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ABSTRACT1 

 

Foodborne diseases are a persistent problem in the United States and worldwide. 

Fresh produce, especially those used as raw foods like salad vegetables, can be 

contaminated, causing illness. In this study, we determined the number of rotaviruses 

adsorbed on produce surfaces using group A porcine rotaviruses and 24 cultivars of leafy 

vegetables and tomato fruits. We also characterized the physicochemical properties of 

each produce’s outermost surface layer, known as the epicuticle. The number of 

rotaviruses found on produce surfaces varied among cultivars. Three-dimensional 

crystalline wax structures on the epicuticular surfaces were found to significantly 

contribute to the inhibition of viral adsorption to the produce surfaces (p=0.01). We 

found significant negative correlations between the number of rotaviruses adsorbed on 

the epicuticular surfaces and the concentrations of alkanes, fatty acids, and total waxes on 

the epicuticular surfaces. Partial least square model fitting results suggest that alkanes, 

ketones, fatty acids, alcohols, contact angle and surface roughness together can explain 

60% of the variation in viral adsorption. The results suggest that various fresh produce 

surface properties need to be collectively considered for efficient sanitation treatments. 

Up to 10.8 % of the originally applied rotaviruses were found on the produce surfaces 

after three washing treatments, suggesting a potential public health concern regarding 

rotavirus contamination. 

  

                                                 
1 This abstract was published on PLoS ONE. Lu L, Ku K-M, Palma-Salgado SP, Storm AP, Feng H, Juvik 

JA, et al. (2015) Influence of Epicuticular Physicochemical Properties on Porcine Rotavirus Adsorption to 

24 Leafy Green Vegetables and Tomatoes. PLoS ONE 10(7): e0132841. doi:10.1371/journal.pone.0132841 
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CHAPTER 1 

INTRODUCTION2 

As a persistent problem in the United States, every year, foodborne pathogens 

cause illness for approximately 48 million Americans, and among these cases, 3,000 are 

fatal (1). According to the U.S. Food and Drug Administration (2), foodborne illnesses 

are estimated to cost the U.S. economy $10-83 billion each year, from medical expenses, 

reduced productivity, and other costs. Of all foodborne illnesses in the U.S., human 

enteric viruses are a leading cause (3). In a number of foodborne outbreaks, 

epidemiological evidence suggests that contaminated produce surfaces during pre- and 

post-harvest are critical in viral transmission (4). Produce contamination before harvest, 

such as being irrigated or spayed with contaminated water, is an important safety 

concern, especially for raw and fresh produce (5-10). Although certain inactivation 

strategies such as thermal inactivation and high hydrostatic pressure are effective in viral 

inactivation, they are mostly not applicable to fresh vegetable produce used for raw 

consumption because they either cook the produce or cause significant tissue damage and 

changes in produce appearance and taste (11, 12). In the U.S., reports of foodborne 

illnesses associated with contaminated raw produce have increased, with salad greens and 

fruits found as the vehicles for pathogen transmission (13). Despite the role of fresh 

produce in viral transmission, only limited information is available concerning the factors 

controlling viral adsorption to produce surfaces. 

Several factors, including surface charge, roughness, and hydrophobicity, were 

found to contribute to viral adsorption to produce (14-17). Ionic strength and pH of 

                                                 
2 This chapter was included in the same plication on PLoS ONE.  
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solutions containing viruses and temperature also influenced viral adsorption and survival 

(15, 17, 18). The presence of stomata and exposed carbohydrates of plant cell walls were 

found to enhance adsorption of viruses to romaine lettuce (19-21). Produce surfaces or 

cuticles are composed of various layers that serve separate functions in plant 

development, protection, and adaptation to the growing environment (22). The outermost 

layer of produce surfaces is composed of epicuticular waxes and is the most likely to 

interact with microorganisms attaching to produce surfaces. The epicuticular waxes were 

proposed to act as a physical barrier to prevent infection by plant viruses or fungi, in 

addition to other critical functions, including drought tolerance and tissue protection from 

ultraviolet light (23-25). While previous studies show an important role of the 

physicochemical characteristics of produce surfaces for several species influencing viral 

adsorption, a comprehensive study of the major leafy green salad species commonly 

consumed by humans as fresh or minimally processed produce has not been conducted. 

To fill this knowledge gap, we conducted a study to determine the correlations 

between viral adsorption and physicochemical characteristics of produce surfaces using 

24 cultivars of leafy green vegetables and tomato fruits. Group A rotavirus, the most 

common cause of severe diarrhea in children under the age of five and of gastroenteritis 

among all ages (4, 10, 26), was selected as a model enteric viral pathogen. Although a 

rotavirus vaccine was developed and applied in both developed and developing countries, 

in such areas as Africa and Asia, rotavirus is still a major cause of pediatric 

gastroenteritis. Rotavirus vaccine efficacy is only 48% in Asia and 30% in Africa, with 

the lowest efficacy found in Mali (17%) (27-30). Group A rotaviruses were detected in 

wastewater and surface water in Kenya (31), irrigation water and even receiving 



3 

 

vegetables in South Africa (10). Group A porcine rotavirus (OSU strain), a surrogate for 

human rotavirus Wa, was used in our study due to its stability and similar structural 

proteins to the human rotavirus strain Wa (32). Twenty-four different cultivars of leafy 

greens and tomatoes were grown in the greenhouse and used as model produce. 

Compared to previous work (14-20, 33), the greater number of cultivars from various 

species in this study provides more comprehensive information on viral adsorption to 

produce and generates a larger database for future investigations. Undamaged vegetable 

leaves and tomato fruit skins were characterized and tested in our viral assays to generate 

correlations between viral adsorption and physicochemical characteristics of the 

outermost layers of produce surfaces. The produce surface hydrophobicity, roughness, 

stoma number and length, the presence or absence of 3-D epicuticular wax crystals, and 

the chemical compositions of the epicuticular wax layers were determined based on the 

measurements of contact angle, laser confocal microscopy, scanning electron microscopy 

(SEM), and chemical identification using gas chromatography. 
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CHAPTER 2 

MATERIALS AND METHODS3 

2.1 Cell culture and OSU rotavirus propagation and purification 

Group A porcine rotaviruses OSU strain (ATCC # VR-892) were propagated by 

infecting embryonic African green monkey kidney cells (MA-104 cells) grown in 

minimum essential medium (MEM, Gibco) containing 5% fetal bovine serum (FBS) (34, 

35). Porcine rotaviruses OSU strain and MA-104 cells were purchased from ATCC 

(Manassas, VA). Before virus infection, the MA-104 cells were grown in roller bottles 

with an inner surface area of 850 cm2 (Thermo Fisher Scientific Inc., Waltham, MA) and 

incubated at 37˚C under 5% CO2 for 5-6 days. The medium was replaced by fresh 

medium on the third day of incubation. After a confluent cell monolayer was visible on 

the bottle wall, the medium was removed, and the cells were washed twice with 

phosphate-buffered saline (PBS) solution. After the PBS buffer was removed, rotaviruses 

were activated with 10 μg/ml of trypsin for 30 min. The viruses were added to maintain 

around 2-5 focus-forming units per cell (FFU/cell).  After 90 min of incubation at 37˚C 

under 5% CO2, the cells were washed twice with PBS and then incubated in MEM 

without the serum for 16 to 18 h. Once the infected cells were fully detached from the 

bottle wall, the cells and viral solution were collected and stored at 4˚C until further 

purification. The rotavirus solution underwent three sequential freezing and thawing 

treatments at -80˚C and 37˚C. Then, the viruses were separated from the cell debris by 

centrifugation at 1000 × g for 10 min at 20e cell debris by centrifugation at 1000 e wall, 

incubation. After a confluent cell monolayer was visiblThermo Scientific, Nalgene, 

                                                 
3 This chapter was included in the same plication on PLoS ONE.  
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Rochester, NY) to further remove cell debris. Then, the filtrate was subjected to 

membrane dialysis using a 100 kDa ultrafiltration membrane (Koch Membrane, polymer 

polyvinylidene fluoride; Koch, Wilmington, MA) in an Amicon stirred cell (Millipore) to 

remove the medium and to concentrate the viruses, as described in previous work (36). In 

this dialysis membrane system, the rotaviruses were retained on the membrane surface 

and subsequently washed with a solution containing 0.1 mM of CaCl2 and 1 mM 

NaHCO3. This concentration of Ca2+ was used to keep the rotavirus capsid stable (37).  

The infectivity assay (FFU assay) was adopted from previous publications [38, 

39], and the protocol is briefly described here. The rotavirus stock was treated with 10 

μg/ml of trypsin for 30 min and made into a series of dilutions in serum-free MEM. After 

confluent MA104 monolayers in a 96-well plate had been rinsed twice with PBS, 50 μl of 

each diluted virus solution from the rotavirus stock was applied to the monolayers and 

incubated at 37˚C under 5% CO2 for 30 min. Afterward, the virus solutions were 

removed from the plate and the cell monolayers were washed twice with serum-free 

MEM. The cells were then incubated with 100 μl of serum-free MEM in each well at 

37˚C under 5% CO2 for 18 h prior to immunocytochemical quantification of infected 

cells by rotaviruses.  

After 18-h incubation, the cell monolayers were rinsed twice with PBS, and fixed 

with 9:1 methanol (Sigma-Aldrich, St. Louis, MO) – glacial acidic acid (Fisher Scientific, 

Waltham, MA) for 2 min. The monolayers were then hydrated with 70% and 50% 

ethanol subsequently for 5min, and then subjected for 10-min treatment with 3% H2O2 

(30%; Fisher Scientific, Waltham, MA) diluted in wash buffer (125 mM Tris (Fisher 

Scientific, Waltham, MA), 350 mM NaCl (Fisher Scientific, Waltham, MA), and 0.25% 
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Triton X-100 (Sigma-Aldrich, St. Louis, MO); pH = 7.6). Afterward, the cells were 

rinsed with wash buffer for 10 min and incubated with 5% normal goat serum (Vector 

Laboratories, Burlingame, CA) for 20 min to block nonspecific bindings of primary 

antibodies. After this step, the primary antibodies (Dako, Carpinteria, CA; catalog no. 

B218) diluted 1:100 in wash buffer were applied to the monolayers and incubated at 

37°C for 1 h. After being rinsed twice with wash buffer, the cells were incubated with the 

secondary antibodies (biotinylated goat anti-rabbit immuno-globulin G; Vector 

Laboratories, Burlingame, CA) diluted 1:200 in wash buffer for 20 min. Two washings 

with wash buffer were applied to the monolayers after this step. After washing, the ABC 

reagent (Vector Laboratories, Burlingame, CA), made 30 min prior to use and diluted as 

1 (reagent A):1 (reagent B):50 (wash buffer), was applied to the monolayers for 20 min. 

Afterward, the cells were rinsed twice with wash buffer and then incubated with the stain 

peroxidase chromogen (KPL, Gaithersburg, Maryland) for less than 9 min to avoid 

nonspecific cell staining. Deionized (DI) water was then added to each well, and the 

brown-stained cells, which were the infected cells by rotaviruses, were quantified using 

an inverted microscope. This assay using a 96 well plate has a detection limit of 1200 

FFU (50 μl of 2.4 ×104 FFU ml-1 viral solution).  

2.2 Rotavirus adsorption assay to leafy vegetables and tomato fruits 

Harvested vegetable heads, leaves, or tomato fruits were rinsed with DI water to 

remove soil particles attached to their surfaces and dried by gently laying a Kimwipe 

(Kimberly-Clark, Irving, TX) on the adaxial surface. When no water was visible on the 

produce surfaces, two 15.6 mm diameter disks were excised from each leaf and fruit 

sample. For each cultivar, two leaves, heads, or fruits from three different plants were 
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harvested for 6 replicate measurements.  Each piece was gently transferred, with a 

tweezer, onto the top of a droplet of 300 µl diluted porcine rotavirus solution in PBS on a 

35-mm-glass-bottom-dish (MatTek Corporation, Ashland, MA). See Figure 1 for the 

experimental schema. Rotavirus concentration in this droplet was determined to be 7.17 ± 

0.05 log10 genome copies/ml (N=4) by RT-qPCR (see below). The petri dish containing 

the produce piece and the viral droplet was loosely capped and incubated for 2 h at room 

temperature in a biological cabinet. After this incubation period, the produce pieces were 

transferred with a tweezer, in the same way as described above, to a 24-well plate, which 

had 700 µl PBS in each well. The plate was gently shaken for 15 s, and the PBS solution 

was then carefully removed. This washing step was repeated three times before the 

produce pieces were removed from the well plate and the disks were excised with another 

corker borer (with a diameter of 11.1 mm) into smaller diameter pieces to remove the cut 

edges. Since viruses might be attached to the edges during the incubation period or 

washing steps, this treatment was important to avoid potentially confounding results. 

Each piece was transferred with a tweezer into a 1.7 ml labeled tube for RNA extraction 

and RT-qPCR. The adaxial surfaces were kept facing up throughout the whole 

experiment, except during incubation and washing.  

 

Figure 1. Experimental schema for the OSU rotavirus adsorption assay to leafy 

vegetables and tomato fruits.4 

                                                 
4 This figure was included in the same plication on PLoS ONE.  
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The negative controls for these assays underwent the same procedure except that 

they were incubated on PBS droplets without porcine rotaviruses for 2 h. Based on the 

results obtained from the negative controls, we concluded that the leaves were not 

previously contaminated with rotaviruses. Due to the pool of 24 cultivars whose mature 

tissues were available at different times, the viral assays were conducted over an 8-week 

period from March to May, 2014. All viral adsorption experiments were conducted using 

the same OSU rotavirus stock (see below for concentration determination). Infectivity 

assays showed that the OSU rotavirus stock had approximately 5×107 FFU/ml. Infectivity 

assays were also conducted for the viral adsorption experiments, however, the 

concentration of infective rotaviruses on the produce samples was generally below the 

detection limit of the infectivity assay using a 96 well plate (2.4 ×104 FFU ml-1 viral 

solution). While the infectivity assay may be sensitive to aggregation of viruses, the 

qPCR method is not because it is based on the extracted genomes of all viruses. 

2.3 Viral RNA extraction from inoculated produce surfaces 

The RNA extraction was conducted with E.Z.N.A Total RNA Kit I (Omega, 

Norcross, GA) following the manufacturer’s protocol in a sterilized RNA extraction 

cabinet to avoid RNA contamination and degradation. The extracted RNA was dissolved 

in diethylpyrocarbonate (DEPC) water and stored at -80˚C before quantification by real-

time quantitative PCR (RT-qPCR).  

2.4 Detection of OSU rotavirus adsorption by RT-qPCR 

We first determined the concentration of the OSU rotavirus stock (8 log10 genome 

copies/ml) by conducting one-step RT-qPCR in parallel with a standard calibration curve 
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for known concentrations of a plasmid cDNA standard (2207 bp) containing the inserted 

rotavirus NSP3 gene (212 bp). The ‘JVK’ Primers (Forward: 

CAGTGGTTGATGCTCAAGAT and Reverse: 

TCATTGTAATCATATTGAATACCCA) were used as described in previous studies 

(38, 39) to specifically amplify the NSP3 gene of the OSU rotaviruses. The primers and 

the plasmid cDNA standards were purchased from Integrated DNA Technologies 

(Coralville, IA). The concentration of dissolved plasmid DNA in DI water was measured 

by Qubit dsDNA HS assay kit (Life Technologies, Grand Island, NY), according to the 

manufacturer’s manual. The measured cDNA standard concentration (1.88 µg/ml) was 

then converted into copy numbers (11.9 log10 genome copies/ml). For experiments with 

plant tissues, the extracted RNA from the OSU stock with known concentration (8 log10 

genome copies/ml) was used to determine a detection limit of 3.9 log10
 genome copies/ml 

with the corresponding Ct value at 34.3 ± 0.1 (N=3).  

The number of adsorbed rotaviruses on each produce sample surface was 

determined by one-step RT-qPCR using an iTaq One-Step Universal SYBER RT-qPCR 

kit (Bio-Rad Laboratories, Hercules, CA). The overall volume of each qPCR reaction 

was 10 µl, composed of 2 × iTaq Mix, 0.3 mM of each primer, 125 × iScript reverse 

transcriptase, 3 µl RNA template, and DNase/RNase-free distilled water. The prepared 

PCR reactions were conducted with a Bio-Rad Unicon qPCR machine (Hercules, CA). 

The qPCR program was 48˚C, 10 min (reverse transcription), and 95d 0 min (reverse 

transcription), PCR program was 48was 48TechnologiiTaq polymerase), with cycles of 

95˚C, 15 s (melting DNA double strands), 54˚C, 20 s (primers annealing), 60˚C, 30 s 

(elongation), 60-95˚C, and 0.05 s increments. The PCR specificity was checked on a gel 
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after qPCR, and only one band at around 200bp was observed under a Bio-Rad Universal 

Hood II Imager (Hercules, CA). The number of RNA genome copies from OSU 

rotaviruses adsorbed to each sample disk was calculated via equations obtained from 

standard curves conducted for every set of qPCR. For example, Y = −3.497X + 47.536 

(R2 = 0.99, efficiency = 93%). Y is the RNA amount (log10 genome copies/ml), and X is 

the Ct value. The number of adsorbed OSU rotaviruses was expressed as log10 genome 

copies normalized by the produce sample area in cm2.  

Leaves from two cultivars with epicuticular wax crystals (‘Top Bunch’ collards 

and ‘Red Russian’ kale) and two cultivars without epicuticular wax crystals (‘Two Star’ 

lettuce, and ‘Totem’ Belgian endive) were selected as additional controls for RT-qPCR 

inhibitors. RT-qPCR inhibitors were tested by spiking RNA extracted from the OSU 

virus stock into the extracted solutions from these four cultivars used as controls. The 

measured Ct values from these four controls were compared with those determined for 

the extracted RNA at the same concentration. The extracted RNA with a concentration of 

5.3 log10 genome copies /mL showed an average Ct value of 28.72 ± 0.4 (N=6), while the 

controls with the same concentration had Ct values of 28.89 ± 0.2 (N=8). No significant 

difference was found between these two sets of Ct values (P=0.35), and therefore no 

inhibitors were present in this system. The negative controls for rotavirus adsorption 

assays showed their Ct values as “NA”, indicating no rotaviruses present on the 24 

vegetables prior to the viral adsorption assays. The same Ct readings (“NA”) were 

obtained for qPCR negative controls, which used DNase/RNase-free distilled water as 

templates, suggesting no contamination in the qPCR reactions.  
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CHAPTER 3 

RESULTS5 

3.1 OSU rotavirus adsorption to epicuticular surfaces 

As confirmed by RT-qPCR results, OSU rotaviruses were found on the adaxial 

surfaces of all 24 cultivars when the produce surfaces were incubated with the viral 

suspension for 2 h at room temperature. The number of adsorbed rotaviruses on the leaf 

or tomato fruit surfaces (an area with a diameter of 11 mm) ranged from approximately 

3.7 to 5.6 log10 genome copies/cm2 (Table 1). The three species with the highest levels of 

viral adsorption included ‘Southern Giant Curled’ mustard greens (5.6 ± 0.1 log10 

genome copies/cm2), Tatsoi (5.4 ± 0.1 log10 genome copies/cm2), and ‘Racoon’ spinach 

(5.6 ± 0.2 log10 genome copies/cm2). The three species with the lowest the number of 

rotaviruses adsorbed on epicuticular surfaces were ‘Top Bunch’ collard (3.7 ± 0.1 log10 

genome copies/cm2), ‘Sun Gold’ tomato (3.9 ± 0.4 log10 genome copies/cm2) and 

‘Outredgeous’ romaine lettuce (4.1 ± 0.5 log10 genome copies/cm2). Within the Solanum 

genus, the cultivar ‘Rose’ had the highest number of adsorbed rotaviruses (4.4 ± 0.3 log10 

genome copies/cm2), followed by ‘Indigo Rose’ (4.2 ± 0.4 log10 genome copies/cm2), and 

‘Sun Gold’ tomatoes (3.9 ± 0.4 log10 genome copies/cm2). The percentage of rotaviruses 

that adhered to each cultivar was calculated using the numbers of rotaviruses adsorbed on 

the produce surfaces divided by the rotavirus genome copies in the initial virus 

suspension. From 0.1% to 10.8% of the initial viruses were found on produce surfaces, 

suggesting that the surface physicochemical properties of the produce may play an 

important role on viral adsorption. Control experiments with ‘Stabor’ kale and ‘Red 

                                                 
5 This chapter was included in the same plication on PLoS ONE.  
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Russian’ kale showed that viral adsorption was statistically similar for adaxial and 

abaxial surfaces (P = 0.89 for ‘Stabor’ kale; P = 0.18 for ‘Red Russian’ kale).  

Table 1. Chemical composition of epicuticular waxes from 24 vegetable leaves and 

tomato fruits and the genome copies from adsorbed rotaviruses on these produce 

surfaces. 6 

 

a The percentage was calculated using number of adsorbed rotaviruses divided by OSU 

rotavirus genome copies in the initial viral solution (7.17 ± 0.05 log10 genome copies/ml). 

LSD value was calculated by Student’s T-test at P = 0.05.  

 

 

                                                 
6 This table was included in the same plication on PLoS ONE and created by Dr. Kang-mo Ku. Data of 

epicuticular wax content were provided by Dr. Kang-mo Ku.  
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3.2 Correlations within and between physicochemical properties of epicuticle and 

viral adsorption 

Based on the statistical analysis, 16 significant correlations were found among 

and between physicochemical properties of epicuticular layer and the number of adsorbed 

rotaviruses (Table 2). Correlations within physicochemical properties of the produce 

were conducted from data generated from produce collected at the same time. Contact 

angle showed significant positive correlations with alkane (r = 0.659, P < 0.001), fatty 

acid (r = 0.442, P = 0.031), ketone (r = 0.637, P < 0.001), and total wax concentrations (r 

= 0.647, P < 0.001). Different wax concentrations were positively and significantly 

correlated with each other. Previous research that used leeks as a model found that 

epicuticular wax biosynthesis is initiated by the conversion of fatty acids to aldehydes, 

then alkanes, alcohols, and ketones (40). This shared biosynthetic pathway would explain 

the co-correlation of the concentrations of various waxes. 

Table 2. Correlation coefficients (r) between epicuticular physiochemical properties and 

the number of rotaviruses adsorbed on the produce surfaces.7 

 

Pearson’s correlation coefficients (r) were calculated by mean values of each variables 

from each cultivar, and the r values in bold are significantly correlated at P < 0.05.    

                                                 
7 This table was included in the same plication on PLoS ONE and created by Dr. Kang-mo Ku. Data were 

provided by Dr. Kang-mo Ku. 
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Three significant correlations were found between the number of adsorbed 

rotaviruses and physicochemical properties of the epicuticle. The numbers of OSU 

rotaviruses adsorbed on the produce surfaces showed significant negative correlations 

with alkane (r = -0.498, P = 0.013), fatty acid (r = -0.466, P = 0.022), and total wax 

concentrations (r = -0.473, P = 0.020). Contact angle (r = -0.019, P = 0.930), surface 

roughness (r = 0.360, P = 0.084), stoma numbers (r = -0.356, P = 0.089), stoma lengths (r 

= 0.112, P = 0.518), alcohols (r = -0.226, P = 0.195), and ketones (r = -0.246, P = 0.174) 

were not correlated with the number of adsorbed rotaviruses. The six major epicuticular 

variables, alkane, fatty acid, alcohol, and ketone concentrations, contact angle, and 

surface roughness, were used to generate a PLS model (Figure 2) to predict the number of 

rotaviruses adsorbed on the epicuticular surfaces. Total wax was excluded because this is 

a redundant indicator for individual wax components. Stomata lengths and numbers were 

also excluded because viral adsorption was found on stomata-free tomato fruits. The 

performance of the final PLS model is evaluated according to the coefficient of 

determination (R2) and the root mean square error of prediction (RMSEP) in the 

prediction set. Generally, R2, which describes how well the data of the training set is 

mathematically reproduced, varies between 0 and 1 (with 1 indicating a perfectly fitted 

model). In PLS model six factors were extracted to get a maximized prediction value as 

the van der voet T2 statistic tests did not differ significantly from the optimized model (3 

factors extraction, R2=0.60) with the minimum predicted residual sum of squares 

(PRESS) value. As RMSEP is a good measure of how accurately the model predicts the 

response, lower values of RMSEP indicate a better fit. A VIP score indicates how 

important this factor contributes to describing the variation in viral adsorption to 
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vegetable surfaces, compared to other variables. A VIP ≥ 0.8 is considered the cut-off 

value for a variable making a significant contribution to dimensionality reduction (41). 

We found that the RMSEP was 0.25 when 6 PLS factors were extracted in the prediction 

model and the PLS model explained 60% (adjusted R2=0.60) of the experiment-wide 

variation in the number of adsorbed rotaviruses using the physicochemical data. The 

alkane concentration showed the highest variable importance for projection value (VIP = 

1.15), followed by fatty acids (1.12), contact angle (0.97), ketones (0.95), alcohols (0.92), 

and surface roughness (0.85). 

 

Figure 2. Partial least squares prediction model for the number of adsorbed viral particles 

on produce surfaces using six epicuticular physicochemical properties, including 

concentrations of alkanes, fatty acids, alcohols, and ketones, contact angle, and surface 

roughness.8 

                                                 
8 This figure was included in the same plication on PLoS ONE. 
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CHAPTER 4 

DISCUSSION9 

 

In this study, the influence of 3-D epicuticular wax crystals, the chemical 

components of epicuticular layers, hydrophobicity and roughness of the produce surfaces, 

and the presence of stomata were investigated to reveal major surface properties 

associated with the number of adsorbed rotaviruses. Significantly, negative correlations 

between viral adsorption and the concentrations of alkanes, fatty acids, and total wax on 

the epicuticular surface were observed (Table 2). Although concentrations of alkanes, 

fatty acids, and total wax were significantly correlated with contact angle, which is a 

measurement of surface hydrophobicity, this trait was not correlated with the number of 

adsorbed rotaviruses. The lack of correlation with contact angle implies that the 

inhibition effects of the epicuticular wax components on viral adsorption may not be 

directly associated with increased hydrophobicity of the surfaces, but rather by the 

presence of 3-D epicuticular wax crystals. Indeed, the presence of 3-D wax crystals on 

the epicuticular layers of the produce showed significantly lower rotavirus adsorption 

than those without 3-D crystalized wax structures (P = 0.012; Table 3). For example, we 

observed a significantly lower number of rotaviruses adsorbed on the epicuticular 

surfaces on ‘Outredgeous’ romaine lettuce than on the other two lettuces (‘Two star’ and 

‘Tropicana’). While these three lettuce cultivars had similar adaxial contact angles, only 

‘Outredgeous’ romaine lettuce had 3-D epicuticular wax crystals. These results suggest 

that the presence of the 3-D epicuticular wax crystals may play a more important role in 

viral adsorption than surface hydrophobicity. Another explanation of the lack of 

correlation between OSU viral adsorption and hydrophobicity is that the measurement of 

                                                 
9 This chapter was included in the same plication on PLoS ONE.  
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contact angle was likely influenced by both surface hydrophobicity and roughness (42, 

43).  

Table 3. Comparison of physiochemical epicuticular properties between cultivars with 2-

D or 3-D wax crystals on leaf surfaces. 

 

Absence or presence of 3-D wax crystals was determined by SEM. Tomato cultivars were 

excluded because of different tissue type.10 

 

Although previous work suggested that surface roughness favors microorganism 

adhesion and prevents detachment of E. coli from selected fruits and sprouting seeds 

when treated with a combination of organic acids and surfactants (44, 45), the smaller 

size of OSU rotaviruses compared to bacteria may allow for viral adsorption on the 

                                                 
10 This table was included in the same plication on PLoS ONE and created by Dr. Kang-mo Ku. Table data 

were provided by Dr. Kang-mo Ku.  
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produce surfaces regardless of the roughness. Using the dynamic light scattering method 

described in previous studies (46, 47), we found that the rotavirus suspension showed one 

peak with an average diameter of 175 ± 1 nm, suggesting of a slight aggregation of every 

two viruses. This aggregation size is much lower than the height variations of adaxial 

surfaces (1.1 µm to 8.0 µm) within the 24 cultivars from various species. We suggest that 

the relatively smaller size of rotaviruses compared to the height variations of the leaf 

surfaces allow the adsorbed rotaviruses to be located in the “valleys” of produce surfaces 

and may not be removed by the washing treatments. Our results suggest that for 

nanometer-sized viruses, compared to micrometer scale bacteria like E. coli, surface 

roughness may not be a critical factor controlling viral adsorption to produce surfaces.   

Previous work found the aggregation of E. coli O157 and norovirus virus-like-

particles on or inside the stomata (13, 19), suggesting that the presence of stomata may 

significantly help viruses adsorb to the vegetable surfaces. Hence, the contribution of 

stomata to viral adsorption was also investigated in our study by correlating adaxial 

stoma numbers and lengths with the number of adsorbed rotaviruses. While no significant 

correlations were found between the numbers of adsorbed rotaviruses and adaxial stoma 

numbers (P = 0.113) and lengths (P = 0.689), we found that vegetable samples with 

crystalized wax present on their surfaces showed significantly higher contact angles, and 

concentrations of alkanes, fatty acids, ketones, and total wax, as well as significantly 

lower surface roughness and the number of adsorbed rotaviruses, than the samples 

without 3-D crystalized wax present on the epicuticular surface (Table 3). This 

observation is consistent with a previous study reporting a reduced adsorption of the plant 

fungal pathogen, Agathis robusta, when stomata were covered by wax (48). In our study, 
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eight of the 24 vegetables had 3-D wax crystals on their epicuticular layers, and seven out 

of eight had stomata covered by wax crystals, as shown in Figure 3. The wax crystals 

shielding the stomata could prevent OSU rotaviruses from residing on or inside the 

stomata. Notably, ‘Outredgeous’ romaine lettuce did not have stomata covered by wax 

crystals, suggesting the potential for deposition of rotaviruses on or inside the stomata as 

observed in a previous study showing norovirus-like-particle aggregation at stomata of 

romaine lettuce leaves (19). In addition, up to 4.4 ± 0.3 log10 genome copies/ cm2 OSU 

rotaviruses were able to adsorb to tomato fruit surfaces, which do not have stomata (49). 

These results suggest that for this comprehensive set of 24 fresh produce cultivars the 

presence of stomata is not necessary for rotavirus adsorption to produce surfaces, and the 

presence of 3-D epicuticular wax crystals covering stomata, rather than the stoma lengths 

and numbers, may play a more important role in the number of adsorbed rotaviruses 

associated with leaf stomata.  

 

Figure 3. Epicuticular images from various vegetable leaves and tomato fruits.11 

                                                 
11 This figure was included in the same plication on PLoS ONE and created by Dr. Kang-mo Ku. 
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Electrostatic forces, the presence of stomata, and exposed carbohydrates on 

epicuticular surfaces of plants have been suggested as important contributors to the 

number of rotaviruses adsorbed on the produce surfaces (15, 18, 19). Here we established 

a PLS prediction model to quantitatively explain the number of rotaviruses adsorbed on 

the epicuticular surfaces based on the physicochemical properties of the epicuticular 

surfaces. The PLS model was selected instead of multiple linear regression model 

because PLS allows for the inclusion of X variables that co-correlate (50). As described 

above, significant correlations between contact angles and concentrations of alkane, 

ketones, and fatty acids were observed. Based on the PLS model results, the major 

epicuticular properties which included the concentration of alkanes, fatty acids, alcohols, 

and ketones, contact angle, and surface roughness, together could explain 60% of the 

variation in viral adsorption among the cultivars. While we found moderate correlations 

between each individual variable and the number of adsorbed rotaviruses, none of these 

factors can individually explain more than 25% of the viral adsorption results. The 

highest coefficient of determination was observed between viral adsorption and alkane 

concentrations (R2 = 0.238). The PLS model results suggest that these major epicuticular 

properties together impact the number of adsorbed rotaviruses. In addition, these major 

epicuticular properties are interdependent. For example, increasing wax contents may 

generate physical barriers that can increase contact angle. To the best of our knowledge, 

statistical modeling for prediction of viral adsorption has not been conducted, and this 

study for the first time calculated how these produce surface variables could 

quantitatively describe viral adsorption. 
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In summary, OSU rotaviruses were found to attach to a wide range of salad 

vegetables, suggesting a potential public health concern regarding rotavirus 

contamination during fresh produce pre-harvest production. This is the first report of 

lower viral adsorption on fresh produce surfaces associated with the presence of 3-D 

epicuticular wax crystals. In addition, the results obtained with 24 cultivars of leafy 

vegetables and tomato fruits commonly used in salads suggest that physical and chemical 

surface properties of the fresh produce need to be collectively considered for efficient 

sanitizer development. Future studies will determine whether commonly used sanitation 

strategies effectively remove adsorbed viruses and how these strategies influence the 

concentrations of alkanes, fatty acids, alcohols, and ketones on the produce surfaces that 

may allow for recontamination after sanitation.  
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CHAPTER 5 

SANITIZATION 

Introduction: 

 As the major pathogen that causes severe gastroenteritis among children, Group A 

rotaviruses can be a food safety concern through its pre-harvest contamination of produce 

(51). In South Africa, group A rotaviruses were detected in irrigation water and receiving 

vegetables, suggesting a potential human infection with rotavirus (10). Fresh produce, 

due to the raw consumption and little processing, puts consumers at a higher risk of being 

infected. Therefore, in this study, the sanitization effects of free chlorine, one of the most 

commonly used and cheap sanitizers in food industry, were tested on three species of 

salad vegetables at various contact-time lengths. Previous studies recommended to use 

free chlorine at above 50 mg/l, at a pH < 8.0, and with a contact time between 1-2 

minutes for fresh vegetables (52). Hence, free chlorine was used at 50 ppm and pH = 7 in 

this study.  

 In order to detect only infectious rotaviruses at very low concentrations, a new 

quantification method was adopted from previous publication but modified in this 

experiment to greatly increase the sensitivity of viral infectivity assays (53). Instead of 

ELISA tests, FFU assays were integrated with RT-qPCR and eventually able to detect 

viruses at only 2 FFU. This experimental design was able to provide preliminary data on 

rotavirus removal by free chlorine from vegetable surfaces for future experiments and 

mechanism investigations. Meanwhile, the obtained results suggested a potential 

correlation of produce surface properties to rotavirus removal by free chlorine.  
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Materials and methods 

In this study, ‘Red Russian’ kale, ‘Starbor’ kale and ‘Totem’ Belgian endive were 

selected as model produce and harvested at market maturity. OSU porcine rotaviruses 

(un-tripsinized) were propagated and harvested as described before (35). Free chlorine 

(sodium hypochlorite solution, pH = 7) was used in this study at 50 ppm.   

Harvested leaves were gently rinsed with DI water to remove soil particles. Six 

disks (three for adaxial and three for abaxial inoculation) were exercised from each leaf 

of the three species. On the surface of each leaf disk, 2 drops of 20 μl OSU rotavirus (5.1 

log 10 FFU/ml) solution were carefully placed on either adaxial side or abaxial side. The 

inoculated disks were incubated for 1 h at room temperature in a biological cabinet for 

the droplets to dry. After the incubation, the leaf disks were treated with 4ml (1 g leaf : 

150 ml sanitizer) sodium hypochlorite solution (50 ppm, pH =7) for different time 

lengths (0.5 min, 1min, 2min, 4min, 5min, 8min, and 10min) on ice. For each species, 

every time point had six replicates, three from adaxial and three from abaxial sides. The 

free chlorine solution was freshly made by diluting chlorine in DI water at a ratio of 

1.84:1000, and the pH was adjusted to 7. The solution was stored at 4 °C before using. 

After the disks were sanitized by free chlorine for the expected lengths of time, 100 μl of 

7 mM sodium thiosulfate solution was immediately added into the chlorine solution to 

stop disinfection reactions. Afterward, the leaf disks were carefully transferred with a 

tweezer into 1.5 ml centrifuge tubes, and 500 μl MEM without FBS was added into each 

tube for the elution of remaining rotaviruses on each leaf disk. Each sample was then 

vortexed for 30 s to completely remove rotaviruses from leaf surface into elution buffer. 
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The elution efficiency was checked by quantifying and comparing remaining rotaviruses 

on leaf disks and in elution buffer through RT-qPCR, and was found to achieve 100%.  

The infectious rotaviruses in elution buffer were quantified through integrated cell 

culture and qPCR assay (ICC-qPCR) that was adopted and modified based on previous 

publication (53). The protocol is briefly described here. 400 out of 500 μl viral solution 

was activated with 10 μg/ml of trypsin for 30 min, and then added to confluent 

monolayers of MA-104 cells in 24-well plates for 30-min incubation at 37°C under 5% 

CO2. After 30 min, the cell monolayers were gently washed with serum-free MEM to 

remove unbound rotaviruses, and then incubated in 500 μl of fresh MEM without the 

serum for 18 h at 37°C under 5% CO2. 18 h later, the plates underwent RNA extraction 

for the collection of both cellular and viral RNA. The number of amplified rotaviruses 

and cells were quantified by running qPCR for the extracted RNA samples. See Chapter 

2 for the detailed protocol of RNA extraction and qPCR quantification of OSU 

rotaviruses.  The positive controls for each vegetable species underwent the same 

procedure except that they skipped chlorine sanitization treatment, and therefore right 

after the 1-h incubation with rotaviruses, the leaf disks were transferred into 1.5 ml 

centrifuge tubes for virus elution. As described in Chapter 2, the negative controls 

incubated with PBS instead of viral solution showed that the vegetables had not been 

previously contaminated with OSU rotaviruses.  

The cell numbers in each well of a 24-well plate were determined by RT-qPCR 

using the same qPCR kit, program, reaction recipe as for rotaviruses quantification 

described in Chapter 2, except that different primers and standards for the generation of 

calibration curves were used. The primers (Forward: AATCCCATCACCATCTTCCAG 
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and Reverse: AAATGAGCCCCAGCCTTC) were used to specifically amplify cellular 

GADPH genes as described in previous study (54). The standard curve was generated by 

correlating cell concentrations of a serially diluted MA-104 cell stock, which had been 

quantified with hemocytometer, with the corresponding Ct values of dilutions from 

qPCR. The cell concentration of each sample was calculated from standard curves that 

were conducted for every set of RT-qPCR. For example, Y = −3.15X + 42.515 (R2 = 

0.99, efficiency = 107%). Y is the cell concentration (log10 cell numbers/ml), and X is the 

Ct value. 

In order to quantify infectious viruses in elution buffer, the qPCR results from 

rotavirus samples after the 18-h incubation need to be correlated with the amount of 

infectious viruses before the ICC-qPCR step. To achieve this, a calibration curve was 

generated using the same OSU rotavirus solution as used in sanitizer assays. The OSU 

rotavirus solution (5.1 log10 FFU/ml) was activated with 10 μg/ml of trypsin for 30 min, 

and then serially diluted in serum-free MEM at 10, 100, and 1000 times to generate four 

standards. 400 μl of each standard was added to confluent cell monolayers in a 24-well 

plate, and quantified using ICC-qPCR as described above. Afterward, a standard curve 

was generated to correlate the number of infectious viruses (log10 FFU) before viral 

amplification in cells with the ratio of amplified viruses to cell concentrations (log10 

amplified viruses per cell). Here the cell concentrations were taken into consideration in 

order to decrease the influence of different cell numbers on viral infectivity 

quantification. For example, Y = 0.9238X + 2.4279 (R2 = 0.99). Y is the amount of 

infectious rotaviruses (log10 FFU), and X is the ratio of amplified viruses to cell 
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concentrations (log10 ratio). For every set of experiment, the standards went through the 

ICC-qPCR step the same time as the samples.  

Data analysis was conducted with Microsoft excel.  

Results and discussion 

 As shown in Figure 4, obtained data of remaining infectious rotaviruses on the 

vegetable leaf surfaces were plotted as log10 N/No versus lengths of contact time. N 

refers to the amount of remaining infectious viruses after sanitization treatment for 

certain time lengths, and No is the number of infectious rotaviruses in the initial OSU 

viral solution. Hence, the plots of log10 N/No versus contact time could be interpreted as 

rotavirus removal from the vegetable leaf surfaces by sodium hypochlorite solution with 

time. For positive controls, whose contact time was counted as zero, N equaled No and 

therefore log10 N/No equaled zero.   

 

Figure 4. The plots of rotavirus removal from vegetable surfaces of three different 

species with time. Free chlorine was used as sanitizers at a concentration of 50 ppm.  
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 In this experiment, ‘Totem’ Belgian endive (log10 N/No = -3.37 ± 0.5 at 0.5 min) 

showed the highest rate of rotavirus removal within the first 30 s, followed by ‘Red 

Russian’ kale (log10 N/No = -2.34 ± 0.67) and ‘Starbor’ kale (log10 N/No = -1.80 ± 1.2). 

These results seemed to imply that the rotavirus removal from leaf surfaces might be 

related to the wax contents of the epicuticular layers of each species. As in our published 

work, ‘Totem’ Belgian endive showed lowest wax concentration in the epicuticular layer 

while ‘Red Russian’ and ‘Starbor’ kale had high concentration of wax content (55). 

However, further experiments need to be conducted for confirmation.  

 The major virus reduction in this experiment was observed within 1 min. This 

result was similar to the previous report that no recoverable L. monocytogenes were 

found after treating the microbes with chlorine (≥ 50 ppm) for 20 seconds or longer (56). 

When exposed longer to free chlorine, the rotavirus removal did not go higher but stayed 

as constant. This was because very few infectious viruses were left after 1-min 

sanitization. The consumption of chlorine by the organic compounds on vegetable 

surfaces was not likely responsible for the “steady phase” of virus removal, since 

maximum 50 ppm of free chlorine was found to be consumed by organic compounds 

present on ‘Red Russian’ kale surfaces. For conservative evaluation of sanitization effects 

on rotavirus removal, the samples at longer contact time that had infectious rotaviruses 

under qPCR detection limit (3.9 log10 genome copies/ml) were also taken into 

consideration with the detection limit as their manually assigned results. In this way, the 

potentially stronger sanitization effects for longer contact time could be quantitatively 

and conservatively evaluated. However, this method might be influenced by background 

noise. Therefore, for the future experiment, a higher concentration of rotavirus solution is 
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highly recommended to use for the measurement of sanitization effects at longer contact 

time.  

 Compared to previously published work, our results showed higher virus 

reduction by free chlorine (57). The difference could come from different experimental 

materials, scale and procedure. For example, fewer viruses were used in this study. We 

only used 40 μl of rotavirus solution (5.1 log10 FFU/ml) for inoculation, while in the 

previous publication, the authors achieved a much higher inoculation level (1.5× 108 

PFU). In our experiment, small leaf disks (with a diameter of 15.6 mm) were manipulated 

instead of whole leaves or vegetables. The flat disk surfaces might be easier for the 

chlorine solution to wash off adsorbed viruses than the curved leaves with valleys on the 

surfaces.  
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