
c© 2016 Zelei Sun

VAST-LP: CLOCK GATING IN HIGH-LEVEL SYNTHESIS

BY

ZELEI SUN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Professor Deming Chen

ABSTRACT

High-level synthesis (HLS) promises high-quality hardware with minimal develop-

ment effort. In this thesis, we evaluate the current state-of-the-art HLS engine VAST

and propose a method to generate clock-gating-friendly RTL code for downstream

logic synthesis tools. We use one-hot-key encoding method to build the state tran-

sition in hardware, and we use the state registers along with main clock signal to

generate subclock signals. By analyzing the usage of each register when the finite

state machine is in different states, we assign the corresponding subclock signals to

the register and reduce the unnecessary toggle of the registers when they are not in

use. CHStone benchmarks in different application categories are used to verify the

functionality and test the performance of the designs. The area and power data are

measured using downstream commercial state-of-the-art tools during logic synthesis.

We gain 5% to 20% dynamic power saving with -6% to 2% area increase.

ii

To Xiaotian and my parents, for their love and support. To Prof. Chen for the

guidance and help with my research.

iii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 4

CHAPTER 3 CLOCK GATING IN HLS . 6

CHAPTER 4 IMPLEMENTATION . 9

CHAPTER 5 EXPERIMENTAL RESULTS 12

CHAPTER 6 CONCLUSION . 15

REFERENCES . 16

iv

CHAPTER 1

INTRODUCTION

As the development of modern circuits advances, more transistors as well as complex

heterogeneous architectures are integrated in to a single circuit, leading to a much

more complex design in the design space. This increases the difficulty for hardware

engineers to keep working at register-transfer level (RTL). The increased develop-

ment time and weak ability for design space exploration lead people to move beyond

RTL design and head into electronic system level (ESL) design methodology. It

offers a great improvement in productivity for integrated circuit design [1]. High-

level synthesis (HLS) performs the transition from high-level behavior languages

(C,C++,etc.) to RTL descriptions (Verilog, VHDL, etc.). It seeks to create a bridge

from the high-productivity software paradigm to the hardware world. It is hard to

fully appreciate the advantage and the potential brought about by HLS. Develop-

ment cost and time have been dramatically reduced by HLS engines, not to mention

the time and effort saved on the test and debug phase. Yet these designs can still

leverage the performance and efficiency of hardware implementation. However, with

less effort invested in the details of a hardware design, the door to many customized

optimizations may be shut.

In the meantime, as the technology node keeps scaling down driven by the Moore’s

law, the limitations begin to appear. Power consumption is becoming the dominant

constraint over area limitations and performance requirements. In the past, mobile

and portable platforms required major consideration for power. However, recently,

people’s demand for low-power computation is no longer limited to these devices.

Even for computationally intense high-performance applications, such as convolu-

tion neural network applications on supercomputers, people are taking low-power

1

solutions into consideration [2]. How to design an energy-friendly circuit is then a

critical question. Clock gating [3] has been a promising and important method to

reduce dynamic power consumption. The key of clock gating is reducing the dynamic

power consumption by eliminating switching of the logic gates in the combinational

logics when the logic gates are supposed to be idle. This is done through fixing the

input to these gates. Registers feeding to these inputs will be disabled, resulting in

their outputs being fixed at a certain state. For CMOS logics, only static power is

consumed when the output does not change. Compared to the dynamic power con-

sumed by these gates when the output is flipping, the static power is usually smaller.

This is also the reason why the switch activity is very essential to accurately estimate

circuit power. Clock gating effectively reduces the switching activity of both com-

binational and sequential logics in some situations, thereby effectively reducing the

power consumption in these cases. There are some scenarios where some writes to a

register would not change the behavior for down-stream variables or have identical

value in consecutive clock cycles. From the downstream perspective, we call this

kind of condition Observability Don’t Care. On RTL level, there is a good deal of

research on power reduction [4, 5].

As the design methodology goes from RTL to ESL, we found new opportunities

to further utilize the clock-gating technology. HLS flow can be summarized in the

following stages:

1. Compiling. In this stage, the HLS engine will compile the input language,

analyze the relationship between instructions, and convert the operations into

CDFG (control-datapath flow graph). In CDFG, there are scheduling units

which stand for the operations and registers.

2. Scheduling. The sequence of operations is decided at this stage as we put the

scheduling units into target clock cycles based on the resources we have. The

state transition graph is also generated at this stage to define the finite state

machine we have.

3. Binding. This is the stage where we bind the actual resources to the operations

2

and variables. Some of the operations may share the same function module,

and some of the variables may share the same register.

4. RTL code generation. In this stage we generate the RTL code based on the

given binding and scheduling information.

One way of clock gating comes from the finite state machine. After the binding

stage, we have got the information of which registers will be used at what state.

Based on this, we can actually let the clock signal for the registers toggle only when

the finite state machine is at the corresponding state. In general there are many

states in the HLS generated RTL code, and with only one of them on at a given

time, we should be able to shut down the dynamic power for the registers which are

used at other states and thus save a good amount of power.

In this thesis, we will implement the above clock-gating feature in VAST, which

is one of the most powerful state-of-the-art HLS engines. We will explore different

optimization choices and analyze the pros and cons for this technology.

3

CHAPTER 2

BACKGROUND

Clock gating has been introduced in circuit designs for years. The basic idea is to

identify the conditions where the clock signal for the registers can be changed so that

it does not toggle every clock cycle. In this way, we can avoid unnecessary register

value changes and reduce the dynamic power consumption from the flip-flop as well

as the resulting combinational logic circuit. Two basic clock-gating choices are very

popular in the design. One is based on the enable signal for some registers. As shown

in Fig. 2.1, in low-power design we can change the multiplexer into an AND gate to

reduce the toggle rate. Another way of clock gating is using the XOR gate to detect

data changes as shown in Fig. 2.2.

Figure 2.1: An example of enable based clock gating.

More advanced clock gating at RTL level has been well studied. Wu et al. [3]

discussed the clock gating in a sequential circuit. The conditions for gating the

4

Figure 2.2: An example of XOR gate based clock gating.

master lock are derived by the relation between the clock and the transition behaviors

of the triggered flip-flops, and a quaternary variable is used to model the behavior.

Observability Don’t Care based clock gating is also an important approach.

However, due to the limitation of the RTL design, these clock-gating methods

mostly focus on local optimization without global consideration, and thus miss power

saving opportunities on the micro-architecture level. With the help of behavior

vision in HLS, we will be able to explore the relationships between modules and

different function blocks more easily, and provide clock gating based on a higher-

level abstraction.

5

CHAPTER 3

CLOCK GATING IN HLS

Although clock-gating techniques have been well defined in the RTL level imple-

mentation, there is not much optimization being explored in the area of high-level

synthesis. However, there are actually more opportunities for clock gating in HLS.

In the era of RTL code, some engineers will also add some clock-gating blocks at

the module level manually. In high-level synthesis with the extra information on

the dependency between different modules, we can analyze the hardware design at a

micro-architectural level and thus implement clock gating in this level automatically.

The HLS flow will analyze a high-level input language such as C and SystemC,

and build the state transition graph based on the compiled backend information. In

the meantime, it also generates the resource list such as the registers that are in use

as well as the combinational logic circuits. With this information in well written

structures, we can easily find out the states where a register is used, and generate a

subclock signal that only toggles at that state. We will then use this subclock as the

input clock signal for that register; in this way, the register will only toggle when it

is needed. Given the fact that in HLS there are hundreds of states and only one of

them will be on at each clock cycle, the chance of power saving is actually very high.

Resource sharing is very common nowadays in the hardware design. A register

can be used in different states. We can analyze and detect these cases, and generate

a unique subclock for that register if we want to reach maximum power saving. Here

in our implementation, we do not clock-gate such registers due to timing concern as

the unique subclock may need more combinational logic to generate and thus tighten

the timing constraint.

We transform the finite state machine into one-hot-key format encoding [6], where

6

we have a register for each state, and only when we reach that state will the cor-

responding register output 1. With this, the delay of the generated subclock signal

can be reduced to a minimum to be the delay of only one AND gate. With the infor-

mation of which registers are used at what states, we will generate subclock signals

based on different states and thus reduce the dynamic power of unnecessary toggle.

There are multiple choices for state machine encoding, such as traditional binary

state encoding and one-hot-key encoding. Binary encoding uses the numbers from 0

to N−1 to represent all the states, where N is the total number of states. In this way,

we only need log2(N) flip-flops. This could use a minimum of registers to store the

state and thus reduce the area; however, while using the states to drive the datapath,

more combinational logic is needed to decode the states into the required signals and

thus it is actually not power optimal or area optimal. One-hot-key encoding, on the

other hand, provides more straightforward instruction signals to the datapath despite

using more flip-flops to store the states. This method creates one register for each

state, and only one of them will be 1 at a time. During each state transition, only

one flip-flop will be on. Sutter et al. [7] evaluated the power saving for different state

encodings for circuits with different numbers of states, and it turns out that one-hot-

key encoding is better for large circuits with over 16 states. It is very common for

HLS tools to generate hundreds of states.

One-hot-key encoding is also good for our implementation. One possible concern

of our method comes from the skew between the main clock signal and subclock

signal. This may lead to an asynchronous data problem. To reduce this effect, the

combinational logic used to generate the subclock signal needs to be as simple as

possible. With binary state encoding, this logic will be much more complicated than

one-hot-key encoding, where the combinational logic will simply be an AND gate

like in Fig. 3.1. The subclock is generated by the AND gate, the clock signal and

the signal from the latch.

7

Figure 3.1: Clock gating based on one-hot-key state machine.

8

CHAPTER 4

IMPLEMENTATION

Our design will be implemented on top of the VAST HLS engine. VAST is one of the

state-of-the-art HLS engines and is used widely for HLS research [8, 9, 10]. VAST

uses the Shang high-level synthesis framework, which is implemented as a LLVM

backend. The VAST engine takes C specification as input and generates Verilog

RTL hardware description from LLVM-IR. It works on the LLVM machine code

layer and makes full use of the information to perform optimizations on high-level

synthesis specific operations.

The scheduling stage will take the operations generated by the LLVM compiler

and schedule them while inserting sufficient delay between instructions to respect

the data dependency and the duration of the operations. The schedule will be sub-

ject to some hardware resource and timing restrictions. Meanwhile, it will attempt

to minimize some criteria. These criteria can be area, resource, delay or a combina-

tion. The binding stage will bind variables to registers and operations to functional

hardware or combinational logic based on the scheduled result. After the binding

is completed, a piece of hardware description code will be generated describing the

data path and state machines resulting from the binding. A hardware compiler will

take the generated RTL from the HLS engine and create target-specific gate level im-

plementation. One-hot-key encoding for the states is naturally supported in VAST,

so we can directly use that signal for our design.

We implement our clock-gating feature at the very end stage of the VAST engine

right before generating the RTL code. In VAST engine, we have the following data

generated for analyzing:

1. VASTOp: This is the class where we translate each instruction in high level

9

into internal operations; it contains the operands that are used and the output

it generates. Each operand will have its corresponding register.

2. VASTRegister: This is the class where we instantiate the registers; some of the

registers may be shared by different operands from different VASTOps.

3. VASTSlot: This is the class for each state in the finite state machine. In each

VASTSlot, there are multiple VASTOps to be executed.

The general steps of the clock-gating flow are as follows:

1. Analyze each state and annotate the states where each register is written.

2. Sweep the registers and annotate the states where we need to generate the

corresponding subclock signal.

3. Generate the subclock signal and modify the register block during the RTL

code generation flow.

A state set is created for each register. This will be used to record how many

states are using this register. And we then maintain a state set for the whole module

to indicate how many subclocks are generated. Algorithm 1 shows each step of the

work.

10

Algorithm 1 Inserting Clock-Gating Edges

1: for Each V ASTSlot Si do

2: for Each V ASTOperation OPi ∈ Si do

3: for Each Operand ∈ OPi do

4: Get corresponding VASTRegister Ri for Operand

5: Ri’s SlotSet.insert(Si)

6: end for

7: end for

8: end for

9: subclockstateset.clear()

10: for Each V ASTRegister Ri do

11: if Ri.set has only one slot in it then

12: subclockstateset.insert(Ri.slot)

13: end if

14: end for

15: for Each V ASTSlot ∈ subclockstateset do

16: Generate subclock wire for V ASTSlot

17: end for

18: for Each VASTRegister Ri do

19: if Ri.set has only one slot in it then

20: Generate

21: end if

22: end for

The time complexity of this algorithm is O(N + M + R), where N is the total

number of the operands used in the module, M is the number of slots and R is the

number of registers. Since N > M and N > R (there are multiple operations in

each slot and the operands may share registers), the time complexity can be further

simplified as O(N). With linear time complexity, the algorithm will finish in a short

time.

11

CHAPTER 5

EXPERIMENTAL RESULTS

Our experiment is combined with the VAST HLS engine and downstream power

measurement flow. A set of CHSTONE testbenches [11] is used to test our flow

and compared with the VAST flow that does not enable this low-power feature. To

fully test the technique in different application domains, we used benchmarks from

arithmetic application (dfmul, dfsin, etc.), encryption domain (blowfish) and media

application (mpeg2). All of these benchmarks involve computationally heavy tasks

and are well suited for HLS design.

We first verified the behavior of the new circuit to ensure that the functionality

of the circuit is not changed. VAST engine auto-generates a Verilog testbench for

output RTL code. Newly generated RTL code with state clock gating is verified

using this testbench. The new designs are verified with all the CHStone benchmarks

and could generate correct hardware outputs.

After getting the RTL Verilog code, we use state-of-the-art commercial tools to

measure the power consumption for both versions. Design Compiler is used to per-

form logic synthesis and generate the netlist with the IBM 45nm technology library.

Provided with RTL level simulation waveform, we use Primetime to obtain the power

consumption for the circuit. RTL level clock gating is enabled in Design Compiler

in both cases to maximize power saving as we are trying to simulate the condition

in reality. And given that there are two stages where we can insert the clock-gating

feature (HLS flow and logic synthesis), there are possibilities that clock-gating op-

portunities discovered at higher levels in the design flow might also be discovered by

downstream tools during the RTL clock-gating process. By enabling RTL level clock

gating, we can eliminate the power saving found in both stages and thus analyze

12

purely the benefits from HLS clock gating. Area reports and timing reports are also

generated during the process of logic synthesis.

From the result in Table 5.1 we can see that we reduced average dynamic power

7% to 20% on different benchmarks. With extra subclock signals, the net switching

power is increased. However, since we avoided unnecessary register changes in idle

states, not only did we save the flip-flop toggle power, but we also reduced the

dynamic power for the combinational logic using those registers as input. And that

is reflected in the reduced cell internal power. At the current stage, we only clock

gate the registers that are used in just one state due to timing concern. With more

fine-grained state clock gating there is a possibility to reduce the power even further.

The extra area increase comes only from the AND gate inserted for clock gating, so

the area increase is not huge. We can see from the results in Table 5.2 that sometimes

there may even be area reduction possibly due to the optimization in logic synthesis.

In general, the less than 3% area increase is negligible.

Table 5.1: Power Report

Testbench dfadd dfmul dfsin dfdiv
Before clock gating (mw) net switching 3.08E-05 2.31E-05 9.23E-05 5.19E-06
Before clock gating (mw) cell internal 2.67E-04 1.90E-04 9.07E-04 2.62E-04
Before clock gating (mw) total 2.98E-04 2.13E-04 9.99E-04 2.67E-04
After clock gating (mw) net switching 3.35E-05 2.34E-05 9.22E-05 9.73E-06
After clock gating (mw) cell internal 2.08E-04 1.63E-04 7.99E-04 2.35E-04
After clock gating (mw) total 2.41E-04 1.86E-04 8.91E-04 2.44E-04

After vs. before ratio(total power) 80.97% 87.41% 89.15% 91.52%

Testbench mpeg2 blowfish adpcm
Before clock gating (mw) net switching 3.03E-06 9.61E-04 1.03E-04
Before clock gating (mw) cell internal 1.91E-04 3.16E-03 2.61E-03
Before clock gating (mw) total 1.94E-04 4.12E-03 2.71E-03
After clock gating (mw) net switching 7.41E-06 8.45E-04 1.26E-04
After clock gating (mw) cell internal 1.72E-04 3.01E-03 2.47E-03
After clock gating (mw) total 1.80E-04 3.86E-03 2.59E-03

After vs. before ratio(total power) 92.86% 93.57% 95.57%

13

Table 5.2: Area Report

Testbench dfadd dfmul dfsin dfdiv
Area Before clock gating (µm2) 17221 5466 209927 18247
Area After clock gating (µm2) 16139 5606 205590 18848

Testbench mpeg2 blowfish adpcm
Area Before clock gating (µm2) 11085 447240 342721
Area After clock gating (µm2) 10681 421155 341841

14

CHAPTER 6

CONCLUSION

We implemented clock gating based on state machine for high level synthesis flow

using VAST HLS engine. One-hot-key state encoding was used to reach maximum

power reduction and reduce clock mismatch. With the clock-gating technique, we

can stop the toggle of the registers that are not used in current state. About 5%

to 20% power saving is obtained with little area penalty in CHStone testbenches

for different application categories. We believe this method makes full use of the

information given during high-level synthesis, explores the micro-architectural level

relations of the circuits and greatly widens the possibilities for clock gating.

15

REFERENCES

[1] G. Martin, B. Bailey, and A. Piziali, ESL Design and Verification: A Prescrip-
tion for Electronic System Level Methodology. Morgan Kaufmann, 2010.

[2] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. S. Chung,
“Accelerating deep convolutional neural networks using specialized hardware,”
Microsoft Research whitepaper, 2015.

[3] Q. Wu, M. Pedram, and X. Wu, “Clock-gating and its application to low power
design of sequential circuits,” Circuits and Systems I: Fundamental Theory and
Applications, IEEE Transactions on, vol. 47, no. 3, pp. 415–420, 2000.

[4] L. Benini, P. Siegel, and G. De Micheli, “Saving power by synthesizing gated
clocks for sequential circuits,” IEEE Design & Test of Computers, no. 4, pp.
32–41, 1994.

[5] H. Li, S. Bhunia, Y. Chen, T. Vijaykumar, and K. Roy, “Deterministic clock gat-
ing for microprocessor power reduction,” in High-Performance Computer Archi-
tecture, 2003. HPCA-9 2003. Proceedings. The Ninth International Symposium
on. IEEE, 2003, pp. 113–122.

[6] M. Riahi Alam, M. Ersali Salehi Nasab, and S. M. Fakhraie, “Power efficient
high-level synthesis by centralized and fine-grained clock gating,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 34,
no. 12, pp. 1954–1963, 2015.

[7] G. Sutter, E. Todorovich, S. López-Buedo, and E. Boemo, “Low-power FSMs in
FPGA: Encoding alternatives,” in Integrated Circuit Design. Power and Timing
Modeling, Optimization and Simulation. Springer, 2002, pp. 363–370.

[8] L. Yang, S. Gurumani, D. Chen, and K. Rupnow, “Behavioral-level IP integra-
tion in high-level synthesis,” in Field Programmable Technology (FPT), 2015
International Conference on. IEEE, 2015, pp. 172–175.

16

[9] H. Zheng, S. T. Gurumani, K. Rupnow, and D. Chen, “Fast and effective place-
ment and routing directed high-level synthesis for FPGAs,” in Proceedings of
the 2014 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM, 2014, pp. 1–10.

[10] L. Yang, M. Ikram, S. Gurumani, S. A. Fahmy, D. Chen, and K. Rupnow, “JIT
trace-based verification for high-level synthesis,” in Proceedings of the Interna-
tional Conference on Field Programmable Technology, 2015, pp. 228–231.

[11] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii, “CHStone: A bench-
mark program suite for practical C-based high-level synthesis,” in Circuits and
Systems, 2008. ISCAS 2008. IEEE International Symposium on. IEEE, 2008,
pp. 1192–1195.

17

