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Abstract

We introduce a technique for obtaining the Bergman kernel on certain Har-

togs domains. To do so, we apply a differential operator to a known kernel

function on a domain in lower dimensional space. We rediscover some known

results and we obtain new explicit formulas. Using these formulas, we an-

alyze the boundary behavior of the kernel function on the diagonal. Our

technique also leads us to results about a cancellation of singularities for

generalized hypergeometric functions and weighted Bergman kernels. Fi-

nally, we give an alternative approach to obtain explicit bases for complex

harmonic homogeneous polynomial spaces.
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Chapter 1

Introduction

Let Ω denote an open connected set in complex Euclidean space Cn. Let

A2(Ω) denote the space of square-integrable holomorphic functions on Ω.

The orthogonal projection P : L2(Ω) → A2(Ω) is called the Bergman pro-

jection. The Bergman kernel function KΩ on Ω is the reproducing kernel

associated with the Bergman projection P .

Since it was first introduced by Stefan Bergman [Ber70], the Bergman

kernel has been an important tool in the study of several complex variables

and differential geometry. The boundary behavior of the Bergman kernel is

closely related to the boundary regularity of holomorphic mappings. The

Bergman metric, defined by ∂∂̄ logKΩ(z; z̄), is a Kähler metric of major

importance in complex geometry.

Explicit formulas for the Bergman kernel are available in only a few cases.

One method to obtain an explicit formula is to sum an orthonormal series.

Let {φα} be a complete orthonormal system for A2(Ω). Since it reproduces

every element in A2(Ω), the Bergman kernel KΩ(z; ζ̄) satisfies:

KΩ(z; ζ̄) =
∑
α

φα(z)φα(ζ). (1.1)

Another method for computing KΩ applies when Ω (for example, the unit

ball) has a transitive holomorphic automorphism group. Suppose the au-

tomorphism group of domain Ω is transitive and KΩ(z0; z̄0) is known at

some fixed z0. For any z ∈ Ω, there is a holomorphic automorphism send-

ing z0 to z. Then KΩ(z; z̄) can be obtained by applying the biholomorphic

transformation rule for the Bergman kernel to KΩ(z0; z̄0).

In Chapter 2, we provide details about these two methods and use both

of them to obtain the explicit formula of the Bergman kernel on the unit

disk. We also review previous results where explicit formulas for the kernel

functions are obtained.

Our approach for computing the kernel function is different. We start

with a domain Ω ⊆ Cn+m with certain symmetry properties in the first
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n variables. Rescaling the first n components of Ω by a multi-parameter

t yields a family of domains {Ωt} with each Ωt biholomorphic to Ω. By

regarding the rescaling parameters t as two different kinds of functions in

k new complex variables, we obtain domains Uα and V γ in Cn+m+k. For

η ∈ Ck, let Uαη and V γ
η denote the slice of domains Uα and V γ with the

last k variables equal to η. We obtain the kernel function on Uα and V γ by

first computing KUαη and KV γη
, evaluating these kernel functions at certain

points off the diagonal, and then applying a differential operator to them.

This technique combines the method of equation (1.1) and biholomorphic

transformation with the idea of variation of parameters, and gives explicit

formulas for the Bergman kernel functions in many new cases. We intro-

duce the notion of n-star-shaped Hartogs for those symmetry properties Ω

requires, and illustrate the construction of Uα and V γ in Chapter 2.

Theorems 3.1 and 3.2, two of our main results, give formulas that relate

KUα and KV γ to KUαη and KV γη
. In each case, the kernel function on the

target domain is obtained explicitly from the kernel function on the base

domain by the three step process described above. First one computes the

kernel function on a domain biholomorphic to the base domain. Then one

evaluates this kernel off the diagonal. Finally one applies a differential op-

erator to this expression, obtaining the kernel on the target domain. See

formulas (3.5) and (3.6). The differential operators used for Uα and for V γ

differ, but each is also completely explicit.

Example 3.1 gives a case where the known kernel function can be re-

discovered using our method. Examples 3.2 and 3.3 give new cases where

explicit formulas for the kernel function are obtained. In Example 3.4, we

apply Theorems 3.1 and 3.2 repeatedly, obtaining explicit formulas for the

kernel function on rather elaborate domains. Using our technique, we also

rediscover a recent result of Edholm [Edh15], who found an explicit formula

for the Bergman kernel on some generalized Hartogs triangles in C2.

We use our explicit formulas to describe the boundary behaviors of

KUα and KV γ . In [Fef74], Fefferman gave an asymptotic expansion of the

Bergman kernel on the diagonal when the domain is bounded, smooth, and

strongly pseudoconvex. He used this result to prove that a biholomorphic

mapping between two bounded smooth strongly pseudoconvex domains can

be extended smoothly to the closure. Later, S. Bell and E. Ligocka [BL80]

extended Fefferman’s result to smooth bounded pseudoconvex domains sat-

isfying condition R. This condition means that the Bergman projection P

associated with the domain Ω maps elements of C∞(Ω) into C∞(Ω). This

regularity condition is equivalent to an inequality on the derivatives of the
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Bergman kernel near the boundary. Because of its close connection to the

boundary regularity of holomorphic mappings, the behavior of the Bergman

kernel near the boundary has been studied for many decades. In the weakly

pseudoconvex case, the boundary behavior is difficult to analyze. Near a

weakly pseudoconvex point of finite type, certain estimates on the Bergman

kernel were obtained by McNeal [McN89, McN94]. Fu [Fu94] gave a sharp

lower bound estimate for the Bergman kernel on a bounded pseudocon-

vex domain with C2 boundary. Less is known about the behavior of the

Bergman kernel near non-smooth boundary points. It is worth noting that

our calculations produce many domains whose kernel functions have no log

terms.

In Chapter 4, we discuss the pseudoconvexity of Uα and V γ provided

the domain Ω is pseudoconvex. We determine the boundary behavior of the

Bergman kernels in Examples 3.2 and 3.3 using explicit formulas and admis-

sible approach regions. Then we combine Theorems 3.1 and 3.2 with Feffer-

man’s asymptotic expansion for the Bergman kernel to obtain the boundary

behavior of the Bergman kernel on Uα and V γ when Ω is bounded, smooth

and strongly pseudoconvex. In Theorems 4.2 and 4.3, the boundaries of Uα

and V γ need not be smooth.

While the Bergman kernel tends to infinity when approaching a pseudo-

convex boundary point along the diagonal, the behavior of the kernel func-

tion near the boundary off the diagonal is different. Kerzman first showed

in [Ker72] that, for smooth, bounded strongly pseudoconvex domains, the

Bergman kernel is C∞-smooth up to the boundary off the diagonal. Later,

Bell [Bel86] and Boas [Boa87] independently generalized Kerzman’s result

to cases where boundary points are of finite type. The simplest examples

where differentiability results hold for the Bergman kernel are complex ovals.

Francsics and Hanges, in [FH96, FH97], expressed the Bergman kernel on

complex ovals as a sum of some generalized hypergeometric functions. De-

spite the smooth extension of the kernel function on complex ovals off the

diagonal, each generalized hypergeometric function in the sum tends to in-

finity. This phenomenon suggests a cancellation of singularities of these

generalized hypergeometric functions. In Theorem 5.5, we give a smooth

extension result for these hypergeometric functions at the boundary of their

domains of convergence.

Let f : Ω1 → Ω2 be a surjective proper holomorphic mapping. Bell,

in [Bel81], gave a transformation formula of f that relates KΩ2 to KΩ1 .

Unlike the biholomorphic transformation formula, Bell’s formula is explicit

for KΩ2 but implicit for KΩ1 , i.e. KΩ1 may not be obtained even if an
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explicit formula for KΩ2 is given. In Theorem 5.8, we give, for domains

with some symmetry properties and special proper mappings f , an explicit

transformation formula forKΩ1 that relatesKΩ1 to weighted Bergman kernel

functions on Ω2. Combining this result with our observation about general-

ized hypergeometric functions, we obtain, in Theorem 5.9, a cancellation of

singularities for weighted Bergman kernels.

The idea of our technique for computing the Bergman kernel is to relate

a complete orthonormal system in one space to another. Such an idea can

be applied in different settings. Ikeda and Kayama [IK67] first gave an ex-

plicit basis for complex harmonic homogeneous polynomial space Hm,n(Ck)
using complex harmonic homogeneous polynomials of lower degree in fewer

variables. As consequences, their result implied the existence of mappings

between elements in Ha,b(Ck−1) and Hm,n(Ck) with a ≤ m and b ≤ n, and

an orthogonal decomposition of the space Hm,n(Ck). Koornwinder [Koo72]

gave another proof of the result of Ikeda and Kayama. In [IK67], the au-

thors solved the Laplace equation using special coordinates and separation

of variables to obtain their results. Koornwinder’s approach involves zonal

harmonics and Jacobi polynomials.

In this thesis, we recover these results using neither special coordinates

nor special functions. Instead, we use the methods of undetermined coef-

ficients and separation of variables. In Chapter 6, we introduce an inner

product ≺ ·, · � in which the Laplacian is the adjoint of multiplication by

‖z‖2. We prove an orthogonal decomposition of the space of complex homo-

geneous polynomials. Using the methods of undetermined coefficients and

separation of variables, we obtain multiplication operators sending complex

harmonic homogeneous polynomials with k−1 variables into Hm,n(Ck), and

prove the decomposition theorem for Hm,n(Ck). We also give a higher di-

mensional analogue of our argument where our mappings send Ha,b(Ck) to

Hm,n(Ck+r) for r ≥ 2.

The common theme in the thesis is to analyze norm preserving operators

between a Hilbert space H1 of functions in several variables and another

Hilbert space H2 of functions in more variables. When H1 and H2 are

spaces of complex harmonic homogeneous polynomials, we use the method of

separation of variables to compute the operator and obtain a decomposition

for H2. When H1 and H2 are A2(Uαη ) and A2(Uα), these norm-preserving

mappings suggest certain relations between the kernel functions on Uαη and

Uα and finally lead to our explicit formula for KUα .
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Chapter 2

Background information

We recall some definitions, basic facts, and well-known results about the

Bergman kernel.

2.1 Preliminaries

Let Ω be a domain (open, connected set) in complex Euclidean space Cn.

Let dV denote Lebesgue measure on Cn. Let L2(Ω) denote the space of

square-integrable functions with the inner product 〈·, ·〉:

〈f, g〉 =

∫
Ω
fḡ dV.

Let A2(Ω) denote the subspace of L2(Ω) that consists of holomorphic func-

tions. It is closed in L2(Ω) and hence is itself a Hilbert space.

Consider z ∈ Ω. The map δz from A2(Ω) to C defined by

δz(f) = f(z) (2.1)

is a bounded linear functional. By Riesz’s representation theorem, there

exists a unique Kz ∈ A2(Ω) such that

f(z) = δz(f) = 〈f,Kz〉 =

∫
Ω
Kz(ζ)f(ζ)dV (ζ). (2.2)

The Bergman kernel function KΩ is defined by KΩ(z; ζ̄) = Kz(ζ). By this

definition, KΩ(·; ·) is defined on Ω × Ω∗ where Ω∗ = {z : z̄ ∈ Ω}. For

simplicity of our notion, we consider KΩ(z; ζ̄) as a function on Ω × Ω by

regarding ζ̄ as a function of ζ. Let P denote the orthogonal projection from

L2(Ω) to A2(Ω). Then, for each f ∈ L2(Ω), we have

Pf(z) =

∫
Ω
KΩ(z; ζ̄)f(ζ)dV (ζ).

We call P the Bergman projection.
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These considerations lead to the following lemma (See, e.g., Prop. 1.4.6

in [Kra01]):

Lemma 2.1. A function K : Ω×Ω→ C is the Bergman kernel function on

Ω if and only if the following three properties hold:

1. For each ζ ∈ Ω, the map z 7→ K(z; ζ̄) is in A2(Ω).

2. K(z; ζ̄) = K(ζ; z̄). (Hermitian symmetry)

3.
∫

ΩK(z; ζ̄)f(ζ)dV (ζ) = f(z) for all f ∈ A2(Ω). (reproducing prop.)

If {φα} is an complete orthonormal system for A2(Ω), then the Bergman

kernel KΩ satisfies

KΩ(z; ζ̄) =
∑
α

φα(z)φα(ζ). (2.3)

Let F : Ω1 → Ω2 be a biholomorphic map. Let JF be the holomorphic

Jacobian determinant of F . Then we have the transformation formula:

KΩ1(z; ζ̄) = JF (z)JF (ζ)KΩ2(F (z);F (ζ)). (2.4)

Explicit formulas for the Bergman kernel on the polydisk Dn ⊆ Cn and

unit ball Bn ⊆ Cn can be obtained using either (2.3) or (2.4). Here we

demonstrate these two different approaches using the kernel function on the

unit disk B as an example.

To use formula (2.3) for KΩ, we need to find a complete orthogonal

system for A2(Ω). Since B is bounded, all monomials are square-integrable

on B. Consider the inner product of monomial za and zb:

〈za, zb〉 =

∫
B
zaz̄bdV.

Using polar coordinates, we have

∫
B
zaz̄bdV =

∫ 2π

0
ei(a−b)θdθ

∫ 1

0
ra+b+1dr =

0 if a 6= b

π
a+1 if a = b

.

Thus {za} forms an orthogonal system for A2(Ω). Since every holomrphic

function in A(B) has a power series expansion with normal convergence on

B, the system {za} is complete. Therefore (2.3) yields

KB(z; ζ̄) =

∞∑
a=0

(a+ 1)(zζ̄)a

π
=

1

π(1− zζ̄)2
.
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The other approach uses the transitivity of automorphisms on the unit disk.

For arbitrary z ∈ B, the Möbius transformation

fz : ζ 7→ ζ − z
1− z̄ζ

maps the point z to the origin and is an automorphism on B. Formula (2.4)

implies that

KB(z; z̄) = |Jfz(z)|2KB(0, 0).

Since |Jfz(z)|2 = 1
(1−|z|2)2 and KB(0, 0) = 1

‖1‖2 = 1
π , we have

KB(z; z̄) =
1

π(1− |z|2)2
.

By Lemma 2.1, the function KB is Hermitian symmetric. Therefore

KB(z; ζ̄) =
1

π(1− zζ̄)2
.

Similarly, computations using either the complete orthonormal system for

A2(Bn) or the automorphisms on Bn yield the explicit formula for the kernel

function on the unit ball in Cn:

KBn(z; ζ̄) =
n!

πn(1− 〈z, ζ〉)n+1
.

Applying (2.4) to KBn , we can also obtain the kernel functions on those

domains that are biholomorphic to KBn . Take Br = {z ∈ C : |z| < r} as an

example. Br is biholomorphic to B via the mapping F : z 7→ z
r . Therefore

applying (2.4) to KB yields:

KBr(z; ζ̄) =
r2

π(r2 − zζ̄)2
.

If we regard the parameter r as a positive function f(w; w̄) of a new complex

variable w on the domain D ⊆ C, then we can construct a new domain in

C2 using the function f and the unit disk B:

{(z, w) ∈ C×D : |z| < f(w, w̄)}.

Similarly, for a domain Ω ⊆ Cn, if we start with a multi-parameter family

of domains {Ωr} with each Ωr biholomorphic to Ω and replace rj by some

function fj , then we can construct a new domain U in a higher dimensional

space. It is natural to ask whether the Bergman kernel on U can be obtained
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if KΩ is known. Our technique provides, for certain kinds of Ω and fj ,

an explicit formula that connects the Bergman kernel on U with the kernel

function on Ω. We first introduce the class of domains Ω where our technique

works.

Let Ω be a domain in Cn+m. Let z1, . . . , zn and ζ1, . . . , ζm denote the

first n and last m coordinates in Cn+m. Our method of obtaining Bergman

kernels requires the space A2(Ω) to have a complete orthogonal system of

the form {zaφa(z′)}. This consideration leads us to a class of domains with

a symmetry property in the z coordinates. We call these domains n-star-

shaped Hartogs domains. Before defining them, we recall the definitions of

Reinhardt domain and Hartogs domain.

Definition 2.1. A domain Ω ⊆ Cn is called Reinhardt if (z1, . . . , zn) ∈ Ω

implies (eiθ1z1, . . . , e
iθnzn) ∈ Ω for any real θj’s.

Definition 2.2. A domain Ω ⊆ Cn is called Hartogs with symmetric plane

{zj = 0} if (z1, . . . , zn) ∈ Ω implies the containment

{(z1, . . . , e
iθzj , . . . , zn) : θ ∈ R} ⊆ Ω.

We introduce in this thesis the following class of domains.

Definition 2.3. A domain Ω ⊆ Cn+m is called n-star-shaped Hartogs in

(z1, . . . , zn) if (z1, . . . , zn, ζ) ∈ Ω implies that

{(λ1z1, . . . , λnzn, ζ) : |λj | ≤ 1 for 1 ≤ j ≤ n} ⊆ Ω.

A Reinhardt domain in Cn containing the origin is automatically n-star-

shaped Hartogs.

Example 2.1. By their definitions, the unit ball

{z ∈ Cn : ‖z‖ < 1},

and polydisk

{z ∈ Cn : |zj | < 1 for 1 ≤ j ≤ n}

are Reinhardt domains containing the origin. Therefore, they are also n-

star-shaped Hartogs domains.

Example 2.2. The Hartogs triangle

{(z1, z2) ∈ C2 : |z1| < |z2| < 1}
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is a Reinhardt domain. Since z2 6= 0 on this domain, the domain is not star

shaped in the z2 coordinate. Therefore it is a 1-star-shaped Hartogs domain

in the z1 coordinate.

If Ω is a Reinhardt domain in Cn containing the origin, then every holo-

morphic function on Ω has a power series expansion with normal convergence

in Ω. The following lemma is an analogue for the general n-star-shaped Har-

togs domain.

Lemma 2.2. Let Ω ⊆ Cn+m be n star-shaped Hartogs. Let f be a holomor-

phic function on Ω. Then f has a unique expansion

f(z, ζ) =
∑
a

φa(ζ)za,

where φa(ζ) is holomorphic in ζ and the series converges normally in Ω.

Proof. The uniqueness is obvious. We show the existence. Let εΩ denote

the set z ∈ Ω : dist(z, {Ω) > ε
n∑
j=1

|zj |2
 .

Let Y = {(z, ζ) ∈ Ω : z = 0}. Since Ω is connected and n-star-shaped, Y is

connected. Fix (0, ζ0) ∈ Y . For small ε, the point (0, ζ0) is contained in εΩ.

Let εΩ̃ denote the connected component of εΩ that contains (0, ζ0). Then⋃
ε
εΩ̃ = Ω. For any compact set K ⊂ Ω, we can therefore choose a small ε

so that K ⊆ε Ω̃. For (z, ζ) ∈ εΩ̃, we set

g(z, ζ) =
1

(2πi)n

∫
|t1|=1+ε

· · ·
∫
|tn|=1+ε

f(z1t1, . . . , zntn, ζ1, . . . , ζn)∏n
j=1(tj − 1)

dt1 · · · dtn.

The function is well-defined by the construction of εΩ̃. It defines an analytic

function on εΩ̃ and equals f(z, ζ) when ‖z‖ is small. Therefore, f = g on

εΩ̃. Note that
1∏n

j=1(tj − 1)
=
∑
a

t−a1−1
1 · · · t−an−1

n , (?)

where this Laurent series converges when |tj | = 1 + ε for all 1 ≤ j ≤ n.

Substituting (?) into our formula in g yields

g(z, ζ) =
∑
a

∫
|t1|=1+ε

· · ·
∫
|tn|=1+ε

f(z1t1, . . . , zntn, ζ1, . . . , ζn)

(2πi)n
∏n
j=1 t

aj+1
j

dt1 · · · dtn,
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with normal convergence in εΩ̃. Since

za

a!
∂az f(0, ζ) =

∫
|t1|=1+ε

· · ·
∫
|tn|=1+ε

f(z1t1, . . . , zntn, ζ1, . . . , ζn)

(2πi)n
∏n
j=1 t

aj+1
j

dt1 · · · dtn,

we conclude that

f(z, ζ) =
∑
a

∂az f(0, ζ)

a!
za.

The proof is complete.

When Ω ⊆ Cn is bounded and Reinhardt, the monomial zα is orthogonal

to the monomial zγ in L2(Ω) if α 6= γ. When Ω is an n-star-shaped Hartogs

domain, we have a similar orthogonality property for elements in A2(Ω).

Lemma 2.3. Let Ω ⊆ Cn+m be n-star-shaped Hartogs. Let zαf(ζ) and

zγg(ζ) be square-integrable functions on Ω with α 6= γ. Then zαf(ζ) is

orthogonal to zγg(ζ) in A2(Ω).

Proof. Let Ω+ denote the set {(r, ζ) : (r, ζ) ∈ Ω and rj ≥ 0 for all j}. Note

that Ω is n-star-shaped Hartogs. In polar coordinates, Ω = Ω+ × [0, 2π]n.

Hence we have∫
Ω
zαf(ζ)zγg(ζ)dV =

∫
Ω+

rα+γ+nf(ζ)g(ζ)dV (r, ζ)
n∏
j=1

∫ 2π

0
ei(αj−γj)θjdθj .

If αj 6= γj , then
∫ 2π

0 ei(αj−γj)θjdθj equals 0. Therefore for α 6= γ, we have

〈zαf(ζ), zγg(ζ)〉 = 0.

Let π : (z, ζ) 7→ ζ denote the projection from Cn × Cm to Cm. For

ζ ∈ π(Ω), we set Ωζ = {z ∈ Cn : (z, ζ) ∈ Ω}. The following lemma is

a version of Ligocka’s result in [Lig89]. A related idea has also been used

by Forelli and Rudin in [FR75]. In our version, there is no boundedness

assumption on the domain Ω. For convenience, we provide a complete proof

below.

Lemma 2.4. Let Ω be an n-star-shaped Hartogs domain. Then

1. Let f be an element in A2(Ω). Then f can be expanded as follows:

f(z, ζ) =
∑
a

φa(ζ)za.

For each multi-index a, φa is a square-integrable holomorphic function

on π(Ω) with respect to the measure ‖za‖2ΩζdV (ζ).
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2. If {φa,b} is a complete orthogonal system for A2(π(Ω), ‖za‖2Ωζ ), then

{φa,bza} forms a complete orthogonal system for A2(Ω).

Proof. Let {Ωk} denote an increasing sequence of compact n-star-shaped

Hartogs domains exhausting Ω. Thus Ωk ⊂⊂ Ωk+1 for all k and
⋃∞Ωk = Ω.

Since
∑

a φa(ζ)za converges normally on Ω, the series converges uniformly

on Ωk. Lemma 2.3 implies that φa(ζ)za ⊥ φb(ζ)zb in L2(Ω) when a 6= b.

Hence, for all k and φa(ζ)za ∈ A2(Ωk),

‖f(z, ζ)‖2A2(Ω) ≥
∑
a

‖φa(ζ)za‖2A2(Ωk),

and therefore φa(ζ)za is square-integrable on Ω. Since

‖φa(ζ)za‖2A2(Ω) =

∫
D
|φa(ζ)|2

∫
Ωζ

|za|2dV (z) dV (ζ)

=

∫
D
|φa(ζ)|2‖za‖2ΩζdV (ζ), (2.5)

we have φa ∈ A2(π(Ω), ‖za‖2Ωζ ). We claim that A2(π(Ω), ‖za‖2Ωζ ) inherits

its completeness from A2(Ω): Consider an arbitrary compact set K ⊆ π(Ω).

Since Ω is n-star-shaped Hartogs, the compact set {0} × K is in Ω. Thus

there exists a constant rK > 0 such that for any point (0, ζ) ∈ {0}×K, the

(n + m)-ball B((0, ζ); rK) is contained in Ω. Let r = rK/3. Let B1 denote

the n-ball centered at the point zr = ( rn , . . . ,
r
n) with radius r

2n . For ζ ∈ K,

let Bζ denote the m-ball centered at the ζ with radius r. Then we have

B1 × Bζ ⊆ B((0, ζ); rK) ⊆ Ω. Let g(ζ) be an element of A2(π(Ω), ‖za‖2Ωζ ).
By the mean value property and Hölder’s inequality,

|g(ζ)| =
∣∣∣zar g(ζ)

zar

∣∣∣ ≤ ∫B1×Bζ |z
ag(w)|dV (z, w)

V ol(B1 ×Bζ)|zar |
≤ CK‖g(ζ)‖A2(π(Ω),‖za‖2Ωζ ).

Taking the supremum of |g(ζ)| on K, we have

sup
ζ∈K
|g(ζ)| ≤ CK‖g(ζ)‖A2(π(Ω),‖za‖2Ωζ ).

L2 convergence in A2(π(Ω), ‖za‖2Ωζ ) implies normal convergence in A(π(Ω)),

and hence A2(π(Ω), ‖za‖2Ωζ ) is closed.

Let {φa,b} be a complete orthogonal system of A2(π(Ω), ‖za‖2Ωζ ). We

finish the proof by showing that {zaφa,b(ζ)} forms a complete orthogonal
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system of A2(Ω). For any f ∈ A2(Ω),

f(z, ζ) =
∑
a,b

ca,bz
aφa,b(ζ).

To show the completeness of {zaφa,b}, we assume f ∈ A2(Ω) and

〈f(z, ζ), zaφa,b(ζ)〉 = 0

for all a,b. We verify that f = 0.

Let {Ωk} be the domains used above. For arbitrary a and b,∫
Ωk
f(z, ζ)z̄aφa,b(ζ)dV +

∫
Ω−Ωk

f(z, ζ)z̄aφa,b(ζ)dV = 0.

We therefore have∣∣∣ ∫
Ωk
f(z, ζ)z̄aφa,b(ζ)dV

∣∣∣ =
∣∣∣ ∫

Ω−Ωk
f(z, ζ)z̄aφa,b(ζ)dV

∣∣∣.
By Hölder’s inequality,

∣∣∣ ∫
Ω−Ωk

f(z, ζ)z̄aφa,b(ζ)dV
∣∣∣ ≤ ‖zαφa,b(ζ)‖A2(Ω)

(∫
Ω−Ωk

|f |2dV
) 1

2
.

Since f ∈ A2(Ω) and Ωk exhausts Ω,

lim
k→∞

∫
Ω−Ωk

|f |2dV = 0.

Therefore

lim
k→∞

∣∣∣ ∫
Ωk
f(z, ζ)z̄aφa,b(ζ)dV

∣∣∣ = 0.

Using Hölder’s inequality again yields f(z, ζ)z̄aφa,b(ζ) ∈ L1(Ω). The com-

pactness of Ωk and polar coordinates imply that∣∣∣ ∫
Ωk
f(z, ζ)z̄aφa,b(ζ)dV

∣∣∣
=
∣∣∣ ∫

Ωk

∑
α,β

cα,βz
αφα,β(ζ)z̄aφa,b(ζ)dV

∣∣∣
=
∣∣∣ ∫

Ωk

∑
β

ca,β|za|2φa,β(ζ)φa,b(ζ)dV
∣∣∣.

12



By the Dominated Convergence Theorem,

lim
k→∞

∣∣∣ ∫
Ωk

∑
β

ca,β|za|2φa,β(ζ)φa,b(ζ)dV
∣∣∣

=
∣∣∣ ∫

Ω
lim
k→∞

χΩk(z, ζ)
∑
β

ca,β|za|2φa,β(ζ)φa,b(ζ)dV
∣∣∣

=
∣∣∣ ∫

Ω

∑
β

ca,β|za|2φa,β(ζ)φa,b(ζ)dV
∣∣∣

=
∣∣∣ ∫

Ω
ca,b|za|2φa,b(ζ)φa,b(ζ)dV

∣∣∣
=|ca,b|‖zaφa,b(ζ)‖2A2(Ω).

Therefore ca,b = 0 for all a, b and f ≡ 0.

Corollary 2.1. Let {φa,b(ζ)} be a complete orthogonal system for the space

A2(π(Ω), ‖za‖2Ωζ ). Then

KΩ(z, z′; ζ̄, ζ̄ ′) =
∑
a,b

(zζ̄)aφa,b(z′)φa,b(ζ ′)

‖zaφa,b(z′)‖2
L2(Ω)

. (2.6)

In particular, when Ω ⊆ Cn is a Reinhardt domain containing the origin,

the square-integrable monomials form a complete orthogonal system. Let I

denote the set of multi-indices {a : za ∈ L2(Ω)}. Then the Bergman kernel

KΩ has the following expansion:

∑
a∈I

(zζ̄)a

‖za‖2
L2(Ω)

. (2.7)

2.2 Previous results

Explicit formulas for the Bergman kernel are available in only a few cases.

Among them, most results have been obtained on domains with symmetries

since fairly simple systems {φα} can be chosen on these domains. The

kernels for the unit ball and polydisk have been long known. D’Angelo

[D’A78,D’A94] gave an explicit formula of the Bergman kernel on the domain

{(z, w) ∈ Cn+m : ‖z‖2 + ‖w‖2p < 1},

where p is positive. See Example 3.1. On the complex ovals

{z ∈ Cn :
n∑
j=1

|zj |2aj < 1},
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where aj ’s are positive integers, Francsics and Hanges [FH96, FH97] ex-

pressed the Bergman kernel in terms of generalized hypergeometric func-

tions. See Theorem 5.4. Boas, Fu, and Straube [BFS99] introduced a

method for obtaining the Bergman kernel. They differentiate the kernel

function on {(z, w) ∈ C2 : |z| < p(w)} for z ∈ C to obtain the kernel for

z ∈ Cn on {(z, w) ∈ Cn×C : ‖z‖ < p(w)}. More recent results can be found

in [Par08,Par13,Yam13,Beb15,Edh15].

Our method rediscovers some of the formulas mentioned above and also

yields some new explicit formulas. See Chapter 3 for more details.

2.3 Settings and notations

Let Ω ⊆ Cn+m be an n-star-shaped Hartogs domain. Let KΩ denote the

Bergman kernel on Ω. Set t = (t1, . . . , tn) with tj > 0 for all j. Let Ωt

denote the set

{(z, ζ) ∈ Cn+m : (t1z1, . . . , tnzn, ζ) ∈ Ω}.

Let D be a conjugate invariant domain in Ck. For 1 ≤ j ≤ n, let ψj be a

Hermitian symmetric function on D × D satisfying ψj(w, w̄) > 0 on D. By

regarding each parameter tj as the value of ψj on the diagonal (w, w̄), we

construct a new domain U in a higher dimensional space:

{(z, ζ, w) ∈ Cn+m+k : (ψ1(w, w̄)z1, . . . , ψn(w, w̄)zn, ζ) ∈ Ω and w ∈ D}.

We call U the “target” domain and Ω its “base” domain. The main concern

in this thesis is obtaining explicit formulas for the Bergman kernel on U
when ψj is chosen in the following two ways:

(i) ψj(w, η̄) = (1− 〈w, η〉)−
αj
2 where ‖w‖ < 1 and αj ≥ 0.

(ii) ψj(w, w̄) = exp{γj2 〈w, η〉} where w ∈ Ck and γj > 0.

To avoid confusion, we use U to denote the domain constructed by the

general ψj ’s and use Uα and V γ to denote the domains where ψj is chosen

in (i) and (ii):

• Uα = {(z, z′, w) ∈ Cn+m × Ck : (fα(z, w), z′) ∈ Ω, ‖w‖ < 1}
where

fα (z, w) =

(
z1

(1− ‖w‖2)
α1
2

, . . . ,
zn

(1− ‖w‖2)
αn
2

)
and αj ’s are positive numbers.
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• V γ = {(z, z′, w) ∈ Cn+m × Ck : (gγ(z, w), z′) ∈ Ω}
where

gγ(z, w) =

(
e
γ1‖w‖

2

2 z1, . . . , e
γn‖w‖2

2 zn

)
and γj ’s are positive numbers.

Remark. In our definition of Uα and V γ, we avoid the cases when all αj

and γj equal 0 since they are not interesting. When α = 0, U0 becomes

Ω × Bk and KU0 equals the product of the Bergman kernels on Ω and the

unit disk B. When γ = 0, V 0 = Ω × Ck. Since A2(V 0) = {0}, the kernel

function KV 0 is identically zero. These results are consistent with Theorems

3.1 and 3.2.

Since e‖w‖
2

and (1−‖w‖2)−1 are increasing in ‖w‖ and invariant under the

rotation map wj 7→ eiθwj for θ ∈ R and 1 ≤ j ≤ k, the slice domains of Uα

and V γ with z and z′ coordinates fixed are Reinhardt domains containing

the origin in Ck. This observation yields the following:

Lemma 2.5. If Ω is n-star-shaped Hartogs in the variables (z1, . . . , zn), then

Uα and V γ are (n+ k)-star-shaped Hartogs in the variables (z1, . . . , zn, w).

By Lemma 2.4, a complete orthogonal system of the form {zaφa,b,c(z′)wc}
can be chosen for A2(Uα) and A2(V γ). The next lemma implies that for

c ∈ Nk, {zaφa,b(z′)wc} is a complete orthogonal system for both A2(Uα)

and A2(V γ) if {zaφa,b(z′)} is a complete orthogonal system for A2(Ω).

Lemma 2.6. The function zaφ(z′) is square-integrable on Ω if and only if

for all c ∈ Nk, the function zaφ(z′)wc is square-integrable on Uα
(
or V γ

)
.

Proof. Suppose zaφ(z′)wc ∈ A2(Uα). Then∫
Uα
|za|2|φ(z′)|2|wc|2dV (z, z′, w) = ‖zaφ(z′)wc‖2L2(Uα) <∞. (2.8)

Substituting tj = zj(1− ‖w‖2)−
αj
2 for 1 ≤ j ≤ n and applying Fubini’s

theorem to the integral in (2.8) yield:∫
Uα
|za|2|φ(z′)|2|wc|2dV (z, z′, w)

=

∫
Bk
|wc|2(1− ‖w‖2)α·(a+1)dV (w)

∫
Ω
|ta|2|φ(z′)|2dV (t, z′)

=

∫
Bk
|wc|2(1− ‖w‖2)α·(a+1)dV (w)

∥∥taφ(z′)
∥∥2

L2(Ω)
<∞. (2.9)
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Since
∫
Bk |w

c|2(1 − ‖w‖2)α·(a+1)dV (w) is a constant, ‖zaφ(z′)‖2L2(Ω) < ∞
and hence zaφ(z′) is in A2(Ω). By (2.9), the converse is also true. A similar

argument proves the statement for V γ . We omit the details.

The definitions of Uα and V γ also imply that the slices of Uα and V γ ,

with the w coordinate fixed, are biholomorphic to Ω. For fixed w ∈ Bk and

η ∈ Ck, let Uαw denote the slice domain {(z, z′) ∈ Cn+m : (z, z′, w) ∈ Uα} of

Uα and let V γ
η denote the slice domain {(z, z′) ∈ Cn+m : (z, z′, η) ∈ V γ} of

V γ . Applying the mappings fα(·, w) and gγ(·, η) to Uαw and V γ
η yields:

Lemma 2.7. Uαw and V γ
η are biholomorphic to Ω.

We illustrate our technique of obtaining KUα and KV γ using the follow-

ing special case of Example 3.1:

Example. Let Ω be the unit disk in C and U be the complex oval

{(z, w) ∈ C2 : |z|2a + |w|2 < 1}.

Regarding w above as a parameter, we obtain a family of domains in C:

Uw =
{
z ∈ C :

|z|2

(1− |w|2)
1
a

< 1
}
.

For each η ∈ C with |η| < 1, Uη is biholomorphic to the unit disk. Applying

the biholomorphic transformation rule to the Bergman kernel KUη on Uη
yields:

KUη(z; ζ̄) =
(1− |η|2)

1
a

π
(
(1− |η|2)

1
a − zζ̄

)2 . (2.10)

Replacing z in (2.10) by z( (1−|η|2)
(1−wη̄) )

1
a and multiplying the right hand side of

(2.10) by (1− |η|2)
1
a yield a Hermitian symmetric function K1 on U × U :

K1(z, w; ζ̄, η̄) =
(1− wη̄)

2
a

π
(
(1− wη̄)

1
a − zζ̄

)2 . (2.11)

Let I denote the identity operator. Applying the first order differential op-

erator

DU =
1

π(1− wη̄)2+ 1
a

(
(1 +

1

a
)I +

1

a
z
∂

∂z

)
,

to K1, we obtain

(1 + a)(1− wη̄)
1
a + (1− a)zζ̄

π2a(1− wη̄)2− 1
a

(
(1− wη̄)

1
a − zζ̄

)3 .
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We then can verify that this function is the Bergman kernel on U (It agrees

with the formula in [D’A78].)

As in the example, the procedure of obtaining KU can be summarized

as follows:

1. compute the Bergman kernel KUw .

2. evaluate KUw at a certain point off the diagonal.

3. obtain a Hermitian symmetric function K on U by multiplying the

result in Step (2) by a certain function.

4. apply a differential operator DU to K.

5. verify that the result in Step 4 is the Bergman kernel on U .

When U is Uα or V γ , Lemmas 2.3 and 2.6 imply that a complete orthogonal

system for A2(U) of the form {zaφa,b(z′)wc} can be chosen. Therefore the

Bergman kernel on U has the expansion:

∑
a,b,c

(zζ̄)aφa,b(z′)φa,b(ζ ′)(wη̄)c

‖zaφa,b(z′)wc‖2
L2(U)

. (2.12)

The function K we obtained in Step 3 is defined on U × U and has the

expansion: ∑
a,b,c

ca,b,c(zζ̄)aφa,b(z′)φa,b(ζ ′)(wη̄)c. (2.13)

After applying DU to (2.13) in Step 4 and verifying that∫
U
DUK(z, z′, w; ζ̄, ζ̄ ′, η̄)ζaφa,b(ζ ′)ηcdV = zaφa,b(z′)wc

in Step 5, we conclude that the Bergman kernel KU equals DUK.
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Chapter 3

Computation of the
Bergman kernel

In this chapter, we state and prove our formulas for KUα and KV γ . Recall

U , K and DU from Section 2.3. If ψj satisfies inequality (3.1) below, then

one can always construct an appropriate Hermitian symmetric function K

on U × U . It is our particular choice of ψj for Uα and V γ that enables

us to obtain DU explicitly as the differential operator in Step 4 such that

KU = DUK.

3.1 The construction of K

Let Ω ⊆ Cn+m be an n-star-shaped Hartogs domain. Let ψj , U and Uw be

the same as in Section 2.3. Let ψ denote the function

ψ(z, w, η) =

(
z1

(
ψ1(w, η̄)

ψ1(η, η̄)

)2

, . . . , zn

(
ψn(w, η̄)

ψn(η, η̄)

)2
)
.

Then we have the following lemma.

Lemma 3.1. Suppose for all j, the function ψj satisfies the Cauchy-Schwarz

inequality

|ψj(w, η̄)|2 ≤ |ψj(w, w̄)||ψj(η, η̄)| (3.1)

where w, η ∈ D. Then for (z, z′, w; ζ, ζ ′, η) ∈ U × U , the function

1∏n
j=1(ψj(η, η̄))2

KUη(ψ(z, w, η), z′; ζ̄, ζ̄ ′) (3.2)

is defined, holomorphic in (z, z′, w) and anti-holomorphic in (ζ, ζ ′, η).

Proof. By its definition, Uη contains (ζ, ζ ′). To prove (ψ(z, w, η), z′) ∈ Uη,
it suffices to show that(

z1
ψ2

1(w, η̄)

ψ1(η, η̄)
, . . . , zn

ψ2
n(w, η̄)

ψn(η, η̄)
, z′
)
∈ Ω.
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Note that by (z, z′, w) ∈ U , we have

(
z1ψ1(w, w̄), . . . , znψn(w, w̄), z′

)
∈ Ω.

Since Ω is n-star-shaped Hartogs, the containment (z, z′, w) ∈ U and in-

equality (3.1) imply the containment (ψ(z, w, η), z′) ∈ Uη. Hence (3.2) is

defined. Consider the biholomorphic map F from Uη to Ω:

F : (z1, . . . , zn, z
′) 7→ (z1ψ1(η, η̄), . . . , znψn(η, η̄)).

By the transformation rule (2.4), we have

KUη
(
ψ (z, w, η) , z′; ζ̄, ζ̄ ′

)∏n
j=1 (ψj (η, η̄))2 = KΩ

(
F
(
ψ (z, w, η) , z′

)
;F (ζ, ζ ′)

)
.

Recall {zaφa,b} in Corollary 2.1. By applying (2.6) to the right-hand side

of the equality, (3.2) becomes

∑
a,b

(zζ̄)aφa,b(z′)φa,b(ζ ′)
∏n
j=1 ψ

2aj
j (w, η̄)

‖zaφa,b(z′)‖2
L2(Ω)

.

Since ψj is holomorphic in w and η̄, the series is holomorphic in (z, z′, w)

and anti-holomorphic in (ζ, ζ ′, η).

When U is Uα or V γ , the function ψ
2aj
j has a power series expansion on

D. Thus (3.2) can be expressed as∑
a,b,c

ca,b,c(zζ̄)a(wη̄)cφa,b(z′)φa,b(ζ ′). (3.3)

Note that f(z, z′) ∈ A2(Ω) if and only if f(z, z′)wc ∈ A2(Uα) (or A2(V γ))

for all multi-index c. Corollary 2.1 implies that the Bergman kernels KUα

and KV γ also have expansions∑
a,b,c

c′a,b,c(zζ̄)a(wη̄)cφa,b(z′)φa,b(ζ ′). (3.4)

In the next section, we introduce the differential operator which “corrects”

the coefficient ca,b,c in (3.3) to c′a,b,c in (3.4) and conclude the proof of our

main theorems.
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3.2 Main theorems

Let I denote the identity operator. Let 1 denote the vector (1, . . . , 1) ∈ Nn.

Let DUα denote the differential operator defined by

DUα =
(1− ‖η‖2)α·1

πk(1− 〈w, η〉)1+k+α·1

k∏
i=1

iI +

n∑
j=1

αj

(
I + zj

∂

∂zj

) .

Let DV γ denote the differential operator defined by

DV γ =
e(γ·1)(wη̄−|η|2)

πk

 n∑
j=1

γj

(
I + zj

∂

∂zj

)k

.

Let h(z, w, η) denote ψ(z, w, η) when hj(w, η̄) = (1− 〈w, η〉)−
αj
2 , i.e.

h (z, w, η) =

(
z1

(
1− ‖η‖2

1− 〈w, η〉

)α1

, . . . , zn

(
1− ‖η‖2

1− 〈w, η〉

)αn)
.

Let l(z, w, η) denote ψ(z, w, η) when hj(w, η̄) = exp{γj〈w,η〉2 }, i.e.

l(z, w, η) =
(
z1e

γ1(〈w,η〉−‖η‖2), . . . , zne
γn(〈w,η〉−‖η‖2)

)
.

Then our main results can be expressed as follows:

Theorem 3.1. For (z, z′, w; ζ, ζ ′, η) ∈ Uα × Uα, let h(z, w, η) and DUα be

as above. Then

KUα
(
z, z′, w; ζ̄, ζ̄ ′, η̄

)
= DUαKUαη

(
h(z, w, η), z′; ζ̄, ζ̄ ′

)
. (3.5)

Theorem 3.2. For (z, z′, w; ζ, ζ ′, η) ∈ V γ × V γ, let l(z, w, η) and DV γ be

as above. Then

KV γ
(
z, z′, w; ζ̄, ζ̄ ′, η̄

)
= DV γKV γη

(
l(z, w, η), z′; ζ̄, ζ̄ ′

)
. (3.6)

Proof of Theorem 3.1. LetK1(z, z′, w; ζ̄, ζ̄ ′, η̄) denote the right-hand side

of (3.5). By the argument in Section 3.1, K1(z, z′, w; ζ̄, ζ̄ ′, η̄) is defined on

Uα × Uα and it has the expression:∑
a,b,c

ca,b,c(zζ̄)aφa,b(z′)φa,b(ζ ′)(wη̄)c.

To show K1 is the Bergman kernel, it suffices to verify that K1 reproduces
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every element in A2(Uα). For arbitrary zaφa,b(z′)wc ∈ A2(Uα),∫
Uα
K1(z, z′, w; ζ̄, ζ̄ ′, η̄)ζaφa,b(ζ ′)ηcdV

=

∫
Bk
ηc
∫
Uαη

DUαKUαη

(
h(z, w, η), z′; ζ̄; ζ̄ ′

)
ζaφa,b(ζ ′)dV (ζ, ζ ′)dV (η). (3.7)

Using the reproducing property of KUαη on Uαη and the fact that

k∏
i=1

iI +

n∑
j=1

αj

(
I + zj

∂

∂zj

) (za) =

k∏
i=1

(i+ α · (a + 1)) za,

we have∫
Uαη

DUαKUαη

(
h(z, w, η), z′; ζ̄; ζ̄ ′

)
ζaφa,b(ζ ′)dV (ζ, ζ ′)

=

k∏
i=1

(i+ α · (a + 1))
(1− ‖η‖2)α·1

π(1− 〈w, η〉)2+α·1h(z, w, η)aφa,b(z′). (3.8)

Let Cα,a =
∏k
i=1 (i+ α · (a + 1)). Then the integral in the second line of

(3.7) becomes

Cα,a

∫
Bk

(1− ‖η‖2)α·1ηch(z, w, η)a

πk(1− 〈w, η〉)1+k+α·1 dV (η). (3.9)

Since h(z, w, η) = (z1( 1−‖η‖2
1−〈w,η〉)

α1 , . . . , zn( 1−‖η‖2
1−〈w,η〉)

αn), (3.9) is equal to

Cα,aφa,b(z′)

πk

∫
Bk

(1− ‖η‖2)α·(a+1)ηc

(1− 〈w, η〉)1+k+α·(a+1)
dV (η). (3.10)

Expanding the denominator in (3.10), we have

zaφa,b(z′)

∫
Bk

∑
p

(1 + α · (a + 1))(j·1)+k

(
1− ‖η‖2

)α·(a+1)
(wη̄)p

πk
∏k
p=1(pj)!

ηcdV

=zaφa,b(z′)wc

∫
Bk

(1 + α · (a + 1))(c·1)+k

(
1− ‖η‖2

)α·(a+1) |η|2c

πk
∏k
j=1(cj)!

dV. (3.11)

By letting rj = |ηj |2, we have

∫
Bk

(1− ‖η‖2)α·(a+1)|η|2cdV = πk
∫
Bk+

(1−
k∑
j=1

rj)
α·(a+1)rcdV (3.12)

21



where Bk
+ = {(r1, . . . , rk) ∈ Rk+;

∑k
j=1 rj < 1}. We claim that

πk
∫
Bk+

(1−
k∑
j=1

rj)
α·(a+1)rcdV =

πk
∏k
j=1(cj)!

(1 + α · (a + 1))(c·1)+k
. (3.13)

Then the term in the second line 3.11 becomes

zaφa,b(z′)wc,

which completes the proof.

To prove (3.13), we do induction on k. When k = 1, we have∫ 1

0
(1− r)α·(a+1)rcdV =

Γ(1 + α · (a + 1))Γ(c+ 1)

Γ(2 + c+ α · (a + 1))
.

Thus (3.13) holds for k = 1. Suppose (3.13) holds for k < N . When k = N ,

∫
BN+

(1−
N∑
j=1

rj)
α·(a+1)rcdV

=

∫ 1

0
rN

cN

∫
WrN

(1−
N∑
j=1

rj)
α·(a+1)

N−1∏
j=1

r
cj
j dr1 . . . drN−1drN , (3.14)

where WrN = {(r1, . . . , rN−1) ∈ RN−1
+ :

∑N−1
j=1 rj < 1−rN}. By substituting

tj =
rj

1−rN in the second line of (3.14) for 1 ≤ j ≤ N − 1, we obtain

(∫ 1

0
rN

cN (1− rN )α·(a+1)+
∑N−1
j=1 (cj+1)drN

)

×

∫
BN−1

+

(1−
N−1∑
j=1

tj)
α·(a+1)

N−1∏
j=1

t
cj
j dt1 . . . dtN−1

 . (3.15)

Applying the definition of the beta function and the induction hypothesis,

(3.15) becomes

Γ(cN + 1)Γ(α · (a + 1) +
∑N−1

j=1 (cj + 1) + 1)

Γ(α · (a + 1) +
∑N

j=1(cj + 1) + 1)
×

∏N−1
j=1 (cj)!

(1 + α · (a + 1))∑N−1
j=1 (cj+1)

=

∏N
j=1(cj)!

(α · (a + 1) +
∑N−1

j=1 cj +N)cN+1(1 + α · (a + 1))∑N−1
j=1 (cj+1)

=

∏N
j=1(cj)!

(1 + α · (a + 1))c·1+N
.
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Therefore (3.13) holds for all k.

Proof of Theorem 3.2. Let K2 denote the right-hand side of (3.6). Then

K2 is defined on V γ × V γ and can be written as:∑
a,b

ca,b,c(zζ̄)aφa,b(z′)φa,b(ζ ′)(wη̄)c.

We verify that K2 reproduces every element in A2(V γ). For arbitrary

zaφa,b(z′)wc ∈ A2(V γ),∫
V γ
K2(z, z′, w; ζ̄, ζ̄ ′, η̄)ζaφa,b(ζ ′)ηcdV

=

∫
Ck
ηc
∫
V γη

DV αKV γη
(l(z, w, η), z′; ζ̄, ζ̄ ′)ζaφa,b(ζ ′)dV (ζ, ζ ′)dV (η). (3.16)

Applying the reproducing property of KV γ and the fact that n∑
j=1

γj

(
I + zj

∂

∂zj

)k

(za) = (γ · (a + 1))k za

to the inner integral in the last line of (3.16) yield∫
V αη

DV αKV γη

(
l (z, w, η) , z′; ζ̄, ζ̄ ′

)
ζaφa,b

(
ζ ′
)
dV
(
ζ, ζ ′

)
=π−k (γ · (a + 1))k φa,b

(
z′
)
e(α·(a+1))(wη̄−|η|2)za. (3.17)

Therefore the integral in the last line of (3.16) becomes

π−k(α · (a + 1))kzaφa,b(z′)

∫
Ck

eγ·(a+1)〈w,η〉ηc

e(γ·(a+1))‖η‖2 dV (η). (3.18)

Expanding eγ·(a+1)〈w,η〉 in (3.18), we have

(3.18) =zaφa,b(z′)

k∏
i=1

∫
C1

∞∑
j=0

(γ · (a + 1))j+1(wiη̄i)
j

πkj!eγ·(a+1)|ηi|2
ηcii dV (ηi)

=zaφa,b(z′)wci
k∏
i=1

∫
C1

(γ · (a + 1))ci+1|ηi|2ci
πkci!eγ·(a+1)|ηi|2

dV (ηi). (3.19)

Letting t = γ · (a + 1)|η|2 and using polar coordinates, the last line of (3.19)
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becomes

zaφa,b(z′)wc
k∏
i=1

∫ ∞
0

tci

c!
e−tdt,

which equals zaφa,b(z′)wc. Therefore K2 is the Bergman kernel on V γ .

3.3 Examples

Theorems 3.1 and 3.2 enable us to explicitly compute the Bergman kernel

in new situations. We use Theorem 3.1 to give a new proof of the explicit

formula in [D’A94]. Then we compute the kernel function in some new cases.

Example 3.1. Let the “base” domain Ω be the unit ball Bn in Cn. For

p > 0, put α = (1
p , . . . ,

1
p) and let w ∈ C. We have

Uα = {(z, w) ∈ Cn × C :, ‖z‖2p + |w|2 < 1}.

By Theorem 3.1, the Bergman kernel function KUα equals:

n!

πn+1p

(n+ p)(1− wη̄)
1
p + (1− p)〈z, ζ〉

(1− wη̄)
2− 1

p ((1− wη̄)
1
p − 〈z, ζ〉)n+2

.

We consider domain Uα′ = {(z, w) ∈ Cn × Cm :, ‖z‖2p + ‖w‖2 < 1}.
Applying the inflation method in [BFS99] to KUα yields the Bergman kernel

function on Uα′:

n!

πm+np

( ∂
∂t

)m−1 (n+ p)(1− 〈w, η〉)
1
p + (1− p)〈z, ζ〉

(1− 〈w, η〉)2− 1
p

(
(1− 〈w, η〉)

1
p − 〈z, ζ〉

)n+2 ,

where t = 〈w, η〉. We may also apply Theorem 3.1 to Uα′ for w ∈ Ck to

obtain KUα′ :

1

(1− 〈w, η〉)1+m− 1
p

m∏
i=1

iI +
n∑
j=1

1

p

(
I + zj

∂

∂zj

) n!

πn+m((1− 〈w, η〉)
1
p − 〈z, ζ〉)n+1

.

Note that if we let the above p tend to ∞, then Uα becomes Bn × Bm

and KUα equals KBn ·KBm .

Example 3.2. Suppose Ω = {(z, z′) ∈ Cn × Cm : ‖z‖2 + ‖z′‖2 < 1} and

α = (1, · · · , 1), then the domain

Uα = {(z, z′, w) ∈ Cn×Cm×C : |w| < 1, ‖z‖2 +‖z′‖2 + |w|2 < 1+ |w|2‖z′‖2}
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has the Bergman kernel function:

KUα =
(m+ n)!

πm+n+1

(1− wη̄)m(n+ 1− (n+ 1)〈z′, ζ ′〉+m 〈z,ζ〉
1−wη̄ )

(1− wη̄ − 〈z, ζ〉 − 〈z′, ζ ′〉+ wη̄〈z′, ζ ′〉)m+n+2
. (3.20)

When m = 0, we have

n+ 1

π

n!

πn
1

(1− wη̄ − 〈z, ζ〉)n+2
,

the Bergman kernel function on the unit ball Bn+1. When n = m = 1,

Uα = {(z, z′, w) ∈ C3 : |w| < 1, |z|2 + |z′|2 + |w|2 < 1 + |w|2|z′|2}.

By (3.20), we obtain the kernel function on Uα:

KUα =
2

π3

(1− wη̄)(2− 2z′ζ̄ ′ + zζ̄
1−wη̄ )

(1− wη̄ − zζ̄ − z′ζ̄ ′ + wη̄z′ζ̄ ′)4
.

Example 3.3. Let Ω be as above and γ = (γ1, . . . , γn), then

V γ =

(z, z′, w) ∈ Cn × Cm × C :
n∑
j=1

eγj |w|
2 |zj |2 + ‖z′‖2 < 1

 .

Put ρ(z, z′, w; ζ̄, ζ̄ ′, η̄) = 1 −
∑n

j=1 e
γjwη̄zj ζ̄j − 〈z′, ζ ′〉. Then the Bergman

kernel function satisfies

KV γ =
(m+ n)!e(γ·1)wη̄

πm+n+1

(
γ · 1

ρm+n+1
+

(m+ n+ 1)
∑n

j=1 γje
γjwη̄zj ζ̄j

ρm+n+2

)
.

(3.21)

When γ tends to 0, the domain V γ becomes Bn+m ×C1, and the kernel

function Kγ
V goes to 0, which is the Bergman kernel on Bn+m × C1. When

γ = 1 and n = m = 1,

V γ =
{

(z, z′, w) ∈ C3 : e|w|
2 |z|2 + |z′|2 < 1

}
(3.22)

and the kernel function on it is:

KV γ =
2

π3

ewη̄(1− z′ζ̄ ′ + 2ewη̄zζ̄)

(1− ewη̄zζ̄ − z′ζ̄ ′)4
. (3.23)

In the next section, we will use (3.20) and (3.21) to obtain the boundary

behavior of the Bergman kernel on the domains in Example 3.2 and 3.3.
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In Theorems 3.1 and 3.2, we only need our “base” domain to be n-

star-shaped Hartogs. Note that the “target” domains Uα and V γ are also

(n + k)-star-shaped Hartogs in z and w. Therefore we can repeat using

Theorems 3.1 and 3.2 to obtain the Bergman kernel on more complicated

domains. In fact, repeated use k times of Theorem 3.2 for w ∈ C yields

Theorem 3.2 for w ∈ Ck.

Example 3.4 (Repeated use of Theorems 3.1 and 3.2). The diagram below

indicates how to obtain the kernel function explicitly on increasingly compli-

cated domains.

{
z ∈ C1 : |z|2 < 1

}
⇓{

z ∈ C2 : |z1|2p + |z2|2 < 1
}

⇓{
z ∈ C3 : |z1|2p + exp

{
|z3|2

}
|z2|2 < 1

}
⇓{

z ∈ C4 : |z1|2p1 + exp

{
|z3|2

(1− |z4|2)p2

}
|z2|2 < 1, |z4| < 1

}
⇓{

z ∈ C5 :
|z1|2p1

(1− |z5|2)p3
+ exp

{
|z3|2

(1− |z4|2)p2

}
|z2|2 < 1, |z4| < 1, |z5| < 1

}
⇓{

z ∈ C6 :
|z1|2p1

(1− e|z6|2 |z5|2)p3
+ exp

{
|z3|2

(1− |z4|2)p2

}
|z2|2 < 1, |z4| < 1, e|z6|

2 |z5|2 < 1

}
⇓
...

The Bergman kernels in the first two cases are known. The kernel in the

third case equals

ez3ζ̄3

π3p

(
(1 + p)(1− ez3ζ̄3z2ζ̄2)

1
p + (1− p)z1ζ̄1

(1− ez3ζ̄3z2ζ̄2)
2− 1

p ((1− ez3ζ̄3z2ζ̄2)
1
p − z1ζ̄1)3

+
(p− 1)ez3ζ̄3z2ζ̄2

(
(2 + 1

p)(1− ez3ζ̄3z2ζ̄2)
1
p + (2− 1

p)z1ζ̄1

)
(1− ez3ζ̄3z2ζ̄2)

3− 1
p ((1− ez3ζ̄3z2ζ̄2)

1
p − z1ζ̄1)3

+
2ez3ζ̄3z2ζ̄2

(
(2 + 1

p)(1− ez3ζ̄3z2ζ̄2)
1
p + (2− 2

p)z1ζ̄1

)
(1− ez3ζ̄3z2ζ̄2)

3− 2
p ((1− ez3ζ̄3z2ζ̄2)

1
p − z1ζ̄1)4

)
.
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For the last three domains, the kernel functions are explicit but rather com-

plicated. Hence we omit the formulas.

3.4 A case other than Uα and V γ

Let Ω ⊆ Cn+m be an n-star-shaped Hartogs domain. Recall the conjugate

invariant domain D ⊆ Ck, the Hermitian symmetric functions ψj ’s on D×D,

and the domain U constructed using Ω and ψj ’s:

{(z, ζ, w) ∈ Cn+m+k : (ψ1(w, w̄)z1, . . . , ψn(w, w̄)zn, ζ) ∈ Ω and w ∈ D}.

Theorems 3.1 and 3.2 relate the Bergman kernel on U to the kernel functions

on the lower dimensional slices Uw when ψj is chosen in the following two

ways:

(i) ψj(w, η̄) = (1− 〈w, η〉)−
αj
2 where ‖w‖ < 1 and αj ≥ 0.

(ii) ψj(w, w̄) = exp{γj2 〈w, η〉} where w ∈ Ck and γj > 0.

It is natural to ask whether the same method works for other cases. In this

section, we consider the case where Ω = B and compute the Bergman kernel

on U when D is the punctured disk B∗ in C and ψj(w, w̄) equals |w|−αj with

αj ∈ Q+. We will see that, for such a U , the kernel function KU can be

obtained by applying a similar technique not just to the Bergman kernel but

also to some weighted kernel functions on the slice Uw.

Let Ω be the unit disk in C. Let ψ(w, w̄) = |w|−
p
q with p, q positive

integers. Then U = {(z, w) ∈ C2 : |z|q < |w|p < 1}. When p = q, the

domain U becomes the Hartogs triangle and is biholomorphic to the product

domain B × B∗. When p 6= q, we call U the generalized Hartogs triangle.

Edholm, in [Edh15], computed the Bergman kernel KU when either p or q

equals 1 and obtained the explicit formula for KU in these cases:

1. For p
q = 1

k with k ∈ N+, the Bergman kernel on U is given by

KU
(
z, w; ζ̄, η̄

)
=
pk(zζ̄)

(
(wη̄)2 +

(
zζ̄
)k)

+ qk
(
zζ̄
)
wη̄

kπ2 (1− wη̄)2 (wη̄ − (zζ̄)k
)2 , (3.24)

where pk and qk are polynomials

pk(s) =

k−1∑
n=1

n(k − n)sn−1, qk(s) =

k∑
n=1

(n2 + (k − n)2sk)sn−1.
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2. For p
q = k with k ∈ N+, the Bergman kernel on U is given by

KU
(
z, w; ζ̄, η̄

)
=

(wη̄)k

π2 (1− wη̄)2
(

(wη̄)k − zζ̄
)2 . (3.25)

Using our technique, we rediscover Edholm’s result.

For positive integers p and q, let U
p
q denote the set

{
(z, w) ∈ C2 : |z|q < |w|p < 1

}
.

Since U
p
q is Reinhardt, every holomorphic function on U

p
q has a Laurent

series expansion. Noting that U
p
q is 1-star-shaped Hartogs in z, we have the

following lemma:

Lemma 3.2. Let f ∈ A
(
U
p
q

)
. Then f has a unique expansion:

f
(
z, z′, w

)
=
∑
c∈Z

∑
a∈N

zawc,

where the series converges normally in U
p
q .

Lemma 3.3. For a ∈ N, let Ia denote the set {c ∈ Z : c+1+ p
q (a+1) > 0}.

Then the holomorphic function za is square-integrable on Ω if and only if

zawc is square-integrable on U
p
q for all c ∈ Ia. Moreover, zawc is not

square-integrable on U
p
q for zaφ(z′) ∈ A2(Ω) if c /∈ Ia.

Proof. Suppose zawc ∈ A2(U
p
q ). Then∫

U
p
q

|za|2|w|2cdV (z, w) = ‖zawc‖2L2(Uα) <∞. (3.26)

Substituting t = z|w|−
p
q for 1 ≤ j ≤ n and applying Fubini’s theorem to the

integral in (3.26) yield:∫
U
p
q

|z|2a|w|2cdV (z, z′, w)

=

∫
B∗
|w|2c+2 p

q
(a+1)

dV (w)

∫
B
|t|2adV (t)

=2π

∫ 1

0
r

2c+2 p
q

(a+1)+1
dr
∥∥za∥∥2

L2(B)
. (3.27)

Since
∫ 1

0 r
2c+2 p

q
(a+1)+1

dr <∞ when c ∈ Ia, we have za ∈ A2(Ω) for c ∈ Ia.

By (3.27), the converse also holds for c ∈ Ia. When c /∈ Ia, the first integral
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in the last line of (3.27) blows up. Therefore zawc is not square-integrable

on U
p
q for c /∈ Ia.

Combining Lemmas 3.2 and 3.3 yields the following:

Corollary 3.1. Let K
U
p
q

be the Bergman kernel on U
p
q . Let Ia be as in

Lemma 3.3. Then K
U
p
q

has the following expansion:

K
U
p
q
(z, w; ζ̄, η̄) =

∑
a∈N

∑
c∈Ia

(zζ̄)a(wη̄)c

‖zawc‖2
L2(U

p
q )

. (3.28)

For η ∈ B∗, let U
p
q
η denote the slice of U

p
q :

{z ∈ C : |z|q < |η|p < 1} .

For k ∈ R, let Kk

U
p
q
η

denote the reproducing kernel for the space A2(U
p
q
η , |z|k),

the weighted Bergman kernel on U
p
q
η with weighted measure |z|kdV .

Let b·c denote the floor function. Let mk = b−p
q (k + 1)c. Set g equal to

(wη̄)mk

(1−wη̄) , and let Mg be the multiplication operator with multiplier g. Let I

denote the identity operator. Let Dk denote the differential operator:

Dk =
q(zζ̄)k|η|2

k+1
q

p
q

π

(
CI +

p

q
z
∂

∂zj
+ w

∂

∂w

)
Mg, (3.29)

where C = (k+1)p
q + 1.

Let G1(z, w, η) and G2(z, w, η) denote the modifying functions:

G1(z, w, η) =
zq

(wη̄)p
|η|

p
q

+p
and G2(z, w) = zq|η|

p
q
−p
.

Then we have our result for K
U
p
q
:

Theorem 3.3. For (z, w), (ζ, η) ∈ U
p
q , let G1, G2 and Dk be as above. Then

the Bergman kernel K
U
p
q
(z, w; ζ̄, η̄) equals

q−1∑
k=0

DkK
c(k,q)

U
p
q
η

(
G1(z, w, η);G2(ζ, η)

)
, (3.30)

where c (k, q) = 2(k+1−q)
q .

Proof. By its definition, U
p
q
η contains both G1(z, w, η) and G2(ζ, η). Therefore

(3.30) is defined on U
p
q×U

p
q . To show (3.30) is the Bergman kernel, it suffices
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to prove the term with the index k in (3.30) equals

∑
(a,c)∈Kk

(zζ̄)a(wη̄)c

‖zawc‖2
L2(U

p
q )

, (3.31)

where Kk = {(a, c) : a = k mod q and c ∈ Ia}. Let Kk denote the term with

the index k in (3.30). We first show that Kk can be expanded as follows:∑
(a,c)∈Kk

Ca,c(zζ̄)a(wη̄)c. (3.32)

Consider the biholomorphic mapping f from U
p
q
η to Ω:

f(z) = z|η|−
p
q .

Then a similar formula for biholomorphic transformation relates the weighted

Bergman kernel Kk
B to Kk

U
p
q
η

:

Kk

U
p
q
η

(z; ζ̄) = |η|−(k+2) p
qKk

B(f(z); f(ζ)). (3.33)

By formula (3.33), the function |η|2
k+1
q

p
qK

c(k,q)

U
p
q
η

(G1(z, w, η); Ḡ2(ζ, η)) becomes

(zζ̄)k(wη̄)mk

π(1− wη̄)
K
c(k,q)
B (

zq

wp
;
ζ̄q

η̄p
). (3.34)

Since c(k, q) > −2, all monomials za are in the weighted spaceA2
(
B, |z|c(k,q)

)
.

Therefore we have

K
c(k,q)
B

(
z; ζ̄
)

=
∑
a∈N

(zζ̄)a

‖za‖2
L2(B,|z|c(k,q))

. (3.35)

Applying (3.35) to (3.34) yields a sum of form

∑
s∈N

Cs(wη̄)mk

(1− wη̄)

(zζ̄)sq+k

(wη̄)sp
. (3.36)

Expanding 1
(1−wη̄) in (3.36), we obtain

∑
c,s∈N

Cs(wη̄)mk−sp+c(zζ̄)sq+k. (3.37)
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Since

(mk − sp+ c) + 1 +
p

q
(sq + k + 1)

=b−p
q

(k + 1)c+ c+ 1 +
p

q
(k + 1) > c ≥ 0, (3.38)

w’s exponent mk − sp+ c is in Isq+k if and only if c ∈ N. Thus, (3.32) and

(3.37) are equivalent and Kk can be expanded as a series like (3.32).

To prove that Kk equals (3.32), we show that Kk reproduces each zawc

for (a, c) ∈ Kk. Consider the integral∫
U
p
q

Kk(z, w; ζ̄, η̄)ζaηcdV (ζ, η). (3.39)

For a = sq ∈ N and c ∈ Z,(
CI +

p

q
z
∂

∂z
+ w

∂

∂w

)
zawc = (C + ps+ c) zawc.

Let Cp,c,s denote the constant C + ps + c. When (a, c) ∈ Kk, there exists

a unique s ∈ N and 0 ≤ k ≤ q − 1 such that a = sq + k. Therefore (3.39)

equals

Cp,c,s

∫
B∗

qzk(wη̄)mk |η|2
(k+1)p

q2 ηc

π(1− wη̄)

∫
U
p
q
η

K
c(k,q)

U
p
q
η

(G1; Ḡ2)ζaζ̄kdV (ζ)dV (η).

(3.40)

Note that G2(·, η) is a proper map from U
p
q
η onto itself. By substituting

t = G2(ζ, η) and dividing the domain U
p
q
η into q branches, (3.40) becomes∫

U
p
q
η

K
c(k,q)

U
p
q
η

(G1; Ḡ2)ζaζ̄kdV (ζ)

=
|η|(p−

p
q

)( 2+k+a
q

)

q

∫
U
p
q
η

K
c(k,q)

U
p
q
η

(G1; t̄)ts|t|c(k,q)dV (t). (3.41)

Applying the reproducing property of the weighted Bergman kernel yields

|η|(p−
p
q

) 2+k+a
q

q1

∫
U
p
q
η

K
c(k,q)

U
p
q
η

(G1, z
′; t̄, ζ̄ ′)ts|t|c(k,q)dV (t)

=
|η|(p−

p
q

) 2+k+a
q

q1

zsq|η|(p+
1
q

)s

(wη̄)ps

=
zsq|η|(p−

p
q

) 2+2k
q

+2sp

q1(wη̄)ps
. (3.42)
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Substituting (3.42) to (3.40), the integral (3.39) becomes

Cp,c,sz
a

∫
B∗

|η|p
2+2k
q

+2sp
ηc

π(1− wη̄)(wη̄)mk+ps
dV (η). (3.43)

Expanding 1
(1−wη̄) in (3.43) and using polar coordinates, we have

(3.43) =
Cp,c,sz

awc

π

∫
B∗
|η|p

2+2k
q

+2sp+2c
dV (η)

=2Cp,c,sz
awc

∫ 1

0
r
p 2+2k

q
+2sp+2c+1

dr

=
Cp,c,sz

awc

p(1+k)
q + sp+ c+ 1

= zawc. (3.44)

Hence Kk equals (3.32) and the proof is complete.

By explicitly computing the series, the weighted kernel function K
c(k,q)
B

is given by:

K
c(k,q)
B (z; ζ̄) =

1

π(1− zζ̄)2
+

c(k, q)

2π(1− zζ̄)
. (3.45)

Applying (3.45) and (3.33) to (3.30) yields the explicit formula for K
U
p
q
:

Corollary 3.2. Let s = zζ̄ and t = wη̄. Then the Bergman kernel on the

generalized Hartogs triangle {(z, w) ∈ C2 : |z|q < |w|p < 1} is given by:

q−1∑
k=0

tp+mksk ((1−mk − C) t+mk + C) ((tp − sq) (k + 1− q) + qtp)

π2(tp − sq)2(1− t)2
,

(3.46)

where C = (k+1)p
q + 1.

When p = 1, mk = b−1
q (k + 1)c = −1 and C = k+1+q

q . Then (3.46)

becomes

q−1∑
k=0

sk ((q − k − 1) t+ k + 1) ((t− sq) (k + 1− q) + qt)

qπ2 (t− sq)2 (1− t)2 . (3.47)

When q = 1, mk = b−p(k + 1)c = −p and C = p + 1. In this case, (3.46)

becomes
tp

π2(tp − s)2(1− t)2
. (3.48)

Both (3.47) and (3.48) are consistent with (3.24) and (3.25).

For more general “base” domains Ω (such as n-star-shaped Hartogs do-

mains), our computation does not work for the the kernel function on the

32



“target” domain{(
z, z′, w

)
∈ Cn+m+1 :

(
z1

|w|
p1
q1

, . . . ,
zn

|w|
pn
qn

, z′

)
∈ Ω

}
.

However, as we will see in Theorem 5.8, the Bergman kernel on the domain

Ωq =
{(
z, z′

)
∈ Cn+m :

(
zq11 , . . . , z

qn
n , z

′) ∈ Ω
}
.

can be obtained as a finite sum of weighted Bergman kernels on Ω.

Since Ω× B∗ is biholomorphic to the domain

Up =

{(
z, z′, w

)
∈ Cn+m × B∗ :

(
z1

|w|p1
, . . . ,

zn
|w|pn

, z′
)
∈ Ω

}
,

the Bergman kernel on U
p
q can be written as a sum of weighted kernel

functions on Ω× B∗.
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Chapter 4

Boundary behavior

Because of its close connection to the boundary regularity of holomorphic

mappings, the behavior of the Bergman kernel near the boundary has been

studied for many decades. The boundary behavior of the Bergman kernel in

the strongly pseudoconvex case is well understood. C. Fefferman [Fef74], L.

Boutet de Monvel and J. Sjöstrand [BS76] gave an asymptotic expansion of

the kernel function when the domain is bounded smooth and strongly pseu-

doconvex. In the non-strongly pseudoconvex case, the boundary behavior is

difficult to analyze. Near a weakly pseudoconvex point of finite type, certain

estimates on the Bergman kernel were obtained by McNeal [McN89,McN94].

Less is known near non-smooth boundary points.

In this chapter, we analyze the boundary behavior ofKU when the “base”

domain Ω is pseudoconvex with smooth boundary. We begin by clarifying

the relation between the pseudoconvexity of “base” domain Ω and the “tar-

get” domain U .

4.1 Pseudoconvexity of U

Let’s recall the definitions of pseudoconvex boundary point and pseudocon-

vex domain.

Definition 4.1. A domain Ω ⊆ Cn is said to have Ck boundary bΩ at

boundary point p if there exist a neighborhood U of p and a real-valued Ck

function r defined in U such that the following properties hold:

1. Ω
⋂
U = {z ∈ U : r(z) < 0}.

2. bΩ
⋂
U = {z ∈ U : r(z) = 0}.

3. The gradient ∇r(z) 6= 0 on bΩ ∩ U .

The function r is called a local defining function for Ω near p. If Ω ⊆ U ,

then r is called a defining function of Ω.
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Definition 4.2. Given a domain Ω ⊆ Cn, a point p ∈ bΩ, and a local

defining function r of Ω at p, the holomorphic tangent space of bΩ at p is

defined by:

T 1,0
p (bΩ) :=

v ∈ Cn :
n∑
j=1

∂r

∂zj
(p)vj = 0

 .

Definition 4.3. Let Ω be a domain in Cn with C2 boundary at p ∈ bΩ,

and let r be a local defining function for Ω at p. The domain Ω is called

pseudoconvex at p ∈ bΩ if for all v ∈ T 1,0
p (bΩ), the Levi form

λ(p)(v, v̄) =
n∑

j,k=1

∂2r

∂zj∂z̄k
(p)vj v̄k ≥ 0.

The domain is said to be strongly pseudoconvex at p if the Levi form at p

is strictly positive for all 0 6= v ∈ T 1,0
p (bΩ). Ω is called a pseudoconvex

domain if Ω is pseudoconvex at every boundary point. Ω is called a strongly

pseudoconvex domain if Ω is strongly pseudoconvex at every boundary point.

Recall the n-star-shaped Hartogs “base” domain Ω ⊆ Cn+m. Suppose

Ω is also bounded, and has smooth boundary. Consider polar coordinates

zj = tje
iθj for 1 ≤ j ≤ n. The definition of the n-star-shaped Hartogs

domain implies that a defining function of Ω:

r
(
z1, . . . , zn, z̄1, . . . , z̄n; z′, z̄′

)
∈ C∞

(
Ω̄
)

can be chosen so that in a tubular neighborhood of bΩ, the function r is

independent of θj and is non-decreasing in tj . In this chapter, we always

use such an r as the defining function for Ω.

Lemma 4.1. Let rzj and rz̄j denote the partial derivative of r with respect

to zj and z̄j. Then on bΩ, the following holds:

1. zjrzj = z̄jrz̄j ≥ 0.

2. zj r̄z̄j z̄l = zjrzjzl = z̄jrz̄jzl = z̄j r̄zj z̄l.

3. If zj = 0, then rzjzk = 0 for all 1 ≤ k ≤ n.

4. If p = (z, z′) ∈ bΩ is a strongly pseudoconvex point, then rzj (p) = 0 if

and only if zj = 0.

Proof. Since r does not change with respect to θj and is non-decreasing in

tj in a tubular neighborhood of bΩ, we have

∂

∂θj
r
(
t1e

iθ1 , . . . , tne
iθn , t1e

−iθ1 , . . . , tne
−iθn ; z′, z̄′

)
= 0,
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∂

∂tj
r
(
t1e

iθ1 , . . . , tne
iθn , t1e

−iθ1 , . . . , tne
−iθn ; z′, z̄′

)
≥ 0.

Hence on bΩ, zjrzj + z̄jrz̄j ≥ 0 and zjrzj − z̄jrz̄j = 0. Summing them yields

zjrzj = z̄jrz̄j ≥ 0. Taking the derivative on both sides of zjrzj = z̄jrz̄j
and applying r̄zj = rz̄j , we obtain zj r̄z̄j z̄l = zjrzjzl = z̄jrz̄jzl = z̄j r̄zj z̄l . For

zj 6= 0, we have e2iθjrzj = rz̄j . Then by continuity, e2iθjrzj = rz̄j at zj = 0

for arbitrary θj ∈ R. Therefore rzj = rz̄j = 0 when zj = 0. Conversely,

when rzj (p) = 0, the vector v = (0, . . . , vj , . . . , 0) ∈ T 1,0
p (bΩ). Since p is a

strongly pseudoconvex point, |vj |2rzj z̄j (p) > 0 and hence rzj z̄j (p) > 0. Note

that for zj = tje
iθj ,

∂2

∂t2j
r(p) = 4rzj z̄j (p) > 0.

Suppose zj does not equal 0. Then ∂r
∂tj

< 0 at points near p with a slightly

smaller tj . It contradicts the fact that ∂r
∂tj
≥ 0 in a neighborhood of p and

hence zj must be 0 for each j.

Recall ψj ’s and the induced “target” domain U in Section 2.3. Suppose

the “base” domain Ω is pseudoconvex. It is natural to ask for what kind of

ψj ’s the U is a pseudoconvex domain. The following theorem gives a partial

answer.

Theorem 4.1. Let Ω ⊆ Cn+m be an n-star-shaped Hartogs pseudoconex

domain with smooth boundary. Let D ⊆ Ck be a smooth and pseudoconvex

domain. Let Ψ denote a Hermitian symmetric function on D×D. Suppose

Ψ(w, w̄) > 0 and log Ψ(w, w̄) is C2-plurisubharmonic. Then for (α1, . . . , αn)

with αj > 0, the domain

U = {(z, z′, w) ∈ Cn × Cm ×D : (z1Ψα1(w, w̄), . . . , znΨαn(w, w̄), z′) ∈ Ω},

is also pseudoconvex.

Proof. On the boundary of a domain, the set of non-pseudoconvex points, if

not empty, has non-empty interior. To prove U is pseudoconvex, it suffices

to show the set of pseudoconvex boundary points is dense in bU . Let r be

the defining function of Ω. Let rU denote the function:

rU
(
z, z′, w

)
= r

(
z1Ψα1(w, w̄), . . . , znΨαn(w, w̄), z′

)
.

Let bU1 denote the set

{(
z, z′, w

)
∈ bU : w /∈ bD and rU (z, z′, w) = 0

}
.
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Let bU2 denote the set

{(z, z′, w) ∈ bU : rU (z, z′, w) 6= 0 and w ∈ bD}.

Then bU1 ∪ bU2 is dense in bU . If bU2 6= ∅, then the point in bU2 is

pseudoconvex. It remains to prove the pseudoconvexity of points in bU1.

Choose r(z, z′) as in Lemma 4.1. For 1 ≤ j ≤ n + m and 1 ≤ k ≤ n + m,

set rj,l to be:

rj,l =



rzj z̄l 1 ≤ j, l ≤ n

rzj z̄′l−n 1 ≤ j ≤ n and n < l ≤ n+m

rz′j−nz̄l 1 ≤ l ≤ n and n < j ≤ n+m

rz′j−nz̄′l−n n < j, l ≤ n+m

For p ∈ bΩ, let HΩ(p) denote the complex Hessian matrix of r at p:

HΩ(p) = (rjl)|(z,z′)=p.

We set X(z, w) = (ψ1(w, w̄)z1, . . . , ψn(w, w̄)zn) and rU (z, z′, w) = r(X, z′).

For the boundary point p = (z, z′, w) ∈ bU1, the gradient drU 6= 0. Hence

rU is a local defining function of U1 at p. Let Ψj(w, w̄) = ∂Ψ
∂wj

(w, w̄). Set

λ(z) =

z/z̄ z 6= 0

0 z = 0
and µ(z) =

1/z̄ z 6= 0

0 z = 0
.

Taking the derivatives of rU and applying Lemma 4.1, we have:

∂2rU
∂zj∂z̄l

=Ψαj+αlrj,l,
∂2rU
∂z′j∂z̄

′
l

= rj+n,l+n,

∂2rU
∂zj∂z̄′l

=Ψαjrj,l+n,
∂2rU
∂z′j∂z̄l

= Ψαlrj+n,l,

∂2rU
∂zj∂w̄l

=Ψαj

n∑
s=1

(αsΨ
αs−1Ψ̄lrj,s(1 + λ̄(zs))) + αjΨ

αj−1Ψ̄lrzj (1−Ψαj µ̄(zj)),

∂2rU
∂wj∂z̄l

=Ψαl

n∑
s=1

(αsΨ
αs−1Ψjrs,l(1 + λ(zs))) + αlΨ

αl−1Ψjrz̄l(1−Ψαlµ(zl)),

∂2rU
∂z′j∂w̄l

=
n∑
s=1

αsΨ
αs−1Ψ̄lrj+n,s(1 + λ̄(zs)),

∂2rU
∂wj∂z̄′l

=
n∑
s=1

αsΨ
αs−1Ψjrs,l+n(1 + λ(zs)),
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∂2rU
∂wj∂w̄l

=

n∑
s=1

n∑
t=1

αsαtΨ
αs+αt−2ΨjΨ̄l(rs,t(1 + λ(zs))(1 + λ̄(zt))− rzs µ̄(zs)−

rz̄sµ(zs)) +
n∑
s=1

αsΨ
αs−1rzs(1 + λ(zs))

(
∂2Ψ

∂wj∂w̄l
+ (αs − 1)Ψ−1ΨjΨ̄l

)
.

Let HU denote the complex Hessian matrix of rU . Since D ⊆ Ck, HU is a

(n+m+k)× (n+m+k) matrix. Let HΨ(w) denote the complex Hessian of

log Ψ(w, w̄). Set c =
∑n

s=1 αsΨ
αs−1rzs(1 + λ(zs)). For p = (z, z′, w) ∈ bU1,

consider (n+m+ k)× (n+m+ k) matrix A(p),

A(p) =

[
HΩ(X, z′) M̄T

M cHΨ(w)

]
.

Here M = (Mj,l) is a k × (n+m) matrix with entry

Mj,l =

αlΨjΨ
−1rz̄l(1−Ψαlµ(zl)) 1 ≤ l ≤ n

0 n < l ≤ n+m
.

Set 1B = (1Bj,l) to be an (n+m)× (n+m) diagonal matrix with entry:

1Bj,j =

Ψαj 1 ≤ j ≤ n

1 n < j ≤ n+m
.

Set 2B = (2Bj,l) to be a k by (n+m) matrix with entry

2Bj,l = αlΨjΨ
αl−1 (1 + λ (zl)) .

Let I denote the k× k identity matrix and set B(p) to be the (n+m+ k)×
(n+m+ k) matrix:

B(p) =

[
1B 0

2B I

]
.

Then HU (p) = B(p)A(p)B̄(p)T . By its definition, B(p) is invertible. Hence

t ∈ T 1,0(bU)(p) implies 0 6= tB(p) ∈ T 1,0(bUw)(z, z′) × T 1,0(D)(w). Since

cHΨ(w) is positive semidefinite on T 1,0(D)(w), the matrix A(p) is positive

semidefinite on T 1,0(bUw)(z, z′) × T 1,0(D)(w). Therefore HU (p) is positive

semidefinite on T 1,0(bU)(p).

Since both log
(

1
1−‖w‖2

)
and log e‖w‖

2
are plurisubharmonic, Theorem

4.1 implies that Uα and V γ are pseudoconvex when Ω is pseudoconvex with

smooth boundary.
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4.2 Further analysis of some examples

In this section, we use the explicit formulas of KUα and KV γ from Examples

4.2 and 4.3 and some admissible approach regions to analyze their boundary

behavior. Before going into these examples, we first look at a simple case.

Let Ω be the polydisk B× B in C2. Since the kernel function on a product

domain equals the product of the kernel function on each factor, we have

KΩ

(
z1, z2; ζ̄1, ζ̄2

)
=

1

π(1− z1ζ̄1)2
· 1

π(1− z2ζ̄2)2
.

If we approach the boundary point p = (w1, w2) along the diagonal, then

the boundary behavior of KΩ depends on w1 and w2:

1. If |w1| = 1 and |w2| 6= 1, then in Ω we have:

lim
z→p

KΩ(z; z̄)(1− |z1|2)2 =
1

π2(1− |w2|2)2
6= 0.

2. If |w1| 6= 1 and |w2| = 1, then in Ω we have:

lim
z→p

KΩ(z; z̄)(1− |z2|2)2 =
1

π2(1− |w1|2)2
6= 0.

3. If |w1| = |w2| = 1, then in Ω we have:

lim
z→p

KΩ(z; z̄)(1− |z1|2)2(1− |z2|2)2 =
1

π2
6= 0.

Note that bΩ is not smooth at boundary points in the 3rd case and the

boundary behavior of the Bergman kernel depends on the rate at which |z1|
and |z2| tend to 1. We will see similar phenomena when we analyze the

boundary behavior of KUα .

Example (Exampe 3.2 revisited). The boundary of Uα is not smooth at

(0, z′, w) where ‖z′‖ = |w| = 1. We let S1 denote the set of these non-

smooth points. By calculating the Levi form of Uα on the smooth boundary

points, one obtains that (z, z′, w) is strongly pseudoconvex if both ‖z′‖ and |w|
are not equal to 1. We let S2 denote the set of these strongly pseudoconvex

points. We denote by S3 the set

{(0, z′, w) ∈ bUα : ‖z′‖ = 1, |w| 6= 1}
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and denote by S4 the set

{(0, z′, w) ∈ bUα : ‖z′‖ 6= 1, |w| = 1}.

Then bUα = S1∪S2∪S3∪S4. The boundary behavior of the kernel function

near the strongly pseudoconvex points in S2 is known. To obtain the result

near the points in the other sets, we need an admissible approach region.

For 0 < s < 1, let Ws denote the set

{(z, z′, w) ∈ Cn × Cm × C : |w| < 1, ‖z‖2s + ‖z′‖2 + |w|2 < 1 + |w|2‖z′‖2}.

These sets exhaust Uα when s tends to 1. Moreover, S1, S3 and S4 are

contained in bWs. We will choose Ws as the admissible approach region.

Let r(z, z′, w) denote the function:

1− ‖z′‖2 − ‖z‖2

(1− |w|2)
.

Then Uα can also be expressed as the set

{(z, z′, w) ∈ Cn × Cm × C; |w| < 1,−r(z, z′, w) < 0}.

Note that the function
‖z‖2s

(1− |w|2)

is bounded in Ws. For p = (0, z′0, w0) ∈ S1 ∪S3 ∪S4, when approaching p in

Ws,
‖z‖2

(1− |w|2)
→ 0. (4.1)

Therefore r(z, z′, w) is continuous in the closure of Ws. Combining (4.1)

and (3.20) yields the following results on boundary behavior:

1. For p0 = (0, z′0, w0) ∈ S3, the admissible limit satisfies:

lim
Ws3p→p0

KUα(p; p̄)rn+m+1(p) =
(m+ n)!(n+ 1)

πm+n+1(1− |w0|2)n+2
6= 0.

2. For p0 = (0, z′0, w0) ∈ S4, the admissible limit satisfies:

lim
Ws3p→p0

KUα(p; p̄)(1− |w|2)n+2 =
(m+ n)!(n+ 1)

πm+n+1rn+m+1(p0)
6= 0.
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3. For p0 = (0, z′0, w0) ∈ S1, the admissible limit satisfies:

lim
Ws3p→p0

KUα(p; p̄)rn+m+1(p)(1− |w|2)n+2 =
(m+ n)!(n+ 1)

πm+n+1
6= 0.

Example (Example 3.3 revisited). Calculating the Levi form shows that

V γ is a pseudoconvex domain. For any w0 ∈ C and z′0 ∈ Cm on the unit

sphere, (0, z′0, w0) is a weakly pseudoconvex point on bV γ. With (3.21),

we can obtain the boundary behavior of the Bergman kernel function in an

admissible approach region of (0, z′0, w0).

Let 0 < sj < 1 for 1 ≤ j ≤ n. Let Ws denote the domain(z, z′, w) ∈ Cn × Cm × C :
n∑
j=1

eγj |w|
2 |zj |2sj + ‖z′‖2 < 1

 . (4.2)

For each s, Ws is contained in V γ and it exhausts V γ as each pj approaches

1. Moreover, bWs intersects bV γ at those weakly pseudoconvex points on

bV γ. Let ρ denote a defining function of V γ:

ρ(z, z′, w) = 1− e|w|2‖z‖2 − ‖z′‖2.

When approaching p0 = (0, z′0, w0) in the approach region Ws, the admissible

limit

lim
Ws3p→p0

∑n
j=1 e

γj |w|2 |zj |2sj

1− ‖z′‖2
= 0. (4.3)

Therefore,

lim
Ws3p→p0

∑n
j=1 e

γj |w|2 |zj |2sj

ρ
= 0. (4.4)

Applying (4.4) to (3.21), we have in Ws:

lim
Ws3p→p0

KV γ (p; p̄)ρm+n+1(p) =
(m+ n)!en|w0|2 ∑n

j=1 γj

πm+n+1
6= 0.

4.3 General results for boundary behavior

In the previous section, we used the explicit formula of the Bergman kernel

to study its boundary behavior at weakly pseudoconvex boundary points.

In general, we do not require an explicit formula for the kernel function on

the “base” domain. If enough information on the boundary behavior of the

kernel function of the “base” domain is known, we can obtain the boundary

behavior of the Bergman kernel on the “target” domain. Here we’ll discuss
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the boundary behavior for Uα and V γ when the “base” domain Ω is smooth

and strongly pseudoconvex and w is a single variable.

For positive numbers αj ’s and γj ’s, recall

fα (z, w) =

(
z1

(1− |w|2)
α1
2

, . . . ,
zn

(1− |w|2)
αn
2

)

and

gγ (z, w) =

(
e
γ1|w|

2

2 z1, . . . , e
γn|w|2

2 zn

)
.

Then Uα denotes{(
z, z′, w

)
∈ Cn+m+1 : |w| < 1 and r

(
fα (z, w) , fα (z, w); z′, z̄′

)
< 0
}

and V γ denotes{(
z, z′, w

)
∈ Cn+m+1 : r

(
gγ(z, w), gγ(z, w); z′, z̄′

)
< 0
}
.

To simplify the notation, we let KΩ (z, z′) = KΩ (z, z′; z̄, z̄′). We let

rUα
(
z, z′, w

)
= r

(
fα(z, w), fα(z, w); z′, z̄′

)
,

rV γ
(
z, z′, w

)
= r

(
gγ(z, w), gγ(z, w); z′, z̄′

)
.

We let ∇z denote the partial gradient
(

∂
∂z1

, . . . , ∂
∂zn

)
.

We start with Uα. The boundary behavior of the Bergman kernel on Uα

is more complicated than on V α for two reasons:

1. The possible non-smooth boundary points created by the two inequal-

ities of Uα.

2. The singularity of rUα at points where |w| = 1.

On the boundary of Uα, we consider the following subsets:

S1 =
{

(z, z′, w) ∈ bUα : z 6= 0 and |w| 6= 1
}
,

S2 =
{

(z, z′, w) ∈ bUα : z = 0 and |w| 6= 1
}
,

S3 =
{

(z, z′, w) ∈ bUα : z = 0, |w| = 1 and (0, z′) /∈ bΩ
}
,

S4 =
{

(z, z′, w) ∈ bUα : z = 0, |w| = 1 and (0, z′) ∈ bΩ
}
.

Sj ’s are distinct subsets of bUα. By the boundedness of Ω, we have

{(z, z′, w) ∈ bUα : z 6= 0, |w| = 1} = ∅.
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Therefore bUα = S1 ∪ S2 ∪ S3 ∪ S4. As we’ll see soon, the points on S1 are

strongly pseudoconvex and the boundary behavior of the Bergman kernel

near the boundary points of S2, S3 and S4 can be obtained by a suitable

choice of approach regions.

Let LΩ denote the Bergman kernel on the diagonal,

LΩ(z, z′) = KΩ(z, z′; z̄, z̄′).

We recall the result of C. Fefferman [Fef74] for bounded strongly pseudo-

convex domain Ω. There exist Ψ,Φ ∈ C∞(Ω̄), such that

LΩ(z, z′) =
Ψ(z, z̄; z′, z̄′)

(−r)n+m+1(z, z̄; z′, z̄′)
+ Φ(z, z̄; z′, z̄′) log(−r(z, z̄; z′, z̄′)). (4.5)

In our situation, when the kernel function on the base domain has no log

terms (that is, Φ = 0 in (4.5)), then the kernel function on the target domain

also has no log terms.

Applying formula (4.5) and Theorem 3.1, we obtain the following result

on the “target” domain Uα.

Theorem 4.2. Let Ω and Uα be as above. Suppose Ω is strongly pseu-

doconvex. Then Uα is pseudoconvex. The point p ∈ bUα is a strongly

pseudoconvex point if p ∈ S1. Near the points of S2, S3 and S4, the kernel

function behaves in three different ways:

1. For (z0, z
′
0, w0) ∈ S2, there exists an admissible approach region W2 of

(z0, z
′
0, w0) such that when approaching (z0, z

′
0, w0) in W2,

KUα(z, z′, w)(−rUα)m+n+1(z, z′, w) (4.6)

has a nonzero limit.

2. For (z0, z
′
0, w0) ∈ S3, there exists an admissible approach region W3 of

(z0, z
′
0, w0) such that when approaching (z0, z

′
0, w0) in W3,

KUα(z, z′, w)(1− |w|2)2+α·1 (4.7)

has a nonzero limit.

3. For (z0, z
′
0, w0) ∈ S4, there exists an admissible approach region W4 of

(z0, z
′
0, w0) such that when approaching (z0, z

′
0, w0) in W4,

KUα(z, z′, w)(1− |w|2)2+α·1(−rUα)m+n+1(z, z′, w) (4.8)
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has a nonzero limit.

Proof. Recall

fα (z, w) =

(
z1

(1− |w|2)
α1
2

, . . . ,
zn

(1− |w|2)
αn
2

)
.

For simplicity, let X denote the fα(z, w). Since the range of X on Uα is the

same as the range of z on Ω, we can replace z in (4.5) by X and have

LΩ(X, z′) =
Ψ(X, X̄; z′, z̄′)

(−rUα)n+m+1(z, z′, w)
+ Φ(X, X̄; z′, z̄′) log(−rUα(z, z′, w))

(4.9)

where Ψ(X, X̄; z′, z̄′),Φ(X, X̄; z′, z̄′) ∈ C∞(Uα). Using change of variables

formula,

LΩ(X, z′) = (1− |w|2)α·1KUαw (z, z′).

Therefore by Theorem 3.1, we have

KUα(z, z′, w) = (cαI +D)
LΩ(X, z′)

π(1− |w|2)2+α·1 (4.10)

where cα = (1 +
∑n

j=1 αj) and D =
∑n

j=1 αjzj
∂
∂zj

.

Note that r(X, X̄; z′, z̄′) is equal to rUα(z, z′, w). Multiplying both sides

of (4.10) by (1− |w|2)2+α·1(−rUα)m+n+1(z, z′, w), (4.6) becomes

π−1(−r)n+m+1(X, X̄; z′, z̄′)(cαI +D)LΩ(X, z′) = I1 + I2 (4.11)

where

I1 = π−1(−r)n+m+1(X, X̄; z′, z̄′)cαLΩ(X, z′)

and

I2 = π−1(−r)n+m+1(X, X̄; z′, z̄′)D
(
LΩ

(
X, z′

))
.

Applying (4.9) to I1, we have

πI1

(
X, X̄; z′, z̄′

)
= cα

(
Ψ + Φ (−r)n+m+1 log (−r)

)
. (4.12)

Using the product rule,

πI2

(
X, X̄; z′, z̄′

)
=D

(
(−r)n+m+1 LΩ

)
− LΩD (−r)n+m+1

=J1(X, X̄; z′, z̄′)− J2(X, X̄; z′, z̄′). (4.13)
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Substituting (4.9) to J1 and J2,

J1

(
X, X̄; z′, z̄′

)
=DΨ + (−r)n+m+1 log(−r)Dt

+ (1 + (n+m+ 1) log (−r)) (−r)n+mD(−r). (4.14)

and

J2

(
X, X̄; z′, z̄′

)
= (n+m+ 1)

(
(−r)n+m+1LΩ

) D(−r)
−r

= (n+m+ 1)
(
Ψ + Φ(−r)n+m+1 log(−r)

) D(−r)
−r

. (4.15)

Let p = (z0, z
′
0, w0) be a boundary point Uα. When |w0| 6= 1, we let X0

denote the corresponding vector X at point p.

Case 1) For (z0, z
′
0, w0) ∈ S2, we have z0 = 0, (X0, X̄0, z

′
0) ∈ bΩ, and

|w0| 6= 1. Then the existence of a nonzero limit of (4.8) is equivalent to

the existence of a nonzero limit of (4.6). Since |w0| 6= 1, X is smooth

near p. Thus rUα(z, z′, w) is smooth in a neighborhood of p and has limit

r(X, X̄0; z′0, z̄
′
0) = 0. Note that (−r) log(−r) also has limit 0 at point p.

Therefore the limit of I1 and J1 exist. To achieve the limit existence of J2

at p, we need an admissible approach region such that in this region, the

limit of D(−r)
−r is 0. We consider the following approach region

W2 =

(z, z′, w) ∈ Uα :

n∑
j=1

|zj |q < −rUα
(
z, z′, w

)
where 0 < q < 1. First we need to show W2 is not empty. By Lemma 4.1,

rzj (0, 0; z′0, z̄
′
0) = rz̄j (0, 0; z′0, z̄

′
0) = 0 for all j. When approaching p from

inside of Uα in the normal direction, zj ’s are identically zero. Hence the

region W2 is not empty and p ∈ bW2. By perhaps shrink W2, we may also

consider W2 as a connected set. Note that

∣∣∣∣D(−r)(X, X̄; z′, z̄′)

−rUα(z, z′, w)

∣∣∣∣ =

∑n
j=1 αj

|zj |
(1−|w|2)αj/2

−rUα(z, z′, w)
<

c
∑n

j=1 |zj |
−rUα(z, z′, w)

for some constant c > 0. In W2,∑n
j=1 |zj |q

−rUα(z, z′, w)
< 1.
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When approaching the boundary point p inside W2, we have∑n
j=1 |zj |

−rUα(z, z′, w)
≤

(
∑n

k=1 |zj |1−q)(
∑n

j=1 |zj |q)
−rUα(z, z′, w)

<
n∑
k=1

|zj |1−q → 0.

Hence (4.14) and (4.15) have admissible limit 0 at point p. The strong

pseudoconvexity of Ω implies that the left hand side of (4.12) has nonzero

limit. Therefore in W2, the limit of (4.6) at p exists and is unequal to zero.

Case 2) For (z0, z
′
0, w0) ∈ S3, we have z0 = 0, (0, z′0) /∈ bΩ, and |w0| = 1.

Consider the region

W3 =

{(
z, z′, w

)
∈ Uα :

|zj |2

(1− |w|2)pj
< 1,∀ 1 ≤ j ≤ n

}
where pj > αj for all j. Similar reasoning as above shows that W3 is

nonempty and connected. When we approaching the bounadary point p in

W3,
|zj |2

(1− |w|2)αj
=
|zj |2(1− |w|2)pj−αj

(1− |w|2)pj
< (1− |w|2)pj−αj → 0.

Thus X, DΨ(X, X̄; z′, z̄′), DΦ(X, X̄; z′, z̄′) and D(−rUα(z, z′, w)) all tends

to 0 at p. Since (0, z′0) /∈ bΩ, the function −rUα(z, z′, w) has a positive limit

at point p. Plugging these results into (4.14) and (4.15), we have both J1

and J2 tend to 0. The limit of (4.12) is positive since I1 = cαLΩ and LΩ is

positive at (0, z′0, z̄
′
0). Therefore when approaching p in W3, function (4.8)

and rUα has a nonzero limit. Hence the limit of (4.7) is also not zero.

Case 3) When (z0, z
′
0, w0) ∈ S4, we have z0 = 0, (0, z′0) ∈ bΩ, and

|w0| = 1. Consider the approach region W4 = W2
⋂
W3. Since both W2 and

W3 contains the set Z{z1, . . . , zn}
⋂
Uα and p ∈ Z{z1, . . . , zn}

⋂
Uα, we can

approach p inW4. The argument in Cases 1 and 2 implyX, DΨ(X, X̄; z′, z̄′),

DΦ(X, X̄; z′, z̄′), rUα(z, z′, w), D(rUα), D(−rUα )
−rUα , and rUα log(−rUα) all tends

to 0. By (4.12), (4.14) and (4.15), limits of J1 and J2 both equal zero and

the limit of I1 is equal to a nonzero constant. Therefore (4.8) has a nonzero

admissible limit in W4.

Case 4) When p = (z0, z
′
0, w0) ∈ S1, Lemma 4.1 implies rzj (p) 6= 0 for

1 ≤ j ≤ n. Then cHΨ(p) in Theorem 4.1 is positive. Since (X0, z
′
0) is a

strongly pseudoconvex boundary point in bΩ, HΩ(X, z′) is positive definite

on T 1,0(bΩ). Therefore HU (p) is positive definite on T 1,0
p (bU) and p is a

strongly pseudoconvex point.
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Compared to Uα, the boundary behavior of the kernel funcion V γ is

simpler. The argument is similar to the proof of Theorem 4.1. We state the

result without proof:

Theorem 4.3. Let Ω and V γ be as above. Suppose Ω is bounded, smooth,

and strongly pseudoconvex. Then V γ is pseudoconvex. The boundary point

p = (z0, z
′
0, w0) is weakly pseudoconvex if z0 = 0. Moreover, for each weakly

pseudoconvex boundary point p, there is an admissible approach region W ,

such that when approaching p inside W :

KV γ (z, z′, w)(−rV γ )n+m+1(z, z′, w)

tends to a nonzero constant.

Remark In both Theorems 4.2 and 4.3 above, we assumed the existence

of z′ components. Because of our assumption, points in S2, S3 of Theorem

4.2 and the weakly pseudoconvex boundary points in bV γ of Theorem 4.3

are of infinite type in the sense of D’Angelo. If there is no z′, i.e. m = 0

in the definition of Ω, then the boundary geometry of the target domains is

different. In this case, V γ becomes a strongly pseudoconvex domain. The

boundary geometry of Uα, on the other hand, depends on the value of α.

One can see this fact immediately from Example 3.1.
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Chapter 5

Cancellation of singularities
for weighted Bergman
kernels
The Bergman kernel tends to infinity when it approaches the boundary of a

pseudoconvex domain along the diagonal. The kernel function behaves dif-

ferently when approaching the boundary off the diagonal. Kerzman [Ker72]

first obtained this result in the strongly pseudoconvex case. The formula

P = I − ∂
∗
N∂ relates the Bergman projection to the ∂-Neumann oper-

ator N . Using the pseudo-local property of N on strongly pseudoconvex

domains, Kerzman estimated the derivatives of the Bergman kernel off the

diagonal and obtained the following theorem:

Theorem 5.1. Suppose Ω is a smooth, bounded strongly pseudoconvex do-

main in Cn. Let KΩ denote the Bergman kernel on Ω. Let 4Ω denote

the closed subset defined by 4Ω = {(z, w) ∈ bΩ × bΩ : z = w}. Then

KΩ ∈ C∞(Ω× Ω−4Ω).

Later, using subelliptic estimates for N on domains of finite type, Bell

[Bel86] and Boas [Boa87] independently generalized Kerzman’s theorem to

the following two cases:

Theorem 5.2. Suppose Ω is a smooth, bounded pseudoconvex domain in

Cn. If U and V are disjoint open subsets of bΩ consisting of points of finite

type, then the Bergman kernel on Ω can be smoothly extended to U × V .

Theorem 5.3. Suppose Ω is a smooth, bounded pseudoconvex domain in

Cn satisfying Condition R. If U and V are disjoint open subsets of bΩ and

U consists of points of finite type, then the Bergman kernel on Ω can be

smoothly extended to U × V .

Theorems 5.1 and 5.2 show the differentiability of the Bergman kernel on

the boundary off diagonal. If the kernel function can be written as a finite

sum of some functions and each of them is blowing up on certain boundary

points off diagonal, then a cancellation of singularities among terms in the

sum happens when approaching these boundary points.

In Section 5.1, we illustrate a cancellation of singularities among some

generalized hypergeometric functions by applying Theorems 5.1 and 5.2 to
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the Bergman kernel function on the complex ovals. In Section 5.3, we show a

cancellation of singularities among some weighted Bergman kernels on some

Hartogs domains.

5.1 Generalized hypergeometric functions

Consider the complex oval Ω in Cn defined by:

{
z ∈ Cn :

n∑
j=1

|zj |2aj < 1
}

where aj ’s are positive integers. Francsics and Hanges [FH96] expressed the

Bergman kernel on these domains in terms of Appell’s 2nd hypergeometric

functions. We introduce the definition of these generalized hypergeometric

functions.

Definition 5.1. For z ∈ Cn and m a multi-index, the Appell’s 2nd hyper-

geometric function F
(n)
2 in Cn is given by

F
(n)
2 (α;β1, · · · , βn; γ1, · · · , γn; z) =

∑
m

(α)|m|
∏n
i=1(βi)mi

m!
∏n
i=1(γi)mi

zm (5.1)

where (a)m = a(a+ 1) · · · (a+m− 1).

The series is convergent in the domain {z ∈ Cn :
∑n

j=1 |zj | < 1} and is

divergent at the boundary where all the zj ’s are positive.

When n = 1, (5.1) becomes

F
(1)
2 (α, β, γ; z) =

∞∑
m=1

(α)m(β)m
m!(γ)m

zm, (5.2)

which is the standard hypergeometric function.

The result of Francsics and Hanges expresses the Bergman kernel in

terms of F
(n)
2 :

Theorem 5.4. For Ω = {z ∈ Cn : |z1|2p1 + · · ·+ |zn|2pn < 1}, the Bergman

kernel is given by

KΩ(z, w̄) =

∏n
i=1 pi
πn

p1−1∑
q1=0

· · ·
pn−1∑
qn=0

(zw̄)q
Γ(1 +

∑n
j=1(qj + 1)/pj)∏n

j=1 Γ((qj + 1)/pj)

× F (n)
2 (1 +

n∑
j=1

qj + 1

pj
,1,

q + 1

p
; (zw̄)p). (5.3)
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Here p, q and 1 are multi-indices.

Note that Ω in Theorem 5.4 is smooth, bounded, pseudoconvex, and

every point on its boundary is a point of finite type. By Theorem 5.2,

the sum on the right-hand side of (5.3) is smooth at the boundary off the

diagonal. However, F
(n)
2 is not necessary smooth at the boundary of its

domain of convergence. Therefore each term in (5.3) can blow up at some

points in bΩ. Let’s first recall an example where the kernel function has an

explicit formula.

Example 5.1. Let Ω denote the complex oval in C2 defined by

Ω = {z ∈ C2 : |z1|2 + |z2|4 < 1}.

In Chapter 2, we’ve already obtained the formula for the Bergman kernel

function on Ω

KΩ(z; w̄) =
3(1− z1w̄1)

1
2 − z2w̄2

2π2((1− z1w̄1)
1
2 − z2w̄2)3(1− z1w̄1)

3
2

(5.4)

Using (5.3), KΩ can also be expressed in the following way:

KΩ(z; w̄) =
4z2w̄2

π2(1− z1w̄1 − z2
2w̄

2
2)3

+
3(1− z1w̄1)2 + 6(1− z1w̄1)z2

2w̄
2
2 − z4

2w̄
4
2

2π2(1− z1w̄1 − z2
2w̄

2
2)3(1− z1w̄1)

3
2

(5.5)

In equation (5.5), each of the two terms is an F
(n)
2 with different parameters.

For p = (0, i) and q = (0,−i), either Theorem 5.2 or 5.4 guarantees that (5.5)

can be smoothly extended at (p, q). However, (1−z1w̄1−z2
2w̄

2
2) is identically

0 if z ∈ bΩ is of purely imaginary coordinates and w = z̄. Hence there is no

smooth extension for each term in (5.5) to (p, q). But when we sum them

up, the singularity of each F
(n)
2 cancels each other. The cancellation in (5.5)

is not hard to observe since each term is an elementary function. In general,

F
(n)
2 with rational parameters does not have necessarily have an elementary

expression while such cancellation of singularities phenomena still happens.

Theorem 5.5. Let p = (p1, . . . , pn) be a multi-index. Let U denote the set

{t ∈ Cn :
∑n

j=1 |tj |pj < 1}. Let bU+ denote the set {t ∈ bU : tj ≥ 0}. Let
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F (t) denotes the sum

p1−1∑
q1=0

· · ·
pn−1∑
qn=0

(t)q
Γ(1 +

∑n
j=1(qj + 1)/pj)∏n

j=1 Γ((qj + 1)/pj)

× F (n)
2

1 +
n∑
j=1

qj + 1

pj
,1,

q + 1

p
; tp

 . (5.6)

Then F is defined on U and F can be smoothly extended to bU − bU+.

Proof. Replacing t by zw̄ and multiplying with a constant factor, (5.3) be-

comes (5.6). Therefore the convergence of KΩ(z, w̄) on Ω × Ω implies the

convergence of (5.3) on U . For t ∈ bU − bU+, there exist z, w ∈ bΩ such

that (zw̄) = t. Since t /∈ bU+, there exists j such that tj = zjw̄j /∈ R+.

Hence z 6= w. By Theorem 5.2, KΩ can be extended smoothly to (z, w).

Therefore F can be smoothly extended to t. Since t is arbitrary, the proof

is complete.

Remark Consider t = (t1, . . . , tn) ∈ bU −bU+ where t
pj
j ≥ 0 for all j. By

its definition, F
(n)
2 is divergent at tp. Therefore when approaching t, each

term in (5.6) is blowing up to the direction of (t)q but the sum is finite.

This phenomenon indicates a cancellation of singularities happens between

terms of different directions and the sum becomes bounded. As we will see

in the next section, each term in (5.6) is a weighted Bergman kernel on the

unit ball in Cn and Theorem 5.5 shows a cancellation of singularities among

these weighted kernel functions.

5.2 A transformation formula for proper mapping

In [Bel81], Bell had obtained a transformation rule for the Bergman projec-

tions under proper holomorphic mappings:

Theorem 5.6. For j = 1, 2, let Pj denote the Bergman projection associated

to the bounded domain Dj in Cn. If there is a proper holomorphic mapping

f from D1 onto D2, then

P1(J(f) · (φ ◦ f)) = J(f) ·
(
(P2φ) ◦ f

)
, (5.7)

where J(f) is the holomorphic Jacobian determinant of f and φ ∈ A2(D2).

As a consequence of (5.7), a transformation formula for the Bergman

kernels on D1 and D2 can also be obtained:
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Theorem 5.7. Let D1 and D2 be bounded domains in Cn and f is a proper

holomorphic mapping of D1 onto D2 of order m. Let J(f) denote the holo-

morphic Jacobian determinant of f . Let F1, . . . , Fm be the m local inverses

to f defined locally on D2 − V where V is the null set of J(f). Let J(Fj)

denote the holomorphic Jacobian determinant of Fj.

m∑
j=1

KD1

(
z; F̄j(ζ)

)
J(Fj)(ζ) = KD2

(
f(z); ζ̄

)
J(f)(z) (5.8)

for all z ∈ D1 and ζ ∈ D2 − V .

Remark 5.1. By the Removable Singularity Theorem, the left hand side of

(5.8) extends to be anti-holomorphic in ζ on D2.

Bell’s transformation formula is explicit for KD2 but implicit for KD1 .

The Bergman kernel on D2 can be obtained if the kernel function on D1

is known; conversely, it is difficult to obtain the Bergman kernel KD1 for

given KD2 due to the possible cancellation among terms in the left hand

side of (5.8). In this section, we provide, for some particular D1 and D2, a

transformation formula which is explicit for KD1 .

In this section, we let Ω be a Hartogs domain in Cn+m with symmetric

planes {zj = 0} for 1 ≤ j ≤ n. A similar argument in the proof of Lemmas

2.2 and 2.4 yield the following lemmas:

Lemma 5.1. Let f be a holomorphic function on Ω. Then f has a series

expansion:

f(z, z′) =
∑
a∈Zn

zaφa(z′), (5.9)

where φa is holomorphic in z′ and the series converges normally in Ω.

Lemma 5.2. Let f be a square-integrable holomorphic function on Ω. Then

we have the following:

1. f has a series expansion:

f(z, ζ) =
∑
a∈Zn

zaφa(ζ), (5.10)

where, for each multi-index a, φa is a square-integrable holomorphic

function on π(Ω) with respect to the the measure ‖za‖2L2(Ωζ).

2. If {φa,b} is a complete orthogonal system for A2(π(Ω), ‖za‖2L2(Ωζ)),

then {zaφa,b} forms a complete orthogonal system for A2(Ω).
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By Lemma 5.2, we can choose a complete orthogonal system of the form

{zaφa,b} for A2(Ω). Hence the Bergman kernel on Ω has a series expansion:

KΩ(z, z′; ζ̄, ζ̄ ′) =
∑
a,b

zaζ̄ ′φa,b(z′)φ̄a,b(ζ ′)

‖zaφa,b(z′)‖2
L2(Ω)

. (5.11)

Note that the series above is different from the series expansion for the

Bergman kernel on an n-star-shaped Hartogs domain: the multi-indices are

in Nn for an n-star-shaped Hartogs domain while in (5.11) they are in Zn.

Let α = (α1, . . . , αn) where αj ’s are positive integers. Set

Ωα = {(z, z′) ∈ Cn+m : (zα1
1 , . . . , zαnn , z′) ∈ Ω}.

Then Ωα is also a Hartogs domain with symmetric planes {zj = 0} for

1 ≤ j ≤ n. Let fα denote the proper mapping from Cn × Cm to Cn × Cm:

fα : (z1, . . . , zn, z
′) 7→ (zα1

1 , . . . , zαnn , z′).

Since fα maps Ωα onto Ω, Bell’s transformation rule implies that

KΩ

(
zα1

1 , . . . , zαnn , z′; ζ̄α1
1 , . . . , ζ̄αnn , ζ̄ ′

)
=

α1∑
j1=1

· · ·
αn∑
jn=1

KΩα(z, z′; ω̄j11 ζ̄1, . . . , ω̄
jn
n ζ̄n, ζ̄

′)
ω̄j11 · · · ω̄

jn
n∏n

j=1(α2
j

(
zj ζ̄j)αj−1

) , (5.12)

where ωj is jn-th root of unity. KΩ above is written in terms of KΩα . In the

next theorem, we provide another transformation formula in which KΩα is

written in terms of some weighted kernel functions on Ω. For multi-index c,

let Kc
Ω denote the weighted Bergman kernel for the space A2(Ω, |z|cdV ).

Theorem 5.8. Let Ω be a Hartogs domain in Cn × Cm with symmetric

planes {zj = 0} for 1 ≤ j ≤ n. For α ∈ Zn, let Ωα and fα be defined as

above. Then for (z, z′) and (ζ, ζ ′) in Ωα, we have:

KΩα(z, z′; ζ̄, ζ̄ ′) =

α1∑
j1=1

· · ·
αn∑
jn=1

zjζ̄j

α1
K

c(j,α)
Ω

(
fα (z) , z′; f̄α (ζ) , ζ̄ ′

)
, (5.13)

where c(j, α) =
(2(j1+1−α1)

α1
, . . . , 2(jn+1−αn)

αn

)
.

Proof. Since Ωα is a Hartogs domain with symmetric planes {zj = 0} for

1 ≤ j ≤ n, a complete orthogonal system of form {zaφa,b(z′)} can be chosen
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for A2(Ω). Let I denote the set

{(a,b) : zaφa,b ∈ A2(Ωα)}.

Then the Bergman kernel on Ωα has a bi-orthonormal series expansion:

KΩα(z, z′; ζ̄, ζ̄ ′) =
∑

(a,b)∈I

zaζ̄aφa,b(z′)φ̄a,b(ζ ′)

‖zaφa,b(z′)‖2
L2(Ωα)

.

For multi-index j = (j1, . . . , jn), let Ij denote the set

{(a,b) ∈ I : ak = jk mod αk for 1 ≤ k ≤ n}.

Then I = ∪j∈ZnIj. We claim, for each j, that

α1zjζ̄jK
c(j,α)
Ω (fα(z), z′; f̄α(ζ), ζ̄ ′) =

∑
(a,b)∈Ij

zaζ̄aφa,b(z′)φ̄a,b(ζ ′)

‖zaφa,b(z′)‖2
L2(Ωα)

. (5.14)

Then summing up both sides of (5.14) for each j yields (5.13) and completes

the proof. Set Kj as the left hand side of (5.14). To prove (5.14), it suffices

to show that Kj can be expanded as follows:

Kj(z, z
′; ζ̄, ζ̄ ′) =

∑
(a,b)∈Ij

ca,bz
aζ̄aφa,b(z′)φ̄a,b(ζ ′), (5.15)

and reproduces zaφa,b(z′) for each (a,b) ∈ Ij .

Let {zsψs,b} be a complete orthogonal system for A2(Ω, |z|c(j,α)dV ). Let

Lj denote the set {(s,b) : zsψs,b(z′) ∈ A2(Ω, |z|c(j,α)dV )}. By Lemma 5.2,

Kj has the following series expansion:

Kj(z, z
′; ζ̄, ζ̄ ′) =

∑
(s,b)∈Lj

cs,bz
sα+jζ̄sα+jψs,b(z′)ψ̄s,b(ζ ′), (5.16)

where sα denotes (s1α1, . . . , snαn). Since for zsf(z′) ∈ A2(Ω),∫
Ωα
|z|2(sα+j)|f(z′)|2dV =

1

α1

∫
Ω
|z|2s|f(z′)|2|z|c(j,α)dV,

if the integral in either side is bounded, zsf(z′) ∈ A2(Ω, |z|c(j,α)dV ) is equiv-

alent to zsα+jf(z′) ∈ A2(Ωα) and (s,b) being in Lj is the same as (sα+ j,b)

being in Ij . Also, ψs,b can be chosen as φsα+j,b. Therefore (5.15) holds.
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For (sα+ j,b) ∈ Ij,∫
Ωα
Kj(z, z

′; ζ̄, ζ̄ ′)ζsα+jφsα+j,b(ζ ′)dV

=

∫
Ωα

zjζ̄j

α1
K

c(j,α)
Ω (fα(z), z′; f̄α(ζ), ζ̄ ′)ζsα+jψs,b(ζ ′)dV. (5.17)

Substituting tk = ζαkk for 1 ≤ k ≤ n yields∫
Ωα
α1zjζ̄jK

c(j,α)
Ω (fα(z), z′; f̄α(ζ), ζ̄ ′)ζsα+jψs,b(ζ ′)dV

=zj
∫

Ω
ζ̄jK

c(j,α)
Ω (fα(z), z′; t̄, ζ̄ ′)tsψs,b(ζ ′)|t|c(j,α)dV

=zsα+jψs,b(z′). (5.18)

Therefore Kj reproduces zaφa,b(z′) for (a,b) ∈ Ij.

Remark 5.2. Formula (5.13) can be used to obtain the explicit formula of

KΩα when explicit formulas for K
c(j,q)
Ω are known. For p, q ∈ N+ and

Ω = {(z, w) ∈ C2 : |z| < |w|p < 1},

K
c(j,q)
Ω can be written in terms of elementary functions. Applying (5.13) to

K
c(j,q)
Ω yields the Bergman kernel on generalized Hartogs triangle

Ωq = {(z, w) ∈ C2 : |z|q < |w|p < 1}.

In general, K
c(j,α)
Ω might not have an explicit formula. Consider the domains

Ω = {(z, w) ∈ C2 : |z|4 + |w|4 < 1} and Ω2 = {(z, w) ∈ C2 : |z|8 + |w|4 < 1}.
Park provided, in [Par08], the explicit formula for KΩ and showed KΩ2 can

not be written in terms of elementary functions. This observation indicates

that the weighted kernel function K
c(0,2)
Ω does not have an explicit form.

5.3 Cancellation of singularities

Let Ωα be as in Theorem 5.8. Suppose Ωα is smooth, bounded and pseudo-

convex, and the boundary points are of finite type in the sense of D’Angelo

(See e.g. [D’A93]). Applying Theorem 5.2 to Theorem 5.8 yields that

α1∑
jj=1

· · ·
αn∑
jn=1

zjζ̄j

α1
K

c(j,α)
Ω (fα(z), z′; f̄α(ζ), ζ̄ ′), (5.19)
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can be smoothly extended to be in C∞(Ω̄α×Ω̄α−4(Ωα)). Such a statement

is not obvious since, for boundary points (z, z′) and (ζ, z′) of Ωα with z 6= ζ,

it is possible that fα(z) = fα(ζ) and Kc(j,α) blows up.

Theorem 5.9. Let Ω ⊆ Cn+m be a Hartogs domain with symmetric planes

{zj = 0} for 1 ≤ j ≤ n. Suppose Ω is smooth, bounded and pseudoconvex,

and the boundary points are of finite type in the sense of D’Angelo. Set

α = (α1, . . . , αn) with αj ∈ N+. Let ωj denote the αj-th root of unity and

let ω denote (ω1, . . . , ωn). Then the function

α1∑
jj=1

· · ·
αn∑
jn=1

ω
j
α |z|

2j
α

α1
K

c(j,α)
Ω (z, z′; z̄, z̄′), (5.20)

extended smoothly to the boundary of Ω.

Proof. Set

Ωα =
{

(z, z′) : (zα1
1 , . . . , zαnn , z′) ∈ Ω

}
.

Since Ω is smooth, bounded and pseudoconvex, Ωα is also smooth, bounded

and pseudoconvex. Moreover, the boundary points of Ωα are of finite type

since points in bΩ are of finite type. By Theorems 5.2 and 5.8

α1∑
jj=1

· · ·
αn∑
jn=1

zjζ̄j

α1
K

c(j,α)
Ω

(
fα(z), z′; f̄α(ζ), ζ̄ ′

)
, (5.21)

can be smoothly extended to be in C∞(Ω̄α × Ω̄α − 4(Ωα)). Substituting

ζs = zsωs and t = fα(z) in (5.21) yields that (t, z′) ∈ Ω and

α1∑
jj=1

· · ·
αn∑
jn=1

ω
j
α |t|

2j
α

α1
K

c(j,α)
Ω (t, z′; t̄, z̄′) (5.22)

can be extended smoothly to the boundary of Ω.
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Chapter 6

Complex harmonic
homogeneous polynomials

Our technique for computing the Bergman kernel on Uα (or V γ) uses the

fact that {zaφa,bwc} forms a complete orthogonal system for A2(Uα) (or

A2(V γ)) when {zaφa,b} is a complete orthogonal system for A2(Ω). The

formulas in Theorems 3.1 and 3.2 relate orthonormal elements of A2(Ω) to

orthonormal elements of A2(Uα) and A2(V γ). In this chapter, we use a

similar method to relate complex harmonic homogeneous polynomials in Cn

to complex harmonic homogeneous polynomials in the higher dimensional

Cn+m.

6.1 Decomposition of Pm,n

Let Pm,n(Ck) denote the space of polynomials that are homogeneous of

degree m in z1, . . . , zk and n in z̄1, . . . , z̄k. Let 4 denote the Laplacian;

4 =
∑k

j=1
∂2

∂zj∂z̄j
(The usual Laplacian equals 44). A polynomial p is called

harmonic if 4p = 0. Let Hm,n(Ck) denote the space of harmonic polynomi-

als that are homogeneous of degree m in z1, . . . , zk and n in z̄1, . . . , z̄k.

We consider surface integrals on the unit sphere S2k−1 in Ck. Let dσ

denote the Lebesgue 2k − 1 dimensional measure on the sphere. We define

an inner product on L2
(
S2k−1

)
as follows: For p and q in L2

(
S2k−1

)
,

〈p, q〉 :=

∫
S2k−1

pq̄dσ.

Lemma 6.1. Let p ∈ Hm,n(Ck), and let q ∈ Ha,b(Ck). If (a, b) 6= (m,n),

then 〈p, q〉 = 0.

Proof. We consider two cases: the case m−n 6= a− b and the case m−n =

a − b. When m + n = a + b, the assumption (a, b) 6= (m,n) shows that
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m− n 6= a− b. Since the measure dσ is invariant under rotation,∫
S2k−1

p(z, z̄)q(z, z̄)dσ =

∫
S2k−1

p(eiθz, e−iθz̄)q (eiθz, e−iθz̄)dσ

= ei(m−n−a+b)θ

∫
S2k−1

p (z, z̄) q(z, z̄)dσ, (6.1)

where θ is real. Because m−n 6= a− b and θ is arbitrary, the integral in the

last line of (6.1) equals 0.

For the case m+ n 6= a+ b, we may regard p and q as harmonic homo-

geneous polynomials of degree m + n in real variables x and a + b in real

variables y. Then we have

d

dr
p(rz, rz̄)

∣∣∣
r=1

= (m+ n)rm−1p(x)
∣∣∣
r=1

= (m+ n)p(x).

Similarly,
d

dr
q(rz, rz̄)

∣∣∣
r=1

= (a+ b)q(x).

Let n denote the exterior unit normal vector of S2k−1. By Green’s Identity:

(m+ n)〈p, q〉 =

∫
S2k−1

∂

∂n
(p(z, z̄)) q̄(z, z̄)dσ

=

∫
Bk
4 (p(z, z̄)) q̄(z, z̄) +5p(z, z̄) · 5q̄(z, z̄)dV

=

∫
Bk
p(z, z̄)4 q̄(z, z̄) +5p(z, z̄) · 5q̄(z, z̄)dV

=

∫
S2k−1

p(z, z̄)
∂

∂n
q̄(z, z̄)dσ = (a+ b)〈p, q〉.

Since m+ n 6= a+ b, we have 〈p, q〉 = 0.

Let M‖z‖2 denote the multiplication operator by ‖z‖2:

M‖z‖2 : f 7→ ‖z‖2f.

Then M‖z‖2 maps Pm,n(Ck) to Pm+1,n+1(Ck). Let Pm,n(S2k−1) denote the

space of functions in Pm,n(Ck) restricted to S2k−1. Since ‖z‖2 = 1 on the

unit sphere, we have

Pm−1,n−1

(
S2k−1

)
= M‖z‖2

(
Pm−1,n−1

(
S2k−1

))
⊆ Pm,n

(
S2k−1

)
.

Our next result provides an orthogonal decomposition for Pm,n(S2k−1). The

proof uses another useful inner product.
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For polynomials p(z, z̄) and q(z, z̄), we define ≺ p, q � to be

p(D̄,D)q̄(z, z̄)|z=0,

where D =
(

∂
∂z1

, . . . , ∂
∂zk

)
. If p(z, z̄) = zα1 z̄β1 and q(z, z̄) = zα2 z̄β2 , we have

≺ p, q �=

(
∂

∂z̄

)α1
(
∂

∂z

)β1

z̄α2zβ2 |z=0 =

0 if (α1, β1) 6= (α2, β2)

α2!β2! if (α1, β1) = (α2, β2)
.

Therefore the space Pa,b is orthogonal to Pc,d with respect to ≺ ·, · � if

(a, b) 6= (c, d). Similarly, Ha,b is orthogonal to Hc,d under this inner product.

By its definition, the inner product ≺ ·, · � satisfies the following:

For polynomials p, q1 and q2,

≺ p(z, z̄), q2(D, D̄)q1(z, z̄) � = ≺ p(z, z̄)q2(z, z̄), q1(z, z̄) � .

In particular, the adjoint operator of multiplication by ‖z‖2 is the Laplacian,

i.e. for p, q ∈ P (Ck), we have

≺ ‖z‖2p, q � = ≺ p,4q � . (6.2)

Formula (6.2) implies the≺ ·, · �-orthogonality between elements inHm,n(Ck)
and M‖z‖2

(
Pm−1,n−1(Ck)

)
.

Lemma 6.2. The space Pm,n(Ck) has the following orthogonal decomposi-

tion with respect to the inner product ≺ ·, · �:

Pm,n

(
Ck
)

= Hm,n

(
Ck
)⊕

M‖z‖2
(
Pm−1,n−1

(
Ck
))

. (6.3)

Proof. By (6.2), the space Hm,n(Ck) is orthogonal to M‖z‖2(Pm−1,n−1(Ck)).
It suffices to show that the orthogonal complement of M‖z‖2(Pm−1,n−1(Ck))
is contained in Hm,n(Ck). Let q ∈ Pm,n(Ck) be a polynomial in the orthog-

onal complement of M‖z‖2(Pm−1,n−1(Ck)). Since 4q ∈ Pm−1,n−1(Ck), we

have

0 =≺M‖z‖2(4q), q �=≺ 4q,4q � .

Hence 4q = 0 and q ∈ Hm,n(Ck).

As a consequence of Lemma 6.2, the dimension of Hm,n(Ck) equals:

dim
(
Pm,n

(
Ck
))
− dim

(
Pm−1,n−1

(
Ck
))

. (6.4)
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Since ‖z‖ = 1 on the unit sphere S2k−1, the decomposition (6.3) is also true

with respect to the inner product 〈·, ·〉. When restricting the domain to the

unit sphere, the decomposition (6.3) becomes:

Pm,n

(
S2k−1

)
= Hm,n

(
S2k−1

)⊕
Pm−1,n−1

(
S2k−1

)
. (6.5)

Decomposing Pm−1,n−1(S2k−1) in (6.5) and repeating the same process yield

the last lemma in this section:

Lemma 6.3. Pm,n(S2k−1) has the following orthogonal decomposition with

respect to the inner product 〈·, ·〉:

Pm,n

(
S2k−1

)
=

min{m,n}⊕
j=0

Hm−j,n−j

(
S2k−1

)
.

Proof. Since ‖z‖ = 1 on S2k−1, we have

Hm−j,n−j

(
S2k−1

)
= M‖z‖2

(
Hm−j,n−j

(
S2k−1

))
⊆ Pm,n

(
S2k−1

)
.

By Lemma 6.1, the spaces Hm−j,n−j(S2k−1) with different indices are or-

thogonal. It suffices to show that the spaces on both sides have the same

dimension. Set ha,b = dim(Ha,b(S2k−1)) and da,b = dim(Pa,b(S2k−1)). We

assume, without loss of generality, that m ≥ n. Then (6.4) gives

n∑
j=0

hm−j,n−j =
n−1∑
j=0

(dm−j,n−j − dm−j−1,n−j−1) + hm−n,0. (6.6)

Since Hm−n,0(S2k−1) = Pm−n,0(S2k−1), hm−n,0 = dm−n,0. The right hand

side of (6.6) equals the dimension of Pm,n(S2k−1).

6.2 Decomposition of Hm,n

In Lemma 6.3, we decomposed the space of homogeneous polynomials into

spaces of harmonic homogeneous polynomials. The harmonic homogeneous

polynomial space could also be decomposed into a direct sum. In this sec-

tion, we present a multiplication operator Ma,b,m,n that maps elements in

Ha,b(S2k−3) to elements in Hm,n(S2k−1) with m ≥ a and n ≥ b. For each

a ≤ m and b ≤ n, the image of Ha,b(S2k−3) under Ma,b,m,n is a subspace

of Hm,n(S2k−1). We show in this section that all these subspaces together

induce a decomposition of Hm,n(S2k−1).
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Lemma 6.4. For z ∈ Ck−1 and w ∈ C, there exists a unique sequence {ci}
starting with c0 = 1 such that the polynomial

p(z, z̄)

min{m−a,n−b}∑
i=0

ciw
m−a−iw̄n−b−i‖z‖2i (6.7)

is in Hm,n(S2k−1) whenever p(z, z̄) ∈ Ha,b(S2k−3).

Proof. It suffices to prove that there exists ci’s such that 4(qa,b,m,np) = 0.

Set 4z =
∑k−1

j=1
∂
∂zj

∂
∂z̄j

and 4w = ∂
∂w

∂
∂w̄ . Then

4(qa,b,m,np) =4z (qa,b,m,np) +4w(qa,b,m,np)

=p4 qa,b,m,n +
k−1∑
t=1

(
∂

∂zt
qa,b,m,n

∂

∂z̄t
p+

∂

∂z̄t
qa,b,m,n

∂

∂zt
p

)
.

(6.8)

Set I = p4 qa,b,m,n. Set II equal to the sum in (6.8). We have

I =p

(min{m−a,n−b}∑
i=1

i(i+ k − 2)ciw
m−a−iw̄n−b−i‖z‖2i−2+

min{m−a,n−b}−1∑
i=0

(m− a− i)(n− b− i)ciwm−a−i−1w̄n−b−i−1‖z‖2i
)

=p
(min{m−a,n−b}∑

i=1

(i (i+ k − 2) ci + (m− a− i+ 1) (n− b− i+ 1) ci−1)

wm−a−iw̄n−b−i‖z‖2i−2
)
,

and

II =

min{m−a,n−b}∑
i=0

k−1∑
t=1

ciw
m−a−iw̄n−b−i

(
∂

∂zt
‖z‖2i ∂

∂z̄t
p+

∂

∂z̄t
‖z‖2i ∂

∂zt
p

)

=

min{m−a,n−b}∑
i=0

ciw
m−a−iw̄n−b−i

k−1∑
t=1

(
∂

∂zt
‖z‖2i ∂

∂z̄t
p+

∂

∂z̄t
‖z‖2i ∂

∂zt
p

)

=

min{m−a,n−b}∑
i=1

iciw
m−a−iw̄n−b−i‖z‖2i−2

k−1∑
t=1

(
z̄t
∂

∂z̄t
p+ zt

∂

∂zt
p

)

=p

min{m−a,n−b}∑
i=1

i(a+ b)ciw
m−a−iw̄n−b−i‖z‖2i−2.
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Then I + II = 0 if and only if {ci}min{m−a,n−b}
i=0 satisfies:

ci = −(m− a− i+ 1)(n− b− i+ 1)

i(i+ a+ b+ k − 2)
ci−1, for i ≥ 1. (6.9)

Formula (6.9) uniquely determines the {cj} given that c0 = 1.

For the sequence {cj} in Lemma 6.4 with c0 = 1, let qa,b,m,n denote

min{m−a,n−b}∑
i=0

ciw
m−a−iw̄n−b−i‖z‖2i. (6.10)

Lemma 6.4 shows that for a polynomial waw̄bp(z, z̄) with p being a complex

harmonic homogeneous polynomial, there exists a unique polynomial qa,b,m,n

of the form (6.10) such that qa,b,m,n(z, z̄, w, w̄)p(z, z̄) is harmonic. We call the

product qa,b,m,n(z, z̄, w, w̄)p(z, z̄) the harmonization of waw̄bp. Let Ma,b,m,n

denote the multiplication operator induced by qa,b,m,n from Ha,b(S2k−3) to

Hm,n(S2k−1):

Ma,b,m,n : p 7→ qa,b,m,np.

Fix m and n. For a ≤ m and n ≤ n, we set Ma,b = Ma,b,m,n(Ha,b(S2k−3)).

ThenMa,b is a subspace of Hm,n(S2k−1). The next theorem shows not only

that Ma1,b1 is orthogonal to Ma2,b2 when (a1, b1) 6= (a2, b2), but also that

these Ma,b determine an orthogonal decomposition of Hm,n(S2k−1).

Theorem 6.1. Let Ma,b,m,n be as above. With respect to the inner product

〈·, ·〉, the mapping Ma,b,m,n preserves orthogonality. Moreover, Hm,n(Ck)
have the following orthogonal decomposition:

Hm,n

(
S2k−1

)
=

m,n⊕
a=0,b=0

Ma,b,m,n

(
Ha,b

(
S2k−3

))
. (6.11)

Here the spaces Ma,b,m,n

(
Ha,b

(
S2k−3

))
are orthogonal to each other.

Proof. By Lemma 6.4, we can set

q̃a,b,m,n(‖z‖2, w, w̄) = qa,b,m,n(z, z̄, w, w̄).

On the unit sphere S2k−1, ‖z‖2 + |w|2 = 1. Therefore, we have

q̃a,b,m,n(‖z‖2, w, w̄) = q̃a,b,m,n(1− |w|2, w, w̄).

Set Qa,b,m,n(w, w̄) = q̃a,b,m,n(1− |w|2, w, w̄). Let {pj} denote an orthogonal

62



basis for Ha,b(S2k−3). When j 6= l,

〈Ma,b,m,n(pj),Ma,b,m,n(pl)〉

=

∫
S2k−1

|qa,b,m,n|2pj p̄ldσ

=

∫
S2k−1

|Qa,b,m,n(w, w̄)|2pj(z, z̄)pl(z, z̄)dσ.

Substituting zj =
√

1− |w|2tj yields∫
S2k−1

|Qa,b,m,n(w, w̄)|2pj(z, z̄)p̄l(z, z̄)dσ

=

∫
B
|Qa,b,m,n(w, w̄)|2dV (w)

∫
S2k−3

pj(z, z̄)p̄l(z, z̄)(1− |w|2)k−2dσ(t)

=

∫
B
|Qa,b,m,n|2dV (w)

∫
S2k−3

(1− |w|2)k+a+b−2pj(t, t̄)p̄l(t, t̄)dσ(t)

=

∫
B
|Qa,b,m,n|2(1− |w|2)k+a+b−2dV (w)

∫
S2k−3

pj p̄ldσ(t)

=

∫
B
|Qa,b,m,n|2(1− |w|2)k+a+b−2dV (w)〈pj , pl〉 = 0.

Thus the mapping Ma,b,m,n preserves orthogonality and we have

dim
(
Ma,b,m,n

(
Ha,b

(
S2k−1

)))
= dim

(
Ha,b

(
S2k−1

))
.

Lemma 6.1 also implies that spaces Ma,b,m,n(Ha,b(S2k−3)) with different in-

dices a, b are orthogonal to each other. It remains to check that

dim
(
Hm,n

(
S2k−1

))
=

m,n∑
a=0,b=0

dim
(
Ha,b

(
S2k−3

))
. (6.12)

Let da,b,k denote the dimension of Pa,b(S2k−1), and let ha,b,k denote the

dimension of Ha,b(S2k−1). Lemma 6.2 implies that

ha,b,k = da,b,k − da−1,b−1,k,

for a ≥ 1 and b ≥ 1. To prove (6.12), we use generating functions of da,b,k

and ha,b,k. It is known that da,b,k equals
(
a+k−1
k−1

)(
b+k−1
k−1

)
. Therefore,

∞∑
a=0

∞∑
b=0

da,b,kx
ayb =

( ∞∑
a=0

(
a+ k − 1

k − 1

)
xa

)( ∞∑
b=0

(
b+ k − 1

k − 1

)
yb

)

=
1

(1− x)k(1− y)k
.
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Since ha,b,k = da,b,k − da−1,b−1,k for a ≥ 1 and b ≥ 1, we have

∞∑
a=0

∞∑
b=0

ha,b,kx
ayb =

∞∑
a=0

∞∑
b=0

(da,b,k − da−1,b−1,k)x
ayb

=
1− xy

(1− x)k(1− y)k
.

Factoring out 1
(1−x)(1−y) from 1−xy

(1−x)k(1−y)k
and expanding it as a series yield

∞∑
a=0

∞∑
b=0

ha,b,kx
ayb =

1− xy
(1− x)k−1(1− y)k−1

1

(1− x)(1− y)

=

( ∞∑
r=0

∞∑
s=0

hr,s,k−1x
rys

) ∞∑
i=0

∞∑
j=0

xiyj


=

∞∑
a=0

∞∑
b=0

 a∑
j=0

b∑
l=0

hj,l,k−1

xayb.

Hence ha,b,k =
∑a

j=0

∑b
l=0 hj,l,k−1 and the proof is complete.

Remark 6.1. In the argument above, we expand the factor 1
(1−x)(1−y) from

1−xy
(1−x)k(1−y)k

and obtain the identity

ha,b,k =

a∑
j=0

b∑
l=0

hj,l,k−1da−j,l−b,1,

with da−j,l−b,1 = 1. Similarly, for positive integer r satisfying r < k, we can

expand the factor 1
(1−x)r(1−y)r from 1−xy

(1−x)k(1−y)k
and have

1− xy
(1− x)k(1− y)k

=
1− xy

(1− x)k−r(1− y)k−r
1

(1− x)r(1− y)r

=

( ∞∑
a=0

∞∑
b=0

ha,b,k−rx
ayb

) ∞∑
j=0

∞∑
l=0

dj,l,rx
jyl


=
∞∑
a=0

∞∑
b=0

 a∑
j=0

b∑
l=0

hj,l,k−rda−j,b−l,r

xmyn,

which implies that

ha,b,k =
a∑
j=0

b∑
l=0

hj,l,k−rda−j,b−l,r.
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This observation suggests the existence of mappings sending the orthogonal

basis of Ha,b(Ck−r) to Hm,n(Ck) and spanning the whole space. We’ll see

a higher dimensional analogue of Lemma 6.3 and Theorem 6.1 in the next

section.

The polynomials qa,b,m,n in Lemma 6.3 are special functions and are

interesting on their own. Theorems in the rest of this section demonstrate

the relation of qa,b,m,n to Jacobi polynomials and zonal harmonics.

Theorem 6.2. For z ∈ Cn−1 and w, let Qa,b,m,n(w, w̄) = qa,b,m,n(z, z̄, w, w̄)

on S2k−1. Then for any fixed a and b, {Qa,b,m,n}∞m=a,n=b are orthogonal

polynomials for the space L2(D, (1− |w|2)k+a+b−2).

Proof. Since the highest order term in Qa,b,m,n is wm−aw̄n−b, {Qa,b,m,n}∞m,n
already forms a complete system for P (C). It suffices to show that these

polynomials are orthogonal to each other in the space L2(D, (1−|w|2)k+a+b−2).

For p ∈ Ha,b(S2k−3), we let Mm,n denote the mapping from Ha,b(S2k−3) to

Hm,n(S2k−1):

Mm,n(p) = pqa,b,m,n.

For simplicity, we just use the notation qm,n for qa,b,m,n andQm,n forQa,b,m,n.

By Theorem 6.1 and Lemma 6.1, Mm,n(p) ∈ Hm,n(S2k−1). Thus when

(m1, n1) 6= (m2, n2), we have:

0 =〈Mm1,n1(p),Mm2,n2(p)〉

=

∫
S2k−1

|p|2qm1,n1qm2,n2dσ

=

∫
S2k−1

|p|2Qm1,n1Qm2,n2dσ.

Substituting zi =
√

1− |w|2ti yields∫
S2k−1

|p|2Qm1,n1Qm2,n2dσ

=

∫
B
Qm1,n1Qm2,n2

∫
S2k−3

|p(z, z̄)|2(1− |w|2)k−2dσ(t)dσ(w)

=

∫
B
Qm1,n1Qm2,n2

∫
S2k−3

(1− |w|2)k+a+b−2|p(t, t̄)|2dσ(t)dσ(w)

=

∫
B
Qm1,n1Qm2,n2(1− |w|2)k+a+b−2dσ(w)

∫
S2k−3

|p|2dσ(t)

=

∫
B
Qm1,n1Qm2,n2(1− |w|2)k+a+b−2dσ(w)〈p, p〉. (6.13)

65



Noting that 〈p, p〉 6= 0, we have∫
B
Qm1,n1Q̄m2,n2(1− |w|2)k+a+b−2dσ(w) = 0.

Thus Qm,n’s are orthogonal in L2(B, (1− |w|2)k+a+b−2).

The polynomials Qm,n form an orthogonal system for the function space

L2(B, (1 − |w|2)k+a+b−2dσ(w)). The following corollary shows that these

polynomials are related to orthogonal polynomials:

Corollary 6.1. Let Jna,b be the Jacobi polynomial of degree n with the pair

(a, b) such that Jna,b(1) = 1; i.e. {Jna,b}∞n=0 is an orthogonal basis for the real

function space L2([−1, 1], (1− x)a(1 + x)bdx). Then we have:

Qm,n =

wm−a−n+bJnk+a+b−2,m−a−n+b(2|w|2 − 1) m− a ≥ n− b

w̄n−b−m+aJmk+a+b−2,n−b−m+a(2|w|2 − 1) m− a < n− b
(6.14)

Proof. We provide the proof for m−a ≥ n− b. The proof for the other case

is similar. Let j = m− a− n+ b and we consider the integral∫
B
Qn1+j,n1Qn2+j,n2(1− |w|2)k+a+b−2dσ(w). (6.15)

Applying (6.7) of Lemma 6.3 yields:

Qn+j,n = wj
n−b∑
i=0

ci|w|2i(1− |w|2)i. (6.16)

Set pn(|w|2) equal to
∑n−b

i=0 ci|w|2i(1−|w|2)i. By substituting (6.16) to (6.15)

and using polar coordinates, the integral (6.15) becomes:∫ 1

0

∫ 2π

0
pn1(r2)pn2(r2)(1− r2)k+a+b−2r2j+1dθdr. (6.17)

Substituting t = 2r2 − 1 to (6.17), we obtain:

2π

∫ 1

−1
pn1

(
t+ 1

2

)
pn2

(
t+ 1

2

)(
t− 1

2

)k+a+b−2( t+ 1

2

)j
dt. (6.18)

When n1 6= n2, the integral (6.15) vanishes. Hence (6.18) also equals zero.

Since pn( t+1
2 ) is a polynomial of degree n, the set {pn( t+1

2 )} forms an orthog-

onal basis for L2([−1, 1], (1− x)a(1 + x)bdx) and pn( t+1
2 ) = cnJ

n
k+a+b−2,j(t).
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Note that pn(1+1
2 ) = c0 = 1 and Jnk+a+b−2,j(1) = 1. We have cn = 1 for all

n and therefore (6.14) holds.

When both a = 0 and b = 0, the polynomial q0,0,m,n is in Hm,n(S2k−1).

Set q̃m,n = q0,0,m,n. Lemma 6.1 implies that q̃m,n only depends on w, w̄

and |z|2 and uniquely determined by m and n. On the other hand, w, w̄

and |z|2 are the lowest order elements in P (Ck) that are invariant under the

unitary group U(k − 1)(z). Hence up to a constant coefficient, q̃m,n is the

unique U(k − 1)(z) invariant element in Hm,n(S2k−1). The next theorem

shows that, up to a constant factor, q0,0,m,n equals the zonal harmonics of

Hm,n(S2k−1) valued at certain point.

Let {sj} denote an orthonormal basis for Hm,n(S2k−1). The zonal har-

monics Sm,n(ẑ, ζ) is the function satisfying:

Sm,n(ẑ, ζ) =

hm,n,k∑
j=1

sj(ẑ)sj(ζ), (6.19)

where ẑ, ζ ∈ Ck with ẑ = (z, w). We show below that Sm,n is well-defined

and invariant under the unitary group U(k)(ẑ).

Lemma 6.5. Sm,n(ẑ, ζ) is invariant under the unitary group U(k)(ẑ).

Proof. First, we prove that Sm,n(ẑ, ζ) is well-defined. For any orthonormal

basis chosen, the series in (6.19) corresponds to the projection map from

L2(S2k−1) to Hm,n(S2k−1): for any f ∈ L2(S2k−1),

∫
S2k−1

hm,n,k∑
j=1

sj(ẑ)sj(ζ)f(ζ)dσ(ζ) =

hm,n,k∑
j=1

〈f, sj〉sj(ẑ). (6.20)

Thus Sm,n(ẑ, ζ) is independent of the choice of orthonormal basis. It suffices

to show that any T ∈ U(k)(ẑ) send orthonormal basis to orthonormal basis.

Let {sj(ζ)}hm,n,kj=1 be an orthonormal basis for Hm,n(S2k−1). {sj(Tζ)}hm,n,kj=1 .

〈sj(Tζ), sl(Tζ)〉 =

∫
S2k−1

sj(Tζ)sl(Tζ)dσ(ζ)

=

∫
S2k−1

sj(Tζ)sl(Tζ)dσ(Tζ)

=

∫
S2k−1

sj(ζ)sl(ζ)dσ(ζ) = 〈sj , sl〉.

Hence, for any T ∈ U(k)(ẑ), functions sj(Tζ) still form an orthonormal
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basis. By the well-definedness of Sm,n, we have:

Sm,n(ẑ, ζ) =

hm,n,k∑
j=1

sj(T ẑ)sj(Tζ) = Sm,n(T (ẑ), T (ζ)).

Theorem 6.3. Let {sj(z, w)}hm,n,kj=1 be an arbitrary orthonormal basis for

Hm,n(S2k−1), then

q̃m,n = cm,n,k

hm,n,k∑
j=1

sj(z, w)sj(0, 1), (6.21)

where cm,n,k = σ(S2k−1)
hm,n,k

.

Proof. We first show that the right hand side of (6.21) is invariant under

U(k − 1)(z). Since U(k − 1)(z) ⊆ U(k)(ẑ), we have for any T ∈ U(k − 1)(z),

q̃m,n(z, w) =

hm,n,k∑
j=1

sj(z, w)sj(0, 1) =

hm,n,k∑
j=1

sj(Tz,w)sj(0, 1) = q̃m,n(Tz,w).

To compute cm,n,k, we consider Q̃m,n := Q0,0,m,n. Since Q̃m,n equals q̃m,n

on S2k−1, we have on S2k−1 that:

Q̃m,n(w) = q̃m,n(z, w) = cm,n,k

hm,n,k∑
j=1

sj(z, w)sj(0, 1). (6.22)

For fixed ζ ∈ S2k−1, let T be a unitary transformation in U(k)(ẑ) such that

Tζ = (0, 1). Then for any ẑ ∈ S2k−1, there exists a θ ∈ Ck−1 such that

T−1(θ, 〈ẑ, ζ〉) = (z, w) = ẑ. Since ẑ ∈ S2k−1, we have (θ, 〈ẑ, ζ〉) ∈ S2k−1 and

||θ||2 = 1− |〈ẑ, ζ〉|2||θ||2. Therefore on S2k−1,

Q̃m,n(〈ẑ, ζ〉) = cm,n,k

hm,n,k∑
j=1

sj (θ, 〈ẑ, ζ〉) sj(0, 1)

= cm,n,k

hm,n,k∑
j=1

sj
(
T−1(θ, 〈ẑ, ζ〉)

)
sj (T−1(0, 1))

= cm,n,k

hm,n,k∑
j=1

sj(z, w)sj(ζ) = cm,n,k

hm,n,k∑
j=1

sj(ẑ)sj(ζ). (6.23)
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Setting ẑ = ζ and integrating both sides of (6.23) on S2k−1 yields

σ
(
S2k−1

)
=

∫
S2k−1

Q̃m,n(1)dσ(ζ)

=

∫
S2k−1

cm,n,k

hm,n,k∑
j=1

|sj(ζ)|2dσ(ζ)

=cm,n,khm,n,k.

Therefore cm,n,k = σ(S2k−1)
hm,n,k

.

6.3 A higher dimensional analogue

Corollary 6.2. Let r be a positive integer satisfying r < k. Let Ma,b,r,α,β

denote a map sending orthogonal basis of each Ha,b(S2k−1−2r) to orthogonal

set of Hm,n(S2k−1). Then we have:

Hm,n

(
S2k−1

)
=

m,n⊕
a=0,b=0

⊕
||α||=m−a,||β||=n−b

Ma,b,r,α,β

(
Ha,b

(
S2k−2r−1

))
(6.24)

Proof. By Remark 6.1, the dimension of spaces on both sides of (6.24) are

the same. Let (z, w) ∈ Ck−r × Cr. For every p ∈ Ha,b(S2k−2r−1) we let

Ma,b,r,α,β(p) = p(z, z̄)q(z, z̄, w, w̄) where p(z, z̄)q(z, z̄, w, w̄) is the harmoniza-

tion of wαw̄βp(z, z̄). To see this harmonization exists for the multivariable

case, we just need to repeat the process of Lemma 1 several times.

Remark 6.2. Note that when r = k − 1, we have

Ha,0(S1) = Pa,0(S1), H0.b

(
S1
)

= P0,b

(
S1
)
,

and Ha,b(S1) = ∅ when both a and b are not zero. If we start from Ha,b(S1)

and consider the mapping Ma,b,k−1,α,β, then the proof of Corollary 6.2 sug-

gest an explicit basis for Hm,n(S2k−1). Such a basis and the decomposition

(6.24) was first given by Ikeda and Keyama in [IK67], where they obtained

(6.7) in Lemma 6.4 using special coordinates and the method of separation

of variables. Later, Koornwinder gave a different proof for (6.24) using spe-

cial functions and obtained an addition formula for Jacobi polynomials. In

both their approaches, the explicit basis they obtained depends on the which

order new variables wj were added.

For example, when p(z, z̄) = z ∈ H1,0(S1) and wαw̄β = |w1|2|w2|2w2, we
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have two different mappings that send p(z, z̄) to the space H4,2(S5):

z // z(|w1|2 − 1
2 |z|

2) // zw2(|w1|2 − 1
2 |z|

2)
(
|w2|2 − 1

2(|z|2 + |w1|2)
)
.

z // zw2(|w2|2 − |z|2) // zw2(|w2|2 − |z|2)
(
|w1|2 − 1

5(|z|2 + |w2|2)
)
.

The mapping in upper line sends z to the space H2,1(S3) with the new vari-

able w1 first and then to the space H4,2(S5) with the new variable w2. The

mapping in lower line sends z to the space H3,1(S3) with the new variable

w2 first and then to the space H4,2(S5) with the new variable w1.

A construction of an ”order-invariant” Ma,b,r,α,β could be done by an

analogue of Theorem 6.1 and Lemma 6.3. Such a map directly sends the

element of Ha,b(S2k−2r−1) into Hm,n(S2k−1) without passing through the

intermediate spaces. The following lemma is a higher dimensional analogue

of Lemma 6.3.

Lemma 6.6. Let z ∈ Ck−r and w ∈ Cr. For wαw̄β ∈ Pm−a,n−b(Cr) and

p(z, z̄) ∈ Ha,b(S2k−3), there exists a unique sequence {ca,b} starting with

c0,0 = 1 such that the polynomial

p(z, z̄)

min{m−a,n−b}∑
i=0

∑
|a|=i,|b|=i

ca,bw
α−aw̄β−b‖z‖2i (6.25)

is in Hm,n(S2k−1) whenever p(z, z̄) ∈ Ha,b(S2k−3).

Proof. It suffices to prove that there exists ca,b’s such that 4(qa,b,α,βp) = 0.

Set 4z =
∑k−r

j=1
∂
∂zj

∂
∂z̄j

and 4w =
∑r

j=1
∂
∂wj

∂
∂w̄j

. Then

4 (qa,b,α,βp)

=4z (qa,b,α,βp) +4w (qa,b,α,βp)

=p4z qa,b,α,β +

k−r∑
t=1

(
∂

∂zt
qa,b,α,β

∂

∂z̄t
p+

∂

∂z̄t
qa,b,α,β

∂

∂zt
p

)
+ p4w qa,b,α,β

=p4 qa,b,α,β +

k−r∑
t=1

(
∂

∂zt
qa,b,α,β

∂

∂z̄t
p+

∂

∂z̄t
qa,b,α,β

∂

∂zt
p

)
. (6.26)
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Set (i) = p4 qa,b,α,β. Set (ii) equal to the sum in (6.26). Then

(i) =p

min{m−a,n−b}∑
i=0

∑
|a|=i,|b|=i

(
i(i+ k − 2)ca,bw

α−aw̄β−b‖z‖2i−2

+
r∑
j=1

(αj − aj)(βj − bj)ca,bwα−a−1j w̄β−b−1j‖z‖2i
)

=p

min{m−a,n−b}∑
i=1

∑
|a|=i,|b|=i

Ca,bw
α−aw̄β−b‖z‖2i−2,

where Ca,b = i(i + k − 2)ca,b +
∑r

j=1(αj − aj + 1)(βj − bj + 1)ca−1j ,b−1j .

For (ii), we have

(ii) = p

min{m−a,n−b}∑
i=1

∑
|a|=i,|b|=i

i(a+ b)ca,bw
α−aw̄β−b‖z‖2i−2.

Hence 4(qa,b,α,βp) = 0 if and only if {ca,b} satisfies:

ca,b = −
∑r

j=1(αj − aj + 1)(βj − bj + 1)ca−1j ,b−1j
i(i+ a+ b+ k − 2)

. (6.27)

Formula (6.27) uniquely determine the {ca,b} given that c0,0 = 1.

Let qa,b,α,β denote the polynomial

min{m−a,n−b}∑
i=0

∑
|a|=i,|b|=i

ca,bw
α−aw̄β−b‖z‖2i. (6.28)

ThenMa,b,α,β(p) := pqa,b,α,β defines a mapping from the spaceHa,b(S2k−2r−1)

to the space Hm,n(S2k−1). The following corollary shows that such mapping

induces a decomposition for Hm,n(S2k−1).

Corollary 6.3. Let Ma,b,α,β as above. Then the mapping Mab,α,β preserves

the orthogonality. Moreover,

Hm,n

(
S2k−1

)
=

m,n⊕
a=0,b=0

⊕
|α|=m−a,|β|=n−b

Ma,b,α,β

(
Ha,b

(
S2k−2r−1

))
. (6.29)

Proof. By the Remark 6.1, we have

dim
(
Hm,n

(
S2k−1

))
=

m,n∑
a=0,b=0

∑
|α|=m−a,|β|=n−b

dim
(
Ha,b

(
S2k−2r−1

))
.
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It suffices to show that elements in spaces Ma,b,α,β

(
Ha,b(S2k−2r−1)

)
are lin-

early independent.

For pj , pl ∈
⊕m,n

a=0,b=0Ha,b(S2k−2r−1) such that 〈pj , pl〉 = 0 in L2(S2k−2r−1),

similar argument in the proof of Theorem 6.1 shows that in L2(S2k−1)

〈Ma,b,α,β(pj),Ma,b,α,β(pl)〉 = 0.

ThereforeMa,b,α,β preserve the orthogonality of the elements inHa,b(S2k−2r−1),

and Ma,b,α,β

(
Ha1,b1(S2k−2r−1)

)
is orthogonal to Ma,b,α,β

(
Ha2,b2(S2k−2r−1)

)
when (a1, b1) 6= (a2, b2).

The highest order term of qa,b,α,β in w and w̄ is wαw̄β. Polynomials

qa,b,α1,α2 and qa,b,α1,α2 are linearly independent for (α1, β1) 6= (α2, β2). Thus

elements in Ma,b,α1,β1

(
Ha1,b1(S2k−2r−1)

)
and Ma,b,α2,β2

(
Ha1,b1(S2k−2r−1)

)
are also linearly independent and (6.29) holds.

Remark 6.3. Unlike in Theorem 6.1, the spaces Ma,b,α,β

(
Ha,b(S2k−2r−1)

)
with different α and β are not necessarily orthogonal to each other. For

example, when r ≥ 4, the polynomials qa,b,α1,β1 and qa,b,α2,β2 with leading

term w1w̄2 and w3w̄4 are not orthogonal in L2(Br, (1−‖w‖2)k+a+b−1−rdV ).

Therefore pqa,b,α1,β1 is not orthogonal to pqa,b,α2,β2 in L2(S2k−1).
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