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Abstract

We introduce a technique for obtaining the Bergman kernel on certain Har-
togs domains. To do so, we apply a differential operator to a known kernel
function on a domain in lower dimensional space. We rediscover some known
results and we obtain new explicit formulas. Using these formulas, we an-
alyze the boundary behavior of the kernel function on the diagonal. Our
technique also leads us to results about a cancellation of singularities for
generalized hypergeometric functions and weighted Bergman kernels. Fi-
nally, we give an alternative approach to obtain explicit bases for complex

harmonic homogeneous polynomial spaces.
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Chapter 1

Introduction

Let  denote an open connected set in complex Euclidean space C™. Let
A%(Q) denote the space of square-integrable holomorphic functions on €.
The orthogonal projection P : L?(2) — A2(Q) is called the Bergman pro-
jection. The Bergman kernel function Kq on € is the reproducing kernel
associated with the Bergman projection P.

Since it was first introduced by Stefan Bergman [Ber70], the Bergman
kernel has been an important tool in the study of several complex variables
and differential geometry. The boundary behavior of the Bergman kernel is
closely related to the boundary regularity of holomorphic mappings. The
Bergman metric, defined by 0dlog Kq(z;%), is a Kihler metric of major
importance in complex geometry.

Explicit formulas for the Bergman kernel are available in only a few cases.
One method to obtain an explicit formula is to sum an orthonormal series.
Let {¢o} be a complete orthonormal system for A%(€2). Since it reproduces

every element in A%(Q), the Bergman kernel Kq(z;() satisfies:
KQ(Z;E) = Z¢a(z)¢a(<) (1.1)

Another method for computing K applies when  (for example, the unit
ball) has a transitive holomorphic automorphism group. Suppose the au-
tomorphism group of domain 2 is transitive and Kq(20;Zp) is known at
some fixed zp. For any z € (), there is a holomorphic automorphism send-
ing 29 to z. Then Kq(z;Z) can be obtained by applying the biholomorphic
transformation rule for the Bergman kernel to Kq(z0; Zp).

In Chapter 2, we provide details about these two methods and use both
of them to obtain the explicit formula of the Bergman kernel on the unit
disk. We also review previous results where explicit formulas for the kernel
functions are obtained.

Our approach for computing the kernel function is different. We start

with a domain Q C C"™™ with certain symmetry properties in the first



n variables. Rescaling the first n components of {2 by a multi-parameter
t yields a family of domains {Q¢} with each € biholomorphic to Q. By
regarding the rescaling parameters t as two different kinds of functions in
k new complex variables, we obtain domains U® and V7 in C"t™*+k  For
n € CF let U, and V) denote the slice of domains U® and V7 with the
last k& variables equal to 7. We obtain the kernel function on U% and V7 by
first computing KU;]I and K Vs evaluating these kernel functions at certain
points off the diagonal, and then applying a differential operator to them.
This technique combines the method of equation (1.1) and biholomorphic
transformation with the idea of variation of parameters, and gives explicit
formulas for the Bergman kernel functions in many new cases. We intro-
duce the notion of n-star-shaped Hartogs for those symmetry properties €2
requires, and illustrate the construction of U® and V7 in Chapter 2.

Theorems 3.1 and 3.2, two of our main results, give formulas that relate
Kye and Ky~ to KU,?L and Kvnw. In each case, the kernel function on the
target domain is obtained explicitly from the kernel function on the base
domain by the three step process described above. First one computes the
kernel function on a domain biholomorphic to the base domain. Then one
evaluates this kernel off the diagonal. Finally one applies a differential op-
erator to this expression, obtaining the kernel on the target domain. See
formulas (3.5) and (3.6). The differential operators used for U* and for V7
differ, but each is also completely explicit.

Example 3.1 gives a case where the known kernel function can be re-
discovered using our method. Examples 3.2 and 3.3 give new cases where
explicit formulas for the kernel function are obtained. In Example 3.4, we
apply Theorems 3.1 and 3.2 repeatedly, obtaining explicit formulas for the
kernel function on rather elaborate domains. Using our technique, we also
rediscover a recent result of Edholm [Edh15], who found an explicit formula
for the Bergman kernel on some generalized Hartogs triangles in C2.

We use our explicit formulas to describe the boundary behaviors of
Kye and Ky~. In [Fef74], Fefferman gave an asymptotic expansion of the
Bergman kernel on the diagonal when the domain is bounded, smooth, and
strongly pseudoconvex. He used this result to prove that a biholomorphic
mapping between two bounded smooth strongly pseudoconvex domains can
be extended smoothly to the closure. Later, S. Bell and E. Ligocka [BL80]
extended Fefferman’s result to smooth bounded pseudoconvex domains sat-
isfying condition R. This condition means that the Bergman projection P
associated with the domain € maps elements of C°°(Q) into C°*°(£2). This

regularity condition is equivalent to an inequality on the derivatives of the



Bergman kernel near the boundary. Because of its close connection to the
boundary regularity of holomorphic mappings, the behavior of the Bergman
kernel near the boundary has been studied for many decades. In the weakly
pseudoconvex case, the boundary behavior is difficult to analyze. Near a
weakly pseudoconvex point of finite type, certain estimates on the Bergman
kernel were obtained by McNeal [McN89, McN94]. Fu [Fu94] gave a sharp
lower bound estimate for the Bergman kernel on a bounded pseudocon-
vex domain with C? boundary. Less is known about the behavior of the
Bergman kernel near non-smooth boundary points. It is worth noting that
our calculations produce many domains whose kernel functions have no log
terms.

In Chapter 4, we discuss the pseudoconvexity of U“ and V7 provided
the domain 2 is pseudoconvex. We determine the boundary behavior of the
Bergman kernels in Examples 3.2 and 3.3 using explicit formulas and admis-
sible approach regions. Then we combine Theorems 3.1 and 3.2 with Feffer-
man’s asymptotic expansion for the Bergman kernel to obtain the boundary
behavior of the Bergman kernel on U% and V7 when €2 is bounded, smooth
and strongly pseudoconvex. In Theorems 4.2 and 4.3, the boundaries of U®
and V7 need not be smooth.

While the Bergman kernel tends to infinity when approaching a pseudo-
convex boundary point along the diagonal, the behavior of the kernel func-
tion near the boundary off the diagonal is different. Kerzman first showed
in [Ker72] that, for smooth, bounded strongly pseudoconvex domains, the
Bergman kernel is C*°-smooth up to the boundary off the diagonal. Later,
Bell [Bel86] and Boas [Boa87] independently generalized Kerzman’s result
to cases where boundary points are of finite type. The simplest examples
where differentiability results hold for the Bergman kernel are complex ovals.
Francsics and Hanges, in [FH96, FH97|, expressed the Bergman kernel on
complex ovals as a sum of some generalized hypergeometric functions. De-
spite the smooth extension of the kernel function on complex ovals off the
diagonal, each generalized hypergeometric function in the sum tends to in-
finity. This phenomenon suggests a cancellation of singularities of these
generalized hypergeometric functions. In Theorem 5.5, we give a smooth
extension result for these hypergeometric functions at the boundary of their
domains of convergence.

Let f : Q1 — Q9 be a surjective proper holomorphic mapping. Bell,
in [Bel81], gave a transformation formula of f that relates Kq, to Kgq,.
Unlike the biholomorphic transformation formula, Bell’s formula is explicit

for Kq, but implicit for Kq,, i.e. Kqo, may not be obtained even if an



explicit formula for Kq, is given. In Theorem 5.8, we give, for domains
with some symmetry properties and special proper mappings f, an explicit
transformation formula for Kq, that relates Kq, to weighted Bergman kernel
functions on 3. Combining this result with our observation about general-
ized hypergeometric functions, we obtain, in Theorem 5.9, a cancellation of
singularities for weighted Bergman kernels.

The idea of our technique for computing the Bergman kernel is to relate
a complete orthonormal system in one space to another. Such an idea can
be applied in different settings. Ikeda and Kayama [IK67] first gave an ex-
plicit basis for complex harmonic homogeneous polynomial space H,, ,(CF)
using complex harmonic homogeneous polynomials of lower degree in fewer
variables. As consequences, their result implied the existence of mappings
between elements in H, ,(C¥~1) and H,, ,(C¥) with a < m and b < n, and
an orthogonal decomposition of the space H,, ,(C*). Koornwinder [Koo72]
gave another proof of the result of Ikeda and Kayama. In [IK67], the au-
thors solved the Laplace equation using special coordinates and separation
of variables to obtain their results. Koornwinder’s approach involves zonal
harmonics and Jacobi polynomials.

In this thesis, we recover these results using neither special coordinates
nor special functions. Instead, we use the methods of undetermined coef-
ficients and separation of variables. In Chapter 6, we introduce an inner
product < -, - > in which the Laplacian is the adjoint of multiplication by
|z]|?. We prove an orthogonal decomposition of the space of complex homo-
geneous polynomials. Using the methods of undetermined coefficients and
separation of variables, we obtain multiplication operators sending complex
harmonic homogeneous polynomials with k — 1 variables into H,, ,(C¥), and
prove the decomposition theorem for H,, ,,(C¥). We also give a higher di-
mensional analogue of our argument where our mappings send Ha7b((Ck) to
Hypyn(CFFT) for » > 2.

The common theme in the thesis is to analyze norm preserving operators
between a Hilbert space Hi of functions in several variables and another
Hilbert space Hs of functions in more variables. When H; and Hsy are
spaces of complex harmonic homogeneous polynomials, we use the method of
separation of variables to compute the operator and obtain a decomposition
for Hy. When H; and Hy are A*(Uy) and A*(U®), these norm-preserving
mappings suggest certain relations between the kernel functions on U;* and

U“ and finally lead to our explicit formula for K.



Chapter 2

Background information

We recall some definitions, basic facts, and well-known results about the

Bergman kernel.

2.1 Preliminaries

Let Q be a domain (open, connected set) in complex Euclidean space C™.
Let dV denote Lebesgue measure on C". Let L?(Q) denote the space of

square-integrable functions with the inner product (-, -):

(f. ) = /Qfg av.

Let A%(€2) denote the subspace of L?(£2) that consists of holomorphic func-
tions. It is closed in L?(Q2) and hence is itself a Hilbert space.
Consider z € Q. The map J, from A2() to C defined by

6:(f) = f(2) (2.1)

is a bounded linear functional. By Riesz’s representation theorem, there
exists a unique K, € A%(Q) such that

F(2) = 6:(f) = (. K2) = /Q KOOV (Q). (2.2)

The Bergman kernel function Kg is defined by Kq(z;¢) = K,(¢). By this
definition, Kq(+;-) is defined on Q x Q* where Q* = {z : z € Q}. For
simplicity of our notion, we consider Kq(z;() as a function on € x Q by
regarding ¢ as a function of ¢. Let P denote the orthogonal projection from
L?(Q2) to A%(2). Then, for each f € L?(2), we have

Pf(z) = /Q Ko(= O f(Q)dV(Q).

We call P the Bergman projection.



These considerations lead to the following lemma (See, e.g., Prop. 1.4.6
in [Kra01]):

Lemma 2.1. A function K : Q x Q — C is the Bergman kernel function on

Q if and only if the following three properties hold:

1. For each ( € Q, the map z — K(z;C) is in A%(Q).

2. K(z;¢) = K(C;2). (Hermitian symmetry)

3. [q K(z;0)f(Q)dV(¢) = f(2) for all f € A%(Q). (reproducing prop.)

If {¢4} is an complete orthonormal system for A%(€2), then the Bergman
kernel K satisfies

Ko(0) = 3 6a(2)6a(0). (2.3)

Let F : Q1 — Q9 be a biholomorphic map. Let JF be the holomorphic

Jacobian determinant of F'. Then we have the transformation formula:

Ko, (2;¢) = JF(2) JF(C) Ka, (F(2); F(C))- (2.4)

Explicit formulas for the Bergman kernel on the polydisk D* C C" and
unit ball B® C C" can be obtained using either (2.3) or (2.4). Here we
demonstrate these two different approaches using the kernel function on the
unit disk B as an example.

To use formula (2.3) for Kq, we need to find a complete orthogonal
system for A%(Q). Since B is bounded, all monomials are square-integrable

on B. Consider the inner product of monomial 2* and 2°:
(2%, 2% = / 222°dV.
B

Using polar coordinates, we have

2 1 0 ifa+#b
/ 220V = / ele=00 g / ety = s
B 0 0 o ifa=0b

Thus {2%} forms an orthogonal system for A%((2). Since every holomrphic
function in A(B) has a power series expansion with normal convergence on

B, the system {2} is complete. Therefore (2.3) yields

- > (a+1)(20)° 1
KIB(ZSC):g( 72( 3 T r1=202



The other approach uses the transitivity of automorphisms on the unit disk.

For arbitrary z € B, the Md&bius transformation

(—z

szC’_)l_ZC

maps the point z to the origin and is an automorphism on B. Formula (2.4)
implies that
Kg(2;2) = |J£.(2)|*Kg(0,0).

Since |J f.(2)|? = =— - and K (0,0) = W =1, we have

By Lemma 2.1, the function Kp is Hermitian symmetric. Therefore

= 1
Kp(z;() = ——.
Sk
Similarly, computations using either the complete orthonormal system for
A%(B™) or the automorphisms on B" yield the explicit formula for the kernel

function on the unit ball in C™:
_ n!

KB" (Zvc) = ﬂ'n(]. _ <Z, C>)n+1 :

Applying (2.4) to Kpn, we can also obtain the kernel functions on those
domains that are biholomorphic to Kgn. Take B, = {z € C: |z| < r} as an
example. B, is biholomorphic to B via the mapping F': z — 2. Therefore
applying (2.4) to Kp yields:

— /]"‘2

Kg,(2:¢) = (2 =202

If we regard the parameter r as a positive function f(w;w) of a new complex
variable w on the domain D C C, then we can construct a new domain in
C? using the function f and the unit disk B:

{(z,w) eCxD:z| < f(w,w)}.

Similarly, for a domain 2 C C", if we start with a multi-parameter family
of domains {Q,} with each €, biholomorphic to Q2 and replace r; by some
function f;, then we can construct a new domain ¢/ in a higher dimensional

space. It is natural to ask whether the Bergman kernel on ¢/ can be obtained



if Kq is known. Our technique provides, for certain kinds of €2 and f;,
an explicit formula that connects the Bergman kernel on U with the kernel
function on 2. We first introduce the class of domains €2 where our technique
works.

Let Q be a domain in C*™™. Let z1,...,2, and (1,...,(, denote the
first n and last m coordinates in C"*™. Our method of obtaining Bergman
kernels requires the space A%(Q2) to have a complete orthogonal system of
the form {22¢,(2')}. This consideration leads us to a class of domains with
a symmetry property in the z coordinates. We call these domains n-star-
shaped Hartogs domains. Before defining them, we recall the definitions of

Reinhardt domain and Hartogs domain.

Definition 2.1. A domain Q@ C C" is called Reinhardt if (z1,...,2,) €

implies (91 21,...,e"%2,) € Q for any real 0;’s.

Definition 2.2. A domain Q C C" is called Hartogs with symmetric plane

{z; =0} if (21,...,2n) € Q implies the containment
{(z1,...,€%2,...,2,) 10 €R} C Q.

We introduce in this thesis the following class of domains.

Definition 2.3. A domain Q C C"*™ s called n-star-shaped Hartogs in
(215 -y 2n) if (21, .., 2, C) € Q implies that

{Aiz1, -, Anzn, Q) 1| <1 for 1 <5 <n} CQ.

A Reinhardt domain in C" containing the origin is automatically n-star-

shaped Hartogs.

Example 2.1. By their definitions, the unit ball
{zeC":|z]| < 1},

and polydisk
{zeC": |z <1 for1<j<n}

are Reinhardt domains containing the origin. Therefore, they are also n-

star-shaped Hartogs domains.

Example 2.2. The Hartogs triangle

{(21,20) € C?: |21| < |22| < 1}



is a Reinhardt domain. Since zo # 0 on this domain, the domain is not star
shaped in the zo coordinate. Therefore it is a 1-star-shaped Hartogs domain

in the z1 coordinate.

If 2 is a Reinhardt domain in C" containing the origin, then every holo-
morphic function on €2 has a power series expansion with normal convergence
in Q. The following lemma is an analogue for the general n-star-shaped Har-

togs domain.

Lemma 2.2. Let Q C C"™™ be n star-shaped Hartogs. Let f be a holomor-

phic function on Q. Then f has a unique expansion
= 6a(Q)2%,
a

where ¢a(C) is holomorphic in ¢ and the series converges normally in Q.

Proof. The uniqueness is obvious. We show the existence. Let (! denote
the set

n

z € Q : dist(z,0Q) >e§:|zj|2

Let Y = {(2,{) € : z = 0}. Since Q is connected and n-star-shaped, Y is
connected. Fix (0,(y) € Y. For small ¢, the point (0, () is contained in (€.
Let EQ denote the connected component of {2 that contains (0,(p). Then

U £ = Q. For any compact set K C €, we can therefore choose a small ¢

so that K C, Q. For (2,0) € £, we set

1 f(zltla---azntTmClv"'?CH)
( ) (27TZ) [t1|=14€ [tn|=14¢€ Hj:l(tj - 1) 1

The function is well-defined by the construction of Q. It defines an analytic

function on £ and equals f(z,¢) when ||z| is small. Therefore, f = g on
. Note that

T a;—1 t—an—l (*)
H] 1 Z 1 n ’

where this Laurent series converges when |t;| = 14+ € for all 1 < j < n.

Substituting () into our formula in g yields

g(z,C)ZZ f(zltla-'wzntnaglv."'7Cn)dt1”'dtn
. n a7+1
a2 Y lti|=1+4e€ [tn]=1+¢ (2mi)™ Hj:l ty




with normal convergence in £). Since

et a6
[tn|=14¢€

(i) T 157

Zors0.0 = [ by dty,
a!l

‘tl‘:1+e

we conclude that

f(27C) _ Z 8?f(07 C) Py

al
a

The proof is complete. O

When 2 C C" is bounded and Reinhardt, the monomial z¢ is orthogonal
to the monomial 27 in L?(2) if o # . When Q is an n-star-shaped Hartogs

domain, we have a similar orthogonality property for elements in A2((2).

Lemma 2.3. Let Q C C"™™ be n-star-shaped Hartogs. Let z*f(¢) and
27g(C) be square-integrable functions on Q with o # ~y. Then z*f(() is
orthogonal to 27g(¢) in A%(Q).

Proof. Let Q7 denote the set {(r,{) : (r,{) € Qandr; > 0forall j}. Note
that € is n-star-shaped Hartogs. In polar coordinates, = QF x [0, 27]™.

Hence we have
- o n 27 ( 6
@ = aTyTn (o —74)05 70 .
| = 107a@av = [ e 0aiave oIl e,

If aj # ~j, then f027r i@ =75)0; df; equals 0. Therefore for o # 7, we have
(zf(€),279(¢)) = 0. O

Let m : (2,{) +— ( denote the projection from C"™ x C™ to C™. For
¢ € m(2), we set Qe = {z € C" : (2,¢) € Q}. The following lemma is
a version of Ligocka’s result in [Lig89]. A related idea has also been used
by Forelli and Rudin in [FR75]. In our version, there is no boundedness
assumption on the domain €. For convenience, we provide a complete proof

below.
Lemma 2.4. Let  be an n-star-shaped Hartogs domain. Then

1. Let f be an element in A%(Q2). Then f can be expanded as follows:
F(2:0) = ¢al¢)2™

For each multi-index a, ¢, is a square-integrable holomorphic function

on w(§) with respect to the measure Hza||%lch(().

10



2. If {¢an} is a complete orthogonal system for A%(m(S2), ||zaH?2<), then
{¢apz?} forms a complete orthogonal system for A%(S2).

Proof. Let {QF} denote an increasing sequence of compact n-star-shaped
Hartogs domains exhausting Q. Thus Q% cc QF! for all k and |J* QF = Q.
Since ), ¢a(()z® converges normally on £, the series converges uniformly
on QF. Lemma 2.3 implies that ¢,(()22 L ¢p(¢)2P in L2(Q) when a # b.
Hence, for all k and ¢,(¢)22 € A%(QF),

1z Oz ) = D 16a($) 22150 9
and therefore ¢,(()2? is square-integrable on 2. Since
16a(0) 2% 12z gy = /D 6a(C)? /Q RV dV(C)
— [ @) P11,V 0 (25)
D

we have ¢, € A%(7(Q), Hza||52)<) We claim that A2%(7(Q), ||za||?2<) inherits
its completeness from A%(Q2): Consider an arbitrary compact set K C ().
Since (2 is n-star-shaped Hartogs, the compact set {0} x K is in Q. Thus
there exists a constant rx > 0 such that for any point (0,¢) € {0} x K, the
(n +m)-ball B((0,();rx) is contained in Q. Let » = rx /3. Let By denote
the n-ball centered at the point z, = (%,..., L) with radius 5-. For ¢ € K,
let B denote the m-ball centered at the ¢ with radius . Then we have
By x B; € B((0,¢);rk) C Q. Let g(¢) be an element of A%(m (), HzaH?)C)

By the mean value property and Hélder’s inequality,

9(O)] =

’z;:‘g@)’ _ Joix 9wV ()

< a .
28 Voi(Br x Bl = Crl9@lazma e,

Taking the supremum of |g(¢)| on K, we have

Sup 9001 = Crllg(Ollazmi ==, )
L? convergence in A%(7(£2), ||za||gzc) implies normal convergence in A(7(€2)),
and hence A?(7(Q), ||za|]?2<) is closed.

Let {¢ap} be a complete orthogonal system of A%(m(€2), HzaH%C) We
finish the proof by showing that {22¢ap({)} forms a complete orthogonal

11



system of A%(Q). For any f € A%(Q),

f(za C) = Z ca,bza¢a,b(C)'
a,b

To show the completeness of {22¢,p}, we assume f € A?(Q) and

(f(2:0),2%¢ap(¢)) =0

for all a,b. We verify that f = 0.
Let {Q*} be the domains used above. For arbitrary a and b,

[ 5c.05@av + [ 10 g@ar =0
QFk O—QFk
We therefore have
| / £z 0P 8an(CaV | = | / £+ Fan IV |
QFk Q_Qk

By Holder’s inequality,

‘/Q_Qk f(z,C)zamdvy < ’\Z%a,b(C)IIAz(Q)(/Q N |f|2dv)é,

Since f € A%2(Q) and QF exhausts €,

lim |f|2dV = 0.
k—oo Jo_qk

Therefore

lim ‘
k—o00 Ok

f(z, <>zamdv\ —0.

Using Hoélder’s inequality again yields f(z,()z2¢ap(¢) € L'(£2). The com-

pactness of QF and polar coordinates imply that

/Q (0 0an(QdV |
:/ an,ﬁzaﬁba,ﬁ(g)gamdv‘
QFk a.p

- /Qk Z Ca,,8|2a|2¢a,3(()mdv"
B

12



By the Dominated Convergence Theorem,

k—o00

lim D ca sl das(Q)dan()dV

I3 \

= /leg{)loxm(z,C)an,ﬂlza\%a,ﬁ(o%,b@dv‘
3

- /Q 2 Camza\%aﬁ(omdv\
B

| [ canls"Poanc)aniciav]
=cab|[122¢ab ()32

Therefore ca, = 0 for all a, b and f = 0. ]

Corollary 2.1. Let {¢pan(C)} be a complete orthogonal system for the space
A% (m(Q), [22115,)- Then

Ko(z,23¢,0) =) (20)%an(2)0ab(C")

ol E NGOl

(2.6)

In particular, when Q C C" is a Reinhardt domain containing the origin,
the square-integrable monomials form a complete orthogonal system. Let J
denote the set of multi-indices {a : 22 € L?(2)}. Then the Bergman kernel

K has the following expansion:

Z (=20 (2.7)

.
o 12205 g
2.2 Previous results

Explicit formulas for the Bergman kernel are available in only a few cases.
Among them, most results have been obtained on domains with symmetries
since fairly simple systems {¢,} can be chosen on these domains. The
kernels for the unit ball and polydisk have been long known. D’Angelo
[D’A78,D’A94] gave an explicit formula of the Bergman kernel on the domain

{(z,0) € ™ ¢ |2 + [Jw]|*? < 13,

where p is positive. See Example 3.1. On the complex ovals

n
{zeC": Z |2]2% < 1},

j=1

13



where a;’s are positive integers, Francsics and Hanges [FH96, FHI7] ex-
pressed the Bergman kernel in terms of generalized hypergeometric func-
tions. See Theorem 5.4. Boas, Fu, and Straube [BFS99] introduced a
method for obtaining the Bergman kernel. They differentiate the kernel
function on {(z,w) € C% : |z| < p(w)} for z € C to obtain the kernel for
z€C"on {(z,w) € C"xC: ||z|| < p(w)}. More recent results can be found
in [Par08, Par13, Yam13, Beb15, Edh15].

Our method rediscovers some of the formulas mentioned above and also

yields some new explicit formulas. See Chapter 3 for more details.

2.3 Settings and notations

Let Q C C"™™ be an n-star-shaped Hartogs domain. Let Kq denote the
Bergman kernel on Q. Set t = (t1,...,t,) with ¢; > 0 for all j. Let Q

denote the set
{(2,0) € C"™ : (t121, ..., tn2n, () € Q}.

Let D be a conjugate invariant domain in C*. For 1 < j < n, let Pj be a
Hermitian symmetric function on D x D satisfying v;(w,w) > 0 on D. By
regarding each parameter t; as the value of ¢; on the diagonal (w,w), we

construct a new domain ¢/ in a higher dimensional space:
{(z,¢,w) € CT™HE - (4 (w, @) 21, . .., Yu(w, D)2y, () € Q and w € D}.

We call U the “target” domain and €2 its “base” domain. The main concern
in this thesis is obtaining explicit formulas for the Bergman kernel on U

when 1); is chosen in the following two ways:
(i) 5(w,) = (1~ (w, 7))~ 7 where [lw] <1 and a; > 0.
(i) v;(w,w) = exp{% (w,n)} where w € C* and ~; > 0.

To avoid confusion, we use U to denote the domain constructed by the
general ¥;’s and use U and V7 to denote the domains where 1); is chosen
in (i) and (ii):

o U ={(2,7,w) € C"™ x C*: (fu(z,w),2') € Q,||w| < 1}

where
21 Zn
fa(z,w):( ey an)
(1= Jlw|2)= (1= [Jw[?)2

and o;’s are positive numbers.
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o VY ={(z,7,w) € C"™ x C¥: (g,(z,w), 2') € Q}

where
1 llw? Y llwl]

2
g'Y(va): <62217°"76 2 Zn)

and v;’s are positive numbers.

Remark. In our definition of U* and V7, we avoid the cases when all o;
and vy; equal 0 since they are not interesting. When o = 0, U® becomes
Q x B* and Kpyo equals the product of the Bergman kernels on Q and the
unit disk B. When v = 0, VO = Q x C*. Since A%2(V?) = {0}, the kernel
function Kyyo is identically zero. These results are consistent with Theorems
3.1 and 3.2.

Since el“I” and (1 — ||w||?)~! are increasing in ||w|| and invariant under the
rotation map w; — ewwj for 8 € R and 1 < j <k, the slice domains of U®
and V7 with z and 2’ coordinates fixed are Reinhardt domains containing

the origin in C*. This observation yields the following:

Lemma 2.5. IfQ is n-star-shaped Hartogs in the variables (21, ..., zy), then

U and V7 are (n + k)-star-shaped Hartogs in the variables (z1, ..., 2zn, w).

By Lemma 2.4, a complete orthogonal system of the form {22¢a b (2" )w®}
can be chosen for A?(U%) and A?(V7). The next lemma implies that for
c € N¥ {284, 1,(2)w} is a complete orthogonal system for both A%(U?)
and A2(V7) if {z2¢ap(2')} is a complete orthogonal system for A(Q).

Lemma 2.6. The function 22¢(2") is square-integrable on Q if and only if
for all ¢ € N¥, the function 22¢(2")w® is square-integrable on U® (07‘ VV).

Proof. Suppose 22¢ (2" )w® € A2(U®). Then
P PPV (e, ) = [0 ey < 00 (29

Substituting t; = z;(1 — Hw||2)_7j for 1 < 7 < n and applying Fubini’s
theorem to the integral in (2.8) yield:

[ 1Pl PlucPav (e, 2. o)
— / w21 — [fwlP)* @V (w) / 12 2l6() PV (L, 2)
Bk 0

= [ P = el eV @) 9 gy < 0o (29)
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Since [g [we|?(1 — [Jw][?)*@+YdV (w) is a constant, ||zaq§(z’)||%2(m < o0
and hence 22¢(2') is in 4%2(Q2). By (2.9), the converse is also true. A similar

argument proves the statement for V7. We omit the details. O

The definitions of U® and V7 also imply that the slices of U% and V7,
with the w coordinate fixed, are biholomorphic to €. For fixed w € B* and
n € CF, let US denote the slice domain {(z,z') € C"*™ : (2,2, w) € U®} of
U® and let V;/ denote the slice domain {(z,2") € C"*™ : (2,2',n) € V7} of
V7. Applying the mappings fo(-,w) and g,(-,n) to UZ and V;]" yields:

Lemma 2.7. U$ and V; are biholomorphic to .

We illustrate our technique of obtaining Ky« and Ky~ using the follow-

ing special case of Example 3.1:

Example. Let Q be the unit disk in C and U be the complex oval
{(z,w) € C*: |2]** 4 |w|* < 1}.

Regarding w above as a parameter, we obtain a family of domains in C:
|2

Z/lw:{zeC:(l_‘wP)i<1}.

For each n € C with |n| < 1, Uy, is biholomorphic to the unit disk. Applying
the biholomorphic transformation rule to the Bergman kernel Ky, on U,
yields:

(L= I«
(1= n2)s —20)*

Replacing z in (2. 10) by z( (1— |77|n)))a and multiplying the right hand side of

Ku,(z¢) = (2.10)

(2.10) by (1 — |n|? ) yield a Hermitian symmetric function K1 on U X U:

2
a

(1 — wn)

K z,w;i,’ = T —.
1( ¢, 1) w((l—wﬁ)E—zC)Q

(2.11)

Let I denote the identity operator. Applying the first order differential op-
erator ) ) o
Dy = —1((1 + )1+ fz—>,

m(1 —wip)**ta

to Ky, we obtain

(1+a)(l— wﬁ)% +(1- a)zf_

2a(1 — wi)? "« (1 — wi)a —2()°
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We then can verify that this function is the Bergman kernel on U (It agrees
with the formula in [D’A78].)

As in the example, the procedure of obtaining K;; can be summarized

as follows:
1. compute the Bergman kernel K, .
2. evaluate Ky, at a certain point off the diagonal.

3. obtain a Hermitian symmetric function K on U by multiplying the

result in Step (2) by a certain function.
4. apply a differential operator Dy to K.
5. verify that the result in Step 4 is the Bergman kernel on U.

When U is U® or V7, Lemmas 2.3 and 2.6 imply that a complete orthogonal
system for A%(U) of the form {22¢,p(2')w®} can be chosen. Therefore the

Bergman kernel on U has the expansion:

5 (206 Gan ) w) (2.12)

EXXSCITS A

a,b,c

The function K we obtained in Step 3 is defined on U x U and has the

expansion:
Z ca,b,c(Zg)ad)a,b(zl)ﬁba,b(gl)(wﬁ)c' (213)
a,b,c

After applying Dy to (2.13) in Step 4 and verifying that

/M DK (2, 2 w; 6, & 1) ap(CVPAV = 226 (2 )uf

in Step 5, we conclude that the Bergman kernel K;; equals Dy K.
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Chapter 3

Computation of the
Bergman kernel

In this chapter, we state and prove our formulas for Ky« and Ky~. Recall
U, K and Dy from Section 2.3. If ¢; satisfies inequality (3.1) below, then
one can always construct an appropriate Hermitian symmetric function K
on U x U. It is our particular choice of v; for U® and V7 that enables
us to obtain D;; explicitly as the differential operator in Step 4 such that
Ky =DyK.

3.1 The construction of K

Let @ C C™™™ be an n-star-shaped Hartogs domain. Let ¢;, U and U, be

the same as in Section 2.3. Let 9 denote the function

Then we have the following lemma.

Lemma 3.1. Suppose for all j, the function 1; satisfies the Cauchy-Schwarz
mnequality

[ (w, )[* < [y (w, @)[[4 (1, 7)] (3.1)
where w,n € D. Then for (z,2',w;(,{’',n) €U x U, the function

1
IT5=1 (5 (n, 1))

QKZ/In (¢(szvn)azl;§’ él) (32)

is defined, holomorphic in (z,2',w) and anti-holomorphic in ((, ¢, n).

Proof. By its definition, U, contains ((,{’). To prove (¢(z,w,n),2") € Uy,

it suffices to show that

( Uf (w,7) Y (w,7) > cq.

yee ey B 2

@Z)TL (777 77) ’
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Note that by (z, 2, w) € U, we have

(zlwl(w, W)y ..y 2pp(w, ), z') € Q.

Since ) is n-star-shaped Hartogs, the containment (z,z’,w) € U and in-
equality (3.1) imply the containment (v(z,w,n),z’) € U,. Hence (3.2) is
defined. Consider the biholomorphic map F' from U, to {2

F:(z,..020,2) = (21010, 1), - -, 2000 (1, 7)).
By the transformation rule (2.4), we have

Ku, (zp (z,w,n), 25, Qt,)
IT= (&5 (n,m)?

Recall {#2¢ap} in Corollary 2.1. By applying (2.6) to the right-hand side
of the equality, (3.2) becomes

= Ko (F (¢ (zw.m) ) FC.0))

> (20) G (x)9an(C) Ty ¥ (w, 1)

ab Hza¢a,b(z,) HQLz(Q)

Since 1); is holomorphic in w and 7, the series is holomorphic in (z, 2/, w)

and anti-holomorphic in (¢, {’, n). O

. . 2a; . .
When U is U% or V7, the function (r 7 has a power series expansion on

D. Thus (3.2) can be expressed as

Z Ca,b,c(Zg)a(wﬁ)c(ba,b(Z/)¢a,b(</)' (3'3)
a,b,c
Note that f(z,2') € A%(Q) if and only if f(z,2)w® € A%2(U®) (or A2(V?))
for all multi-index c. Corollary 2.1 implies that the Bergman kernels Ky«

and Ky~ also have expansions

D e (Z)H(WN) ban(2)dan(()- (3.4)

a,b,c

In the next section, we introduce the differential operator which “corrects”

the coefficient cap ¢ in (3.3) to ¢ in (3.4) and conclude the proof of our

a,b,c

main theorems.
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3.2 Main theorems

Let I denote the identity operator. Let 1 denote the vector (1,...,1) € N™.
Let Dya denote the differential operator defined by

(1— =t £ . )
i = et gy 1|1+ 2 ”Jazj)

i=1 j=1
Let Dy~ denote the differential operator defined by

k
(1) (wi—In[?)

= 0
el PRICET)

J=1

DV’y —

Let h(z,w,n) denote 9 (2, w,n) when hj(w,n) = (1 — (w,n))_%, ie.

Let {(z,w,n) denote 9 (z,w,n) when h;(w,n) = exp{w}, ie.
I(z,w,n) = (21671(<w,77)—||77\\2)’ » 7zn€%<<w,n>_||nu2)> _

Then our main results can be expressed as follows:

Theorem 3.1. For (z,2',w;(,¢',n) € U* x U?, let h(z,w,n) and Dya be

as above. Then

Kya (z,z',w;g, C_’,ﬁ) = DUaKU;]x (h(z,w,n),z’;(, (_’) . (3.5)

Theorem 3.2. For (z,2',w;{,¢',n) € V7V x V7, let I(z,w,n) and Dy~ be

as above. Then

Ky (z,z’,w; ¢, E’,ﬁ) = DVWKVW’Y (l(z,w,n),z’; C,{’) . (3.6)

Proof of Theorem 3.1. Let K1(z,2',w;(,{’,7) denote the right-hand side
of (3.5). By the argument in Section 3.1, Ki(z, 2',w;(,(’,7) is defined on

U x U% and it has the expression:

Z Cab,c (Zg)a¢a,b (Z,) (Z)a,b (CI) (wﬁ)c .

a,b,c

To show K7 is the Bergman kernel, it suffices to verify that K; reproduces
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every element in A%(U%). For arbitrary 22¢, (2" )w® € A2(U?),

o K, (Z, Z,’ w; C_-a C_/a ’Fl)cad)a,b(cl)ncdv

= [ [ Duskug (b 226 ) Cop(AV GV ). (3.7

Using the reproducing property of KU;]x on U and the fact that

n k
H(il+zaj<l+zj(%>) Hz—l—a (a+1)) 2%,

i=1 = =1
we have
Us DUO‘ KU"‘ (h(Z, w, 77)7 Z/; 67 CT/) Ca¢a,b(cl)dV(C7 CI)
k
(1= nl*)>* a )
H1 (i4+a-(a+1)) e <w,n>)2+a.1h(z,w,n) bap(2). (3.8)

Let Cpa = Hle (t+a-(a+1)). Then the integral in the second line of
(3.7) becomes

1— HWH ) (z, w, n)?
Caa/ 7]>)1+k+a 1 dV(n) (39)
: _ =0l you 1= |nl® o, :
Since h(z,w,n) (z1(1_<wm>) e "(1—<w,n>) ), (3.9) is equal to
Ca,aPab(2') / (L — [Inl?)> &+ Mgpe
— dV (n). 3.10
k B (1 _ <w’ n>)1+k+a-(a+1) (77) ( )
Expanding the denominator in (3.10), we have
a-(a+1 _
o) [ Z (2 1)gayon (1= JlP?) ™ wnp
ab Bk ok Hk ( ')‘ n
l+a-(at+1)),. (@t+1) 12
:Za%b(z,)wc/ ( (a+ 1)) eaysr (1= [Inll?) ™ ) v, (3.11)
’ BY * Hj:l(cj)'
By letting r; = |n;|?, we have
k
[0 gy =2 [ -y @12
B~ Bk =1
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where BY = {(r1,...,71;) € RE; Z§:1 rj < 1}. We claim that

T TT5, (¢))!
wk/ (1= p)>@tpeqy — =1 . 3.13
Z i) (ra i Dene oW

Then the term in the second line 3.11 becomes
22 pap (2 )wC,

which completes the proof.

To prove (3.13), we do induction on k. When k = 1, we have

1 _ Fl+a-(a+1)T(c+1)
—pyx@tpcqy — )
/0(1 Y = e @ D)

Thus (3.13) holds for £ = 1. Suppose (3.13) holds for k < N. When k = N,

N

B Na(at+l),.c
/EN(l Z ) redV
N—
/ TNCN /W er)a-(a+1 H JClT’l .dry_idry, (3'14)

Jj=1

where W, = {(r1,...,rn_1) € ]RN 1. ;V_l i < 1—7ry}. By substituting

t; = er in the second line of (3.14) for 1 < j < N — 1, we obtain

1—r
! 1 N—1(c,4+1
(/ N (1= ) @D et mm)
0

N-1 N-1
X / 1= ty> @ I ¢7dt . dty_y | - (3.15)
By j=1 j=1

Applying the definition of the beta function and the induction hypothesis,
(3.15) becomes

Pleny +1l(a- (@+1) + Y55 (e +1) +1) 15 (e))!
D(a-(a+1)+ 2%, (¢ +1)+1) (IT+a-(@+1)grim
_ Hj’v—1(c')!
(a-(a+1)+ Z] 1 G+ N)eyr1(l+a-(a+ 1))Z;V:—11(c]-+1)
H;-V:l(cj)!

T(lta @t))ein
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Therefore (3.13) holds for all . O

Proof of Theorem 3.2. Let K5 denote the right-hand side of (3.6). Then

K5 is defined on V7 x V7 and can be written as:

Z Ca,b,c(Zé)aqsa,b(zl)ﬁba,b(gl) (wﬁ)c'

a,b
We verify that K, reproduces every element in A%(V7). For arbitrary

22 Pap (2wt € A2V,

v Ko(z,2',w; (', )P bap(C)n°dV

:/Ck 77c - DV"‘KVJU(Z’wan)?z/;C_-a @)Ca(ba,b(g/)dv(c’ C/)dv(n> (316)

Applying the reproducing property of Ky~ and the fact that

k

S (145 )] =6 @rne

7j=1

to the inner integral in the last line of (3.16) yield

DVO‘ KVWW (l (Zv w, 77) ) Z/; 67 5/) Cad)a,b (gl) av (C_:, C/)

Vi
=% (y-(a+ 1)) dap () elor(at+1))(wi—[n|?) .a (3.17)

Therefore the integral in the last line of (3.16) becomes

_k ) k. a ’ 67'(a+1)< >77
THa- @) P [ SCompEave. @)

Expanding ¢ @+1){wm in (3.18), we have

(a+ 1)) (wim) .,
(3 18 _Z ¢ab H/ Z 7Tk '67 a+1)‘771|2 n; dv(nz)

a+ 1 c;i+1 2¢;
=2%¢ap(2 H/(C1 ] dV (n;). (3.19)

¢;ler( a+1)\m|2

Letting t = v (a+1)|n|? and using polar coordinates, the last line of (3.19)
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becomes

o0 ye;
a(ﬁab H / 767tdt
which equals 22¢a b (2" )w®. Therefore K» is the Bergman kernel on V7. [

3.3 Examples

Theorems 3.1 and 3.2 enable us to explicitly compute the Bergman kernel
in new situations. We use Theorem 3.1 to give a new proof of the explicit

formula in [D’A94]. Then we compute the kernel function in some new cases.
Example 3.1. Let the “base” domain €1 be the unit ball B™ in C™. For
p>0, put a = (%7"'7;)) and let w € C. We have

U = {(z,w) € C" x C:, ||z||*" + |w|* < 1}.
By Theorem 3.1, the Bergman kernel function Ky equals:

n (4 p)(1—wij)s + (1—p)iz0) ‘
ﬂ.n—Hp (1 _ wﬁ)Q—g((l _ ’U)T_]); _ <Z, C>)n+2

We consider domain U = {(z,w) € C* x C™ -, ||2||*’ + ||lw|?® < 1}.
Applying the inflation method in [BFS99] to Ky« yields the Bergman kernel

function on U%:

3=

w0y p - ) 0o peg
m-Tn 1 n+2’
PR = ) (0= o)~ (2,0))

where t = (w,n). We may also apply Theorem 3.1 to U®" for w € C* to
obtain Kjar:

1 i | d n!
I+ -+ 2zi—
_1 H ? Z ( Zj 8Zj> 7T”+m((1 _ < 1

(1= (o)) i\ P w,n))¥ — (z,)m+

Note that if we let the above p tend to oo, then U% becomes B™ x B™
and Ky« equals Kgn - Kgm.

Example 3.2. Suppose Q = {(z,2') € C" x C™ : ||z]|*> + ||#||* < 1} and
a=(1,---,1), then the domain

U ={(2,2/,w) € C"xC" x C: |w| < L, [|2]*+[2'1*+|w|* < 1+]w[?||]2/|*}
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has the Bergman kernel function:

(m+n)l (1= wi)™n+1— (n+1)(,¢) +m{=L)

7Tm+n+1 (1 _ wﬁ _ <z’ C> _ <z/’ C1> + wﬁ<2/7 C1>)m+n+2-

Kpo = (3.20)

When m = 0, we have

n+1n! 1
w1 (1 —wi— (z,¢))" T2’

the Bergman kernel function on the unit ball B"*'. When n =m = 1,
U ={(z,7,w) € C: Jw| <1, [2[> + [2']" + Jw[* < 1+ |w[*|2"[*}.

By (3.20), we obtain the kernel function on U:

o0 (1—wi)(2- 220 + 1255

™ (1 — wij — 2C — 2/’ +wiz/{')4

KUa -

Example 3.3. Let Q be as above and v = (y1,...,%n), then

n
VY=< (5,7,w) €eC"x C™ x C: Y PP 2 + 122 < 1
j=1
Put p(z,2' ,w;(,{'7) = 1 — Py eVWz;(; — (2',¢"). Then the Bergman

kernel function satisfies

Ky~ =

(m 4 n)leODwn [~ 1 (m+n+1)>"0, 75125
am+n+l pm—i—n—i-l pm+n+2 :

(3.21)

When ~ tends to 0, the domain V7 becomes B"t™ x C!, and the kernel
function K7, goes to 0, which is the Bergman kernel on B"*™ x C!. When

y=1land n=m =1,
VY = {(z,z',w) e C3: e|w|2|z]2 + )2 < 1} (3.22)

and the kernel function on it is:

2 eW(1 — 2" + 2e%12()

Ky = — —— =
VIT (1= ewnal — 200

(3.23)

In the next section, we will use (3.20) and (3.21) to obtain the boundary

behavior of the Bergman kernel on the domains in Example 3.2 and 3.3.
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In Theorems 3.1 and 3.2, we only need our “base” domain to be n-
star-shaped Hartogs. Note that the “target” domains U® and V7 are also
(n + k)-star-shaped Hartogs in z and w. Therefore we can repeat using
Theorems 3.1 and 3.2 to obtain the Bergman kernel on more complicated
domains. In fact, repeated use k times of Theorem 3.2 for w € C yields
Theorem 3.2 for w € C*.

Example 3.4 (Repeated use of Theorems 3.1 and 3.2). The diagram below
indicates how to obtain the kernel function explicitly on increasingly compli-

cated domains.

{z eC:|z)? < 1}
\
{zeC |z P+ |0 <1}
\
{z € C3: |21 * +exp {|Z3‘2} |20 < 1}
\

2

23

{Z S C4 : |Zl‘2p1 +eXp{<1_"ZL’2)p2} ’22|2 < 1, |Z4’ < 1}
4

eos. Al P |z2|* <1, |ea] <1, |5] < 1
z : (1 — |Z5|2)p3 exXp (1 — ‘Z4|2)p2 z2 5 |24 s |25

4

z€Ch: |21 + exp L - |20* < 1]z <1 elz6|2|z5‘2 <1
: (1 _ e‘z6|2‘25|2)p3 (1 _ ’24‘2)1)2 ) 5

4

The Bergman kernels in the first two cases are known. The kernel in the

third case equals

(00— 0t
mp (1- ez3@z2g'_2)2_%((1 - 623(32252)% - 2101)°
L o DeOaG(2+ 11— 0ub)r + 2 ad)
(1- QZ3C§ZQ§2)3_%((1 - €Z3(32252)% —2101)3
| 270a0(2+ D0 - e Oab)r + (2 ;>z@1))
(1 - eG200) 0 (1 - eG20Ga)p — )t /-
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For the last three domains, the kernel functions are explicit but rather com-

plicated. Hence we omit the formulas.

3.4 A case other than U% and V"

Let Q2 C C*"™™ be an n-star-shaped Hartogs domain. Recall the conjugate
invariant domain D C C¥, the Hermitian symmetric functions Pi’son DxD,

and the domain U constructed using {2 and );’s:
{(z,¢,w) € CH™HE (ghy (w, @)1, - -, Y (w, D) 20, ¢) € Q and w € D}.

Theorems 3.1 and 3.2 relate the Bergman kernel on U to the kernel functions
on the lower dimensional slices U/, when 1); is chosen in the following two

ways:
(i) wj(w,7) = (1 - (w,n))”7 where |w| <1 and a; > 0.
(ii) ¥j(w, w) = exp{% (w,n)} where w € C¥ and ~; > 0.

It is natural to ask whether the same method works for other cases. In this
section, we consider the case where () = B and compute the Bergman kernel
on U when D is the punctured disk B* in C and v;(w, w) equals |w|~% with
aj € Q. We will see that, for such a U, the kernel function Kz; can be
obtained by applying a similar technique not just to the Bergman kernel but
also to some weighted kernel functions on the slice U,,,.

Let © be the unit disk in C. Let ¢(w,w) = |w|_§ with p, ¢ positive
integers. Then U = {(z,w) € C? : |z|? < |wP < 1}. When p = ¢, the
domain U becomes the Hartogs triangle and is biholomorphic to the product
domain B x B*. When p # ¢, we call U the generalized Hartogs triangle.
Edholm, in [Edh15], computed the Bergman kernel K;; when either p or ¢

equals 1 and obtained the explicit formula for K7, in these cases:

1. For g = % with k& € N*, the Bergman kernel on I/ is given by

0 (@) + (20)°) + i () wi
Ky (z,w;(,n) = - , 3.24
(B k2 (1= wi)? (w = (20)%) .

where p; and ¢ are polynomials
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2. For % = k with k € N*, the Bergman kernel on U/ is given by

_\k
Ky (z,w;6,0) = ) . (3.25)
w2 (1= wn)? ((wn)* - )

Using our technique, we rediscover Edholm’s result.

For positive integers p and ¢, let U ¢ denote the set
{(z,w) € C?: 2|7 < |wlP < 1}.

P P
Since U ¢ is Reinhardt, every holomorphic function on U/ ¢ has a Laurent
Y
series expansion. Noting that /¢ is 1-star-shaped Hartogs in z, we have the

following lemma:

Lemma 3.2. Let f € A (u%) Then f has a unique expansion:

f (z, 2, w) = Z Z z*we,

ceZ aeN

D
where the series converges normally in Ud.

Lemma 3.3. Fora € N, letJ, denote the set {c € Z: c+1+%(a+1) > 0}.
Then the holomorphic function z® is square-integrable on ) if and only if
z%w® is square-integrable on Us for all ¢ € J,. Moreover, z%w° is not
square-integrable on Us for 2%¢(2') € A%(Q) if ¢ ¢ T.

P

Proof. Suppose z%w® € A%2(U4). Then

[ 2 PloPedy ) = [0 e < oo, (3.26)

Substituting ¢t = z|w|_§ for 1 < j < mn and applying Fubini’s theorem to the
integral in (3.26) yield:

[ 1Pty z.

ua

_ \w|2c+25(a+1)dV(w)/ |t|2adV(t)
B* B

1
—or / PR g2, (3.27)
0

2
Since fol p2et23 @D g < 50 when ¢ € J,, we have 2% € A%(Q) for c € J,.

By (3.27), the converse also holds for ¢ € J,. When ¢ ¢ J,, the first integral
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in the last line of (3.27) blows up. Therefore z%w® is not square-integrable
on U4 for ¢ ¢ J,. O

Combining Lemmas 3.2 and 3.3 yields the following;:

Corollary 3.1. Let K » be the Bergman kernel on Us. Let Jo be as in

p
Uua
Lemma 3.3. Then KM% h as the following expansion:

K p(zwiC) = Z || awCHZ . (3.28)

aeNceTd, %)

p

For n € B*, let Z/{nE denote the slice of ¢/
{zeC:|z|7< |nP < 1}.

D
For k € R, let K*, denote the reproducing kernel for the space A%(U,’, |2|*),
g

Y
the weighted Bergman kernel on U] with weighted measure |z|kdV .

Let || denote the floor function. Let my = L—g(k‘ +1)]. Set g equal to

(wn)™k
(1—wn)’
denote the identity operator. Let Dy denote the differential operator:

and let M, be the multiplication operator with multiplier g. Let I

Jr

g(zQ)F|n|* a s p_ 0 9
Dy = - C’I—i—qza +w8w My, (3.29)

‘6

where C' = (kH)p +1.
Let Gi(z, w, 1) and Ga(z,w,n) denote the modifying functions:

and Ga(z,w) = zq|7]|§7p

(wn)P

Then we have our result for KM%:

gl(szu 77) -

Theorem 3.3. For (z,w),(¢,n) € Us, let G1, Go and Dy, be as above. Then
the Bergman kernel KM% (z,w;C,7) equals

q—1
ZDkKC(g,q) (gl(szan)aQQ(Can)> ) (330)
k=0 Uy

2(k+1-q)

where ¢ (k, q) = ==

Proof. By its definition, Z/{ng contains both Gy (z,w,n) and G2(¢,n). Therefore
(3.30) is defined on U xU1. Toshow (3.30) is the Bergman kernel, it suffices

29



to prove the term with the index k in (3.30) equals

[z0we? 7
(a,c)ERE L2(UT)

where R, = {(a,¢) : a =k mod gandc € J,}. Let K}, denote the term with
the index k in (3.30). We first show that K} can be expanded as follows:

Y Cae(20)*(wi)". (3.32)

(a,c)ERE

2
Consider the biholomorphic mapping f from U,/ to €2

f(z) = zln| 5.

Then a similar formula for biholomorphic transformation relates the weighted

Bergman kernel Kg to K*,:
Uy

K 5y (2:0) = Inl” KB (f(2): F(Q). (3.33)

. 2kl P o c(k,q) 5
By formula (3.33), the function |n|* « « K" (G1(z,w,n); G2(¢,n)) becomes
uq

n

(2P (W)™ gy, 21
EETRE T .

Since c(k, ¢) > —2, all monomials 2 are in the weighted space A (B, |Z|C(IW)).

Therefore we have

=> (3.35)
aEN H HLQ B | |c(k q))
Applying (3.35) to (3.34) yields a sum of form
=\Mg ~\sq+k
= (L—wn) (w)
Expanding =07 i n (3.36), we obtain
> Culwi)™s s PFe(z() th, (3.37)

c,seN
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Since

(mk—sp+c)+1+§(sq+k+1)

-2+ +er1+2k+1) > >0, (3.38)
q q
w’s exponent my — sp + ¢ is in JTgq4y if and only if ¢ € N. Thus, (3.32) and
(3.37) are equivalent and K}, can be expanded as a series like (3.32).
To prove that Kj equals (3.32), we show that K} reproduces each z%w*
for (a,c) € K. Consider the integral

[/{B Kk(z7w7 C_-a ﬁ)canch(C7n) (339)
q
For a = sq € N and c € Z,

p g i a, c _ a,,c
<C'I+qzaz—|—w8w>zw = (C+ps+c)z"we.

Let Cp s denote the constant C' + ps + c¢. When (a,c) € K, there exists
a unique s € N and 0 < k < ¢ — 1 such that a = sq + k. Therefore (3.39)

equals

(k+1)p

k S\ 2 2 C _ _
Cpe.s / a2 Com)™ il 0% [ et (g Gyeodh v ()dv ().
B* m(1 — wi) Ul u!

(3.40)
P
Note that Ga(-,n) is a proper map from U,/ onto itself. By substituting
p
t = G2(¢,n) and dividing the domain i, into ¢ branches, (3.40) becomes

» K9Gy Go)cackav(¢)

Ul ug
(p_z)(w)
T ke gy e e gy ), (341)
q Uy Uy

Applying the reproducing property of the weighted Bergman kernel yields

_Q) 2+k+a
q q

(p )
‘77| - » KC(§7Q) (gl, Z/; _E’ g/)t5|t|c(k7q)dv(t)
q u"?q unll
py2thkta
q q

|77|(p— qu|77|(p+%)5

q" (wi)Ps
54 |,’7‘ (P‘%)%-FQSP

B o (3.42)
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Substituting (3.42) to (3.40), the integral (3.39) becomes

2+2k +2Sp
n°
C a dV(n). 3.43
P,C,S% /* 7T(1 — 'LUT])(TUT?)mk_HDS (77) ( )
Expanding =] wn) in (3.43) and using polar coordinates, we have
Ch e s2%w"
(3.43) =—"=—— [ [n] (n)
IB*
:2Cp . Szawc /1 rp%—i—?sp-iﬂc-l—ldr
bt} 0
CPCSZ we a,, C
= = 2"w". (3.44)
p(Hk) +sp+c+1
Hence K}, equals (3.32) and the proof is complete. O

By explicitly computing the series, the weighted kernel function Ké(k’q)

is given by:

k), = 1 c(k,q)
KB I (Z,C) - 7T(]. _ 26)2 + 271'(1 — ZE) (345)

Applying (3.45) and (3.33) to (3.30) yields the explicit formula for Ku%:

Corollary 3.2. Let s = z( and t = wij. Then the Bergman kernel on the
generalized Hartogs triangle {(z,w) € C%: |z]9 < |w|P < 1} is given by:

L prmrgk (1 — my — O) t+my + C) (t7 — s9) (k + 1 — q) + gt?)
m2(tP — s9)2(1 — )2 ’
(3.46)

NNgh

where C = (k+1)p +1.

When p = 1, my = [-1(k+1)] = —1 and C = “-*9. Then (3.46)

becomes

gsk g k-Dt+k+D(E—s)(k+1-q) +qt) (3.47)
=0

g2 (t = 57)° (1 - t)°

When g =1, mg = |—-p(k+1)] = —p and C = p + 1. In this case, (3.46)

becomes
P

m2(tP — 5)2(1 — )2
Both (3.47) and (3.48) are consistent with (3.24) and (3.25).

For more general “base” domains €2 (such as n-star-shaped Hartogs do-

(3.48)

mains), our computation does not work for the the kernel function on the
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“target” domain

(z,z',w)e(@’”mﬂ: Zlﬂ,..., ZL,Z/ eN,.
|w|q1 |w‘Qn

However, as we will see in Theorem 5.8, the Bergman kernel on the domain

09 = {(z,z') e crtm . (zfl,...,z%",z') € Q}

can be obtained as a finite sum of weighted Bergman kernels on §2.

Since €2 x B* is biholomorphic to the domain

Up:{(z,z/,w)EC"erXIB%*:( S Z/>€Q},

|w|p1 R ‘w|pn ’

P
the Bergman kernel on U/a can be written as a sum of weighted kernel

functions on Q x B*.
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Chapter 4

Boundary behavior

Because of its close connection to the boundary regularity of holomorphic
mappings, the behavior of the Bergman kernel near the boundary has been
studied for many decades. The boundary behavior of the Bergman kernel in
the strongly pseudoconvex case is well understood. C. Fefferman [Fef74], L.
Boutet de Monvel and J. Sjostrand [BS76] gave an asymptotic expansion of
the kernel function when the domain is bounded smooth and strongly pseu-
doconvex. In the non-strongly pseudoconvex case, the boundary behavior is
difficult to analyze. Near a weakly pseudoconvex point of finite type, certain
estimates on the Bergman kernel were obtained by McNeal [McN89,McN94].
Less is known near non-smooth boundary points.

In this chapter, we analyze the boundary behavior of K;; when the “base”
domain € is pseudoconvex with smooth boundary. We begin by clarifying
the relation between the pseudoconvexity of “base” domain €2 and the “tar-

get” domain U.

4.1 Pseudoconvexity of U/

Let’s recall the definitions of pseudoconvex boundary point and pseudocon-

vex domain.

Definition 4.1. A domain Q C C" is said to have C* boundary bQ) at
boundary point p if there exist a neighborhood U of p and a real-valued C*
function r defined in U such that the following properties hold:

1. QU ={z €U :r(z) < 0}.
2. bQOU ={z € U :r(z) = 0}.
3. The gradient Vr(z) #0 on bQNU.

The function v is called a local defining function for Q near p. If Q C U,
then r is called a defining function of €.
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Definition 4.2. Given a domain Q@ C C", a point p € bS), and a local

defining function r of Q at p, the holomorphic tangent space of bQ) at p is
defined by:

1,0 R n
T30(bQ) = v eC Zazj

Definition 4.3. Let Q be a domain in C" with C? boundary at p € bSQ,
and let r be a local defining function for Q at p. The domain Q2 is called
pseudoconvex at p € b§ if for all v € Tg’o(bﬂ), the Levi form

The domain is said to be strongly pseudoconvex at p if the Levi form at p
is strictly positive for all 0 # v € Tpl’o(bQ). Q is called a pseudoconvex
domain if  is pseudoconver at every boundary point. € is called a strongly

pseudoconver domain if 2 is strongly pseudoconvex at every boundary point.

Recall the n-star-shaped Hartogs “base” domain Q C C"*™. Suppose
Q) is also bounded, and has smooth boundary. Consider polar coordinates
zj = tjewj for 1 < 57 < n. The definition of the n-star-shaped Hartogs

domain implies that a defining function of :
r(zl,...,zn,Zl,...,Zn;z',Z') e C™ (Q)

can be chosen so that in a tubular neighborhood of bf), the function r is
independent of #; and is non-decreasing in ¢;. In this chapter, we always

use such an r as the defining function for €.

Lemma 4.1. Let r; and rz; denote the partial derivative of v with respect
to zj and z;. Then on bSQ, the following holds:

1. zjry, = 2Tz > 0.
2. ijgjgl = er?«’jzl = Ejrgjzl = ijzg'ir
3. If zj =0, then r,,,, =0 for all 1 <k <n.

4. If p=(2,%') € bQ is a strongly pseudoconvex point, then r,(p) = 0 if
and only if zj = 0.

Proof. Since r does not change with respect to ; and is non-decreasing in

tj in a tubular neighborhood of bf}, we have
a 101 10p, —1601 —0n . I =/
ﬁr(tle e, tne’ " e yeeeytne ;z,z):O,
J
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0 . . By By
8TT (tlewl, e €0 e e ?) > 0.
J

Hence on b(2, zjrz; +Zjrz; 2 0 and 251, — Zjrz, = 0. Summing them yields
zjra; = Zjrz; > 0. Taking the derivative on both sides of 2jTz; = ZjTz;
and applying 7., = rz;, we obtain z;7z,z = 272,z = ZjTz2 = ZjTz;z. For
zj # 0, we have e2i0; Tz = Tz, Then by continuity, eQwirzj =rz at z; =0
for arbitrary ¢; € R. Therefore r,; = rz;; = 0 when 2; = 0. Conversely,
when 7., (p) = 0, the vector v = (0,...,v;,...,0) € TI}’O(bQ). Since p is a
strongly pseudoconvex point, |v;|?r;,z, (p) > 0 and hence 7.z (p) > 0. Note
that for z; = tjewj,
82

@T(p) = dr,;z,(p) > 0.
J

Suppose z; does not equal 0. Then gT’; < 0 at points near p with a slightly
T

smaller ¢;. It contradicts the fact that gTj > 0 in a neighborhood of p and

hence z; must be 0 for each j. O

Recall 9;’s and the induced “target” domain ¢/ in Section 2.3. Suppose
the “base” domain 2 is pseudoconvex. It is natural to ask for what kind of
1;’s the U is a pseudoconvex domain. The following theorem gives a partial

answer.

Theorem 4.1. Let Q C C"™™ be an n-star-shaped Hartogs pseudoconex
domain with smooth boundary. Let D C CF be a smooth and pseudoconves
domain. Let ¥ denote a Hermitian symmetric function on D x D. Suppose
U(w,w) > 0 and log ¥(w,w) is C?-plurisubharmonic. Then for (aq,. .., o)

with a; > 0, the domain
U={(z,2,w) eC"xC™ xD: (19 (w,w),...,2,9* (w,w),2") € N},

s also pseudoconver.

Proof. On the boundary of a domain, the set of non-pseudoconvex points, if
not empty, has non-empty interior. To prove U is pseudoconvex, it suffices
to show the set of pseudoconvex boundary points is dense in bi{. Let r be

the defining function of €. Let 1, denote the function:
Ty (z, 2, w) =r (zl\I/al(w,w), ey 20O (w, W), z’) i

Let blf; denote the set

{(z,7/,w) eblU :w ¢ bD and ry(z,2',w) =0}.
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Let blfy denote the set
{(z,2,w) e bU : 1yy(2,2',w) #0 and w € bD}.

Then bif; U blfy is dense in bif. If bldy # (), then the point in blfy is
pseudoconvex. It remains to prove the pseudoconvexity of points in bif;.
Choose r(z,2') as in Lemma 4.1. For 1 <j<n+mand 1 <k <n-+m,

set 7, to be:

2% 1<j,l<n

ri = T2z 1<j<nandn<l<n+m
T E 1<l<nandn<j<n+m
Ty n<jl<n+m

\ j—nzlfn

For p € bQ), let Hq(p) denote the complex Hessian matrix of r at p:

Hgq (p) = (rjl) | (2,2)=p*

We set X (z,w) = (1 (w,w)z1, ..., Yn(w,@)z,) and ry(z, 2", w) = r(X, 2').
For the boundary point p = (z,2’,w) € blf, the gradient dry # 0. Hence
ry is a local defining function of Uy at p. Let W;(w,w) = H=(w,w). Set

z 0 1/z 0
Az) = 7 27 and  pu(z) = [z =7 .
0 z = 0 0 z = O

Taking the derivatives of r; and applying Lemma 4.1, we have:

%y ry
— gt —
02,07 b gziaz T i
827‘1,1 ) 827”1,{
=y, = Py,
02,07, RGP Tinds
Ory =y zn:(oz T (14 M(2s))) + ;U910 (1 — T i)
dzj0w ° s s J 1z Pz5))s
s=1
O ru =y Zn:(a T (1 + A(26))) + oUW rs (1 — U pu(z))
8wj821 = s gTs,l s 1 iz Hiz1)),
s=1
827’1/{ n ae—17 <
- ZZQS\I/ s \I/lrj—i-n,s(l + /\(ZS)),
6zj8wl —1
327"u - —1
ow;0z, B ; as U WGrg n (14 A(25)),
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621"[/{ n n e ) . )
ow;j0w, ; tzz; aso W W0y (rs 4 (1 + AM(zs)) (1 + A(22)) — o ji(zs)—
- as—1 82\11 1 _
Tz, 1(2s)) + Zas\ll 72 (1 4+ A(2s)) 9.0, + (as — )T, ) .
j

s=1

Let Hy denote the complex Hessian matrix of 1. Since D C CF, Hy is a
(n+m+k) x (n+m+k) matrix. Let Hy(w) denote the complex Hessian of
log U(w,w). Set ¢ =Y " a0 r, (14 X(z;)). For p = (2,2/,w) € blfy,
consider (n +m + k) X (n +m + k) matrix A(p),

5 T
A(p)—[H”(X’) " ]

M cHg(w)

Here M = (M;;) is a k x (n + m) matrix with entry

VU s (1 —U%p(z)) 1<1<n

0 n<l§n—|—m'

Set 1B = (1Bj;) to be an (n +m) x (n + m) diagonal matrix with entry:

Ty 1<j<n
1Bjj = -
1 n<j<n+m

Set 9B = (2B;,) to be a k by (n + m) matrix with entry
9B = Oél\Ifj‘l’alil (T+X(=z))-

Let I denote the k X k identity matrix and set B(p) to be the (n+m+k) x
(n +m + k) matrix:
1B 0

B(p) = B 1

Then Hy(p) = B(p)A(p)B(p)T. By its definition, B(p) is invertible. Hence
t € TYO(bl)(p) implies 0 # tB(p) € T O (bly,)(2,2') x THO(D)(w). Since
cHy(w) is positive semidefinite on T1(D)(w), the matrix A(p) is positive
semidefinite on T (bl )(z, 2') x TH(D)(w). Therefore Hy(p) is positive
semidefinite on 759 (bl/)(p). O

Since both log (m

4.1 implies that U* and V7 are pseudoconvex when {2 is pseudoconvex with

) and log elvl® are plurisubharmonic, Theorem

smooth boundary.
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4.2 Further analysis of some examples

In this section, we use the explicit formulas of Ky« and Ky~ from Examples
4.2 and 4.3 and some admissible approach regions to analyze their boundary
behavior. Before going into these examples, we first look at a simple case.
Let Q be the polydisk B x B in C2. Since the kernel function on a product

domain equals the product of the kernel function on each factor, we have

1 1
71— 2¢1)? . (1 — 22(2)?

Ko (21,22, (1, () =

If we approach the boundary point p = (wi,w2) along the diagonal, then
the boundary behavior of Kq depends on wy and ws:

1. If Jwi| = 1 and |ws| # 1, then in Q we have:

lim Koz 2)(1 - |21 P)? = W £0.
2. If |w1| # 1 and |wy| = 1, then in © we have:
lim Ko(252)(1 - |2)2 = - #0.
=P w2 (1 = Jwi[?)?
3. If |wi| = Jwa| = 1, then in 2 we have:
lim (s 2)(1— =121 — |2 = — #0.

Note that b{) is not smooth at boundary points in the 3rd case and the
boundary behavior of the Bergman kernel depends on the rate at which |z
and |z2| tend to 1. We will see similar phenomena when we analyze the

boundary behavior of Kya.

Example (Exampe 3.2 revisited). The boundary of U% is not smooth at
(0,2',w) where ||Z']| = |w| = 1. We let S; denote the set of these non-
smooth points. By calculating the Levi form of U% on the smooth boundary
points, one obtains that (z, 2, w) is strongly pseudoconvex if both ||2'|| and |w|
are not equal to 1. We let So denote the set of these strongly pseudoconvex

points. We denote by Ss the set

{(0,2',w) e bU™ : ||| = 1, Jw| # 1}
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and denote by Sy the set
{(0,2',w) € bU* : ||2'|| # 1, Jw| = 1}.

Then bU% = S USUS3USy. The boundary behavior of the kernel function
near the strongly pseudoconvex points in Sz is known. To obtain the result
near the points in the other sets, we need an admissible approach region.
For 0 < s <1, let Wy denote the set

{(z,7,w) € C" x C" x C: |w] <1, [[2]* + [|I2/[* + [w]* < 1+ Jw]?|l']]*}.

These sets exhaust U% when s tends to 1. Moreover, 81, S3 and Sy are
contained in bWs. We will choose Wy as the admissible approach region.

Let r(z,2',w) denote the function:

El&

= Ty

Then U can also be expressed as the set
{(2,7/,w) € C" x C™ x C; |w| < 1, —r(z, 2, w) < 0}.

Note that the function
[

(1= Jw]?)
is bounded in Ws. For p = (0, 2, wp) € 81 US3 US4, when approaching p in

W, )
121
m _> 0. (4-1)

Therefore r(z,2',w) is continuous in the closure of Ws. Combining (4.1)

and (8.20) yields the following results on boundary behavior:
1. For pg = (0, 2, wp) € Ss3, the admissible limit satisfies:

(m+n)l(n+1)

li Kyo(p;p ntm+l = 0.
WSBIZIgpo U (pvp)r (p) 7Tm+n+1(1 — |w0|2)n+2 7&

2. For po = (0, z{,wo) € S4, the admissible limit satisfies:

: . vz _ _(mAn)l(n+1)
Wslallr)gpo Kye(p;p)(1 — |w[7)"™ = gmrtntlpntm+l (po) 70
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3. For pg = (0, z), wo) € S1, the admissible limit satisfies:

: -\ pmtml 2tz (mAn)ln+1)
sl Kyl ) (- oy = R

£ 0.

Example (Example 3.3 revisited). Calculating the Levi form shows that
V7 is a pseudoconvexr domain. For any wy € C and z[ € C™ on the unit
sphere, (0,2, wo) is a weakly pseudoconver point on bV7. With (3.21),
we can obtain the boundary behavior of the Bergman kernel function in an
admissible approach region of (0, 2, wo).

Let 0 <s; <1 for1<j<n. Let Wy denote the domain

n
(2,2,w) €CMx C™ x C: > PP 4 |2 < 15 (4.2)
j=1

For each s, Wy is contained in V7 and it exhausts V7 as each p; approaches
1. Moreover, bWy intersects bV7 at those weakly pseudoconvex points on
bV7. Let p denote a defining function of V7:

2
p(z 2 w) =1 — ez — |||

When approaching po = (0, 2, wo) in the approach region Wy, the admissible

limit wl?
Do €YY ‘Zj‘Qsj
li = =0. 4.3
Wsalzggpo L 43
Therefore,
7.1_ e’yj\w\Q 2 2s;
lim 2=t =™ _ 0. (4.4)
Ws>p—po P

Applying (4.4) to (3.21), we have in Wy:

(m -+ mtentol Y o

1

lim K i D
Ws2p—po Vi (p p)p

4.3 General results for boundary behavior

In the previous section, we used the explicit formula of the Bergman kernel
to study its boundary behavior at weakly pseudoconvex boundary points.
In general, we do not require an explicit formula for the kernel function on
the “base” domain. If enough information on the boundary behavior of the
kernel function of the “base” domain is known, we can obtain the boundary

behavior of the Bergman kernel on the “target” domain. Here we’ll discuss

41



the boundary behavior for U% and V7 when the “base” domain {2 is smooth
and strongly pseudoconvex and w is a single variable.

For positive numbers «;’s and ~;’s, recall

_ Al Zn
= )_<<1—|w12>“21""’(1—rw\2>“2")

v lwl? vnlw|?
gy (z,w) = (e 2 zi,...,e 2 2z, |.

and

Then U® denotes
{(z,z',w) e C"t™Hw| < 1 and <fa (z,w) ,m;z’,2’> < O}
and V7 denotes
{(z, z’,w) e crtmtl .y (gw(z, w),m; 2, 2’) < 0} .
To simplify the notation, we let Kq (z,2') = Kq (2,2';2,2"). We let

Ty (z,z’,w) =r (fa(z,w),fa(z,w); z’,E’) ,

! =/

TV (z,z/,w) =r (gv(z,w),g,y(z,w);z ,Z ) .

We let V, denote the partial gradient ( o .., 2

021" Y Ozn )

We start with U%. The boundary behavior of the Bergman kernel on U®

is more complicated than on V¢ for two reasons:

1. The possible non-smooth boundary points created by the two inequal-

ities of U“.
2. The singularity of rye at points where |w| = 1.

On the boundary of U%, we consider the following subsets:

{( ) EbU: 2 #0 and |w| # 1},

{( ) €bU:2=0 and |w| # 1},
S3={(2,7,w) €bU®:2=0, |w| =1 and (0,2') ¢ bQ},

{( )ebU*:2=0, [w|=1 and (0,2") € bQ}.

§;’s are distinct subsets of bU“. By the boundedness of €2, we have
{(2,2,w) e bU*: 2 # 0, |w| =1} = 0.
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Therefore bU* = §; U Sy U S35 U Sy. As we'll see soon, the points on Sy are
strongly pseudoconvex and the boundary behavior of the Bergman kernel
near the boundary points of S, S3 and &4 can be obtained by a suitable
choice of approach regions.

Let Lo denote the Bergman kernel on the diagonal,
La(z,7) = Kqo(z,7';2, 7).

We recall the result of C. Fefferman [Fef74] for bounded strongly pseudo-
convex domain 2. There exist ¥, ® € C*(Q), such that

Lo(z,2") = (e 2 Zl

(_T)n—i—m—i—l(z = + ®(z,7; 2, 2) log(—r(2, 22, 7)). (4.5)

,Z')
In our situation, when the kernel function on the base domain has no log
terms (that is, ® = 0 in (4.5)), then the kernel function on the target domain
also has no log terms.

Applying formula (4.5) and Theorem 3.1, we obtain the following result

on the “target” domain U“.

Theorem 4.2. Let Q) and U% be as above. Suppose ) is strongly pseu-
doconvex. Then U® is pseudoconver. The point p € bU® is a strongly
pseudoconvex point if p € S1. Near the points of Sz, S and Sy, the kernel

function behaves in three different ways:

1. For (2o, 2, wo) € Sa, there exists an admissible approach region Wy of

(20, 24, wo) such that when approaching (zo, 24, wo) in Wa,
Kye(z, 2, w)(—rye)™ T (2, 2/, w) (4.6)

has a nonzero limit.

2. For (2o, 2, wo) € Ss, there exists an admissible approach region Wy of
(20, 20, wo) such that when approaching (zo, 2}, wo) in W3,

Kya(z, 2/, w)(1 — |w|*)*tet (4.7)

has a nonzero limit.

3. For (29, 2, wo) € Sa, there exists an admissible approach region Wy of

(20, 20, wo) such that when approaching (zo, z},wo) in Wy,

Kya(z,2',w)(1 — \w[2)2+0"1(—7‘ya)m+"+1(z, 2 w) (4.8)
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has a nonzero limit.

Proof. Recall

. 21 Zn
i )_((1—|wr2>‘?""’<1—|w|2>af>'

For simplicity, let X denote the f,(z,w). Since the range of X on U® is the

same as the range of z on 2, we can replace z in (4.5) by X and have

U(X,X;2,7)
(_TU“)n+m+1(z7 2, w)

Lo(X,?) = +®(X, X; 2,2 log(—rpa(z, 2/, w))

(4.9)
where U(X, X; 2/, 7),®(X, X;2,2) € C®°(U%). Using change of variables
formula,

La(X,2) = (1 - [w)* Kug (2, 2).
Therefore by Theorem 3.1, we have

LQ (X, Z/)

/ _
Kyo(z,2',w) = (col + D)7T(1 et

(4.10)

where ¢q = (1 4+ > a;) and D =77 loz]z]ag
J
Note that (X, X; 2/, 7') is equal to 7ya(z, 2/, w). Multiplying both sides
of (4.10) by (1 — |w|?)2** Y (—rya)™ (2, 2/ w), (4.6) becomes

7 =) TN X X2 2 ) (col + D)Lo(X,2)) =1 + Iy (4.11)

where
L =n"t (—r)”+m+1(X, X2 Feala(X, 2)

and
I =a Y —r)"""t (X, X;2,Z)D (Lo (X,7)).

Applying (4.9) to I, we have
Tl (X, X2, %) =ca (‘11 + & (—r)" T og (—r)) . (4.12)
Using the product rule,

w1y (X X; 2 z)
D((- )n+m+1L > _ LQD(—T)”+m+1

=5 (X, X;2 %) — (X, X; 2, 2). (4.13)
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Substituting (4.9) to Ji and Js,

Ji (X, X;2,2) =DV + (—r)""" 1 log(—r) Dt
+ (14 (n+m+1)log(—r)) (—=r)"™™D(~r). (4.14)

and
D(-r)
—r

— (et mt 1) (U4 () og(—r)) 2 (_T” . (4.15)

Jo (X, X2, 2) = (n+m+1) ((—r)""™H Lg)

Let p = (20, ), wo) be a boundary point U*. When |wg| # 1, we let X

denote the corresponding vector X at point p.

Case 1) For (20,2}, wp) € Sz, we have zy = 0, (Xo, Xo,2)) € bQ, and
|lwg| # 1. Then the existence of a nonzero limit of (4.8) is equivalent to
the existence of a nonzero limit of (4.6). Since |wg| # 1, X is smooth
near p. Thus rya(z, 7', w) is smooth in a neighborhood of p and has limit
r(X, Xo;2h,7y) = 0. Note that (—r)log(—r) also has limit 0 at point p.
Therefore the limit of I; and J; exist. To achieve the limit existence of Js

at p, we need an admissible approach region such that in this region, the
D(=r)

limit of is 0. We consider the following approach region

n
Wy = (z,z/,w) eU”: Z|zj|q < —Tya (z,z',w)
j=1

where 0 < ¢ < 1. First we need to show W5 is not empty. By Lemma 4.1,
72,(0,0; 20, Z5) = 72,(0,0; 29, 25) = 0 for all j. When approaching p from
inside of U® in the normal direction, z;’s are identically zero. Hence the
region Ws is not empty and p € bW,. By perhaps shrink Wy, we may also

consider W5 as a connected set. Note that

~ noooo lml
D(=r)(X,X:2, )| _ Zim S _ e X [l

—rya(z, 2/ w)  —rpa(z, 2, w) —rya(z, 2/, w)
for some constant ¢ > 0. In Ws,

Z;‘L:1 |25

— = < 1.
—rya(z, 2, w)
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When approaching the boundary point p inside W, we have

no no =gy (S|, a n
Shalsl Sl s §s
k=1

—rye(z, 2/ w) ~ —rye(z, 2/, w)

Hence (4.14) and (4.15) have admissible limit 0 at point p. The strong
pseudoconvexity of 2 implies that the left hand side of (4.12) has nonzero

limit. Therefore in Wy, the limit of (4.6) at p exists and is unequal to zero.

Case 2) For (20, 2, wo) € S3, we have zg = 0, (0, z() ¢ bQ2, and |wp| = 1.

Consider the region

12
Wg:{(z,z',w)er‘: %] ,<1,V1§j§n}
J

(1= [wl?)P

where p; > «; for all j. Similar reasoning as above shows that W3 is

nonempty and connected. When we approaching the bounadary point p in
T N 71 €l (74 9 L

I =|wP)o (1= |w[?)r
Thus X, DV (X, X; 2, 2), D®(X,X;2,Z') and D(—rpa(z,2',w)) all tends
to 0 at p. Since (0, z(,) ¢ b2, the function —rya(z, 2/, w) has a positive limit

< (1 —|wf)Pi=® = 0.

at point p. Plugging these results into (4.14) and (4.15), we have both J;
and Jo tend to 0. The limit of (4.12) is positive since I} = ¢, Lq and Lq is
positive at (0, z{, %) Therefore when approaching p in W3, function (4.8)

and rye has a nonzero limit. Hence the limit of (4.7) is also not zero.

Case 3) When (z0,2),wo) € Si, we have zyp = 0, (0,%,) € b2, and
|lwg| = 1. Consider the approach region Wy = Wy (| W3. Since both Ws and
W35 contains the set Z{z1,...,2,} (U* and p € Z{21,...,2,} U, we can
approach p in Wy. The argument in Cases 1 and 2 imply X, DU (X, X; 2/, Z),
DO(X, X; 2, 2), rya(z, 2, w), D(rya), D(__Tigf), and rye log(—rye) all tends
to 0. By (4.12), (4.14) and (4.15), limits of J; and J2 both equal zero and
the limit of [; is equal to a nonzero constant. Therefore (4.8) has a nonzero

admissible limit in Wy.

Case 4) When p = (20,2),wo) € S1, Lemma 4.1 implies 7, (p) # 0 for
1 < j < n. Then cHyg(p) in Theorem 4.1 is positive. Since (Xp,z() is a
strongly pseudoconvex boundary point in bQ2, Hq (X, 2’) is positive definite
on T19(bQ). Therefore Hy(p) is positive definite on Tpl’o(bl/{) and p is a

strongly pseudoconvex point. O
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Compared to U%, the boundary behavior of the kernel funcion V7 is
simpler. The argument is similar to the proof of Theorem 4.1. We state the

result without proof:

Theorem 4.3. Let 2 and V7 be as above. Suppose ) is bounded, smooth,
and strongly pseudoconvex. Then V7 is pseudoconvex. The boundary point
p = (20, 24, wo) is weakly pseudoconvex if zg = 0. Moreover, for each weakly
pseudoconvex boundary point p, there is an admissible approach region W,

such that when approaching p inside W :

n+m+1(

Ky~ (z, 2, w)(=ryv) 2,2 w)

tends to a nonzero constant.

Remark In both Theorems 4.2 and 4.3 above, we assumed the existence
of 2/ components. Because of our assumption, points in Sz, S of Theorem
4.2 and the weakly pseudoconvex boundary points in bV of Theorem 4.3
are of infinite type in the sense of D’Angelo. If there is no 2/, i.e. m =0
in the definition of €2, then the boundary geometry of the target domains is
different. In this case, V7 becomes a strongly pseudoconvex domain. The
boundary geometry of U®, on the other hand, depends on the value of .

One can see this fact immediately from Example 3.1.
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Chapter 5

Cancellation of singularities
for weighted Bergman
kernels

The Bergman kernel tends to infinity when it approaches the boundary of a
pseudoconvex domain along the diagonal. The kernel function behaves dif-
ferently when approaching the boundary off the diagonal. Kerzman [Ker72]
first obtained this result in the strongly pseudoconvex case. The formula
P = I — 9'NO relates the Bergman projection to the -Neumann oper-
ator N. Using the pseudo-local property of N on strongly pseudoconvex
domains, Kerzman estimated the derivatives of the Bergman kernel off the

diagonal and obtained the following theorem:

Theorem 5.1. Suppose ) is a smooth, bounded strongly pseudoconvex do-
main in C". Let Kqo denote the Bergman kernel on Q. Let AQ denote
the closed subset defined by ANQ = {(z,w) € bQ x bQ : z = w}. Then
Kq € C®(Q x Q- AQ).

Later, using subelliptic estimates for N on domains of finite type, Bell
[Bel86] and Boas [Boa87] independently generalized Kerzman’s theorem to

the following two cases:

Theorem 5.2. Suppose € is a smooth, bounded pseudoconvex domain in
C™. If U and V' are disjoint open subsets of bS) consisting of points of finite
type, then the Bergman kernel on  can be smoothly extended to U x V.

Theorem 5.3. Suppose € is a smooth, bounded pseudoconvex domain in
C"™ satisfying Condition R. If U and V are disjoint open subsets of bQ) and
U consists of points of finite type, then the Bergman kernel on Q can be
smoothly extended to U x V.

Theorems 5.1 and 5.2 show the differentiability of the Bergman kernel on
the boundary off diagonal. If the kernel function can be written as a finite
sum of some functions and each of them is blowing up on certain boundary
points off diagonal, then a cancellation of singularities among terms in the
sum happens when approaching these boundary points.

In Section 5.1, we illustrate a cancellation of singularities among some

generalized hypergeometric functions by applying Theorems 5.1 and 5.2 to
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the Bergman kernel function on the complex ovals. In Section 5.3, we show a
cancellation of singularities among some weighted Bergman kernels on some

Hartogs domains.

5.1 Generalized hypergeometric functions

Consider the complex oval 2 in C™ defined by:
n
{zeC™: Z |22 < 1}
j=1

where a;’s are positive integers. Francsics and Hanges [FH96] expressed the
Bergman kernel on these domains in terms of Appell’s 2nd hypergeometric
functions. We introduce the definition of these generalized hypergeometric

functions.

Definition 5.1. For z € C" and m a multi-indez, the Appell’s 2nd hyper-
n)

geometric function FQ( in C" is given by

n ()l T2 (B)mi 1
B B i) =3 B G

where (@), = ala+1)---(a+m—1).

The series is convergent in the domain {z € C" : >7%_, |z;| < 1} and is
divergent at the boundary where all the z;’s are positive.
When n =1, (5.1) becomes

o0

aB,7:2) =) ‘2, i :“ 2", (5.2)
m=1

which is the standard hypergeometric function.
The result of Francsics and Hanges expresses the Bergman kernel in

terms of F(n)

Theorem 5.4. For Q = {z € C": |2 |?* + - + |2,|*" < 1}, the Bergman

kernel is given by

I pi 11% Z Z + Z] (g5 +1)/p))

Kao(z,w _ T ((g; +1)/p))

q1= =0 Qn_o

1 1
x F{" 1+ZquJr ,1,q; ; (z0)P). (5.3)
J

j=1
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Here p, q and 1 are multi-indices.

Note that  in Theorem 5.4 is smooth, bounded, pseudoconvex, and
every point on its boundary is a point of finite type. By Theorem 5.2,
the sum on the right-hand side of (5.3) is smooth at the boundary off the
diagonal. However, FQ(n) is not necessary smooth at the boundary of its
domain of convergence. Therefore each term in (5.3) can blow up at some
points in bf). Let’s first recall an example where the kernel function has an

explicit formula.

Example 5.1. Let Q denote the complex oval in C? defined by
Q={z¢€ Cc?: |21|2 + |22|4 < 1}.

In Chapter 2, we’ve already obtained the formula for the Bergman kernel

function on 2

3(1 — lel)% — 2oW9

Kq(z;w) = T 3 (5.4)

27‘(‘2((1 — le1)§ — ZQQDQ)g(l — 2171)1)5
Using (5.3), Kq can also be expressed in the following way:
_ 4zowo
Ko(z ) =

oz @) 72 (1 — 21wy — zgu’)g)?’

3(1 — 21'11_}1)2 + 6(1 — Zlu_Jl)Z%?IJ% — Z%U_J%
: (5.5)

2m2(1 — zywy — 23w3)3(1 — z11) 2

(n)

In equation (5.5), each of the two terms is an F,"

For p = (0,%¢) and ¢ = (0, —i), either Theorem 5.2 or 5.4 guarantees that (5.5)

can be smoothly extended at (p, q). However, (1 — 21101 — z5w3) is identically

with different parameters.

0 if z € b{2 is of purely imaginary coordinates and w = Z. Hence there is no
smooth extension for each term in (5.5) to (p,q). But when we sum them
up, the singularity of each FQ(") cancels each other. The cancellation in (5.5)
is not hard to observe since each term is an elementary function. In general,
FQ(n) with rational parameters does not have necessarily have an elementary

expression while such cancellation of singularities phenomena still happens.

Theorem 5.5. Let p = (p1,...,pn) be a multi-indezx. Let U denote the set
{teCm: 370 |tj|P7 < 1}. Let bUT denote the set {t € bU : t; > 0}. Let
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F(t) denotes the sum

p1—1 Pn—l +EJ 1(QJ+1)/pJ)

1 1
x F{" 1+ZQ’Jr 1,9t e ) (5.6)
= Dj p

Then F is defined on U and F can be smoothly extended to bU —bU ™.

Proof. Replacing ¢t by zw and multiplying with a constant factor, (5.3) be-
comes (5.6). Therefore the convergence of Kq(z,w) on Q x Q implies the
convergence of (5.3) on U. For t € bU — bU™, there exist z,w € b{) such
that (z2w) = t. Since ¢ ¢ bU™, there exists j such that t; = zjw; ¢ R*.
Hence z # w. By Theorem 5.2, K can be extended smoothly to (z,w).
Therefore F' can be smoothly extended to t. Since t is arbitrary, the proof

is complete. ]

Remark Consider t = (t1,...,t,) € bU—bU" where ¢}’ > 0 for all j. By
its definition, FQ(H) is divergent at tP. Therefore when approaching ¢, each
term in (5.6) is blowing up to the direction of (¢)4 but the sum is finite.
This phenomenon indicates a cancellation of singularities happens between
terms of different directions and the sum becomes bounded. As we will see
in the next section, each term in (5.6) is a weighted Bergman kernel on the
unit ball in C™ and Theorem 5.5 shows a cancellation of singularities among

these weighted kernel functions.

5.2 A transformation formula for proper mapping

In [Bel81], Bell had obtained a transformation rule for the Bergman projec-

tions under proper holomorphic mappings:

Theorem 5.6. For j = 1,2, let P; denote the Bergman projection associated
to the bounded domain D; in C". If there is a proper holomorphic mapping
f from Dy onto Doy, then

PJ(f) (¢ 1) =J(f) - (Pa0) o f), (5.7)

where J(f) is the holomorphic Jacobian determinant of f and ¢ € A?(Dy).

As a consequence of (5.7), a transformation formula for the Bergman

kernels on D7 and Dy can also be obtained:
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Theorem 5.7. Let D1 and Dy be bounded domains in C™ and f is a proper
holomorphic mapping of Dy onto Ds of order m. Let J(f) denote the holo-
morphic Jacobian determinant of f. Let Fi,..., Fy, be the m local inverses
to f defined locally on Dy —V where V' is the null set of J(f). Let J(Fj)

denote the holomorphic Jacobian determinant of F.
> Kn, (2 F5(Q) J(F)() = Kn, (£(2);€) J(f)(2) (5.8)
j=1

forallze Dy and ( €Dy — V.

Remark 5.1. By the Removable Singularity Theorem, the left hand side of
(5.8) extends to be anti-holomorphic in ¢ on Ds.

Bell’s transformation formula is explicit for Kp, but implicit for Kp,.
The Bergman kernel on Dy can be obtained if the kernel function on Dy
is known; conversely, it is difficult to obtain the Bergman kernel Kp, for
given Kp, due to the possible cancellation among terms in the left hand
side of (5.8). In this section, we provide, for some particular D; and Dy, a
transformation formula which is explicit for Kp,.

In this section, we let Q be a Hartogs domain in C"* with symmetric
planes {z; = 0} for 1 < j < n. A similar argument in the proof of Lemmas

2.2 and 2.4 yield the following lemmas:

Lemma 5.1. Let f be a holomorphic function on Q). Then f has a series

expansion:

f(z,2) =) 2*al?), (5.9)

aczn

where ¢ is holomorphic in 2’ and the series converges normally in €.

Lemma 5.2. Let f be a square-integrable holomorphic function on Q. Then

we have the following:

1. f has a series expansion:

F(2,0 =Y 22¢a(Q), (5.10)

aczn”

where, for each multi-index a, ¢, s a square-integrable holomorphic

function on w(Q) with respect to the the measure ||za||2L2(QC).

2. If {¢pap} is a complete orthogonal system for A2(7T(Q), ||za||%2(gc)),

then {z2¢ap} forms a complete orthogonal system for A%(S2).
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By Lemma 5.2, we can choose a complete orthogonal system of the form

{#2¢ap} for A%(Q2). Hence the Bergman kernel on {2 has a series expansion:

Z Zaglﬁba,b(zl)(ga,b(cl)‘

K s /5 _’ (') =
Q(z z C C) ||Za¢a,b(zl)||%2 QO

(5.11)
a,b

Note that the series above is different from the series expansion for the
Bergman kernel on an n-star-shaped Hartogs domain: the multi-indices are
in N” for an n-star-shaped Hartogs domain while in (5.11) they are in Z".

Let o = (ou, ..., o) where a;’s are positive integers. Set
Q% ={(2,2) € C"™ . (20,20 ) € Q).

Then Q% is also a Hartogs domain with symmetric planes {z; = 0} for
1 < j <n. Let f, denote the proper mapping from C” x C™ to C" x C™:

Qn

Joi (21,00 y 20, 2) = (20000, 20, 2.

Since f, maps Q¢ onto {2, Bell’s transformation rule implies that

KQ(Z?I,...,R,Z C ...,_ﬁ‘",f’)
a1 Qn o o _ w]l . a]]n

= KQ‘X(ZuZ,;(D{lCIM"7w]n<—n7cl) L = 1\ (512)
g‘l g; ! [Tj=1(e] (€)™ 7)

where wj is j,-th root of unity. Kq above is written in terms of Kqa. In the
next theorem, we provide another transformation formula in which Kqa is
written in terms of some weighted kernel functions on 2. For multi-index c,
let K& denote the weighted Bergman kernel for the space A?(Q, |z[°dV).

Theorem 5.8. Let Q) be a Hartogs domain in C" x C™ with symmetric
planes {z; = 0} for 1 < j < n. For o € Z", let Q% and f, be defined as
above. Then for (z,2') and ((, (') in Q%, we have:

KQ‘)‘(ZaZ,;E’E Z Z C(Ja fa( ) afa (C)v?)v (513)

Jji=1 Jn=1

2(j1+1_a1) 2(jn+1_0¢n))

o1 gee ey amn

where c(j, a) = (

Proof. Since Q% is a Hartogs domain with symmetric planes {z; = 0} for

1 < j < n, a complete orthogonal system of form {z2¢a (2")} can be chosen
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for A%(Q). Let J denote the set
{(a,b) : 22pap € A%(QY)}.

Then the Bergman kernel on Q% has a bi-orthonormal series expansion:

Kao(e2:6.0) = Y 28 %an(#)oan(),

(a,b)eT Hza¢a,b(zl)”%2(ga)
For multi-index j = (j1,...,Jn), let Jj denote the set
{(a,b) € J: a = jr mod oy, for 1 < k <n}.
Then J = U;jeznJ;. We claim, for each j, that

WAATRD fofe), 21 Fal0), O = 3 TreeE (),
ablZ)llL2(e)

(a,b)Ejj

(5.14)

Then summing up both sides of (5.14) for each j yields (5.13) and completes
the proof. Set Kj as the left hand side of (5.14). To prove (5.14), it suffices

to show that Kj can be expanded as follows:

Kj(2,2:¢,{)= > cap?*Pdap(?)dan((), (5.15)

(a,b)Ejj

and reproduces z%¢, (2') for each (a,b) € J;.
Let {255 b} be a complete orthogonal system for A2(Q, |20 dV). Let
£; denote the set {(s,b) : 255 p(2') € A%(Q,]2(°0:*)dV)}. By Lemma 5.2,

Kj has the following series expansion:

Kj(2,250,0) = > esp?® M () (), (5.16)
(s,b)eL;
where sa denotes (s1au, . . ., spap). Since for 25f(2') € A%(Q),

a+j 1 j,a
[Py = 3 [ PPy,
Qo a Ja
if the integral in either side is bounded, 25 f(2') € A%(Q,|2|°U0¥dV) is equiv-

alent to 25T f(2') € A%(Q%) and (s, b) being in £; is the same as (sa+j, b)
being in J;. Also, ¥sp can be chosen as ¢sqaijb. Therefore (5.15) holds.
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For (sa +j,b) € Jj,
/ K2, 21 C. )¢ H g yi 1 (C)AV

Oél

:/Q z< JO‘ (fa( ) Z/;fa(C)aél)Csa+j¢s,b(</)dV (5'17)

Substituting t; = (;* for 1 < k < n yields

/ AMIIKEI (fal2), 25 Fal0), €I e ()Y

=3 [ QR (1a(2), 2 E Ol O aV
Q

—stiy (). (5.18)

Therefore Kj reproduces 22¢, p(2’) for (a,b) € Jj. O

Remark 5.2. Formula (5.13) can be used to obtain the explicit formula of

c(4,q)

Kqo when explicit formulas for K are known. For p,q € NT and

Q={(z,w) € C*: |z| < |w|P <1},

Kg(j’q) can be written in terms of elementary functions. Applying (5.13) to

Kg(j’q) yields the Bergman kernel on generalized Hartogs triangle

Q% = {(z,w) € C?: |2|? < |wP < 1}.

In general, K(c)(j’a)

might not have an explicit formula. Consider the domains
Q={(z,w) € C?: |z + |w|* < 1} and O = {(z,w) € C? : |2|® + |w|* < 1}.
Park provided, in [Par08], the explicit formula for Kq and showed Kq2 can
not be written in terms of elementary functions. This observation indicates

that the weighted kernel function Ké(O’Q) does not have an explicit form.

5.3 Cancellation of singularities

Let Q% be as in Theorem 5.8. Suppose 2% is smooth, bounded and pseudo-
convex, and the boundary points are of finite type in the sense of D’Angelo
(See e.g. [D’A93]). Applying Theorem 5.2 to Theorem 5.8 yields that

a o g -
DOEEDD %KSC)(J’Q)(fa(Z)aZ/;fa((),cl)a (5.19)

jjzl Jn=1
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can be smoothly extended to be in C*(Q% x Q% — A(%)). Such a statement
is not obvious since, for boundary points (z, 2') and (¢, 2’) of Q% with z # (,
it is possible that fu(2) = fo(¢) and K0 blows up.

Theorem 5.9. Let Q C C*"™™ be a Hartogs domain with symmetric planes
{z; =0} for 1 < j < n. Suppose S is smooth, bounded and pseudoconvez,
and the boundary points are of finite type in the sense of D’Angelo. Set
a = (ai,...,on) with aj € Nt. Let w; denote the aj-th root of unity and

let w denote (wi,...,wy). Then the function

Z Z wa|z| C(J a)(z,z’;é, 7, (5.20)

J]*l Jn=1
extended smoothly to the boundary of 2.

Proof. Set
Q% ={(2,2): (z{,..., 25", 2') € Q}.

Since €2 is smooth, bounded and pseudoconvex, Q% is also smooth, bounded
and pseudoconvex. Moreover, the boundary points of Q% are of finite type

since points in bS2 are of finite type. By Theorems 5.2 and 5.8
Z Z (fal2), 25 Jal0). ) (5.21)
]j*l Jn=1

can be smoothly extended to be in C*°(Q® x Q% — A(Q%)). Substituting
(s = zsws and t = fo(z) in (5.21) yields that (¢,2") € Q and

Z Z“am 0, 251, 2) (5.22)

Ji=1 Jn=1

can be extended smoothly to the boundary of . O
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Chapter 6

Complex harmonic
homogeneous polynomials

Our technique for computing the Bergman kernel on U® (or V7) uses the
fact that {z2¢apw®} forms a complete orthogonal system for A%(U?) (or
A%2(V7)) when {22¢ap} is a complete orthogonal system for A%(2). The
formulas in Theorems 3.1 and 3.2 relate orthonormal elements of A%(£2) to
orthonormal elements of A%2(U%) and A?(V7). In this chapter, we use a
similar method to relate complex harmonic homogeneous polynomials in C™

to complex harmonic homogeneous polynomials in the higher dimensional
cntm,

6.1 Decomposition of P, ,

Let Py, ,(CF) denote the space of polynomials that are homogeneous of
degree m in 21, ...,z and n in Zy,...,2,. Let A denote the Laplacian;
A = Z i1 az 82 (The usual Laplacian equals 4A\). A polynomial p is called
harmonic if Ap = 0. Let H,, n((Ck) denote the space of harmonic polynomi-
als that are homogeneous of degree m in z1,...,2r and n in zy, ..., Zg.

We consider surface integrals on the unit sphere S?=1in CF. Let do
denote the Lebesgue 2k — 1 dimensional measure on the sphere. We define
an inner product on L? (S%_l) as follows: For p and ¢ in L? (S%_l),

(p,q) = / pqdo.
S2k—1

Lemma 6.1. Let p € H,, ,(CY), and let ¢ € H,p(CF). If (a,b) # (m,n),
then (p,q) = 0.

Proof. We consider two cases: the case m —n # a — b and the case m —n =
a —b. When m +n = a+ b, the assumption (a,b) # (m,n) shows that
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m —n # a — b. Since the measure do is invariant under rotation,

[ pleoatade = [ p(ese "2 (ez e T)do
S2k71 SQkfl

_ Jilm—n—a+b)0 / p(22)q(z 2)do,  (6.1)
S2k—1

where 6 is real. Because m —n # a — b and 6 is arbitrary, the integral in the
last line of (6.1) equals 0.

For the case m + n # a + b, we may regard p and ¢ as harmonic homo-
geneous polynomials of degree m + n in real variables x and a + b in real

variables y. Then we have

%p(rz, rZ) .

Similarly,
(rz,ré)‘ = (a+Dd)q(z).

%q

Let n denote the exterior unit normal vector of S?*~1. By Green’s Identity:

(p(2,2)) (2, 2)do

Y
— /Bk A(p(z,2)) @(2,2) + (2, 2) - vi(z, 2)dV
- /Bk p(z,2) A (2, 2) + vp(z,2) - Vi(z, 2)dV
— /S%1 p(z, z)a%q(z, zZ)do = (a + b)(p, q).
Since m 4+ n # a + b, we have (p,q) = 0. =
Let M) 2 denote the multiplication operator by 2%

M2 f e |22 f.

Then M, 2 maps Pin(CF) to Pri1n1(CF). Let P, (S*71) denote the
space of functions in Py, ,,(CF) restricted to S**~!. Since ||z||?> = 1 on the

unit sphere, we have
Pm—l,n—1 (S%_l) = MHz||2 (Pm—Ln_l (S%_1>> C Pm’n (S%_l) .

Our next result provides an orthogonal decomposition for Py, ,(S?*~1). The

proof uses another useful inner product.
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For polynomials p(z, z) and ¢(z, Z), we define < p, g > to be

p(D, D)Q(Z, 5)’2:07

where D = <%7 cee %)' If p(z,2) = 2127 and q(2,2) = 22227, we have
<6>a1<8>61 _as B 0 if (a1, B1) # (az, o)

<pg= | = o) R0 = '
82 62 042!52! if (061,,31) = (OQaBQ)

Therefore the space F,; is orthogonal to F.4 with respect to < -,- > if
(a,b) # (¢, d). Similarly, H,j is orthogonal to H, 4 under this inner product.
By its definition, the inner product < -, - > satisfies the following:

For polynomials p, ¢; and g9,

<p(z,2),q2(D,D)q1(2,2) = = < p(z,2)q2(2, 2), q1(2, Z) >~ .

In particular, the adjoint operator of multiplication by ||z||? is the Laplacian,

i.e. for p,q € P(CF), we have
< 21?p.q = =< p, Dg - (6.2)

Formula (6.2) implies the < -, - =-orthogonality between elements in H,, ,(C¥)
and M||zH2 (Pm_lm_l((C’“)).

Lemma 6.2. The space Pm,n((Ck) has the following orthogonal decomposi-

tion with respect to the inner product < -, - >:

Ponin (C*) = Hunn (C) @ Mz (P11 (€)). (63)

Proof. By (6.2), the space Hy, ,(CF) is orthogonal to Mj2(Ppn—1,n-1(C")).
It suffices to show that the orthogonal complement of MHZ”z(Pm,Ln,l((Ck))
is contained in H,y, ,(C*). Let ¢ € Py, n(CF) be a polynomial in the orthog-
onal complement of MHz”z(Pm,Ln,l((Ck)). Since Aq € Ppy_1,-1(CF), we
have

0 =< M,2(Aq),q === Dg, Aq - .

Hence Aq = 0 and q € H,y, ,(CF). O

As a consequence of Lemma 6.2, the dimension of H,, ,(C*) equals:

dim (P ((C’f)) — dim (Pm,m,l (Ck)) . (6.4)
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Since [|z|| = 1 on the unit sphere S?*~1, the decomposition (6.3) is also true
with respect to the inner product (-,-). When restricting the domain to the

unit sphere, the decomposition (6.3) becomes:

P (SQ’H> = Hypn (SZ’H) DB Pt (S%*) . (6.5)

Decomposing Pr,—1.,-1(S?*71) in (6.5) and repeating the same process yield

the last lemma in this section:

Lemma 6.3. Pmm(Szk*l) has the following orthogonal decomposition with

respect to the inner product (-, -):

min{m,n}
Pon (S = @ Hpojos (871,
=0
Proof. Since ||z|]| = 1 on S?*7!, we have

Hyjn—j (S2k—1) = M2 (Hmij’nij (S%—l)) C Pon <S2k_1> '

By Lemma 6.1, the spaces Hp,—j,—;(S?*71) with different indices are or-
thogonal. It suffices to show that the spaces on both sides have the same
dimension. Set h,p = dim(H,,(S*71)) and d,p = dim(P,;(S**71)). We

assume, without loss of generality, that m > n. Then (6.4) gives

n n—1
Z hm—j,n—j = Z(dm—j,n—j - dm—j—l,n—j—l) + hm—n,()- (66)
7=0 7=0

Since Hm—n,O(SQkil) = Pm—n,0(82k71)7 hm—n,O = dm—n,O- The right hand
side of (6.6) equals the dimension of P, ,(S?*~1). O

6.2 Decomposition of H,,,

In Lemma 6.3, we decomposed the space of homogeneous polynomials into
spaces of harmonic homogeneous polynomials. The harmonic homogeneous
polynomial space could also be decomposed into a direct sum. In this sec-
tion, we present a multiplication operator M, that maps elements in
H, 5(S**73) to elements in Hy,,(S?*71) with m > a and n > b. For each
a < m and b < n, the image of Ha7b(82k_3) under M pmn is a subspace
of Hmm(S%*l). We show in this section that all these subspaces together

induce a decomposition of H,y, ,(S?*~1).
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Lemma 6.4. For z € C*~! and w € C, there exists a unique sequence {c;}

starting with co = 1 such that the polynomaial

min{m—a,n—b}

G D D T I (6.7)
=0

is in Hpn(S?*71) whenever p(z, z) € Hy b (S*73).

Proof. 1t suffices to prove that there exists ¢;’s such that A(qqepmnp) = 0.

Set A, =S F1.0.0 4pd A Then

j=1 0z; 0%; w_dwaw

A(C]a,b,m,np) =A, (Qa,b,m,np) + Aw(QOL,b,'m,,"er)
k—1
0 0 0 0
=p A\ .
=p Qabmn+z< Qabmna_p+a_Qabmnaztp)

(6.8)

Set I =p A o pmn. Set II equal to the sum in (6.8). We have

min{m—a,n—b}
I :p< Z Z(’L + E— 2)Ciwm—a—iu—}n—b—i||Z”2i—2
=1
min{m—a,n—b}—1
Z (m —a— 2)(TL —bh— i)ciwm—a—i—lwn—b—i—lHZ||2i>
=0
min{m—a,n—b}
=p< S lilitk-2ct+(m—a—it1)(n—b—i+1)ey)
=1

wm—a—iwn—b—i HZHZZ'—2> ,

and
min{m—a,n—b} k—1
; ; 0 0 . 0
II = e —n—b—i 2 v 21 Y
S e (G g gl )
min{m—a,n—b} k—1
; ; 0 0 0 ; 0
_ ym—a—i,-n—b—1i Y 2¢ Y 21 Y
= X Z(a AP + 1P )

min{m—a,n—b}

0 0
_ . m—a—i n b—i 2i—2
= > icw Bl Z(ztap—i-ztat >

=1 t=1

min{m—a,n—>b}

=p Z z'(a + b)ciwm—a—iwn—b—i||Z||2i—2
=1
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Then I+ II = 0 if and only if {¢; gg{mfa’nfb} satisfies:

(m—a—i+1)(n—0b—i+1)
ifi+a+b+k—2)

C; — —

Ci—1, for i > 1. (69)

Formula (6.9) uniquely determines the {c;} given that ¢y = 1. O
For the sequence {c;} in Lemma 6.4 with cg = 1, let gq pm,n denote

min{m—a,n—b}

D ™ T )% (6.10)
=0

Lemma 6.4 shows that for a polynomial w®w’p(z, Z) with p being a complex
harmonic homogeneous polynomial, there exists a unique polynomial g, . n
of the form (6.10) such that qq p.m n (2, Z, w, w)p(2, Z) is harmonic. We call the
product qq pmn(2, Z, w, w)p(z, Z) the harmonization of wwp. Let My pm.n
denote the multiplication operator induced by ¢q pm.n from Ha7b(S%_3) to
Hm’n(S%*l):
Mapmmn = P GabmnD-

Fix m and n. For a < m and n < n, we set M,p = Ma7b7m7n(Ha,b(SZk_3)).
Then M, is a subspace of Hmm(S%_l). The next theorem shows not only
that Mg, s, is orthogonal to Mg, p, when (a1,b1) # (a2, b2), but also that

these M, determine an orthogonal decomposition of Hm’n(S%*l).

Theorem 6.1. Let Mgy be as above. With respect to the inner product
(-,-), the mapping My pmn preserves orthogonality. Moreover, H,y,,(CF)

have the following orthogonal decomposition:

Hinn (S%*l) = 55 Mapm.n (Ha,b (821“3)) . (6.11)

a=0,b=0
Here the spaces My pm.n (Ha,b (82’“*3)) are orthogonal to each other.

Proof. By Lemma 6.4, we can set

Cja,b,m,n(HZ“Qa w, ’LU) = Qa,b,m,n(z7 Z,w, ﬁ)).

On the unit sphere S*~1 ||z||2 + |w|? = 1. Therefore, we have
Qa,b,m,n(‘|z||2vwvw) = @z,b,m,n(l - \w|2,w,u_)).

Set Qub.mn (W, W) = Gapmn(l — |w|? w,w). Let {p;} denote an orthogonal
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basis for H, ;,(S?*=3). When j # [,
<Ma,b,m,n (Pj), Ma,b,m,n (pl)>
:/ ’qg,b,m,n‘ijﬁldU
S§2k—1

= [ Qusamnw. 0Py 2,2z, 2o
S2k—1
Substituting z; = /1 — |w|?t; yields

/S% . ‘Qa,b,m,n(wvw)ij(Zvg)ﬁl(zv Z)do'
/ Qupmn (10, @) PV (w) / Py DBz 2)(1 — [P 2do(t)
S2k—3
(w) / (1= Jwl?)F+40=2p. (1, Dpi(t, Ddo (1)
S2k—3
0 w2V () [ pipdo(t
82’“*3

- /B Qubamanl2(1 — [0]2)FH0=2aV (1) py. ) = 0.

Thus the mapping M p nn preserves orthogonality and we have

dim (Mo mn (Hap (S71)) ) = dim (Hay (8%71)).

Lemma 6.1 also implies that spaces Ma7b7m7n(Ha,b(S%*3)) with different in-

dices a, b are orthogonal to each other. It remains to check that

i (Ho (27)) = 30 dim (Ho (7)) (612)

a=0,b=0

Let dgpx denote the dimension of Pa,b(S%_l), and let hgpj denote the

dimension of H,,(S?**~!). Lemma 6.2 implies that

hapk = dapr — da—1,p-1,k>

for a > 1 and b > 1. To prove (6.12), we use generating functions of dg
and hgp . It is known that dgp 1 equals (aii;l) (bzﬁzl). Therefore,

S S (1)) (£0 )

b=0




Since hgprp = do bk — da—1—1,% for a > 1 and b > 1, we have

o0 o0 o oo
Z Z hap ey’ = Z Z(da,b,k —da1p18)7"°

a=0 b=0 a=0 b=0
1—=zy

T (L a)F(1—y)F

Factoring out m from (17;);% and expanding it as a series yield

1—2zy 1
I — 1=y =01 —y)

a=0 b=0
o oo
{Zmew)zzw
r=0 s=0 =0 j7=0
co 00 a b
= Z hjsk—1 | 2"
a=0b=0 \ j=0 (=0
Hence hqp = Z?:o Z?:o hji k-1 and the proof is complete. d

Remark 6.1. In the argument above, we expand the factor m from

(17;);% and obtain the identity

a b
hapr = Z Z hjik—1da—ji—p1,

=0 1=0

with de—j1—p1 = 1. Similarly, for positive integer r satisfying r < k, we can
1 1-zy
expand the factor =2y (=) from = (=) and have
11—y B 11—y 1
L-a2)fA-yk Q-2 71—y (1-a)(1-y)r

:{iimeQ 33 dyurty

7=01=0

Q

which implies that

b
hapr = E P k—rda—jp—ir-
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This observation suggests the existence of mappings sending the orthogonal
basis of Hyp(CF™") to Hpn(CF) and spanning the whole space. We'll see
a higher dimensional analogue of Lemma 6.3 and Theorem 6.1 in the next

section.

The polynomials g, pm,, in Lemma 6.3 are special functions and are
interesting on their own. Theorems in the rest of this section demonstrate

the relation of gq 4 m n to Jacobi polynomials and zonal harmonics.

Theorem 6.2. For z € C"! and w, let Qo pmn(w, ®) = qapmn(z,Z,w, 1)

on S~ Then for any fized a and b, {Qabmntm—an=p are orthogonal

polynomials for the space LQ(]D, (1-— |w|2)k‘+a+b—2)'

Proof. Since the highest order term in Qg pm, p is wm™ b, {Qapmntomn

already forms a complete system for P(C). It suffices to show that these

polynomials are orthogonal to each other in the space L?(ID, (1—|w|?)F++b=2),

For p € Havb(SQk_“?’), we let My, ,, denote the mapping from Havb(SQk_S) to
Hm’n(S%*l):
Mm,n (p) = PY9a,b,m,n-

For simplicity, we just use the notation g, », for qg p.m.n and Qum . for Qg p.m.n-
By Theorem 6.1 and Lemma 6.1, My, n(p) € Hpppn(S?*71). Thus when

(my,n1) # (M2, n2), we have:

0 :<Mm1,n1 (p)a Mm2,n2 (p)>

2 _
:/S%1 |p| le,QOQ,nQdJ

9 _
:/S%l ’p| Qm1,n1Qm2,n2dU'

Substituting z; = /1 — |w|?t; yields
/ ‘p|2thm sz’mda
S2k—1
_ / Qs Goes / Ip(2,2)2(1 — [w[2)*~2do(t)do (w)
B SQk*3
— / Qs o Grrn / (1= Jw[?)FH0=2 (e, ) [2do (£)do (w)
B SQk—3

_ / O s O (1 — [ 2 s (1) / ip[2do (1)
B S2k—3
- /E Qs s Gromma (1 — [0+ 40-2r (w) (p, ). (6.13)
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Noting that (p,p) # 0, we have
[ Qo Qa1 = w542 () =0
B

Thus Qp, ,’s are orthogonal in L?(B, (1 — |w|2)k+a+b=2), 0

The polynomials (), ,, form an orthogonal system for the function space
L*(B, (1 — |w|?)*+2*tt=2dg(w)). The following corollary shows that these

polynomials are related to orthogonal polynomials:

Corollary 6.1. Let J3;, be the Jacobi polynomial of degree n with the pair
(a,b) such that J;',(1) = 1; i.e. {J,}n2g is an orthogonal basis for the real
function space L?([~1,1], (1 — 2)*(1 4 z)°dx). Then we have:

wm_“_”‘*'bJ,’Aaermefafn%(2|w\2 —1) m—-a>n-—>

Qmn = (6.14)

1?)’"‘_”_”"‘+aJ/g’ferbf2’714,7”%%(2|w|2 —1) m—a<n-b»

Proof. We provide the proof for m —a > n—b. The proof for the other case

is similar. Let j = m —a —n + b and we consider the integral
/BQm-l-Lanz-l—jmz(l - ’w|2)k+a+b72da(u})‘ (6'15)

Applying (6.7) of Lemma 6.3 yields:
. nib . .
Quijn = w Y cilw (1 — w]?)". (6.16)
=0

Set p,(|w|?) equal to Z?:_ob ci|w]?(1—|w|?)t. By substituting (6.16) to (6.15)

and using polar coordinates, the integral (6.15) becomes:

1 2
/ / Py (T2)pn2 (7"2)(1 — r2)k+a+b_2r2j+1d9dr. (6.17)
0 0

Substituting ¢ = 272 — 1 to (6.17), we obtain:

1 k-+a-+b—2 j
t+1 t+1 t—1 t+1
2 i | —— | Pno | —— —_— — . 1

When n; # ng, the integral (6.15) vanishes. Hence

(
Since pn(%) is a polynomial of degree n, the set {p,, (%
t

onal basis for L2([—1, 1], (1 — 2)%(1 + z)’dz) and p, () = iy arpa(t)-

6.18) also equals zero.
t+1

£1)} forms an orthog-
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Note that p, (1) = ¢o = 1 and Jivarpoj(1) = 1. We have ¢, = 1 for all
n and therefore (6.14) holds. O

When both a = 0 and b = 0, the polynomial oo mn is in Hp, ,(S?71).
Set Gmn = 90,0,m;n- Lemma 6.1 implies that ¢, , only depends on w, w
|2

and |z|* and uniquely determined by m and n. On the other hand, w, w

and |z|? are the lowest order elements in P(CF) that are invariant under the
unitary group U(k —1)(z). Hence up to a constant coefficient, G, is the
unique U(k — 1)(2) invariant element in H,y,,(S?**~1). The next theorem
shows that, up to a constant factor, qo0,m,» equals the zonal harmonics of
Hypn(S?71) valued at certain point.

Let {s;} denote an orthonormal basis for H,,,,(S?*~1). The zonal har-

monics Sy, (2, ¢) is the function satisfying:

hm,n,k

Smn(£,¢) = Y 5i(£)s55(0), (6.19)

Jj=1

where 2, ¢ € C* with 2 = (z,w). We show below that S, is well-defined

and invariant under the unitary group U(k)(2).
Lemma 6.5. S, ,(2,() is invariant under the unitary group U (k)(2).

Proof. First, we prove that Sy, (2, () is well-defined. For any orthonormal
basis chosen, the series in (6.19) corresponds to the projection map from
L2(S*1) to Hppn(S?R71): for any f € L2(S?F1),

Rk [—
/S%1 51(2)s5(Q)F(Q)da(¢) = > (f.5)85(2). (6.20)
J=1 j=1

Thus Sy, n (2, ) is independent of the choice of orthonormal basis. It suffices

to show that any 7' € U(k)(2) send orthonormal basis to orthonormal basis.

h

Let {sj(()}jlli”’k be an orthonormal basis for H,y, ,(S*71). {s; (TC)};”:”{”c

(5;(TC), 1(TC)) = / 5 (TOs(TC)do ()

S2k—1

B /gakl $;(T'¢)s:1(T¢)do (TC)
- /S2k1 5;(¢)si1(C)da(C) = (sj, 81)-

Hence, for any T' € U(k)(2), functions s;(7°C) still form an orthonormal
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basis. By the well-definedness of S, ,,, we have:

m,n,k

= Y 5i(T8)5;(TC) = Sma(T(2), T(C))-
j=1

O]

Theorem 6.3. Let {s;(z,w)};” m"k be an arbitrary orthonormal basis for
mn(S*Y), then

hm,n,k
qu,n = Cm,n,k Z Sj(Z,'LU)Sj(O, 1)7 (621)
7j=1
2k—1
where ¢y p k= U,(lLk).

Proof. We first show that the right hand side of (6.21) is invariant under
U(k —1)(z). Since U(k — 1)(z) C U(k)(2), we have forany T' € U(k — 1)(z2),

3

hm,n,k h n,k

Gman(z,w) = Z si(z,w)s;(0,1) = 5i(Tz,w)s5(0,1) = Gmn(Tz w).
Jj=1 1

<.
Il

To compute ¢, p 1, We consider Qp,pn = Qo,0,mn- Since Q. pn equals Gy
on S#-1 we have on S%~! that:

hm,n,k

Qm,n(w) = (jm,n(za w) = Cmn,k Z Sj(Z7 ’LU)Sj (07 1) (622)
j=1

For fixed ¢ € S?*71, let T be a unitary transformation in U (k)(2) such that
T¢ = (0,1). Then for any 2 € S?*~1, there exists a § € CF~! such that
T710,(2,¢) = (z,w) = 2. Since 2 € S**71 we have (0, (2,¢)) € S?*~1 and
110112 =1 — [(2,¢)[?|0]|>. Therefore on S?¢~1,

'mnk

Qm,n(<é C Cmnk Z Sj 3(07 1)

mnk

= Con k Z s; (T71(0,(2,¢))) 55 (T71(0,1))

m n,k hm,n,k

= Cmnk E sj(z,w)s




Setting 2 = ¢ and integrating both sides of (6.23) on S?*~! yields

7 ($%71) = |, @na(do(Q)

mnk
:/ cmnkz 15,(C)[2do(€)
S2k—1
:Cm,n,khm,n,k-

0'(52’671)
hm,n,k: ’

Therefore ¢, 1 =

6.3 A higher dimensional analogue

Corollary 6.2. Let v be a positive integer satisfying v < k. Let My p a8

denote a map sending orthogonal basis of each Ha,b(SQk_l_Qr)

set of Hy,n(S?*71). Then we have:

to orthogonal

m,n

Honn <S2k:—l) _ @ @ Mapras (Ha,b <Szk—2r—1>)

a=0,b=0 ||a||=m—a,||8||=n—b
(6.24)

Proof. By Remark 6.1, the dimension of spaces on both sides of (6.24) are
the same. Let (z,w) € C¥" x C". For every p € Hy,(S*72"71) we let
Mg praps(p) =p(2, 2)q(2, 2, w, w) where p(z, 2)q(z, Z,w, w) is the harmoniza-
tion of w*w’p(z, z). To see this harmonization exists for the multivariable

case, we just need to repeat the process of Lemma 1 several times. O

Remark 6.2. Note that when r = k — 1, we have
Hoo(S') = Pap(S"), Hop (S') = Pop (S,

and Hyp(SY) = 0 when both a and b are not zero. If we start from Hgp(S)
and consider the mapping Mg p k—1.0,38, then the proof of Corollary 6.2 sug-
gest an explicit basis for Hy,,(S*71). Such a basis and the decomposition
(6.24) was first given by Ikeda and Keyama in [IK67], where they obtained
(6.7) in Lemma 6.4 using special coordinates and the method of separation
of variables. Later, Koornwinder gave a different proof for (6.24) using spe-
cial functions and obtained an addition formula for Jacobi polynomials. In
both their approaches, the explicit basis they obtained depends on the which
order new variables w; were added.

For example, when p(z,2) = z € Hyo(S') and wd? = |w;|?|ws|?ws, we
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have two different mappings that send p(z,%) to the space Hy2(SP):

72— z(Jwi]* = §]2%) —— zwa (w1 * — §121?) (Jwz* = 5(|2[* + [w1[?)) -

2 ——= zwa(|waf? — |2|?) —— zwa(jwal® — [2) (Jwr? — 5 (12> + [wa]?)) -

The mapping in upper line sends z to the space H271(S?’) with the new vari-
able w1 first and then to the space H472(S5) with the new variable wy. The
mapping in lower line sends z to the space Hg,l(SS) with the new variable

wo first and then to the space H4,2(S5) with the new variable wy.

A construction of an ”order-invariant” M, 3 could be done by an
analogue of Theorem 6.1 and Lemma 6.3. Such a map directly sends the
element of H,,(S**72r=1) into H,,,(S*~!) without passing through the
intermediate spaces. The following lemma is a higher dimensional analogue

of Lemma 6.3.

Lemma 6.6. Let z € CF" and w € C". For w*w”® € Pr—an—b(C") and
p(2,2) € Hop(S?**73), there evists a unique sequence {cap} starting with

co,0 = 1 such that the polynomial

min{m—a,n—b}

p(z, 2) Z Z Capw® 2w P 2% (6.25)
=0 |a|=i,|b|=i

is in Hpn(S?*71) whenever p(z, 2) € H, ,(S*73).

Proof. 1t suffices to prove that there exists cap’s such that A(ggp.q.8p) = 0.

_ k—r 9 0 _ T 0 _0
Set AZ = ZjZI @ETEJ and Aw = Zj:l aiwjaiﬂ)] Then

A (qap,a,sp)
=A, (Qa,b,a,ﬁp) + Ay (Qa,b,a,ﬁp)

/0 0 0 0
=p A E — — — —_ A
D 8z Gaba,p T - <azt qa,b,0,p 82tp + 9z, da,b,a, 8th> + P LBw Gapa,p

k—r
0 0 0 0
=p A — — — —p ). 6.26
D qa,b,a,3 + ; <8Zt qa,b,0,B (%tp + (%t qa,b,a,3 aztp> ( )
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Set (i) = p A gap,a,8- Set (ii) equal to the sum in (6.26). Then

min{m—a,n—b}

M= 3 3 (z’(i + k= 2)capw® @[22

i=0 |a|=i,|b|=i
r .
+ 3 (05— a)(8; — by)eapw® P 2]¥)
j=1

min{m—a,n—b}

> Y Y Cat

i=1  Jal=i[bl=i

where Cap = i(i + &k — 2)cap + > j_1(aj — aj + 1)(8; — bj + 1)ca—1, b1,
For (ii), we have

min{m—a,n—b}
@=p > D ia+beapu @ P
=1 |a|=t,|b|=1

Hence A(qpa,pp) = 0 if and only if {cap} satisfies:

> i1l —a; +1)(B; — bj+ L)ca—1, b1,
i(ita+tb+k—2) ‘

Cab = — (6.27)

Formula (6.27) uniquely determine the {cap} given that coo = 1. O
Let qqp,a,5 denote the polynomial

min{m—a,n—b}

D DR (6.28)

i=0 |a|=i,|b| =i
Then My p o 58(P) := Dqa,pa,p defines a mapping from the space Hmb(SQk_Q’"_l)
to the space Hy, »(S?*~1). The following corollary shows that such mapping

induces a decomposition for H,, ,(S?*71).

Corollary 6.3. Let My o 5 as above. Then the mapping My o 5 preserves

the orthogonality. Moreover,
m,n
Honn (S%—l) - P D Mapas (Hal, (SQk—zr—l)). (6.29)
a=0,b=0 |a|=m—a,|B|=n—b

Proof. By the Remark 6.1, we have

m,n

dim (o (S%7)) = 3 > dim (Hap (8%777))

a=0,b=0 |a|=m—a,|B|=n—b
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It suffices to show that elements in spaces M, p 3 (Ha,b(S%_QT_l)) are lin-
early independent.
For pj, ;i € @7 y—o Hap(S**72"71) such that (pj, p;) = 0in L*(S*~2r~1),

similar argument in the proof of Theorem 6.1 shows that in L%(S?~1)

(Map.a,3(05)s Map.ap(p)) =0.

Therefore M, j o g preserve the orthogonality of the elements in 1'17,1717(82’7‘;_2”_1)7
and My po8 (Hahb1 (SQk*QT*l)) is orthogonal to My« s (HaQ’b2 (Szk*%*))
when (a1, b1) # (ag, ba).

The highest order term of g, 4,3 in w and w is w*@”. Polynomials
Qa.b.ar,00 @0d Qo b oy .0, are linearly independent for (o, 1) # (a2, B2). Thus
elements in Mg pa, 8, (Hayp, (S*7271)) and Mopayp, (Hayp, (SPF72771)
are also linearly independent and (6.29) holds. O

Remark 6.3. Unlike in Theorem 6.1, the spaces My p o 8 (Ha7b(82k_2’"_1))
with different o and B are not necessarily orthogonal to each other. For
example, when r > 4, the polynomials qup 0,8 ANd Qo baq,p, With leading
term wiy and wsiwy are not orthogonal in L*(B", (1 — ||w||?)ktetd=1-rqV).

Therefore Dga pay 5, i not orthogonal to pa pasy.p, m L?(SP71).
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