
c© 2016 Srijan Sengupta

STATISTICAL ANALYSIS OF NETWORKS WITH COMMUNITY
STRUCTURE AND BOOTSTRAP METHODS FOR BIG DATA

BY

SRIJAN SENGUPTA

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Statistics

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Doctoral Committee:

Professor Yuguo Chen, Co-Chair
Associate Professor Xiaofeng Shao, Co-Chair
Professor John Marden
Professor Douglas Simpson

ABSTRACT

This dissertation is divided into two parts, concerning two areas of statistical

methodology. The first part of this dissertation concerns statistical analysis

of networks with community structure. The second part of this dissertation

concerns bootstrap methods for big data.

Statistical analysis of networks with community structure:

Networks are ubiquitous in today’s world — network data appears from var-

ied fields such as scientific studies, sociology, technology, social media and

the Internet, to name a few. An interesting aspect of many real-world net-

works is the presence of community structure and the problem of detecting

this community structure.

In the first chapter, we consider heterogeneous networks which seems to

have not been considered in the statistical community detection literature.

We propose a blockmodel for heterogeneous networks with community struc-

ture, and introduce a heterogeneous spectral clustering algorithm for com-

munity detection in heterogeneous networks. Theoretical properties of the

clustering algorithm under the proposed model are studied, along with sim-

ulation study and data analysis.

A network feature that is closely associated with community structure

is the popularity1 of nodes in different communities. Neither the classical

stochastic blockmodel nor its degree-corrected extension can satisfactorily

capture the dynamics of node popularity. In the second chapter, we propose

a popularity-adjusted blockmodel for flexible modeling of node popularity. We

establish consistency of likelihood modularity for community detection under

the proposed model, and illustrate the improved empirical insights that can

be gained through this methodology by analyzing the political blogs network

1Popularity is defined as the number of edges between a specific node and a specific
community.

ii

and the British MP network, as well as in simulation studies.

Bootstrap methods for big data:

Resampling methods provide a powerful method of evaluating the precision of

a wide variety of statistical inference methods. The complexity and massive

size of big data makes it infeasible to apply traditional resampling methods

for big data.

In the first chapter, we consider the problem of resampling for irregularly

spaced dependent data. Traditional block-based resampling or subsampling

schemes for stationary data are difficult to implement when the data are ir-

regularly spaced, as it takes careful programming effort to partition the sam-

pling region into complete and incomplete blocks. We develop a resampling

method called Dependent Random Weighting (DRW) for irregularly spaced

dependent data, where instead of using blocks we use random weights to

resample the data. By allowing the random weights to be dependent, the de-

pendency structure of the data can be preserved in the resamples. We study

the theoretical properties of this resampling methods as well as its numerical

performance in simulations.

In the second chapter, we consider the problem of resampling in massive

data, where traditional methods like bootstrap (for independent data) or

moving block bootstrap (for dependent data) can be computationally infea-

sible since each resample has effective size of the same order as the sample.

We develop a new resampling method called subsampled double bootstrap

(SDB) for both independent and stationary data. SDB works by choosing

small random subsets of the massive data, and then constructing a single

resample from that subset using bootstrap (for independent data) or moving

block bootstrap (for stationary data). We study theoretical properties of

SDB as well as its numerical performance in simulated data and real data.

Extending the underlying ideas of the second chapter, we introduce two

new resampling strategies for big data in Chapter 3. The first strategy is

called aggregation of little bootstraps or ALB, a generalized resampling tech-

nique that includes the SDB as a special case. The second strategy is called

subsampled residual bootstrap or SRB, a fast version of residual bootstrap

intended for massive regression models. We study both methods through

simulations.

iii

This thesis is dedicated to two beautiful, brilliant, spirited ladies:

to my wife, Swarnali Sanyal, for being an amazing partner and friend, a

steadfast source of support, and a wonderfully patient sounding board, and

to my little niece, Roopkotha Guha, for being a source of absolute joy, whose

growing up is the biggest thing I regret missing while working on this thesis.

iv

ACKNOWLEDGMENTS

I would like to gratefully acknowledge my advisors, Professor Yuguo Chen

and Professor Xiaofeng Shao, for their mentorship, guidance, and support

during the preparation of this thesis. I am grateful to Professor Douglas

Simpson and Professor John Marden for being in my dissertation committee

and for helpful suggestions.

I would like to thank the Department of Statistics at the University of

Illinois at Urbana-Champaign for providing me the opportunity and the re-

sources to pursue my doctoral degree. I am privileged to have had the op-

portunity to interact with many smart, friendly peers in the department and

the university.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . x

CHAPTER 1 INTRODUCTION . 1
1.1 Statistical analysis of networks with community structure . . . 1
1.2 Bootstrap methods for big data 3

CHAPTER 2 SPECTRAL CLUSTERING IN HETEROGENEOUS
NETWORKS . 5
2.1 Introduction . 5
2.2 Graph Theoretic Notation . 8
2.3 Stochastic Blockmodel and Degree Corrected Blockmodel

for Heterogeneous Networks 9
2.4 Spectral Clustering and Regularized Spectral Clustering 12
2.5 Convergence of Heterogenous Spectral Clustering 15
2.6 Simulation Results . 19
2.7 DBLP Four-Area Dataset Example 26
2.8 Discussion . 30
2.9 Proof of Theorem 1 . 30

CHAPTER 3 A BLOCKMODEL FOR NODE POPULARITY IN
NETWORKS WITH COMMUNITY STRUCTURE 33
3.1 Introduction . 33
3.2 Model . 36
3.3 Likelihood modularity for PABM 42
3.4 Consistency of likelihood modularity 44
3.5 Simulation study . 47
3.6 Data analysis . 50
3.7 Discussion . 54
3.8 Proofs of theoretical results 55

CHAPTER 4 THE DEPENDENT RANDOM WEIGHTING 64
4.1 Introduction . 64
4.2 DRW for Time Series . 65

vi

4.3 Simulation results . 71
4.4 Conclusion . 72
4.5 Proofs of theoretical results 73

CHAPTER 5 A SUBSAMPLED DOUBLE BOOTSTRAP FOR
MASSIVE DATA . 81
5.1 Introduction . 81
5.2 SDB for independent data . 85
5.3 Theory for independent data 88
5.4 Simulation study for independent data 90
5.5 SDB for time series data . 96
5.6 Theory for dependent data . 98
5.7 Simulation study for time series 99
5.8 Data Analysis . 101
5.9 Discussion . 104
5.10 Proofs of theoretical results 106
5.11 Supplementary simulation results 117

CHAPTER 6 RESAMPLING STRATEGIES FOR BIG DATA 124
6.1 Aggregation of little bootstraps 124
6.2 Subsampled residual bootstrap 128
6.3 Future directions . 133

REFERENCES . 136

vii

LIST OF TABLES

3.1 Illustrative nodes for political blogs, with popularities fit by DCBM

inside parantheses. 34
3.2 Illustrative nodes for British MPs. Identities were looked up using

tweeterid.com. 34
3.3 Community detection error rates (number of misclustered

nodes in brackets) . 53
3.4 Goodness of fit measures for node popularity 53
3.5 Illustrative nodes for political blogs (regularized EP). 53
3.6 Illustrative nodes for British MPs. Identities of the nodes of this

network were looked up using tweeterid.com. Abbreviations: Comm

= community. 53

4.1 Top panel: the normalized MSEs for the bootstrap variance esti-

mators of nvar[median(x1, · · · , xn)] using (a) The grid based block

bootstrap (b) The dependent random weighting. The box for each

row indicates the smallest normalized MSE among ln = 1, · · · , 10.

Bottom panel: the empirical coverage (in percent) for the bootstrap-

based confidence intervals of the median using (a) and (b). The box

for each row indicates the best coverage among ln = 1, · · · , 10 (Nom-

inal level is 95%). 77
4.2 Top panel: the normalized MSEs for the bootstrap variance estima-

tors of nvar(x̄n) using (a) The dependent wild bootstrap (b) The

dependent random weighting (c) The grid based block bootstrap.

The box for each row indicates the smallest normalized MSE among

l = 1, · · · , 10. Bottom panel: the empirical coverage (in percent) for

the bootstrap-based confidence intervals of the mean using (a), (b)

and (c). The box for each row indicates the best coverage among

ln = 1, · · · , 10 (Nominal level is 95%). 78

viii

4.3 Top panel: the normalized MSEs for the bootstrap variance estima-

tors of nvar(median(X1, · · · , Xn)) using (a) The grid based block

bootstrap (b) The dependent random weighting . The box for each

row indicates the smallest normalized MSE among l = 1, · · · , 10.

Bottom panel: the empirical coverage (in percent) for the bootstrap-

based confidence intervals of the median using (a) and (b). The box

for each row indicates the best coverage among ln = 1, · · · , 10 (Nom-

inal level is 95%). 2D-case: n = 200, 400, λn = 18, 36 and ρ = 1 is

fixed. 79
4.4 Top panel: the normalized MSEs for the bootstrap variance estima-

tors of nvar(x̄n) using (a) The dependent wild bootstrap (b) The

dependent random weighting (c) The grid based block bootstrap.

The box for each row indicates the smallest normalized MSE among

l = 1, · · · , 10. Bottom panel: the empirical coverage (in percent) for

the bootstrap-based confidence intervals of the mean using (a), (b)

and (c). The box for each row indicates the best coverage among

ln = 1, · · · , 10 (Nominal level is 95%). 2D-case: n = 200, 400,

λn = 18, 36 and ρ = 1 is fixed. 80

5.1 Estimation time for different resampling methods 88

6.1 Results for b = n0.8 after full run 127
6.2 Results for b = n0.7 after full run, with same (S,R) values

as in Table 2 . 128
6.3 Results for b = n0.7 after full run 128

ix

LIST OF FIGURES

2.1 Sample heterogeneous network with T = 2, K = 3 and N =
30, with 5 type 1 nodes (circles) and 5 type 2 nodes (squares)
in each block. Solid lines (black for intra-block, gray for
inter-block) represent type 1-type 1 links, while dotted gray
lines represent type 1-type 2 links. The homogeneous type
1-type 1 subnetwork is approximately enclosed in the circle. . 12

2.2 For simulation 1, Hom-SC errors are represented as ‘-’ for r1 = r2 =

0.1 and ‘+’ for r1 = r2 = 0.15, while Het-SC errors are represented

by solid lines for r1 = r2 = 0.1 and dashed lines for r1 = r2 = 0.15.

For simulations 2 and 3, Hom-SC errors are represented as ‘-’ for

r1 = 0.1 and ‘+’ for r1 = 0.15, while Het-SC errors are represented

by solid lines for r1 = 0.1, and dashed lines for r1 = 0.15. 24
2.3 For simulation 1, Hom-RSC errors are represented as ‘-’ for r1 = r2 =

0.1 and ‘+’ for r1 = r2 = 0.15, while Het-RSC errors are represented

by solid lines for r1 = r2 = 0.1 and dashed lines for r1 = r2 = 0.15.

For simulations 2 and 3, r2 = 0, and Hom-RSC errors are represented

as ‘-’ for r1 = 0.1 and ‘+’ for r1 = 0.15, while Het-RSC errors are

represented by solid lines for r1 = 0.1, and dashed lines for r1 = 0.15. . 25
2.4 DBLP author degree distribution of homogeneous author

collaboration network (left column), heterogeneous author-
paper-conference network (middle column), and hetero-
geneous author-conference network (right column). His-
tograms (top row) of author node degrees have high fre-
quency of low degrees, indicating that the author nodes
are sparsely connected. The bottom row shows that the
log empirical tail distributions log10(1− F̂ (x)) are roughly
linear, suggesting power-law behavior of author node de-
grees. 29

x

3.1 Community detection error and popularity estimation error plots

from simulation study, where squares represent PABM errors and

dots represent DCBM errors. The top row displays community de-

tection errors measured by ξn from (3.11), and the middle and bottom

rows display estimation errors E1 and E2 from (3.13) and (3.14). We

use sample sizes n = 400 (left) and n = 1000 (right). Homophily

factor is increased from h = 1.5 to h = 4 in increments of 0.5. The

PABM modularity performs accurate community detection and pop-

ularity estimation, whereas results from DCBM are substantially poorer. 51

5.1 Time evolution of error rates for multiple linear regression
with d=100 (left column) and multiple logistic regression
with d=10 (right column). Sample size n=100000, subset
size is b = nγ where γ = 0.6 (top row), γ = 0.7 (middle
row) and γ = 0.8 (bottom row). Bootstrap errors are rep-
resented by solid lines, BLB errors by dashed lines, and
SDB errors by dotted lines. Errors are averaged over 20
simulations. 95

5.2 AR(1) simulation results with ξ = 95% quantile of Tn =√
n(Mn −M), sample size n=100000, block length L=50,

autocorrelation ρ = -0.8 (top row), 0.5 (middle row), 0.9
(bottom row), and subset size b = 5000 (left column) ,10000
(right column). The plot displays the time evolution of
error rates from 20 simulations when each method was al-
lowed to run for 120 seconds. MBB errors are in solid lines,
BLB in dashed lines, and SDB in dottted lines. 102

5.3 AR(1) simulation results with ξ = 5% quantile of Tn =√
n(Mn −M), sample size n=100000, block length L=50,

autocorrelation ρ = -0.8 (top row), 0.5 (middle row), 0.9
(bottom row), and subset size b = 5000 (left column) ,10000
(right column). The plot displays the time evolution of
error rates from 20 simulations when each method was al-
lowed to run for 120 seconds. MBB errors are in solid lines,
BLB in dashed lines, and SDB in dottted lines. 103

5.4 Time series regression simulation results with ξ = 95%
quantile of Tn = MSM/MSE, sample size n=100000, di-
mension d = 10, block length L=50, autocorrelation ρ =
-0.8 (top row), 0.5 (middle row), 0.9 (bottom row), and
subset size b = 5000 (left column) ,10000 (right column).
The plot displays the time evolution of error rates from
20 simulations when each method was allowed to run for
60 seconds. MBB errors are in solid lines, BLB in dashed
lines, and SDB in dottted lines. 104

xi

5.5 Time evolution of ξ̂ for CET dataset (measured in Celsius),
where ξ = (q0.95− q0.05) is the width of the 90% confidence
interval for µ based on Tn =

√
n(X̄−µ). MBB was allowed

to run for 600 seconds and BLB, SDB for 300 seconds.
Block length L=50 (top row), 20 (middle row), 10 (bottom
row), and subset size b = 5000 (left column) ,10000 (right
column). MBB estimates are in solid lines, BLB in dashed
lines, and SDB in dottted lines. 105

5.6 AR(1) simulation results with ξ = 95% quantile of Tn =√
n(Mn −M), sample size n=100000, block length L=10,

autocorrelation ρ = -0.8 (top row), 0.5 (middle row), 0.9
(bottom row), and subset size b = 5000 (left column) ,10000
(right column). The plot displays the time evolution of
error rates from 20 simulations when each method was al-
lowed to run for 120 seconds. MBB errors are in solid lines,
BLB in dashed lines, and SDB in dottted lines. 118

5.7 AR(1) simulation results with ξ = 95% quantile of Tn =√
n(Mn −M), sample size n=100000, block length L=20,

autocorrelation ρ = -0.8 (top row), 0.5 (middle row), 0.9
(bottom row), and subset size b = 5000 (left column) ,10000
(right column). The plot displays the time evolution of
error rates from 20 simulations when each method was al-
lowed to run for 120 seconds. MBB errors are in solid lines,
BLB in dashed lines, and SDB in dottted lines. 119

5.8 AR(1) simulation results with ξ = 5% quantile of Tn =√
n(Mn −M), sample size n=100000, block length L=10,

autocorrelation ρ = -0.8 (top row), 0.5 (middle row), 0.9
(bottom row), and subset size b = 5000 (left column) ,10000
(right column). The plot displays the time evolution of
error rates from 20 simulations when each method was al-
lowed to run for 120 seconds. MBB errors are in solid lines,
BLB in dashed lines, and SDB in dottted lines. 120

5.9 AR(1) simulation results with ξ = 5% quantile of Tn =√
n(Mn −M), sample size n=100000, block length L=20,

autocorrelation ρ = -0.8 (top row), 0.5 (middle row), 0.9
(bottom row), and subset size b = 5000 (left column) ,10000
(right column). The plot displays the time evolution of
error rates from 20 simulations when each method was al-
lowed to run for 120 seconds. MBB errors are in solid lines,
BLB in dashed lines, and SDB in dottted lines. 121

xii

5.10 Time series regression simulation results with ξ = 95%
quantile of Tn = MSM/MSE, sample size n=100000, di-
mension d = 10, block length L=10, autocorrelation ρ =
-0.8 (top row), 0.5 (middle row), 0.9 (bottom row), and
subset size b = 5000 (left column), 10000 (right column).
The plot displays the time evolution of error rates from
20 simulations when each method was allowed to run for
150 seconds. MBB errors are in solid lines, BLB in dashed
lines, and SDB in dottted lines. 122

5.11 Time series regression simulation results with ξ = 95%
quantile of Tn = MSM/MSE, sample size n=100000, di-
mension d = 10, block length L=20, autocorrelation ρ =
-0.8 (top row), 0.5 (middle row), 0.9 (bottom row), and
subset size b = 5000 (left column), 10000 (right column).
The plot displays the time evolution of error rates from
20 simulations when each method was allowed to run for
90 seconds. MBB errors are in solid lines, BLB in dashed
lines, and SDB in dottted lines. 123

6.1 Time evolution of error rates for multiple linear regression with d=100,

averaged over 50 simulations. Sample size n = 105, subset size is

b = n0.7 (top, middle), b = n0.8 (bottom). Bootstrap errors are in

solid red, SDB in solid blue, BLB in solid black, and ALB errors in

dotted black. For b = n0.7, we have S(R + 1) = 500 in the top row,

S(R + 1) = 200 in the middle row. For clarity we have only plotted

S = 1, 2, 3, 4, 5 for b = n0.7 in the top row. 129
6.2 Time evolution of error rates. The red bar is the Normal

Approximation error, while the errors from residual boot-
strap are in solid lines and errors from SRB are in dashed
lines. 134

xiii

CHAPTER 1

INTRODUCTION

1.1 Statistical analysis of networks with community

structure

Many complex systems in today’s world consist, at an abstract level, of agents

who interact with one another. This general agent-interaction framework de-

scribes many interesting and important systems, such as social interpersonal

systems (Milgram, 1967), protein interaction systems (Gavin et al., 2002),

power grids (Watts and Strogatz, 1998), and the World Wide Web (Huber-

man and Adamic, 1999), to name a few. Networks provide a convenient and

unified way of representing such systems arising from diverse applications. It

is therefore important to develop methodology for network data, and accord-

ingly, the science of network data has received attention from scientists in

various academic fields. A holistic introduction to the interdisciplinary study

of networks can be found in Newman (2010). Statistically oriented overview

of networks can be found in Goldenberg et al. (2010) and Kolaczyk (2009).

The early approach to network modeling, the random graph model by

Erdös and Rényi (1959), assumed that all agents behave in identical fash-

ion. The observed dissimilarity in agent behavior was assigned to random

fluctuations. This explanation might not always be appropriate, particularly

when the network displays structured dissimilarities in agent behavior. At

the other end of the modeling spectrum, one might wish to capture the ob-

served variation in agent behavior by assigning a separate model to each

individual agent. However, this might be impractical for networks beyond a

certain size, and also unnecessary.

Real world networks often exhibit a patterned dissimilarity that lies some-

where between completely identical agent behavior and completely unequal

agent behavior. The agents are often found to cluster into groups or commu-

1

nities that display similar behavior, while agents from different communities

behave differently. The identification of this network structure, called com-

munity detection, is an important problem in network analysis. Community

detection has important real-world interpretation; these communities often

turn out to be groups of agents which share common properties and/or play

similar roles within the network. For example, in Jonsson et al. (2006), the

communities in a protein interaction network turned out to be functional

groups (proteins having the same or similar function) — this conclusion has

important implications for cancer research. Fortunato (2010) provides a mul-

tidisciplinary exposition on community detection in networks.

In Chapter 2, we consider heterogeneous networks which seems to have not

been considered in the statistical community detection literaure. Many real-

world systems consist of several types of entities, and heterogeneous networks

are required to represent such systems. However, the current statistical tool-

box for network data can only deal with homogeneous networks, where all

nodes are supposed to be of the same type. This article introduces a sta-

tistical framework for community detection in heterogeneous networks. For

modeling heterogeneous networks, we propose heterogeneous versions of both

the classical stochastic blockmodel and the degree-corrected blockmodel. For

community detection, we formulate heterogeneous versions of standard spec-

tral clustering and regularized spectral clustering. We also demonstrate the

theoretical accuracy of the proposed heterogeneous methods for networks

generated from the proposed heterogeneous models. Our simulations estab-

lish the superiority of proposed heterogeneous methods over existing homoge-

neous methods in finite networks generated from the models. An analysis of

the DBLP four-area data demonstrates the improved accuracy of the hetero-

geneous method over the homogeneous method in identifying research areas

for authors.

In ongoing work in Chapter 3, we consider the problem of modeling of

popularity of nodes across communities, which is network feature closely as-

sociated with community structure. In this chapter we introduce a new ran-

dom graph model, called popularity-adjusted blockmodel (PABM, hereafter)

for networks with community structure. Our model incorporates popularity

parameters for each node that can take different values for different commu-

nities. The profile likelihood for this model is formulated as a modularity

function for community detection. We compare the methodology with exist-

2

ing methodology using simulated and real networks.

1.2 Bootstrap methods for big data

Given a dataset, the primary task of data analysis is usually to perform some

kind of statistical inference on this data. This inference task can be the es-

timation of a parameter of interest, the test of a statistical hypothesis, and

so on. A secondary task that is inextricably associated with any statistical

inference method, is to assess the risk or precision associated with that in-

ference. For example, suppose the goal of data analysis is the estimation of

the population mean, and this primary task of estimation is performed using

the sample mean. A natural next step would be the task of evaluating the

degree of precision of the sample mean as an estimator of the population.

A measure of the precision of an inference method usually refers to the un-

known sampling distribution of a statistic, the underlying distribution from

which the observed sample mean can be visualized as a random draw. Often

we have theoretical ideas about the sampling distributions in an asymptotic

sense, but very little empirical information, since all we observe is a single

random draw from this distribution. If it was possible to repeatedly draw

random samples from this unknown distribution, we could have more empir-

ical information on it. However, this is typically not feasible in practice. An

approximate computational method is resample — consider the sample as

a proxy for the population, and draw repeated resamples from the sample.

Resampling methods provide a general and powerful method of evaluating

the precision of a wide variety of statistical inference methods.

In chapter 4, we consider the problem of resampling for irregularly spaced

dependent data. Traditional block-based resampling or subsampling schemes

for stationary data are difficult to implement when the data are irregularly

spaced, as it takes careful programming effort to partition the sampling re-

gion into complete and incomplete blocks. We propose a new resampling

method, the dependent random weighting, for both time series and random

fields. The method is a generalization of the traditional random weighting in

that the weights are made to be temporally or spatially dependent and are

adaptive to the configuration of the data. Unlike the block-based bootstrap

or subsampling methods, the dependent random weighting can be used for

3

irregularly spaced time series and spatial data without any implementational

difficulty. Consistency of the distribution approximation is shown for both

equally and unequally spaced time series. Simulation studies illustrate the

finite sample performance of the dependent random weighting in comparison

with the existing counterparts for both one dimensional and two dimensional

irregularly spaced data.

In chapter 5, we consider the problem of resampling in massive data. The

bootstrap is a popular and powerful method for estimating precision of es-

timators and inferential methods. However, for massive datasets which are

increasingly prevalent, the bootstrap becomes prohibitively costly in compu-

tation and its feasibility is questionable even with modern parallel computing

platforms. Recently Kleiner et al. (2014) proposed a method called BLB (Bag

of Little Bootstraps) for massive data which is more computationally scalable

with little sacrifice of statistical accuracy. Building on BLB and the idea of

fast double bootstrap, we propose a new resampling method, the subsampled

double bootstrap, for both independent data and time series data. In theory,

we establish the consistency of our subsampled double bootstrap under mild

conditions for both independent and dependent cases. Methodologically, the

subsampled double bootstrap is superior to BLB in terms of running time,

more sample coverage and automatic implementation with less tuning param-

eters for a given time budget. Its advantage relative to BLB and bootstrap

is also demonstrated in numerical experiments and data illustrations.

In chapter 6, we continue studying bootstrap methods for big data appli-

cations. Extending the underlying idea of scaling down the effective sample

size, we introduce two new resampling strategies for big data. The first strat-

egy is called aggregation of little bootstraps or ALB, a generalized resampling

technique that includes the SDB as a special case. Instead of taking the mean

of estimates from different subsets (as in BLB), we aggregate all resampled

roots {T ∗∗,s,rn }s=1,...,S,r=1,...,R into a single ensemble, and compute the precision

measure from the empirical cdf of this ensemble. The second strategy is called

subsampled residual bootstrap or SRB, a fast version of residual bootstrap

intended for massive regression models. Instead of a full-size resampling of

regression residuals, we construct a subsample and use appropriate scaling

adjustments to obtain a fast alternative to classical residual bootstrap. We

study both methods through simulations.

4

CHAPTER 2

SPECTRAL CLUSTERING IN
HETEROGENEOUS NETWORKS

2.1 Introduction

Many complex systems in today’s world consist, at an abstract level, of agents

who interact with one another. This general agent-interaction framework describes

many interesting and important systems, such as social interpersonal systems (Mil-

gram, 1967), protein interaction systems (Gavin et al., 2002), power grids (Watts

and Strogatz, 1998), and the World Wide Web (Huberman and Adamic, 1999), to

name a few. Networks provide a convenient and unified way of representing such

systems arising from diverse applications. It is therefore important to develop

methodology for network data, and accordingly, the science of network data has

received attention from scientists in various academic fields. A holistic introduc-

tion to the interdisciplinary study of networks can be found in Newman (2010).

Statistically oriented overview of networks can be found in Goldenberg et al. (2010)

and Kolaczyk (2009).

The early approach to network modeling, the random graph model by Erdös and

Rényi (1959), assumed that all agents behave in identical fashion. The observed

dissimilarity in agent behavior was assigned to random fluctuations. This expla-

nation might not always be appropriate, particularly when the network displays

structured dissimilarities in agent behavior. At the other end of the modeling

spectrum, one might wish to capture the observed variation in agent behavior

by assigning a separate model to each individual agent. However, this might be

impractical for networks beyond a certain size, and also unnecessary.

Real world networks often exhibit a patterned dissimilarity that lies somewhere

between completely identical agent behavior and completely unequal agent behav-

ior. The agents are often found to cluster into groups or communities that display

similar behavior, while agents from different communities behave differently. The

identification of this network structure, called community detection, is an impor-

tant problem in network analysis. Community detection has important real-world

5

interpretation; these communities often turn out to be groups of agents which share

common properties and/or play similar roles within the network. For example, in

Jonsson et al. (2006), the communities in a protein interaction network turned out

to be functional groups (proteins having the same or similar function) — this con-

clusion has important implications for cancer research. Fortunato (2010) provides

a multidisciplinary exposition on community detection in networks.

The currently available methodologies for network data usually consider net-

works to be homogeneous, that is, the nodes in the network represent objects of

the same type and all links in the network represent the same type of relation. For

example, a friendship network, say Facebook, has nodes representing persons or

users, and links representing friendship between users. However, many real-world

systems are actually heterogeneous, in the sense that there are different types of

agents, and various kinds of interactions in the system. Consequently, networks

representing such systems are also heterogeneous, where several types of nodes and

several types of links exist in the same network. Typically, for each node or link it

is known what the type is, and a heterogeneous network contains this type infor-

mation. For example, in Facebook, nodes can represent various types of entities

like users, events, groups, celebrity pages, photos, and so on. Accordingly, there

can be various types of links: friendship link between two users, membership link

between users and groups, fan (or like) link between users and celebrities, atten-

dance link between users and events, tag link between a photo and an user, and

so on. The homogeneous ‘friendship network’ representation, that was mentioned

earlier, effectively represents only a sub-system of this system, consisting only of

‘user’ nodes and ‘friendship’ links.

To analyze a heterogeneous network using the current toolbox of homogeneous

methods and homogeneous models, there are two options — either consider a ho-

mogeneous sub-network of the original network, or treat the heterogeneous network

as a homogeneous network, suppressing the type information available in the data.

In the first approach, there is loss of useful information. In the second approach

the results might be meaningless as nodes of different types are grouped into the

same community, or the procedure might not work well due to the presence of

different types of nodes.

For example, consider a heterogeneous Facebook network consisting of two types

of nodes — users and events, and two kinds of links: user-user or friendship links,

and user-event or attendance links. Suppose network data in this form is available

for users and events corresponding to 10 universities, and the problem of interest

is to assign users to their universities using a clustering procedure. Using the

6

first option, one must carry out the analysis based on the user-user network only,

dumping the event nodes and user-event links. In this context the dumped data

can be quite important in predicting university affiliation. Using the second option,

one treats the entire network as a homogeneous network and carries out a clustering

of both users and events. However, users and events behave in very different ways,

and the clustering algorithm might not work well since it is trying to cluster these

different entities into the same clusters by comparing their behavior. Using K-

means intuition, the ‘distance’ between an user and an event, both affiliated to the

same university, might be too large.

Thus, community detection in heterogeneous network data cannot be satisfacto-

rily carried out by applying homogeneous models and methodologies. A preferable

approach is to have a procedure that uses the entire heterogeneous information,

identifies the fact that users and events are different types of entities, and clusters

nodes from different types separately but simultaneously into 10 user clusters and

10 event clusters. Since this procedure compares events to events and users to

users, the clustering should work much better.

Heterogeneous networks have begun to receive attention from various scien-

tific communities, particularly the computer science research community (Sun and

Han, 2012). This chapter provides a statistical framework to deal with hetero-

geneous network data by extending the existing homogeneous framework. For

modeling heterogeneous networks, we propose heterogeneous versions of the clas-

sical stochastic blockmodel and the degree-corrected blockmodel recently proposed

by Karrer and Newman (2011). For community detection in heterogeneous net-

works, we formulate heterogeneous versions of standard spectral clustering and

regularized spectral clustering. We also demonstrate the theoretical accuracy of

the proposed heterogeneous methods for networks generated from the proposed

heterogeneous models in the asymptotic framework of Qin and Rohe (2013).

As a real-world application of our methods, we implement our algorithm on

a large bibliographical network from DBLP with the objective of identifying re-

search area of authors. Under the existing homogeneous paradigm, the natural

choice of network would be the co-authorship network with authors as nodes. We

find that homogeneous clustering applied on the co-authorship network performs

rather poorly, with an accuracy comparable to random assignment. However, in-

terpreting the bibliographical network as a heterogeneous network (with authors,

papers and conferences treated as different types of nodes), the heterogeneous

clustering method performs quite accurate community detection.

The rest of the chapter is organized as follows. Section 2.2 outlines basic graph

7

theoretical notation that is used throughout the chapter. Section 2.3 reviews ex-

isting homogeneous blockmodels and introduces heterogeneous versions of these

models. Section 2.4 discusses the standard and regularized spectral clustering al-

gorithms and presents modified versions of these algorithms that are appropriate

for heterogeneous networks. Section 2.5 provides a brief outline of the asymptotic

framework of Qin and Rohe (2013), and demonstrates the asymptotic accuracy of

the heterogeneous algorithms under the heterogeneous models, using this frame-

work. Section 2.6 presents simulation studies demonstrating various circumstances

under which the heterogeneous methods can provide significant improvements in

clustering accuracy over the homogeneous methods. Section 2.7 presents a real-

life example of the superiority of the heterogeneous method over the homogeneous

method, using the DBLP four-area dataset. The chapter concludes with the dis-

cussion in Section 3.7.

2.2 Graph Theoretic Notation

Mathematically a network is represented as a graph G = (V,E) consisting of two

types of elements, namely nodes (or vertices) that comprise the set V , and links (or

edges) that make up the set E. Every link has two endpoints in the set of nodes,

and is said to connect or join the two nodes. The two endpoints of a link are also

said to be adjacent to each other, or neighbors. An unweighted, undirected graph

containing no self-loops or multiple edges is called a simple graph. The degree dv

of a node v in a graph G is the number of nodes adjacent to v. A degree sequence

is a list of degrees of a graph in non-increasing order (e.g., d1 ≥ d2 ≥ · · · ≥ dn).

An adjacency matrix A is often used to represent a graph: for a graph with

N nodes, it is an N -by-N matrix whose (i, j)-th entry gives the number of links

from the i-th node to the j-th node. This chapter covers simple graphs only, and

hence the adjacency matrix is symmetric, consists only of 0’s and 1’s, and all its

diagonal entries are zero.

The Graph Laplacian L is a matrix frequently used in network analysis. There

are several ways of defining the Laplacian; in this chapter it is defined as

L = D−
1
2 AD−

1
2 , (2.1)

where A is the adjacency matrix and D is the degree matrix (i.e., a diagonal matrix

whose ith diagonal element is the degree of node i). This version of the Laplacian

8

is often referred to as the symmetric normalised Laplacian, but this chapter will

simply refer to this as the Laplacian.

2.3 Stochastic Blockmodel and Degree Corrected

Blockmodel for Heterogeneous Networks

Lorrain and White (1971) were the first to introduce blockmodels, in association

with the deterministic concept of structural equivalence, where two nodes of a

network are considered equivalent if they have the same set of neighbors. Holland

et al. (1983) and Fienberg et al. (1985) generalized this equivalence concept to

a probabilistic setting, calling it stochastic equivalence. In contrast to structural

equivalence which is defined with respect to the observed network itself, stochastic

equivalence is defined with respect to the conceptual model that generates the

observed network.

Definition Two nodes in a network are said to be stochastically equivalent if

the probability of any event pertaining to the network remains unchanged by

exchanging the node labels.

For a homogeneous network, two nodes (say, 1 and 2) are stochastically equiv-

alent according to this definition if they have the same probability of being linked

to any third node (say 3).

2.3.1 Homogeneous model

Consider a simple graph G = (V,E) with N nodes, and let A be its adjacency

matrix. Note that A is a symmetric 0-1 matrix, and its diagonal entries are all

zero. Under the K-block stochastic blockmodel, there are K blocks, and each

node belongs to one of these blocks. Let M denote the N -by-K block membership

matrix with M(i, k) = 1 if node i is in the kth block, and M(i, k) = 0 otherwise.

Then for i < j, under the stochastic blockmodel (SBM) A(i, j) are Bernoulli

random variables, with

E[A(i, j) |M] = M(i, ·)PM(j, ·)′, (2.2)

where P is the K-by-K matrix of link probabilities, that is, P(a, b) represents the

probability that a node in block a is linked to another node in block b. Edges are

conditionally independent given the membership matrix M.

9

Model (3.2) essentially means that if nodes i and i′ come from the same block,

i.e., M(i, ·) = M(i′, ·), then they are stochastically equivalent; for any j different

from i and i′, the links A(i, j) and A(i′, j) are exchangeable — hence, exchanging

the node labels of i and i′ will make no difference to the probability of any event

in the network.

Stochastic equivalence theorizes that two nodes in the same block have identical

degree distributions. This can be an unrealistic assumption for many empirical

networks. The degree-corrected blockmodel (DCBM) proposed by Karrer and

Newman (2011) adds degree scaling parameters θi for each node to allow for a

broad degree distribution. Then for i < j, under the DCBM A(i, j) are Bernoulli

random variables, with

E[A(i, j) |M] = Θ(i, ·)MPM′Θ(·, j) (2.3)

where Θ is an N -by-N diagonal matrix with Θ(i, i) = θi, the degree parameter of

the ith node, and all other parameters have the same meaning as (3.2).

Note that the SBM is a special case of the DCBM when all nodes in the same

block have equal value of the θi, the degree parameter.

2.3.2 Heterogeneous model

A heterogeneous network has nodes of several different types. Nodes of different

types are fundamentally different in their role in the network. Similarly, the links

in the network are also of different kinds, depending upon the types of the nodes

they link. Therefore, a blockmodel for heterogeneous networks should allow the

link probabilities to change not only by block but also by node type. We propose

the following model for accommodating this.

Consider a K-block heterogeneous network with N nodes of T different types.

We divide each block into T sub-blocks for different types of nodes such that each

type-block combination is represented by a separate sub-block. Let M represent

the N -by-TK sub-block membership matrix, with M(i, t×k) = 1 if node i is of the

tth type and belongs to the kth block, and M(i, t×k) = 0 otherwise, for t = 1, . . . , T

and k = 1, . . . ,K. Let P be the TK-by-TK matrix of link probabilities. Then P

has the following structure:

10

P =


P11 P12 . . . P1T

P21 P22 . . . P2T

. . .

PT1 PT2 . . . PTT

 ,

where Pst is the K-by-K matrix of probabilities for type s-type t links. Thus,

Pst(a, b) represents the probability that a node of the sth type and belonging to

block a is linked to another node of the tth type and belonging to block b.

As before, for i < j, A(i, j) are Bernoulli random variables, with

E[A(i, j) |M] = M(i, ·)PM(j, ·)′ (2.4)

for the heterogeneous stochastic blockmodel (Het-SBM) and

E[A(i, j) |M] = Θ(i, ·)MPM′Θ(·, j) (2.5)

for the heterogeneous degree-corrected blockmodel (Het-DCBM).

This complicated representation of link probabilities is necessary, because link

probabilities vary not only by block, but also by type; Pst(a, b) varies not only

with a and b but also with s and t.

For illustration, consider a toy example for Het-SBM with number of types

T = 2, the number of blocks K = 3 and the number of nodes N = 30, with 5

type 1 nodes and 5 type 2 nodes in each block, and the link probability matrix as

follows:

P =



0.75 0.25 0.25 0.90 0.00 0.00

0.25 0.75 0.25 0.00 0.90 0.00

0.25 0.25 0.75 0.00 0.00 0.90

0.90 0.00 0.00 0.00 0.00 0.00

0.00 0.90 0.00 0.00 0.00 0.00

0.00 0.00 0.90 0.00 0.00 0.00


.

Link probabilities vary prominently across blocks as well as types in this model.

Type 1 nodes are strongly homophilic (intra-community links are much more likely

than inter-community links), while type 2 nodes are not linked among themselves

at all. The type 1-type 2 links have even stronger homophily; type 1 and type

2 nodes belonging to the same block are very likely to be connected, while inter-

block, inter-type links are not present. This model is an exaggerated representation

of the user-event heterogeneous Facebook system mentioned in the introduction.

11

In Figure 2.1, type 1 nodes and type 2 nodes are clearly different in their roles in

the network, nevertheless they form close-knit communities. Visually, it appears

that community structure is stronger in the entire network, compared to the ho-

mogeneous type 1-type 1 subnetwork. This toy example gives a visual intuition of

how community discovery might be more accurate in the presence of heterogeneous

information.

Figure 2.1: Sample heterogeneous network with T = 2, K = 3 and N = 30,
with 5 type 1 nodes (circles) and 5 type 2 nodes (squares) in each block.
Solid lines (black for intra-block, gray for inter-block) represent type 1-type
1 links, while dotted gray lines represent type 1-type 2 links. The
homogeneous type 1-type 1 subnetwork is approximately enclosed in the
circle.

2.4 Spectral Clustering and Regularized Spectral

Clustering

2.4.1 Homogeneous clustering

Consider a homogeneous network with N nodes and let A be its adjacency matrix.

Assuming a correctly specified K-block blockmodel structure for this network, the

12

standard spectral clustering algorithm assigns the N nodes to K clusters in the

following steps.

Homogeneous Spectral Clustering Algorithm (Hom-SC)

1. Given the adjacency matrix A, calculate the graph Laplacian L by (2.1).

2. Find orthonormal eigenvectors X1, . . . ,XK corresponding to the K eigen-

values of L that are largest in absolute value. Put them into the N -by-K matrix

X = [X1, . . . ,XK].

3. Carry out a K-means clustering with the N rows of matrix X, creating a

K-partition of the index set {1, . . . , N}.
4. Assign the nodes to clusters in accordance to the clustering obtained in step

3, i.e., assign the ith node to the kth cluster if the ith row got assigned to the kth

cluster in step 3.

Recent work by Amini et al. (2013) and Jin (2012) demonstrate that homoge-

neous spectral clustering does not work very well in sparse homogeneous networks

with wide degree distribution. Chaudhuri et al. (2012) proposed a regularized

version of the graph Laplacian for sparse networks and it was shown by Qin and

Rohe (2013) that a normalized variant of spectral clustering on this regularized

Laplacian has superior theoretical properties under the degree corrected stochastic

blockmodel. In this context we would also like to mention Joseph and Yu (2013)

for their in-depth analysis of the performance of a slightly different version of

regularized spectral clustering.

For a regularizer τ ≥ 0, define the regularized degree matrix Dτ = D + τI and

the regularized graph Laplacian

Lτ = D−1/2
τ AD−1/2

τ . (2.6)

Following the recommendation of Qin and Rohe (2013), in this paper we set τ

equal to the average node degree of the network, in all applications of regularized

spectral clustering (homogeneous and heterogeneous) for simulations as well as

data analysis. The regularized spectral clustering algorithm assigns the N nodes

to K clusters in the following steps.

Homogeneous Regularized Spectral Clustering Algorithm (Hom-RSC)

1. Given the adjacency matrix A and regularizer τ ≥ 0, calculate regularized

graph Laplacian Lτ by (2.6).

2. Find orthonormal eigenvectors X1, . . . ,XK corresponding to the K eigenval-

ues of Lτ that are largest in absolute value. Put them into the N -by-K matrix

13

Xτ = [X1, . . . ,XK].

3. Normalize each row of Xτ to have unit norm, forming the N -by-K matrix

X∗τ given by X∗τ (i, j) = Xτ (i, j)
/√∑

j Xτ (i, j)2.

4. Carry out a K-means clustering with the rows of matrix X∗τ , creating a

K-partition of the index set {1, . . . , N}.
5. Assign the nodes to clusters in accordance to the clustering obtained in step

4, i.e., assign the ith node to the kth cluster if the ith row got assigned to the kth

cluster in step 4.

2.4.2 Heterogeneous clustering

For a T -type heterogeneous network, there are TK clusters (since each type-block

combination represents a cluster), but for each node, the type information is al-

ready known. So essentially there are T cluster assignment problems — to assign

the n1 type 1 nodes into K clusters, the n2 type 2 nodes into K separate clusters,

and so on. This can be achieved by carrying out T simultaneous but separate

K-means clustering procedures. We now present heterogeneous versions of the

Hom-SC and Hom-RSC algorithms based on this idea.

Heterogeneous Spectral Clustering Algorithm (Het-SC)

1. Given the adjacency matrix A, calculate the graph Laplacian L by (2.1).

2. Find orthogonal eigenvectors X1, . . . ,XTK corresponding to the TK eigen-

values of L that are largest in absolute value. Put them into the N -by-TK matrix

X = [X1, . . . ,XTK].

3. For each t = 1, . . . , T , select the nt rows of X that correspond to nodes of

type t, and carry out separate K-means clustering for each selection, creating a

TK-partition of the index set {1, . . . , N}.
4. Assign the nodes to clusters in accordance to the clustering obtained in step

3, i.e., assign the ith node to the rth cluster if the ith row got assigned to the rth

cluster in step 3.

Heterogeneous Regularized Spectral Clustering Algorithm (Het-RSC)

1. Given the adjacency matrix A and regularizer τ ≥ 0, calculate the regularized

graph Laplacian Lτ by (2.6).

2. Find orthogonal eigenvectors X1, . . . ,XTK corresponding to the TK eigen-

values of Lτ that are largest in absolute value. Put them into the N -by-TK matrix

Xτ = [X1, . . . ,XTK].

14

3. Normalize each row of Xτ to have unit norm, forming the N -by-TK matrix

X∗τ given by X∗τ (i, j) = Xτ (i, j)
/√∑

j Xτ (i, j)2.

4. For each t = 1, . . . , T , select the nt rows of X∗τ that correspond to nodes of

type t, and carry out separate K-means clustering for each selection, creating a

TK-partition of the index set {1, . . . , N}.
5. Assign the nodes to clusters in accordance to the clustering obtained in step

4, i.e., assign the ith node to the rth cluster if the ith row got assigned to the rth

cluster in step 4.

In the next section we provide theoretical justification of why the Het-RSC

algorithm works under the Het-DCBM model and the Het-SC algorithm works

under the Het-SBM model.

2.5 Convergence of Heterogenous Spectral Clustering

This section outlines an asymptotic theory for the convergence of the Hom-RSC

algorithm under the Hom-DCBM, and proposes a similar result for the Het-RSC

algorithm under the Het-DCBM. Convergence of the Het-SC algorithm under the

Het-SBM follows as a special case. The interested reader is directed to Qin and

Rohe (2013) for technical details for the homogeneous case.

For the Hom-DCBM (3.3), define A = ΘMPM′Θ and let D be the diagonal

matrix of expected degrees, i.e., D(i, i) =
∑

j A(i, j). Define Dτ = D + τI and let

Lτ = D−1/2
τ AD−1/2

τ be the population version of the regularized graph Laplacian

(2.6). Under a K-block Hom-DCBM, Lτ has exactly K non-zero eigenvalues.

Let Xτ be the N -by-K matrix of the corresponding eigenvectors. Finally, X ∗τ is

the row-normalized version of Xτ . The main idea is to interpret the clustering

algorithm as an estimation procedure for X∗ with X ∗τ as the parameter.

Let δ = mini=1,...,N D(i, i) be the minimum expected degree, and let λ be the

magnitude of the smallest non-zero eigenvalue of Lτ in magnitude. Let γ =

mini=1,...,N{min{||Xτ (i, ·)||2, ||Xτ (i, ·)||2} be the length of the shortest row in Xτ
and Xτ , where ||x||2 represents the L2 norm of the vector x. Assume that for some

ε > 0 and sufficiently large N ,

(A1) δ + τ > 3 log(4N/ε) and (A2) λ ≥ 8

√
3K log(4N/ε)

δ + τ
.

15

Theorem 4.2 of Qin and Rohe (2013) states: when (A1) and (A2) hold, then

||Xτ −XτO||F ≤ c0
1

λ

√
K log(4N/ε)

δ + τ
(2.7)

and

||X∗τ −X ∗τ O||F ≤ c0
1

γλ

√
K log(4N/ε)

δ + τ
(2.8)

for some constant c0 with probability at least 1 − ε, where O represents an or-

thonormal rotation, and || · ||F denotes the Frobenius norm of a matrix, defined as

||B||F =
√∑

i

∑
j |B(i, j)|2.

The next step is to translate this accuracy in estimation of X ∗τ into accurate

clustering of nodes. Lemma 3.3 of Qin and Rohe (2013) shows that X ∗τ can be

written as X ∗τ = MB, where B is a K-by-K non-singular matrix. Note that the

membership matrix M has exactly K unique rows. Hence, X ∗τ also has exactly

K unique rows. This implies that a K-means clustering applied on the rows of

X ∗τ would perfectly identify the block membership of all nodes in the network.

Given the asymptotic closeness between X∗τ and X ∗τ from (2.8), one might expect

that the clustering output from X∗τ also approaches the clustering output from

X ∗τ asymptotically. As discussed above, the clustering output from X ∗τ is perfect;

hence, the clustering output from X∗τ is expected to approach that perfect accuracy

in an asymptotic sense.

To formalize this intuition, a mathematically tractable definition of miscluster-

ing is required. In step 4 of the regularized spectral clustering algorithm, the N

rows of X∗τ are subjected to a K-means clustering, which assigns each row to a

cluster, and each cluster thus formed will have a centroid. Let C be the N -by-K

matrix of cluster centroids, i.e., C(i, ·) is the centroid corresponding to the ith

row of X∗τ . Then X ∗τ (i, ·) is the parameter centroid corresponding to the ith node,

while the estimated centroid is C(i, ·). It is therefore reasonable to consider the

ith node to be correctly clustered if the estimated centroid is closer to the correct

parameter centroid than the remaining K − 1 incorrect parameter centroids, and

it is misclustered if the estimated centroid is closer to some incorrect parameter

centroid than the correct parameter centroid.

Definition The set of misclustered nodes E is defined as

E = {i : ∃ j 6= i s.t. ||C(i, ·)−X ∗τ (i, ·)O||2 > ||C(i, ·)−X ∗τ (j, ·)O||2} . (2.9)

For some ε > 0 and sufficiently large N , suppose Assumptions (A1) and (A2)

16

hold. Then Theorem 4.4 of Qin and Rohe (2013) states that, with probability at

least 1− ε,

|E| ≤ c1
K log(N/ε)

γ2λ2(δ + τ)
(2.10)

for some constant c1.

Next, we extend these ideas to the Het-DCBM and the Het-RSC algorithm. For

the T -type, K-block Het-DCBM from Section 2.3.2, M has TK unique rows, and

P is TK-by-TK, since link probabilities are allowed to vary for each type-block

combination. Note that this model is structurally equivalent to a Hom-DCBM

(3.3) with TK blocks. The interpretation of sub-blocks in a T -type, K-block

heterogeneous model is different from that of blocks in a TK-block homogeneous

model, but both models have the same mathematical structure. Consequently, the

convergence result for row-normalized eigenvectors in (2.8) can be directly applied

to the heterogeneous model.

The translation of estimation accuracy to clustering accuracy, however, does not

extend directly from the homogeneous version to the heterogeneous version. The

upper bound in (2.10) for the homogeneous case is derived from the fact that the

matrix of cluster centroids, C, is the minimizer of the K-means objective function

||X∗τ − Y||F , minimization being performed over the set of all N -by-K matrices

Y having exactly K unique rows. The Het-RSC algorithm in Section 2.4.2 runs

T separate K-means procedures on the T node types, thereby using a different

objective function. Therefore, (2.10) does not apply directly to heterogeneous net-

works. However, after considering the modified objective function being minimized

in step 4 of the Het-RSC algorithm, we are able to prove the following theorem,

which provides the heterogeneous version of (2.10).

Theorem 2.5.1 Consider a T -type, K-block Het-DCBM with nt nodes of type t,

and N =
∑T

t=1 nt. For nodes of type t, define the set of misclustered nodes Et as

Et = {i ∈ type t : ∃ j ∈ type t & j 6= i s.t.

||C(i, ·)−X ∗τ (i, ·)O||2 > ||C(i, ·)−X ∗τ (j, ·)O||2}. (2.11)

Let γt = mini∈type t{min{||Xτ (i, ·)||2, ||Xτ (i, ·)||2} be the length of the shortest row

of type t in Xτ and Xτ , and λ, δ, τ be defined as before. For some ε > 0 and suffi-

ciently large N , suppose Assumptions (A1) and (A2) hold. Then with probability

at least 1− ε,

|Et| ≤ c1
K log(N/ε)

γ2
t λ

2(δ + τ)
for t = 1, . . . , T, (2.12)

17

where c1 is some constant.

The proof of Theorem 1 is in the Appendix.

Remark 1 Two main assumptions of Theorem 1 are (A1) and (A2). Assump-

tion (A1) requires a lower bound on the smallest regularized expected degree δ+τ .

This emphasizes the importance of regularization, as it allows expected node de-

grees to be low, as long as they are complemented by the regularizer. Assumption

(A2) requires that the smallest non-zero eigenvalue of Lτ in magnitude does not

decay to zero too fast. The number of types, T , is arbitrary but fixed. The number

of blocks, K, is allowed to increase with nt and N as long as Assumptions (A1)

and (A2) hold true — thus its allowable rate on increase depends on the large

sample behavior of the quantities δ, τ, and λ.

Theorem 1 provides a separate bound for each node type. Under Assumptions

(A1) and (A2), for a given type t and for sufficiently large N , the quantity on

the right hand side of (2.12) is O(1/γ2
t). Therefore as nt → ∞, the asymptotic

bound on the number of misclustered nodes depends on the behavior of γt. When

γt decays at a rate slower than
√

1/nt, the bound in (2.12) implies that the error

rate |Et|/nt goes to zero. The bound deteriorates when γt decays to zero faster

than
√

1/nt. Note that it is plausible that the bound goes to zero for certain node

types, but not for others — depending upon the behavior of γt for different node

types.

Remark 2 (Application to Het-SC under Het-SBM) The convergence of

Hom-SC under Hom-SBM was first established by Rohe et al. (2011) under the

assumptions of a dense network model. Their results can be extended from the

homogeneous setting to the heterogeneous setting, but that would restrict the ap-

plication to the dense network case. The framework of Qin and Rohe (2013) allows

for sparse networks in a broader class of degree-corrected models, and although

we have focussed on Het-RSC under Het-DCBM so far in this section, the results

can be readily applied to Het-SC under Het-SBM as outlined below.

The main difference between the Het-SC algorithm and the Het-RSC algorithm

is that the former does not have regularization or normalization steps. The Het-

SBM is a special case of the Het-DCBM, when the degree parameters θi are equal.

In this special case, the model eigenvector matrix Xτ already has exactly TK

distinct rows (applying Lemma 3.3 of Qin and Rohe (2013)) corresponding to

the TK sub-blocks. Hence, row-normalization is not required — we can cluster

the rows of Xτ directly and use the result in (2.7). Further, we can set the

regularizer τ = 0, i.e., no regularization. Note that in doing this the advantage of

18

regularization is lost, and the network model is required to satisfy the following

restricted version of (A1) and (A2):

(A1′) δ > 3 log(4N/ε) and (A2′) λ ≥ 8

√
3K log(4N/ε)

δ
.

Here λ is the magnitude of the smallest non-zero eigenvalue of L (the unregularized

Laplacian) in magnitude. We obtain the following result for Het-SC under the Het-

SBM.

Theorem 2.5.2 Consider a T -type, K-block Het-SBM with nt nodes of type t, and

N =
∑T

t=1 nt. Let C denote the matrix of cluster centroids resulting from Het-SC,

and the set of misclustered nodes be defined as

Et = {i ∈ type t : ∃ j ∈ type t & j 6= i s.t.

||C(i, ·)−Xτ=0(i, ·)O||2 > ||C(i, ·)−Xτ=0(j, ·)O||2}. (2.13)

Let λ and δ be defined as before, and τ = 0. For some ε > 0 and sufficiently large

N , suppose Assumptions (A1′) and (A2′) hold. Then with probability at least 1−ε,

|Et| ≤ c1
K log(N/ε)

λ2(δ + τ)
for t = 1, . . . , T, (2.14)

where c1 is some constant.

The proof for Theorem 2.5.2 is essentially similar to that for Theorem 2.5.1, the

only difference being the use of the eigenvector matrix Xτ=0 instead of its nor-

malized version X ∗τ=0, and hence we skip the proof of Theorem 2.5.2 to avoid

repetition.

2.6 Simulation Results

This section reports three simulation studies comparing the finite-sample perfor-

mance of the homogeneous clustering algorithms with their heterogeneous coun-

terparts in bi-type heterogeneous networks, i.e., T = 2. We study both Het-SBM

and Het-DCBM in our simulation studies. Although Het-SBM is a special case

of Het-DCBM, it is an important special case from a methodological perspective.

Regularized spectral clustering adds two extra steps to standard spectral cluster-

ing - regularization (step 1) and row-normalization (step 3). The former aims to

19

deal with sparsity (nodes with low expected degrees), while the latter aims to deal

with non-uniformity in expected node degrees. In our simulations, both these fea-

tures stem from degree parameters in Het-DCBM. For Het-SBM, the uniformity of

expected node degrees makes both regularization and normalization unnecessary.

Therefore, we study the performance of Het-SC vs Hom-SC under networks gen-

erated from Het-SBM, and that of Het-RSC vs Hom-RSC in networks generated

from Het-DCBM.

The class of Het-SBM models used for these simulations is B(K; s1, s2, p1, r1,

p2, r2, p3, r3) where K is the number of blocks, and s1 and s2 are the number of

type 1 and type 2 nodes per block, respectively. The probability matrix is given

by P =

(
P11 P12

P21 P22

)
, where

P11 = p11K1′K + r1IK ,

P22 = p21K1′K + r2IK ,

P12 = P21 = p31K1′K + r3IK .

Here 1K is a K-vector of 1’s, and IK is the K-by-K identity matrix. Thus, in the

type 1-type 1 (type 2-type 2) homogeneous network, p1(p2) represents the inter-

block link probability while p1 + r1 (p2 + r2) is the intra-block link probability.

The strength of homophily in the homogeneous networks is therefore determined

by r1 and r2. For type 1-type 2 links, p3 represents the inter-block, inter-type

link probability and r3 represents the strength of inter-type homophily. For Het-

DCBM, we use the same values of P,K, s1, and s2. The degree parameters θi are

generated from the power law distribution

f(x) =
β − 1

xmin

(
x

xmin

)−β
with xmin = 1 and shape parameter β = 3, and then scaled down so that the aver-

age θ̄ equals 1. For a given parameter combination, the Het-DCBM can therefore

be interpreted as a ‘noisy’ version of the Het-SBM, or conversely the Het-SBM

can be interpreted as an ‘averaged’ version of the Het-DCBM. For illustration, the

model used in the example in Section 2.3.2 had K = 3, s1 = s2 = 5, p1 = 0.25,

r1 = 0.50, p2 = r2 = p3 = 0, and r3 = 0.90.

Our main objective in these simulations is to study how the improved accuracy

of heterogeneous clustering over homogeneous clustering depends on r3 for a fixed

value of p3. Ceteris paribus, higher values of r3 will make the type 1-type 2 links

20

more strongly homophilic, and therefore make heterogeneous community detection

easier. Hence, we expect Het-SC and Het-RSC to be increasingly accurate with

increasing r3, while Hom-SC and Hom-RSC are not affected by r3. However, the

actual improvement of heterogeneous clustering over homogeneous clustering will

depend on other parameters as well, particularly p1, r1, p2 and r2, which determine

the strength of homophily (and hence the ease of community detection) for the

homogeneous networks.

To capture these dynamics, we fix K = 3, s1 = 100, s2 = 50, and p3 = 0.25.

Thus, we study networks having a total of N = 450 nodes, of which 300 are of

type 1 and 150 are of type 2. The parameters p1, p2, r1, and r2 are set to various

combinations, to generate various kinds of homogeneous networks. For each such

combination, r3 is increased in a fixed grid, from 0.10 to 0.50 in increments of 0.05.

For each combination of parameters, error rates are estimated by averaging across

100 networks from Het-SBM and Het-DCBM.

It is important to note how clustering performance is measured in these simula-

tions. Definitions (2.9), (2.11), and (2.13) introduced model-based quantification

of misclustered nodes for the purpose of mathematical tractability, and the bounds

(2.10), (2.12), and (2.14) were established under these definitions. However, these

definitions require complete knowledge of the underlying model generating the net-

work. For calculation of misclustering error in a real network, the true membership

(ground truth) might be known (providing information about M), but the other

model parameters will generally not be known, and hence these definitions can not

be evaluated for real networks. Accordingly, the error rate used in these simula-

tions is not the model-based quantity from Section 2.5, but rather it is the usual

data-based error rate, defined below as the proportion of nodes that got assigned

to wrong clusters.

For a K-block network model, the true membership (M) provides a K-partition,

say P, of the nodes. Suppose there are two competing clustering algorithms which

also provide K-partitions, say P1 and P2 respectively. For each algorithm, con-

sider the K-by-K overlap table Ti such that Ti(k, l) is the number of nodes that

have been assigned to the kth block according to P and to the lth block according

to Pi. Then
∑

k Ti(k, k) is the total number of correctly clustered nodes according

to Pi. However, due to potential identifiability issues with cluster labels, Ti should

not be used directly to compare the accuracy of P1 and P2. For example, suppose

P1 gives the same partition as P, but with different cluster labels, while P2 is just

a random partition. Then
∑

k T1(k, k) = 0 and hence
∑

k T2(k, k) >
∑

k T1(k, k),

but P1 is clearly more accurate than P2. This issue can be resolved by permuting

21

the columns of Ti to maximize
∑

k Ti(k, k). This is equivalent to relabeling the

clusters of Pi, and makes no change to the K-partition of the nodes. Now it is

reasonable to compare P1 and P2 on the basis of permuted T1 and T2. The er-

ror rate is defined as the sum of off-diagonal elements of Ti, divided by the total

number of nodes.

Thus, these simulations are not aimed at studying the finite-sample behavior of

the quantities involved in the asymptotic theory, rather they are aimed at studying

the relative accuracy of homogeneous and heterogeneous clustering methods in

finite networks generated from Het-SBM and Het-DCBM.

2.6.1 Simulation 1

In this simulation we study homophilic networks where both types have similar

inter-block and intra-block link probability. We use p1 = p2 = 0.25, and use

a single parameter, r1 = r2 = r, say, to govern the strength of homophily in

the homogeneous networks. Two values of r = 0.10, 0.15 are used, to construct

homogeneous networks of two different strengths. The error rates from Het-SBM

and Het-DCBM are plotted in Figure 2.2(a) and Figure 2.3(a) respectively.

It is observed in both models that homogeneous error rates for type 1 nodes are

substantially lower than type 2, implying the effect of sample size or block size on

error rates. Homogeneous error rates also go down quite remarkably for both types

as r is increased from 0.10 to 0.15, since the homogeneous network becomes more

strongly homophilic, rendering community detection easier. This phenomenon

is more prominent in Het-SBM (Figure 2.2(a)) than Het-DCBM (Figure 2.3(a)).

However, the most striking observation in Figure 2.2(a) and Figure 2.3(a) is the

improved accuracy of heterogeneous clustering over homogeneous clustering, for

both types and both models. This comparative advantage increases with increasing

r3, but it is significant even for smaller values of r3.

2.6.2 Simulation 2

A plausible scenario in heterogeneous networks is when the type 1-type 1 ho-

mogeneous network is homophilic but the type 2-type 2 network does not have

homophilic community structure. To model this, we use p1 = p2 = 0.25 as be-

fore, but set the type 2 homophily parameter r2 = 0 while the type 1 homophily

parameter r1 is increased from 0.1 to 0.15.

22

Figure 2.2(b) and Figure 2.3(b) show that the heterogeneous methods are much

more accurate for both node types. The improved accuracy over the homogeneous

method is particularly remarkable for type 2 nodes, because the homogeneous type

2-type 2 network does not have homophilic communities, and it would be quite

difficult to assign communities to nodes on the basis of homogeneous information

only. For example, consider a high school social network where students (type

1) form homophilic communities based on grades, but teachers (type 2) do not

show homophily, rather they interact uniformly with other teachers. However,

the heterogeneous student-teacher interaction is expected to be homophilic, as

a student from a particular grade is expected to have more interaction with a

teacher from the same grade, compared to a teacher from a different grade. In

such a scenario, using a heterogeneous student-teacher network will most likely

perform better community detection for both students and teachers, compared to

clustering the homogeneous student-student network or the homogeneous teacher-

teacher network, even though teachers do not interact in homophilic fashion.

2.6.3 Simulation 3

Another plausible situation is that type 1-type 1 interactions are homophilic but

there is no type 2-type 2 interaction at all. We use p1 = 0.25 and increase r1

from 0.1 to 0.15 as before, but set p2 = r2 = 0, so that there are no links between

type 2 nodes. A motivation for this situation is the notional Facebook user-event

heterogeneous network described in the introduction. While users (type 1) form a

homophilic friendship network with universities as communities, there is no natural

interaction between two events (type 2), implying a blank type 2-type 2 network.

However, there is expected to be strong homophily in user-event interactions, and

hence it is quite likely that the heterogeneous method will deliver a superior per-

formance than the homogeneous method.

Figure 2.2(c) and Figure 2.3(c) show that the heterogeneous method is indeed

significantly superior to the homogeneous method, for both types. In this case, it

is theoretically impossible to implement homogeneous spectral clustering on the

type 2-type 2 network, as the Laplacian for this network is a zero matrix, while the

heterogeneous method delivers quite accurate clustering for type 2 nodes. For the

sake of comparison, we have used a flat homogeneous error rate of 2/3 (random

allocation with K = 3 clusters) for type 2 nodes.

23

0.1 0.2 0.3 0.4 0.5

0
0.

2
0.

4
0.

6

Type 1 nodes

r3

E
rr

or
ra

te - - - - - - - - -

+ + + + + + + + +

0.1 0.2 0.3 0.4 0.5

0
0.

2
0.

4
0.

6

Type 2 nodes

r3

E
rr

or
ra

te

- - - - - - - - -

+ + + + + + + + +

(a) Simulation 1: Both type 1-type 1 and type 2-type 2 networks are
homophilic

0.1 0.2 0.3 0.4 0.5

0
0.

2
0.

4
0.

6

Type 1 nodes

r3

E
rr

or
ra

te - - - - - - - - -

+ + + + + + + + +

0.1 0.2 0.3 0.4 0.5

0
0.

2
0.

4
0.

6

Type 2 nodes

r3

E
rr

or
ra

te
- - - - - - - - -+ + + + + + + + +

(b) Simulation 2: Type 1-type 1 networks have homophilic communities
but type 2-type 2 networks do not have homophilic communities

0.1 0.2 0.3 0.4 0.5

0
0.

2
0.

4
0.

6

Type 1 nodes

r3

E
rr

or
ra

te - - - - - - - - -

+ + + + + + + + +

0.1 0.2 0.3 0.4 0.5

0
0.

2
0.

4
0.

6

Type 2 nodes

r3

E
rr

or
ra

te

- - - - - - - - -+ + + + + + + + +

(c) Simulation 3: Homophilic type 1-type 1 networks and no type 2-
type 2 links

Figure 2.2: For simulation 1, Hom-SC errors are represented as ‘-’ for r1 = r2 = 0.1
and ‘+’ for r1 = r2 = 0.15, while Het-SC errors are represented by solid lines for
r1 = r2 = 0.1 and dashed lines for r1 = r2 = 0.15. For simulations 2 and 3, Hom-SC
errors are represented as ‘-’ for r1 = 0.1 and ‘+’ for r1 = 0.15, while Het-SC errors are
represented by solid lines for r1 = 0.1, and dashed lines for r1 = 0.15.

24

0.1 0.2 0.3 0.4 0.5

0
0.

2
0.

4
0.

6

Type 1 nodes

r3

E
rr

or
ra

te

- - - - - - - - -

+ + + + + + + + +

0.1 0.2 0.3 0.4 0.5

0
0.

2
0.

4
0.

6

Type 2 nodes

r3

E
rr

or
ra

te

- - - - - - - - -
+ + + + + + + + +

(a) Simulation 1: Both type 1-type 1 and type 2-type 2 networks are
homophilic

0.1 0.2 0.3 0.4 0.5

0
0.

2
0.

4
0.

6

Type 1 nodes

r3

E
rr

or
ra

te

- - - - - - - - -

+ + + + + + + + +

0.1 0.2 0.3 0.4 0.5

0
0.

2
0.

4
0.

6

Type 2 nodes

r3

E
rr

or
ra

te
- - - - - - - - -+ + + + + + + + +

(b) Simulation 2: Type 1-type 1 networks have homophilic communities
but type 2-type 2 networks do not have homophilic communities

0.1 0.2 0.3 0.4 0.5

0
0.

2
0.

4
0.

6

Type 1 nodes

r3

E
rr

or
ra

te

- - - - - - - - -

+ + + + + + + + +

0.1 0.2 0.3 0.4 0.5

0
0.

2
0.

4
0.

6

Type 2 nodes

r3

E
rr

or
ra

te

- - - - - - - - -+ + + + + + + + +

(c) Simulation 3: Homophilic type 1-type 1 networks and no type 2-
type 2 links

Figure 2.3: For simulation 1, Hom-RSC errors are represented as ‘-’ for r1 = r2 = 0.1
and ‘+’ for r1 = r2 = 0.15, while Het-RSC errors are represented by solid lines for
r1 = r2 = 0.1 and dashed lines for r1 = r2 = 0.15. For simulations 2 and 3, r2 = 0, and
Hom-RSC errors are represented as ‘-’ for r1 = 0.1 and ‘+’ for r1 = 0.15, while Het-RSC
errors are represented by solid lines for r1 = 0.1, and dashed lines for r1 = 0.15.

25

2.7 DBLP Four-Area Dataset Example

DBLP (Digital Bibliography & Library Project) is the authoritative computer sci-

ence bibliography website, listing over two million articles. Gao et al. (2009) and

Ji et al. (2010) extracted a connected subset of the DBLP data, containing biblio-

graphical records from four research areas related to data mining, namely database,

data mining, information retrieval and artificial intelligence. The clustering prob-

lem of interest is to identify research area for authors. The original four-area

dataset consists of 14,376 papers written by 14,475 authors, and presented at 20

conferences. However, the ground truth (true research area) is available for 4,057

authors, who account for 14,328 of these papers, covering all 20 conferences. Since

error rates can be calculated only for labeled authors, our data analysis is based

on this labeled subset of the data.

In the simulation studies of Section 2.6, we implemented Het-SC and Hom-SC

on Het-SBM, and Het-RSC and Hom-RSC on Het-DCBM, backed by theoretical

justification. However, in real-world applications, we have to choose between stan-

dard and regularized spectral clustering, for both homogeneous and heterogeneous

networks, on the basis of empirical features. In general, we expect regularization

to work better if the network is sparse. Two distinguishing properties that are

found in many large real-world sparse networks (Girvan and Newman (2002)) are

(i) a large number of nodes with low degrees, and (ii) power law behavior of de-

grees. We plot the histogram and log empirical tail distribution log10(1− F̂ (x)) of

node degrees in Figure 2.4 to investigate these properties. A heavily right-skewed

histogram will indicate property (i) and a roughly linear plot of log10(1 − F̂ (x))

will indicate property (ii). Accordingly, in the following analysis we choose regu-

larization if the plots indicate sparsity.

2.7.1 Homogeneous author collaboration network

For homogeneous clustering, the natural network is the co-authorship network,

where authors are nodes, and two authors are linked if they have collaborated

to write a paper. Authors belonging to the same research area are more likely

to collaborate, so the network has homophilic structure with research areas as

communities. This gives a homogeneous network with 4,057 connected nodes and

3,528 links. Figure 2.4 (left column) shows a heavily right-skewed histogram and a

roughly linear log empirical tail distribution plot, indicating that we should prefer

Hom-RSC over Hom-SC for clustering this network.

26

However, 1466 of the 4057 authors have no edges in the author-author network

and hence they have to be discarded, as disconnected nodes cannot be clustered

either by Hom-SC or by Hom-RSC. We implement the Hom-RSC algorithm from

Section 2.4 on the remaining 2,591 nodes with K = 4 clusters. It turns out

that 482 rows of the eigenvector matrix X are null rows — these rows can not

be row-normalized and hence the corresponding nodes cannot be clustered. After

discarding these nodes as well, we perform clustering on the remaining 2109 author

nodes. The algorithm misclusters 1274 (60.41%) of these nodes. If we randomly

assign the discarded nodes to the 4 clusters, the weighted average error rate for

all 4057 nodes is 67.41%. This number is the weighted average of clustering error

(60.41%) and random assignment error (75%). We also implement the Hom-SC

algorithm — the error rate is 69.74% for the 2,591 connected authors and the

weighted error rate for all authors is 71.64%. Note that Hom-SC does not have a

problem with clustering null rows in the eigenvector matrix. Thus, while Hom-RSC

does perform better than Hom-SC, both homogeneous algorithms have accuracy

comparable to random assignment to clusters.

2.7.2 Heterogenous author-paper-conference network

Note that the DBLP system consists of several types of entities, namely authors,

papers, conferences. A heterogeneous network representation (APC network) of

the DBLP system can thus be constructed with three types of nodes: authors,

papers, and conferences, and two types of links: author-paper (author writes pa-

per) links and paper-conference (paper presented at conference) links. Authors

are more likely to write papers in their research area, and papers are more likely

to be presented at a conference belonging to the same research area, indicating

homophilic community structure. This gives a network with 18,405 nodes (4,057

authors, 14,328 papers, 20 conferences) and 33,973 links (19,645 author-paper links

and 14,328 paper-conference links). All authors are now connected. The middle

column of Figure 2.4 shows a heavily right-skewed histogram and a roughly lin-

ear log empirical tail distribution plot for author node degrees, indicating that we

should prefer Het-RSC over Het-SC for clustering this network.

We implement the Het-RSC algorithm from Section 2.4 on this network with

T = 3 and K = 4. The error rate for authors is 7.30%. We also implement Het-

SC which gives an error rate of 23.10% for the authors. Thus, Het-RSC is quite

accurate in identifying research area for authors from the heterogeneous network.

Even Het-SC performs relatively well, although Het-RSC is more accurate than

27

Het-SC as expected for a sparse network. In contrast, the homogeneous algorithms

have accuracy similar to random allocation, which implies that the homogeneous

co-authorship network is not very informative towards identification of authors’

research area.

2.7.3 Heterogeneous author-conference network

The problem of interest in the four-area DBLP dataset is assigning authors to

research communities, which is a homogeneous problem relating only to author

nodes. However, the DBLP system itself is heterogeneous, and this heterogeneous

information can be useful towards solving this homogeneous problem. In section

2.7.2, we used data from the heterogeneous DBLP system to add two additional

types of nodes (papers and conferences) to construct a heterogeneous network.

This is the ‘default’ way to construct the heterogeneous network, using all the

data at our disposal, and this approach gives us a much better solution to the

problem than the homogeneous approach in Section 2.7.1.

However, suppose we instead consider a heterogeneous sub-system, and add

only conference nodes, forming a smaller heterogeneous network with two types

of nodes (authors and conferences) and only one type of link, author-conference

(author presented at the conference). Authors from a research area are more

likely to present at a conference related to the same area, indicating a homophilic

community structure. This gives a network with 4,077 nodes (4,057 authors and

20 conferences) and 9,205 author-conference links. All authors are connected. The

right column of Figure 2.4 shows a histogram that is right-skewed but not as heavily

right-skewed as the two earlier networks. The log empirical tail distribution plot

is also less linear than the other two networks. The node degrees vary between 1

and 14, which is a much tighter range than the degree range in the homogeneous

author network or the heterogeneous APC network. Thus the network features do

indicate sparsity, but less so than the two previous DBLP networks.

Implementing the Het-RSC algorithm on this bi-type network, we obtain an

error rate of 7.44%, which is comparable to the error rate of Het-RSC in the APC

network. The Het-SC algorithm gives an error rate of 8.85%, which is better than

Het-SC in APC network. Both error rates are significant improvement over the

homogeneous approach. Note that such improvement is achieved with only 20

additional nodes and therefore at a computational cost comparable to the homo-

geneous approach, while the APC network requires the addition of 14,348 nodes

and therefore has greater computational cost.

28

In general, often the community detection problem of interest itself is homoge-

neous, in the sense that it is defined with respect to only one type of agents, while

the underlying system is heterogeneous. The user has the flexibility to choose from

several heterogeneous sub-systems of the data to create a heterogeneous network.

For example in the DBLP system, the user can choose the entire author-paper-

conference system, or the author-conference subsystem, and so on. Consequently,

the user might be interested in using an optimal sub-system that delivers the best

community detection for the problem. One interesting avenue of future work is

to lay down explicit criteria for selecting the optimal sub-network, akin to the

analogous problem of variable selection in a machine learning framework.

Author collaboration network

fr
eq

ue
nc

y

0 10 20 30 40

0
50

0
10

00
15

00
20

00
25

00

APC 3−type network

0 50 100 150

0
50

0
10

00
15

00
20

00

AC bi−type network

2 4 6 8 10 12 14

0
50

0
10

00
15

00
20

00
25

00

0 10 20 30 40

lo
g(

1−
F

(x
))

−
4

−
3

−
2

−
1

0

0 50 100 150

−
4

−
3

−
2

−
1

0

2 4 6 8 10 12 14

−
4

−
3

−
2

−
1

0

Figure 2.4: DBLP author degree distribution of homogeneous author
collaboration network (left column), heterogeneous author-paper-conference
network (middle column), and heterogeneous author-conference network
(right column). Histograms (top row) of author node degrees have high
frequency of low degrees, indicating that the author nodes are sparsely
connected. The bottom row shows that the log empirical tail distributions
log10(1− F̂ (x)) are roughly linear, suggesting power-law behavior of author
node degrees.

29

2.8 Discussion

This paper introduces heterogeneous networks to the statistics literature, and ex-

tends the existing statistical framework of community detection in homogeneous

networks to heterogeneous networks. We formulate heterogeneous versions of

standard spectral clustering and regularized spectral clustering algorithms. The

proposed algorithms have theoretical accuracy under heterogeneous versions of

the SBM and the DCBM, respectively. Our simulations demonstrate that even

though homogeneous and heterogeneous methods have similar order of theoretical

accuracy in large samples, the heterogeneous methods provide significantly bet-

ter clustering results in finite-sample networks generated from several interesting

model settings. This comparative advantage seems to imply that the superiority

of heterogeneous clustering over homogeneous clustering should be theoretically

demonstrable, however we leave that theoretical exercise as future work. The

practical usefulness of the heterogeneous procedure is also demonstrated by the

DBLP four-area dataset example, where the heterogeneous method delivers a far

better clustering performance compared to the homogeneous method.

2.9 Proof of Theorem 1

We prove the theorem for T = 2, i.e., bi-type heterogeneous networks. The proof

easily generalizes to higher values of T . Consider a K-block, bi-type Het-DCBM

with n1 nodes of type 1 and n2 nodes of type 2, and let τ ≥ 0 be the regularizer.

Let N = n1 +n2 and let Xτ ,Xτ ,X∗τ , and X ∗τ be N -by-2K matrices defined as per

Sections 2.4 and 2.5.

Partition X∗τ as X∗τ =

(
X
∗(1)
τ

X
∗(2)
τ

)
, where X

∗(1)
τ is n1-by-2K and X

∗(2)
τ is n2-by-2K.

Then cluster centroids are given by:

Ct = arg min
Yt∈Yt

||X∗(t)τ −Yt||2F for t = 1, 2, (2.15)

where Yt = {Yt ∈ Rnt×2K : Yt has K unique rows}, for t = 1, 2.

Note that, for the bi-type Het-DCBM, M has the form M =

(
M11 0

0 M22

)
, where

M11 is n1-by-K with exactly K distinct rows, and M22 is n2-by-K with exactly

K distinct rows. By Lemma 3.3 (2) of Qin and Rohe (2013), X ∗τ can be expressed

as X ∗τ = MB under the general DCBM, and hence also under the Het-DCBM,

30

where B is a non-singular matrix of dimension 2K-by-2K. Partition B into four

K-by-K matrices as B =

(
B11 B12

B21 B22

)
. Then,

X ∗τ = MB =

(
M11 0

0 M22

)(
B11 B12

B21 B22

)
=

(
M11B11 M11B12

M22B21 M22B22

)
=

(
X ∗(1)
τ

X ∗(2)
τ

)
,

where X ∗(1)
τ is n1-by-2K and X ∗(2)

τ is n2-by-2K. Since M11 and M22 have exactly

K unique rows, and B is non-singular, both X ∗(1)
τ and X ∗(2)

τ have K distinct rows,

that is, X ∗(1)
τ ∈ Y1 and X ∗(2)

τ ∈ Y2. This also implies that X ∗(t)τ O ∈ Yt for t = 1, 2,

where O is an orthonormal rotation.

Without loss of generality we focus on t = 1. From the definition of C1 and the

fact that X ∗(1)
τ O ∈ Y1, ||X∗(1)

τ −C1||F ≤ ||X∗(1)
τ −X ∗(1)

τ O||F . So,

||C1 −X ∗(1)
τ O||F ≤ ||C1 −X

∗(1)
τ ||F + ||X∗(1)

τ −X ∗(1)
τ O||F ≤ 2||X∗(1)

τ −X ∗(1)
τ O||F .

Recall that E1 is defined as

E1 = {i ∈ type 1 : ∃ j ∈ type 1 & j 6= i s.t.

||C(i, ·)−X ∗τ (i, ·)O||2 > ||C(i, ·)−X ∗τ (j, ·)O||2}.

Note that for two type 1 nodes i 6= j, either M(i, ·) = M(j, ·) when they belong to

the same block, or M(i, ·)′M(j, ·) = 0 when they belong to different blocks. Since

X ∗τ = MB, X ∗τ is row-normalized, and O is orthonormal, this implies that for two

type 1 nodes i 6= j, either

X ∗(1)
τ (i, ·)O = X ∗(1)

τ (j, ·)O⇒ ||X ∗(1)
τ (i, ·)O−X ∗(1)

τ (j, ·)O||2 = 0

or

(X ∗(1)
τ (i, ·)O)′(X ∗(1)

τ (j, ·)O) = 0⇒ ||X ∗(1)
τ (i, ·)O−X ∗(1)

τ (j, ·)O||2 =
√

2.

This leads to the observation that

||C(i, ·)−X ∗(1)
τ (i, ·)O||2 <

1√
2
⇒

||C(i, ·)−X ∗(1)
τ (i, ·)O||2 ≤ ||C(i, ·)−X ∗(1)

τ (j, ·)O||2, ∀ j 6= i.

which means ||C(i, ·) − X ∗(1)
τ (i, ·)O||2 < 1/

√
2 is a sufficient condition for node i

to be correctly clustered. Define E ′1 to be the set of nodes that do not satisfy this

31

sufficient condition, i.e.,

E ′1 = {i ∈ type 1 : ||C(i, ·)−X ∗(1)
τ (i, ·)O||2 ≥ 1/

√
2}.

Then,

|E1| ≤ |E ′1| =
∑
i∈E ′1

1 ≤ 2
∑
i∈E ′1

||C(i, ·)−X ∗(1)
τ (i, ·)O||22 ≤ 2||C1 −X ∗(1)

τ O||2F

≤ 8||X∗(1)
τ −X ∗(1)

τ O||2F .

From (2.7), we have

||Xτ −XτO||F ≤ c0
1

λ

√
K log(4N/ε)

δ + τ

under Assumptions (A1) and (A2). Note that for any i,

||X∗τ (i,)−X ∗τ (i,)O||2 ≤
||Xτ (i,)−Xτ (i,)O||2

min{||Xτ (i,)||2, ||Xτ (i,)||2}
.

Therefore, from the definition of γ1,

8||X∗(1)
τ −X ∗(1)

τ O||2F ≤
8||X(1)

τ −X (1)
τ O||2F

γ2
1

≤
8||Xτ −XτO||2F

γ2
1

≤ 8c2
0

K log(4N/ε)

λ2γ2
1(δ + τ)

.

This completes the proof for T = 2.

32

CHAPTER 3

A BLOCKMODEL FOR NODE
POPULARITY IN NETWORKS WITH

COMMUNITY STRUCTURE

3.1 Introduction

Networks are ubiquitous in today’s world, as a wide range of systems, such as social

interpersonal systems (Milgram, 1967), power grids (Watts and Strogatz, 1998),

the World Wide Web (Huberman and Adamic, 1999), and protein interaction

systems (Gavin et al., 2002), to name a few, can be represented as networks.

Accordingly, there has been a lot of recent emphasis in the statistics literature

towards developing statistical methodology for analyzing network data. Broad

overviews of network data analysis can be found in Kolaczyk (2009), Goldenberg

et al. (2010), and Newman (2010).

A well-known feature of many empirical networks is community structure. Nodes

in a network are often found to belong to groups or communities that exhibit simi-

lar behavior. A classical random graph model for networks with community struc-

ture is the stochastic blockmodel (SBM, hereafter) that was introduced by Lorrain

and White (1971), Holland et al. (1983) and Fienberg et al. (1985). Under the

SBM, two nodes belonging to the same community display community structure

by behaving identically, in a stochastic sense. In particular, any two nodes from

the same community have the same degree distribution and the same expected

degree. This implies unrealistic structural constraints since empirical networks

exhibit wide degree distributions even for nodes belonging to the same commu-

nity. The degree-corrected blockmodel (DCBM, hereafter) proposed by Karrer

and Newman (2011) ‘corrects’ this anomaly by assigning a degree parameter to

each node, thereby allowing nodes in the same community to have different degree

distributions.

A network feature that is closely associated with community structure is the

popularity of nodes across communities, defined as the number of edges between a

specific node and a specific community. Just like node degrees vary widely between

nodes in the same community in empirical networks, node popularities also exhibit

33

various kinds of patterns between nodes in the same community. In particular,

for two nodes i and j in the same community, i may be more popular than j in

community A, while j is more popular than i in community B. However, both the

DCBM and the SBM have implicit structural constraints that lead to unrealistic

restrictions on node popularity, in the same manner as the SBM has structural

constraints that lead to unrealistic restrictions on node degree. The SBM restricts

node popularities to behave identically for nodes in the same community. Under

the DCBM, each node has a degree parameter that uniformly inflates or deflates

the node’s popularity in all communities, which has the unrealistic implication that

for two nodes i and j in the same community, if i is more popular than j in one

community, i must also be more popular than j uniformly across all communities.

To see how these restrictions under the DCBM might be unrealistic, we look at

two empirical illustrations — one from the political blogs network (Adamic and

Glance, 2005) in Table 3.1 and one from the Twitter network of British members

of Parliament or MPs (Greene and Cunningham, 2013) in Table 3.2. We consider

the DCBM fitted to both networks using the extreme points (EP) algorithm of Le

et al. (2015) with regularization. We cover the datasets and analysis methodology

in Section 3.6 in a comprehensive manner, the current reference is only for a quick

illustration.

Observed (Fitted by DCBM)
Name Community Liberal Pop Conservative Pop Degree

andrewsullivan.com conservative 58 (10) 85 (133) 143 (142)
blogsforbush.com conservative 5 (21) 296 (278) 301 (299)

democraticunderground.com liberal 59 (85) 34 (7) 93 (93)
liberaloasis.com liberal 169 (157) 2 (13) 171 (170)

Table 3.1: Illustrative nodes for political blogs, with popularities fit by DCBM inside
parantheses.

Observed (Fitted by DCBM)
Name Community Conservative Popularity Labour Popularity Degree

Zac Goldsmith conservative 46 (62) 25 (8) 71 (70)
Matt Hancock conservative 68 (62) 3(8) 71(70)

Seema Malhotra labour 0 (4) 88 (84) 88 (88)
Ian Austin labour 11 (3) 76 (83) 87 (87)

Table 3.2: Illustrative nodes for British MPs. Identities were looked up using
tweeterid.com.

In Table 3.1, the degree of the node blogsforbush.com is more than twice the

degree of the node andrewsullivan.com, however the latter node is almost 12 times

34

more popular than the former among liberals, although both nodes belong to the

conservative community. This is not a chance occurrence, since Andrew Sullivan is

a conservative blogger with well-known liberal connections — in fact he was ranked

by Forbes magazine at No. 19 on a list of “The 25 Most Influential Liberals in

the U.S. Media” (Varadarajan et al., 2009), to which he wrote a swift rebuttal in

Sullivan (2009). However, the DCBM enforces node popularity to be uniformly

proportional to node degree, and hence the DCBM fit grossly underestimates the

popularity of andrewsullivan.com among liberals and grossly overestimates the

popularity of blogsforbush.com among liberals. A similar phenomenon holds for

liberal blogs democraticunderground.com and liberaloasis.com, where the DCBM

grossly underestimates the former node’s popularity in the conservative commu-

nity, while grossly overestimating the latter node’s popularity in the conservative

community. Note that the DCBM correctly detects the communities of all four

blogs, and accurately fits the total degree of all four nodes, by dint of node-specific

degree parameters. However the model fitting for node popularity is quite inaccu-

rate.

Similarly for the British MP network in Table 3.2, conservative MPs Zac Gold-

smith and Matt Hancock have equal degrees in the network, and hence according to

DCBM, they should have identical popularity in either community. However, Zac

Goldsmith is a well-known environmentalist (d’Ancona, 2015) and is much more

popular among the Labour party MPs than Matt Hancock. The DCBM severely

underestimates Zac Goldmith’s popularity in the Labour party while severely over-

estimating Matt Hancock’s popularity in the Labour party. A similar contrast

holds for Labour MPs Seema Malhotra and Ian Austin.

Thus the DCBM fails to model node popularities in a flexible and realistic way.

In this chapter we introduce a new random graph model, called the popularity-

adjusted blockmodel (PABM, hereafter) for modeling node popularity in networks

with community structure. In contrast to the SBM and the DCBM, the PABM

allows flexible and realistic modeling of node popularity. We develop methodology

for community detection and parameter estimation under the PABM, and revisit

the above tables in Section 3.6 to demonstrate the improvement achieved through

this new methodology.

The rest of the chapter is organized as follows. In Section 3.2 we formulate

the PABM and compare it to the SBM and the DCBM. In Section 3.3 we de-

rive likelihood modularity for community detection under the PABM. Section 3.4

demonstrates the consistency of likelihood modularity. We compare the perfor-

mance of the PABM and the DCBM in a simulation study in Section 3.5, and in

35

analyzing the political blogs network and the British MP network in Section 3.6.

The chapter concludes with the discussion in Section 3.7 and proofs of theoretical

results.

3.2 Model

3.2.1 Community structure and blockmodels

Consider an undirected network with n nodes and no self-loops or multiple edges,

and let A be its adjacency matrix. Such networks can be conceptualized as being

generated from a random graph model with

Aij ∼ Ber(pij), (3.1)

where p is a symmetric probability matrix whose diagonals are zero and off-

diagonals are between 0 and 1. For simplicity we assume all probabilities are

strictly positive. In the absence of any structure, p consists of n(n− 1)/2 distinct

parameters. Blockmodels characterize the observed community structure in net-

works as a manifestation of block structure in this p matrix, by representing pij

as functions of a much smaller set of parameters.

Under the K-block SBM, each node belongs to one of K distinct blocks or

communities. Let c denote the true community assignment vector with ci = a if

the ith node belongs to the ath community. Then for i < j,

pij = Pcicj , (3.2)

where P is the K-by-K matrix of community link probabilities. Edges are condi-

tionally independent given c and P . Under the SBM, any two nodes in the same

community are stochastically equivalent as they behave in an identical manner (in

a probabilistic sense) towards the rest of the network, in particular they have the

same expected degree and degree distribution.

To allow for more realistic degree distributions and different expected degrees,

the DCBM adds node-specific degree parameters such that for i < j,

pij = θiωcicjθj , (3.3)

where θi and θj are the degree parameters for the respective nodes, and ω is the K-

36

by-K matrix of baseline interaction between communities. Edges are conditionally

independent given c, θ, and ω. Identifiability of the parameters is ensured by a

constraint of the form
∑

i∈Na θi = 1, ∀a = 1, . . . ,K, where Na is the set of nodes

belonging to community a.

3.2.2 Node popularity

Node popularity is an important aspect of networks and one that is inextricably

associated with community structure. The observed popularity of the ith node in

the rth community is given by Mir =
∑

j∈Nr Aij . The expectation of this quantity

is defined as

µir = E[Mir] =
∑
j∈Nr

pij , (3.4)

and we will call µir as the popularity of the ith node in the rth community. In

empirical networks, observed popularities of the n nodes in the K communities

vary substantially across nodes as well as communities. To realistically model and

analyze this behavior, the random graph model must be flexible enough so that

node popularities can freely vary across nodes as well as communities. However,

both the SBM and the DCBM put unrealistic restrictions on node popularities,

and this is the main motivation behind proposing the PABM, which models node

popularities in a flexible and realistic manner. We substantiate this by diagnosing

some of the restrictions implicit in DCBM.

Putting together definition (3.4) with models (3.2) and (3.3), we see that under

the SBM, µir = nrPcir and under the DCBM, µir = θiωcir where nr = |Nr| is

the size of community r. Thus the SBM restricts node popularity to be equal for

nodes in the same community, while the DCBM restricts node popularity to scale

up or down in accordance to degree parameter — which means for two nodes in

the same community, the one with higher θ must be uniformly more popular in all

communities. First, let i, j ∈ Nr and let s1, s2 be two communities. Then

µis1
µis2

=
ns1Prs1
ns2Prs2

=
µjs1
µjs2

under the SBM, and
µis1
µis2

=
θiωrs1
θiωrs2

=
ωrs1
ωrs2

=
µjs1
µjs2

under the DCBM. Thus under both models, we have the restriction that relative

popularity compared across communities must be equal for all nodes in the same

37

community, as the ratio for i must equal that for j. Secondly,

µis1
µjs1

=
ns1Prs1
ns1Prs1

= 1 =
µis2
µjs2

under the SBM, and
µis1
µjs1

=
θiωrs1
θjωrs1

=
θi
θj

=
µis2
µjs2

under the DCBM. Thus relative popularity compared between nodes in the same

community must be equal across all communities, as the ratio does not depend on

s1 and s2. These restrictions impede node popularities from varying realistically

across nodes and communities.

Structural constraints of the SBM and the DCBM also manifest in restrictions

in the formation of individual edges, in addition to node popularity. Let i1, i2 ∈ Nr
and j1, j2 ∈ Ns. Under the SBM, the restriction pi1j1 = pi2j2 is well-known. Sup-

pose under the DCBM, θi1 > θi2 and θj1 > θj2 , then pi1j1 > pi2j2 — thus two

high-degree nodes are always more likely to be connected than two low-degree

nodes. This can be unrealistic, for instance when the communities represent an-

tagonistic factions, and high-degree nodes might represent authority figures in

opposing communities, who are very unlikely to connect with each other, whereas

two low-degree nodes might be less extremely positioned and therefore be more

likely to connect.

3.2.3 The popularity adjusted blockmodel

We propose a new blockmodel, which we call the popularity-adjusted blockmodel

(PABM) where for i < j,

pij = λicjλjci , (3.5)

where λir, 1 ≤ i ≤ n, 1 ≤ r ≤ K, are the popularity scaling parameters and

0 ≤ pij ≤ 1 for all i < j. Thus, pij depends on the popularity of node i in the

community to which j belongs, and the popularity of node j in the community to

which i belongs. Similar to the identifiability issue with the DCBM as discussed

in Karrer and Newman (2011), the PABM also has a scaling identifiability issue.

To see this, fix scaling constants Crs > 0 for 1 ≤ r < s ≤ K and define λ̃ir =

Crsλir and λ̃js =
λjs
Crs

for all i ∈ Ns, j ∈ Nr. Then the two sets of parameters λ̃

and λ result in the same probability matrix p in (3.5). This issue can be resolved

38

by imposing the identifiability constraint that for all pairs r, s of communities,

Λrs = Λsr where Λrs :=
∑
j∈Nr

λjs. (3.6)

Note that under the PABM, µir = λirΛrci . We now show that this model does

not have the restrictions mentioned in Section 3.2.2. As before, let i, j ∈ Nr and

let s1, s2 be two communities. Then

µis1
µis2

=
λis1Λs1r
λis2Λs2r

,
µjs1
µjs2

=
λjs1Λs1r
λjs2Λs2r

,

so these ratios depend on i or j, and can vary across nodes in the same community.

Also
µis1
µjs1

=
λis1Λs1r
λjs1Λs1r

=
λis1
λjs1

,
µis2
µjs2

=
λis2
λjs2

,

which depend on s1 and s2, and hence can vary across communities. Finally for

i1, i2 ∈ Nr and j1, j2 ∈ Ns, PABM can model the case where i1, j1 are high-degree

nodes and authority figures in opposing communities while i2, j2 are low-degree

nodes, but pi1j1 is smaller than pi2j2 . For this, set λi1r and λj1s to high values

making i1 and j1 very popular in their own communities, but λi1s and λj1r to small

values making them unpopular in each other’s community. Setting λi2s > λi1s and

λj2r > λj1r ensures pi1j1 < pi2j2 without compromising the high popularity of i1

and j1 in their own communities. Thus PABM allows more realistic modeling of

node popularities and edge probabilities than DCBM.

Heuristically, the degree of a node is a network-level feature, and the DCBM

can model this feature quite well, by allowing each node to have its own degree

parameter. In this DCBM allows a lot more flexibility compared to the classical

SBM, since the latter forces expected degree of all nodes in the same community

to be equal. However, popularity of a node is a community-level feature as the

same node can be popular in one community and unpopular in another community,

and the DCBM fails to model this feature adequately. DCBM governs the relative

behavior of a node in all communities by a single degree parameter, and this forces

a high degree node to be relatively popular uniformly across the network, and a low

degree node to be uniformly unpopular. To model node popularities in a flexible

manner, the random graph model needs parameters for every node-community

combination, which is given by the PABM.

It is relevant to note that both the SBM and the DCBM are special cases

of PABM. The SBM (3.2) can be expressed in terms of model (3.5) by setting

39

λir =
√
Pcir where P is a symmetric K-by-K probability matrix, which implies

pij = λicjλjci =
√
Pcicj

√
Pcjci = Pcicj by the symmetry of P . For DCBM, set

λir = θi
√
ωcir where ω is a symmetric K-by-K community interaction matrix,

which implies pij = λicjλjci = θi
√
ωcicj × θj

√
ωcjci = θiωcicjθj by the symmetry of

ω.

3.2.4 Detectability of communities

In Section 3.2.1, we mentioned that blockmodels define a block structure for the n-

by-n probability matrix p. The model formulations in (3.2), (3.3), and (3.5) of edge

probabilities as functions of underlying parameters characterize the community

structure for the respective blockmodels. For this community structure to be well-

defined, the communities must also be detectable. In this subsection we define the

notion of detectability of communities and lay down detectability conditions for

the SBM, the DCBM, and the PABM.

We first state our principle of detectability of communities. Suppose we are

given K, the number of communities, and p, the edge probability matrix which

follows a blockmodel — we also know the formula of pij for this blockmodel, for

instance if the blockmodel is an SBM we know the formula (3.2). Then given any

two nodes j1, j2, the principle of detectability postulates that by looking at the

corresponding columns {pij1 , pij2}ni=1 of p, we should be able to determine whether

the two nodes belong to the same community or different communities.

For the SBM, if j1, j2 belong to the same community, we know from (3.2) that

pij1 = pij2 for all i = 1, . . . , n. For detectability, we therefore require that whenever

j1, j2 belong to different communities, there is deviation from the above pattern,

allowing us to detect that j1, j2 belong to different communities. This can be

ensured by the following detectability criterion: for any two distinct communities

a and b, there exists some community c such that Pac 6= Pbc — in other words,

the ath row and the bth row of P must have at least one disagreement. This is

a well-known condition used in SBM literature, for example see Bickel and Chen

(2009) and Zhao et al. (2012). Under this criterion, we can have the community

detection rule for the SBM, that given any two nodes j1, j2, if the set of numbers

{pij1/pij2}ni=1 are all equal to 1, then j1 and j2 belong to the same community, and

if {pij1/pij2}ni=1 has one or more values different from 1, then the nodes belong to

different communities.

For the DCBM (3.3), if j1, j2 belong to the same community, then pij1/pij2 =

θj1/θj2 which is constant for all i = 1, . . . , n. A natural detectability criterion is

40

that for any two distinct communities a and b, the set of numbers {ωac/ωbc}Kc=1

has at least two distinct values. Under this criterion, we can have the commu-

nity detection rule for DCBM, that given any two nodes j1, j2, if the numbers

pij1/pij2 , i = 1, . . . , n, are all equal, then j1 and j2 belong to the same community,

and if the set {pij1/pij2}ni=1 has two or more distinct values, then the nodes belong

to different communities.

While the SBM detectability criterion is widely used, we have not seen previous

instances of the DCBM detectability criterion in the extensive literature covering

DCBM. Therefore to emphasize its relevance, suppose the detectability criterion is

not enforced. For a K-block DCBM, suppose there are two distinct communities

a and b such that for some γ 6= 1, ωbc = γωac for all c = 1, . . . ,K, and suppose

there exist j1 ∈ Na, j2 ∈ Nb such that θj1 = γθj2 . Then pij1 = pij2 for all

i = 1, . . . , n which implies j1 and j2 are stochastically equivalent, but they belong

to different communities, which is counter-intuitive as two nodes that are identical

(in a stochastic sense) should belong to the same community. Our detectability

criterion for DCBM precludes this possibility.

Finally for the proposed model (3.5), if j1, j2 belong to the same community,

then pij1/pij2 = λj1ci/λj2ci . This ratio changes value only when ci changes, and

hence the set of numbers {pij1/pij2}ni=1 can assume at most K distinct values.

Therefore, the detectability criterion is that for any j1, j2 belonging to different

communities, the set of numbers {pij1/pij2}ni=1 must take at least K + 1 distinct

values. The community detection rule is that that given any two nodes j1, j2, if

the set of numbers {pij1/pij2}ni=1 assumes K or less distinct values, then j1 and j2

belong to the same community, and if {pij1/pij2}ni=1 has K + 1 or more distinct

values, then the nodes belong to different communities.

The notion of detectability forms an intuitive link between the statistical task

of model fitting through parametric estimation and the machine learning task of

community detection. Given a blockmodel structure and under reasonable condi-

tions, we should be able to successfully estimate the parameters of the blockmodel,

and therefore satisfactorily estimate the edge probability matrix p. Had we known

p exactly, using the detectability rules we could have assigned communities pre-

cisely. If the fitted model is a good approximation to the correct model, the

detectability rules ensure that community assignment from the estimation process

is approximately accurate as well. In the next section, we formulate the likelihood

modularity as a tool for this dual task of model fitting and community detection,

and in Section 3.4 we formalize this intuition by establishing community detection

consistency of the likelihood modularity under PABM.

41

3.3 Likelihood modularity for PABM

A natural statistical approach for fitting a PABM to a given network is to maxi-

mize the likelihood. However, the likelihood function derived from (3.5) does not

have closed form solutions for the maximum likelihood estimators. Following the

approach used in Karrer and Newman (2011) in the context of an identical issue

with the DCBM, we use Poisson likelihood instead of Bernoulli likelihood, which

makes MLEs take closed form expressions. This approach of using likelihood mod-

ularity based on Poisson likelihood, while keeping the Bernoulli distribution for

model definition and theoretical analysis, was adopted earlier in the context of the

DCBM in Zhao et al. (2012) — as mentioned in their chapter and the references

within it, this has significant practical benefits at the cost of a small approximation

error.

We now compute the likelihood, pretending that A is the adjacency matrix of

an undirected multigraph with n nodes, possibly including self-edges. Therefore

when i 6= j, Aij = number of edges between nodes i and j, but the diagonal

element Aii = twice the number of self-edges from i to itself. Consider the random

graph model where the number of edges between nodes i and j follow a Poisson

distribution and E[Aij] = pij with pij having the same expression as (3.5). Note

that the expected number of self-edges of node i is given by 1
2λ

2
ici

. Therefore the

likelihood is

L =

∏
i<j

(λicjλjci)
Aij

Aij !
exp(−λicjλjci)

×(∏
i

(1
2λ

2
ici

)Aii/2

(Aii/2)!
exp(−1

2
λ2
ici)

)
.

Ignoring constants, we have the log-likelihood

l =

∑
i<j

Aij log(λicj) +
∑
i<j

Aij log(λjci) +
∑
i

Aii log(λici)


−

∑
i<j

λicjλjci +
1

2

∑
i

λ2
ici

 =
∑
i

∑
r

Mir log(λir)−
1

2

∑
i

∑
j

λicjλjci ,

where observed popularity Mir is defined in Section 3.2.2. To obtain MLEs, fixing

i and r,
∂l

∂λir
=
Mir

λir
−
∑
j∈Nr

λjci

42

and therefore by solving for the left-hand-side quantity as zero, we get

Mir = λirΛrci (3.7)

as the likelihood equation, where i = 1, . . . , n and r = 1, . . . ,K. Let Ors :=∑
i∈Nr Mis be the number of edges connecting the rth and sth communities. Note

that Ors = Osr. Summing the likelihood equation (3.7) over i ∈ Ns,∑
i∈Ns

λirΛrs =
∑
i∈Ns

Mir = Ors ⇒ ΛsrΛrs = Ors

which implies, by imposing constraint (3.6), that Λrs =
√
Ors. Plugging this into

the likelihood equation (3.7), the MLE of λir (given c) is

λ̂ir =
Mir√
Orci

. (3.8)

Putting these MLEs into the log-likelihood function, we get

l̂ =
∑
i

∑
r

Mir log(
Mir√
Orci

)− 1

2

∑
i

∑
j

Micj√
Ocjci

× Mjci√
Ocicj

.

Note that the second term can be written as

1

2

∑
i

∑
j

Micj√
Ocjci

× Mjci√
Ocicj

=
1

2

∑
r

∑
s

1

Ors

∑
i∈Nr

Mis

∑
j∈Ns

Mjr =
1

2

∑
r

∑
s

Ors = E

where E is the total number of edges in the network, which is a constant free from

c. Therefore, ignoring constants and multiplying by 2 for notational convenience,

the profile likelihood for a given network can be written as

Q(c) = 2
∑
i

∑
r

Mir log

(
Mir√
Orci

)
= 2

∑
i

∑
r

Mir log(Mir)−
∑
r

∑
s

Ors log(Ors).

(3.9)

As is usual in network literature, we interpret the profile likelihood (3.9) as a mod-

ularity function and call it likelihood modularity. For a given adjacency matrix,

Q(c) is a function of the community assignment c, with the likelihood already

maximized (conditional on c) with respect to the λir. Therefore Q(·) can be used

as a modularity function for community detection, by maximizing this quantity

over the set of community assignments. Note that conditional on a community

assignment, the corresponding parameter estimates are given by (3.8), from which

43

we can construct the fitted PABM using (3.5).

3.4 Consistency of likelihood modularity

We now investigate theoretical properties of the likelihood modularity (3.9) under

the PABM. Following Bickel and Chen (2009) and Zhao et al. (2012) we introduce

sparsity through the sparsity parameter ρn which goes to zero with n, and consider

an appropriately scaled version of the modularity function. The parameters λir

shrink to zero at the rate λir =
√
ρnλir, which means edge probabilities shrink

to zero with n at the rate pij = ρnpij — this ostensible abuse of notation makes

later terminology less cumbersome. We consider the scaled version of the PABM

modularity as

Q(e) =
2

n2ρn

∑
i

∑
r

Mir log

(
Mir√
Oeir

)

=
1

n2ρn

(
2
∑
i

∑
r

Mir log(Mir)−
∑
r

∑
s

Ors log(Ors)

)
.

The ‘estimated’ community assignment is given by

ĉ = arg max
e
Q(e), (3.10)

where e is any candidate assignment. We want to prove consistency of likelihood

modularity under PABM, i.e., show that the proportion of misclustered nodes

goes to zero in probability. We define the population version of the likelihood

modularity as

Q̃(e) =
2

n2ρn

∑
i

∑
r

µir(e) log

(
µir(e)√
orei(e)

)
,

where µir(e) = E[Mir(e)], ors(e) = osr(e) = E[Ors(e)]. We begin by stating as-

sumptions.

Assumption 3.4.1 The number of communities K is fixed and known. The true

assignment c as well as all candidate assignments e have exactly K non-empty

communities.

Assumption 3.4.2 Sparsity: ρn = ω(log(n)√
n

), which implies nρ2n
log2(n)

→∞ as n→∞.

44

Assumption 3.4.3 Identifiability: for any two communities 1 ≤ a, b ≤ K,Λab =

Λba, where Λab is defined in (3.6).

Assumption 3.4.4 Detectability: for any two distinct communities 1 ≤ a 6= b ≤ K
and any two nodes j1 ∈ Na, j2 ∈ Nb, the set

{
pij1
pij2

}n
i=1

assumes at least K + 1

distinct values.

Assumption 3.4.2 sets the sparsity level required for consistency. Assumptions

3.4.3 and 3.4.4 re-iterate the identifiability condition from Section 3.2.3 and the

detectability condition from Section 3.2.4. Our first lemma establishes an uniform

concentration bound for the modularity function and its population version under

the sparsity condition.

Lemma 3.4.1 Under Assumptions 3.4.1 and 3.4.2,

max
e
|Q(e)− Q̃(e)| P→ 0.

A proof of the lemma, as well as proofs of further results, are at the end of this

chapter. Lemma 3.4.1 takes care of the random fluctuation arising from the ran-

domness of edge formation. It states that for any community assignment, the

observed modularity can be interpreted as a noise-added version of the population

modularity with an asymptotically ignorable noise. This validates the use of the

population modularity in establishing community detection accuracy in Lemma

3.4.2, in place of the noisy observed modularity.

A somewhat vexing issue that crops up in community detection (and clustering

in general) is the identifiability of community (or cluster) labels. We now introduce

some notation to deal with this issue. Any candidate assignment e = (e1, . . . , en)

is an n-vector comprising of the K labels where each label appears at least once.

Let Π be the symmetric group of all permutations of {1, . . . ,K}. For σ ∈ Π, we

define σ(e) := (σ(e1), . . . , σ(en)) as the label permutation of e generated by σ, and

define

Π(e) = {σ(e) : σ ∈ Π}

as the set of all label permutations of the assignment vector e. Note that for

any e′ ∈ Π(e), the community assignments e′ and e are identical with respect to

community detection, and that Q(e′) = Q(e), Q̃(e′) = Q̃(e). We now establish

that the true assignment is the unique maximizer of the population version of the

likelihood modularity.

45

Lemma 3.4.2 Under Assumptions 3.4.3 and 3.4.4, Q̃(e) is ‘uniquely’ (up to label

permutation) maximized at the correct assignment, i.e., for any candidate assign-

ment e,

Q̃(e) ≤ Q̃(c)

where equality holds if and only if e ∈ Π(c).

In light of the heuristic discussion in the last paragraph of Section 3.2, Lemma

3.4.1 establishes the statistical approximation part, that under Assumption 3.4.2,

the observed modularity is an asymptotically accurate approximation of its popu-

lation version. Lemma 3.4.2 provides the second part about clustering accuracy —

if we magically had access to the population modularity Q̃, Lemma 3.4.2 ensures

that by maximizing Q̃ over all candidate assignments we would have obtained a

perfectly accurate community assignment. We do not have that access to Q̃, how-

ever by Lemma 3.4.1, with a high probability, the observed modularity Q gets very

close to Q̃ as the network increases in size. Hence maximizing the observed mod-

ularity Q instead of the population modularity Q̃ should give us an approximately

accurate community assignment for large networks.

We formalize this in Theorem 3.4.1 which is our main result, but first we need

a way to quantify this accuracy. For this, we define the error rate of a candidate

assignment as the proportion of nodes where the candidate assignment and the

true assignment disagree, i.e.,

ξn(e) = min
e′∈Π(e)

1

n

n∑
i=1

I[e′i 6= ci], (3.11)

where disagreement is minimized over all label permutations of the candidate as-

signment. Theorem 3.4.1 establishes the consistency of ĉ as an estimator of the

true assignment c.

Theorem 3.4.1 Under Assumptions 3.4.1 - 3.4.4,

ξn(ĉ)
P→ 0

where ĉ is defined in (3.10) and ξn is defined in (3.11).

Remark 3.4.1 A noteworthy aspect of this result is that it is derived under a fully

unrestricted model, as we do not put any structural restrictions on the parameters

λir, other than those necessary for identifiability or detectability. In comparison,

for the DCBM, Zhao et al. (2012) established consistency under a restricted model

46

where the degree parameters are latent variables, and their values are restricted

to a finite parameter space. Given that the main advantage of DCBM over the

classical SBM is that the former allows flexible modeling of expected degrees, this

strong structural restriction forcing expected degrees to take values in a finite set

appears somewhat counterintuitive. As pointed out by Bickel and Sarkar (2015),

this structural assumption of Zhao et al. (2012) effectively characterizes the DCBM

as an SBM with a larger number of communities. A similar comment was made

earlier by Amini et al. (2013). This structural restriction has also been remarked

upon by Jin (2012).

Remark 3.4.2 The main condition leading to the consistency result is Assumption

3.4.2 which requires the expected node degrees to be of order ω(
√
n log(n)). This

assumption is stronger than those required for consistency of DCBM modularity

in Zhao et al. (2012) or that for consistency of SBM modularity in Bickel and Chen

(2009). The likelihood modularity is derived from the maximum likelihood esti-

mation of O(n) parameters, which is much larger compared to the finite number of

parameters estimated in the chapters cited above. The stronger degree assumption

is the cost associated with the benefits of estimating a more complicated model

that allows realistic modeling of node popularity. We envisage that as a natural

next step, the degree assumption can be relaxed if we impose some constraints on

the model or pursue a regularized approach, see the discussion in Section 3.7 for

elaboration on this issue.

3.5 Simulation study

We report results from a simulation study that was undertaken to compare the fi-

nite sample performance of the PABM modularity defined in (3.9) with the DCBM

modularity, which is defined as

QDC =
∑
r

∑
s

Ors log

(
Ors
OrOs

)
(3.12)

following Karrer and Newman (2011) and Zhao et al. (2012), whereOr :=
∑K

s=1Ors.

In Section 3.4 we proved consistency of ĉ which was defined in (3.10) as the global

maximizer of Q(·). However, it is computationally infeasible to perform an ex-

haustive search over approximately Kn candidate assignments to obtain the global

maximizer, and this optimization problem is in principle NP-hard. In practice an

appropriate optimization algorithm is used to maximize modularity functions —

47

e.g., variational methods (Daudin et al., 2008), Kernighan-Lin type algorithms

(Karrer and Newman, 2011), pseudo-likelihood algorithms (Amini et al., 2013), to

name a few.

In this chapter, we use the so-called extreme points (EP, hereafter) algorithm,

which is a state-of-the-art low dimensional optimization algorithm proposed by

Le et al. (2015). Briefly, for K = 2 the EP algorithm computes the two leading

eigenvectors of the adjacency matrix A, and finds the candidate assignments asso-

ciated with the extreme points of the projection of the cube [−1, 1]n onto the space

spanned by the two leading eigenvectors of A. Let Bcan be the set of all such candi-

date assignments. The modularity function Q (or QDC) is evaluated on all assign-

ments b ∈ Bcan, and the best assignment is defined as the maximizer of Q (or QDC)

over Bcan, i.e., ĉ := arg maxb∈Bcan Q(b) for PABM, and ĉ := arg maxb∈Bcan QDC(b)

for DCBM. Some advantages of EP over the competing methods are that EP is

free from issues of initialization, that the candidate set Bcan consists of only O(n)

assignments compared to 2n for exhaustive search, and that the candidate set Bcan
is fixed irrespective of the modularity function being optimized, which makes it

particularly suitable for comparing performances of various modularity functions.

For networks with low degree nodes Le et al. (2015) recommend a regularized ver-

sion of the algorithm. Interested readers are referred to Le et al. (2015) for more

details about the EP algorithm.

We consider networks with two communities, i.e., K = 2, and with equal com-

munity sizes n1 = n2. Model parameters are set as λir = α
√

h
1+h when r = ci, and

λir = β
√

1
1+h when r 6= ci, where h is the homophily factor. In each community,

we designate 50% of the nodes as category 1 and 50% of the nodes as category 2.

We set α = 0.8, β = 0.2 for category 1 nodes and α = 0.2, β = 0.8 for category 2

nodes. This implies that between a category 1 node and a category 2 node both

belonging to community 1 (say), the category 1 node is more popular in commu-

nity 1 while the category 2 node is more popular in community 2. The homophily

factor h determines the magnitude of community structure in the network — the

expected number of intra-community edges is h times the expected number of

inter-community edges. The edge probability matrix p (see Section 3.2.1) is con-

structed from the λir’s using (3.5). We increase h from 1.5 to 4 in increments of

0.5 to create networks with increasing strength of community structure, and use

sample sizes n = 400, n1 = n2 = 200 and n = 1000, n1 = n2 = 500. The model

design ensures that across the range of h, the expected number of edges in the

network stays fixed at around 40,000 for n = 400 and 250,000 for n = 1000. As h

increases, the expected degree of category 1 nodes ranges from 112-140 for n = 400

48

(280-350 for n = 1000), while the expected degree of category 2 nodes ranges from

88-60 for n = 400 (220-150 for n = 1000). Given the high expected degrees, we do

not use regularization for EP.

The main motivation behind the PABM is to construct a random graph model

that can realistically model node popularity. Therefore, in addition to community

detection, it is relevant to compare the accuracy of Q and QDC in estimating node

popularity. For this, we define two measures of estimation error:

E1 =
1

2E

n∑
i=1

K∑
r=1

(µ̂ir(ĉ)− µir(c))2 , (3.13)

E2 =
1

2E

n∑
i=1

K∑
r=1

(µ̂ir(c)− µir(c))2 , (3.14)

where E is the expected number of edges in the network and 2E =
∑n

i=1

∑K
r=1 µir(c)

is the normalizing constant. For any community assignment b, µ̂ir(b) are the fitted

node popularities calculated from the fitted model (PABM or DCBM) given by

that assignment. Note that E1 measures the overall error in estimating node

popularities, originating from the combined effects of community detection and

parameter estimation. In contrast E2 measures the community-corrected error in

estimating node popularities, originating purely from parameter estimation since

we compute estimated node popularities after plugging in the true community

assignment.

For each sample size and each value of h, we generated 100 random networks and

applied the EP algorithm on each random network to find the optimal assignments

given by Q and QDC . We computed the community detection error ξn defined in

(3.11) as well as the estimation errors E1 and E2 defined in (3.13) and (3.14). The

results are in Figure 3.1, averaged across the 100 simulations for each model setting.

As expected, both community detection and popularity estimation improved with

increasing values of h, as the community structure became increasingly prominent.

However across model settings, the error rates for PABM were quite substantially

better than those of DCBM, for both community detection and node popularity

estimation.

The poor performance of the DCBM is a consequence of its structural constraints

outlined in Section 3.1 and Section 3.2.2. Under the DCBM, for two nodes i1 and

i2 in the same community, if i1 is more popular than i2 in community 1, i1 must

also be more popular than i2 in community 2. Note that in this simulation, for

a category 1 node i1 and a category 2 node i2 both belonging to community 1

49

(say), i1 is more popular than i2 in community 1, whereas i2 is more popular than

i1 in community 2. The DCBM fails to model this dynamic behavior leading to

poor community detection and inaccurate estimation of node popularities. Even

when we remove the effect of community detection and look at E2, DCBM makes

considerable errors in estimating node popularities. It is worth noting that the

community detection by DCBM is quite poor (around 15% error) even when h = 4,

which means there are around four times many intra-community edges than inter-

community edges, implying a quite strong community structure.

3.6 Data analysis

We now report the performance of PABM modularity and DCBM modularity in

analyzing two networks, the political blogs network and the British MP Twitter

network. The political blogs network was compiled by Adamic and Glance (2005)

soon after the 2004 U.S. presidential elections, and it consists of blogs about US

politics as nodes and hyperlinks between blogs as edges. The blogs were labeled

by Adamic and Glance (2005) as either liberal or conservative in the data set, and

we consider this as the true community assignment with K = 2. This network

has been well-studied in networks literature in general and particularly in connec-

tion with the DCBM — starting from the original DCBM chapter by Karrer and

Newman (2011) to Zhao et al. (2012), Amini et al. (2013), Jin (2012), Bickel and

Sarkar (2015), and Le et al. (2015), to name a few. Following the usual practice,

we extract the largest connected component and treat it as a simple graph with

1222 nodes and 16714 edges.

The British MP Twitter network was curated by Greene and Cunningham

(2013) with nodes as user accounts of 419 British MPs on the social media plat-

form twitter.com and three ‘layers’ of edges between them, namely mentions, fol-

lows, and retweets, which are three kinds of interactions that can happen between

Twitter users. The true community assignments are given by the political party

affiliations of the MPs. There are five political parties into which the 419 nodes

are grouped. However, 360 out of 419 MPs belong to only two of these parties,

namely Conservative (colloquially called Tories) and Labour Party. We consider

only the network spanned by these two parties, i.e., K = 2, and the single ‘layer’

of edges given by retweets. We analyze the largest connected component, which is

a network with 329 nodes and 5720 edges.

We analyze both networks using the EP algorithm of Le et al. (2015) as out-

50

1.5 2.0 2.5 3.0 3.5 4.0

0.
00

0.
10

0.
20

h

co
m

m
un

ity
 d

et
ec

tio
n

er
ro

r

1.5 2.0 2.5 3.0 3.5 4.0

0.
00

0.
10

0.
20

h

co
m

m
un

ity
 d

et
ec

tio
n

er
ro

r

1.5 2.0 2.5 3.0 3.5 4.0

0
4

8
12

h

E
1

1.5 2.0 2.5 3.0 3.5 4.0

0
10

20
30

40

h

E
1

1.5 2.0 2.5 3.0 3.5 4.0

0
2

4
6

8

h

E
2

1.5 2.0 2.5 3.0 3.5 4.0

0
5

10
15

20

h

E
2

Figure 3.1: Community detection error and popularity estimation error plots from
simulation study, where squares represent PABM errors and dots represent DCBM
errors. The top row displays community detection errors measured by ξn from (3.11),
and the middle and bottom rows display estimation errors E1 and E2 from (3.13) and
(3.14). We use sample sizes n = 400 (left) and n = 1000 (right). Homophily factor is
increased from h = 1.5 to h = 4 in increments of 0.5. The PABM modularity performs
accurate community detection and popularity estimation, whereas results from DCBM
are substantially poorer.

51

lined in Section 3.5. For sparse networks, Le et al. (2015) recommended using a

regularization of the form A+ τ11′, where τ := ελn/n and λn is the average node

degree, n is the number of nodes, and ε ∈ (0, 1) is a constant. They remarked

that the results are insensitive to the value of the tuning parameter ε, following

the theoretical results of Amini et al. (2013). While this is theoretically true, in

practice choosing different values of a tuning parameter can make some differences

to the result, and with ad hoc choices reproducibility of results can be difficult. In

our data analysis, we therefore considered a range of values ε = 0.05 to ε = 0.95 in

increments of 0.05. Each ε corresponds to a set of candidate assignments, say Bεcan.

We combined these candidate sets across the range of ε, and after removing dupli-

cates, considered the superset Bregcan = ∪εBεcan as the set of candidate assignments

under regularization. As before, we computed Q and QDC over this candidate set

and define the best assignment to be the maximizer of Q (or QDC) over Bregcan, i.e.,

ĉ := arg maxb∈Bregcan
Q(b) for PABM, and ĉ := arg maxb∈Bregcan

QDC(b) for DCBM. We

performed both unregularized and regularized versions of EP for both networks

and report results from both versions.

As with simulations, for data analysis as well we want to compare the per-

formances with respect to node popularity in addition to community detection.

However for observed datasets the true model is unknown, and hence error mea-

sures E1 and E2 cannot be calculated. Instead, we define the goodness of fit

measures:

F1 =
1

2E

n∑
i=1

K∑
r=1

(µ̂ir(ĉ)−Mir(c))
2 , (3.15)

F2 =
1

2E

n∑
i=1

K∑
r=1

(µ̂ir(c)−Mir(c))
2 , (3.16)

where E is the observed number of edges, and 2E =
∑n

i=1

∑K
r=1Mir(c) is the

normalizing constant. Note that F1 measures the overall goodness of fit originat-

ing from community detection and model fit, while F2 measures the community-

corrected goodness of fit that originates purely from model fit. Results are tabu-

lated in Tables 3.3 and 3.4.

Both modularities perform well with respect to community detection, although

the PABM has a slight advantage. However the PABM performs considerably

better than the DCBM in terms of fitting node popularities. This poor performance

of the DCBM is also a reflection of its structural constraints when it comes to

modeling node popularities. Comparing between the unregularized and regularized

52

Error from unregularized EP Error from regularized EP
Network Nodes PABM DCBM PABM DCBM

Political Blogs 1222 4.99% (61) 5.07% (62) 4.99% (61) 5.40% (66)
British MP 329 0.30% (1) 0.61% (2) 0.00% (0) 0.61% (2)

Table 3.3: Community detection error rates (number of misclustered nodes
in brackets)

F1 from unregularized EP F1 from regularized EP F2

Network PABM DCBM PABM DCBM PABM DCBM
Political Blogs 0.06 1.157 0.057 1.155 0.002 1.883

British MP 0.002 0.282 0.002 0.282 0.002 0.284

Table 3.4: Goodness of fit measures for node popularity

versions, there are some small differences for the political blogs network, but results

for British MP network are identical for the different version, possibly because the

latter is less sparse and hence regularization has little effect.

Finally, we revisit the illustrative nodes from Section 3.1 to see some real im-

plications of the superior popularity fit achieved by the PABM. In Tables 3.5 and

3.6, we revisit Tables 3.1 and 3.2 respectively, but with fitted node popularities

under the PABM instead of the DCBM. Clearly the PABM can fit node popular-

ities realistically, and therefore can offer greater insights about the popularity of

individual nodes in the networks.

Observed (Fitted by PABM)
Name Community Liberal Pop Conservative Pop Degree

andrewsullivan.com conservative 58 (59) 85 (84) 143 (143)
blogsforbush.com conservative 5 (6) 296 (292) 301 (298)

democraticunderground.com liberal 59 (62) 34 (31) 93 (93)
liberaloasis.com liberal 169 (169) 2 (1) 171 (170)

Table 3.5: Illustrative nodes for political blogs (regularized EP).

Observed (Fitted by PABM)
Name Community Conservative Popularity Labour Pop Degree

Zac Goldsmith conservative 46 (46) 25 (25) 71 (71)
Matt Hancock conservative 68 (67) 3 (3) 71 (70)

Seema Malhotra labour 0 (0) 88 (88) 88 (88)
Ian Austin labour 11 (11) 76 (76) 87 (87)

Table 3.6: Illustrative nodes for British MPs. Identities of the nodes of this network
were looked up using tweeterid.com. Abbreviations: Comm = community.

53

3.7 Discussion

This chapter introduces a popularity adjusted blockmodel that can substantially

improve modeling of node popularity in networks with community structure, com-

pared to the DCBM. We derive the likelihood modularity for this model and

demonstrate its community detection consistency. Using the EP algorithm of Le

et al. (2015) we study the performance of this new technique through simulations

and analysis of two well-studied networks, and conclude that the new method has

substantial advantages over the DCBM.

In Section 3.4 we proved consistency of likelihood modularity under Assumption

3.4.2. In contrast, Zhao et al. (2012) proved consistency of the DCBM likelihood

modularity when expected node degrees are of the order ω(1), which allows for

sparser networks — however they assumed strong structural restrictions on the

parameters of the DCBM (see Remark 3.4.1). A natural next step for the PABM

would be to look for an estimation-cum-community detection method that is con-

sistent under sparser settings than Assumption 3.4.2. We speculate that some form

of penalization or regularization of the likelihood function, along with sparsity as-

sumptions on the model parameters, might be a feasible way of achieving this. We

consider this as an interesting future direction. It is relevant to note that although

in theory consistency of PABM modularity requires stronger assumptions than

DCBM modularity, in practice we obtained better fit than the DCBM in Section

3.6 while analyzing the political blogs network, which is a dataset often invoked

as a benchmark sparse network (e.g., Zhao et al. (2012), Amini et al. (2013), Jin

(2012)).

In this chapter we have assumed K, the number of communities, to be fixed

and known. Allowing K to increase with the network size n will require stronger

assumptions for consistency, however we hope to be able to accommodate this

case under the sparse extension alluded to in the last paragraph. The problem

of estimating K from a network under the SBM has recently been investigated in

Bickel and Sarkar (2015). Another interesting future direction will be to devise an

estimation procedure for K under the PABM.

54

3.8 Proofs of theoretical results

Proof of Lemma 3.4.1:

We prove this in two steps. First, we establish uniform concentration of Q(e)

towards its expected value E[Q(e)]. In the second step, we show that E[Q(·)] and

Q̃(·) converge (in a deterministic sense) to the same limit.

Step 1. Show that

max
e
|Q(e)− E[Q(e)]| P→ 0.

The proof of this step relies on Mcdiarmid’s inequality (also known as bounded dif-

ferences inequality, see Theorem 6.2 of Boucheron et al. (2013)), which states: if f :

X n → R satisfies the bounded differences assumption that supx1,...,xn,x′i∈X |f(x1, . . . , xn)−
f(x1, . . . , xi−1, x

′
i, xi+1, . . . xn)| ≤ ci for 1 ≤ i ≤ n with constants c1, . . . , cn > 0,

then

P[| f(x)− E[f(x)] |> t] ≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
,

where x = (x1, . . . , xn).

For a given assignment e, formulate

n2ρnQ(e) = 2
∑
i

∑
r

Mir log(Mir)−
∑
r

∑
s

Ors log(Ors)

as a function f(x) : [0, 1]n
2 → R where x = {Aij}1≤i,j≤n. Note that Aij appears in

f(x) only through Miej and Oeiej , and Aij ∈ {0, 1}, which means the only effect

of changing Aij is that Miej increases or decreases by 1 and Oeiej increases or

55

decreases by 1. So,

|f(A11, . . . , Ann)− f(A11, . . . , A
′
ij , . . . Ann)|

≤ 2 max{|(Miej + 1) log(Miej + 1)−Miej log(Miej)|,

|(Miej − 1) log(Miej − 1)−Miej log(Miej)|}

+ max{|(Oeiej + 1) log(Oeiej + 1)−Oeiej log(Oeiej)|,

|(Oeiej − 1) log(Oeiej − 1)−Oeiej log(Oeiej)|}

= 2 max{| log(Miej + 1) +Miej log(1 +
1

Miej

)|,

| log(Miej) + (Miej − 1) log(1 +
1

Miej − 1
)|}

+ max{| log(Oeiej + 1) +Oeiej log(1 +
1

Oeiej
)|,

| log(Oeiej) + (Oeiej − 1) log(1 +
1

Oeiej − 1
)|}

≤ 2 (log(n+ 1) + 1) +
(
log(n2 + 1) + 1

)
∵ x log(1 + 1/x) ≤ 1, ∀x > 0

≤ 7 log(n). ∀n > 3

Thus, for any given e, Q(e) satisfies the bounded differences assumption with

cij = 7 log(n), and
∑

i,j c
2
ij = 49n2 log2(n). Applying Mcdiarmid’s inequality we

get that

P[n2ρn | Q(e)− E[Q(e)] |> t] ≤ 2 exp

(
− 2t2

49n2 log2(n)

)
.

Fix ε > 0 and let t = n2ρnε. Taking union bound over the Kn possible assignments

e,

P[max
e
| Q(e)− E[Q(e)] |> ε] ≤ 2Kn exp

(
− 2n4ρ2

nε
2

49n2 log2(n)

)
≤ 2 exp

(
n log(K)− 2n2ρ2

nε
2

49 log2(n)

)
→ 0

where the last convergence follows from Assumption 3.4.2. ♦

Step 2. Show that

max
e
|E[Q(e)]− Q̃(e)|→0.

This convergence is a deterministic one, as E[Q(e)] and Q̃(e) are non-random

numbers. So it suffices to prove that for any given e, |E[Q(e)] − Q̃(e)|→0. Note

56

that

E[Q(e)]−Q̃(e) =
2

n2ρn

∑
i

∑
r

{E[Mir(e) log(Mir(e))]−E[Mir(e)] log(E[Mir(e)])}

− 1

n2ρn

∑
r

∑
s

{E[Ors(e) log(Ors(e))]− E[Ors(e)] log(E[Ors(e)])} (3.17)

is comprised of quantities of the form E[X log(X)] − E[X] log(E[X]). Let X take

the form X = Y1 + · · · + Ym where Yj ∼ Ber(pj) and Yj are independent. The

distribution of X is called Poisson binomial distribution or Poisson’s binomial

distribution (PBD, hereafter) — see Wang (1993) for a review of properties of

PBD. Note that V ar[X] =
∑m

j=1 pj(1− pj) ≤
∑m

j=1 pj = E[X], and hence

|E[X log(X)]− E[X] log(E[X])| = |E[X log

(
X

E[X]

)
]|

= E[X]|E [(Z + 1) log (Z + 1)] |
(where Z = X−E[X]

E[X])

= E[X]E [(Z + 1) log (Z + 1)] (3.18)

≤ E[X]E[2Z2] (3.19)

= 2
V ar[X]

E[X]
≤ 2. (3.20)

Here (3.18) follows from Jensen’s inequality, since x log(x) is a convex function of

x and E(Z + 1) = 1, and the inequality (3.19) follows from the observation that

Z ≥ −1 and

E
[
2Z2 − (Z + 1) log (Z + 1)

]
≥ E

[
2Z2 − (Z + 1)Z

]
= E

[
Z2
]
−E [Z] = E

[
Z2
]
≥ 0.

Now, observe that for any e and any i, r, s,Mir and Ors has the form of PBD,

hence the bound (3.20) applies to them. Therefore from (3.17), for any e

|E[Q(e)]− Q̃(e)| ≤ 2

n2ρn

∑
ir

|{E[Mir(e) log(Mir(e))]− E[Mir(e)] log(E[Mir(e)])}|

+
1

n2ρn

∑
rs

|{E[Ors(e) log(Ors(e))]− E[Ors(e)] log(E[Ors(e)])}|

≤ 4nK

n2ρn
+

2K2

n2ρn
→ 0

by Assumption 3.4.2. ♦

57

Proof of Lemma 3.4.2:

We first make some preliminary definitions and statements. The well-known

log-sum inequality (see Theorem 17.1.2 of Cover and Thomas (2012)) states: for

w1, . . . , wm ≥ 0, x1, . . . , xm ≥ 0,(
m∑
i=1

wi

)
log

(∑m
i=1wi∑m
i=1 xi

)
≤

m∑
i=1

wi log(
wi
xi

)⇒
m∑
i=1

wi log(
xi
wi

) ≤ (

m∑
i=1

wi) log

(∑m
i=1 xi∑m
i=1wi

)
,

where equality holds iff xi/wi are equal for all i. For any candidate assignment e

and for communities 1 ≤ a, r ≤ K, define the index set N (r)
a = {1 ≤ j ≤ n : cj =

a, ej = r} of vertices whose true community is a and candidate community is r.

Let Sar = |N (r)
a | be the size of this set, and Λ

(r)
ab =

∑n
j=1 λjbI[cj = a, ej = r] be

the ‘weights’ of this set for b = 1, . . . ,K. Here are some properties of Λ
(r)
ab that

will be useful for our proof:

1. For any 1 ≤ a, b ≤ K,
∑K

r=1 Λ
(r)
ab = Λab.

2. For any 1 ≤ i ≤ n and any 1 ≤ r, s ≤ K,

(a) µ
(e)
ir = E[M

(e)
ir] =

∑n
j=1 E[Aij]I[ej = r] =

∑n
j=1 λicjλjciI[ej = r] =

∑K
a=1 λiaΛ

(r)
aci .

(b) o
(e)
rs = o

(e)
sr = E[O

(e)
sr] =

∑n
i=1

∑n
j=1 E[Aij]I[ei = s, ej = r] =

∑K
a,b=1 Λ

(r)
ab Λ

(s)
ba .

To prove the lemma, we consider ∆(e) := Q̃(e) − Q̃(c) as a function of e, and

show that ∆(e) ≤ 0 where equality holds if and only if e ∈ Π(c). Ignoring the

scaling constant 2
n2ρn

, from properties 2(a) and 2(b) above we can write

Q̃(e) =

n∑
i=1

K∑
r=1

µir(e) log

(
µir(e)√
orei(e)

)
=

n∑
i=1

K∑
a,r=1

λiaΛ
(r)
aci log

 ∑K
t=1 λitΛ

(r)
tci√∑K

u,v=1 Λ
(r)
uvΛ

(ei)
vu

 .

When e = c, µ
(c)
ir = λirΛrci , o

(c)
rs = ΛrsΛsr = Λ2

rs for all 1 ≤ i ≤ n and all

1 ≤ r, s ≤ K, so

Q̃(c) =
n∑
i=1

K∑
a=1

λiaΛaci log

(
λiaΛaci√

oaci(c)

)
=

n∑
i=1

K∑
a=1

λiaΛaci log (λia)

=

n∑
i=1

K∑
a,r=1

λiaΛ
(r)
aci log (λia)

58

by property 1. Therefore,

∆(e) =

n∑
i=1

K∑
a,r=1

λiaΛ
(r)
aci log

(
µir(e)

λia
√

orei(e)

)
=

K∑
a,b,r,s=1

Λ
(r)
ab

 ∑
i∈N (s)

b

λia log

(
µir(e)

λia
√

ors(e)

) .
(3.21)

We first consider the sum under square brackets, and let

wi = λia, xi =
µir(e)√
ors(e)

=

∑K
t=1 λitΛ

(r)
tb√∑K

u,v=1 Λ
(r)
uvΛ

(s)
vu

.

Note that
∑

i∈N (s)
b

wi = Λ
(s)
ba , and

∑
i∈N (s)

b

xi =

∑
i∈N (s)

b

∑K
t=1 λitΛ

(r)
tb√∑K

u,v=1 Λ
(r)
uvΛ

(s)
vu

=

∑K
t=1 Λ

(r)
tb

∑
i∈N (s)

b

λit√∑K
u,v=1 Λ

(r)
uvΛ

(s)
vu

=

∑K
t=1 Λ

(s)
bt Λ

(r)
tb√∑K

u,v=1 Λ
(r)
uvΛ

(s)
vu

.

Applying the log-sum inequality, we get

n∑
i∈N (s)

b

λia log

 ∑K
t=1 λitΛ

(r)
tb

λia

√∑K
u,v=1 Λ

(r)
uvΛ

(s)
vu

 ≤ Λ
(s)
ba log

 ∑K
t=1 Λ

(s)
bt Λ

(r)
tb

Λ
(s)
ba

√∑K
u,v=1 Λ

(r)
uvΛ

(s)
vu


(3.22)

⇒ From (3.21), ∆(e) ≤
K∑

a,b,r,s=1

Λ
(r)
ab Λ

(s)
ba log

 ∑K
t=1 Λ

(s)
bt Λ

(r)
tb

Λ
(s)
ba

√∑K
u,v=1 Λ

(r)
uvΛ

(s)
vu

 . (3.23)

59

Next, we write the right-hand side of (3.23) as (term 1 − term 2 − term 3) where

term 1 =

K∑
a,b,r,s=1

Λ
(r)
ab Λ

(s)
ba log

(
K∑
t=1

Λ
(s)
bt Λ

(r)
tb

)

=
1

2

K∑
a,b,r,s=1

Λ
(r)
ab Λ

(s)
ba log

(
(
K∑
t=1

Λ
(s)
bt Λ

(r)
tb)(

K∑
u=1

Λ(r)
auΛ(s)

ua)

)
, (by symmetry)

term 2 =
K∑

a,b,r,s=1

Λ
(r)
ab Λ

(s)
ba log

(
Λ

(s)
ba

)
=

1

2

K∑
a,b,r,s=1

Λ
(r)
ab Λ

(s)
ba log

(
Λ

(r)
ab Λ

(s)
ba

)
,

(by symmetry)

term 3 =

K∑
a,b,r,s=1

Λ
(r)
ab Λ

(s)
ba log

√√√√ K∑
u,v=1

Λ
(r)
uvΛ

(s)
vu


=

1

2

K∑
a,b,r,s=1

Λ
(r)
ab Λ

(s)
ba log

 K∑
u,v=1

Λ(r)
uvΛ(s)

vu

 .

Combining the three terms, from (3.23) we have

∆(e) ≤ 1

2

K∑
a,b,r,s=1

Λ
(r)
ab Λ

(s)
ba log


(∑K

t=1 Λ
(s)
bt Λ

(r)
tb

)(∑K
u=1 Λ

(r)
auΛ

(s)
ua

)
∑K

u,v=1 Λ
(r)
uvΛ

(s)
vu

/Λ
(r)
ab Λ

(s)
ba

 .
(3.24)

We now apply the log-sum inequality once more to the right-hand side of (3.24).

Defining the index set κ := {(a, b, r, s) : 1 ≤ a, b, r, s ≤ K} and letting

wabrs = Λ
(r)
ab Λ

(s)
ba , xabrs =

(∑K
t=1 Λ

(s)
bt Λ

(r)
tb

)(∑K
u=1 Λ

(r)
auΛ

(s)
ua

)
∑K

u,v=1 Λ
(r)
uvΛ

(s)
vu

,

K∑
a,b,r,s=1

Λ
(r)
ab Λ

(s)
ba log


(∑K

t=1 Λ
(s)
bt Λ

(r)
tb

)(∑K
u=1 Λ

(r)
auΛ

(s)
ua

)
∑K

u,v=1 Λ
(r)
uvΛ

(s)
vu

/Λ
(r)
ab Λ

(s)
ba


≤

 ∑
(a,b,r,s)∈κ

wabrs

 log

(∑
(a,b,r,s)∈κ xabrs∑
(a,b,r,s)∈κwabrs

)
(3.25)

60

by the log-sum inequality. But,

∑
(a,b,r,s)∈κ

xabrs =
K∑

a,b,r,s=1

(∑K
t=1 Λ

(s)
bt Λ

(r)
tb

)(∑K
u=1 Λ

(r)
auΛ

(s)
ua

)
∑K

u,v=1 Λ
(r)
uvΛ

(s)
vu

=

K∑
r,s=1

∑K
a,b,t,u=1 Λ

(r)
tb Λ

(s)
bt Λ

(r)
auΛ

(s)
ua∑K

u,v=1 Λ
(r)
uvΛ

(s)
vu

=
K∑

r,s=1

(∑K
a,u=1 Λ

(r)
auΛ

(s)
ua

)(∑K
b,t=1 Λ

(r)
tb Λ

(s)
bt

)
∑K

u,v=1 Λ
(r)
uvΛ

(s)
vu

=
K∑

r,s,b,t=1

Λ
(r)
tb Λ

(s)
bt =

∑
(a,b,r,s)∈κ

wabrs.

Therefore combining (3.24) and (3.25),

∆(e) ≤ 1

2

 ∑
(a,b,r,s)∈κ

wabrs

 log(1) = 0

for any candidate assignment e.

Next, we show that ∆(e) = 0 if and only if e ∈ Π(c). The ‘if’ part is obvious from

the definition of ∆(e) — see the discussion preceding Lemma 3.4.2. To complete

the proof we need to show that ∆(e) = 0 implies e ∈ Π(c).

Suppose ∆(e) = 0. Then the log-sum inequalities in both (3.22) and (3.25) must

be equalities, which happens if and only if the ratio wi/xi is equal for all i, which

implies wi/xi =
∑
wi/
∑
xi for all i. Fix any a, b, r, s such that SarSbs > 0. Then

from (3.22),

λia
√

ors(e)

µir(e)
=

Λ
(s)
ba

√
ors(e)∑K

t=1 Λ
(s)
bt Λ

(r)
tb

,
λjb
√

ors(e)

µjs(e)
=

Λ
(r)
ab

√
ors(e)∑K

u=1 Λ
(r)
auΛ

(s)
ua

, ∀i ∈ N (s)
b , j ∈ N (r)

a ,

and multiplying the two equations yields

λiaλjbors(e)

µir(e)µjs(e)
=

Λ
(r)
ab Λ

(s)
ba ors(e)(∑K

t=1 Λ
(s)
bt Λ

(r)
tb

)(∑K
u=1 Λ

(r)
auΛ

(s)
ua

) ,
while applying the log-sum equality condition on (3.25) yields that

Λ
(r)
ab Λ

(s)
ba

∑K
u,v=1 Λ

(r)
uvΛ

(s)
vu(∑K

t=1 Λ
(s)
bt Λ

(r)
tb

)(∑K
u=1 Λ

(r)
auΛ

(s)
ua

) =
Λ

(r)
ab Λ

(s)
ba ors(e)(∑K

t=1 Λ
(s)
bt Λ

(r)
tb

)(∑K
u=1 Λ

(r)
auΛ

(s)
ua

) = 1.

61

Combining the above two results, for any a, b, r, s such that SarSbs > 0, ∀i ∈
N (s)
b , j ∈ N (r)

a ,

pij = λiaλjb =
µir(e)µjs(e)

ors(e)
. (3.26)

We proceed to prove by contradiction that the above condition implies e ∈ Π(c)

. Suppose there exist distinct communities a1 6= a2 such that Sa1r > 0, Sa2r > 0.

Choose any j1 ∈ N (r)
a1 , any j2 ∈ N (r)

a2 . By Assumption 3.4.4,

∃ 1 ≤ i1, . . . , iK+1 ≤ n such that
pilj1
pilj2

6= pimj1
pimj2

, ∀ 1 ≤ l 6= m ≤ K + 1. (3.27)

Since there are K+1 nodes {i1, . . . , iK+1} and e has K communities, by the pigeon

hole principle there must be l 6= m and some s ∈ {1, . . . ,K} such that eil = eim =

s. Let bl and bm be the true communities of these nodes, i.e., cil = bl, cim = bm.

Here bl and bm may or may not be equal. Thus, Sa1rSbls > 0, il ∈ N
(s)
bl
, j1 ∈ N (r)

a1 ,

and Sa2rSbms > 0, im ∈ N (s)
bm
, j2 ∈ N (r)

a2 . Hence from (3.26)

pilj1
pilj2

=
µj1s(e)

µj2s(e)
,
pimj1
pimj2

=
µj1s(e)

µj2s(e)
⇒ pilj1

pilj2
=
pimj1
pimj2

which violates (3.27).

Thus, ∆(e) = 0 implies there cannot exist a1 6= a2 such that Sa1r > 0, Sa2r > 0.

All communities of e must be non-empty, hence any column of S has exactly one

positive entry, all other entries being zero. Therefore S has exactly K non-zero

entries. Now, suppose that for some r1 6= r2, Sar1 > 0, Sar2 > 0. Since the ath row

of S has two positive entries, some other row, say b, of S must be empty. But that

implies community b is empty in the true community assignment c, which cannot

happen. Hence each row of S and each column of S has exactly one non-zero entry.

Therefore S is diagonal up to permutation of columns, which implies e is a label

permutation of c, i.e., e ∈ Π(c). ♦

Proof of Theorem 3.4.1:

From Lemma 3.4.2, we know that ξn(ĉ) > 0 ⇒ Q̃(c) > Q̃(ĉ) and that ξn(ĉ) =

0 ⇒ Q̃(c) = Q̃(ĉ). So there exists δn ↓ 0 and εn > 0 such that ξn(ĉ) > δn ⇒

62

Q̃(c) > Q̃(ĉ) + 2εn. Therefore,

P [ξn(ĉ) > δn] ≤ P
[
Q̃(c) > Q̃(ĉ) + 2εn

]
= P

[
{Q̃(c) > Q̃(ĉ) + 2εn} ∩ {Q(ĉ) ≥ Q(c)}

]
(by definition of ĉ)

≤ P
[
{|Q̃(c)−Q(c)| > εn} ∪ {|Q̃(ĉ)−Q(ĉ)| > εn}

]
≤ P

[
|Q̃(c)−Q(c)| > εn

]
+ P

[
|Q̃(ĉ)−Q(ĉ)| > εn

]
→ 0 (by Lemma 3.4.1)

which concludes the proof. ♦

63

CHAPTER 4

THE DEPENDENT RANDOM
WEIGHTING

4.1 Introduction

Resampling methodology for dependent data such as time series and spatial data

have undergone rapid developments since Künsch (1989) and Liu and Singh (1992)

introduced the moving block bootstrap independently. The block-based bootstrap

and subsampling methods [Politis and Romano (1994)] have been proved to be very

useful nonparametric resampling techniques in the inference of regularly spaced

time series and spatial data. The block-based resampling/subsampling method-

ology, although still applicable and theoretically justified to irregularly spaced

time series and spatial data, are practically inconvenient to use. Here we mention

Hall (1985), Politis and Romano (1993), Sherman and Carlstein (1994), Sherman

(1996), Garcia-Soidan and Hall (1997), Politis et al. (1998), Lahiri (1999), Lahiri

et al. (1999), Politis and Sherman (2001), and Nordman and Lahiri (2004), among

others for important work along this line. For time series data, the irregularity

can occur if there are missing values for a equally-spaced time series, or the time

points at which the observation are taken are generated from a one-dimensional

point process. In the spatial setting, the irregularly spaced data, which can be in

the form of lattice data with an irregular shape of the sampling region, or nonlat-

tice data with spatial locations generated from a spatial point process, are quite

common.

For irregularly spaced data, the main difficulty associated with the block-based

resampling/subsampling approach is that the partition of sampling region into

complete and incomplete blocks requires careful programming efforts and it de-

pends on temporal/spatial configuration to a large extent. This makes the use of

block-based methods less automatic so it would be desirable to develop alternative

methods whose implementation does not depend on the irregular temporal/spatial

configuration. Recently, Shao (2010) proposed the dependent wild bootstrap

(DWB, hereafter) for stationary and weakly dependent time series, which has

64

no implementational difficulty when applied to irregular spaced time series. How-

ever, the applicability of the DWB is limited to the smooth function model and

it cannot be used to approximate the sampling distribution and variance of some

other quantities, such as sample median.

In this paper, we propose a new resampling method, called the dependent ran-

dom weighting (DRW, hereafter), which has wider applicability than the DWB and

possesses considerable implementational advantage than the block-based bootstrap

and subsampling methods for irregularly spaced dependent data. The random

weighting method [Zheng (1987)] has been well studied for iid data and for linear

models; see Shao and Tu (1995), Chapter 10 for a detailed introduction. Instead

of generating resamples from the data, the random weighting method assigns a

random weight to each observation. Random weighting can be regarded as an

extension of the Bayesian bootstrap [Rubin (1981)] and a smoothing of Efron’s

bootstrap. Often the weights can be written as

wi =
Zi∑n
i=1 Zi

, i = 1, · · · , n, (4.1)

where Zi are nonnegative iid random variables. So far it seems that the method-

ological and theoretical developments are confined to the independent data setting.

For dependent data, such as time series and spatial data, the original random

weighting method, which typically allows the weights to be exchangeable, does

not work in general. To capture the dependence in the data, we extends the

traditional random weighting to the time series/spatial setting by allowing the Zi

involved in the random weighting method to be dependent, so it is capable of mim-

icking the dependence in the original series. Section 4.2 describes the DRW and

demonstrates the distribution consistency of the DRW estimator for regular and

irregular spaced time series. Section 4.3 reports results from simulation studies for

irregular time series data (one-dimensional) and spatial data (two-dimensional).

Section 4.4 concludes and technical details are gathered in Section 4.5.

4.2 DRW for Time Series

We shall first provide a description of the DRW in the time series context. Sup-

pose we have a stationary p-dimensional time series (Xt)t∈Z and the parameter

of interest is θ = T (F), where T is a given functional and F is the marginal

distribution function of Xt ∈ Rp. Examples include the mean, marginal vari-

65

ance and quantiles of Xt. The estimator of θ is θ̂n = T (Fn), where Fn is the

empirical distribution function based on the observations {Xtj}nj=1, and {tj}nj=1

are the time points at which the data are observed. In the equally spaced case,

tj = j. The randomly weighted empirical distribution function F ∗n is defined as

F ∗n(x) =
∑n

i=1w(ti)1(Xti ≤ x), where {w(ti)}ni=1 are the random weights. We

assume that the weights take the form of (4.1), in particular

w(ti) =
Z(ti)∑n
i=1 Z(ti)

where {Z(ti)} are a realization from a nonnegative continuous time process Z(t), t ∈
R.

Assumption 4.2.1 The random variables {Z(tj)}nj=1 are independent of the data,

and are a realization of a stationary process with cov(Z(tj), Z(tj′)) = a{(tj−tj′)/l},
where a : R→ [0, 1] is continuous, symmetric, and has compact support on [−1, 1].

Further assume that {Z(t)} is l-dependent.

Several commonly-used windows (kernels) in spectral analysis, such as Bartlett,

Parzen and Tukey-Hanning windows, satisfy Assumption 4.2.1 on a(·). The band-

width parameter l plays a similar role as that in the DWB or the block size in the

moving block bootstrap.

Let θ̂∗n = T (F ∗n). Then we can approximate the sampling distribution or variance

of
√
n(θ̂n − θ) by the conditional distribution or conditional variance of

√
n(θ̂∗n −

θ̂n)SZ given the data, where SZ = E(Z(1))/
√

var(Z(1)) is a scaling factor. It is

worth noting that the scaling constant SZ also comes up in the original random

weighting method, and it is in fact possible to select the distribution of (Z(t)) so

that SZ = 1, as demonstrated in the following example.

Example 4.2.1 In the equally spaced case, let Zt = (Yt + c)2, where {Yt}nt=1 ∼
N(0,Σ), where Σ is an n×n matrix with (i, j)th entry defined as Σ(i, j) = W ((i−
j)/ln), where W is a symmetric kernel function. Assuming that W (0) = 1, then

E(Z1) = E(Y 2
1) + c2 = c2 + 1 and var(Z1) = E(Y1 + c)4 − (E(Z1))2 = E(Y 4

1) +

6c2E(Y 2
1) + c4 − (c2 + 1)2 = 4c2 + 2. Setting SZ = 1, we get 4c2 + 2 = (c2 + 1)2,

which yields c2 = (1 +
√

2). Note that in this case, cov(Zt, Zt′) = 2W 2((t −
t′)/ln) + 4c2W ((t − t′)/ln). Same argument applies to the unequally spaced case;

see Section 4.3.

66

4.2.1 Equally spaced time series

We shall first study the asymptotic properties of the DRW estimator when the

time series is evenly spaced, i.e., tj = j. Following Shao (2010), we focus on

the framework of the smooth function model, which contains a large class of

quantities of interest in time series analysis. Let θ = H(µ) where µ = E(Xt)

and H : Rp → R is a smooth function. Given observations (Xt)
n
t=1, the es-

timator is θ̂n = H(µ̂n), where µ̂n = X̄n = n−1
∑n

t=1Xt. The DRW counter-

part of θ̂n is θ̂∗n,DRW = H(µ̂∗n,DRW), where µ̂∗n,DRW =
∑n

t=1wtXt. Let σ2
n =

nvar(θ̂n) and ∇∇∇(x) = {∂H(x)/∂x1, ∂H(x)/∂x2, · · · , ∂H(x)/∂xp}′ be the vector

of first order partial derivatives of H at x. Denote by ∇∇∇ = ∇∇∇(µµµ) and Σ∞ =∑∞
k=−∞ cov(X0,Xk). Under some suitable conditions, we have

√
n(θ̂n − θ0) →D

N(0, τ2
∞), where τ2

∞ =∇∇∇′Σ∞∇∇∇ > 0.

Denote by α(k) strong mixing coefficients of the process Xt; by Xt,i the i-th

component of Xt. The following assumptions are needed to state the consistency

of the DWB in distribution approximation.

Assumption 4.2.2 Assume that there exists a δ ≥ 2 such that
∑∞

j=1 α(j)δ/(2+δ) <

∞ and E‖X1‖2+δ <∞. Also suppose that Σ∞ is nonsingular.

Assumption 4.2.3 For any (i1, i2, i3, i4) ∈ {1, 2, · · · , p}4, we have

∞∑
t1,t2,t3=−∞

|cum(X0,i1 , Xt1,i2 , Xt2,i3 , Xt3,i4)| <∞.

See Section 3 in Shao (2010) for the discussion of the above assumptions.

Theorem 4.2.1 Assume that the function H is differentiable in a neighborhood of

µµµ, i.e., NH = {x ∈ Rp : ‖x − µµµ‖ ≤ ε} for some ε > 0,
∑
|ααα|=1 |DαααH(µµµ)| 6= 0,

and the first partial derivatives of H satisfy a Lipschitz condition of order s > 0

on NH . Suppose that Assumptions 4.2.1, 4.2.2, 4.2.3 and l−1 + l/nδ/(2+2δ) = o(1)

hold. Further assume that Zt ∈ L2+δ for δ ≥ 2 (i.e. E[Z2+δ
t] <∞). Then

sup
x∈R
|P [
√
n{H(X̄n)−H(µµµ)} ≤ x]− P ∗[

√
n{H(X̄∗n,DRW)−H(X̄n)}SZ ≤ x]| = op(1).

Remark 4.2.1 The smooth function model framework covers several important

parameters and their estimators, for example autocovariances, autocorrelations,

autoregressive coefficients etc. The median and other quantiles, however, do not

fall in the class of smooth function models. For more detail on the general class of

67

estimators covered under the smooth function model we refer the interested reader

to Chapter 4 of Lahiri (2003b), specifically the examples of that chapter.

In general, for approximately linear statistic T (Fn), we can expand T (Fn)

around T (F) as T (Fn) = T (F) + n−1
∑n

t=1 IF (Xt;F) + Rn, where IF (Xt;F) is

the influence function and Rn is the remainder term. Similarly, we have T (F ∗n) =

T (F)+n−1
∑n

t=1wtIF (Xt;F)+R∗n. To show the consistency of
√
n(T (F ∗n)−T (Fn))

as an estimator of
√
n(T (Fn) − T (F)) in terms of distribution approximation, a

typical strategy is to find appropriate regularity conditions on T and the weak

dependence of Xt to guarantee the asymptotic negligibility of
√
nRn and

√
nR∗n

(conditional on the data), the latter of which may require nontrivial details.

Remark 4.2.2 We encounter some technical difficulty in establishing the consis-

tency for the DRW variance estimator. In particular, it is difficult to obtain a

sharp rate for E{(1 + Un)−1 − 1}2 (Un defined in the proof of Theorem 4.2.1; see

Section 4.5) which seems necessary to show the variance consistency. The random

variable is of the form X2

(1+X)2
which is hard to control when X is close to −1. In

our approach we tried using the power series expansion for x
1+x but that results in

a series involving higher moments of the underlying variable, and hence control-

ling such a quantity would require putting bounds on these higher moments. Such

restrictions on higher order moments seem to require stronger assumptions than

the standard set of assumptions usually found in the literature. However, from

our simulation results in Section 4.3 it appears that variance consistency holds for

the model used in our simulations.

Remark 4.2.3 The DRW is closely related to the DWB, which, in a sense, is also

a random weighting method [see Section 3 of Shao (2010)]. But the weights of

the DWB can be negative and the corresponding bootstrapped measure is not a

valid probability measure, which limits its applicability. By contrast, the DRW

corresponds to a proper probability measure conditional on the data so it has

wider applicability than the DWB. In particular, it can be used to approximate

the sampling distribution of sample median and empirical processes for which the

DWB is not applicable. The DRW can also be regarded as an extension of the

extended tapered block bootstrap [Shao (2009)], where the tapering is applied

to the bootstrapped empirical measure corresponding to the moving block boot-

strap. However, the extended tapered block bootstrap is still block-based and it

encounters implementational difficulty when applied to irregularly spaced data.

68

4.2.2 Irregularly spaced time series

To allow for irregularly spaced time points, we shall use the theoretical framework

in Section 5 of Shao (2010) to study the asymptotic properties of the DRW es-

timator. In particular, we assume a stochastic sampling design, which was used

by Lahiri (2003), Lahiri and Mukherjee (2004) and Lahiri and Zhu (2006) in the

study of spatial block bootstrap for irregularly spaced spatial data. Assume that

tj = λnvj , j = 1, . . . , n, where vj takes values in R0 (R0 is a Borel subset of

(−1/2, 1/2] which is the prototype sampling region) and {vj}nj=1 are a realization

of the iid random variables V1, . . . , Vn. This formulation allows a nonuniform design

across the region and the expected number of points in two regions of the same size

could be different. Assume that there is an underlying 1-dimensional continuous-

time stationary process {X(t)}. Given the observations {X(tj)}nj=1, our interest

is in the inference of the mean. Let γ(v1) = cov(X(0), X(v1)), C4(v1, v2, v3) =

cum{X(0), X(v1), X(v2), X(v3)} denote the autocovariance and the fourth-order

cumulant for v1, v2, v3 ∈ R. Let µ = E(X(t)) and X̄n = n−1
∑n

j=1X(tj) . To

estimate the distribution and the variance of
√
n(X̄n − µ), we note that the

DRW counterpart of
√
n(X̄n − µ) is

√
n(X̄∗n,DRW − X̄n)SZ , where X̄∗n,DRW =∑n

j=1w(tj)X(tj). Without loss of generality, we assume that {Vn}n≥1, {X(t), t ∈
R} and the bootstrap variables {Z(tj), t ∈ R} are all defined on a common prob-

ability space (Ω,F , P). Let PV denote the joint probability distribution of the

sequence of iid random variables V1, V2, . . . , Vn with density η(v), v ∈ R0. We

shall use EV (varV) to denote the expectation (variance) with respect to the joint

distribution PV ; use EX|V (varX|V) to denote the conditional expectation (vari-

ance) with respect to PX (i.e., the joint probability distribution for {X(t), t ∈ R})
given {Vn}n≥1. Following Shao (2010), we assume the following assumption on the

sampling region R0 and sampling density η(·).

Assumption 4.2.4 Define R0 to be a Borel subset of (−1/2, 1/2] containing an open

neighborhood of the origin such that for any sequence of positive real numbers

an → 0, the number of cubes of the scaled lattice anZ which intersect R0 and Rc0

is O(1) as n→∞.

Assumption 4.2.5 The pdf η(x) is continuous, everywhere positive with support

R̄0 and
∫
s∈R0

η(s)ds = 1.

Denote by ι =
∫
s∈R0

η2(s)ds. Lahiri (2003) showed that depending on the

magnitude of κ := limn→∞ n/λn, this formulation accommodates both pure-

increasing-domain asymptotics (i.e., κ <∞) and mixed-increasing-domain asymp-

totics (i.e., κ = +∞). Let ξn = var(X̄n). Lemma 5.2 of Lahiri (2003) implies

69

that under appropriate conditions, we have that (i) if κ ∈ (0,∞), then nξn →
γ(0) + κι

∫
R γ(s)ds, a.s. (PV); (ii) if κ = ∞, then λnξn → ι

∫
R γ(s)ds, a.s. (PV).

Here a.s. (PV) means that the result holds with probability one under PV , i.e., for

almost all realizations of the sequence {Vn}n≥1. In Lahiri (2003), the distribution

of X̄n is regarded as conditional distribution given {Vn}n≥1 and ξn is regarded as a

function of the randomly sampled locations. Whereas in our treatment, we view ξn

as an unknown quantity, where the randomness due to {Vn}n≥1 has been removed

by the expectation. The following theorem states the distribution consistency of

the DRW estimator.

Theorem 4.2.2 Suppose that Assumptions 4.2.1, 4.2.4 and 4.2.5 hold. Assume

that ln/
√
n+ ln/λn = o(1), ∫

R
|γ(v)|dv < ∞, (4.2)

and

∫
R3

|C4(v1, v2, v3)|dv1dv2dv3 < ∞. (4.3)

Further assume that Z(t) ∈ L4. We have that (i) if κ ∈ (0,∞), then

sup
x∈R
|P [
√
n(X̄n − µ) ≤ x]− P ∗[

√
n(X̄∗n,DRW − X̄n)SZ ≤ x]| = op(1),

and that (ii) if κ =∞, then

sup
x∈R
|P [
√
λn(X̄n − µ) ≤ x]− P ∗[

√
λn(X̄∗n,DRW − X̄n)SZ ≤ x]| = op(1).

Remark 4.2.4 Lahiri and Zhu (2006) showed that a naive application of block

bootstrap, called DSSBB, is not suitable for irregularly spaced data when the

spatial sampling density is non-uniform. The DRW does not suffer from the same

problem. To quote from their paper, “The failure of the DSSBB method seems

to be an artifact of the interaction between the nonuniform design density and of

the additional randomness in the data-site-shifted blocks induced by the random

locations of the sampling sites.” In the case of DRW, resampling takes place

by assigning random weights to the data points without shifting their locations.

These random weights are independent of the data and spatially correlated to

reflect the dependence in the data. Therefore our resampling scheme is free from

the interaction alluded to by Lahiri and Zhu (2006) in their explanation of why

the DSSBB fails.

70

4.3 Simulation results

In this section, we investigate the finite sample performance of DRW and its com-

petitors for irregular time series and spatial data under the framework of stochas-

tic sampling design. Let R0 = (−1/2, 1/2], sample size n = 200 and λn = 18

or 36. The time points {tj}nj=1 are generated by taking iid draws from trun-

cated N(0,1) density function over R0 and multiplying by the scaling constant

λn. Given the sampled time points, we then generate the observations {X(tj)}nj=1

from a one-dimensional zero-mean Gaussian process with exponential covariance

function γ(z) = exp(−ρ|z|), z ∈ R, where ρ = 0.5, 1 and 2. The random weights

are generated by following Example 4.2.1 and letting SZ = 1 and W to be the

Bartlett kernel.

Table 4.1 below shows the normalized mean squared error and the empirical

coverages in percentage for the bootstrap approximation of the variance and dis-

tribution of the sample median based on the grid based block bootstrap [Lahiri

and Zhu (2006)] and DRW. For the variance estimator, let the true variance be σn

and let σ
(j)
n be its estimate based on 1000 bootstrap samples for the jth replicate,

where j = 1, 2, . . . , 1000 because 1000 monte carlo replications are used. Then the

normalized MSE is calculated as 1
1000

∑1000
j=1 (nσ

(j)
n

nσn
−1)2. We calculate MSE for the

DRW variance estimator, even though we have not demonstrated its asymptotic

consistency. It can be seen that in terms of smallest normalized MSE or best empir-

ical coverage (boxed), DRW typically performs at par with GBBB and sometimes

marginally outperforms GBBB. For larger block sizes, DRW typically outperforms

GBBB by a substantial margin. Larger ρ corresponds to smaller MSE and superior

coverage, which is expected because larger ρ implies weaker dependence. More-

over, the MSE decreases and coverage probability improves as λn decreases. For

the mean case (Table 4.2), DRW, DWB, and GBBB perform similarly in terms

of best result in each row (boxed values). For larger block sizes, DRW typically

outperforms GBBB by a substantial margin as before, and marginally outperforms

DWB. Note that the implementation of grid-based block bootstrap is rather com-

plicated, whereas the DRW can be easily programmed and is also computationally

less expensive.

Conceptually the extension of the DRW to irregularly spaced spatial data is

straightforward, but technically it seems nontrivial and quite challenging. Here

we shall provide a description and some finite sample results for DRW applied

to spatial data. Given n spatial locations {si}ni=1, the observations are assumed

to be {X(si)}ni=1. We shall assume that the observations are from a stationary

71

random field in R2 (for the sake of simplicity) and the locations can be in a

lattice with fixed spacing or irregularly spaced. Let θ = T (F) be the parameter

of interest, where F is the marginal cdf of X(s) and T is a given functional. This

framework includes spatial mean and quantiles. Let Fn be the empirical cdf based

on {X(si)}ni=1. Then the sampling distribution or variance of
√
n(T (Fn)− T (F))

can be approximated by the random weighting counterpart
√
n(T (F ∗n) − T (Fn)),

with the random weighted empirical cdf defined by

F ∗n(x) =
n∑
j=1

w(sj)1(Xj ≤ x), where w(sj) =
Z(sj)∑n
j=1 Z(sj)

.

Here {Z(sj)}nj=1 are nonnegative random variables that are independent of the

data, and spatially correlated. In particular, we can mimic Example 4.2.1 and let

Z(sj) = (Y (sj) + c)2, where {Y (sj)}nj=1 ∼ N(0,Σ), and Σ is a n× n matrix with

(i, j)th entry defined as Σ(i, j) = W ((‖si − sj‖)/ln), where W is a kernel function

and ‖s‖ =
√
s2

(1) + s2
(2) for any s = (s(1), s(2)) ∈ R2. Again c can be chosen such

that the scaling constant SZ = 1. For spatial data, both subsampling and block

based bootstrap implicitly have some requirements on the sampling design (e.g.,

they may not work well when the sampling design is very heterogeneous) and their

implementation is quite involved in the irregularly spaced case. By contrast, the

DWB does not involve block sampling but rather generate random and spatially

correlated weights to the data. The irregular configuration does not really cause

any difficulty in its implementation.

Following the discussion above, we also performed simulations for the two-

dimensional case, where ρ is fixed at 1, and two sample sizes, n = 200, 400 are

used. The normalized MSE for the variance estimator and coverage rates for

bootstrap-based intervals for sample mean and sample median are shown in Ta-

bles 4.3 and 4.4 respectively. Similar to the one-dimensional case, we observe that

in terms of best result in each row (boxed values), DRW and GBBB (and DWB for

the mean case) perform similarly, while for larger block sizes, the DRW typically

outperforms GBBB by a substantial margin and DWB by a small margin.

4.4 Conclusion

In this paper, we proposed a new resampling method, the dependent random

weighting, for time series and briefly mention its extension to spatial data. The

main attraction of this new method lies in its adaptiveness to the irregularity of

72

temporal or spatial configurations as its implementation in the irregularly spaced

case is the same as regularly spaced case, unlike the block-based bootstrap or

subsampling methods. Under suitable conditions, we proved its consistency in

distribution approximation for both equally and unequally spaced time series. It

is expected that additional theoretical results, such as consistency of bootstrap-

ping empirical processes in both equally and unequally spaced time series (see

Bühlmann (1994), Naik-Nimbalkar and Rajarshi (1994) and Peligrad (1998) among

others for consistency of block-based bootstrap), and consistency in distribution

approximation in the spatial case, can hold under certain regularity conditions.

However, this may require a very technical analysis and we leave this for future

work. Another topic that is worthy of investigation is the optimal choice of band-

width parameter ln for a given kernel function. Also it is of interest to see if one can

borrow the recently popular fixed-b asymptotics [Kiefer and Vogelsang (2005)] and

calibrate the bootstrap based inference; see Shao and Politis (2013) for a recent

attempt along this direction.

4.5 Proofs of theoretical results

Proof of Theorem 4.2.1: Let Φ(x; Σ∞) be the distribution function of N(0,Σ∞)

on Rp. We first show that

sup
x∈Rp

|P{
√
n(X̄n −µµµ) ≤ x} − P ∗{

√
n(X̄∗n,DRW − X̄n)SZ ≤ x}| = op(1). (4.4)

Since
√
n(X̄n − µµµ)→D N(0,Σ∞) under Assumption 4.2.2, it follows from a mul-

tivariate version of Polyā’s theorem (Bhattacharya and Rao 1986) that

sup
x∈Rp

|P{
√
n(X̄n −µµµ) ≤ x} − Φ(x; Σ∞)| = o(1).

Then (4.4) follows if we can show that

sup
x∈Rp

∣∣P ∗{√n(X̄∗n,DRW − X̄n)SZ ≤ x} − Φ(x; Σ∞)
∣∣ = op(1). (4.5)

73

To this end, we shall first establish the relation between the DRW estimator and

the DWB estimator introduced in Shao (2010). For DWB,

T ∗n,DWB =
√
n(X̄∗n,DWB − X̄n) =

1√
n

n∑
t=1

(Xt − X̄n)δt,

where δt is independent of Xn, E(δt) = 0, V ar(δt) = 1, and Cov(δt, δt′) = a(t−t
′

l).

For DRW,

T ∗n,DRW =
√
n(X̄∗n,DRW − X̄n)SZ =

√
n

n∑
t=1

Zt∑n
t=1 Zt

(Xt − X̄n)SZ

=
1√
n

(
1

n

n∑
t=1

Zt)
−1

n∑
t=1

[(Zt − E(Z1))(Xt − X̄n)]
E(Z1)√
V ar(Z1)

=

(
1√
n

n∑
t=1

(Xt − X̄n)
Zt − E(Z1)√
V ar(Z1)

)(
1
n

∑n
t=1 Zt

E(Z1)

)−1

=

(
1√
n

n∑
t=1

(Xt − X̄n)δt

)(
1
n

∑n
t=1 Zt

E(Z1)

)−1

= T ∗n,DWB (1 + Un)−1 ,

where δt = Zt−E(Z1)√
V ar(Z1)

and Un = 1
nSZ

∑n
t=1 δt. Note that

E∗

[
(
n∑
t=1

δt)
2

]
=

n∑
t1,t2=1

E [δt1δt2] ≤ 2
∑

1≤t1≤t2≤n
|E [δt1δt2] | = O(nl)

in view of the fact that under l-dependence, E [δt1δt2] 6= 0 only when |t1 − t2| ≤ l.
Thus

E∗[U2
n] =

1

n2S2
Z

E∗

[
(
n∑
t=1

δt)
2

]
= O

(
l

n

)
→ 0 as n→∞,

which implies Un →P 0. Further note that for |x| < 1
2 , |

x
1+x | < 2|x| and hence for

any 0 < ε < 1
2 ,

1← P
[
|Un| ≤ ε

2

]
≤ P

[
| 1
1+Un

− 1| ≤ ε
]
, i.e.,

(1 + Un)−1 →P 1.

Hence (4.5) holds by conditional Slutsky’s theorem (see Lemma 4.1 of Lahiri

(2003b)) and the fact that

T ∗n,DWB =
1√
n

n∑
t=1

(Xt − X̄n)δt →D N(0,Σ∞) (4.6)

74

in probability conditional on the data, the latter of which has been shown in Shao

(2010). Finally, our conclusion follows from the argument in the proof of theorem

4.1 of Lahiri (2003b). We omit the details here. ♦
Proof of Theorem 4.2.2: We prove case (i) only, as case (ii) can be dealt with

in a similar fashion. For case (i), following the argument in the proof of Theorem

4.2.1, we can write

T ∗n,DRW =
√
n(X̄∗n,DRW − X̄n)SZ =

(
1√
n

∑n
j=1(X(tj)− X̄n)δ(tj)

)
(1 + Un)−1

=
T ∗n,DWB

1+Un

where δtj =
Ztj−E(Z1)√
V ar(Z1)

and Un = 1
nSZ

∑n
j=1 δ(tj). We want to show that E∗[U2

n] =

E[U2
n]→ 0. Note that

E

(
n∑
j=1

δ(tj))
2

 = EV

E[(
n∑
j=1

δ(tj))
2|V]

 = EV

 n∑
j,j′=1

a

(
tj − tj′
ln

) .
For j = j′, clearly EV

[
a
(
tj−tj′
ln

)]
= 1. For j 6= j′,

EV

[
a

(
tj − tj′
ln

)]
=

∫
R2

0

a

(
λn(x− y)

ln

)
η(x)η(y)dxdy.

Let R1 = {x− y : x ∈ R0, y ∈ R0} and for z ∈ R1, let R(z) = (R0 + z)∩R0. Then,

the above integral equals∫
R1

∫
x∈R(z)

a

(
λnz

ln

)
η(x)η(x− z)dxdz = ln

λn

∫
λn
ln
R1

∫
x∈R(tln

λn
) a(t)η(x)η(x− tln

λn
)dxdt

= ln
λn
In.

Since a(·) has compact support on [−1, 1], and for |t| ≤ 1, tlnλn = o(1), so it follows

from the continuity of η(·) that

lim sup |In| ≤ lim sup

∫
|t|≤1

∫
x∈R(tln

λn
)
η(x)η(x− tln

λn
)dxdt = ι <∞,

and hence,

E(U2
n) = EV

 1

n2

n∑
j,j′=1

a

(
tj − tj′
ln

) =
1

n2
×O

(
n+ n2 ln

λn

)
= o(1)

75

which implies that 1
Un+1 →

P 1 similar to the regular time series case. The conclu-

sion follows from the consistency of the DWB (see Theorem 5.2 of Shao (2010)) and

an application of conditional Slutsky’s theorem (Lemma 4.1. of Lahiri (2003b)).

The proof for case (ii) follows in a similar fashion, and we skip the details. ♦

76

Table 4.1: Top panel: the normalized MSEs for the bootstrap variance estimators of
nvar[median(x1, · · · , xn)] using (a) The grid based block bootstrap (b) The dependent
random weighting. The box for each row indicates the smallest normalized MSE among
ln = 1, · · · , 10. Bottom panel: the empirical coverage (in percent) for the
bootstrap-based confidence intervals of the median using (a) and (b). The box for each
row indicates the best coverage among ln = 1, · · · , 10 (Nominal level is 95%).

l
λn ρ 1 2 3 4 5 6 7 8 9 10

18 0.5 (a) 0.57 0.48 0.47 0.50 0.52 0.54 0.57 0.62 0.73 0.72

(b) 0.59 0.48 0.45 0.46 0.47 0.49 0.50 0.51 0.52 0.52

1 (a) 0.38 0.34 0.38 0.43 0.49 0.50 0.52 0.57 0.83 0.75

(b) 0.39 0.32 0.34 0.37 0.39 0.41 0.43 0.44 0.45 0.45

2 (a) 0.27 0.29 0.37 0.40 0.45 0.44 0.43 0.49 0.67 0.62

(b) 0.27 0.28 0.31 0.35 0.37 0.39 0.41 0.41 0.42 0.43

36 0.5 (a) 0.51 0.38 0.35 0.35 0.37 0.41 0.43 0.46 0.51 0.53

(b) 0.53 0.39 0.34 0.33 0.34 0.35 0.36 0.37 0.38 0.40

1 (a) 0.32 0.25 0.27 0.29 0.33 0.37 0.39 0.40 0.45 0.46

(b) 0.33 0.25 0.25 0.27 0.29 0.30 0.32 0.34 0.34 0.35

2 (a) 0.18 0.19 0.22 0.25 0.28 0.33 0.33 0.35 0.40 0.41

(b) 0.18 0.17 0.20 0.22 0.24 0.27 0.27 0.29 0.30 0.31

18 0.5 (a) 64 71 72 71 69 67 63 59 65 59

(b) 63 70 72 72 71 71 70 68 68 67

1 (a) 76 80 81 79 76 75 72 66 70 63

(b) 75 79 81 81 79 79 77 75 74 74

2 (a) 85 86 84 82 80 78 76 70 73 66

(b) 85 86 86 85 83 82 81 80 79 78

36 0.5 (a) 68 77 79 80 81 79 79 76 76 74

(b) 67 76 79 80 82 82 82 81 80 80

1 (a) 81 85 88 88 87 86 85 84 80 80

(b) 80 85 86 87 87 87 86 86 85 84

2 (a) 88 90 89 89 88 85 85 83 80 80

(b) 88 90 90 89 89 88 87 87 86 86

77

Table 4.2: Top panel: the normalized MSEs for the bootstrap variance estimators of
nvar(x̄n) using (a) The dependent wild bootstrap (b) The dependent random weighting
(c) The grid based block bootstrap. The box for each row indicates the smallest
normalized MSE among l = 1, · · · , 10. Bottom panel: the empirical coverage (in percent)
for the bootstrap-based confidence intervals of the mean using (a), (b) and (c). The box
for each row indicates the best coverage among ln = 1, · · · , 10 (Nominal level is 95%).

l
λn ρ 1 2 3 4 5 6 7 8 9 10

18 0.5 (a) 0.67 0.54 0.48 0.47 0.47 0.48 0.50 0.52 0.54 0.55

(b) 0.69 0.56 0.51 0.49 0.48 0.49 0.49 0.50 0.51 0.52

(c) 0.67 0.55 0.48 0.50 0.50 0.53 0.57 0.62 0.67 0.73

1 (a) 0.45 0.33 0.32 0.34 0.37 0.41 0.44 0.46 0.48 0.50

(b) 0.48 0.36 0.33 0.34 0.35 0.38 0.40 0.41 0.43 0.44

(c) 0.45 0.34 0.33 0.36 0.40 0.42 0.47 0.55 0.62 0.67

2 (a) 0.25 0.22 0.26 0.30 0.35 0.38 0.40 0.43 0.45 0.47

(b) 0.27 0.22 0.24 0.27 0.30 0.33 0.35 0.36 0.38 0.39

(c) 0.25 0.22 0.27 0.31 0.36 0.36 0.39 0.47 0.56 0.63

36 0.5 (a) 0.62 0.47 0.39 0.35 0.34 0.34 0.34 0.35 0.37 0.38

(b) 0.64 0.49 0.41 0.37 0.35 0.34 0.35 0.35 0.36 0.37

(c) 0.62 0.46 0.38 0.36 0.35 0.35 0.36 0.38 0.41 0.42

1 (a) 0.39 0.26 0.22 0.22 0.24 0.25 0.27 0.30 0.32 0.34

(b) 0.42 0.28 0.24 0.23 0.23 0.25 0.26 0.27 0.29 0.30

(c) 0.39 0.26 0.22 0.23 0.24 0.28 0.29 0.32 0.37 0.37

2 (a) 0.19 0.14 0.15 0.18 0.20 0.23 0.25 0.27 0.29 0.31

(b) 0.21 0.15 0.15 0.17 0.18 0.20 0.22 0.23 0.25 0.26

(c) 0.19 0.14 0.16 0.18 0.21 0.25 0.26 0.28 0.34 0.35

18 0.5 (a) 58 67 69 70 70 68 68 67 67 64

(b) 56 65 67 69 67 67 66 65 65 64

(c) 59 67 70 69 68 67 63 59 54 48

1 (a) 71 78 79 79 77 75 73 72 71 69

(b) 71 77 78 77 75 74 73 73 71 71

(c) 71 79 79 77 75 74 71 64 58 50

2 (a) 82 85 84 82 80 79 78 76 74 72

(b) 81 84 83 82 81 80 79 79 78 76

(c) 81 85 82 81 78 77 75 69 61 55

36 0.5 (a) 63 72 76 78 79 80 79 79 79 77

(b) 62 71 74 76 78 78 78 77 77 77

(c) 65 72 77 78 78 79 78 76 74 74

1 (a) 77 84 85 86 86 86 85 84 82 82

(b) 76 82 84 86 86 85 85 85 84 84

(c) 77 83 85 85 85 84 84 83 80 80

2 (a) 85 88 88 87 86 86 84 84 84 83

(b) 85 87 88 87 87 87 86 85 85 85

(c) 85 88 88 87 86 84 84 82 80 79

78

Table 4.3: Top panel: the normalized MSEs for the bootstrap variance estimators of
nvar(median(X1, · · · , Xn)) using (a) The grid based block bootstrap (b) The dependent
random weighting . The box for each row indicates the smallest normalized MSE among
l = 1, · · · , 10. Bottom panel: the empirical coverage (in percent) for the bootstrap-based
confidence intervals of the median using (a) and (b). The box for each row indicates the
best coverage among ln = 1, · · · , 10 (Nominal level is 95%). 2D-case: n = 200, 400,
λn = 18, 36 and ρ = 1 is fixed.

l
λn n 1 2 3 4 5 6 7 8 9 10

18 200 (a) 0.27 0.20 0.18 0.19 0.21 0.25 0.26 0.28 0.34 0.36

(b) 0.28 0.21 0.17 0.17 0.17 0.18 0.19 0.20 0.21 0.22

400 (a) 0.39 0.25 0.19 0.18 0.20 0.25 0.27 0.31 0.39 0.41

(b) 0.41 0.27 0.20 0.18 0.17 0.17 0.19 0.20 0.21 0.22

36 200 (a) 0.13 0.13 0.14 0.15 0.16 0.19 0.20 0.21 0.24 0.25

(b) 0.13 0.13 0.13 0.13 0.14 0.14 0.15 0.15 0.16 0.16

400 (a) 0.17 0.13 0.12 0.12 0.12 0.13 0.15 0.15 0.18 0.18

(b) 0.17 0.13 0.12 0.11 0.11 0.11 0.12 0.12 0.13 0.14

18 200 (a) 81 84 86 85 83 81 78 76 70 65

(b) 80 83 85 86 85 86 85 85 85 84

400 (a) 72 82 85 84 83 81 78 74 68 66

(b) 72 79 83 84 84 84 83 84 83 83

36 200 (a) 87 89 89 89 88 88 87 87 85 85

(b) 88 88 88 89 89 89 89 89 89 89

400 (a) 83 86 87 87 87 87 87 85 85 84

(b) 83 85 87 87 88 89 89 89 88 88

79

Table 4.4: Top panel: the normalized MSEs for the bootstrap variance estimators of
nvar(x̄n) using (a) The dependent wild bootstrap (b) The dependent random weighting
(c) The grid based block bootstrap. The box for each row indicates the smallest
normalized MSE among l = 1, · · · , 10. Bottom panel: the empirical coverage (in percent)
for the bootstrap-based confidence intervals of the mean using (a), (b) and (c). The box
for each row indicates the best coverage among ln = 1, · · · , 10 (Nominal level is 95%).
2D-case: n = 200, 400, λn = 18, 36 and ρ = 1 is fixed.

l
λn n 1 2 3 4 5 6 7 8 9 10

18 200 (a) 0.36 0.24 0.17 0.15 0.15 0.16 0.18 0.19 0.21 0.23

(b) 0.37 0.25 0.19 0.16 0.16 0.16 0.17 0.17 0.18 0.19

(c) 0.36 0.23 0.17 0.16 0.17 0.21 0.23 0.26 0.35 0.38

400 (a) 0.49 0.31 0.22 0.18 0.17 0.18 0.19 0.21 0.23 0.25

(b) 0.51 0.33 0.24 0.20 0.18 0.18 0.19 0.20 0.21 0.22

(c) 0.49 0.30 0.20 0.19 0.19 0.23 0.25 0.30 0.38 0.40

36 200 (a) 0.12 0.080 0.061 0.055 0.054 0.057 0.064 0.071 0.080 0.087

(b) 0.12 0.085 0.065 0.057 0.055 0.056 0.060 0.064 0.071 0.077

(c) 0.11 0.079 0.061 0.055 0.058 0.064 0.073 0.084 0.11 0.11

400 (a) 0.22 0.14 0.094 0.073 0.064 0.064 0.067 0.074 0.083 0.095

(b) 0.23 0.15 0.10 0.080 0.069 0.066 0.067 0.071 0.077 0.084

(c) 0.22 0.14 0.092 0.072 0.068 0.070 0.079 0.086 0.11 0.12

18 200 (a) 79 84 87 88 88 88 89 88 87 86

(b) 78 84 86 88 87 88 88 88 88 87

(c) 78 85 88 87 86 83 80 77 71 67

400 (a) 69 80 85 87 88 87 87 86 86 85

(b) 69 79 84 85 87 87 87 87 86 86

(c) 70 82 85 85 84 81 78 74 70 66

36 200 (a) 89 91 91 92 93 92 92 92 92 92

(b) 89 90 92 92 92 92 92 92 92 92

(c) 89 91 91 92 92 90 90 89 88 87

400 (a) 83 87 89 90 90 91 91 91 91 91

(b) 83 87 89 89 91 90 91 91 91 91

(c) 83 87 89 90 89 89 88 87 86 85

80

CHAPTER 5

A SUBSAMPLED DOUBLE BOOTSTRAP
FOR MASSIVE DATA

5.1 Introduction

In the past decade, we have witnessed massive data (or big data) generated in

many fields. Datasets grow in size in part because they are increasingly being col-

lected by ubiquitous information-sensing mobile devices, remote sensing technolo-

gies, and wireless sensor networks, among others. Although our computing power

has also been advancing steadily, the surge of massive data presents challenges to

both computer scientists and statisticians in terms of data storage, computation

and statistical analysis. As nicely summarized in Jordan (2013), a key question for

statistical inference in the massive data context is “Can you guarantee a certain

level of inferential accuracy within a certain time budget even as the data grow

in size”? From a statistical point of view, there is a great need for new methods

that are theoretically sound and remain computationally feasible even for massive

data sets. The classical theoretical criteria to assess the quality of an inferen-

tial procedure such as mean squared error, size/power are still relevant, but for

massive data, computational efficiency and algorithm quality are also important

considerations in comparing different statistical methods and procedures.

With any statistical inference method, an inextricably associated problem is to

assess the precision of that inference, and this remains important for the statistical

analysis of massive data sets. For example after parameter estimation from a

data set, a natural next step is to measure how precise the estimation method

is, and this can be measured by the mean squared error, width of confidence

interval, and so on. The bootstrap (Efron (1979)) is a powerful and popular

procedure that can be applied to estimate precision for a wide variety of inference

methods. It has well-known statistical properties including consistency and higher-

order accuracy under quite general settings. It is conceptually appealing as it

is straightforward to implement, using resamples from the data as a proxy for

samples, and is automatic in nature such that the user can implement it without

81

advanced statistical knowledge. However, the benefits of bootstrap come at a

considerable computational cost. Each iteration of the bootstrap involves the

calculation of a statistical function on a resample of the original data. For a

data of size n, on average each resample includes 0.63n distinct sample points —

therefore each iteration of the bootstrap carries a computational cost of the same

order as that of the original inference on the data. Even though this problem

can be alleviated with the advent of modern parallel computing platforms, it is

still quite overwhelming to repeatedly process such resampled datasets for data of

huge size, say a terabyte. Therefore, this calls for new bootstrap methods that are

computationally scalable while maintaining good statistical properties.

In their recent work Kleiner et al. (2014) introduced a new resampling proce-

dure called Bag of Little Bootstraps (BLB, hereafter). This procedure consists

of randomly selecting small subsets of the data, and then performing a bootstrap

on each subset, by constructing weighted resamples of the subset such that the

resample size equals the size of the original data. The estimator is calculated

on these resamples in the same manner as bootstrap. It is worth noting that

this method bears some resemblance to the traditional subsampling (Politis and

Romano (1994a)) or m out of n bootstrap (Bickel et al. (1997)), which involve

subsamples or resamples of size much smaller than the bootstrap, thereby reduc-

ing the computational cost. However, these methods (subsampling or m out of n

bootstrap) usually require a rescaling of the output, to adjust for the difference

between sample size and resample or subsample size. This feature makes them less

user-friendly, since in order to evaluate the precision of an estimation method, the

practitioner typically needs to know the rate of convergence of the estimator be-

ing used. Additionally, as demonstrated in Kleiner et al. (2014), the performance

of subsampling or m out of n bootstrap depends quite strongly on the choice of

parameters such as subsample size. By contrast, the resamples in BLB are of the

same size as the data, so no rescaling of output is needed thereby retaining the

automatic and user-friendly nature of the bootstrap. On the other hand, although

the resamples are nominally of the same size as the original data, they contain

only a small number of distinct points coming from the subset, which reduces the

computational cost of calculating a statistical function of the resamples. The esti-

mates of precision from a few subsets can be averaged to obtain the BLB estimate

of precision.

In Kleiner et al. (2014) the authors recommend a large number of resamples

from each subset, and a small number of random subsets. However, this means

that only a small fraction of the original data is used in computing the BLB es-

82

timate, as a large majority of data points may not appear in any of the subsets

used. Additionally, running a large number of resamples on each subset might

incur high computational costs, even if each resample has less runtime than boot-

strap resamples. These two issues can affect the performance of BLB in terms of

statistical accuracy and computational cost, respectively.

When facing the trade-off between statistical accuracy and computational cost,

a practical question we need to answer is: “given a certain computation time bud-

get, how can a practitioner optimally use that budget to come up with an estimate

of precision?” The bootstrap has an obvious answer to this question — keep tak-

ing resamples until the budget runs out. This answer holds true irrespective of

the statistical inferential method whose precision is of interest. However, it is not

obvious how to answer this question for BLB, since it is not clear how to opti-

mize the two tuning parameters — namely number of resamples per subset and

the number of subsets, under the time budget constraint. Two natural strategies

would be — with a fixed number of resamples per subset use as many random

subsets as possible, or with a fixed number of random subsets use as many re-

samples per subset as possible. Both strategies might be sub-optimal in practice,

depending upon the particular problem at hand. Kleiner et al. (2014) suggest a

novel adaptive method for selecting the tuning parameters, where one first fixes

a tolerance parameter, and then for each subset, one can keep taking resamples

till that tolerance level is reached. This method provides a nice way of adaptively

choosing tuning parameters for a given level of desired accuracy. However for a

given computational time budget, the variability of the precision estimate is not

known a priori, and hence it is not clear how to choose an appropriate value of

the tolerance parameter that is neither too ambitious nor too conservative for the

inference method of interest.

In this chapter we present a new resampling procedure called the Subsampled

Double Bootstrap (SDB, hereafter) for massive data. Double bootstrap was first

proposed by Beran (1988) as a way of improving the accuracy of bootstrap, but is

considerably more expensive than bootstrap and becomes computationally infea-

sible for massive data. Fast double bootstrap (FDB, hereafter), which was inde-

pendently proposed by White (2000) and Davidson and MacKinnon (2000,2007),

is an interesting alternative that only resamples once in the second stage of boot-

strapping and can dramatically speed up the double bootstrap. The FDB has

been applied to many tests in econometrics, see Davidson and MacKinnon (2002),

Ahlgren and Antell (2008), Richard (2009), among others. Recently, Giacomini

et al. (2013) applied the idea of FDB to reduce the computational cost in running

83

Monte carlo experiments to assess the performance of bootstrap estimators and

tests. They demonstrated the consistency of this method and called it a ‘warp-

speed method’ to emphasize its rapidness. Chang and Hall (2014) recently studied

the higher order accuracy of FDB in terms of bias correction and coverage accuracy

of confidence intervals. In the massive data context, the FDB is still too expensive

since its computational cost is about twice the cost of bootstrap. Therefore we

propose to do subsampling first and then apply the idea of a single resample in the

double bootstrap step to the randomly drawn subset of massive data, to evaluate

the precision of a statistical inference method. Since our method is a combina-

tion of subsampling and double bootstrap, we call it subsampled double bootstrap

(SDB). In the implementation of SDB, we randomly draw a large number of small

subsets of the data, but instead of bootstrapping the subsets we construct only

one resample from each subset. Since these resamples have the same nominal size

as the original data but only a small number of distinct points, SDB retains the

automatic nature and computational strength of BLB. The ensemble of resam-

ples is then used to estimate the precision of the inference method, in the same

manner as bootstrap. Note that SDB inherits certain features from FDB but is

computationally much cheaper than FDB. The number of distinct points in the

first-stage subsample and the second-stage resample of SDB are small compared

to the number of distinct points in the first-stage and second-stage resamples of

FDB, and this makes SDB much faster.

To see the statistical and computational advantages of SDB, note that the es-

timation time of one SDB iteration is comparable to that of two resamples for a

BLB subset, and hence SDB can cover a large number of random subsets in the

time it takes BLB to complete a large number of resamples for a single random

subset. Hence, SDB can provide a much more comprehensive coverage of the data

than BLB within a given time budget. Further, given a certain computational time

budget, utilizing that budget with SDB is straightforward as it does not require

the choice of any tuning parameters. The practitioner can, just like bootstrap,

simply keep running subset-resamples until the time budget runs out.

The rest of the chapter is organized as follows. In Section 6.1.1 we describe SDB

in independent data setting. Section 5.3 demonstrates the consistency of SDB for

independent data, and Section 5.4 reports two simulation studies comparing SDB,

BLB, and bootstrap for independent data. We introduce a time series version of

SDB in Section 5.5. Section 5.6 demonstrates consistency for the dependent case,

and Section 5.7 reports two simulation studies for time series data. We provide a

data illustration on a large meteorological time series dataset in Section 5.8, and

84

the chapter concludes with discussion in Section 5.9. Proofs of the theoretical

results and some supplementary simulation results are at the end.

5.2 SDB for independent data

Consider an i.i.d. sample Xn = {X1, . . . , Xn} drawn from some unknown distribu-

tion P . The parameter of interest is θ = θ(P), for which an estimate θ̂n = θ̂(Xn) is

obtained from the sample. (Please see the discussion following Theorem 5.3.1 for a

more rigorous definition of the types of parameter and estimator covered under the

scope of SDB.) Having chosen the estimator, the statistician often seeks to obtain

further information regarding the precision of the estimator θ̂(Xn). This requires

the estimation of some measure involving the sampling distribution of θ̂(Xn) and

the true value of the parameter θ. For example, the precision of an estimator can

be measured by the mean squared error or the width of a 95% confidence interval

for θ.

Such measures of precision can usually be defined in terms of a root function

Tn(θ̂n, θ) involving the estimator and the parameter. Let Qn = Qn(P) be the

unknown sampling distribution of Tn, and assume that the precision measure can

be represented as ξ(Qn) for a suitable functional ξ(·). For example, suppose θ is

the population mean, θ̂(Xn) is the sample mean, and the measure of interest is

the scaled MSE nE[(θ̂n − θ)2]. In our notation, we define the root as Tn(θ̂n, θ) =
√
n(θ̂n − θ), and define the functional as ξ(Qn) =

∫
x2dQn(x), where Qn is the

sampling distribution of Tn(θ̂n, θ).

Estimation of ξ(Qn) can be performed by a resampling method like bootstrap.

Let Pn be the empirical distribution of the sample Xn, then we can approximate

Qn(P) by Q̂n = Qn(Pn). To do so, we generate a large number (R) of resam-

ples X ∗jn = {Xj1 , . . . , Xjn}, j = 1, . . . , R from the observed sample Xn. Treat-

ing the original estimate θ̂(Xn) as the population parameter and the resample

estimate θ̂(X ∗jn) as an estimated value of this parameter, we compute the root

Tn(θ̂(X ∗jn), θ̂(Xn)) for each resample, and obtain the empirical distribution Q̂n,R

of this ensemble of roots. Conditionally on Xn, the empirical distribution Q̂n,R

converges to the resampling distribution Qn(Pn) as R goes to infinity. The under-

lying idea of the bootstrap is to estimate the unknown sampling distribution Qn

of the root function by this empirical distribution Q̂n,R, and estimate the measure

ξ(Qn) by the plug-in estimator ξ(Q̂n,R).

In conventional bootstrap, each resample contains an average of 0.63n distinct

85

sample points — the computational cost of calculating each resample estimate

θ̂(X ∗n) is therefore comparable to those of the original sample. Running R iterations

requires performing this taskR times, which can be computationally demanding for

massive datasets, particularly when it involves computation of complex statistics.

This limits the application of bootstrap for massive datasets.

For BLB, we fix a subset size b (typically b = nγ for some 0 < γ < 1) and

construct a suitable number (S) of random subsets, X ∗jn,b = {Xj1 , . . . , Xjb}, j =

1, . . . , S, from the observed sample Xn. Next, for each subset X ∗jn,b, we generate

R weighted resamples of size n — this can be represented by (X ∗jn,b,W
∗(j,k)
n,b), k =

1, . . . , R where W∗(j,k)
n,b = {W1, · · · ,Wb} is a vector representing the frequencies

of (X ∗jn,b) in the kth resample. The weight vector W∗(j,k)
n,b is generated from a

multinomial distribution with n trials and b cells with uniform chance for each

cell, independently of the subset. Treating θ̂(X ∗jn,b) as the population parameter

and the resample estimate θ̂(X ∗jn,b,W
∗(j,k)
n,b) as an estimated value of this parameter,

we compute the root Tn(θ̂(X ∗jn,b,W
∗(j,k)
n,b), θ̂(X ∗jn,b)) for each resample, and obtain

the empirical distribution Q̂jn,b,R of this ensemble of roots. In the same spirit as

bootstrap, we apply the plug-in estimator ξ(Q̂jn,b,R) for each subset, and average

over different subsets to obtain the estimator 1
S

∑S
j=1 ξ(Q̂

j
n,b,R) of ξ(Qn).

We propose a subsampled double bootstrap scheme (SDB) based on subsets

in the same manner as BLB, but using only one resample per subset. We fix

a subset size b and construct a large number (S) of random subsets, X ∗jn,b =

{Xj1 , . . . , Xjb}, j = 1, . . . , S, from the observed sample Xn. However, we gen-

erate only one resample from the jth subset, corresponding to W∗(j,1)
n,b as defined

above, and calculate a single root T ∗jn = Tn(θ̂(X ∗jn,b,W
∗(j,1)
n,b), θ̂(X ∗jn,b)) from the re-

sample estimate and the subset estimate. With this ensemble {R∗jn : j = 1, . . . , S},
we compute the empirical distribution Q̂n,b,S of roots and estimate ξ(Qn) using

the plug-in estimator ξ(Q̂n,b,S). Algorithm 1 outlines the computational steps

involved.

Note that the computational advantages of SDB and BLB relative to the boot-

strap are applicable only when the estimator θ̂ of interest can take the weighted

data representation as its argument. This property holds for a large class of com-

monly used estimators, including M -estimators. For a subset X ∗n,b with resample

weights W∗n,b, the resample estimate can then be expressed as θ̂(X ∗n,b,W∗n,b). Since

BLB and SDB resamples have nominal size n but only O(b) distinct points, com-

puting the resample estimate for these methods is much cheaper than that for

bootstrap, which has O(n) distinct points in the resamples.

86

Input : Data Xn = {X1, . . . , Xn}
θ: parameter of interest
θ̂n: estimator
Tn(θ̂n, θ): root function

ξ(·): measure of accuracy
b: subset size
S: number of subsets

Output: ξ(Q̂n,b,S): Estimate of ξ

for j ← 1 to S do

(i) Choose random subset X ∗jn,b from Xn
(ii) Compute θ̂(X ∗jn,b) from X ∗jn,b
(iii) Generate resample (X ∗jn,b,W

∗(j,1)
n,b) from X ∗jn,b

(iv) Compute resample estimate θ̂(X ∗jn,b,W
∗(j,1)
n,b) from (X ∗jn,b,W

∗(j,1)
n,b)

(v) Compute resample root: T ∗jn = Tn(θ̂(X ∗jn,b,W
∗(j,1)
n,b), θ̂(X ∗jn,b))

end
1. Compute empirical distribution of roots:
Q̂n,b,S = ecdf of {T ∗1n , . . . , T ∗Sn }
2. Calculate the plug-in estimator ξ(Q̂n,b,S)

Algorithm 1: SDB algorithm

5.2.1 Comparison of SDB, BLB, and Bootstrap

For both BLB and SDB, the resample estimation step applies to a resample with

O(b) distinct points, whereas in bootstrap the resample has O(n) distinct points.

This makes SDB and BLB computationally much cheaper than bootstrap when

b << n. Denote the computational time for performing the estimation process

θ̂ on a sample of size m by t(m). In this formulation of computational time we

focus on sample size to illustrate the resampling methods, and ignore other factors

affecting computational time. For an estimator that can take the weighted data

representation, the estimation time for a resample with nominal size n but only

b distinct points is t(b). The estimation time for bootstrap, BLB, and SDB, for

conducting inference in one original data sample, are listed in Table 5.1, where the

symbols have the same meaning as earlier. Bootstrap requires estimation on the

original data and its R resamples. Each BLB subset requires estimation on the

subset and its R resamples. Each SDB subset requires estimation on the subset

and the single resample.

For BLB, Kleiner et al. (2014) recommends R = 100 and a small value of S

(2-10 depending on b). For illustration, let n = 100, 000 and b = n0.6, then the

number of distinct points in each resample is at most 1000, resulting in much faster

computation than bootstrap. However, in terms of sample coverage, each subset

87

Name Estimation Time
Bootstrap (R + 1)× t(n)

BLB S(R + 1)× t(b)
SDB 2S × t(b)

Table 5.1: Estimation time for different resampling methods

can cover at most 1% of the data, so 10 subsets can at best cover 10% of the data

at an expense of 1010×t(b). The SDB can run more than 500 different subsets at

the same expense, providing a far more comprehensive coverage of the data.

Further, given a certain time budget, it is not clear how to choose the tuning

parameters R and S that will provide optimal statistical accuracy for BLB. The

adaptive method proposed by Kleiner et al. (2014) provides an interesting alter-

native by choosing a tolerance parameter ε instead of R and S. But even then, it

is not clear how to choose an appropriate ε in practice, since t(m) is not known a

priori, and neither do we know the estimation variability as a function of sample

size. For the SDB (with a given subset size) and the bootstrap, the estimation

time involves only one parameter, the number of resamples (or subsets), and hence

the practitioner can simply keep running resamples until the time budget runs out.

5.3 Theory for independent data

In this section, we provide a theoretical analysis of the SDB in a general empirical

process setting. Consider a class of functions F [each element mapping from Rk

to R]. Denote by `∞(F) the space of bounded functions which map from F to R.

To describe consistency of the SDB, consider the SDB-process

ĜB
n,b(f) :=

1√
n

b∑
i=1

(Wi,n − n/b)f(XR−1(i)).

Here, W := (W1,n, ...,Wb,n) ∼ Multinomialb(n, 1/b, ..., 1/b) independent ofX1, ..., Xn

and R follows a uniform distribution on the permutations of {1, ..., n} and is inde-

pendent of X1, ..., Xn,W . Note that in empirical process settings, it is important

to specify the underlying probability space. This is done in the mathematical ap-

pendix [see Section 5.10.1]. In order to show that the SDB ‘works’ in a process

setting, we need to establish that the distribution of the SDB process ĜB
n,b [condi-

tional on the observations Xi] is close to the distribution of the empirical process

88

Gn where

Gn(f) :=
1√
n

n∑
i=1

(f(Xi)− E[f(X1)])

when both are viewed as elements of `∞(F). To this end we show that the SDB-

process converges in distribution, conditionally on the data X1, ..., Xn, to the same

Gaussian process as the empirical process Gn.

Theorem 5.3.1 Assume that F is a Donsker class for P , that Xi ∼ P are i.i.d.

and that additionally Fδ := {f − g : f, g ∈ F , P (f − g)2 ≤ δ} is measurable in

the sense discussed in Giné and Zinn (1984) for each δ > 0. Then we have for

min(n, b)→∞
ĜB
n,b

P

W,R

G

in `∞(F) where G denotes a centered Gaussian process with covariance E[G(f)G(g)] =

cov(f(X), g(X)).

In the above Theorem, conditional weak convergence
P

W,R

is in the sense de-

scribed in Kosorok (2008), Section 2.2.3. A proof of this result can be found in

the mathematical appendix [Section 5.10.1].

One remarkable fact about Theorem 5.3.1 is that, in addition to F being P-

Donsker, the only requirement on the class of functions F is a mild measurability

condition. This means that the SDB on a process level ‘works’ whenever the corre-

sponding functional central limit Theorem holds true (up to the mild measurability

assumption on the function class F), i.e. the SDB can be applied in a very wide

variety of settings. The proof relies on basic tools from empirical process theory

[in particular, a fundamental result on the exchangeable bootstrap, see Theorem

3.6.3 in van der Vaart and Wellner (1996)], but is completely different from the

proof of Theorem 1 in Kleiner et al. (2014). The reason is that in the BLB one

initial subset is fixed, while in the SDB a different subset of the data is used in each

iteration. The latter fact poses additional challenges for the theoretical analysis of

SDB.

Theorem 5.3.1 provides a fundamental building block for the analysis of SDB.

Combined with the continuous mapping theorem and functional delta method for

the bootstrap [see for instance Kosorok (2008), Theorem 10.8 and Theorem 12.1], it

can be utilized to validate the consistency of SDB for a wide range of applications.

For illustration purposes, let us consider an application of the functional delta

method for the bootstrap with the root Tn(θ̂n, θ) :=
√
n(θ̂n − θ). Assume that we

are interested in conducting inference on a parameter θ which can be represented

89

as φ((f 7→ Pf)f∈F), and the estimator takes the form θ̂(X) = φ((f 7→ Pnf)f∈F)

for a suitable map φ. More precisely, we assume that φ satisfies the following

condition

(H) There exists a V which is a vector space with V ⊂ `∞(F) such that the

sample paths of G lie in V with probability one. The map φ : `∞(F)→ Rk

is compactly differentiable tangentially to V in the point H : f 7→ Pf .

Denote the corresponding derivative by φ′H .

For f ∈ F , write Pn,bf := 1
n

∑b
i=1Wi,nf(XR−1(i)). Then, in the notation from Sec-

tion 6.1.1, we have θ̂(X ∗jn,b,W
∗(j,1)
n,b) = φ((f 7→ Pn,bf)f∈F). Now the delta method

for the bootstrap [Theorem 12.1 in Kosorok (2008)] yields for min(n, b)→∞

Tn(θ̂(X ∗jn,b,W
∗(j,1)
n,b), θ̂(Xn)) =

√
n(θ̂((X ∗jn,b,W

∗(j,1)
n,b))− θ̂(Xn))

P

W,R

φ′HG.

At the same time, the classical functional delta method yields

Tn(θ̂(Xn), θ) =
√
n(θ̂(Xn)− θ) φ′HG.

Assume measurability of θ̂((X ∗jn,b,W
∗(j,1)
n,b)), θ̂(Xn). Write L for the distribution

of φ′HG, Ln for the distribution of Tn(θ̂(Xn), θ), and denote by LBn,b(R,W) the

distribution of Tn(θ̂(X ∗jn,b,W
∗(j,1)
n,b), θ̂(Xn)) conditional on R,W . Denoting by d a

metric on the space of distributions on Rk which metrizes weak convergence, we

have proved that d(Ln,L) → 0 as n → ∞ and d(LBn,b(R,W),L) → 0 in outer

probability as min(n, b) → ∞. In particular, this shows that for any map ξ from

the space of distributions to Rk which is continuous in the point L with respect to

the metric d, we have ξ(LBn,b(R,W))− ξ(L)→ 0 in outer probability. This shows

that the conclusion of Theorem 1 in Kleiner et al. (2014) continues to hold in the

SDB setting.

5.4 Simulation study for independent data

In this section, we report two simulation studies comparing the performance of

bootstrap, BLB, and SDB in large simulated datasets in the i.i.d. framework.

We used model settings similar to Kleiner et al. (2014). Since they have already

demonstrated that BLB performs better than the m out of n bootstrap and sub-

sampling, we did not include these methods in our study.

90

5.4.1 Multiple Linear Regression

Consider a d-dimensional multiple linear regression model

yi = β1xi,1 + . . .+ βdxi,d + ei

for i = 1, . . . , n. Our parameter of interest is the d-dimensional vector of slope

coefficients, whose true value is β = (β1, ..., βd) = (1, . . . , 1)′. We use the usual

OLS estimator β̂. We also want to construct a simultaneous 95% confidence region

for β. Traditionally we use the F-statistic

Tn(β̂, β) =
(β̂ − β)′X ′X(β̂ − β)/d

(y −Xβ̂)′(y −Xβ̂)/(n− d− 1)

to construct the joint confidence region. Let q0.95 be the 95% quantile of the

true (unknown) distribution of Tn(β̂, β). Then the confidence region is given by

{β : Tn(β̂, β) ≤ q0.95}. In general the true distribution of Tn, and hence its quantile

q0.95, is unknown. But it can be estimated by the resampling techniques described

in the previous section, with ξ(Qn) = q0.95 where Qn is the true distribution of Tn.

In our simulations, we use a model from the simulation study of Kleiner et al.

(2014). We generate xi,j
iid∼ t3 and ei

iid∼ N(0, 100) independently. For normally

distributed errors, we know that Tn ∼ F (d, n−d−1), and hence the true quantiles

are given by those of the corresponding F distribution. We define the error rate

as

| q̂0.95

q0.95
− 1|

where q̂ and q represent the estimated and true quantiles of Tn, respectively. We

use subset size b = nγ with γ = 0.6, 0.7, 0.8 for both BLB and SDB, and let

n=100000, d=100. Following Kleiner et al. (2014) we fix R = 100 for BLB. We

allowed the competing methods to run for 60 seconds.

5.4.2 Logistic Regression

Consider a d-dimensional multiple logistic regression model

yi
ind∼ Ber(pi) where pi = β1xi,1 + . . .+ βdxi,d

for i = 1, . . . , n. Our parameter of interest is the d-dimensional vector of slope

coefficients, whose true value is β = (β1, . . . , βd) = (1, . . . , 1)′. We use the maxi-

91

mum likelihood estimator β̂n which does not have a closed form expression for this

model, but can be numerically computed using a Newton-Raphson method. We

use the R function glm for fitting the model. As before, we want to construct a

simultaneous 95% confidence region for β. Define the root function

Tn(β̂, β) = (β̂ − β)′Σ̂(β̂ − β)

where Σ̂ =
∑n

i=1
exp(x′iβ̂)

[1+exp(x′iβ̂)]2
xix
′
i. Let q0.95 be the 95% quantile of the true (un-

known) distribution of Tn(β̂, β). Then the confidence region is given by {β :

Tn(β̂, β) ≤ q0.95}. In general the true distribution of Tn, and hence its quantile

q0.95, is unknown. But it can be estimated by the resampling techniques described

in the previous section, with ξ(Qn) = q0.95 as the target precision parameter, where

Qn is the true distribution of Tn.

We generate xi,j
iid∼ t3 and obtain a numerical approximation of q0.95 using 10000

Monte Carlo simulations. As before, we define the error rate as |q̂0.95/q0.95 − 1|.
We use subset size b = nγ with γ = 0.6, 0.7, 0.8 for both BLB and SDB, and use

n=100000, d=10. Following Kleiner et al. (2014) we fix R = 100 for BLB. We

allowed the competing methods to run for 20 seconds.

5.4.3 Comparison of SDB, BLB, and Bootstrap

The methods are compared with respect to the time evolution of error rates. Note

that this is different from conventional analysis where error rates from competing

methods are compared for the same number of iterations. This makes sense because

different methods have different estimation time profiles (as formulated in Table

5.1), and we want to investigate which method is the fastest to produce reasonably

accurate results. We consider a time grid 1, 2, . . . , 60 (in seconds) and at each time

point t, we look up the latest iteration that was completed by this time, and

calculate the error corresponding to the estimate ξ̂ from cumulative iterations

including that iteration. For each method and any t, this can be interpreted as

the error rate obtained by that method for a given computation time budget of

t seconds. Different methods will have different numbers of iterations completed

within the same time budget. For bootstrap and SDB, latest iteration means the

latest completed resample or subset-resample, while for BLB (following Kleiner

et al. (2014)) the latest iteration means the latest completed subset. Note that

till the first iteration is complete, we do not have an estimate ξ̂, so we consider

the error rate to be 1 till the first iteration is completed. Error rates are averaged

92

across 20 Monte Carlo simulations.

Figure 6.1 shows the time evolution of error rates for bootstrap, BLB, and SDB.

Bootstrap has the highest computing cost which gets reflected in its slow conver-

gence. The performance of BLB and SDB are close to one another for generous

time budgets, but for lower time budgets SDB performs better by quickly giving

a reliable estimate while BLB takes some time to complete the first subset. This

phenomenon becomes particularly prominent for higher values of b as BLB’s com-

puting time for each subset becomes large. For small time budgets even bootstrap

can beat BLB when b = n0.8, since the time taken by BLB to complete a subset

can exceed the given budget. A similar phenomenon for small time budgets was

observed in the simulation study of Kleiner et al. (2014) (see Figure 1(a)—(c) in

their paper for linear regression and 2 (a)—(c) for logistic regression), where boot-

strap estimates are available but BLB estimates are not available yet for subset

size b = n0.8 or b = n0.9.

Remark 5.4.1 Computing time for the resampling methods depends on various

aspects of the computational infrastructure used, e.g. the processing power of the

computer, storage capacity, and statistical software or computing platform. All

our simulations were performed on a desktop computer with Intel(R) Core(TM)2

Duo CPU E8400 @3.00 GHz processor and 4 GB RAM, running R version 3.0.1.

The computational infrastructure influences the computing time of various resam-

pling methods in identical manner, so the relative performance of these methods

should be qualitatively similar in a different infrastructure, even if the absolute

performances might vary.

Remark 5.4.2 It is relevant to note that while we have used models from Kleiner

et al. (2014) in these studies, the precision measure and the method of comparison

between resampling schemes are slightly different. They constructed marginal con-

fidence intervals for the individual regression coefficients, and combined results for

the d coefficients by averaging the error rate over the dimensions. Thus they are

interested in measures of precision of the individual estimation tasks of estimating

the d coefficients. However, in a multivariate regression setting, the joint estima-

tion task of all coefficients taken together might be of more interest. Accordingly,

we constructed a simultaneous confidence region for the d-dimensional vector of

regression coefficients to assess precision of this joint estimation task, and compute

error in terms of this confidence region.

For comparison between resampling schemes, Kleiner et al. (2014) allowed the

competing resampling schemes to converge, and for each iteration (defined as a

93

complete subset for BLB and resample for bootstrap), they computed the average

cumulative computing times and average error rates from five Monte Carlo sim-

ulations. They compared resampling schemes on the basis of this average time

vs average error trade-off. In our simulations, we compare methods on the basis

of error rate achieved for a given time budget, over 20 Monte Carlo simulations.

Thus time is not averaged across simulations — rather, at a fixed point in time we

look up the error rates obtained by this time in the Monte Carlo simulations, and

average them. If at a certain time point no estimate is available yet (no iteration

has been completed), we assign an error rate of 1.

In particular, in our simulation plots, the error rate changes only when an iter-

ation has been completed. This makes them look ‘jerky’ and unstable as there are

long stretches of a flat line followed by a sudden drop. Since estimates change only

upon the completion of a new iteration, the arrival of new estimates is actually

an intermittent process rather than a continuous process with respect to the time

axis, and the error rate does not change unless a new estimate is available. There-

fore it is realistic that error rates change in a ‘jerky’ fashion rather than smoothly,

and this is not a symptom of instability.

Remark 5.4.3 Several bootstrap approaches exist in a regression setting — for

example paired bootstrap, residual bootstrap, wild bootstrap and so on. In these

simulations we have implemented the paired bootstrap, where both regressors and

response are resampled. The paired bootstrap method can be naturally extended

to the BLB and SDB algorithms, but it is unclear whether there are straightforward

extensions for residual bootstrap or wild bootstrap.

As pointed out by a referee, another alternative is to look at bootstrap p-values

instead of confidence regions for regression models. In our formulation ξ is a

parameter associated with the sampling distribution Qn of the root function Tn

(which in this case is the F-statistic), while the p-value is a statistic. However,

one can implement Algorithm 1 to ‘estimate’ the true p-value using the empirical

distribution Q̂n,b,S . Limited (unreported) simulation results suggest that SDB

still possesses the same advantage over BLB and bootstrap, which is reported for

confidence region. A more careful investigation regarding the suitability of SDB

for approximation of the p-value in theory and finite sample simulations is left for

future work.

94

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 5 10 15 20

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 5 10 15 20

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 5 10 15 20

0.
0

0.
4

0.
8

Figure 5.1: Time evolution of error rates for multiple linear regression with
d=100 (left column) and multiple logistic regression with d=10 (right
column). Sample size n=100000, subset size is b = nγ where γ = 0.6 (top
row), γ = 0.7 (middle row) and γ = 0.8 (bottom row). Bootstrap errors are
represented by solid lines, BLB errors by dashed lines, and SDB errors by
dotted lines. Errors are averaged over 20 simulations.

95

5.5 SDB for time series data

In this section, we extend SDB to time series data. Note that Kleiner et al.

(2014) have briefly mentioned an extension of BLB to the time series setting using

stationary bootstrap (Politis and Romano (1994b)), however no rigorous theory

is provided. Also see Laptev et al. (2012) for a recent implementation on a large

Twitter dataset.

Suppose we observe Xn = {Xt}nt=1, which is a stretch of length n from the

strictly stationary time series {Xt}t∈Z, and let P denote the joint probability law

that governs the stationary sequence. Let θ = θ(P) be our parameter of interest,

and suppose we have an estimator θ̂n(Xn) which is a measurable mapping from

Xn to R. As with independent data, we are interested in evaluating the precision

of this statistical inference. As before, this can be formulated in terms of a root

function Tn(θ̂n, θ), and the precision can be expressed as ξ(Qn) where Qn is the

true (unknown) distribution of Tn.

For BLB, we first construct subsets of the original sample by randomly choosing

a continuous stretch of data X ∗n,b = {XJ+i}bi=1 where 0 ≤ J ≤ n−b+1 and the sub-

set size b is fixed beforehand. From the jth subset, we then construct R weighted re-

samples (X ∗jn,b,W
∗(j,k)
n,b) for k = 1, . . . , R of size n using the Moving Block Bootstrap

(MBB, hereafter) of Künsch (1989) and Liu and Singh (1992). We use MBB instead

of stationary bootstrap used by Kleiner et al. (2014) since the MBB is conceptually

simpler, and easier in terms of theoretical treatment. For this, we consider some

suitable block length L < b and divide the subset {XJ , XJ+1, . . . , XJ+b−1} into an

ensemble of overlapping blocks {Xi, Xi+1, . . . , Xi+L−1} where J ≤ i ≤ J+b−L+1.

The resample is constructed by concatenating blocks that are randomly sampled

from this ensemble, till we obtain a chain of size n. Note that when n is not a

multiple of L, we will need to take a fraction of the final block in order to obtain

a resample of length exactly n. This gives us an ensemble of roots of the form

Tn(θ̂(X ∗jn,b,W
∗(j,k)
n,b), θ̂b(X ∗jn,b)), k = 1, . . . , R, and we use the empirical distribution

of this ensemble to approximate the unknown distribution of Tn(θ̂n, θ). Averaging

over j = 1, . . . , S subset estimates then gives the BLB estimate of precision.

For SDB, for each subset X ∗jn,b, we generate only one MBB resample (X ∗jn,b,W
∗(j,1)
n,b)

to construct the root Tn(X ∗jn,b,W
∗(j,1)
n,b), θ̂b(X ∗jn,b)). We do this a large number (S)

of times to generate an ensemble of roots, and use the empirical distribution of

this ensemble to approximate the unknown distribution of Tn(θ̂n, θ). Algorithm 2

outlines the computational steps involved.

In the time series case, estimation time can be formulated as t(m) in a manner

96

Input : Data Xn = {X1, . . . , Xn}
θ: parameter of interest
θ̂n: estimator
Tn(θ̂n, θ): root function

ξ(·): measure of accuracy
b: subset size
L: block length
S: number of subsets

Output: ξ(Q̂n,b,S): Estimate of ξ

for j ← 1 to S do

(i) Choose random subset X ∗jn,b = {XJ+i}bi=1 from Xn where
0 ≤ J ≤ n− b+ 1
(ii) Compute θ̂(X ∗jn,b) from X ∗jn,b
(iii) Choose k = n/L blocks by randomly sampling k starting
points (t1, . . . , tk) from {J + 1, . . . , J + b−L+ 1} with replacement
(iv) Construct resample weights for subset:

Initialize: W∗(j,1)
n,b ← (0 . . . 0︸ ︷︷ ︸

b

)

for i← 1 to k do

W∗(j,1)
n,b ←W∗(j,1)

n,b + (0 . . . 0︸ ︷︷ ︸
ti−1

1 . . . 1︸ ︷︷ ︸
L

0 . . . 0︸ ︷︷ ︸
b−ti−L+1

)

end

(v) Compute resample estimate θ̂(X ∗jn,b,W
∗(j,1)
n,b) from (X ∗jn,b,W

∗(j,1)
n,b)

(vi) Compute resample root: R∗jn = Tn(θ̂(X ∗jn,b,W
∗(j,1)
n,b), θ̂(X ∗jn,b))

end
1. Compute empirical distribution of roots:
Q̂n,b,S = ecdf of {R∗1n , . . . , R∗Sn }
2. Calculate the plug-in estimator ξ(Q̂n,b,S)

Algorithm 2: SDB time series algorithm

similar to Section 5.2.1, where m is the number of distinct points, and the estima-

tion times listed in Table 5.1 apply with MBB taking the place of bootstrap. MBB

requires estimation on the original data and its R resamples. Each BLB subset

requires estimation on the subset and its R resamples. Each SDB subset requires

estimation on the subset and the single resample.

Broadly speaking, the time series version of SDB retains the advantages dis-

cussed in Section 5.2.1 in the context of independent data. For a given computa-

tional time budget, by using a single resample for each random subset SDB can

accommodate much more comprehensive coverage of data than BLB. Also, BLB

involves tuning parameters R and S (or ε under the adaptive method) whose se-

lection can be non-trivial, while SDB and MBB do not require this type of tuning

parameter selection. However, an important tuning parameter in the time series

97

setting is the block length L which can affect both variability and the accuracy of

the estimate of precision in all three resampling methods.

5.6 Theory for dependent data

We begin by setting up a mathematical framework for SDB in the dependent case.

Throughout this section we assume that the observations X1, ..., Xn stem from

a strictly stationary time series {Xt}t∈Z. Given a sample X1, ..., Xn, the SDB

procedure for time series can be described through the following steps.

1. Pick a random variable J which is distributed uniformly on 0,, n− b− 1.

This corresponds to the first step of randomly selecting a block of length b

from the complete data.

2. Choose K = dn/Le random variables s1, ..., sK which are i.i.d. and dis-

tributed uniformly on 0, ..., b − L + 1. Generate the sample X∗1 , ..., X
∗
n by

setting

(X∗kL+1, ..., X
∗
(k+1)L) := (XJ+sk , ..., XJ+sk+L−1)

3. After the first two steps above, one realization of the SDB process is given

by

ĜB
n,b(f) :=

1√
n

n∑
i=1

(
f(X∗i)− 1

b

b∑
j=1

f(XJ+j)
)
.

Repeat a large number of times, each time generating a new J, s1, ..., sK .

As in the case of independent observations, our aim is to establish validity of

the SDB for general classes of functions. In contrast to the i.i.d. setting, where the

‘classical’ bootstrap for empirical processes is well understood, there are very few

results on bootstrap validity for general empirical processes. All of the available

results rely on the notion of β-mixing to measure dependence. More precisely, the

k’th β-mixing coefficient β(k) with k ∈ N is defined as

β(k) :=
1

2
sup

∑
(i,j)∈I×J

|P (Ai ∩Bj)− P (Ai)P (Bj)|

where the supremum is taken over all finite measurable partitions (Ai)i∈I , (Bj)j∈J

of σ(Xt, t ≤ 0) and σ(Xt, t ≥ k), respectively. As of this writing, we are aware

of only three articles that deal with bootstrap validity for general empirical pro-

cesses based on dependent observations. Bühlmann (1995) considers the moving

98

blocks bootstrap under exponential decay of the β-mixing coefficients and classes

of functions with polynomial bracketing numbers. Radulović (1996) establishes

the validity of the moving blocks bootstrap for VC [see van der Vaart and Well-

ner (1996), Chapter 2.6.2 for a definition] classes of functions under conditions

on polynomial decay of β-mixing coefficients. Finally, Radulović (2009) revisits

the disjoint blocks bootstrap and proves its validity under generic conditions on

the function class and decay of β-mixing coefficients. The latter paper also con-

tains a nice overview of literature on bootstrap validity under dependence [see also

Radulović (2002) for a review of earlier results]. Our main result can be viewed as

an analogue of Theorem 1 in Radulović (1996).

Theorem 5.6.1 Assume that F is a permissible [as defined on page 228-229 in

Kosorok (2008)] VC class with envelope function F such that E[F p(X1)] <∞ for

some p > 2. Assume that the mixing coefficients β satisfy β(k) ≤ k−q for some

q > p/(p − 2). If additionally there exist κ > 0, γ > 0, 0 < ρ < p−2
2(p−1) such that

b, L satisfy

n−1/2Lbγ = o(n−κ), L→∞, L = O(bρ), n1/2 = O(b(p−1)γ),

we have

ĜB
n,b

P

J,S

G

in `∞(F) where G denotes a centered Gaussian process with covariance structure

E[G(f)G(g)] =
∑
t∈Z

(E[f(X1)g(Xt)]− E[f(X1)]E[g(X1)]).

A proof of this theorem is in the mathematical appendix [Section 5.10.2]. The-

orem 5.6.1 shows that the time series version of SDB also works in a wide range of

settings. In particular, the continuous mapping theorem and delta method for the

bootstrap can be employed in the same fashion as discussed at the end of Section

5.3. We conjecture that the assumptions on the dependence can be weakened if

we consider more specialized classes of functions, such as indicators of rectangles

which would lead to the ‘classical’ empirical distribution function.

5.7 Simulation study for time series

In this section we report the numerical performance of SDB, BLB, and MBB in

two simulation studies involving large time series data.

99

5.7.1 Median of AR(1) process

Consider an AR(1) time series formulated as

Xt = ρXt−1 + et

of length n = 100, 000 and random innovation et
iid∼ N(0, 1). The parameter

of interest is the population median M . We define Tn =
√
n(Mn − M) where

Mn is the sample median. We are interested in evaluating the precision of the

estimator Mn. Our measure of precision is a quantile of the distribution of Tn, i.e.

ξ = qα(Tn) which can be used for constructing confidence intervals, for example,

with α = 5%, 95% we can construct a 90% confidence interval.

We obtain the ‘true’ value ξtrue from 10000 simulations. The error rate is mea-

sured by | ξ̂/ξtrue−1 | . We implement and compare the three resampling methods,

namely MBB, BLB, and SDB. Block length is L = 10, 20, 50 for all methods, and

we use subset sizes b = 5000, 10000 for BLB and SDB. We allow each method to

run for 60 seconds for L = 20, 50 and 120 seconds for L = 10, to allow BLB to

complete one subset.

5.7.2 Time Series Regression

We also studied the relative performance of MBB, BLB, and SDB in the time

series regression framework (see e.g. Andrews and Monahan (1992), Kiefer et al.

(2000), Rho and Shao (2013)). Consider the time series regression model

yt = X ′tβ + ut

for t = 1, . . . , n where β is a d×1 vector of regression coefficients, Xt is a d×1 vector

of stationary regressors, and ut is a stationary error process that satisfies E[ut | Xt]

= 0. We considered the AR(1)-HOMO regression model of Andrews and Monahan

(1992) where the d regressors and the error process are mutually independent,

mean zero, homoskedastic, AR(1) processes with autocorrelation ρ and standard

normally distributed innovations, and set β = 0. We set n = 100, 000 and d = 10,

and use ρ = −0.8, 0.5, 0.9. Similar to Section 5.4.1, the parameter of interest is β,

estimator of choice is the least-squares estimate β̂, and we measure precision by

constructing a 95% confidence region for β using the F-statistic. We obtain the

‘true’ value of q0.95 from 10000 simulations. We define error rate by |q̂0.95/q0.95−1|
as before, and use block lengths L = 10, 20, 50, subset sizes b = 5000, 10000 for

100

BLB and SDB. To allow BLB to complete one subset, we ran each method for 150

seconds for L = 10, 90 seconds for L = 20, and 60 seconds for L = 50.

5.7.3 Comparison of SDB, BLB, and MBB

The methods are compared with respect to the time evolution of error rates, as

discussed in Section 5.4.3. Error rates for different methods are averaged across 20

Monte Carlo simulations. Results for L = 50 are displayed in Figures 5.2, 5.3, and

5.4. To save space, results for L = 10, 20 are presented at the end of theoretical

proofs. We can see that SDB shows significant advantages over its competitors.

In particular, it is encouraging to observe that for shorter time budgets (half of

total runtime or less), SDB has a clear advantage over the other methods in most

cases. SDB can give a reasonable estimate by 10-15 seconds in most cases, while

the BLB can take a substantial time to complete a single subset. MBB has highest

computing cost which is reflected in its slow convergence, but it appears that MBB

can often provide a reasonable estimate by the time taken by BLB to complete

one subset, which is consistent with our finding in the iid case.

An interesting aspect of these results is that block length affects both running

time and accuracy. The behavior of the resample estimate depends on block length,

and this affects accuracy of the resampling methods. The dependence of running

time on block length comes from the fact that construction of resample weights

(Step (iv) of Algorithm 2) depends on the number of blocks in the resamples, and

this step affects running time of the algorithms. However, the advantages of SDB

in our numerical results are consistent over the various values of block length used.

5.8 Data Analysis

We apply our method to analyze the Central England Temperature (CET) dataset,

which is a meteorological time series dataset consisting of 228 years (1780-2007)

of average daily temperatures in central England. The CET dataset represents

the longest continuous thermometer-based temperature record on earth, and was

previously analyzed by Zhang et al. (2011) and Berkes et al. (2009) in the context

of inference for functional time series. In our analysis, we treat the dataset as an

univariate time series sample of daily average temperatures. The sample size is

n = 228 × 365 = 83220, where we ignore leap years. We remove seasonality by

subtracting from each observation the mean temperature for that calendar day

101

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
6

1.
2

0 10 20 30 40 50 60

0.
0

0.
6

1.
2

0 10 20 30 40 50 60

0.
0

0.
6

1.
2

0 10 20 30 40 50 60

0.
0

0.
6

1.
2

Figure 5.2: AR(1) simulation results with ξ = 95% quantile of
Tn =

√
n(Mn −M), sample size n=100000, block length L=50,

autocorrelation ρ = -0.8 (top row), 0.5 (middle row), 0.9 (bottom row), and
subset size b = 5000 (left column) ,10000 (right column). The plot displays
the time evolution of error rates from 20 simulations when each method was
allowed to run for 120 seconds. MBB errors are in solid lines, BLB in
dashed lines, and SDB in dottted lines.

across 228 years. Our parameter of interest is the population mean µ of this

univariate time series. We use sample mean X̄ (calculated from the n = 83, 220

observations after removing seasonality) as the estimator of µ, and we want to

construct a 90% confidence interval for µ to assess the quality of estimation. We

define Tn =
√
n(X̄ − µ) as the root function, and let the precision measure ξ =

(q0.95 − q0.05) be the width of the 90% confidence interval.

We applied MBB, BLB, and SDB on this dataset with block length L = 10, 20, 50

102

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

Figure 5.3: AR(1) simulation results with ξ = 5% quantile of
Tn =

√
n(Mn −M), sample size n=100000, block length L=50,

autocorrelation ρ = -0.8 (top row), 0.5 (middle row), 0.9 (bottom row), and
subset size b = 5000 (left column) ,10000 (right column). The plot displays
the time evolution of error rates from 20 simulations when each method was
allowed to run for 120 seconds. MBB errors are in solid lines, BLB in
dashed lines, and SDB in dottted lines.

and subset size b = 5000, 10000. MBB was allowed to run for 600 seconds, while

BLB and SDB were allowed to run for 300 seconds. Figure 5.5 displays the time

evolution of ξ̂ for the competing methods. Note that in this empirical example

the true width is not known, however it appears that for any given block length,

the three methods converge to similar estimates of the width. MBB is the slowest

to converge, and continues to display substantial oscillations well after BLB and

SDB have stabilized. BLB and SDB quickly converge to stable estimates, but for

103

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

Figure 5.4: Time series regression simulation results with ξ = 95% quantile
of Tn = MSM/MSE, sample size n=100000, dimension d = 10, block
length L=50, autocorrelation ρ = -0.8 (top row), 0.5 (middle row), 0.9
(bottom row), and subset size b = 5000 (left column) ,10000 (right column).
The plot displays the time evolution of error rates from 20 simulations
when each method was allowed to run for 60 seconds. MBB errors are in
solid lines, BLB in dashed lines, and SDB in dottted lines.

small time budgets, SDB stabilizes faster.

5.9 Discussion

In this chapter we present a new resampling method, called subsampled double

bootstrap (SDB), for estimating the precision of inference methods in massive

104

0 100 200 300 400 500 600

0
10

20
30

0 100 200 300 400 500 600

0
10

20
30

0 100 200 300 400 500 600

0
10

20
30

0 100 200 300 400 500 600

0
10

20
30

0 100 200 300 400 500 600

0
10

20
30

0 100 200 300 400 500 600

0
10

20
30

Figure 5.5: Time evolution of ξ̂ for CET dataset (measured in Celsius),
where ξ = (q0.95 − q0.05) is the width of the 90% confidence interval for µ
based on Tn =

√
n(X̄ − µ). MBB was allowed to run for 600 seconds and

BLB, SDB for 300 seconds. Block length L=50 (top row), 20 (middle row),
10 (bottom row), and subset size b = 5000 (left column) ,10000 (right
column). MBB estimates are in solid lines, BLB in dashed lines, and SDB
in dottted lines.

data. Our method applies to both independent data and stationary time series

data. The main idea is to select small random subsets of the data and construct

a single full size resample from each random subset, in a manner reminiscent of

fast double bootstrap (White (2000) and Davidson and MacKinnon (2000)). Our

method inherits the theoretical strengths and automatic nature of classical resam-

ple based methods like bootstrap (Efron (1979)) in the independent data context

and MBB (Künsch (1989), Liu and Singh (1992)) in the time series context. It

105

also inherits the computational strengths of subsample based methods like sub-

sampling (Politis and Romano (1994a)) and m out of n bootstrap (Bickel et al.

(1997)). The advantage of our method over the recently proposed BLB (Kleiner

et al. (2014)) lies in sample coverage, running time, and automatic implementation

without having to choose additional tuning parameters under a given time budget.

Simulation studies and data analysis examples demonstrate the advantage of our

method over BLB and boostrap (i.i.d. case) or MBB (time series case) for a given

computational time budget.

An important practical aspect of both SDB and BLB is the choice of subset

size. Increasing the subset size leads to increasing benefits in terms of statistical

accuracy but at an increasing computational cost. In the time series case, the

regularity conditions of Theorem 5.6.1 impose some restrictions on b for consis-

tency. In practice, for a given computational time budget, it remains unclear how

to choose an optimal subset size that balances statistical accuracy and running

time. A closely related problem is the selection of optimal block length for the

time series version of SDB and BLB. In the context of classical resampling methods

this problem has been well studied by Hall et al. (1995), Bühlmann and Künsch

(1999) among others. For the time series version of SDB and BLB, we conjecture

that the choice of optimal block length is associated with subset size in addition to

sample size and other parameters. We leave these interesting directions to future

work.

Further, it is worth mentioning that the higher order accuracy of BLB was

studied by Kleiner et al. (2014) and higher order accuracy of FDB has been recently

studied by Chang and Hall (2014). A relevant next step is a theoretical comparison

of SDB and BLB which will help identify scenarios where SDB works better than

BLB, or vice versa. This comparison will involve studying higher order properties

of SDB, and we plan to consider this in future research as well.

5.10 Proofs of theoretical results

5.10.1 Proof of Theorem 5.3.1

We begin by setting up a probabilistic model for the SDB in the i.i.d. setting.

When dealing with empirical processes which are defined on classes of functions,

measurability questions play an important role and it is crucial to state what the

underlying probability space is– see Dudley (1999), Chapter 3.1 (page 91), for a

106

discussion of related matters. Here we will consider the following setup.

(P) Consider a product of three probability spaces (Ωn
i ,Ani , Pni)i=1,...,3. Assume

that the observations X1, ..., Xn are defined as coordinate projections on

(Ωn
1 ,An1 , Pn1), which is itself a product of n identical probability spaces [this

is a standard assumption in empirical process theory- see for instance Dudley

(1999), Chapter 3.1]. Additionally, assume that on Ωn
2 we have a random

vector (W1,n, ...,Wb,n) ∼ Multinomialb(n, 1/b, ..., 1/b) and that on Ωn
3 we

have a random variable R which follows a uniform distribution on the per-

mutations of {1, ..., n}. In what follows, denote the set of permutations of

{1, ..., n} by σ(n). Also, we assume without loss of generality that Ωn
i are

finite for i = 2, 3 and that for i = 2, 3 the sigma-algebra Ani is the power set

of Ωn
i .

Throughout this proof, write W for the vector (W1,n, ...,Wb,n) and X for the

vector (X1, ..., Xn). Define the map

f 7→ (Zn(R,X,W))(f) :=
1√
n

b∑
i=1

(Wi − n/b)f(XR−1(i)), f ∈ F .

Note that (Zn(R,X,W))(·) can be viewed as an element of the space of functions

`∞(F). Throughout the proof, denote by BL1 the set of Lipschitz continuous

functions g : `∞(F) → R with Lipschitz constant 1 that are additionally uni-

formly bounded by 1. Also, use the notation f∗, f∗ to denote smallest measurable

majorants and greatest measurable minorants, respectively. For maps of several

arguments, it will sometimes be necessary to take measurable majorants and mino-

rants with respect to only some of the arguments. For example g(r,X,W)∗X,W will

be used to denote the smallest measurable majorant of the map (x,w) 7→ g(r, x, w)

with r being held fixed. With this notation, we need to show that [see Kosorok

(2008), Section 2.2.3]

(i)

sup
h∈BL1

∣∣∣ER,Wh(Zn(R,X,W))− E[h(G)]
∣∣∣ P∗→ 0.

(ii) For all h ∈ BL1

ER,Wh(Zn(R,X,W))∗ − ER,Wh(Zn(R,X,W))∗
P∗→ 0.

Here, ER,W denotes the expectation with respect to R,W . Note that the map

107

(R,W) 7→ h(Zn(R,X,W)) is measurable outer almost surely since R,W are de-

fined on complete, discrete probability spaces.

Proof of (i) Write

ER,Wh(Zn(R,X,W)) =
1

n!

∑
r∈σ(n)

EW
[
h(Zn(r,X,W))

]

Then

E∗X
[

sup
h∈BL1

∣∣∣ER,Wh(Zn(R,X,W))− E[h(G)]
∣∣∣]

≤ E∗X
[1

n!

∑
r∈σ(n)

sup
h∈BL1

EW
∣∣∣h(Zn(r,X,W))− E[h(G)]

∣∣∣]
≤ EX

[1

n!

∑
r∈σ(n)

EW
[(

sup
h∈BL1

∣∣∣h(Zn(r,X,W))− E[h(G)]
∣∣∣)∗X,W]]

=
1

n!

∑
r∈σ(n)

E∗
[

sup
h∈BL1

∣∣∣h(Zn(r,X,W))− E[h(G)]
∣∣∣].

For each fixed value of r we have

(Zn(r,X,W))(f) =
1√
n

b∑
i=1

(Wi,n − n/b)f(Xr−1(i)),

which implies that Zn(r,X,W) depends on X only through (Xr−1(i))i=1,...,b. In

particular

sup
h∈BL1

∣∣∣h(Zn(r, x, w))− E[h(G)]
∣∣∣ = S ◦Πr(x,w)

where Πr(x,w) := ((xr−1(1), ..., xr−1(b)), w) and we defined for y, w ∈ Rb

S(y, w) := sup
h∈BL1

∣∣∣h(f 7→ 1√
n

b∑
i=1

(wi − n/b)f(yi)
)
− E[h(G)]

∣∣∣.
Since X1, ..., Xn,W are defined on a product probability space, it follows that the

measurable majorant of S ◦ Πr(X,W) with respect to X,W can be expressed as

S(·, ·)∗ ◦ Πr(x,w). This is a consequence of from Lemma 1.2.5 in van der Vaart

and Wellner (1996) and combined with the fact that S is uniformly bounded and

Πr is a coordinate projection on a product space. In particular, the symmetry of

the problem implies that

1

n!

∑
r∈σ(n)

E∗
[

sup
h∈BL1

∣∣∣h(Zn(r,X,W))−E[h(G)]
∣∣∣] = E∗

[
sup
h∈BL1

∣∣∣h(Zn(id, X,W))−E[h(G)]
∣∣∣]

108

where id := (1, 2, ..., n). Moreover Theorem 3.6.3 in van der Vaart and Wellner

(1996) with the identification kn = n, n = b implies that

2 ≥ sup
h∈BL1

∣∣∣h(Zn(id, X,W))− E[h(G)]
∣∣∣ P∗→ 0.

By dominated convergence, this yields

E∗
[

sup
h∈BL1

∣∣∣h(Zn(id, X,W))− E[h(G)]
∣∣∣]→ 0,

and thus statement (i) is established.

Proof of (ii)

It suffices to prove that [note that h∗ − h∗ ≥ 0]

E[h(Zn(R,X,W))∗ − h(Zn(R,X,W))∗]→ 0.

Observe that by the definition of measurable majorants we have

h(Zn(R,X,W))∗ =
(∑
r∈σ(n)

I{R = r}h(Zn(r,X,W))
)∗

≤
∑
r∈σ(n)

I{R = r}
(
h(Zn(r,X,W))

)∗X,W
,

since (R,X,W) 7→ I{R = r}
(
h(Zn(r,X,W))

)∗X,W
is measurable for each r ∈

σ(n). Similarly

h(Zn(R,X,W))∗ =
(∑
r∈σ(n)

I{R = r}h(Zn(r,X,W))
)
∗

≥
∑
r∈σ(n)

I{R = r}
(
h(Zn(r,X,W))

)
∗X,W

.

Thus

E[h(Zn(R,X,W))∗ − h(Zn(R,X,W))∗]

≤ E
[∑
r∈σ(n)

I{R = r}
((
h(Zn(r,X,W))

)∗X,W
−
(
h(Zn(r,X,W))

)
∗X,W

)]
= E

[(
h(Zn(id, X,W))

)∗X,W
−
(
h(Zn(id, X,W))

)
∗X,W

]

109

where the equality in the last line follows by arguments similar to the ones given in

the proof of (i). Now the expression in the last line converges to zero by arguments

similar to the ones given in the proof of (i) and Theorem 3.6.3 in van der Vaart

and Wellner (1996) and thus (ii) follows. �

5.10.2 Proof of Theorem 5.6.1

Throughout this proof, we will simplify notation by assuming that KL = n. It is

easy to see that this assumption can be relaxed.

Introduce the abbreviation S = (s1, ..., sK),X = (X1, ..., Xn). Denote by PS,J

the probability conditional on X and by PS the probability conditional on X , J .

Similarly, let ES,J ,ES ,VarS,J and VarS denote the corresponding versions of con-

ditional expectations and variances. Following the discussion on page 277 in

Radulović (1996), we will assume that all suprema we encounter are measur-

able. This might not always be true, but permissibility of F ensures that suitable

modifications of our arguments remain correct [see the discussion on page 277 in

Radulović (1996)].

Define the norm ‖f‖p,X := (E[|f(X1)|p])1/p. For an arbitrary δ-net Fδ for F with

respect to ‖ · ‖p,X , denote by fδ any point in Fδ which minimizes ‖f − g‖p,X over

g ∈ Fδ. Consider the approximating processes ABδ,n(f) := ĜB
n,b(fδ),Aδ(f) := G(fδ).

By Lemma B.3 in Volgushev and Shao (2014) the claim of the Theorem follows

once we establish that

(i) For every i ∈ N: AB1/i,n
P

J,S

A1/i for n→∞.

(ii) A1/i G for i→∞.

(iii) For every ε > 0: limi→∞ lim supn→∞ P (supf∈F |AB1/i,n(f)− ĜB
n,b(f)| > ε) =

0.

Part (ii) follows from the properties of the limiting process G [more precisely, there

exists a version of G with sample paths that are uniformly continuous with respect

to ‖ · ‖2,X and thus ‖ · ‖p,X for p ≥ 2 - see Theorem 2.1 in Arcones and Yu (1994)].

It thus remains to establish (i) and (iii).

In order to establish (i), it suffices to show that for any fixed, finite collection

of functions f1, ..., fk ∈ F we have

(ĜB
n,b(f1), ..., ĜB

n,b(fk))
P

J,S

(G(f1), ...,G(fk)). (5.1)

110

Denote by BL1 the set of functions on Rk which are bounded by 1 and are Lipschitz

continuous with Lipschitz constant bounded by 1. In order to establish (5.1), we

need to prove that

sup
h∈BL1

ES,J
∣∣∣h(ĜB

n,b(f1), ..., ĜB
n,b(fk))− E[h(G(f1), ...,G(fk))]

∣∣∣ = oP (1) (5.2)

Due to the independence between J and X and due to strict stationarity of

{Xt}t∈Z, the distribution of the tuple (XJ , ..., XJ+b−1) is the same as the dis-

tribution of (X1, ..., Xb) [unconditionally]. Thus the arguments on page 272 in

Radulović (1996) yield

(ĜB
n,b(f1), ..., ĜB

n,b(fk))
P

S

(G(f1), ...,G(fk)). (5.3)

Observe that

sup
h∈BL1

∣∣∣ES,J [h(ĜB
n,b(f1), ..., ĜB

n,b(fk))]− E[h(G(f1), ...,G(fk))]
∣∣∣

≤ sup
h∈BL1

EJES
∣∣∣h(ĜB

n,b(f1), ..., ĜB
n,b(fk))− E[h(G(f1), ...,G(fk))]

∣∣∣
≤ EJ sup

h∈BL1

ES
∣∣∣h(ĜB

n,b(f1), ..., ĜB
n,b(fk))− E[h(G(f1), ...,G(fk))]

∣∣∣.
Thus for any ε > 0

E sup
h∈BL1

∣∣∣ES,J [h(ĜB
n,b(f1), ..., ĜB

n,b(fk))]− E[h(G(f1), ...,G(fk))]
∣∣∣

≤ E sup
h∈BL1

ES
∣∣∣h(ĜB

n,b(f1), ..., ĜB
n,b(fk))− E[h(G(f1), ...,G(fk))]

∣∣∣
≤ ε+ 2P

(
sup
h∈BL1

ES
∣∣∣h(ĜB

n,b(f1), ..., ĜB
n,b(fk))− E[h(G(f1), ...,G(fk))]

∣∣∣ > ε
)

since
∣∣∣h(ĜB

n,b(f1), ..., ĜB
n,b(fk)) − E[h(G(f1), ...,G(fk))]

∣∣∣ ≤ 2 by the definition of

BL1. By (5.3), the probability in the last line of the above equation tends to zero

[as n→∞] for any fixed ε > 0, and this implies

E sup
h∈BL1

ES,J
∣∣∣h(ĜB

n,b(f1), ..., ĜB
n,b(fk))− E[h(G(f1), ...,G(fk))]

∣∣∣ = o(1).

This proves (5.2) and establishes (i).

Next, let us prove (iii). Fix ε > 0. For a function f , define its truncated version

111

f t(x) := f(x)I{F (x) ≤ bγ}. We shall prove that

sup
f∈F
|ĜB

n,b(f)− ĜB
n,b(f

t)| = oP (1). (5.4)

Additionally, we will apply restricted chaining to show that there exists a sequence

of sets of functions Fn ⊂ F , n ∈ N such that

P
(

sup
f,g∈F ,‖f−g‖p,X<δ

∣∣∣ĜB
n,b(f

t)− ĜB
n,b(g

t)
∣∣∣ > 3ε

)
≤ P

(
sup

f∈Fng∈F ,‖f−g‖p,X≤(ln b)−3/2

|ĜB
n,b(f

t)− ĜB
n,b(g

t)| ≥ ε
)

+ ξ(δ, n) (5.5)

where limδ→0 limn→∞ ξ(δ, n) = 0 and that

P
(

sup
f∈Fn,g∈F ,‖f−g‖p,X≤(ln b)−3/2

|ĜB
n,b(f

t)− ĜB
n,b(g

t)| ≥ ε
)
→ 0 as n→∞. (5.6)

Taken together, (5.4)-(5.6) imply (iii).

Before proceeding with the proof, we remark that

ĜB
n,b(f) =

K∑
k=1

1√
n

L∑
i=1

(
f(X∗(k−1)L+i)−

1

b

b∑
j=1

f(XJ+j)
)

=:
K∑
k=1

Vk(f).

Note that by construction, the quantities V1(f), ..., VK(f) are independent condi-

tionally on J,X . Moreover, for any function f which is uniformly bounded, we

have that |Vk(f)| ≤ 2n−1/2L‖f‖∞. Thus by Bernstein’s inequality [Lemma 2.2.9

in van der Vaart and Wellner (1996)]

PS

(∣∣∣ K∑
k=1

Vk(f)
∣∣∣ ≥ η) ≤ 2 exp

(
− 1

2

η2

Kv2 + 2n−1/2L‖f‖∞η/3

)
(5.7)

for any v2 ≥ V arS(V1) [note that by construction V arS(V1) = V arS(Vk) for all k

almost surely]. Now from the definition of the bootstrap and the fact that KL = n

KV arS(Vk) =
1

b

b∑
i=1

(1

L1/2

L∑
j=1

f(X̃J+i+j)
)2
−
(1

b

b∑
i=1

1

L1/2

L∑
j=1

f(X̃J+i+j)
)2
.

Additionally, due to the independence between J and the original sample and due

to strict stationarity, the distribution of the tuple (XJ+1, ..., XJ+b) is the same

112

as the distribution of (X1, ..., Xb) [unconditionally]. A close inspection of the

proof of Lemma 3 in Radulović (1996) [after identifying (n, b) in the latter paper

with (b, L) in our notation] shows that under the assumption L = o(bρ) for some

0 < ρ < p−2
2(p−1) the following two claims are true:

An(Gn) := (ln b)3 sup
h∈Gn

∣∣∣VarS

(1

L1/2

L∑
i=1

ht(X∗i)
)
−Var

(1

L1/2

L∑
i=1

ht(Xi)
)∣∣∣ = oP (1)

(5.8)

for any sequence of sets Gn ⊂ F with cardinality O(nc) for some fixed c <∞, and

Bn := (ln b)2 sup
h∈F ′:‖h‖p,X≤(ln b)−3/2

VarS

(1

L1/2

L∑
i=1

ht(X∗i)
)

= oP (1) (5.9)

where F ′ := {f − g : f, g ∈ F}. Note that, when generating the subsamples,

Radulović (1996) uses ’wrapping’ while we do not. Following the discussion in

Radulović (1996), it is easy to see that asymptotically this does not matter.

Additionally, equation (14) in Radulović (1996) implies that

Var
(1

L1/2

L∑
i=1

ht(Xi)
)
≤ C0‖ht‖2p,X (5.10)

for a constant C0 which depends only on p and the mixing coefficients β.

Proof of (5.4)

Observe that

sup
f∈F
|ĜB

n,b(f)−ĜB
n,b(f

t)| ≤ 1√
n

(n∑
i=1

F (X∗i)I{F (X∗i)>bγ}+
1

b

b∑
j=1

F (XJ+j)I{F (XJ+j)>bγ}

)
.

By the Chebyshev inequality it suffices to show that the expectation of the right-

hand side of the above inequality is o(1). From the definition of the bootstrap, it

is not difficult to see that for any i = 1, ..., n

0 ≤ E[F (X∗i)I{F (X∗i) > bγ}] = E[F (X1)I{F (X1) > bγ}] ≤ ‖F‖p,X(P (F (X1) > bγ))
p−1
p

and the right-hand side of the equation above is of order o(b−(p−1)γ) by dominated

convergence. A similar bound holds for E[F (XJ+j)I{F (XJ+j) > bγ}]. Thus (5.4)

follows from the condition n1/2 = O(b(p−1)γ).

113

Proof of (5.5)

Define ψ1(x) := ex − 1 and denote by ‖ · ‖ψ1 the corresponding Orlitz norm [see

van der Vaart and Wellner (1996), Chapter 2.2]. Fix δ > 0 and let kn denote the

smallest integer such that δ/2kn < (ln b)−3/2/2. Successively construct sets G1 ⊂
G2 ⊂ ... ⊂ Gkn which are maximal subsets of F with the property ‖f−g‖p,X ≥ 2−iδ

for all f, g ∈ Gi [here, maximal means that no further element can be added to Gi
without destroying the property that ‖f − g‖p,X ≥ 2−iδ for all f, g ∈ Gi]. Observe

that the cardinality of Gkn is of polynomial order in 2−knδ [the cardinality of Gkn is

bounded by the packing number, which is polynomial since F is VC- see Theorem

2.6.7 and the discussion on page 98 in van der Vaart and Wellner (1996)], and thus

of polynomial order in n for any fixed δ. Set α(n) := 2−knδ and identify the set Fn
with Gkn . Next, define the event Dn := {An(Fn) ≤ 1} and note that P (Dn) → 1

for n → ∞ [recall the definition of An in (5.8)] for any fixed δ, this follows from

(5.8). Observe that IDn is independent of S and that by definition of Dn we have

for any f ∈ Fα(n) and any η > 0

P
(
|ĜB

n,b(f
t)|IDn > η

)
= EESI{|ĜBn,b(f t)|>η}IDn

≤ 2E
[
IDn exp

(
− 1

2

η2

VarS

(
L−1/2

∑L
i=1 h(X∗i)

)
+ 2

3n
−1/2Lbγη

)]

≤ 2E
[
IDn exp

(
− 1

2

η2

C0‖f t‖2p,X + (ln b)−3 + 2
3n
−1/2Lbγη

)]
≤ 2 exp

(
− 1

2

η2

C0‖f t‖2p,X + (ln b)−3 + 2
3n
−1/2Lbγη

)
where the first inequality follows from (5.7) and the second from the definition of

Dn. From the inequality above combined with Lemma 2.2.10 in van der Vaart and

Wellner (1996) [applied with m = 1] we obtain that for any f ∈ Fn∥∥∥ĜB
n,b(f

t)IDn

∥∥∥
ψ1

≤ C
(
n−1/2Lbγ + (‖f t‖2p,X + (ln b)−3)1/2

)
for some constant C that does not depend on f, δ, n. In particular we obtain for

sufficiently large n [due to the assumptions on L, b, n]∥∥∥ĜB
n,b(f

t)IDn

∥∥∥
ψ1

≤ C ′‖f t‖p,X ∀f ∈ Fn : ‖f t‖p,X ≥ (ln b)−3/2/2. (5.11)

We now shall apply Lemma 7.1 from Kley et al. (2014). In the notation of that

Lemma, let T := F , d(f, g) := ‖f t − gt‖p,X , η̄ := (ln b)−3/2,Ψ := ψ1, η = δ,Gf :=

114

ĜB
n,b(f

t)IDn . A careful inspection of the proof of that Lemma reveals that (5.11)

is already sufficient to obtain the bound

sup
f,g∈F :‖f−g‖p,X≤δ

|ĜB
n,b(f

t)− ĜB
n,b(g

t)|IDn

≤ S1 + 2 sup
f∈Fn,g∈F ,‖f−g‖p,X≤(ln b)−3/2

|ĜB
n,b(f

t)− ĜB
n,b(g

t)|IDn

where S1 is such that [note that ψ−1
1 (x) = ln(1 + x) and that the packing number

of F with respect to ‖ · ‖p,X is of polynomial order since F is VC- see Theorem

2.6.7 and the discussion on page 98 in van der Vaart and Wellner (1996)]

‖S1‖ψ1 ≤ C
[∫ δ

(ln b)−3/2/2
1 + | log ε|dε+ (δ + 2(ln b)−3/2)(1 + | log δ|)

]
for some constant C independent of δ, n. To complete the proof of (5.5), observe

that

P
(

sup
f,g∈F ,‖f−g‖p,X<δ

∣∣∣ĜB
n,b(f

t)− ĜB
n,b(g

t)
∣∣∣ > 3ε

)
≤ P

(
sup

f,g∈F ,‖f−g‖p,X<δ

∣∣∣ĜB
n,b(f

t)− ĜB
n,b(g

t)
∣∣∣IDn > 3ε

)
+ 1− P (Dn)

≤ P (|S1| > ε) + P
(

sup
f∈Fn,g∈F ,‖f−g‖p,X≤(ln b)−3/2

|ĜB
n,b(f

t)− ĜB
n,b(g

t)| ≥ ε
)

+ 1− P (Dn).

Setting ξ(n, δ) := P (|S1| > ε) + 1− P (Dn) completes the proof of (5.5).

Proof of (5.6)

Define Pnf := 1
n

∑n
i=1 f(Xi) and consider the pseudo-distance dn(f, g) := Pn|f −

g|. Observe that to each f ∈ F we can attach a f̃ ∈ Fn such that ‖f − f̃‖p,X ≤
(ln b)−3/2. Let H := {f t − f̃ t : f ∈ F} and denote by Hn an n−2 net for H under

dn. To each h ∈ H, attach a h̃ ∈ H such that dn(h, h̃) ≤ n−2. Since F is VC, Hn
can be chosen such that, for n sufficiently large, the cardinality of Hn is bounded

by C(PnF)cnc for some fixed constants C, c which do not depend on J, S. Define

the event [recall the definition of Bn in (5.10)]

D̃n :=
{
Bn ∨

∣∣∣n−1
n∑
i=1

F (Xi)− E[F (X1)]
∣∣∣ ≤ 1

}

115

and note that by (5.10) P (D̃n) → 1 [since under the assumptions of the present

Theorem PnF − EF [X1] → 0 in probability] and that ID̃n is independent of S.

Observe that

sup
f∈Fn,‖f−g‖p,X≤(ln b)−3/2

|ĜB
n,b(f

t)− ĜB
n,b(g

t)| ≤ sup
h∈H

∣∣∣ĜB
n,b(h̃)

∣∣∣+ sup
h∈H

∣∣∣ĜB
n,b(h− h̃)

∣∣∣
and that for any function f

∣∣∣ĜB
n,b(f)

∣∣∣ ≤ 1√
n

n∑
i=1

|f(X∗i)|+
√
n

b

b−1∑
i=0

|f(XJ+i)| ≤
n2

√
n

1

n

n∑
i=1

|f(Xi)|+
n
√
n

b

1

n

n∑
i=1

|f(Xi)|

≤ 2n3/2 1

n

n∑
i=1

|f(Xi)|.

Thus by definition of h̃

sup
h∈H

∣∣∣ĜB
n,b(h− h̃)

∣∣∣ ≤ 2n3/2 sup
h∈H

1

n

n∑
i=1

|(h− h̃)(Xi)| ≤ 2n−1/2.

Hence it suffices to show suph∈H

∣∣∣ĜB
n,b(h̃)

∣∣∣ = oP (1). To this end, note that on D̃n

the cardinality of Hn is bounded by C ′nc
′

for some constants C ′, c′ independent of

116

n. Thus

P
(

sup
h∈H

∣∣∣ĜB
n,b(h̃)

∣∣∣ > τ
)

≤ P
({

sup
h∈Hn

∣∣∣ĜB
n,b(h)

∣∣∣ > τ
}
∩ D̃n

)
+ 1− P (D̃n)

= EES
[
I{suph∈Hn |Ĝ

B
n,b(h)|>τ}ID̃n

]
+ o(1)

≤ EES
[∑
h∈Hn

I{|ĜBn,b(h)|>τ}ID̃n

]
+ o(1)

= E
[
ID̃n

∑
h∈Hn

ES [I{|ĜBn,b(h)|>τ}]
]

+ o(1)

= C ′nc
′
E
[

sup
h∈H

ID̃nPS(|ĜB
n,b(h)| > τ)

]
+ o(1)

by (5.7)

≤ 2C ′nc
′
E
[

sup
h∈H

exp
(
− 1

2

τ2

VarS

(
L−1/2

∑L
i=1 h(X∗i)

)
+ 4

3n
−1/2Lbγτ

)
ID̃n

]
+ o(1)

≤ 2C ′nc
′
E
[

exp
(
− 1

2

τ2

suph∈HVarS

(
L−1/2

∑L
i=1 h(X∗i)

)
+ 4

3n
−1/2Lbγτ

)
ID̃n

]
+ o(1)

by the definition of H and D̃n

≤ 2C ′nc
′
E
[

exp
(
− 1

2

τ2

(ln b)−2 + 4
3n
−1/2Lbγτ

)
ID̃n

]
+ o(1)

≤ 2C ′nc
′
exp

(
− 1

2

τ2

(ln b)−2 + 4
3n
−1/2Lbγτ

)
+ o(1)

since (lnn)2 = o(n−1/2Lbγ) by the assumptions on L, b, n

= o(1).

This shows that suph∈H

∣∣∣ĜB
n,b(h̃)

∣∣∣ = oP (1) and completes the proof of (5.6). �

5.11 Supplementary simulation results

In this supplementary document we present time series simulation results for l =

10, 20. The simulation settings are described in Section 5.7.

117

0 50 100 150

0.
0

0.
6

1.
2

0 50 100 150

0.
0

0.
6

1.
2

0 50 100 150

0.
0

0.
4

0.
8

0 50 100 150

0.
0

0.
4

0.
8

0 50 100 150

0.
0

0.
4

0.
8

0 50 100 150

0.
0

0.
4

0.
8

Figure 5.6: AR(1) simulation results with ξ = 95% quantile of
Tn =

√
n(Mn −M), sample size n=100000, block length L=10,

autocorrelation ρ = -0.8 (top row), 0.5 (middle row), 0.9 (bottom row), and
subset size b = 5000 (left column) ,10000 (right column). The plot displays
the time evolution of error rates from 20 simulations when each method was
allowed to run for 120 seconds. MBB errors are in solid lines, BLB in
dashed lines, and SDB in dottted lines.

118

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
6

1.
2

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

Figure 5.7: AR(1) simulation results with ξ = 95% quantile of
Tn =

√
n(Mn −M), sample size n=100000, block length L=20,

autocorrelation ρ = -0.8 (top row), 0.5 (middle row), 0.9 (bottom row), and
subset size b = 5000 (left column) ,10000 (right column). The plot displays
the time evolution of error rates from 20 simulations when each method was
allowed to run for 120 seconds. MBB errors are in solid lines, BLB in
dashed lines, and SDB in dottted lines.

119

0 50 100 150

0.
0

0.
4

0.
8

0 50 100 150

0.
0

0.
4

0.
8

0 50 100 150

0.
0

0.
4

0.
8

0 50 100 150

0.
0

0.
6

1.
2

0 50 100 150

0.
0

0.
4

0.
8

0 50 100 150

0.
0

0.
4

0.
8

Figure 5.8: AR(1) simulation results with ξ = 5% quantile of
Tn =

√
n(Mn −M), sample size n=100000, block length L=10,

autocorrelation ρ = -0.8 (top row), 0.5 (middle row), 0.9 (bottom row), and
subset size b = 5000 (left column) ,10000 (right column). The plot displays
the time evolution of error rates from 20 simulations when each method was
allowed to run for 120 seconds. MBB errors are in solid lines, BLB in
dashed lines, and SDB in dottted lines.

120

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

Figure 5.9: AR(1) simulation results with ξ = 5% quantile of
Tn =

√
n(Mn −M), sample size n=100000, block length L=20,

autocorrelation ρ = -0.8 (top row), 0.5 (middle row), 0.9 (bottom row), and
subset size b = 5000 (left column) ,10000 (right column). The plot displays
the time evolution of error rates from 20 simulations when each method was
allowed to run for 120 seconds. MBB errors are in solid lines, BLB in
dashed lines, and SDB in dottted lines.

121

0 50 100 150

0.
0

0.
4

0.
8

0 50 100 150

0.
0

0.
4

0.
8

0 50 100 150

0.
0

0.
4

0.
8

0 50 100 150

0.
0

0.
4

0.
8

0 50 100 150

0.
0

0.
4

0.
8

0 50 100 150

0.
0

0.
4

0.
8

Figure 5.10: Time series regression simulation results with ξ = 95%
quantile of Tn = MSM/MSE, sample size n=100000, dimension d = 10,
block length L=10, autocorrelation ρ = -0.8 (top row), 0.5 (middle row),
0.9 (bottom row), and subset size b = 5000 (left column), 10000 (right
column). The plot displays the time evolution of error rates from 20
simulations when each method was allowed to run for 150 seconds. MBB
errors are in solid lines, BLB in dashed lines, and SDB in dottted lines.

122

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
4

0.
8

Figure 5.11: Time series regression simulation results with ξ = 95%
quantile of Tn = MSM/MSE, sample size n=100000, dimension d = 10,
block length L=20, autocorrelation ρ = -0.8 (top row), 0.5 (middle row),
0.9 (bottom row), and subset size b = 5000 (left column), 10000 (right
column). The plot displays the time evolution of error rates from 20
simulations when each method was allowed to run for 90 seconds. MBB
errors are in solid lines, BLB in dashed lines, and SDB in dottted lines.

123

CHAPTER 6

RESAMPLING STRATEGIES FOR BIG
DATA

Big data challenges traditional statistical methodology because of its massiveness

and its complex structure. The challenge gets compounded by the increasingly am-

bitious goals set forth by the users of big data: meteorologists want to make more

detailed forecasts, internet search engines want to produce better results, online

merchants want to make more effective recommendations, and they want outputs

within increasingly sharp time constraints. Bootstrap methods are especially sen-

sitive to big data issues, since they are computationally intensive and have wide

applicability in data analysis.

In this chapter, we introduce two new resampling strategies for big data —

namely aggregation of little bootstraps or ALB, and subsampled residual bootstrap

or SDB. The ALB is a fast bootstrap method in the same manner as BLB or SDB,

and it can be implemented on a wide variety of inferential settings. On the other

hand, with the SRB we focus on the specific and important context of massive

regression problems, where we utilize the structure of the OLS estimator to reduce

the computational expense.

6.1 Aggregation of little bootstraps

Consider an i.i.d. sample Xn = {X1, . . . , Xn} drawn from some unknown distribu-

tion P . The parameter of interest is θ = θ(P), for which an estimate θ̂n = θ̂(Xn)

is obtained from the sample. Having chosen the estimator, the statistician often

seeks to obtain further information regarding the precision of the estimator θ̂(Xn).

This requires the estimation of some measure involving the sampling distribution

of θ̂(Xn) and the true value of the parameter θ. From the previous chapter, recall

the root function Tn(θ̂n, θ), and measure of precision ξ(Qn) where Qn = Qn(P) is

the unknown sampling distribution of Tn.

In this section, we will analyze the following general procedure which can be

viewed as extension [and modification] of both, SDB and BLB. We call this method

124

aggregation of little bootstraps, or ALB.

1. For s = 1, ..., S, sample a random sample X ∗,sb of size b from Xn.

2. For each s = 1, ..., S, r = 1, ..., R sample a random sample X ∗∗,s,rn from X ∗,sb .

3. Compute T ∗∗,s,rn :=
√
n(θ̂(X ∗∗,s,rn)− θ̂(X ∗,sb)).

4. Compute the empirical cdf of the pooled sample {T ∗∗,s,rn }s=1,...,S,r=1,...,R and

compute the precision measure based on that cdf.

For R = 1, this is SDB. For R ’large’ this is in the spirit of BLB. However, there

is one important difference. BLB suggests to compute the precision measure on

every subset {T ∗∗,s,rn }r=1,...,R and take an average in the end. Whereas in ALB,

we ‘aggregate’ all resampled roots together, and use this aggregate ensemble to

compute one single precision measure.

6.1.1 Simulation results

We now report some preliminary simulation results for fast resampling procedures.

We compare four resampling techniques — conventional bootstrap, bag of little

bootstraps or BLB, (Kleiner et al. (2014)), aggregation of little bootstraps or ALB,

and subsampled double bootstrap or SDB.

We use the same regression model that was used in Chapter 5. Consider a

d-dimensional multiple linear regression model

yi = β1xi,1 + . . .+ βdxi,d + ei

for i = 1, . . . , n. Our parameter of interest is the d-dimensional vector of slope

coefficients, whose true value is β = (β1, ..., βd) = (1, . . . , 1)′. We use the usual

OLS estimator β̂. We also want to construct a simultaneous 95% confidence region

for β. Traditionally we use the F-statistic

Tn(β̂, β) =
(β̂ − β)′X ′X(β̂ − β)/d

(y −Xβ̂)′(y −Xβ̂)/(n− d− 1)

to construct the joint confidence region. Let q0.95 be the 95% quantile of the

true (unknown) distribution of Tn(β̂, β). Then the confidence region is given by

{β : Tn(β̂, β) ≤ q0.95}. In general the true distribution of Tn, and hence its quantile

q0.95, is unknown. But it can be estimated by the resampling techniques described

in the previous section, with ξ(Qn) = q0.95 where Qn is the true distribution of Tn.

125

We generate xi,j
iid∼ t3 and ei

iid∼ N(0, 100) independently. For normally dis-

tributed errors, we know that Tn ∼ F (d, n− d− 1), and hence the true quantiles

are given by those of the corresponding F distribution. We define the error rate

as

| q̂0.95

q0.95
− 1|

where q̂ and q represent the estimated and true quantiles of Tn, respectively.

We want to compare the performance of BLB, ALB, and SDB (and also boot-

strap for benchmark) as the number of subsets, S, and the number of resamples

per subset, R, vary. Note that for SDB, R is fixed at R = 1. We let n=100000,

d=100 and used two subset sizes, b = nγ with γ = 0.7, 0.8. With larger subset

size, one should require less number of resamples and subsets. For b = n0.7 we let

S = 250 for SDB, and consider the cases (S,R) = {(1, 499), (2, 249), . . . , (10, 49)}
for BLB and SDB. For b = n0.8 we let S = 100 for SDB, and consider the cases

(S,R) = {(1, 199), (2, 99), . . . , (5, 39)} for BLB and SDB. To ensure that bootstrap

runtime does not exceed runtime for other methods by a lot, we perform R = 15, 20

bootstrap iterations respectively.

We first look at the final estimates obtained for each resampling method at the

end of the run. Note that this is different from time evolution of errors, where

we look at estimates obtained at intermediate points. In the final error viewpoint

we are interested only in the accuracy achieved at the end of the pre-determined

number of subsets and resamples, and the computing cost associated with this

accuracy.

These numbers are reported in Tables 1 and 2 for b = n0.7, n0.8 respectively,

where statistical accuracy is measured by error rate and computing cost is mea-

sured by time taken. Errors are reported in a scale of 10−3 for visual convenience.

First, it is clear that ALB, BLB, and SDB all perform much better than bootstrap

as expected, typically achieving about half errors at smaller computing cost. Be-

tween the fast methods, SDB performs approximately as good as the average BLB.

Note that although in certain settings BLB performs better than the SDB, this

does not contradict the conclusions of our SDB paper, because in that paper we

claimed that SDB has advantages for small time budgets, not that final estimates

from SDB are always better than BLB. The advantages of SDB over BLB are when

we look at intermediate estimates, and that persists in this simulation study, as we

will see shortly. The BLB numbers also re-affirm the issue of its accuracy varying

with S and R.

For any given setting, the ALB performs better than the BLB almost always, and

126

this advantage is substantial for smaller values of R. Heuristically, small values

of R (say R = 40, 50, 60) imply each subset estimate is obtained from a small

ensemble, and this leads to larger errors in each subset estimate. BLB simply

averages over these subset estimates and hence larger errors persist in the overall

BLB estimate. In contrast, ALB aggregates the resample roots from the different

subsets to obtain a single estimate, and therefore the ALB estimate is less affected

by errors from individual subsets. The ALB also performs better than the SDB

with respect to final estimate accuracy. The only possible concern about the ALB

would be that its accuracy seems to vary with values of S and R just like BLB,

which is not ideal. In particular, when the subset size changes from b = n0.7 to

b = n0.8, the accuracy of ALB shows a reversal in trend. For b = n0.7 more subsets

are better even with less resamples per subset, whereas for b = n0.8 the converse

holds. Although with only 50 simulations, we should not read too much into these

trends, and we can look at a simulation study with 100 or 500 simulations to be

more diligent.

To compare across subset size b, number of subsets S and number of resamples

per subset R, for SDB, BLB, and ALB, in Table 1 we have b = n0.8, S(R+1) = 200,

in Table 2 we have b = n0.7, S(R+1) = 200, and in Table 3 we have b = n0.7, S(R+

1) = 500.

Method bootstrap ALB

(S,R) R=20 (1,199) (2,99) (3,66) (4,49) (5,39)

Error ×103 43 17 19 17 20 21

Time 62.72 54.92

Method SDB BLB

(S,R) S=100 (1,199) (2,99) (3,66) (4,49) (5,39)

Error ×103 24 17 22 18 25 26

Time 54.74 54.92

Table 6.1: Results for b = n0.8 after full run

Figure 6.1 shows the time evolution of errors, where BLB cases can be identified

as S = 1 being the rightmost vertical, then S = 2 to its left, and so on. In this

intermediate accuracy viewpoint, SDB is better than BLB, ALB (almost hidden

under SDB) is slightly better than SDB at some time points, and bootstrap is

worst.

127

Method bootstrap ALB

(S,R) R=20 (1,199) (2,99) (3,66) (4,49) (5,39)

Error ×103 43 23 19 19 21 18

Time 69.1 17.09

Method SDB BLB

(S,R) S=100 (1,199) (2,99) (3,66) (4,49) (5,39)

Error ×103 26 23 22 22 26 24

Time 17.08 17.09

Table 6.2: Results for b = n0.7 after full run, with same (S,R) values as in
Table 2

Method bootstrap ALB
(S,R) R=15 (2,249) (4,124) (6,83) (8,62) (10,49)

Error ×103 45 17 15 14 13 13
Time 46.21 33.26

Method SDB BLB
(S,R) S=250 (2,249) (4,124) (6,83) (8,62) (10,49)

Error ×103 18 18 16 17 19 21
Time 33.81 33.26

Table 6.3: Results for b = n0.7 after full run

6.2 Subsampled residual bootstrap

Consider a linear regression model

y = Xβ + ε

where ε is a random error vector of length n, X is the n-by-p design vector, and

β is a p-by-1 vector of coefficients. We are interested in estimating the sampling

distribution of some root function Tn(β̂, β) where β̂ is an estimator of β — for

illustration let’s say the OLS estimator β̂ = (X ′X)−1X ′y. One way to estimate this

unknown sampling distribution is by obtaining an ensemble of resample estimates

{β∗}. For this we need a resampling strategy to obtain resamples from the observed

data (yi,xi)
n
i=1.

In paired bootstrap, we assumes that the pairs (yi,xi) are i.i.d., and hence we

can resample the paired observations directly. However, it might not be reasonable

to assume xi to be i.i.d. in some situations, for example when X is a fixed design

matrix for an experiment and not a random realization. In such a situation, the

reasonable approach will be to resample from the sample conditional on X, i.e.

keeping X unchanged in the resamples. A widely used strategy in this direction is

128

0 10 20 30 40 50

0.
0

0.
4

0.
8

time

er
ro

r

0 20 40 60 80

0.
0

0.
4

0.
8

time

er
ro

r

0 20 40 60

0.
0

0.
4

0.
8

time

er
ro

r

Figure 6.1: Time evolution of error rates for multiple linear regression with d=100,
averaged over 50 simulations. Sample size n = 105, subset size is b = n0.7 (top, middle),
b = n0.8 (bottom). Bootstrap errors are in solid red, SDB in solid blue, BLB in solid
black, and ALB errors in dotted black. For b = n0.7, we have S(R+ 1) = 500 in the top
row, S(R+ 1) = 200 in the middle row. For clarity we have only plotted S = 1, 2, 3, 4, 5
for b = n0.7 in the top row.

residual bootstrap (RB).

Let β̂ be the estimated value and ŷ = Xβ̂ be the fitted value of y, and e = y− ŷ
be the vector of residuals. The central idea of resampling is that i.i.d. objects

129

can exchange places. In residual bootstrap, this implies that even when the design

matrix is non-random making it unreasonable to resample yi or xi, the errors are

i.i.d. and hence it is reasonable to resample e = {ei}ni=1. Let e∗ be a resample of

e, then define y∗ = ŷ+e∗ as a resample of the response vector. Keeping the design

matrix X unchanged, we define the resample estimate as β∗ = (X ′X)−1X ′y∗.

We can repeat the resampling step R times to obtain R resamples of this form

and thereby construct an ensemble of resample estimates. A potential concern

is that of computational infeasibility, particularly in the context of massive data.

Obtaining each resample estimate involves a calculation of order n which can be

very expensive. Therefore there is a need of faster methods like subsampled double

bootstrap (SDB) for RB with massive data. In its basic form SDB cannot be easily

extended to RB, however we propose a modified version of SDB which might be

appropriate for RB.

For RB, the resample estimate can be expressed in the following form:

β∗ = (X ′X)−1X ′y∗ = (X ′X)−1X ′(ŷ+e∗) = (X ′X)−1X ′(Xβ̂+e∗) = β̂+(X ′X)−1X ′e∗.

(6.1)

In the final expression, the first term stays fixed from resample to resample, and

further, even in the second term, only the e∗ changes as we construct various resam-

ples. Note that we do not want to resample the design matrix, so the (X ′X)−1X ′

in the second term stays fixed. Thus the computational cost of RB per new resam-

ple is essentially that of multiplying a (fixed) p-by-n with a new vector of length

n. Let A = (X ′X)−1X ′, and let ai = A[, i], then for RB, β∗ = β̂+
∑n

i=1 aie
∗
i from

(6.1) where ai is a p-vector of fixed weights that does not change across resamples.

We can evaluate the root function Tn(β∗, β̂) as a proxy for Tn(β̂, β). Thus the

computational task associated with each new iteration of RB is calculating the

sum
∑n

i=1 aie
∗
i , and the corresponding computational cost is O(n).

We now devise a Subsampled Residual Bootstrap (SRB) as follows. We first

construct a small random subset of size b from the sample residuals, let this sub-

set be e∗b = {ei1 , . . . , eib}, where let m = n/b be a whole number for notational

convenience. We then define the subset estimate β∗(b) = β̂ + (X ′X)−1X ′e∗∗b where

e∗∗b is of length n and is constructed by repeatedly concatenating e∗b (which is of

length b) m times. Thus, ẽ∗b = {ei1 , . . . , eib , ei1 , . . . , eib , . . . , ei1 , . . . , eib} = J ′e∗b

where Jb×mb = (Ib . . . Ib) is the matrix formed by appending m identity matrices

row-wise. For SRB,

β∗(b) = (X ′X)−1X ′(ŷ + ẽ∗b) = β̂ + (X ′X)−1X ′J ′e∗b . (6.2)

130

Note that from the final expression the corresponding computational cost is O(b).

Thus we have a sum of b numbers where the columns bj =
∑m

i=1 aj+(i−1)b for

j = 1, . . . , b do not change across different subsets. These are fixed weights for

the subset that do not change across different subsets. We can evaluate the root

function Tn(β∗(b), β̂) as a proxy for Tn(β̂, β). Note that this method does not involve

a second level of bootstrap, unlike SDB.

The distribution of the SRB root function needs a different scaling than that for

RB. To see this, let B = (X ′X)−1X ′J ′ and note that V ar∗(Be∗b) = BE∗[e∗b(e
∗
b)
′]B′

which, under appropriate conditions, will converge in probability to σ2BB′ where

σ2 is the error variance. Therefore we expect that (BB′)−1/2(β∗(b) − β̂) →D

N(0, σ2I), and therefore the SRB version of the root function is

T ∗Sn (β∗(b), β̂) = (BB′)−1/2(β∗(b) − β̂).

6.2.1 Simulation study

Consider a d-dimensional multiple linear regression model

yi = β1xi,1 + . . .+ βdxi,d + ei

for i = 1, . . . , n. Our parameter of interest is the d-dimensional vector of slope

coefficients, whose true value is β = (β1, ..., βd) = (0, . . . , 0)′. We use the usual

OLS estimator β̂. We also want to construct a simultaneous 95% confidence region

for β. Traditionally we use the F-statistic

Tn(β̂, β) =
||X((β̂ − β)||2/d

||y −Xβ̂||2/n− d− 1
.

to construct the joint confidence region. Let q0.95 be the 95% quantile of the

true (unknown) distribution of Tn(β̂, β). Then the confidence region is given by

{β : Tn(β̂, β) ≤ q0.95}. In general the true distribution of Tn, and hence its quantile

q0.95, is unknown. Asymptotically, dTn
D→ χ2

d and hence quantiles from the χ2
d/d

distribution are often used as an approximation for the unknown quantiles of Tn,

we call this the Normal Approximation. Alternately, q0.95 can be estimated by the

resampling techniques described in the previous section, with ξ(Qn) = q0.95 where

Qn is the true distribution of Tn.

We set n = 105 and d = 10, with xi,k ∼ Pareto(α = 3) and generate errors

131

independently from the χ2
1 − 1 distribution. We define the error rate as

| q̂0.95

q0.95
− 1|

where q̂ and q represent the estimated and true quantiles of Tn, respectively. The

‘true’ quantile q0.95 is obtained by a high-accuracy simulation with 10,000 iterations

from the underlying distribution.

We use subset size b = 1000 for SRB. We allowed the competing methods to

run for 5 seconds. Figure 6.2 shows the time taken (in seconds) and the time

evolution of error. We consider three competing methods of approximating q0.95,

namely the normal approximation (Norm Approx), residual bootstrap (Res Boot)

and subsampled residual bootstrap (SRB). We observe that SRB is much quicker

than RB in obtaining an accurate estimate, and that normal approximation is less

accurate than either resampling technique.

6.2.2 Computation

The root function of interest is the so-called F statistic, defined as

Tn(β̂, β) =
||X((β̂ − β)||2/d

||y −Xβ̂||2/n− d− 1
.

The residual bootstrap version of this root function is given by

Tn(β∗, β̂) =
||X(β∗ − β̂)||2/d

||y −Xβ∗||2/n− d− 1
=

||C1e
∗||2/d

(e′e+ ||C1e∗||2) /n− d− 1

where C1 = (X ′X)−1/2X ′. Note that X ′X is positive definite (by assumption) and

hence it has a unique positive definite square root, this is (X ′X)1/2 and the inverse

of this matrix is (X ′X)−1/2. Thus to run R residual bootstrap iterations, we need

to compute e′e and C1 once for the whole ensemble, and for each iteration we need

to compute only ||C1e
∗||2, which is a computation of order n. The derivation is as

follows:

Numerator = (β∗ − β̂)′X ′X(β∗ − β̂) = e∗′X(X ′X)−1X ′X(X ′X)−1X ′e∗

(from (6.1))

= e∗′C ′1C1e
∗,

132

Denominator = (y −Xβ∗)′(y −Xβ∗)

=
(

(y −Xβ̂)−X(β∗ − β̂)
)′ (

(y −Xβ̂)−X(β∗ − β̂)
)

= ||y −Xβ̂||2 + ||X(β∗ − β̂)||2 − 2(y −Xβ̂)′X(β∗ − β̂)

= e′e+ ||C1e
∗||2.

Details for the last line:

(y −Xβ̂)′X = (y −X(X ′X)−1X ′y)′X = {(I−X(X ′X)−1X ′)y}′X

= y′(I−X(X ′X)−1X ′)′X = y′(I−X(X ′X)−1X ′)X

= y′(X −X(X ′X)−1X ′X) = 0.

Note that for residual bootstrap, ||X(β∗ − β̂)||2 = ||C1e
∗||2 is a asymptoti-

cally pivotal quantity for residual bootstrap, since Var∗(C1e
∗) = C1Var∗(e∗)C ′1 →

σ2C1InC ′1 = σ2Id. But for subsampled residual bootstrap, the analogous quan-

tity ||X(β∗(b) − β̂)||2 = ||C1J
′e∗b ||2 is not asymptotically pivotal since the resid-

ual resample is generated from a small subsample, which implies Var∗(C1J
′e∗b) =

C1J
′Var∗(e∗b)JC

′
1 → σ2C1J

′IbJC ′1 = σ2C1J
′JC ′1 6= σ2Id. However the ‘nor-

malized’ version C2e
∗
b := (C1J

′JC ′1)−1/2C1J
′e∗b is asymptotically pivotal, since

Var∗(C2e
∗
b) = C2Var∗(e∗b)C

′
2 → σ2C2IbC ′2 = σ2Id. Therefore, the SRB version of

the root function is given by

||C2e
∗
b ||2/d(

e′e+ ||C2e∗b ||2
)
/n− d− 1

where C2 = (C1J
′JC ′1)−1/2C1J

′. Thus to run R subsampled residual bootstrap

iterations, we need to compute e′e and C2 once for the whole ensemble, and for

each iteration we need to compute only ||C2e
∗
b ||2, which is a computation of order

b.

6.3 Future directions

In future work, we plan to study the theoretical properties of the ALB and the

SRB. We hope to demonstrate that both these methods can consistently estimate

the precision measure, and also derive higher order properties. An interesting

problem is to compare the higher order properties of ALB, BLB, and SDB, which

will enable us to determine useful practical guidelines on the relative accuracy

133

0 1 2 3 4 5

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

time

er
ro

r

Figure 6.2: Time evolution of error rates. The red bar is the Normal
Approximation error, while the errors from residual bootstrap are in solid
lines and errors from SRB are in dashed lines.

these methods under various inference paradigms.

Traditionally, bootstrap methods are evaluated in terms of statistical accuracy.

In the context of big data, however, the computational aspect is crucially important

as well and we should evaluate methods on both computing cost and statistical

accuracy. We plan to investigate this cost versus accuracy trade-off for classical

134

residual bootstrap and subsampled residual bootstrap.

135

REFERENCES

Adamic, L. A. and Glance, N. (2005). The political blogosphere and the 2004
US election: divided they blog. In Proceedings of the 3rd International
Workshop on Link Discovery, pages 36–43. ACM.

Ahlgren, N. and Antell, J. (2008). Bootstrap and fast double bootstrap tests
of cointegration rank with financial time series. Computational Statistics
and Data Analysis, 52(10):4754–4767.

Amini, A. A., Chen, A., Bickel, P. J., and Levina, E. (2013). Pseudo-
likelihood methods for community detection in large sparse networks. The
Annals of Statistics, 41:2097–2122.

Andrews, D. W. and Monahan, J. C. (1992). An improved heteroskedasticity
and autocorrelation consistent covariance matrix estimator. Econometrica,
60(4):953–966.

Arcones, M. A. and Yu, B. (1994). Central limit theorems for empirical andu-
processes of stationary mixing sequences. Journal of Theoretical Probabil-
ity, 7(1):47–71.

Beran, R. (1988). Prepivoting test statistics: a bootstrap view of asymptotic
refinements. Journal of the American Statistical Association, 83(403):687–
697.

Berkes, I., Gabrys, R., Horváth, L., and Kokoszka, P. (2009). Detecting
changes in the mean of functional observations. Journal of the Royal Sta-
tistical Society: Series B (Statistical Methodology), 71(5):927–946.

Bhattacharya, R. N. and Rao, R. R. (1986). Normal Approximation and
Asymptotic Expansions. Krieger Melbourne, FL.

Bickel, P., Götze, F., and van Zwet, W. (1997). Resampling fewer than
n observations: Gains, losses, and remedies for losses. Statistica Sinica,
7:1–31.

Bickel, P. J. and Chen, A. (2009). A nonparametric view of network models
and Newman–Girvan and other modularities. Proceedings of the National
Academy of Sciences, 106:21068–21073.

136

Bickel, P. J. and Sarkar, P. (2015). Hypothesis testing for automated commu-
nity detection in networks. Journal of the Royal Statistical Society: Series
B, doi: 10.1111/rssb.12117.

Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration Inequali-
ties: A Nonasymptotic Theory of Independence. Oxford University Press.

Bühlmann, P. (1994). Blockwise bootstrapped empirical process for station-
ary sequences. Annals of Statistics, 22:995–1012.

Bühlmann, P. (1995). The blockwise bootstrap for general empirical pro-
cesses of stationary sequences. Stochastic Processes and their Applications,
58(2):247–265.

Bühlmann, P. and Künsch, H. R. (1999). Block length selection in the
bootstrap for time series. Computational Statistics and Data Analysis,
31(3):295–310.

Chang, J. and Hall, P. (2014). Double-bootstrap methods that use a single
double-bootstrap simulation. arXiv preprint arXiv:1408.6327.

Chaudhuri, K., Chung, F., and Tsiatas, A. (2012). Spectral clustering of
graphs with general degrees in the extended planted partition model. Jour-
nal of Machine Learning Research: Workshop and Conference Proceedings,
23:35.1–35.23.

Cover, T. M. and Thomas, J. A. (2012). Elements of Information Theory.
John Wiley & Sons.

d’Ancona, M. (2015). Could London’s next mayor really be another Old
Etonian? The Guardian, 07-19-2015.

Daudin, J.-J., Picard, F., and Robin, S. (2008). A mixture model for random
graphs. Statistics and Computing, 18:173–183.

Davidson, R. and MacKinnon, J. G. (2000). Improving the reliability of
bootstrap tests. Queens University Working paper no. 995.

Davidson, R. and MacKinnon, J. G. (2002). Fast double bootstrap tests of
nonnested linear regression models. Econometric Reviews, 21(4):419–429.

Davidson, R. and MacKinnon, J. G. (2007). Improving the reliability of
bootstrap tests with the fast double bootstrap. Computational Statistics
and Data Analysis, 51(7):3259–3281.

Dudley, R. M. (1999). Uniform Central Limit Theorems, volume 23. Cam-
bridge University Press.

137

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The
Annals of Statistics, 7(1):1–26.

Erdös, P. and Rényi, A. (1959). On random graphs. Publicationes Mathe-
maticae Debrecen, 6:290–297.

Fienberg, S. E., Meyer, M. M., and Wasserman, S. S. (1985). Statistical anal-
ysis of multiple sociometric relations. Journal of the American Statistical
Association, 80:51–67.

Fortunato, S. (2010). Community detection in graphs. Physics Reports,
486(3):75–174.

Gao, J., Liang, F., Fan, W., Sun, Y., and Han, J. (2009). Graph-based con-
sensus maximization among multiple supervised and unsupervised models.
Advances in Neural Information Processing Systems, 22:585–593.

Garcia-Soidan, P. H. and Hall, P. (1997). On sample reuse methods for
spatial data. Biometrics, 53:273–281.

Gavin, A.-C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer,
A., Schultz, J., Rick, J. M., Michon, A.-M., Cruciat, C.-M., Remor, M.,
Höfert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein,
K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S.,
Huhse, B., Leutwein, C., Heurtier, M.-A., Copley, R. R., Edelmann, A.,
Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork,
P., Seraphin, B., Kuster, B., Neubauer, G., and Superti-Furga, G. (2002).
Functional organization of the yeast proteome by systematic analysis of
protein complexes. Nature, 415:141–147.

Giacomini, R., Politis, D. N., and White, H. (2013). A warp-speed method
for conducting monte carlo experiments involving bootstrap estimators.
Econometric Theory, 29(3):567–589.

Giné, E. and Zinn, J. (1984). Some limit theorems for empirical processes.
The Annals of Probability, 12(4):929–989.

Girvan, M. and Newman, M. E. J. (2002). Community structure in social
and biological networks. Proceedings of the National Academy of Sciences,
99(12):7821–7826.

Goldenberg, A., Zheng, A., Fienberg, S., and Airoldi, E. (2010). A survey of
statistical network models. Foundations and Trends in Machine Learning,
2:129–233.

Greene, D. and Cunningham, P. (2013). Producing a unified graph repre-
sentation from multiple social network views. In Proceedings of the 5th
Annual ACM Web Science Conference, pages 118–121. ACM.

138

Hall, P. (1985). Resampling a coverage pattern. Stochastic Processes and
their Applications, 20:231–246.

Hall, P., Horowitz, J. L., and Jing, B.-Y. (1995). On blocking rules for the
bootstrap with dependent data. Biometrika, 82(3):561–574.

Holland, P., Laskey, K., and Leinhardt, S. (1983). Stochastic blockmodels:
first steps. Social Networks, 5:109–137.

Huberman, B. A. and Adamic, L. A. (1999). Internet: growth dynamics of
the World-Wide Web. Nature, 401:131.

Ji, M., Sun, Y., Danilevsky, M., Han, J., and Gao, J. (2010). Graph regular-
ized transductive classification on heterogeneous information networks. In
Machine Learning and Knowledge Discovery in Databases, pages 570–586.
Springer.

Jin, J. (2012). Fast network community detection by SCORE. arXiv preprint
arXiv:1211.5803.

Jonsson, P. F., Cavanna, T., Zicha, D., and Bates, P. A. (2006). Cluster
analysis of networks generated through homology: automatic identification
of important protein communities involved in cancer metastasis. BMC
Bioinformatics, 7(1):2.

Jordan, M. I. (2013). On statistics, computation and scalability. Bernoulli,
19(4):1378–1390.

Joseph, A. and Yu, B. (2013). Impact of regularization on spectral clustering.
arXiv preprint arXiv:1312.1733.

Karrer, B. and Newman, M. E. J. (2011). Stochastic blockmodels and com-
munity structure in networks. Physical Review E, 83:016107.

Kiefer, N. M. and Vogelsang, T. J. (2005). A new asymptotic theory
for heteroskedasticity-autocorrelation robust tests. Econometric Theory,
21:1130–1164.

Kiefer, N. M., Vogelsang, T. J., and Bunzel, H. (2000). Simple robust testing
of regression hypotheses. Econometrica, 68(3):695–714.

Kleiner, A., Talwalkar, A., Sarkar, P., and Jordan, M. I. (2014). A scalable
bootstrap for massive data. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 76:795–816.

Kley, T., Volgushev, S., Dette, H., and Hallin, M. (2014). Quantile
spectral processes: Asymptotic analysis and inference. arXiv preprint
arXiv:1401.8104.

139

Kolaczyk, E. D. (2009). Statistical Analysis of Network Data: Methods and
Models. Springer.

Kosorok, M. R. (2008). Introduction to Empirical Processes and Semipara-
metric Inference. Springer, New York.

Künsch, H. R. (1989). The jackknife and the bootstrap for general stationary
observations. Annals of Statistics, 17(3):1217–1241.

Künsch, H. R. (1989). The jackknife and the bootstrap for general stationary
observations. The Annals of Statistics, 17(3):1217–1241.

Lahiri, S. N., , and Zhu, J. (2006). Resampling methods for spatial regression
models under a class of stochastic designs. Annals of Statistics, 34:1774–
1813.

Lahiri, S. N. (1999). Asymptotic distribution of the empirical spatial cu-
mulative distribution function predictor and prediction bands based on a
subsampling method. Probability Theory and Related Fields, 114:55–84.

Lahiri, S. N. (2003a). Springer, Resampling Methods For Dependent Data.

Lahiri, S. N. (2003b). Central limit theorems for weighted sums of a spatial
process under a class of stochastic and fixed designs. Sankhyā, 65:356–388.

Lahiri, S. N., Kaiser, M. S., Cressie, N., and j. Hsu, N. (1999). Prediction of
spatial cumulative distribution functions using subsampling. Journal of
the American Statistical Association, 94:86–110.

Lahiri, S. N. and Mukherjee, K. (2004). Asymptotic distributions of m-
estimators in a spatial regression model under some fixed and stochastic
spatial sampling designs. Annals of the Institute of Statistical Mathemat-
ics, 56:225–250.

Laptev, N., Zaniolo, C., and Lu, T.-C. (2012). BOOT-TS: A Scal-
able Bootstrap for Massive Time-Series Data. http://cs.ucla.edu/

~zaniolo/papers/biglearning2012_submission_3.pdf. [Online; ac-
cessed 13-December-2014].

Le, C. M., Levina, E., and Vershynin, R. (2015). Optimization via low-
rank approximation for community detection in networks. arXiv preprint
arXiv:1406.0067.

Liu, R. Y. and Singh, K. (1992). Moving blocks jackknife and bootstrap
capture weak dependence. Exploring the limits of bootstrap, 225:248.

Lorrain, F. and White, H. C. (1971). Structural equivalence of individuals
in social networks. The Journal of Mathematical Sociology, 1:49–80.

140

Milgram, S. (1967). The small world problem. Psychology Today, 2(1):60–67.

Naik-Nimbalkar, U. V. and Rajarshi, M. B. (1994). Validity of blockwise
bootstrap for empirical processes with stationary observations. Annals of
Statistics, 22:980–994.

Newman, M. E. J. (2010). Networks: An Introduction. Oxford University
Press.

Nordman, D. J. and Lahiri, S. N. (2004). On optimal spatial subsample size
for variance estimation. Annals of Statistics, 32:1981–2027.

Peligrad, M. (1998). On the blockwise bootstrap for empirical processes for
stationary sequences. Annals of Probability, 26:877–901.

Politis, D. N., Paparoditis, E., and Romano, J. P. (1998). Large sample infer-
ence for irregularly spaced dependent observations based on subsampling.
Sankhyā, 60:274–292.

Politis, D. N. and Romano, J. P. (1993). Nonparametric resampling for ho-
mogeneous strong mixing random fields. Journal of Multivariate Analysis,
47:301–328.

Politis, D. N. and Romano, J. P. (1994a). Large sample confidence regions
based on subsamples under minimal assumptions. The Annals of Statistics,
22(4):2031–2050.

Politis, D. N. and Romano, J. P. (1994b). The stationary bootstrap. Journal
of the American Statistical Association, 89(428):1303–1313.

Politis, D. N. and Sherman, M. (2001). Moment estimation for statistics from
marked point processes. Journal of the Royal Statistical Society: Series B,
63:261–275.

Qin, T. and Rohe, K. (2013). Regularized spectral clustering under the
degree-corrected stochastic blockmodel. In Advances in Neural Informa-
tion Processing Systems, pages 3120–3128.

Radulović, D. (1996). The bootstrap for empirical processes based on station-
ary observations. Stochastic processes and their applications, 65(2):259–
279.

Radulović, D. (2002). On the bootstrap and empirical processes for depen-
dent sequences. In Empirical process techniques for dependent data, pages
345–364. Springer.

Radulović, D. (2009). Another look at the disjoint blocks bootstrap. Test,
18(1):195–212.

141

Rao, C. R. and Zhao, L. C. (1992). Approximation to the distribution of
m-estimates in linear models by randomly weighted bootstrap. Sankhya:
The Indian Journal of Statistics, 54:323–331.

Rho, Y. and Shao, X. (2013). Improving the bandwidth-free inference
methods by prewhitening. Journal of Statistical Planning and Inference,
143(11):1912–1922.

Richard, P. (2009). Modified fast double sieve bootstraps for adf tests. Com-
putational Statistics & Data Analysis, 53(12):4490–4499.

Rohe, K., Chatterjee, S., and Yu, B. (2011). Spectral clustering and the high-
dimensional stochastic blockmodel. The Annals of Statistics, 39(4):1878–
1915.

Rubin, D. B. (1981). The Bayesian bootstrap. Annals of Statistics, 9:130–
134.

Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap. Springer-Verlag,
New York.

Shao, X. (2009). Extended tapered block bootstrap. Statistica Sinica,
20:807–821.

Shao, X. (2010). The dependent wild bootstrap. Journal of the American
Statistical Association, 105:218–235.

Shao, X. and Politis, D. N. (2013). Fixed-b subsampling and block bootstrap:
improved confidence sets based on p-value calibration. Journal of the
Royal Statistical Society: Series B, 75:161–184.

Sherman, M. (1996). Variance estimation for statistics computed from spatial
lattice data. Journal of the Royal Statistical Society: Series B, 58:509–523.

Sherman, M. and Carlstein, E. (1994). Nonparametric estimation of the
moments of a general statistic computed from spatial data. Journal of the
American Statistical Association, 89:496–500.

Sullivan, A. (2009). Forbes’ definition of “liberal”. The Atlantic, 01-24-2009.

Sun, Y. and Han, J. (2012). Mining Heterogeneous Information Networks:
Principles and Methodologies. Morgan & Claypool Publishers.

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and
Empirical Processes - Springer Series in Statistics. Springer, New York.

Varadarajan, T., Eaves, E., and Alberts, H. R. (2009). The 25 most influen-
tial liberals in the US media. Forbes, 01-22-2009.

142

Volgushev, S. and Shao, X. (2014). A general approach to the joint asymp-
totic analysis of statistics from sub-samples. Electronic Journal of Statis-
tics, 8:390–431.

Wang, Y. H. (1993). On the number of successes in independent trials.
Statistica Sinica, 3:295–312.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’
networks. Nature, 393:440–442.

White, H. (2000). A reality check for data snooping. Econometrica,
68(5):1097–1126.

Zhang, X., Shao, X., Hayhoe, K., and Wuebbles, D. J. (2011). Testing
the structural stability of temporally dependent functional observations
and application to climate projections. Electronic Journal of Statistics,
5:1765–1796.

Zhao, Y., Levina, E., and Zhu, J. (2012). Consistency of community detection
in networks under degree-corrected stochastic block models. The Annals
of Statistics, 40:2266–2292.

143

