram of the nonlinear system with LQR controller and
observer
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Figure 5.3: Positions and angles of linear (l) and nonlinear (nl) systems
with LQR controller and observer

From Fig. 5.3, we can see that the linear system reached the reference

level faster and experienced less overshoot, since it is the model used to

design the LQR controller. For the nonlinear system, the x and y positions

generally matched the linear system; however, the peak values of z exceeded

the reference by about 0.2 m, and settles at 0.8 m at 6 s. The control inputs

in both systems are shown in Fig. 5.4.

Figure 5.4: Control inputs of linear (l) and nonlinear (nl) systems with
LQR controller and observer

Finally, the LQR controller was transferred to the physical drone to test

the design quality. Since the motors only take in commands between 0 and
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1 [15], the control inputs generated by the controller were normalized such

that the equilibrium value corresponded to the motor RPM that stabilizes

the drone, which was found to be 0.69 by experiments.

In the tests, the drone was programmed to ascend to a height of 0.5 m while

maintaining the same planar position as the initial point. The yaw angle

was not controlled but the yaw speed was accounted for in u4. The drone

managed to take off vertically from the starting point and reached about

0.58 m at peak, then started to descend to the desired height. However, due

to the inaccuracy of the speed measurement in the z direction, the motor

inputs were saturated to the maximum value 1. This saturation resulted in

a considerable horizontal drift because of the asymmetry in motors, which

failed to stabilize the drone. Future work should be focused on obtaining

better estimates of the linear velocities.

5.2 Switched Controller

Before generating the switched controller, we need to design the operation

modes and rules for valid transitions between modes. Similar to the second

example shown in Chapter 3, three modes were considered: the unobstructed

mode (mode 1), obstacle-in-x mode (mode 2) and obstacle- in-y mode (mode

3). In mode 1, all linear positions were penalized equally, so were the corre-

sponding velocities. For mode 2 and 3, more weights were added to the states

associated with the x direction and y direction, respectively. Therefore, the

performance states are written as

z1 =
[

3p 3q 3r 3ẋ 3ẏ 3ż 5φ 5θ 5ψ 10x 10y 10z

3u1 3u2 3u3 3u4

]T
(5.13)

z2 =
[

3p 3q 3r 5ẋ ẏ 3ż 5φ 5θ 5ψ 30x 3y 10z

3u1 3u2 3u3 3u4

]T
(5.14)

z3 =
[

3p 3q 3r ẋ 5ẏ 3ż 5φ 5θ 5ψ 3x 30y 10z

3u1 3u2 3u3 3u4

]T
(5.15)
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It is assumed that the system can remain in the current mode, and mode

1 can jump to either mode 2 or mode 3. But to move between mode 2 and 3,

the system is required to pass mode 1. This transit diagram is characterized

by matrix Q:

Q =

 1 1 1

1 1 0

1 0 1

 (5.16)

where Qij = 1 valid transition frommode i to j

Qij = 0 invalid transition frommode i to j
(5.17)

We consider the controllers with L = H = 1 and T = 1, which means

the controller has access to the system parameters in 3 modes, including the

current mode, while the performance is evaluated over 4 modes. Based on

the above information, a complete transition diagram was first generated.

Then the invalid paths were removed by checking the entries in Q.

Table 5.1: Switching sequence for a three-mode system

past current future i− i+ i

1 1 1 11 11 111
1 1 2 11 12 112
1 1 3 11 13 113
1 2 1 12 21 121
1 2 2 12 22 122
1 3 1 13 31 131
1 3 3 13 33 133
2 1 1 21 11 211
2 1 2 21 12 212
2 1 3 21 13 213
2 2 1 22 21 221
2 2 2 22 22 222
3 1 1 31 11 311
3 1 2 31 12 312
3 1 3 31 13 313
3 3 1 33 31 331
3 3 3 33 33 333

As shown in Table. 5.1, this procedure was done by the function path search,

which also provided the i− = i(−L̄:H−1) and i+ = i(−L̄+1:H) that are used to
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test stability.

After discretizing the system at an interval of 0.1 s, controllers were de-

termined with γ = 0.5 and connected with the linear system as shown in

Fig. 5.5.

Figure 5.5: Block diagram of the switched controller

The system performance on three different paths is presented in Fig. 5.6.

The simulation was run for a period of 15 s with initial value:

x0 = y0 = 1, z0 = 0.5 (5.18)

Unlike path 111, with imbalance on weights of x and y, path 333 and

path 131 show clear separations between these two states, and converge to 0

noticeably faster. Comparing path 131 to 333, there are only slight differences

between x and y initially and in the long term, while the system behaves

similar to 333 in the middle of the simulation. The performance of the system

perfectly matches with our expectations and demonstrates the benefits of

switched control. Future work includes increasing the memory and horizon,

and implementation of the controller on the physical drone.
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Figure 5.6: System performance on path 111, 333 and 131
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CHAPTER 6

CONCLUSIONS

This thesis consists of the theory and synthesis results of the switched con-

trol, the dynamics and model of an A.R. Drone, the design and simulation of

the LQR controller and switched controller, and the associated preliminaries

and notations.

For the preliminaries, theories on the LQR control and basic knowledge

of SDP are provided. A LQR controller stabilizes a linear continuous-time

system with negative feedback, and the control gains are calculated by solv-

ing the ARE. SDP serves as an efficient method for solving minimization

problems with inequality constraints, on which the SDP3 solver in CVX is

based to test stability for a switching system.

We considered switched controllers that are path-dependent and have finite

memory of past plant parameters and finite foreknowledge of future param-

eters. The linear and discrete-time system is designed to have multiple op-

eration modes that vary in the model dynamics or performance evaluations,

in presence of disturbances. Convex synthesis problems for each admissible

path were expressed as linear matrix inequalities then solved by CVX in

MATLAB, in order to generate the controllers depending on the specified

performance levels.

When modeling the A.R, Drone, a 6-DOF system was established by an-

alyzing the kinemics and dynamics. Due to the rotational effects of the

propellers, the model is nonlinear and needs to be linearized for the design of

the LQR and switched controllers. Partial derivatives with respect to each

state were taken at equilibrium points to construct the linear system.

For the design of the LQR controller, proper weights were assigned to the
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states and control inputs in the cost function to guarantee stability. The orig-

inal system was extended by some integral states in order to track reference

signals. We simulated the controller on both the nonlinear and linear mod-

els and compared the results. The closed-loop system successfully followed

the desired trajectory but experienced moderate overshoot. The controller

was also implemented on the physical drone, but failed to maintain at the

specified height due to saturations and asymmetry in motors. The calculated

switched controller was also simulated in MATLAB, and the system perfor-

mance was compared among different switching sequences. The simulation

showed satisfactory results, and the implementation should be included in

future work.
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APPENDIX A

CVX CODES FOR SWITCHED
CONTROLLER

In this appendix, the CVX codes used to search for admissible paths, deter-

mine minimal performance level and generate the stabilizing controller are

provided, based on Kan Chen’s contribution.

A.1 path search

1 function [path , pathtmp ] = path search (N,M,H,Q)

2 %% ∗∗∗∗∗∗∗∗∗ po s s i b l e path s ea r ch ing ∗∗∗∗∗∗
3 % ∗∗∗∗∗ l i s t a l l the p o s s i b l e path ∗∗∗∗∗∗
4 % M = L = L hat , H = 0 in the o r i g i n a l codes

5 i f M+H==0

6 % no memory , no knowledge about f u r t u r e

7 pathtmp ( 1 :N)=1:N; % a l l modes

8 path=[(1 :N) ’ ( 1 :N) ’ ( 1 :N) ’ ( 1 :N) ’ ] ;

9 else

10 % l i s t a l l the path without con s i d e r i ng the con t ra in ing

matrix Q

11 path=PermsRep ( 1 :N,M+H+1) ; % s i z e : Nˆ(M+H+1) ∗ (M+H+1)

12 % ∗∗∗∗ f i l t e r the path ”M+H” and ”N” accord ing to Q∗∗∗∗∗∗
13 % i f Q( i , j )=0 then i t i s impos s ib l e to jump from mode i to

mode j

14 k=1;

15 for i =1: s ize (path , 1 ) % s i z e ( path , 1 ) = M+H+1

16 i n c r =1;

17 for j =1:M+H

18 i f Q(path (k , j ) ,path (k , j +1) )==0

19 % c l e a r the row that corresponds to the

inadmis sab l e path

20 path (k , : ) = [ ] ; % de l e t e that row

21 i n c r =0;

22 break
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23 end

24 end

25 k=k+in c r ;

26 % i f prev ious row ge t s removed , the next row has the

same index

27 end

28 % #rows in path = # of admi s s i ab l e paths

29

30 % ∗∗∗∗ s t o r e path , path+ and path− i n t o one va r i ab l e ∗∗∗∗
31 for i =1: s ize (path , 1 ) % s i z e ( path , 1 ) = # of admi s s i ab l e paths

32 path ( i ,M+H+2)=0; % f o r path−: cascad ing nodes 1 ˜ M+H

33 path ( i ,M+H+3)=0; % f o r path+: 2 ˜ M+H+1

34 path ( i ,M+H+4)=0; % f o r whole path

35 for j =1:M+H

36 path ( i ,M+H+2)=path ( i ,M+H+2)+path ( i , j ) ∗10ˆ(M+H−j ) ; %

s c a l a r

37 path ( i ,M+H+3)=path ( i ,M+H+3)+path ( i , j +1)∗10ˆ(M+H−j ) ;
% s c a l a r

38 end

39 for j =1:M+H+1

40 path ( i ,M+H+4)=path ( i ,M+H+4)+path ( i , j ) ∗10ˆ(M+H−j +1) ;

% s c a l a r

41 end

42 % pathtmp used to avoid over lapp ing dec l a rance in LMI

43 % odd number o f rows f o r path−
44 pathtmp ( ( i −1)∗2+1)=path ( i ,M+H+2) ;

45 % even number o f rows f o r path+

46 pathtmp ( ( i −1)∗2+2)=path ( i ,M+H+3) ;

47 end

48 i f exist ( ’ pathtmp ’ )˜=0

49 % remove the repeated paths

50 % pathtemp = unique admi s s i ab l e paths with l ength M+H

51 pathtmp=unique ( pathtmp ) ;

52 else

53 e x i s t s =0;

54 pathtmp = [ ] ;

55 end

56 path=unique (path , ’ rows ’ ) ;

57 end

58 end

59

60 function r e s = PermsRep (v , k )

61 % PERMSREP Permutations with replacement .
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62 %

63 % PermsRep (v , k ) l i s t s a l l p o s s i b l e ways to permute k e lements

out o f

64 % the vec to r v , with replacement .

65

66 i f nargin<1 | | isempty ( v )

67 error ( ’ v must be non−empty ’ )

68 else

69 n = length ( v ) ;

70 end

71

72 i f nargin<2 | | isempty ( k )

73 k = n ;

74 end

75

76 v = v ( : ) . ’ ; % Ensure v i s a row vecto r

77 for i = k :−1:1
78 tmp = repmat (v , nˆ(k−i ) , nˆ( i −1) ) ;
79 r e s ( : , i ) = tmp ( : ) ;

80 end

81 end
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A.2 receding horizon

1 function [ var m ,K] = re c ed ing ho r i z on (A,B1 ,B2 ,C1 ,C2 ,D11 ,D12 ,D21 ,

M,H,gamma,path , pathtmp , pathT )

2 K= [ ] ;

3 B = s t r u c t ( ’B1 ’ ,B1 , ’B2 ’ ,B2) ;

4 C = s t r u c t ( ’C1 ’ ,C1 , ’C2 ’ ,C2) ;

5 D = s t r u c t ( ’D11 ’ ,D11 , ’D12 ’ ,D12 , ’D21 ’ ,D21) ;

6 N=s ize (A, 3 ) ; % the number o f modes

7 m1=s ize (B.B1 , 2 ) ; % s i z e o f w ( column vecto r )

8 m2=s ize (B.B2 , 2 ) ; % s i z e o f u

9 l 1=s ize (C.C1 , 1 ) ; % s i z e o f z

10 l 2=s ize (C.C2 , 1 ) ; % s i z e o f y

11 n1=s ize (A, 1 ) ; % number o f s t a t e s in each mode

12 T=s ize ( pathT (1) . value , 2 ) −1; % performance window length

13 %% ∗∗∗ preproce s s o f data be f o r e LMI s o l v e r ∗∗∗∗
14 % ∗∗∗∗F, G, F hat , G hat ∗∗∗∗∗
15 % de f i n e f o r each mode

16 for i =1:N

17 F ( : , : , i )=[zeros ( n1 ) zeros ( n1 ) zeros ( n1 ) eye ( n1 ) zeros ( n1 ,m1)

;

18 zeros (m2, n1 ) zeros (m2, n1 ) B.B2 ( : , : , i ) ’ zeros (m2, n1 )

zeros (m2,m1) ] ;

19 G( : , : , i )=[zeros ( n1 ) eye ( n1 ) zeros ( n1 ) zeros ( n1 ) zeros ( n1 ,m1)

;

20 C.C2 ( : , : , i ) zeros ( l2 , n1 ) zeros ( l2 , n1 ) zeros ( l2 , n1 ) D.D21

( : , : , i ) ] ;

21 F hat ( : , : , i )=[zeros ( n1 ) zeros ( n1 ) zeros ( n1 , l 1 ) zeros ( n1 ,m1)

22 zeros (m2, n1 ) zeros (m2, n1 ) D.D12 ( : , : , i ) ’ zeros (m2,m1) ] ;

23 G hat ( : , : , i )=[zeros ( n1 ) eye ( n1 ) zeros ( n1 , l 1 ) zeros ( n1 ,m1) ;

24 C.C2 ( : , : , i ) zeros ( l2 , n1 ) zeros ( l2 , l 1 ) D.D21 ( : , : , i ) ] ;

25 end

26 % break

27 %% ∗∗∗∗ s t a r t c a l c u l a t i n g LMI with cvx ∗∗∗∗∗
28 %∗∗∗∗ f o r the case that M+H=0∗∗∗∗∗
29 % stay at one mode

30 i f M+H==0

31 cvxq=cvx qu i e t ( t rue ) ;

32 cvx beg in sdp

33 va r i ab l e var m

34 % dimension check

35 va r i ab l e R 1 (n1 , n1 ) symmetric

36 va r i ab l e S 1 (n1 , n1 ) symmetric
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37 va r i ab l e Z 1 ( l1 , l 1 ) symmetric

38 va r i ab l e W 1(n1+m2, n1+l2 )

39 minimize ( var m )

40 % de f i n e H and H hat f o r a l l modes : i− = i+ = current mode

41 for i =1:N

42 % H and H hat are symmetric

43 H=[−S 1 −eye ( n1 ) A( : , : , i ) ’ A( : , : , i ) ’∗ S 1 zeros ( n1 ,m1) ;

44 −eye ( n1 ) −R 1 R 1∗A( : , : , i ) ’ zeros ( n1 ) zeros ( n1 ,m1) ;

45 A( : , : , i ) A( : , : , i ) ∗R 1 −R 1 −eye ( n1 ) B.B1 ( : , : , i ) ;

46 S 1∗A( : , : , i ) zeros ( n1 ) −eye ( n1 ) −S 1 S 1∗B.B1 ( : , : , i )

;

47 zeros (m1, n1 ) zeros (m1, n1 ) B.B1 ( : , : , i ) ’ B.B1 ( : , : , i ) ’∗
S 1 −eye (m1) ; ] ;

48 H hat=[−S 1 −eye ( n1 ) C.C1 ( : , : , i ) ’ zeros ( n1 ,m1) ;

49 −eye ( n1 ) −R 1 R 1∗C.C1 ( : , : , i ) ’ zeros ( n1 ,m1) ;

50 C.C1 ( : , : , i ) C.C1 ( : , : , i ) ∗R 1 −Z 1 D.D11 ( : , : , i ) ;

51 zeros (m1, n1 ) zeros (m1, n1 ) D.D11 ( : , : , i ) ’ −eye (m1) ] ;

52 trace ( Z 1 ) − gammaˆ2 < var m ; % only one Z 1 , no need to

average

53 H+F ( : , : , i ) ’∗W 1∗G( : , : , i )+G( : , : , i ) ’∗W 1’∗F ( : , : , i ) < var m

∗eye ( s ize (H, 1 ) ) ;

54 H hat+F hat ( : , : , i ) ’∗W 1∗G hat ( : , : , i )+G hat ( : , : , i ) ’∗W 1’∗
F hat ( : , : , i ) < var m∗eye ( s ize (H hat , 1 ) ) ;

55 end

56 cvx end

57 end

58 %∗∗∗∗ f o r the case that M+H>0∗∗∗∗∗
59 i f M+H>=1;

60 cvx c l e a r ;

61 c vx p r e c i s i o n high

62 cvx s o l v e r SDPT3

63 cvx qu i e t ( t rue )

64 cvx beg in sdp

65 va r i ab l e var m

66 % ∗∗∗∗∗∗ de f i n e the v a r i a b l e s ∗∗∗∗∗∗∗
67 % de f i n e R and S

68 for i =1: length ( pathtmp ) % number o f va l i d one−s tep
t r a n s i t i o n s

69 s1= [ ’ v a r i a b l e R ’ ] ;

70 s2= [ ’ v a r i a b l e S ’ ] ;

71 s3= [ int2str ( pathtmp ( i ) ) ] ;

72 s4= [ s1 s3 ’ ( n1 , n1 ) symmetric ’ ] ;

73 eval ( s4 )
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74 s5= [ s2 s3 ’ ( n1 , n1 ) symmetric ’ ] ;

75 eval ( s5 )

76 end

77 % de f i n e Z and W

78 for i =1: length (path ( : ,M+H+4) ) % number o f va l i d (M+H)−s tep
t r a n s i t i o n s

79 s1= [ ’ v a r i a b l e Z ’ ] ;

80 s2= [ ’ v a r i a b l e W ’ ] ;

81 s3= [ int2str (path ( i ,M+H+4) ) ] ;

82 s4= [ s1 s3 ’ ( l1 , l 1 ) symmetric ’ ] ;

83 eval ( s4 )

84 s5= [ s2 s3 ’ ( n1+m2, n1+l2 ) ’ ] ;

85 eval ( s5 )

86 end

87 minimize ( var m )

88 clear s1 s2 s3 s4 s5

89 for i =1: s ize (path , 1 ) % number o f va l i d (M+H)−s tep
t r a n s i t i o n s

90 % equat ion f o r H i

91 % path ( i ,M+1) i s the cur rent mode !

92 s1=[ ’H ’ int2str (path ( i ,M+H+4) ) ’=[−S ’ int2str (path ( i ,M

+H+2) ) ’ −eye ( n1 ) A( : , : , ’ int2str (path ( i ,M+1) ) ’ ) ’ ’ A

( : , : , ’ int2str (path ( i ,M+1) ) ] ;

93 s1=[ s1 ’ ) ’ ’ ∗S ’ int2str (path ( i ,M+H+3) ) ’ z e r o s (n1 ,m1) ;−
eye ( n1 ) −R ’ int2str (path ( i ,M+H+2) ) ] ;

94 s1=[ s1 ’ R ’ int2str (path ( i ,M+H+2) ) ’ ∗A( : , : , ’ int2str (

path ( i ,M+1) ) ’ ) ’ ’ z e r o s ( n1 ) z e ro s (n1 ,m1) ; ’ ] ;

95 s1=[ s1 ’A( : , : , ’ int2str (path ( i ,M+1) ) ’ ) A( : , : , ’ int2str (

path ( i ,M+1) ) ’ ) ∗R ’ int2str (path ( i ,M+H+2) ) ] ;

96 s1=[ s1 ’ −R ’ int2str (path ( i ,M+H+3) ) ’ −eye ( n1 ) B.B1

( : , : , ’ int2str (path ( i ,M+1) ) ’ ) ; ’ ] ;

97 s1=[ s1 ’ S ’ int2str (path ( i ,M+H+3) ) ’ ∗A( : , : , ’ int2str (

path ( i ,M+1) ) ’ ) z e r o s ( n1 ) −eye ( n1 ) −S ’ int2str (path (

i ,M+H+3) ) ’ S ’ int2str (path ( i ,M+H+3) ) ] ;

98 s1=[ s1 ’ ∗B.B1 ( : , : , ’ int2str (path ( i ,M+1) ) ’ ) ; z e r o s (m1, n1 )

z e r o s (m1, n1 ) B.B1 ( : , : , ’ int2str (path ( i ,M+1) ) ’ ) ’ ’ B.

B1 ( : , : , ’ ] ;

99 s1=[ s1 int2str (path ( i ,M+1) ) ’ ) ’ ’ ∗S ’ int2str (path ( i ,M+H

+3) ) ’ −eye (m1) ] ; ’ ] ;

100 eval ( s1 )

101 s1=[ ’H ’ int2str (path ( i ,M+H+4) ) ’+F ( : , : , ’ int2str (path ( i

,M+1) ) ’ ) ’ ’ ∗W ’ int2str (path ( i ,M+H+4) ) ] ;
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102 s1=[ s1 ’ ∗G( : , : , ’ int2str (path ( i ,M+1) ) ’ )+G( : , : , ’ int2str

(path ( i ,M+1) ) ’ ) ’ ’ ∗W ’ int2str (path ( i ,M+H+4) ) ] ;

103 s1=[ s1 ’ ’ ’ ∗F ( : , : , ’ int2str (path ( i ,M+1) ) ’ ) <= var m∗ eye (
s i z e (H ’ int2str (path ( i ,M+H+4) ) ’ , 1 ) ) ; ’ ] ;

104 eval ( s1 )

105 % equat ion f o r H hat i

106 s1=[ ’ H hat ’ int2str (path ( i ,M+H+4) ) ’=[−S ’ int2str (path

( i ,M+H+2) ) ’ −eye ( n1 ) C.C1 ( : , : , ’ int2str (path ( i ,M+1) )

’ ) ’ ’ z e r o s (n1 ,m1) ; ’ ] ;

107 s1=[ s1 ’−eye ( n1 ) −R ’ int2str (path ( i ,M+H+2) ) ’ R ’

int2str (path ( i ,M+H+2) ) ’ ∗C.C1 ( : , : , ’ int2str (path ( i ,M

+1) ) ’ ) ’ ’ z e r o s (n1 ,m1) ; ’ ] ;

108 s1=[ s1 ’C.C1 ( : , : , ’ int2str (path ( i ,M+1) ) ’ ) C.C1 ( : , : , ’

int2str (path ( i ,M+1) ) ’ ) ∗R ’ int2str (path ( i ,M+H+2) ) ] ;

109 s1=[ s1 ’ −Z ’ int2str (path ( i ,M+H+4) ) ’ D.D11 ( : , : , ’

int2str (path ( i ,M+1) ) ’ ) ; z e r o s (m1, n1 ) z e ro s (m1, n1 ) D.

D11 ( : , : , ’ int2str (path ( i ,M+1) ) ’ ) ’ ’ −eye (m1) ] ; ’ ] ;

110 eval ( s1 )

111 s1=[ ’ H hat ’ int2str (path ( i ,M+H+4) ) ’+F hat ( : , : , ’

int2str (path ( i ,M+1) ) ’ ) ’ ’ ∗W ’ int2str (path ( i ,M+H+4) )

] ;

112 s1=[ s1 ’ ∗G hat ( : , : , ’ int2str (path ( i ,M+1) ) ’ )+G hat ( : , : , ’

int2str (path ( i ,M+1) ) ’ ) ’ ’ ∗W ’ int2str (path ( i ,M+H+4) )

] ;

113 s1=[ s1 ’ ’ ’ ∗F hat ( : , : , ’ int2str (path ( i ,M+1) ) ’ ) <= var m∗
eye ( s i z e ( H hat ’ int2str (path ( i ,M+H+4) ) ’ , 1 ) ) ; ’ ] ;

114 eval ( s1 )

115 end

116 for i =1: s ize ( pathT , 2 ) % s i z e ( pathT , 2 ) = # of con t r o l

sequence from each performance sequence

117 s1=[ ’ 1/(T+1)∗( ’ ] ;
118 for j =1:T+1

119 s1=[ s1 ’+t ra c e ( Z ’ int2str ( pathT ( i ) . va lue ( j ) ) ’ ) ’ ] ;

120 end

121 s1=[ s1 ’ ) − gammaˆ2 <= var m ’ ] ;

122 eval ( s1 )

123 end

124 cvx end

125 end

126

127 %∗∗∗∗∗∗∗ Solve f o r Con t r o l l e r i f system i s s t a b i l i z a b l e

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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128 i f var m < 0 && nargout == 2 % number o f func t i on output

arguments

129 % de f i n e U and T

130 for i =1: length ( pathtmp ) % number o f va l i d one−s tep
t r a n s i t i o n s

131 i f n1==1 % only one s t a t e in each mode

132 s1=[ ’U ’ int2str ( pathtmp ( i ) ) ’=sq r t ( S ’ int2str (

pathtmp ( i ) ) ] ;

133 else

134 s1=[ ’U ’ int2str ( pathtmp ( i ) ) ’=sqrtm ( S ’ int2str (

pathtmp ( i ) ) ] ;

135 end

136 s1=[ s1 ’−inv (R ’ int2str ( pathtmp ( i ) ) ’ ) ∗ eye ( n1 ) ) ; ’ ] ; %

U = (S − inv (R) ) ˆ(1/2) ∗ eye ( n1 )

137 eval ( s1 )

138 s1=[ ’T ’ int2str ( pathtmp ( i ) ) ’=−R ’ int2str ( pathtmp ( i ) )

’ ∗U ’ int2str ( pathtmp ( i ) ) ’ ; ’ ] ;

139 % T = −R ∗ U

140 eval ( s1 )

141 end

142 i f M+H>=1 % more than more mode

143 for i =1: s ize (path , 1 )

144 s1=[ ’W ’ int2str (path ( i ,M+H+4) ) ] ;

145 s1=[ s1 ’−b lkd iag ( S ’ int2str (path ( i ,M+H+3) ) ’ ∗A
( : , : , ’ int2str (path ( i ,M+1) ) ’ ) ’ ] ;

146 s1=[ s1 ’ ∗R ’ int2str (path ( i ,M+H+2) ) ’ , z e r o s (m2, l 2 ) )

’ ] ;

147 s2=[ ’ [ U ’ int2str (path ( i ,M+H+3) ) ’ , S ’ int2str (path

( i ,M+H+3) ) ’ ∗B.B2 ( : , : , ’ int2str (path ( i ,M+1) ) ’ ) ’

] ;

148 s2=[ s2 ’ ; z e r o s (m2, n1 ) , eye (m2) ] ’ ] ;

149 s3=[ ’ [ T ’ int2str (path ( i ,M+H+2) ) ’ ’ ’ , z e r o s (n1 , l 2 ) ;C

.C2 ( : , : , ’ int2str (path ( i ,M+1) ) ’ ) ∗R ’ int2str (

path ( i ,M+H+2) ) ’ , eye ( l 2 ) ] ’ ] ;

150 s1=[ ’K ’ int2str (path ( i ,M+H+4) ) ’=inv ( ’ s2 ’ ) ∗( ’ s1

’ ) ∗ inv ( ’ s3 ’ ) ; ’ ] ;

151 eval ( s1 )

152 end

153 else % no t r a n s i t i o n

154 for i =1: s ize (path , 1 )

155 s1=[ ’W 1−b lkd iag ( S 1∗A( : , : , ’ int2str (path ( i ,M+1) ) ’

) ’ ] ;

156 s1=[ s1 ’ ∗R 1 , z e r o s (m2, l 2 ) ) ’ ] ;
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157 s2=[ ’ [ U 1 , S 1∗B.B2 ( : , : , ’ int2str (path ( i ,M+1) ) ’ ) ’ ] ;

158 s2=[ s2 ’ ; z e r o s (m2, n1 ) , eye (m2) ] ’ ] ;

159 s3=[ ’ [ T 1 ’ ’ , z e r o s (n1 , l 2 ) ;C.C2 ( : , : , ’ int2str (path ( i ,

M+1) ) ’ ) ∗R 1 , eye ( l 2 ) ] ’ ] ;

160 s1=[ ’K ’ int2str (path ( i ,M+H+4) ) ’=inv ( ’ s2 ’ ) ∗( ’ s1

’ ) ∗ inv ( ’ s3 ’ ) ; ’ ] ;

161 eval ( s1 )

162 end

163 end

164 for i =1: length (path ( : ,M+H+4) )

165 s1=[ ’K. K ’ int2str (path ( i ,M+H+4) ) ’=K ’ int2str (path ( i ,

M+H+4) ) ’ ; ’ ] ;

166 eval ( s1 )

167 end

168 end
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A.3 rh test

1 function [ s tatus ,K] = r h t e s t (A,B1 ,B2 ,C1 ,C2 ,D11 ,D12 ,D21 ,Q,M,H,T,

gamma)

2 % M = L = L hat ; H = 0 in the o r i g i n a l codes

3 % T i s the performance window

4 N=s ize (A, 3 ) ; % # of modes

5 [path , pathtmp]=path search (N,M,H,Q) ; % search f o r c on t r o l

sequence

6 [ pathTtmp , pathtmpT]=path search (N,M,H+T,Q) ; % search f o r

performance sequence

7 for i =1: s ize (pathTtmp , 1 ) % s i z e (pathTtmp , 1 ) = # of admi s s i ab l e

performance sequence

8 for j =0:T

9 tmp= [ ] ;

10 for k=1:M+H+1

11 tmp=[tmp int2str (pathTtmp( i , k+j ) ) ] ;

12 end

13 % length o f tmp = M+H+1

14 pathT ( i ) . va lue ( j +1)=str2num(tmp) ;

15 % tak ing a s t r i n g o f M+H+1 su c c e s s i v e modes ( c on t r o l

sequence ) from the f i r s t M+H+T+1

16 % modes in each performance sequence

17 end

18 end

19 clear tmp pathtmpT pathTtmp i j k

20 K= [ ] ;

21 i f isempty (path )

22 error ( ’ i n v a l i d Q, no path e x i s t s ’ ) ;

23 else

24 [ var m ,K] = re c ed ing ho r i z on (A,B1 ,B2 ,C1 ,C2 ,D11 ,D12 ,D21 ,M,H,

gamma,path , pathtmp , pathT ) ;

25 i f var m < 0

26 s t a tu s=’ so lved , the system i s s t a b i l i z a b l e ’ ;

27 else

28 s t a tu s=’ so lved , the system i s not s t a b i l i z a b l e ’ ;

29 end

30 end

31 disp ( s t a tu s )

32 end
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