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ABSTRACT 
 

The dynamic nature of the actin cytoskeleton enables the rapid shape 

changes that are necessary for processes such as wound healing, motility and 

division of cells. Disassembly of actin filaments is extremely critical for the 

reorganization of cell shape. The cell possesses several factors that 

depolymerize actin filaments in an environment that has a high concentration of 

polymerizable monomer. However current microscopic techniques preclude the 

direct observation of the dynamics of individual actin filaments that usually exist 

as part of highly crosslinked networks inside cells. Therefore, the mechanism(s) 

by which actin filaments disassemble inside cells remains unclear. 

In this work we use a combination of single filament imaging of 

fluorescently labeled actin filaments as well as pyrene and FRET-based 

spectroscopy in order to reconstitute cellular disassembly in vitro in the presence 

of three factors: cofilin, coronin and Aip1. These three factors have been shown 

to be principally responsible for the disassembly activity of thymus extract. We 

describe here our discoveries regarding catastrophic whole filament 

destabilization of actin in the presence of the three factors. We also 

reinvestigated the role of Aip1 alone in cofilin-mediated depolymerization of actin 

filaments. We showed that Aip1 is not an actin capping protein as was previously 

thought, however it can destabilize cofilin-saturated stable filaments and 

potentiate cofilin’s severing and depolymerization activity. During the course of 

our work we also uncovered some insights on the biophysics of filament 

severing in the presence of cofilin. 



iii  

ACKNOWLEDGEMENTS 
 

I would like to thank Bill Brieher, my advisor, for his creativity and 

scientific spirit that I hope I was able to inherit from him. I thank him for his 

generosity with his time, his knowledge and his ideas, his honesty about the high 

and low points of his scientific journey and for letting me experience both 

structure and autonomy in my scientific career. I thank him for always being 

there, even when it was inconvenient and easefully mentoring an unwieldly trio 

of first years that worked on such vastly different projects. I doubt I will be able to 

describe properly how hugely fun and intellectually stimulating his lab has been 

for me. Finally, I’d like to thank him for being an exceptional human being, 

unfailingly kind, patient and supportive to his students even in their lives outside 

of lab. 

I would like to thank Vivian Tang for her guidance, intellectual and 

experimental. Being in close quarters with an exemplary scientist such as Vivian 

taught me a lot. I thank her for her words of encouragement, many of which I 

remember and cherish. Thank you to the members of my committee Dr. 

Newmark, Dr. Gillette, Dr. Raetzman and Dr. Wang for furnishing me with advice 

on projects and on plans of the future, for their appreciation of my efforts, for the 

kind words they had for me when I was applying to postdoc labs and their 

unadulterated excitement on my behalf when I received job offers. 

Thank you to Dr. Jie Chen for her wonderful advice, Dr. Belmont for his 

wry and timely mentorship, Dr. Doug Mitchell for a brilliant third lab rotation, 

professors of MCB and of course Laura Martin and Elaine Rodgers from the 

CDB office for enabling the very logistics of my graduation. 



iv  

Thank you Kieran Normoyle for your endless patience with my questions 

and for teaching me, to name just a few things, how to purify actin, how to 

change the filter on the FPLC, for being the stellar biochemist that you are and 

for your wit, good humor, kindness and gentleness. Thank you Hui-Chia Yu for 

making CapZ which was instrumental for the Current Biology paper, for your 

friendship and loyalty, for teaching me about persistence and dedication in 

science and for your wonderful company during this journey. Thank you Jim 

Kemp for teaching me to take risks and try new techniques . Thank you for 

sharing your ideas, troubleshooting advice and for your comic timing! In John Li, 

I have found a co- weird scientist/late lab-rat/eccentric music lover. Thank you 

for making me feel like I fit in! 

To Karthik Murali I owe a debt of gratitude. From reading my graduate 

school applications to attending every talk I gave, I thank him for his tireless and 

dogged support that I have the privilege of receiving even today. If it weren't for 

him, I would never have been able to bounce back after a trying qualifying 

examination. From picking me up when I worked too late into the night to 

boosting my morale when I was struck by imposter syndrome, or just being 

there, he has been instrumental in my success. 

Ruchi Deshpande has been my best friend, acting big-sister, 

counsel and partner in fun. She has inspired me, grounded me and reminded me 

of my priorities when I lost sight of them. She has patiently answered endless 

existential questions that arose during the course of my life in Urbana- 



v  

Champaign and has advised me soundly on as much of the unpleasant 

paperwork as she could and I thank her. 

Thank you to Prerna Shetty for her warm friendship full of capers and 

hilarity and for being one of my oldest inspirations. 

I thank Ranjani Murali for being wise beyond her years in life and science, 

for being my colleague and competitor and a wonderful friend. It is from her that I 

learned excellence and fastidiousness, persistence, uncompromising virtue and 

the fortitude that a career in science requires. I admire her for being visionary 

and goal-oriented and for showing me that there's always room for improvement. 

I have learned a lot from her and I thank her. 

Thank you to Rajashekar Iyer for glamorizing neuroscientific nerdiness. 
 

Raj has been a stoic and unconditionally loving friend. Interacting with Raj 

exposed me wonderful sides of science, gadgetry and politics. From Raj I learnt 

to present my opinions confidently, and to remember that there was always 

something I probably didn't know about the system I was studying. 

Thank you to Utathya Chattopadhyaya for bestowing on me 

emcompassing and heartwarmingly over-the-top affection. Utathya’s fierce 

friendship and loyalty has made many a problem smaller. I thank him for 

supporting and challenging me, for his unwavering faith in me and for his 

intelligence, honesty, strength, kindness and good humor. 

Thank you to Bijoy Desai for being one of my first friends in this town. He 

is a brilliant scientist and person, remarkable and unique and I love him dearly. 

Thank you to Shyamal Subramanyam for things tangible and intangible, among 



vi  

which I include teaching me how to pack a column and for setting unreachable 

standards for maintaining lab notebooks. 

Thank you to Venanzio Cichella for his steadfast, loyal and honest 

friendship, for his integrity and for setting an example of nonchalant excellence 

in every endeavor. Thank you to Apoorv Tiwari for reminding me to stop and 

smell the roses (and sing to them) once in a while. I thank him for reminding me 

to be innovative and mischievous, resilient and impulsive. He taught me how to 

want more, to fear less and to let go. Thank you to Zachary Riebling for making 

me feel loved, good and unique and for being one of my most effective 

defendants against self-criticism. 

There are several wonderful people I met in Urbana-Champaign that have 

been part of my journey and I will not be able to name them all. Rachel 

Waldemer, Itamar Livnat, Lily Mahapatra, Martina Mustroph, Neal Andruska, Mat 

Cherian, Abe Qavi, Katie Molohon-Hess, Chris Liu are among a few notable 

ones from the Department of MCB. Thank you to my friends Chamee Yang, 

Aristotelis Panagiotopoulos, Federica Di Blasio, Carlo Di Giulio, Sergio Poo 

Dalidet, Shikha Lakhanpal. Thank you to my (large and eccentric) family without 

whom I would simply not be the person I am. 

Finally I want to thank my parents, Vimla and Vithal Nadkarni, for the fact 

of my existence. It has been gratifying to see them taking more pride in this 

accomplishment than I, and I will probably never be able to fathom the 

commitment and sacrifice it has taken for them to raise me. I love them infinitely 

and thank them for everything. 



vii  

TABLE OF CONTENTS 

CHAPTER 1: GENERAL INTRODUCTION ................................................................ 1 

CHAPTER 2: SPECTROSCOPIC ASSAYS TO INVESTIGATE ACTIN 
DISASSEMBLY IN THE PRESENCE OF COFILIN, CORONIN AND AIP1……16 

CHAPTER 3: ATTRIBUTING NOVEL FUNCTIONS TO AIP1 IN ACTIN 
DISASSEMBLY...................................................................................................37 

CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS .............................. 63 

APPENDIX: ACTIN FILAMENT SEVERING BY COFILIN.... ................................ 71 

REFERENCES ............................................................................................................. 84 



1  

CHAPTER 1 

GENERAL INTRODUCTION 

Division, directional movement, polarized growth and secretion: these are 

seemingly mundane processes in a cell’s life. However, in order to carry out 

these functions, spatial organization of cellular material is critical. For example, 

in order to be able to divide quickly, faithfully and symmetrically, cells must 

segregate their chromosomes to two distinct poles. In order to be able to move 

or grow directionally, cells must designate a top, bottom, front and back. 

Cytoskeletal polymers are the executors of spatial organization in 

eukaryotic (and even bacterial) cells. These are filamentous polymers made up 

of smaller subunits that can readily be assembled into various structures, and 

disassembled easily to be reconfigured into different structures. These are as 

vital to cells (and consequently, tissues and organisms) as systems that mediate 

processes like energy production or vesicular transport. 

Eukaryotic cells have three main polymer systems that endow cells with 

the properties of organization, structural stability and rapid reorganization of cell 

shape. These are: actin, microtubules and intermediate filaments. Actin and 

microtubules possess an intrinsic structural and biochemical polarity, whereas 

intermediate filaments are non-polar. 

Actin is the most abundant protein in eukaryotic cells and can polymerize 

into dynamic filamentous polymers. These filaments can form a variety of arrays 

(Figure 1.1) (Blanchoin et al., 2014). Bundled filaments are found in the basal 

stress-fibers and in the finger-like sensory filopodia that the cell extends in order 
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to sense its environment. Actin filaments are also found in crosslinked arrays at 

the leading edge of the cell and it is the polymerization and the pushing of these 

filaments against the membrane that provides the force for cellular motility. Actin 

is also coupled to several transmembrane molecules that are utilized by cells in 

order to adhere to one another and to their substrates. Molecular motors can 

“walk” on this system of tethered filaments and generate contractile forces. 

Therefore, actin (along with adhesion molecules and motors) is a major 

component of the force generation/transmission system of cells. Consequently, 

the actin cytoskeleton is a versatile system that has a major role in processes 

including cellular motility and division, cell polarity and directional transport, cell 

adhesion and endocytosis. Dysfunction of these processes can be lethal for 

cells. 

 

 
 Biochemical characteristics of actin filaments 

 

Actin filaments are formed by the polymerization of monomeric subunits 

(G-actin) that can bind ATP. Actin displays a structural asymmetry as the 

nucleotide binding cleft is found on one face of the molecule and this lends an 

intrinsic polarity to the filament (Figure 1.2). Polymerization of G-actin activates 

the nucleotide hydrolysis activity of the protein 40,000-fold (for review see 

Reisler and Egelman, 2007). Incorporation of ATP-G-actin into a filament is 

followed by ATP-hydrolysis and phosphate release. This is likely associated with 

changes in the structure of the filament although the precise nature of these is 

still debated. The energy of ATP hydrolysis is used to destabilize actin filaments 
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and therefore an ADP-actin filament is less stable than an ATP-filament and will 

shrink faster. Exchange of monomers occurs at the ends of the filament and 

actin filaments have two ends with distinct properties, a more dynamic end (also 

called the barbed end, or the plus end) which adds and loses monomer faster 

than the less dynamic end (also known as the pointed end or the minus end) 

(Pollard, 1986). The rate at which monomers are exchanged at the two ends 

also depends upon the concentration of the monomers in solution. At a 

monomer concentration above 0.12 µM (the barbed end critical concentration) 

the barbed end grows faster than it shrinks and at a concentration above 0.6 µM, 

the barbed as well as the pointed end grow. However, when the concentration of 

monomer is in the range of 0.12- 0.6, the filament preferentially grows at the 

barbed end and loses monomer at the pointed end. The filament therefore 

undergoes cycling or “treadmilling” until all the ATP in the solution is exhausted 

(Wegner, 1976). 

In cells, although there is a high concentration of polymerizable monomer 

(Pollard, 2004) and exposed barbed ends would have the propensity to grow, 

unregulated polymerization of actin is unproductive. Some steps that ensure that 

filaments nucleate only in specific regions of the cell are as follows. 

Firstly, the actin filament possesses an intrinsic kinetic barrier to 

polymerization. The “nucleation” step, or formation of an actin trimer (nucleus/ 

seed) that can elongate in the presence of monomer, is thermodynamically 

unfavorable (Figure 1.3)(Alberts et al., 2008). Most of the G-actin in the cell 

exists bound to monomer sequestering factors that limit the unregulated 
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polymerization of actin. For example, one such factor, profilin, does not allow 

spontaneous nucleation of actin, but only allows polymerization at existing free 

barbed ends (Pantaloni and Carlier, 1993). Secondly, polymerization is usually 

activated at membranes and in response to extracellular signals. Lastly, and 

most pertinently, the actin in cells constantly undergoes turnover. Photo- 

activation of a fluorescently caged derivative of actin showed that the F-actin in 

cells has a half-life of ~30 seconds (Theriot and Mitchison, 1991). An attractive 

possibility is therefore that actin assembly is locally regulated in cells however 

the rest of the cytoplasm has depolymerizing characteristics. By utilizing 

mechanisms that make them less susceptible to disassembly, actin filaments 

and arrays may be able to persist in the cytoplasm. 

 

 
 Actin disassembly inside cells 

 

In pure solution at steady state, filaments are thought to undergo a 

phenomenon known as treadmilling (Wegner, 1976). It would be reasonable to 

assume that actin filaments also treadmill inside cells, however, the in vitro rate 

constants are 2 orders of magnitude too slow to account for the fast rates of 

disassembly seen inside cells (Theriot and Mitchison, 1992). This discrepancy 

can be explained by the fact that cells express factors that can accelerate actin 

disassembly. 

Although the view of the mechanism of disassembly inside cells continues 

to evolve, most models until recently have relied on the assumption that 

monomer loss occurs mainly at the pointed ends of actin, much like treadmilling 
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in vitro. Functional studies of actin disassembly proteins, thus far, have been 

slightly biased by this view. 

The most essential of filament depolymerization factors, ADF/cofilin, was 

purified from brain extract in a search for proteins that could maintain actin in the 

nonfilamentous form (Bamburg et al., 1980). Since then cofilin and cofilin- 

homologs have been found to be necessary for viability in several organisms (for 

review see Bamburg and Bernstein, 2010). Cofilin increases filament turnover or 

“dynamizes” filaments (Carlier et al., 1997) by severing them into smaller 

fragments (Maciver et al., 1991), the pointed ends of which could lose monomer. 

The increase in the number of pointed ends due to severing was initially 

interpreted as an increase in the pointed end off-rate (Carlier et al., 1997). 

However, this has since been disproved. Cofilin does not significantly increase 

the off-rate at filament ends (Andrianantoandro and Pollard, 2006) and thus is 

unlikely to affect the rate of individual filament treadmilling. 

Cofilin binding to actin changes the twist of actin filaments (McGough et 

al., 1997). The interfaces between cofilin-bound twisted sections of actin and 

cofilin-free sections of actin are thought to be unstable and this leads to severing 

(De La Cruz, 2009). 

Cofilin also binds ADP-actin with greater affinity than ATP-actin (Carlier et 

al., 1997), thus leading to the view that assembly and disassembly at the leading 

edge of the cell are spatially separated (Pollard and Borisy, 2003) (Figure 1.4). 

In this view, newly polymerized filaments move rearward by retrograde actin flow 
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and become competent to bind cofilin after hydrolyzing ATP. They are then 

depolymerized by severing and pointed end monomer loss. 

There is a high concentration of polymerizable monomer inside cells. 
 

Therefore, depolymerization would only be effective if the dynamics of the 

exposed barbed ends were restricted. High affinity barbed end capping factors 

such as Capping protein (CP) (Wear et al., 2003) and Aip1(Okada et al., 2002) 

are thought to be responsible for occluding the barbed ends of newly severed 

filaments in order to bias filament dynamics toward pointed-end disassembly. 

This is a rather convenient view of filament depolymerization inside cells that is 

consistent with the behavior of some factors in vitro. However there are a 

number of experimental observations that are not readily explained by the 

textbook model. 

Firstly, not all barbed ends in the leading edge of the cell are capped. In 

2002, Watanabe and Mitchison expressed a low level of gfp-labelled actin in 

cells and observed clusters of the fluorescent molecules or “speckles” to infer 

the dynamics of single actin filaments. Speckles persisted within the field of view 

if they were incorporated into an actin filament. Appearance of speckles could be 

used to track a polymerization event whereas disappearance of a persistent 

speckle could report on disassembly. They found that new fluorescent speckles 

appeared not just at the membrane, but all throughout the leading edge of the 

cell (Watanabe, 2002; Brieher, 2013). This indicated that there were uncapped 

filament ends all throughout the leading edge of the cell. 
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Forcibly capping these ends by the use of a barbed-end capping drug 

such as cytochalasin D reduced depolymerization kinetics rather than 

accelerated them, contrary to what would be predicted if filaments were 

disassembling solely through their pointed ends (Kueh et al., 2008). This 

indicated that barbed ends of filaments contributed to filament turnover. 

Observation of the branched organization of actin filaments in the 

lamellipodium of keratocytes and fibroblasts and in the actin comet tail of the 

bacterium Listeria monocytogenes by electron microscopy showed that pointed 

ends were anchored in Y-junctions and colocalized with the actin filament 

branching protein Arp2/3 (Svitkina and Borisy, 1999; Cameron et al., 2001). 

Although free barbed ends were visible, free pointed ends could not be 

visualized readily. This called into question the assumption that loss of monomer 

occurs mainly at the pointed ends of actin filaments inside cells. 

 

 
 Cofilin-mediated severing alone does not adequately explain disassembly 

 

 behavior of cellular actin 
 

Cofilin-mediated severing alone does not appear to be an efficient way to 

depolymerize actin filaments. When actin filaments are bound by high 

concentrations of cofilin, they are stabilized in an alternative twisted 

configuration (McGough et al., 1997). Cofilin-mediated severing does not obey 

the law of mass action and filament severing occurs most efficiently at low ratios 

of cofilin to actin (Andrianantoandro and Pollard, 2006; Suarez et al., 2011). 
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A number of observations indicate that cofilin-mediated severing is more 

critical for polymerization rather than depolymerization. Locally photo-activating 

a caged, inactive cofilin leads to a burst of polymerization and local protrusion 

(Ghosh et al., 2004). Expressing a severing-deficient mutant of cofilin in yeast 

prevents the assembly of actin patches (Chen and Pollard, 2013). Thus, 

severing appears to contribute to the generation of new mother filaments for 

elongation. 

The amount of cofilin in cells can be high, ranging from 3->20 µM in cells 

(Rosenblatt et al., 1997; Chen and Pollard, 2013; Brieher et al., 2006). However, 

adding recombinant cofilin to Xenopus egg extract to 4 times the amount of 

endogenous cofilin present in the extract does not impede disassembly 

(Rosenblatt et al., 1997). This indicates that it is not the amount but the ratio of 

cofilin to actin and perhaps other actin-binding/depolymerization factors that 

leads to a depolymerization event. 

It is difficult to temporally and spatially resolve disassembly in a cell at the 

single filament level due to the highly crosslinked nature of filaments inside cells. 

However, fluorescence decay profiles of bulk actin present in Listeria actin 

comet tails or in the lamellipodium of the cell can be used to infer the mechanism 

of disassembly inside cells (Figure 1.5). The kinetics of cellular actin 

disassembly can be fit by a single exponential curve (Theriot and Mitchison, 

1991; Kueh et al., 2010). This means that disassembly is a stochastic process 

like other processes that show single exponential decay such as radioactive 

decay. It implies that a newly polymerized filament is as likely to disassemble 
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within the population as an old filament and filaments do not undergo an ageing 

process that increases the probability of their destruction. Therefore, the fact that 

cofilin can only bind aged ADP-rich actin filaments in vitro does not seem to have 

much bearing on disassembly inside cells. This is also consistent with 

experimental observations that polymerization and depolymerization are not 

spatially separated in the cell (Ponti et al., 2003). 

Mathematical modelling of various disassembly mechanisms showed that 

severing followed by pointed-end disassembly did not produce exponential 

decay of actin filaments (Kueh et al., 2010). The two mechanisms that complied 

with the exponential decay model included treadmilling and catastrophic filament 

disassembly along the length of the filament. 

Moreover, if cells relied on severing alone, this might compromise the 

mechanical integrity of actin networks as fragmentation of filaments would lead 

to extremely short filaments that may not be able to perform load-bearing 

functions (Kueh et al., 2010) 

 

 
 Disassembly activity of cellular extract 

 

Cell extract is more efficient than pure cofilin at disassembing actin 

filaments and arrays. Additionally there is substantial evidence that current 

models of disassembly that involve severing/pointed end disassembly cannot 

fully explain the disassembly activity of cells. This motivated the search for 

factors that could potentiate cofilin-mediated disassembly (Brieher et al., 2006). 

By following the disassembly activity of thymus extract by biochemical 



10  

fractionation, two factors that potentiate cofilin-mediated disassembly in vitro 
 

were isolated namely, coronin and Aip1. 
 

Coronin 1A was first identified in Dictyostelium as an actin binding protein 

that participates in the reorganization of the cytoskeleton (De Hostos et al., 

1993; Gerisch et al., 1995). Mutants of coronin have defects in cytokinesis and 

cell-migration. Coronin has also been found to be important for debranching of 

actin at the leading edge of fibroblasts (for review see Gandhi and Goode, 

2008). Genetic interactions have been detected for coronin with cofilin in yeast 

(Goode et al., 1999). A possible molecular mechanism was put forth in the 

fractionation study; coronin could increase cofilin-binding on Listeria actin comet 

tails (Brieher et al., 2006). 

Aip1 is an actin and cofilin-interacting protein (Rodal et al., 1999) that was 

found to increase cofilin-mediated disassembly in vitro (Okada et al., 1999; 

Rodal et al., 1999). Mutations in Aip1 or perturbation of its function in cells leads 

to ectopic accumulation of F-actin (Ren et al., 2007; Kato et al., 2008), defects in 

actin turnover dynamics (Ono, 2003), and depletion of the actin monomer pool 

that fuels actin assembly (Okreglak and Drubin, 2010). The dominant model of 

Aip1’s activity is that it can cap newly severed cofilin-actin filaments (Okada et 

al., 2002; Balcer et al., 2003), however there is some work that calls this into 

question (Ono et al., 2004). 

When the fractionated factors (coronin, cofilin and Aip1) were combined 

together in vitro, they showed an eccentric disassembly mechanism that was 

termed ‘bursting’ (Figure 1.6) (Kueh et al., 2008). Bursting filaments lost large 
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chunks of filaments in an end-biased manner without the detection of any short 

filament intermediates. The authors proposed that the filaments were 

depolymerizing directly to monomer, and bursting behavior unlike severing could 

produce exponential decay of actin (Kueh et al., 2010). Moreover, bursting was 

resistant to polymerizable monomer, indicating that it could be relevant in the 

cellular environment. 

However, there remains a controversy whether bursting is a distinct 

mechanism from filament severing. Moreover the contribution of each factor in 

the reaction is not known, nor is it known how these factors offer resistance to 

polymerizable monomer. As novel roles for factors come to light, it is important 

to reinvestigate old views and mechanisms of disassembly. With the advent of 

single filament imaging by TIRF and wide-field fluorescent microscopy we are 

able to view the effects of defined combinations of factors on actin filaments. 

With the inclusion of each additional factor to the mix, we increase the number of 

distinct molecular species and kinds of depolymerization reactions that occur. 

The ability to view these reactions thus gives us many insights into processes 

that could only be studied indirectly in the past. 

We describe here our discoveries regarding catastrophic whole filament 

destabilization of actin.  We developed FRET-based spectroscopic assays to 

give us insight into the bulk behavior of filament disassembly in the presence of 

cofilin, coronin and Aip1. We also investigated the role of Aip1 in cofilin-mediated 

depolymerization of actin filaments.  During the course of our work we also 
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uncovered some insights on the biophysics of filament severing in the presence 

of cofilin by single-filament imaging and these are described in the appendix. 
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 Figures 
 
 

Figure 1.1 Actin filaments in cells are found in a variety of arrays. Bundled 

filaments are found in the stress fibers and filopodia – sensory projections at 

the front of the cell; whereas crosslinked networks of filaments are found in the 

lamellipodium or leading edge of the cell and the cortex (Blanchoin et al., 2014). 

 

Figure 1.2 The nucleotide binding cleft in actin is found on one face of the mol- 

ecule and this lends to the protein an intrinsic structural asymmetry (Reisler and 

Egelman, 2007). 
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Figure 1.3 The formation of the actin trimer (oligomer) is the rate limiting step 

of actin assembly and involves a kinetic lag (Alberts et al., 2008) . 

 
 
 
 

 

Figure 1.4 A popular model of actin disassembly involves the spatial separation 

of polymerization and depolymerization and relies on cofilin-mediated severing 

and capping of free barbed ends (Pollard and Borisy, 2003). 
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Figure 1.5 Polymer mass in a Listeria actin comet tail is fit by a simple expo- 

nential curve. (A) Maximum intensity projection of GFP-actin of a comet tail 

from a time lapse movie of Listeria in a BSC- 1 cell (B) Experimental data (blue 

circles)  is best fit by a simple exponential (red dotted line) (Kueh et al. 2010). 

 
 

 

Figure 1.6 End-biased depolymerization of ‘bursting’ filaments. Frames from a 

movie of a single actin filament depolymerizing in the presence of the bursting 

factors is shown with a corresponding kymograph of filament length over time. 

The kymograph shows abrupt losses of chunks of filaments (arrowheads) 

(Kueh et al., 2008) . 
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CHAPTER 2 
 

SPECTROSCOPIC ASSAYS TO INVESTIGATE ACTIN DISASSEMBLY IN 
THE PRESENCE OF COFILIN, CORONIN AND AIP1 

 
 Introduction 

 

In vitro spectroscopic studies of actin labeled with a fluorescent probe N- 

(1-pyrene) iodoacetamide (referred to as pyrene-actin) have provided important 

information about the properties of the polymer (Kouyama and Mihashi, 1981). 

Emitted fluorescence of pyrene-actin increases with an increase in polymer 

mass. Kinetic measurements of pyrene-actin fluorescence can provide us with 

association and dissociation rates of actin monomer, as well as information 

about critical concentration(Cooper et al., 1983). Pyrene-based bulk assays are 

also important because they offer insights on the behavior of F-actin in 

combination with other factors at steady state. Bulk assays can often 

complement microscopic filament imaging assays especially about processes 

that occur on very fast time scales. 

However, as pyrene is an environmentally sensitive fluorophore, factors 

used in combination with actin can sometimes alter its behavior in undesirable 

ways. For example, fluorescence of pyrene-actin is quenched by the binding of 

cofilin – an essential depolymerizing protein in eukaryotes (Carlier et al., 1997). 

Pyrene can report usefully on cofilin-binding to actin, as degree of quenching is 

proportional to amount of cofilin bound. However, it cannot reliably answer 

questions about polymer mass or depolymerization rates. 

Single filament assays have also been used extensively to study the 

effects of cofilin on actin (Andrianantoandro and Pollard, 2006). The information 
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derived from these often contradicts that obtained by bulk pyrene assays. For 

example, spectroscopic assays indicate a change in critical concentration of 

actin by cofilin whereas single filament assays do not (Carlier et al., 1997; 

Andrianantoandro and Pollard, 2006). It is necessary to develop better assays 

that can report on bulk actin disassembly and address these differences. 

Moreover, bulk assays can often over come the spatial and temporal limitations 

of light microscopy as depolymerization reactions can occur rapidly and with the 

generation of intermediates that may be unresolvable by light microscopy. 

In order to reliably assess the behavior of actin in the presence of cofilin 

and other depolymerizers, and to circumvent the problems of quenching of 

fluorescence, we used a FRET-based spectroscopic method that reports on 

actin dynamics. FRET has been used in the past to report on actin assembly 

(Wang and Taylor, 1981; Taylor et al., 1981) and on filament assembly and 

disassembly of the bacterial actin homolog, ParM (Garner et al., 2004). We 

discovered that the FRET signal is unperturbed by the binding of cofilin and 

therefore can be used to report on rate and extent of disassembly in the 

presence of cofilin and other depolymerizers. 

In order to supplement the FRET assay we also developed a monomer 

generation assay which was based on the principle of quenching of Oregon 

green actin fluoresence. Fluorescein is an environmentally sensitive fluorophore 

whose fluorescence is quenched or undergoes a red-shift when bound by anti- 

fluorescein antibodies or when fluorescein-tagged proteins non-specifically bind 

other proteins, certain amino acids and molecules like iodide in solution (Watt 
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and Voss, 1977, 1979; Ferenčík, 1993). We observed that the fluorescence of 

Oregon green 488 actin monomer was quenched by the binding of Vitamin D- 

binding protein (DBP), a high affinity actin monomer sequestering protein (Van 

Baelen et al., 1980; Lees et al., 1984). Vitamin D-Binding Protein has been 

known to increase the fluorescence of monomeric pyrene-actin and 7-chloro-4- 

nitrobenzeno-2-oxa-1,3-diazole (NBD)-actin (Lees et al., 1984; Detmers et al., 

1981). In these studies, as well in our work, the actin was labelled either on 

cysteine 373 or lysine 372 which indicates that these residues might be close to 

the interaction surface of DBP. 

We describe the development of the FRET and the monomer-generation 

assay. We used these assays to investigate disassembly in the presence of the 

bursting factors and to study differences between catastrophic filament 

disassembly or “bursting” and other mechanisms of actin disassembly. 
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 Materials and Methods 
 

Protein purification: Actin was purified as previously described (Pardee 

and Spudich, 1982) and gel filtered on a Sephacryl S-300 (GE-Healthcare) 

column. Recombinant human cofilin-1 was purified as previously described with 

modifications (Brieher et al., 2006). Briefly, cofilin was expressed in E.coli BL21 

cells by IPTG induction. The supernatant of the lysed bacterial cells was passed 

over a DE-52 column (Whatman) equilibrated in 20 mM TRIS pH 8.0, 50 mM 

NaCl, 1 mM EDTA and 1 mM PMSF (Buffer A). Cofilin was contained in the 

flowthrough and relevant fractions were passed over a Q-column (GE 

Healthcare) equilibrated in Buffer A. Cofilin, contained in the flow-through, was 

purified by ultracentrifugal concentration and gel filtration on a Sephacryl S-300 

column. Aip1 was purified using the same series of ion exchange, hydrophobic 

interaction and gel filtration columns as described previously (Brieher et al., 

2006). ActA (Skoble et al., 2000) and CapZ (Soeno et al., 1998) were purified as 

previously described. Coronin 1a was purified commercially from baculovirus 

(Blue Sky Bioservices). Arp2/3 was purified as described (Brieher et al., 2004) 

with some modifications. Briefly bovine thymus was homogenized 1:2 (w/v) in 

buffer (20 mM TRIS pH 7.4, 20 mM KCl, 5 mM MgCl2, 2 mM EGTA, 5 mM BME, 

1 mM PMSF) in a standard Waring Blender and passed over a DE-52 column 

(Whatman) equilibriated in the same buffer. The flowthrough was dialyzed into 

buffer B (20 mM HEPES pH 7.0, 20 mM NaCl, 5 mM BME) and passed over a 

70mL S-column (GE Healthcare). Activity was followed by Listeria tail formation 
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assays. Arp2/3 positive fractions were pooled and dialyzed to pH 8.5 and applied 

to a Source Q column (GE). Positive fractions were then gel filtered. 

Fluorescent labeling of actin: Pyrene-actin and Oregon Green 488 actin 

were prepared as described (Bryan and Coluccio, 1985). Briefly, G-actin was 

labeled on cysteines with a stoichiometric amount of N-pyrene or Oregon Green 

488 (Molecular Probes, Invitrogen). Actin was immediately polymerized by 

addition of 100 mM KCl, 2 mM MgCl2 and 0.5 mM ATP. The reaction was 

allowed to proceed overnight at room temperature (N-Pyrene maleimide) or at 

4ºC (Oregon Green 488 maleimide). Filaments were collected by centrifugation 

at 140,500 X g for 2 hours, resuspended in G-buffer, and dialyzed exhaustively 

against G-Buffer (containing DTT). G-Actin was subsequently gel filtered on a 

Sephacryl S- 300 column (GE Healthcare). Pyrene actin was 80% labeled and 

Oregon Green actin was 60-80% labeled. 80% TMR-actin was prepared as 

described (Tang and Brieher, 2012). 

FRET assay: Aliquots of labeled actin were diluted to 20 μM in G buffer 

(pH 7.4) and spun the next day at 227,900 X g for 20 minutes. 35-40% 

Tetramethylrhodamine labelled actin and 12-15% Oregon green 488 labelled 

actin were premixed at 20 μM. 

For the initial controls for polymerization assays (200 μl in a 96-well plate), 

polymerization was initiated by diluting G- actin 3 μM in 1x F-buffer(10 mM 

HEPES 7.8, 50 mM KCl, 0.5 mM EGTA, 1 mM MgCl2, 1 mM ATP). To monitor 

assembly, 0.5 μM 80% labeled spun pyrene-actin was added to the reaction as a 

tracer. Total actin in the reaction was 3.5 μM. Excitation wavelengths for Pyrene 
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and OG488 were 365 nm and 490 nm respectively. Fluorescence intensity was 

detected at 410 nm and 530 nm on a Spectramax M2 fluorimeter (Molecular 

Devices). 

For depolymerization reactions in the presence of the bursting factors 

actin was prepolymerized at 10 μM by the addition of 1x F-buffer(10 mM HEPES 

7.8, 50 mM KCl, 0.5 mM EGTA, 1 mM MgCl2, 1 mM ATP). The final 

concentration of actin in the reaction was 1 μM. Spectroscopic monitoring of 

fluorescence quenching of OG488 (λEx = 490 nm, λEm = 530 nm) over time was 

used to report on assembly/disassembly on a Spectramax M2 fluorimeter 

(Molecular Devices). Final concentrations of disassembly proteins were 1.25 μM 

cofilin, 0.75 μM coronin and 0.1 μM Aip1, unless indicated otherwise in graphs. 

Data was normalized using values of 1 as actin polymer and 0 as actin 

monomer. 

Monomer generation assay: Actin for this assay was prepared identically 

as the FRET assay except for the exclusion of TMR-actin from the reaction. TMR 

-actin was replaced by unlabelled G-actin. 1 μM Vitamin D-binding protein 

(Goldbio) was added to monomeric or polymeric actin to sequester actin 

monomer and the fluorescence was monitored (λEx = 490 nm, λEm = 530 nm) 

over time on a Spectramax M2 fluorimeter (Molecular Devices). Concentrations 

of proteins were as follows: 1 μM actin 1.25 μM cofilin, 0.75 μM coronin 0.1 μM 

Aip1 and 0.1 μM CapZ when applicable. 

Seeding assay: Actin filaments treated with various combinations of 

depolymerizers as described in the FRET assay. The reaction was allowed to 
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proceed to completion and roughly 1/10 of the reaction (125 nM) was used to 

seed new pyrene G-actin assembly (25% labelled, 1 μM, preincubated in G- 

buffer). Fluorescence was monitored (λEx = 365 nm, λEm = 410 nm) over time. 

Measurement of Critical Concentration using FRET: F-actin was 

prepolymerized at 10 µM and diluted to the desired concentrations in 1x F-buffer, 

in the presence of the indicated concentrations of the depolymerizers. Reactions 

were allowed to incubate overnight (12 hr) before reading. This was compared to 

equimolar actin concentrations where there was no FRET. Data were converted 

to E values as described previously by using the equation E*[actin]=Emax[actin]- 

Emax*Cc (Bugyi et al., 2006). 
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 Results 
 

 FRET assay reports on cofilin-mediated disassembly not cofilin-binding 
 

Excitation energy of fluorophores can be transfered non-radiatively to 

acceptor fluorophores that have an excitation wavelength overlapping with the 

emission spectrum of the donor fluorophore in a process known as Förster 

Resonance Energy Transfer (FRET) (Stryer and Haugland, 1967). We used 

FRET to report on the kinetics of actin polymerization by covalently labeling actin 

with two different fluorescent probes- Oregon Green 488 (OG488) and 

tetramethylrhodamine (TMR). This is manifested as a ‘quenching’ or decreased 

emission of donor fluorescence that can be measured over time. 

We mixed green and red fluorescently labeled actin at a high ratio of 

acceptor to donor. In order to show that the covalent labeling of the actin in no 

way altered the kinetics of assembly, we added a small amount of pyrene actin 

to the mix as a tracer (Figure 2.1A). The labeled actin shows the canonical lag 

prior to polymerization. The addition of actin nucleators, Listeria monocytogenes 

surface protein ActA and Arp2/3 significantly reduces the lag phase (Figure 

2.1B). 

After we established that the assay was reporting on the kinetics of actin 

polymerization, we asked if it could report on bulk actin disassembly. We first 

examined the effect of cofilin alone on actin, using FRET. The addition of cofilin 

to 2 µM prepolymerized F-actin at pH 7.8 caused an initial decrease in FRET, 

representing a decrease in polymer mass, in a dose-dependent manner over 25 

min (Figure 2.2A). This is consistent with the fact that cofilin binds to the newly 
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dissociated ADP actin monomers with an affinity of 150 nM and suppresses ADP 

to ATP exchange (Blanchoin and Pollard, 1998; Ressad et al., 1998). 

Cofilin changes the conformation of actin filaments upon binding and also 

causes severing and depolymerization of actin (McGough et al., 1997; Maciver 

et al., 1991). We considered the possibility that the decrease in FRET could 

simply be a result of conformational changes that occur upon the binding of actin 

by cofilin. In order to test if the decrease in FRET indicated disassembly of F- 

actin, we carried out the reaction with cofilin at pH 6.7. At this pH, cofilin is able 

to bind to actin and change the conformation of the filament but is unable to 

sever actin (McGough et al., 1997). In agreement with previously published data, 

we observed that the cofilin binds to the polymer at pH 6.7 and quenches pyrene 

fluorescence. However, it does not significantly alter the fluorescence of the 

Oregon green labeled actin, suggesting that the filaments bind cofilin but are not 

disassembled by it (Figure 2.2B). As an additional control to verify if the FRET 

assay was indeed reporting on the disassembly of actin, we measured change in 

FRET on addition of a monomer sequestering protein, DNase I (Hitchcock, 

1980) (Figure 2.2C). No FRET was observable 45 minutes after the addition of 

15 µM DNase I as all the F-actin had been depolymerized to monomer. 

 

 
 Only the triple mix of bursting factors alters both the rate and extent of 

 

 disassembly of actin 
 

After establishing that the FRET assay was indeed reporting on polymer 

mass, we used the assay to investigate if different combinations of factors could 
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alter the rate and extent of actin disassembly. 1.25 µM cofilin alone in 

combination with 1 µM actin caused a 30-40% decrease in polymer mass 

consistent with cofilin’s ability to sever actin and bind ADP-G-actin monomer 

(green curve). Addition of 0.1 µM Aip1 to this reaction increased the initial rate of 

depolymerization roughly by five times (yellow curve), consistent with Aip1’s 

ability to potentiate cofilin-mediated depolymerization. Conversely when 1 µM 

coronin was added to the cofilin-actin it led to an apparent increase in the 

polymer mass and a decrease in the depolymerization rate (blue curve). This is 

consistent with coronin’s ability to stabilize filaments against depolymerization 

(Galkin et al., 2008) by binding the filaments and also by increasing cofilin 

loading on actin and producing a cofilin saturated hyper-twisted filament (Brieher 

et al., 2006, unpublished data). While the behavior of any two factors 

approximated the disassembly characteristics of cofilin alone, when all three 

bursting factors were combined the FRET signal declined rapidly, leading to a 

near complete conversion of actin polymer to monomer with t1/2 ≈100 seconds 

(pink curve). Once disassembled, the actin did not reassemble over a period of 

25 minutes, demonstrating that the triple mix dramatically raises the critical 

concentration. No other combination of factors was able to produce this behavior 

(Figure 2.3A). 

In order to get a more accurate measure of the rate at which actin 

monomer was being produced, we used a monomer generation assay based on 

the principle that the fluorescence of Oregon green actin would be quenched on 

binding vitamin D-binding protein, a high affinity monomer sequestering factor. In 
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the FRET assay, the rate of depolymerization is a convolution of both the rate of 

dissociation of monomer as well as re-association of actin monomer in the 

presence of the depolymerization factors. However, as DBP acts as a passive 

‘sink’ for actin monomer, it isolates and reports on solely the depolymerization 

rate. 

When green actin monomer alone was combined with an equimolar 

concentration of DBP the fluorescence was completely quenched, however 

OG488 still fluoresced if it was incorporated in actin polymer (light yellow and 

purple curves respectively) (Figure 2.3B). If DBP was added to polymeric actin, 

the fluorescence gradually decayed reporting on the depolymerization rate. The 

addition of cofilin to this reaction generated more ends and rate of monomer 

generation was 3x that of pure actin (green curve). Capping the more dynamic 

barbed end of actin reduced the depolymerization rate of cofilin-actin, thereby 

validating the assay (blue curve). When the 3 bursting factors were combined 

with actin, 1 µM actin was depolymerized extremely rapidly with a t1/2 ≅ 50 s 

(pink curve). 

 

 
 Products of the bursting reaction do not seed new actin assembly 

 

The fact that actin failed to reassemble in the presence of the bursting 

factors over a period of 25 minutes led us to ask if the products of the reaction 

would be able to seed new actin assembly. We used the end products of the 

depolymerization reaction to nucleate a pyrene-actin polymerization reaction 

(Figure 2.3C). If the end products of the depolymerization were short filaments, 
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the lag phase of the actin polymerization reaction would be diminished. 

However, actin monomer or fragments with occluded ends would not serve as 

seeds. Unseeded pyrene actin showed a canonical lag phase prior to 

polymerization whereas cofilin, cofilin-Aip1 and cofilin-coronin treated, severed 

filaments yielded a more effective seeding mixture as there were more ends for 

elongation, consistent with the results of the FRET reaction. However, the 3x mix 

displayed the same lag phase to polymerization as unseeded actin thus 

indicating that the end products of the polymerization reaction were incompetent 

to seed new actin assembly. 

 

 
 The triple mix of factors raises the critical concentration of actin 

 

By rapidly depolymerizing actin and generating products that were unable 

to seed new actin assembly it appeared that the bursting factors were able to 

raise the critical concentration of actin. We used FRET to directly measure the 

critical concentration of actin in combination with the bursting factors. We 

compared the fluorescence of increasing concentrations of G- and F-actin. The 

concentration at which we first start to observe polymerization signifies the 

critical concentration (Cc) of actin. The Cc of pure actin was 0.2 µM. To validate 

the assay, we measured the Cc in the presence of actin and a high affinity 

barbed end capping factor CapZ, which shifted the Cc close to the Cc of the 

pointed end, consistent with previous measurements (Howard, 2001). While 

other combinations of factors along with actin caused a modest increase in the 
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Cc, (described in Chapter 3), the bursting factors raised the critical concentration 

to 1.85 µM, approximately five times greater than pure actin. 

In order to gain further insight into the mechanism of depolymerization, 

we varied the concentration of each factor in the presence of fixed 

concentrations of the remaining two factors. When actin was disassembled with 

increasing concentrations of cofilin alone, maximum rates of disassembly were 

achieved at a ratio of two actin molecules to every one or two cofilin molecules 

(refer to Figure 2.2A). In the presence of all three factors, however, increasing 

concentrations of any factor lead to ever-faster rates of disassembly and actin 

monomer formation (Figure 2.4A). Consistent with coronin’s ability to suppress 

the depolymerization of actin, increasing amounts of coronin led to decreased 

rates of disassembly. Coronin functioned at an optimum ratio of 5 to 12.5:1 

coronin to cofilin. This is also consistent with other experimental observations 

that coronin works at lower ratios of coronin to cofilin (Tang & Brieher, 

unpublished data). When we varied the concentration of Aip1 while keeping the 

amounts of cofilin and coronin constant, we found that Aip1 could exert its 

function at vanishingly low ratios to the other factors, almost 100 times less than 

the other factors, saturating at a ratio of 1:10 Aip1 to cofilin. This behavior is 

consistent with observations that Aip1 is acting as a “trigger” for the bursting 

reaction (Tang and Brieher, unpublished). It also indicated to us that that Aip1 

was not acting in a manner similar to a high affinity barbed end capping factor. A 

capping factor that binds the more dynamic barbed end might have the effect of 

suppressing and not elevating the disassembly rate. 
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 Discussion 
 

We utilized FRET to report on bulk actin polymerization and cofilin- 

mediated depolymerization and whole filament destabilization or ‘bursting’. The 

FRET assay offered several insights to supplement our understanding of 

bursting. Firstly as demonstrated previously, we showed that the triple mix 

generates actin monomer at a rapid rate (roughly 1 µM with a t1/2 of 50 s), 

consistent with previous observations (Kueh et al., 2008). Although cofilin and 

Aip1 can cause rapid initial depolymerization of actin, only in the presence of all 

three factors is both the rate and extent of disassembly high. The bursting 

factors also are able maintain actin in the depolymerized state and the final 

products of this reaction are incompentent to seed filament elongation. This has 

two possible implications: either the reaction produces solely actin monomer, or 

the final molecular products of bursting are short filaments with unconventional/ 

occluded ends. We favor a combination of the two models. We posit (on the 

basis of unpublished supporting electron microscopic data) that filament 

disassembly in the presence of the three factors occurs along the length of the 

filament in a catastrophic manner. This causes dramatic disruption of the 

structure of the filament that would produce actin monomer and short oligomers. 

Previous work also showed that bursting causes the formation of 

unconventional ends that do not readily grow (Kueh et al., 2008). However, their 

results argued against a high affinity macromolecular complex that remains on 

the ends of the actin filaments after dilution. 
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The fact that the bursting end products cannot seed new actin assembly 

contradicts previous results. It is conceivable that the bursting factors participate 

in a macromolecular complex that can also serve to occlude filament ends. 

Recently published single molecule TIRF studies (Jansen et al., 2015) also 

suggest that severed ends of filaments in the presence of the 3 factors do not 

elongate as often as those formed by severing in the presence of only 2 out of 

the 3 factors. However, our results require further investigation and a possible 

molecular characterization of the final product/s of the bursting reaction. 

Previous work showed that the three factors were able to depolymerize 

actin in the presence of excess polymerizable actin (Brieher et al., 2006; Kueh et 

al., 2008). Our results validate this and show that the bursting factors raise the 

critical concentration to 1.8 µM. As polymerization only occurs at concentrations 

of monomer above the Cc, this rise in the critical concentration by the bursting 

factors could potentially be important in the cellular context, where actin 

assembly is tightly regulated and there exists a high concentration of 

polymerizable actin. 

The disassembly reaction was robust within some range of concentrations 

of the individual proteins. In the presence of cofilin alone, lower ratios of cofilin to 

actin were more effective at severing. However in the presence of coronin and 

Aip1, even higher ratios of cofilin (2.5x that of actin) were able to disassemble 

actin at rapid rates. In the presence of coronin and Aip1, saturating 

concentrations of cofilin were able to disassemble filaments. This indicates that 

bursting is a distinct mechanism of actin disassembly than severing, which is 
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thought to occur at boundaries of bare and cofilin-decorated stretches of actin 

(Suarez et al., 2011). 

Coronin was able to exert its functions at extremely low ratios of coronin 

to cofilin (as low as 1:12). Previous work showed that coronin was able to 

increase the amount of cofilin-loading on Listeria actin comet tails (Brieher et al., 

2006) Coronin could have a filament “priming” function, allowing actin to bind 

cofilin more readily. Recent work has shown that coronin can diminish the time 

lag of cofilin binding to actin filaments (Jansen et al., 2015). However, increasing 

concentrations of coronin decrease the rate of disassembly. This is consistent 

with the observation that coronin can bind filaments and protect them against 

dilution-induced depolymerization (Galkin et al., 2008) and also with 

observations that coronin and cofilin compete for the same binding site (Cai et 

al., 2007, Tang and Brieher, unpublished observations). 

Coronin’s role in increasing cofilin binding to actin also has the effect of 

suppressing filament severing (Jansen et al., 2015). As more cofilin binds actin, 

the number of heterotypic junctions between bare and decorated segments of 

filaments decreases. Filaments are stabilized in an alternative hyper-twisted 

configuration. This raises the question of how these stable filaments make the 

transition to become unstable. 

The answer seems to lie in the action of Aip1. Aip1 was thought to be a 

cofilin dependent capping factor however its role in catalyzing bursting cannot be 

explained by the phenomenon of capping. A capping protein would passively 

occlude the dynamic end of a cofilin-coronin decorated filament, suppressing 
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and not elevating disassembly. The fact that Aip1 can exert its actions at 

concentrations 10-100 times less than the amount of cofilin or coronin in the 

reaction lends evidence to the idea of Aip1 as a “trigger” for the bursting reaction 

that could potentially act in amounts stoichiometric to filament ends rather than 

sides. 

Coronin has only been recently implicated to directly interact with cofilin- 

actin. Therefore, potential biochemical links between coronin and cofilin and 

coronin and Aip1 must be elucidated. Our work also calls for a reinvestigation of 

the function of Aip1 within the context of actin disassembly. 

The FRET assay provides us with interesting observations, however in 

order to convincingly determine that bursting is a distinct mechanism of 

disassembly than severing it would be necessary to directly observe of filament 

structure in the presence of the bursting factors. The FRET results are also 

consistent with a model of rapid filament severing and high affinity barbed end 

capping. Therefore the FRET assay is unable to distinguish whether the initial 

observations of filaments disassembling by losing long stretches of actin polymer 

are true. 
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Figure 2.1 FRET assay reports on kinetics of actin assembly. (A) 

Polymerization of 3.5 μM actin measured by FRET (black line) and pyrene 

(gray circles). (B) Addition of Arp2/3 (500 nM) and ActA (200 nM) significantly 

reduces the lag phase of both the pyrene and FRET signals. Normalized data is 

plotted against time. Representative kinetic data from n=3 experiments is 

shown. 
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Figure 2.2 FRET assay reports on cofilin mediated depolymerization and not 

cofilin-binding. (A) Increasing concentrations of cofilin cause an initial disas- 

sembly of actin in a dose-dependent manner. Pre-polymerized F-actin (2 µM) 

was mixed with varying amounts of cofilin, and the fluorescence of Oregon 

green actin was measured over time. The decrease in FRET represents loss in 

polymer mass. 
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Figure 2.2 (cont.) (B) At pH 6.7, cofilin binds to F-actin and quenches pyrene 

fluorescence (gray open circles) whereas the FRET signal is not significantly 

changed indicating there is little depolymerization (black line). (C) The assay 

reports on polymer loss. DNase I (15 μM) depolymerizes all F-actin to mono- 

mer, as reported by decrease in FRET. 
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Figure 2.3 The bursting reaction proceeds with rapid kinetics to generate mon- 

omer and/or products incompetent to seed actin assembly. (A) Disassembly 

kinetics of 1 µM actin was monitored by loss of FRET signal in the presence of 

various combinations of factors. In the presence of cofilin alone, cofilin + coro- 

nin and cofilin + Aip1 (green, blue and yellow curves) the polymer mass was 

decreased by 30-40%. The triple mix of bursting factors decreased the polymer 

mass by 80% in 250 seconds and the actin did not reassemble over 25 mins. 

(B) Rate of monomer production was monitored by quenching of Oregon green 
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Figure 2.3 (cont.) the FRET showing that the triple mix causes complete de- 

polymerization of 1 µM actin over 100 s. (C) Pyrene based seeding assay 

shows that products of severing by cofilin (green), cofilin+ coronin (blue) and 

cofilin + Aip1 (yellow) can seed elongation of filaments however the products of 

bursting (pink) cannot. 
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Figure 2.4. The bursting factors alter the critical concentration of actin. (A) 
 

FRET assay was used to determine the critical concentration (Cc) of actin 
 

as a function of cofilin, coronin and Aip1, or actin alone. Fluorescence intensity 

in the presence of polymerizing and non-polymerizing conditions was measured 

at various actin concentrations and the equation [E] = Emax* [(actin 2 Cc)/actin] 

was used to fit the data. The x-intercept represents the critical concentration. 

In (A), the black line shows the condition actin alone dark-gray line shows the 

condition actin in the presence of 0.1 µM CapZ which represents the pointed 

end Cc. (B) In the presence of 1 µM cofilin 0.75 µM coronin and 0.1 µM Aip1, 

the critical concentration was raised over 5-fold to 1.84 µM. Thus, the bursting 

factors alter the critical concentration. 
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Figure 2.5 Dose-response curves of the bursting factors in the presence of 

constant amounts of the remaining factors. (A) Cofilin dose response shows 

increasing disassembly with  increasing amounts of  cofilin in the presence    of 

0.75 µM coronin and 0.1 µM Aip1.(B) Lower ratios of coronin: cofilin show bet- 

ter depolymerization kinetics (purple and blue curves) in the presence of 1.25 

µM cofilin and 0.1 µM Aip1 whereas higher ratios (green and pink) may stabi- 

lize actin filaments and inhibit depolymerization (C) Initial rates (120 s) show a 

concentration dependence of the reaction for Aip1 concentration (indicated). 
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CHAPTER 3 
 

ATTRIBUTING NOVEL FUNCTIONS TO AIP1 IN ACTIN 
DISASSEMBLY1 

 

 Introduction 
 

Actin filament severing activity detected in vitro with pure cofilin alone 

cannot account for the behavior of Listeria actin comet tails, which disassemble 

faster with increasing concentrations of cofilin (Rosenblatt et al., 1997; Carlier et 

al., 1997). Furthermore, the intrinsic cofilin severing and actin depolymerization 

rates do not account for the rapid actin turnover rates of yeast actin patches 

(Sirotkin et al., 2010; Berro et al., 2010). Thus, cofilin-dependent auxiliary factors 

present in cytoplasm may be responsible for the destabilization of actin filaments 

even in the presence of saturating cofilin concentrations. 

The fractionation of thymus extract has yielded factors that function to 

potentiate cofilin’s ability to disassemble actin, namely coronin and Aip1. Among 

these, coronin appeared to increase the loading of cofilin on Listeria actin comet 

tails and stabilize them (Brieher et al. 2006). Aip1 was able to rapidly 

disassemble these filaments and previous work has indicated that Aip1 can exert 

its activity in the presence of higher cofilin to actin ratios (Mohri et al., 2004). 

This indicated to us that Aip1 was a likely candidate to explain the contradictory 

behaviors of pure cofilin and actin disassembly in complex cell extracts. 

Aip1 facilitates cofilin-mediated actin disassembly in vitro (Ono et al., 

2004; Rodal et al., 1999; Okada et al., 1999), and mutations in Aip1 or 

perturbation of its function in cells lead to ectopic accumulation of F-actin (Ren et 

al., 2007; Kato et al., 2008), defects  in actin turnover dynamics (Ono, 2003), 

1
This chapter was published as an article entitled ‘Aip1 Destablizes Cofilin-Saturated Filaments by Increasing 

Severing and Monomer Dissociation from Ends’ by A.V. Nadkarni and W.M. Brieher in the journal Current Biology, 
Volume 24, Issue 23 in December 2014. 
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suppression of filament elongation (Michelot et al., 2013), and depletion of the 

actin monomer pool that fuels actin assembly (Okreglak and Drubin, 2010) . 

Thus, the in vitro and in vivo data are consistent with Aip1 playing a role in 

cytoskeletal organization by enhancing cofilin-mediated filament disassembly, 

but the underlying molecular mechanism is not yet known. 

The apparent ability of Aip1 to cap filament barbed ends led to a popular 

model in which Aip1 facilitates cofilin-mediated disassembly by preventing the 

reannealing of severed filaments (Ono et al., 2004; Okada et al., 2002, 2006). In 

this model, cofilin alone mediates severing, whereas Aip1 simply blocks the back 

reaction and does not alter the mechanism of filament destabilization. Aip1 is 

therefore thought to control actin filament dynamics in a manner similar to 

capping protein (CapZ). CapZ is a well-characterized barbed-end binding protein 

that caps barbed ends with nanomolar affinity thus preventing barbed end 

growth or shrinkage (Wear et al., 2003). This model was supported by the fact 

that CapZ and Aip1 exhibit strong genetic interactions in yeast where null 

mutations in both CapZ and Aip1 elicit a more severe disruption in actin 

organization than a null mutation for either gene alone (Michelot et al., 2007). 

However this model is at odds with Aip1’s ability to disassemble stable cofilin- 

coronin filaments. A capping factor would passively occlude filament ends, not 

actively destabilize them. CapZ cannot substitute for Aip1 to disassemble 

Listeria actin comet tails or single filaments in the presence of cofilin and coronin 

(Kueh et al., 2008). 
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In order to test our hypothesis that Aip1 is responsible for the disassembly 

of filaments in the presence of stabilizing concentrations of cofilin, and to 

reinvestigate the existing model of Aip1 function, we used single-filament 

imaging of actin and fluorescence resonance energy transfer (FRET)- based 

bulk actin depolymerization assays. 
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 Materials and Methods 
 

Imaging of actin single filaments: Single actin filaments were either 

prepolymerized, flowed into perfusion chambers and imaged in solution (Figures 

3.1, 3.2 and 3.3) or polymerized in the chamber and attached to coverslips via 

filamin (Figures 3.4 and 3.6). Relevant combinations depolymerizers were 

flowed into the perfusion chamber and filaments were imaged in a buffer 

containing oxygen-scavengers (1xPhotoBuffer). Severing events were 

enumerated as the number of visual breaks per second normalized to the 

amount of polymer measured in microns. Depolymerization rates were 

calculated from kymographs generated using Fiji software. Elongation of 

polymerized Oregon green actin filaments was carried out in the presence of 2 

µM monomeric Alexa 647 actin, 150 nM cofilin and 200 nM of either CapZ or 

Aip1 for 60 seconds. This was compared to a control with actin alone. 

Fluorescence equilibrium binding and competition assays: Quenching of 

pyrene fluorescence was used to quantify cofilin binding to F-actin in the 

presence or absence of phalloidin or Aip1 as described previously (De La Cruz, 

2005; Elam et al., 2013). FRET was used to normalize for the amount of polymer 

present at various concentrations of Aip1. 

Measurement of FRET has been described in Chapter 2: For disassembly 

reactions, actin was prepolymerized and combinations of depolymerizers were 

added to final concentrations of 2 µM cofilin, 0.2 µM Aip1 or 0.2 µM CapZ. 

Fluorescence of Oregon Green actin was monitored as mentioned. 
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Depolymerization leads to dequenching of OG488 fluorescence. Normalized 

readings were obtained by using Origin graphing software. 

Seeding reaction with actin pyrene: Actin filaments treated with or without 

cofilin and increasing concentrations of Aip1 for 10 mins (Fig 6A) and 2 mins (Fig 

6B) were added to a solution of 2 µM pyrene labeled G-actin. The final 

concentration of F-actin seeds was 0.25 µM (Fig 6A) and 0.5 µM (Fig 6B) and 

the final cofilin concentration was 100 nM (Fig 6B).  Final Aip1 concentrations 

are provided in the main text. 
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 Results 
 

 Opposing behavior of pure cofilin and cofilin in cellular extracts 
 

Previous work has shown that the amount of cofilin in thymus extract is 

high (up to the order of 20 µM) (Brieher et al., 2006). We confirmed this result by 

quantitative western blotting and found the amount of cofilin in thymus extract to 

be 21 ± 6 µM (Figure 3.1A). In our severing assays on single-actin filaments, we 

found that recombinant human cofilin severed actin most efficiently at 1 µM 

(Figure 3.1B), whereas severing was inhibited at higher cofilin concentrations 

consistent with previous results (Andrianantoandro and Pollard, 2006). In order 

to test if cellular extract can sever single filaments, bovine thymus extract was 

diluted so that the final concentration of cofilin was 5 µM. At these 

concentrations, thymus extract is able to sever single-actin filaments whereas an 

equimolar amount of recombinant cofilin was unable to sever pure actin 

filaments efficiently (Figure 3.1B, right panel, Figure 3.1C). Actin filament 

severing rates were in fact ten times faster in the presence of thymus cytosol 

than the fastest rates detected with pure cofilin alone. 

 

 
 Aip1 can depolymerize actin filaments even in the presence of saturating 

 

 amounts of cofilin 
 

Previous work has shown that coronin increases cofilin loading on Listeria 

actin comet tails and stabilizes them. These filaments are destabilized by Aip1 

(Brieher et al., 2006). Thus, Aip1 appeared to us as the most likely candidate for 

depolymerization of cofilin-saturated stabilized filaments and could possibly 
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explain this behavior of extract. To test this, we imaged single filaments in the 

presence of saturating amounts of cofilin, in the presence or absence of Aip1. 

Actin filaments did not sever in the presence of 25 µM cofilin. As a control, we 

also tested severing in the presence of 25 µM cofilin and 100 nM capping protein 

(CapZ) (Figure 3.2A, top panels) and detected no severing events. However, 

filaments did sever in the presence of 25 nM Aip1 and 25 µM cofilin (Figure 

3.2A, bottom panels). Severing rates increased from 0 events per micron per 

second in the presence of 25  µM cofilin to 0.006 events per micron per second 

in the presence of 25 nM Aip1 (Figure 3.2B). This experiment provided us with 

the first evidence that Aip1 and capping protein do not appear to act by the same 

mechanism. 

 

 
 Aip1 does not displace cofilin to promote severing 

 

Cofilin-mediated severing involves the destabilization of lateral interfaces 

between cofilin-bound and unbound sections of actin. Therefore, severing by 

Aip1 could operate by two mechanisms. Either Aip1 could be displacing cofilin 

from actin, thus creating additional unstable lateral interfaces and exploiting 

cofilin’s intrinsic ability to sever, or alternatively Aip1 could be potentiating 

severing by a different mechanism, but in co-operation with the bound cofilin. 

In order to test if Aip1 displaced bound cofilin from actin filaments, we 

validated that our recombinant cofilin binds co-operatively to actin as 

demonstrated previously (De La Cruz, 2005) (Figure 3.3A, inset). Next, we 

carried out competitive equilibrium binding assays on actin in the presence of a 
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high initial occupancy of cofilin (3 µM, corresponding to binding density ʋcof  > 

0.9) and increasing concentrations of Aip1 (Figure 3.3A). Aip1 did not affect 

pyrene fluorescence by itself (data not shown). As a control, we also carried out 

the experiment with a known competitive inhibitor of cofilin, phalloidin, as 

described previously (Figure 3.3B) (Elam et al., 2013). Concentrations of 

phalloidin as low as 0.25 µM displaced cofilin by ~20%. Increasing 

concentrations of phalloidin displaced cofilin from actin nearly completely. 

However, in the presence of Aip1 there appeared to be no displacement of 

cofilin at the concentrations at which we assayed its activity. There was little to 

no displacement even at 1:1 concentrations of Aip1: cofilin (Figure 3.3A). Thus, 

Aip1 does not displace cofilin from actin. 

If Aip1 were to compete with cofilin for binding to F-actin, then we would 

predict that Aip1 should inhibit severing when cofilin is present at the optimal 

concentration where severing rates are highest. In our assay, filaments severed 

fastest in the presence of 1 µM cofilin corresponding to ʋ= 0.3. Using this 

concentration of cofilin, we observed that severing rates increased with 

increasing concentrations of Aip1 (Figure 3.3C). This is the opposite of what is 

expected if Aip1 functions by displacing cofilin. 

Aip1’s effect was seen even at extremely low ratios of Aip1: cofilin with a 

roughly four-fold increase at 10 nM Aip1. At equimolar concentrations of Aip1: 

cofilin, severing rates were increased over ten times the maximal severing rates 

achieved by any concentration of cofilin alone despite the fact that Aip1 does not 

displace cofilin at these concentrations (Figure 3.3A). 
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The displacement hypothesis predicts that Aip1 will inhibit severing at 

cofilin binding densities of 0.5 or less, and only accelerate severing at 

concentrations corresponding to ʋ>0.5 (Elam et al., 2013). Therefore, to further 

test whether Aip1 enhances severing by displacing cofilin, we compared 

severing rates across a range of cofilin concentrations in the presence or 

absence of Aip1. We observed that 10 nM Aip1 accelerated actin filament 

severing rates at all cofilin concentrations (Figure 3.3D). This result is 

inconsistent with Aip1 displacing cofilin from F-actin. 

 

 
 Aip1 accelerates disassembly from the barbed and pointed ends of filaments 

 

We observed that filaments treated with Aip1 in the presence of 

saturating concentrations of cofilin appeared to depolymerize rapidly suggesting 

that Aip1 also accelerates subunit loss from actin filament ends. In order to 

measure depolymerization rates from ends, filaments were immobilized to the 

coverslip with the actin bundling protein, filamin, unlike previous experiments 

where the filaments were free-floating and imaged in the presence of 

methylcellulose. 

In the presence of 2 µM cofilin and 0.2 µM Aip1, filaments rapidly 

disassembled by shrinking from both barbed and pointed ends. Quantitation of 

depolymerization rates from barbed ends of polarity marked actin filaments 

revealed an average rate of 8 – 10 subunits per second in the presence of 2 µM 

cofilin with or without 0.2 µM Aip1 (Figure 3.4A top panels, Figure 3.4B). Barbed 

ends of filaments in the presence of cofilin and CapZ, however, were stable, thus 
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once again contradicting previous hypotheses that Aip1 acts in a manner similar 

to CapZ (Figure 3.4A bottom panel). 

We also measured the effects of increasing amounts of cofilin on 

depolymerization rates. In the presence of 0.2 µM Aip1, barbed end 

depolymerization rates increased from an average of 10 subunits/second in the 

presence of 2 µM cofilin to 48 subunits/second in the presence of 10 µM cofilin 

(Figure 3.4C, D). These results reveal a new function for Aip1 in accelerating 

cofilin-mediated barbed end depolymerization rates anywhere from 5-10 times 

those measured in the presence of cofilin alone. This is the opposite of what is 

expected of a high affinity barbed end capping factor and the opposite of what is 

observed in the presence of CapZ. 

Aip1-disassembled cofilin-actin filaments also had a higher pointed end 

depolymerization rate. Pointed ends depolymerized at a rate of approximately 1 

subunit per second in the presence of 2 µM cofilin with or without 0.2 µM CapZ. 

In contrast, pointed ends depolymerized approximately 4x faster on average in 

the presence of 2 µM cofilin and 0.2 µM Aip1 (Figure 3.4E,F). 

 

 
 Aip1 and CapZ have differing effects on disassembly rate and critical 

 

 concentration 
 

There were multiple lines of evidence indicating that Aip1 was not acting 

as a barbed end capping factor and had additional biochemical roles distinct 

from CapZ. To further compare Aip1 and CapZ in actin disassembly, we sought 
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to analyze changes in bulk actin polymer mass in the presence of high 

concentrations of cofilin by utilizing the FRET assay described in Chapter 2. 

The addition of cofilin to 2 µM pre-polymerized F-actin at pH 7.8 caused 

an initial decrease in FRET, representing a decrease in polymer mass, in a dose 

dependent manner over 25 minutes (Ref to Figure 2.2 A). This is consistent with 

the fact that cofilin binds to the newly dissociated ADP actin monomers with an 

affinity of 150 nM and suppresses ADP to ATP exchange (Blanchoin and 

Pollard, 1998; Ressad et al., 1998). 

We used FRET to compare the disassembly characteristics of cofilin-actin 

in the presence of capping protein versus Aip1 (Figure 3.5A). In the presence of 

cofilin and Aip1, actin polymer mass decayed roughly 6x faster but to the same 

extent as it did in the presence of cofilin alone. This indicated that Aip1 was 

accelerating the rate of actin depolymerization in conjunction with cofilin. 

However in the presence of cofilin and CapZ, actin polymer mass decayed more 

slowly than in the presence of Aip1, but it was converted nearly completely to 

monomer over a period of 25 minutes. Thus, CapZ appeared to affect the extent, 

but not the rate of actin depolymerization in the presence of cofilin, unlike Aip1. 

Next, we tested the effects of Aip1 and CapZ on actin critical 

concentration (Cc) in the presence of cofilin by FRET. Addition of 1 µM cofilin 

increased the critical concentration to between 0.3 – 0.4 µM (Figure 3.5B). We 

conclude that cofilin has only a modest effect on the critical concentration which 

is consistent with previous results (Andrianantoandro and Pollard, 2006). We 

measured the Cc of actin in the presence of 1 µM cofilin and 0.1 µM Aip1 and 
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found it to be nearly identical to that in the presence of cofilin alone (Cc = 0.36 
 

µM in 1 µM cofilin alone versus Cc = 0.33 µM in the presence of 1 µM cofilin and 
 

0.1 µM Aip1) (Figure 3.5B). Similarly, treatment of actin with CapZ alone had 

only a modest effect on Cc (Ref Figure 2.4A). However, the combination of 1 µM 

cofilin and 0.1 µM CapZ raised the critical concentration more than five-fold 

relative to that of pure actin to 1.7 µM (Figure 3.5C) which is the pointed end 

critical concentration for ADP-actin (Howard, 2001). This is consistent with the 

barbed ends being capped by CapZ and ADP-G-actin in a high affinity complex 

with cofilin. Therefore CapZ affects the critical concentration to a greater extent 

than Aip1, and the two proteins are not functionally redundant. 

 

 
 Aip1 does not cap filament barbed ends 

 

Differences in kinetics of cofilin-mediated depolymerization in the 

presence of Aip1 versus CapZ and cofilin as well as differences in the critical 

concentrations prompted us to directly reinvestigate whether or not Aip1 caps 

barbed ends. An established assay for barbed end capping is the inability of 

capped barbed ends to seed new actin polymerization. New actin monomer 

adds to the barbed ends of pre-existing short actin filament seeds thus 

shortening the lag phase of polymerization. Filaments with occluded barbed 

ends such as those bound by CapZ will not be able to reduce the lag phase of 

new actin assembly. When products of the disassembly reactions were used to 

seed new actin polymerization, F-actin seeds enhanced the initial rate of 

polymerization (Figure 3.6A yellow line), and cofilin-actin filaments seeded 
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polymerization even more efficiently due to a large number of free severed ends. 

As expected, CapZ-bound seeds were unable to enhance the rate of actin 

polymerization (black line). However, filaments depolymerized by cofilin and 

Aip1 seeded actin assembly as efficiently as the cofilin-actin seeding mixture 

(blue and pink lines). Thus, Aip1 does not form a high affinity cap on actin 

filaments. Additionally, the presence of increasing amounts of Aip1 in the 

presence of a fixed concentration of cofilin increased the number of pre-existing 

short filament seeds, consistent with Aip1’s ability to increase severing rates in 

the presence of cofilin as seen by light microscopy (Figure 3.6B). 

We used single filament imaging to further test whether Aip1 mediates 

cofilin dependent barbed end capping. Fluorescently labeled Oregon green 488- 

actin filaments were polymerized on a bed of filamin in a perfusion chamber, and 

filaments were allowed to elongate by addition of Alexa 647 G-actin monomer, in 

the presence of 0.15 µM cofilin and 0.2 µM of either Aip1 or CapZ (Figure 3.6C, 

6D). Unlike CapZ, Aip1 did not inhibit elongation of preformed actin filaments at 

the level of single actin filaments. Therefore, Aip1 does not suppress barbed end 

growth even when it is continuously present at high concentrations along with 

cofilin. 
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 Discussion 
 

We found that thymus extracts rapidly sever and disassemble single actin 

filaments despite having cofilin concentrations that are too high to sever actin 

filaments in pure solution. We demonstrated that fast actin disassembly in the 

presence of saturating cofilin can be attributed to, at least in part, Aip1 but not to 

Capping Protein and our analysis further revealed that Aip1 alters the 

characteristics of cofilin-mediated filament disassembly while capping protein 

does not. 

Previous results proposed that Aip1 caps barbed ends with a high affinity 

and would therefore be functionally redundant with Capping Protein (Ono, 2003). 

However, our results show by multiple modes that this is not the case. Aip1 does 

not prevent growth of free filament ends and filaments shrink at accelerated 

rates in the presence of Aip1, which is the opposite of what we would predict if 

the filaments were capped. Our results are more consistent with models 

proposing that Aip1’s side binding and not its end-binding activity is more 

important for severing cofilin decorated filaments (Rodal et al., 1999; Shi et al., 

2012) to create more filament ends that can grow or shrink. Interestingly, small 

quantities of Aip1 show a strong effect on severing cofilin-actin filaments as 

observed by microscopy, however, these severed filaments do not seed new 

growth robustly in bulk filament polymerization assays. Further studies would be 

required to characterize whether Aip1 possesses the ability to create some 

unconventional ends that are resistant to growth, as posited in previous work 

(Kueh et al., 2008). 
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While Aip1 and CapZ are biochemically distinct, they show strong genetic 

interactions in yeast, playing critical roles in the assembly and morphogenesis of 

Arp2/3-derived actin arrays by maintaining a pool of actin subunits available for 

assembly (Michelot et al., 2013). CapZ can help maintain a pool of assembly 

competent actin by suppressing non-productive barbed end elongation and 

funneling actin monomer towards Arp2/3 nucleation sites (Akin and Mullins, 

2008). Given our results, Aip1 might help maintain a pool of assembly- 

competent actin by triggering fast depolymerization of cofilin-F-actin. Thus, we 

propose that Aip1 and CapZ genetically complement one another through 

distinct mechanisms. 

Cofilin binding to F-actin disrupts lateral interactions between actin 

subunits (McCullough et al., 2011). However, stretches of actin polymer 

saturated with cofilin are stable (Andrianantoandro and Pollard, 2006; McGough 

et al., 1997) because cofilin has two actin binding sites allowing it to bridge two 

longitudinal subunits in the filament (Hayden et al., 1993; Lappalainen et al., 

1997; Pope et al., 2000). Severing therefore occurs at junctions between 

decorated and undecorated polymer (Suarez et al., 2011) explaining why 

severing is maximal at intermediate levels of cofilin occupancy 

(Andrianantoandro and Pollard, 2006; Suarez et al., 2011; Elam et al., 2013). 

We found that Aip1 does not displace cofilin from F-actin and promotes actin 

filament disassembly at all cofilin occupancies. Our results imply that it is the 

sites of actin polymer occupied by cofilin themselves that are destabilized by 

Aip1 (Figure 3.7).  This model is consistent with yeast two hybrid, binding, and 
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modeling data supporting that Aip1 forms a ternary complex with F-actin and 

cofilin (Rodal et al., 1999; Clark et al., 2006; Clark and Amberg, 2007). 

Mutagenesis and modeling studies on Aip1 demonstrate that Aip1 

contacts cofilin while bridging two contiguous actin subunits in the filament (Clark 

et al., 2006). Therefore, we can consider two alternative mechanisms through 

which Aip1 could promote cofilin mediated severing and subunit dissociation. In 

the first, Aip1 binding to cofilin occupied polymer might disrupt cofilin’s stabilizing 

interaction with the adjacent actin subunit to cause severing. Mutations in cofilin 

that compromise its F-actin specific binding interaction increase severing (Ono et 

al., 2001) and the Aip1 and cofilin binding sites on actin would appear to overlap 

(Rodal et al., 1999; Clark and Amberg, 2007) making this an attractive model. 

However, studies with cofilin and Aip1 from C. elegans have shown that the 

ability of Aip1 to enhance actin disassembly requires cofilin’s F-actin binding site 

(Mohri and Ono, 2003). An alternative possibility then is that Aip1 further distorts 

actin structure in the presence of cofilin to promote severing and increase 

subunit dissociation rates from filament ends. It has been hypothesized that a 

slow isomerization step follows cofilin binding (De La Cruz and Sept, 2010). If 

this proposed conformational change were coupled to severing, we could 

speculate that Aip1 catalyzes the transition between the two states to destabilize 

the filament. Recent work on cofilin from Plasmodium falciparum shows that it 

contacts a novel binding site on F-actin to sever filaments without decorating the 

polymer as human cofilin does (Wong et al., 2014). Thus, multiple cofilin binding 

modes might permit multiple modes of filament disassembly, and it is tempting to 
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speculate that Aip1 alters filament structure or induces a conformational change 

in cofilin allowing mammalian cofilin to access the novel P. falciparum binding 

site to destabilize the polymer. 

Our results demonstrating that the combination of Aip1 and cofilin 

accelerate actin subunit dissociation rates offers one possible mechanism for 

attaining faster depolymerization rates in vivo. Aip1 therefore offers a potential 

control point to switch cofilin action from one that favors actin assembly (Ghosh 

et al., 2004; Andrianantoandro and Pollard, 2006) to one that favors fast 

depolymerization. Other factors in addition to Aip1 facilitate cofilin mediated actin 

disassembly. It will be important to re-examine each of these auxiliary factors to 

test if they, like Aip1, alter the mechanism of filament disassembly. 
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 Figures 

Figure 3.1 Thymus extract is more efficient at depolymerizing single actin 

filaments than a normalized amount of recombinant cofilin. (A) Quantitative 

western blot showing standard amounts of recombinant cofilin (0.01- 0.5 µg) 

(left lanes, increasing order) & fixed amounts of thymus extract. (B) Cofilin 

severs only across a narrow range of concentrations (left graph), with activity 

peaking at approximately 1 µM.  Thymus extract is roughly 10-fold more 

effective at severing than the peak cofilin severing concentration (right graph) 

Error bars represent S.D. n= at least 2 movies. (C) Frames from time lapse 

movies showing that when normalized to a cofilin concentration of 5 µM, 

filaments are stable in the presence of pure cofilin (top panel), whereas they are 

disassembled within 60s with thymus extract (bottom panel). Scale bar= 2 µM. 
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Figure 3.2 Aip1 can sever filaments saturated by cofilin. (A) Frames from time 

lapse movies showing the dynamics of filaments in the presence of a saturating 

amount of cofilin+ CapZ (upper panels) or cofilin + Aip1 (lower panels). Fila- 

ments fragment in the presence of Aip1 only, not cofilin alone or cofilin + CapZ. 

(B) Quantitation of severing rates of filaments in the presence of saturating 

amounts of cofilin. No severing events were detected in the presence of 25 mM 

cofilin alone or cofilin + 100 nM CapZ. Severing rates increased with increasing 

concentrations of Aip1 (n=3 movies, error bars represent S.D.).  Scale bar= 1 

µM. 
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Figure 3.3 Aip1 does not displace cofilin from F-actin to sever. (A) 2 µM fluores- 

cent pyrene-actin was treated with 3 µM cofilin corresponding to vcof>0.9 and 

increasing concentrations of Aip1 at pH 6.8 to assay competitive binding by 

equilibrium fluorescence titration experiments. The graph was normalized to 

amount of polymer monitored by a FRET assay. Aip1 does not compete for 

binding by cofilin, as shown by a linear fit of the data. We carried out a binding 

assay to monitor cooperative binding of cofilin to fluorescently labelled pyrene 

actin in order to select the concentration used for graph (A) (inset). (B) Phal- 

loidin, a known competitive inhibitor of actin, can displace cofilin from actin. (C) 

To validate our results from (A), we measured severing rates of actin in the 

presence of 1 µM cofilin that, in our single filament assays, showed maximal 

severing rates. Adding increasing amounts of Aip1 caused a consistent in- 

crease in severing rate. At equimolar cofilin to Aip1 ratios, the rate exceeded 

10x that obtained by cofilin alone. (D) Aip1 boosts severing across a wide range 
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Fig 3.3 (cont.) of cofilin-actin ratios, even when it is present in sub- 

stoichiometric quantities (roughly 1000x less than the cofilin concentrations). 

Error bars represent S.D. and data from at least 2 movies was used to compute 

severing rates. 
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Figure 3.4 Aip1 increases rate of subunit dissociation from barbed and pointed 

ends. (A) Frames and resultant kymographs from a time lapse movie of polarity 

marked actin filaments [small letters b (barbed) and p (pointed) indicate orienta- 

tion of ends] showing filaments shrinking from the barbed end in the presence 

of cofilin +/- Aip1, but not in the presence of CapZ. (B) Quantitation of filament 

depolymerization rates from (A). 
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Figure 3.4 (cont.) Filaments shrink at an average of 8-10 subunits in the pres- 

ence or absence of Aip1. Black line represents mean of observations, n=at least 

3 movies in each scenario, dots represent individual events. Mean, S.D. indicat- 

ed. (C) Kymographs of polarity marked actin filaments disassembled in the 

presence of 5 and 10 µM cofilin and 200 nM Aip1. (D) Quantitation of rates from 

(C) for the barbed end shows barbed end dissociation rates roughly doubling 

(from 10 to 25 to 40) subunits per second for each 2x increase. in cofilin con- 

centration. Enhanced barbed end disassembly is cofilin-dependent. (E) Frames 

from a time lapse movie showing filaments shrinking from the pointed end after 

a severing event (white arrowhead) and resultant kymographs. These indicate 

that filaments depolymerize at increasing rates from the pointed end in the pres- 

ence of 200 nM Aip1. (F) Quantitation of rates from (E) shows a roughly 4x in- 

crease in subunit dissociation rate from 1 to 5 subunits per second in the pres- 

ence of Aip1, but not in the presence of cofilin or CapZ. Scale bar= 1 µm. 
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Figure 3.5 CapZ and Aip1 have differing effects on the rates and extents of co- 

filin-mediated disassembly. (A) CapZ and Aip1 depolymerize actin at differing 

rates and to different extents. Pre-polymerized actin was treated with 2 µM cofil- 

in +/- 0.2 µM Aip1 or CapZ. Actin depolymerizes initially in the presence of cofil- 

in alone as described (blue line). In the presence of Aip1 (pink line), the reaction 

proceeds roughly 6x faster, but to the same extent as cofilin alone. 0.2 µM 

CapZ cause the reaction to proceed at roughly the same rate as cofilin alone 

but almost completely to monomer. (B, C) FRET assays to determine the critical 

concentration (Cc) of actin as a function of cofilin, CapZ or Aip1. Fluorescence 

intensity in the presence of polymerizing and non-polymerizing conditions was 

measured at various actin concentrations and the equation [E]= Emax* [(actin- 

Cc)/actin] was used to fit the data. The x-intercept represents the critical con- 

centration. In  (B), the dark grey line shows the condition actin+ cofilin, and in 

the presence of 1 µM cofilin alone, the critical concentration was only moderate- 

ly raised (from 0.2 to 0.36). The addition of 0.1 µM Aip1 (light grey) did not sig- 

nificantly affect the critical concentration, however (C) the addition of 0.1 µM 

CapZ to cofilin, raised the critical concentration over ten-fold to 1.73 µM. Thus, 

Aip1 and CapZ have differing effects on actin critical concentration in the pres- 

ence of cofilin. 

A B C 



61  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.6 Aip1 does not cap filament ends. (A) Aip1 does not inhibit seeding of 

pyrene actin polymerization. Actin filaments were mixed with 2 uM cofilin +/- 0.2 

uM Aip1 or CapZ for 15 minutes and then 0.25 µM total actin was used to seed 

polymerization of 2 µM pyrene actin. While the lag phase of unseeded actin is 

long (green line), actin seeds shorten the lag phase of polymerization (yellow 

line). Cofilin creates many severed ends that seed polymerization more effi- 

ciently whereas Aip1 does not inhibit this reaction (blue and pink lines). CapZ 

however inhibits the seeding reaction (black line). (B) Increasing amounts of 

Aip1 in the presence of cofilin produce more filament seeds for elongation. Fila- 

ments depolymerized in the presence of 20, 40 and 100 nM Aip1 (yellow, blue 

and pink lines respectively) and (a fixed amount) of cofilin show enhanced 

seeding as compared to cofilin alone seeds (green line). (C) Oregon Green 488 

actin filaments elongate with Alexa 647 G-actin even in the continuous pres- 

ence of 150 nM cofilin and 200 nM Aip1 (right panel), however, the presence of 

200 nM CapZ inhibits this reaction (left panel). Scale bar= 2 µm. 
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Figure 3.6 (cont.)  (D) Quantitation of the relative numbers of elongating ends  

in the presence of actin alone or actin and 150 nM Cofilin +/- 200 nM CapZ or 

Aip1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7 Model representing mode of Aip1 action on cofilin-actin filaments. 
 

(A) Cofilin alone binds to the filament and alters the angular configuration of ac- 

tin protomers within the polymer lattice. Severing is caused due to unstable het- 

erotypic junctions between cofilin-bound and unbound regions on the actin fila- 

ment. (B) Aip1 preferentially binds stretches of actin polymer occupied with co- 

filin leading to enhanced severing and faster disassembly from both barbed and 

pointed ends. (C) In the presence of Aip1, cofilin-saturated filaments are no 

longer stable and can be destabilized 
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CHAPTER 4 

CONCLUSIONS AND FUTURE DIRECTIONS 

We describe an assay to report on bulk actin depolymerization in the 

presence of cofilin and cofilin-dependent depolymerization factors based on the 

phenomenon of FRET. Previous assays in the field used pyrene-actin based 

spectroscopy. Cofilin quenches pyrene-actin fluorescence and this precludes the 

use of high concentrations of cofilin in conjunction with pyrene actin, or raises 

the risk that results obtained in these conditions are inaccurate. 

Although the FRET assay was invented in the 1980’s, it has never been 

used in the context of cofilin-dependent actin depolymerization. We also 

describe the utility of this assay to supplement existing bulk actin and single 

filament studies in the field. 

We primarily used this assay to investigate the whole filament 

destabilization or bursting in the presence of the triple mix of factors, namely, 

cofilin, coronin and Aip1. Our results concur with earlier work that shows that 

these factors depolymerize actin at an extremely rapid rate (Kueh et al., 2008). 

We found that the combination of bursting factors was able to increase the 

critical concentration of actin to ~1.8 µM. This partially explains how whole 

filament destabilization can proceed even in the presence of excess 

polymerizable G-actin. The bursting factors increase the critical concentration to 

the same extent as the combination of cofilin and capping protein (described in 

Chapter 3). The final products of the bursting reaction were unable to nucleate 

actin assembly much like the products of a severing reaction whose barbed ends 
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are capped (cofilin + CapZ) and unlike products of severing reactions in the 

presence of cofilin and actin alone (described in chapter 3). 

Therefore, investigation of bursting with bulk assays raises some 

questions just as it answers others. The nature of the final product of the bursting 

reaction still remains unknown. Some possibilities are that the triple mix of 

factors could form a high-affinity macromolecular cap on filament ends or the 

final products of the reaction could be sequestered oligomers of actin. This 

would require detailed molecular characterization of the products of the bursting 

reaction. 

The FRET assay also presented some interesting observations in the 

context of coronin and cofilin. Coronin is a protein that has many roles in 

cytoskeletal reorganization, however it was implicated in directly loading cofilin 

on actin filaments relatively recently (Brieher et al., 2006) and this observation 

has been fraught with controversy. In follow-up studies, no enhancement of 

cofilin loading by coronin was detected. In fact, coronin was shown to compete 

with and reduce cofilin loading on actin (Cai et al., 2007). With FRET and 

electron microscopy (Tang and Brieher, unpublished) we were able to reconcile 

these observations. Firstly, the FRET assay showed directly that coronin 

stabilized cofilin-actin and decreased the depolymerization rate (Brieher et al., 

2006). Depolymerization with cofilin and Aip1 alone proceeded at a high initial 

rate however the combination of cofilin and Aip1 alone did not change the critical 

concentration. The triple mix of factors altered the critical concentration of actin 

and the stabilizing effect of coronin in the presence of cofilin was reversed when 

Aip1 was present. 
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When the reaction was carried out in the presence of fixed amounts of 

cofilin and Aip1 and a varying amount of coronin, we found that coronin exerted 

its effect when it was present in substoichiometric amounts to cofilin, consistent 

with unpublished electron microscopy data. At higher concentrations it served an 

inhibitory role to the depolymerization reaction, presumably due to its ability to 

compete with cofilin for binding and to stabilize actin filaments. 

Although the molecular basis behind coronin’s ability to increase cofilin 

loading on actin is being uncovered and appears to be related to the nucleotide 

state of the filament (Tang and Brieher, unpublished), there are specific 

structural and molecular details that are yet to be elucidated that will be the 

subject of future interesting work. For example, we do not yet know if coronin 

primes the filament to bind cofilin and is then itself displaced or if it stays bound 

to the filament once cofilin is loaded on to the filament. 

A broad conceptual advancement from this thesis (that is founded in work 

carried out by Brieher, Kueh and Mitchison) is the discovery that Aip1 is capable 

of destabilizing filaments that are stabilized by the binding of either cofilin alone 

or cofilin and coronin. We now have a potential explanation for why cell extract 

can potently disassemble filaments in spite of having high concentrations of 

cofilin or why Listeria actin comet tails disassemble faster with increasing 

concentrations of cofilin (Rosenblatt et al., 1997). This is because in the 

presence of a factor such as Aip1, more cofilin translates into greater 

destabilization of actin. We could hypothesize that cofilin is a way for filaments to 

be “marked” for disassembly, and the molecule that is responsible for 
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disassembling them is not cofilin, but Aip1. This also puts into context some 

observations that cofilin’s severing activity appears to be more critical for 

polymerization rather than depolymerization (Ghosh et al., 2004; Chen and 

Pollard, 2011). 

Although there was previous evidence to indicate that Aip1 worked by 

mechanisms other than filament capping (Rodal et al., 1999; Ono et al., 2004), 

our work unequivocally establishes that Aip1 does not cap filament ends, thus 

disproving a dominant model in the field. Additional studies also report an 

enhancement in cofilin’s severing activity by Aip1 (Chen et al., 2015; Gressin et 

al., 2015) and have observed Aip1’s destabilization of cofilin-saturated filaments 

thereby validating our results. However a controversy still exists in the field 

regarding whether or not Aip1 severs filaments by competing with cofilin. 

Recent work showed that Aip1 is able to bind filaments in the absence of 

cofilin with a low affinity of about 2- 3 µM and in the presence of cofilin, less Aip1 

bound to the filaments (Chen et al., 2015). This led to the interpretation that 

cofilin and Aip1 compete for binding to actin and Aip1 potentiates severing by 

displacing cofilin and creating more heterotypic interfaces that support the 

severing reaction. However, this contradicts previous results that show that 

Aip1’s affinity for actin is greatly increased by the presence of cofilin (Rodal et 

al., 1999) and is also in disagreement with our results that show that Aip1 and 

cofilin act synergistically and not in competition (Nadkarni and Brieher, 2014). 

The displacement model of enhancing severing is popular in the field 

however, the evidence that Aip1 works by this mechanism is unconvincing due 
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to the fact that the reaction is difficult to resolve spatially and temporally. Bulk 

sedimentation assays to study filament binding by Aip1 and cofilin are 

complicated by the fact that Aip1 severs cofilin-actin into small fragments that 

remain in the supernatant. 

The biophysics of filament severing by cofilin is the subject of intense 

discussion in the field. Vertebrate cofilin binds actin cooperatively (De La Cruz, 

2005) altering the twist of actin filaments (McGough et al., 1997) as well as 

filament flexibility (McCullough et al., 2008). Filament severing is thought to 

occur when filaments are partially occupied with cofilin at junctions of bare and 

cofilin-decorated regions (Andrianantoandro and Pollard, 2006; Suarez et al., 

2011). Fragmentation of filaments by cofiin has been likened to stress fracturing 

of nonproteinaceous materials due to the observation that most severing events 

occur where the critical angle of filament bending is particularly high 

(McCullough et al., 2011). Recently the idea that passive displacement of cofilin 

could drive severing has been propounded (Elam et al., 2013). However, in the 

presence of small molecules or actin binding proteins that displace cofilin we 

were unable to observe augmenting of severing rates. We also observed that 

filaments were able to reanneal at ‘heterotypic’ junctions. We showed that 

passively tethering a portion of the filament in place was an effective way of 

stimulating the severing reaction supporting the view that severing is a 

mechanically transient event. If a diffusible cofilin-dependent factor such as Aip1 

can dramatically potentiate severing at such low ratios of Aip1: cofilin, we 

hypothesize that this must involve a mechanical deformation of the filament by 

the protein. 
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In the context of cellular depolymerization, Aip1 could be a potential 

switch for filaments to be converted from the cofilin-saturated stable to a rapidly 

depolymerizing unstable state. Loss of Aip1 appeared to reduce the available 

pool of monomer for polymerization (Okreglak and Drubin, 2010) consistent with 

its behavior in in vitro assays. We have discovered that Aip1 can augment rates 

of monomer loss from either end of the filament in addition to being a critical 

factor in the catastrophic disassembly or bursting behavior of actin filaments. 

These describe three unconventional mechanisms for disassembling actin 

filaments other that the widely popular filament severing model. 

Unlike microtubules and certain prokaryotic actin homologs such as ParM 

(Mitchison and Kirschner, 1984; Garner, 2004), actin filaments are not thought to 

undergo dynamic instability. This is perhaps due to the fact that the difference in 

stability between the ADP and the ATP forms of actin is only 10-fold (in contrast 

to >100-fold in the case of microtubules). Thus, ATP-actin filaments can 

polymerize to form long filaments that are relatively stable without the action of 

any barbed end stabilizing factors even when nucleotide has been hydrolyzed. 

This may begin to explain why cells have evolved multiple factors to destabilize 

actin filaments. 

Although we do not yet know if the mechanisms we observe in vitro 

operate within cells, it is possible that the cell uses different combinations of 

factors to depolymerize different kinds of arrays. This may be how actin 

structures of vastly differing stabilities are maintained inside cells. For example, 

one study that attempted to reconstitute the properties of filament networks 
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showed that Aip1 was particularly effective at depolymerizing both parallel and 

branched arrays of filaments however, cofilin alone was effective only at 

remodeling branched networks (Blanchoin et al., 2014). 

Although the field of actin depolymerization has been galvanized by the 

discovery of multiple factors that can act in conjunction on actin filaments to 

disassemble them (Brieher et al., 2006; Normoyle and Brieher, 2012) even in the 

presence of excess actin polymer or polymerizable monomer, we are only just 

scratching the surface in our understanding of actin depolymerization. Actin 

filaments inside cells are actively polymerizing and densely crosslinked in a 

variety of arrays and subject to numerous forces. At the physical level, these 

forces could be responsible for structural changes that alter the affinity of 

molecules for actin. There is complex interplay between different molecules in 

binding F-actin and these could influence filament depolymerization. For 

example, the binding of cofilin is antagonized by tropomyosin, a protein that 

coats stress fibers (Bernstein and Bamburg, 1982) (see also Blanchoin et al., 

2014) and this could be implicated in the extraordinary stability of these 

structures. Disassembly is also regulated by signaling and the cascades that 

control the regulation of factors other than cofilin could be the subject of future 

work. These are just a few directions in which the study of actin 

depolymerization could proceed. It is also likely that crosstalk between various 

cytoskeletal networks influences their stability although this area of research is 

virtually untouched. 
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However, despite a myriad of factors that influence the organization of the 

actin cytoskeleton and the diverse ways filament depolymerization could be 

executed and regulated, perhaps future work will reveal unifying principles that 

dictate actin disassembly and show us that the reality is not as complicated as 

we supposed. 
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APPENDIX 
 

ACTIN FILAMENT SEVERING BY COFILIN 
 

 Introduction 
 

Unlike microtubules and certain actin homologs such as ParM, actin 

filaments do not undergo the phenomenon of dynamic instability (Mitchison and 

Kirschner, 1985; Garner et al., 2004). ADP-actin filaments are relatively stable, 

with a 10-fold lower stability than ATP-actin filaments, contrary to a >100 fold 

difference in the case of microtubules and ParM. One way that eukaryotic actin 

is destabilized in order to undergo remodeling is by the action of a protein known 

as ADF/cofilin (Bamburg et al., 1980). Cofilin has many roles inside cells (Bravo- 

Cordero et al., 2013). However most pertinently, cofilin binds ADP-actin with 

high affinity (Blanchoin and Pollard, 1999) and severs them into smaller 

fragments (Maciver et al., 1991). Although cofilin-dependent severing was 

thought to be the dominant mode by which filaments disassembled inside cells, 

subsequent studies have shown it to be more important for the polymerization 

reaction (Ghosh et al., 2004; Chen and Pollard, 2013) due to the generation of 

free barbed ends that can undergo elongation. 

The biophysics of filament severing is a widely debated question in the 

field. Most studies concur that the binding of cofilin to actin results in a change in 

twist of the filament (McGough et al., 1997) decrease in filament persistence 

length, increase in filament flexibility (McCullough et al., 2008) and weakening of 

lateral contacts (Galkin et al., 2011).Severing events occur at boundaries of bare 

and cofilin-decorated actin filaments, at substoichiometric amounts of cofilin to 
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actin (Andrianantoandro and Pollard, 2006) and has been likened to the 

fracturing of non-proteinaceous materials (Suarez et al., 2011). Due to the fact 

that cofilin increases the bending of filaments the critical angle of bending that is 

achieved by cofilin decorated filaments is higher and severing has been shown 

to coincide with these junctions (McCullough et al., 2011). 

Mechanical tethering of filaments by proteins such as alpha actinin and 

heavy meromyosin has been shown to cause filament severing (Pavlov et al., 

2007). Holding part of the filament in place while the rest of the filament 

undergoes bending movements might enable the filaments to reach a high 

critical angle and undergo fragmentation. However, recently the idea that 

passive displacement of cofilin can also drive fragmentation has gained traction 

in the field (Elam et al., 2013). We tested the contribution of filament tethering 

versus passive displacement of cofilin to severing by single filament imaging 

experiments. 
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 Materials and Methods 
 

 

Single filament imaging assays:  These are described in Chapter 3. 
 

Filament annealing assays: TMR-labelled filaments and Cy5 labeled 

filaments (described in Chapter 2) were polymerized and treated with 5x the 

amount of cofilin or phalloidin at pH 6.8 and 7.8. Filaments were then fixed with 

0.25% glutaraldehyde for 3 mins. They were quenched with 25 mM glycine and 

allowed to anneal for 9 h in various combinations. Filaments were imaged on 

poly-L-lysine coated coverslips. N>100 filaments were analyzed from 3 separate 

areas of the coverslip. % Fraction of filaments that underwent annealing were 

quantified. 

Cofilin binding assays with Pyrene actin: These are described in 

Chapter 3. 
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 Results 
 

 Passive displacement of cofilin by phalloidin does not lead to severing 
 

Substoichiometric amounts of cofilin are more effective at severing actin 

due to the fact that severing occurs at the junctions of cofilin-bound and unbound 

regions. When filaments are saturated by cofilin they are stabilized in an 

alternative hyper-twisted configuration. Severing by cofilin has been shown to 

occur best at 0.5 occupancy of the filament (McCullough et al., 2011) by cofilin. 

Previous work showed that severing could be induced by adding small 

molecules such as phalloidin that could compete off cofilin from actin. This was 

carried out by measuring average lengths of filaments in the presence of various 

concentrations of actin, cofilin and phalloidin. Since the filaments were not fixed, 

displacement of cofilin during dilution could potentially perturb the results of the 

experiment. We therefore assayed for cofilin-mediated severing by phalloidin by 

imaging single filaments of actin in the presence of a high initial occupancy of 

cofilin and increasing amounts of phalloidin. Contrary to what we expected, with 

increasing amounts of phalloidin and 10 µM cofilin, severing rates decreased 

consisently from 7*10^-5 per micron of actin to 0 severing events in the presence 

of 1 µM phalloidin at a ratio of 10:1 cofilin: phalloidin. In fact in live imaging 

assays, phalloidin was never able to increase severing rates over a wide range 

of concentrations (Figure A1.1). 

Cofilin binding to actin is cooperative and it has been shown that small 

clusters of cofilin are effective at producing the bending movements/heterotypic 

junctions that lead to the severing reaction (Suarez et al., 2011). We 
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hypothesized that perhaps phalloidin was creating an overall and not a local 

displacement of cofilin. Phalloidin could potentially induce cofilin severing if it 

was present in long stretches leading to heterotypic junctions between cofilin 

and phalloidin bound stretches of actin filaments. We therefore prepared cofilin 

saturated and phalloidin saturated actin filaments at pH 6.8 and pH 7.8. We 

fixed these filaments with glutaraldehyde and mixed them together to test if the 

junctions between cofilin-bound and phalloidin-bound filaments were compatible 

to bind one another. At pH 7.8 there was an equal fraction of filaments that 

underwent annealing in spite of possessing “heterotypic” junctions as control 

phalloidin-phalloidin filaments (Figure A1.B). Phalloidin bound filaments on 

average had a longer filament lengths. This indicated that they were either 

stabilized or able to undergo reannealing among themselves. We did not 

normalize our results to filament length. At pH 6.8 there was a 10% decrease in 

the fraction of filaments that exhibited heterotypic junctions compared to control 

phalloidin-phalloidin filaments. We attribute this to the fact that phalloidin 

filaments were longer and on average there were fewer available for 

reannealing. Therefore, there did not appear to be a structural incompatibility 

between phalloidin bound and cofilin bound filaments. 

 

 
 Passive displacement of cofilin by bundling proteins 

 

Recent work has also shown that competitive displacement of cofilin by 

myosin can induce severing. We also decided to revisit this observation in light 

of our results with phalloidin. We tested the enhancement of cofilin-mediated 
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severing in the presence of tropomyosin which is a well known antagonizer of 

cofilin mediated depolymerization (Bernstein and Bamburg, 1982). 

We used pyrene-actin based spectroscopy to determine the 

concentration of tropomyosin that was required to displace 50% of the cofilin 

from actin. We chose a cofilin concentration that would give a high initial 

occupancy of actin (6 µM ) from previous work. In the presence of this cofilin 

concentration, roughly 15 µM tropomyosin would give us half maximally 

saturated cofilin decorated actin filaments. We normalized these results to 

pyrene in the presence of tropomyosin alone due to the fact that tropomyosin 

itself altered the fluorescence of pyrene actin (Figure A2A(inset). In the 

presence of 15 µM tropomyosin, we did not view any enhancement in severing 

over the first 3 minutes of the reaction. In fact, we observed a decline of 

severing rates from 0.00036 events per micron per second to 0.00029 events 

per micron per second. This showed us that simply passive displacement of 

cofilin in solution does not alter filament severing rates. 

 

 
 Attachment is more effective in potentiating cofilin mediated severing than 

 

 passive displacement 
 

We were unable to detect any enhancement in severing in the presence 

of passive displacers of cofilin. However, we did detect an enhancement in 

severing by tropomyosin if we tethered filaments on it prior to flowing in cofilin. 

For this we coated coverslips with 5 µM tropomyosin, 1/3rd of the amount that 

was required to displace 50% cofilin from actin and flowed in polymerized 
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filaments. We measured the severing rate that was obtained only within the first 

30 seconds of flowing in cofilin. We compared tethered filaments to unattached 

filaments and found a close to 4-fold enhancement of severing rates when they 

were attached via tropomyosin from 0.001 events per micron per second to 

0.0037 (Figure A2.C). 

We also looked at filament severing rates in the presence of 

another actin binding protein alpha-actinin. In the presence of cofilin alone, 

severing rates decreased with increasing concentrations of cofilin. However, if 

filaments were tethered to the glass in the presence of a fixed amount of alpha- 

actinin, increasing concentrations of cofilin lead to ever faster severing rates. 

Severing rates increased roughly 3x from 2 – 10 µM cofilin and were higher in 

every condition in the presence rather than the absence of alpha-actinin. Thus, 

tethering the filaments with alpha-actinin fundamentally changed the effects of 

cofilin on these filaments. 
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 Discussion 
 

We investigated “passive displacement” of cofilin as a strategy to 

augment severing. Recently a study reported the enhancement of severing by 

molecules such as phalloidin and myosin that are able to competitively displace 

cofilin from actin (Elam et al., 2013). These experiments were carried out by 

measuring average lengths of unfixed filaments in the presence of cofilin and 

varying concentrations of phalloidin and myosin. At 0.5 occupancy of the 

filament by cofilin, filament lengths were found to decrease. This has led to a 

popular idea in the field that knocking off cofilin from actin can lead to more 

heterotypic (cofilin-bound versus bare) junctions and more severing. However, 

our work contests this idea. 

We directly assayed filament severing rates by time lapse imaging of 

filaments in the presence of cofilin and varying concentrations of phalloidin. In 

our hands, phalloidin stabilized actin filaments. In fact, we observed that with 

increasing phalloidin, the average number of severing events decreased. 

Phalloidin, unlike cofilin, does not display any cooperativity in binding. 
 

Therefore, once it binds onto actin filaments, it does not displace a long stretch 

of cofilin and may not create heterotypic interfaces that can promote severing 

(Suarez et al. 2011). We addressed this caveat by artificially generating 

phalloidin versus cofilin “heterotypic interfaces”, by allowing cofilin– and 

phalloidin-bound actin filaments to anneal to one another. We found that these 

filaments were in fact, compatible to bind one another. 
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Indeed, the existence of heterotypic interfaces between phalloidin and 

cofilin-saturated actin filaments indicates that severing by cofilin could be a 

result of a transient incompatibility or “fracturing” as has been described 

(McCullough et al., 2011). 

We also observed similar results in the case of actin binding proteins. We 

looked at severing rates of filaments in the presence or absence of a well-known 

competitor of cofilin-binding : tropomyosin at 50% occupancy and found no 

enhancement in severing rates however, if we attached filaments to coverslips 

coated with tropomyosin, we did obtain augmented severing rates as has been 

observed in the past (Pavlov et al. 2011).  We obtained similar results in the 

case of a different actin binding protein alpha-actinin 4. The tethering of 

filaments fundamentally altered their behavior in the presence of cofilin. Cofilin 

severs best at low ratios of cofilin: actin when the filaments are in suspension 

and increasing levels of cofilin lead to stabilization of actin filaments. But if 

filaments were tethered to the surface, it was the higher concentrations of cofilin 

that led to more efficient disassembly. This phenomenon could be especially 

relevant in cells where filaments are found crosslinked in dense networks. 

If tropomyosin and alpha-actinin were bound to actin at a certain site, the 

accessibility of the site for cofilin binding might be hindered. We wished to 

understand if the severing event occurred because part of the filament was 

immobilized or because the cofilin was simply unable to bind to the portion of 

the filament thus creating a ‘heterotypic junction’. 
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Preliminary studies suggest the former. When filaments were tethered to 

the glass simply by doping filaments with a low amount of biotin and attaching 

them via streptavidin, high concentrations of cofilin led to severing. Although 

more studies are required to elucidate this point more fully, this is an intuitive yet 

important observation for actin filament severing. If an inert tether that does not 

hinder cofilin-binding to actin is able to increase filament severing, this indicates 

that simply mechanically constraining sections of the filament is sufficient to 

promote a severing reaction. This may influence the way that actin network 

dynamics are viewed. 
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Figure A.1 Severing does not occur by passive displacement of cofilin by phal- 

lodin. (A) Severing events were quantified with 10 µM actin and increasing con- 

centrations of phalloidin. Rates were found to decrease from 6*10^-5 per micron 

to zero in the presence of 1 µM  phalloidin. (B) Reannealing of cofilin-saturated 

or phalloidin-saturated filaments at pH 6.8 and pH 7.8. % Fraction of total fila- 

ments that underwent annealing and had heterotypic junctions were quantified. 
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Figure A.2 Tethering filaments by actin binding proteins is more effective at 

augmenting severing than passive displacement. A) Displacement of cofilin from 

pyrene-actin filaments saturated with cofilin (6 µM cofilin, 3:1 cofilin :actin, 

vcof>0.9) in the presence of increasing concentrations of tropomyosin showed 

that roughly 15 µM tropomyosin could displace 50% cofilin from actin filaments. 

(B) Readings were normalized to fluorescence values of pyrene actin in the 

presence of increasing concentrations of tropomyosin alone. (C) These 

concentrations of cofilin and tropomyosin were used to look at severing rates in 

suspension. Severing rates in the presence and absence of tropomyosin were 

enumerated as events per micron per second. (D) Severing events of filaments 

untethered or tethered by 5 µM tropomyosin were quantified in the first 30 s of 

the reaction. Tethering increased rates 3x. 
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Figure A.2 (cont.) (E) Tethering filaments by alpha actinin caused an increase 

in severing rates at all concentrations of cofilin. Shaded bars represent attached 

filaments and gray bars represent filaments in suspension without alpha actinin. 

In the presence of alpha actinin, increasing concentrations of cofilin do not 

saturate and stabilize actin filaments. 
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