
c© 2016 by Yong Yi Bay. All rights reserved.

APPLICATION OF
PRESSURE-PROJECTION ALGORITHMS TO A

SHARP PROJECTION IMMERSED BOUNDARY METHOD
FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

BY

YONG YI BAY

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Aerospace Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Assistant Professor Vincent Le Chenadec, Director of Research

Abstract

In this thesis, we describe a globally second-order accurate sharp immersed boundary projection method

with an algebraic structure parallel to the classic fractional step method for the unsteady, incompressible

Navier-Stokes equations. While second-order accuracy in time and space is generally achievable for the

velocity components, the pressure is usually first-order. To fully understand the source of this problem and

the interplay between the pressure term and the overall fractional step method, we need to first look into the

Navier-Stokes equations themselves. Perot demonstrated the possibility of higher order projection methods by

means of LU approximations. This method seems applicable to any grid system and was widely accepted due

to its ease of use and straightforward derivation of the order of accuracy for the pressure. It rendered another

class of projection methods which relied on global pressure-updating hopeless as Strikwerda and Perot both

speculated that these methods could inherently be first-order in pressure and simply cannot be improved to

higher orders. Shortly after, Brown, Cortez and Minion provided insights to such pressure-updating schemes

and proposed an entire class of global second-order accurate approximate projection methods. Despite Brown

et al.’s success, it remains difficult to transfer these higher order pressure-updating methods to staggered

grids. Discrete operators in staggered grids simply do not commute in the same way that colocated grids do

(as in the case of approximate projection methods).

We then continue to develop suitably accurate projection approaches for the immersed boundary method

(IBM). The original IB method introduced by Peskin involves solving on an Eulerian grid (usually a uniform

Cartesian mesh) which does not necessarily conform to the body’s geometry. Some underlying mechanism

is then needed to exchange information between the flow field described by the Eulerian discretization to

the set of Lagrangian points which lie on the surface of the immersed boundary. The differences between

the various IB methods lie in the way they implement this mechanism. Early adaptations of the IB method

required arbitrary tuning parameters either for describing the forcing effect on the immersed boundary or

characterizing the boundary velocity. Taira and Colonius were the first to formulate an IB method by means

of a projection approach, also known as immersed boundary projection method (IBPM), which does not

ii

require any such parameters. Their formulation relied on Perot’s LU factorization, where boundary forces

and pressure terms act as Lagrange multipliers which enforce the no-slip and divergence-free constraints.

This method quickly gained popularity due to its ease of use and is currently widely applied in modeling

complex turbulent flows, multi-physics simulations and fluid-structure interaction. Its ability to model flow

over complex geometries without the need for complex grids significantly reduced the time and effort needed

for such simulations.

This thesis addresses Perot’s concern of commutativity of discrete operators and proposes a way to apply

Brown et al.’s higher-order pressure updating schemes to staggered grid arrangements. Consequently, we

present a fully second-order accurate immersed boundary projection method which employs similar updating

schemes that Brown uses. We also improve upon Taira and Colonius’s immersed boundary projection method

by using multi-linear interpolation in place of the conventional use of the discrete Dirac delta function and

create a new “sharp” immersed boundary projection method.

iii

Acknowledgments

I would like to express my sincere gratitude to Assistant Professor Vincent Le Chenadec, my adviser, for his

continuous support and invaluable guidance throughout this masters program. Funding is generally difficult

in the States, and I am deeply grateful to my adviser to have ever given me a chance to study at University

of Illinois Urbana-Champaign. I have been very fortunate to have an adviser who sees us as co-workers with

whom he collaborates with, rather than students who he advises. This has allowed me to freely voice out

questions, ideas and thoughts whenever we are in a discussion. I have benefited much from his humility,

patience and ever-learning attitude.

I am also indebted to Alexandru Fikl, who has allowed me to spend countless nights in his house discussing

research. He has helped me overcome many crisis situations and I am truly grateful for everything that he

has taught me. He has been very supportive and always guides me to recovery when my steps faltered. Words

cannot express my gratitude to him.

Lastly, I would like to thank Associate Professor (Ret.) Randy Chue who has kept in contact with me over

the years. His personal stories and encouragement has been critical in my development as a graduate student

as I overcome the steep learning curve. I am grateful for his mentorship and deeply appreciative of his faith

in me. I have been very blessed to have him as my adviser in my undergraduate days and a close friend now.

iv

Contents

List of Tables . viii

List of Figures . ix

Chapter 1 Introduction . 1

1.1 Background . 2

1.2 Origin of Projection Methods . 2

1.3 Previous Works . 3

1.4 Scope and Outline of the Present Work . 8

I Navier-Stokes Equations 10

Chapter 2 Survey of Projection Methods . 11

2.1 Introduction . 11

2.2 Approximate LU Factorization Methods . 12

2.3 Incremental-Pressure Projection Methods . 13

2.3.1 Complications in the Discrete Analog . 15

2.3.2 Solution to the Problem of Commutativity . 16

2.3.3 Summary of the Improved Fractional Step . 16

2.4 Pressure-Free Projection Methods . 17

2.5 Summary . 19

Chapter 3 Normal Mode Analysis . 20

3.1 Reference Solution . 21

3.1.1 Initial Boundary Value Problem . 22

v

3.1.2 Coefficients (U, V, P) . 24

3.1.3 Summary . 25

3.2 Solutions for the Semi-discrete Stokes Equations . 25

3.2.1 Spurious Modes . 25

3.2.2 Application of Boundary Conditions . 29

3.2.3 Coefficients (U, V,A1, A2) . 30

3.2.4 Summary . 33

3.3 Order of Accuracy . 34

3.3.1 PmI Analysis . 35

3.3.2 PmII Analysis . 37

3.3.3 Comments on Higher Order Boundary Conditions . 38

Chapter 4 Numerical Tests . 39

4.1 Discrete Operators . 40

4.1.1 Viscous Term . 41

4.1.2 Convective Term . 42

4.1.3 Approximate Factorization . 44

4.2 Stokes Equations . 45

4.2.1 Temporal Convergence . 45

4.2.2 Spatial Convergence . 46

4.3 Navier-Stokes Equations . 48

4.3.1 Temporal Convergence . 48

4.4 Grid-Stretching: Navier-Stokes Equations . 49

4.4.1 Temporal Convergence . 51

4.4.2 Spatial Convergence: Convective Operator . 51

4.4.3 Spatial Convergence: Viscous Operator . 52

II Immersed Boundary Projection Method 54

Chapter 5 Immersed Boundary Method: Projection Approach 55

5.1 Dimensional Consistency . 57

vi

5.1.1 Original Equations . 58

5.1.2 Scaled Equations . 60

5.2 Derivation of a KKT System . 62

Chapter 6 Sharp Immersed Boundary Projection Method 65

6.1 Approximate LU Factorization Methods . 66

6.1.1 Dimensional Consistency in the Lagrangian . 66

6.1.2 Derivation of a KKT System . 68

6.1.3 Fractional Step Method . 69

6.2 Incremental-Lagrange Multiplier Projection Methods . 70

6.2.1 Fractional Step Method . 70

6.3 Interpolation and Smoothing Functions . 72

6.3.1 Multi-linear Interpolation . 72

6.3.2 Higher-Order Interpolation and Smoothing . 74

Chapter 7 Conclusions and Future Work . 77

Bibliography . 80

vii

List of Tables

4.1 Stokes equations: Temporal errors for the u velocity. 46

4.2 Stokes equations: Temporal errors for the v velocity. 46

4.3 Stokes equations: Temporal errors for the w velocity. 46

4.4 Stokes equations: Temporal errors for the pressure. 46

4.5 Stokes equations: Spatial errors for the u velocity. 47

4.6 Stokes equations: Spatial errors for the v velocity. 47

4.7 Stokes equations: Spatial errors for the w velocity. 48

4.8 Stokes equations: Spatial errors for the pressure. 48

4.9 Navier-Stokes equations: Temporal errors for the u velocity. 49

4.10 Navier-Stokes equations: Temporal errors for the v velocity. 49

4.11 Navier-Stokes equations: Temporal errors for the w velocity. 49

4.12 Navier-Stokes equations: Temporal errors for the pressure. 49

4.13 Non-uniform mesh: Temporal errors for the u velocity. 51

4.14 Non-uniform mesh: Temporal errors for the v velocity. 51

4.15 Non-uniform mesh: Temporal errors for the w velocity. 51

4.16 Non-uniform mesh: Temporal errors for the pressure. 51

4.17 Non-uniform mesh: Spatial errors in the convective term for u. 52

4.18 Non-uniform mesh: Spatial errors in convective term for v velocity. 52

4.19 Non-uniform mesh: Spatial errors in convective term for w velocity. 52

4.20 Non-uniform mesh: Spatial errors in the viscous term for u. 52

4.21 Non-uniform mesh: Spatial errors in the viscous term for v. 52

4.22 Non-uniform mesh: Spatial errors in the viscous term for w. 53

viii

List of Figures

1.1 Main developments in projection methods . 1

1.2 Variable arrangement on a staggered grid. 5

3.1 Domain of the Initial Boundary Value problem. 22

4.1 Definition of area vectors . 40

4.2 Mesh stretching in each dimension . 50

5.1 Distribution of Lagrangian points on Eulerian grid (Taira and Colonius [14]). 55

6.1 Bi-linear interpolation of u velocities to Lagrange point . 72

6.2 Lagrangian points for 2-D case . 73

6.3 Effect of smoothing . 74

6.4 Interpolation weights . 74

ix

Chapter 1

Introduction

Projection Methods

Colocated grid
MAC grid

(Harlow & Welch [20])

Approximate
Projection Methods

MAC
Projection Methods

Pressure: 2nd order
 temporal

Pressure: 1st order
 temporal

• Brown et al. [15] • Almgren et al. [21]

• Lai et al. [22]

• Minion [23]

• Bell, Colella

 & Glaz [8]

• Bell, Colella

 & Howell [9]

Pressure: 2nd order
 temporal

Pressure: 1st order
 temporal

• Strikwerda et al. [10]

• Perot [4]

 • Extend Brown's higher

 order pressure schemes

 to MAC grid

 • Test on Navier-Stokes

 • Extended by Taira

 & Colonius [14] to

 Immersed Boundary

 Projection Method

 • Extend to Sharp

 Immersed Boundary

 Projection Method

Immersed Boundary
Method

• Harlow &

 Welch [20]

• Kim & Moin [13]

• Chorin [24]

• Van Kan [25]

Figure 1.1: Main developments in projection methods. Legend:
“Arrows”: All arrows in the flow chart should be understood as “improved upon”. For instance, the box

“Brown et al.” has arrows pointing at it from “Bell, Colella & Glaz” and “Kim & Moin”. It should
be interpreted as “Brown et al.” improved upon both “Bell, Colella & Glaz”, and “Kim & Moin’s”
first-order pressure schemes to achieve second-order temporal schemes.

“Green” color boxes: These are papers that have already been published and should be thought of as
present knowledge.

“Red” color boxes: These are our modifications and contributions.
“Dotted” box: Everything within the dotted box is within the context of Navier-Stokes equations.

1

1.1 Background

The topic of projection methods and the resulting fractional step methods has been a topic of considerable

debate and interest since its inception in 1968 [24]. As of now, there have been various classes of projection

methods where numerous authors seek higher order accuracy in vastly different ways. While second-order

temporal accuracy is usually achievable for the velocity, the pressure term in the Navier-Stokes equations is

usually first-order in time even when a second-order integration technique is used. In this thesis, we seek to

explain the oddities of the pressure term and the role it plays as a Lagrange multiplier.

The ability or possibility of achieving higher order accuracy for the pressure is imperative in the work towards

the development of accurate immersed boundary projection methods. In the scope of immersed boundary

projection methods, there exists more than one Lagrange multiplier (such as boundary forces, etc.) and, if we

understand how to achieve higher order accuracy in the pressure term in Navier-Stokes, we can gain valuable

insight into developing more general second or higher order accurate immersed boundary projection methods.

1.2 Origin of Projection Methods

Given an n-dimensional bounded domain Ω with boundary ∂Ω, the incompressible Navier-Stokes equations

with appropriate initial and boundary conditions are:

ut +∇p = −(u · ∇)u + ν∇2u,

∇ · u = 0,

(x, t) ∈ Ω× [0, T], (1.1)

B(u, p) = 0, (x, t) ∈ ∂Ω× [0, T], (1.2)

u(x, 0) = u0(x), x ∈ Ω. (1.3)

where u ≡ u(x, t) is the fluid velocity field, p ≡ p(x, t) is the pressure, ν is the kinematic viscosity and

B(u, p) = 0 consists of n boundary conditions.

The original projection method developed by Chorin [24] in 1968 is based on the discrete Hodge decomposition.

Chorin recognized that the left-hand side of equation (1.1) together with (u · n̂) = 0 on the domain boundary

∂Ω represents a Hodge decomposition. The interested reader should refer to Minion [23] for the derivation

and discussion of the continuous and discrete Hodge decomposition. Hodge decomposition (in the simplest

form) states that any vector field can be uniquely decomposed into a solenoidal (or divergence-free) vector

2

field and the gradient of a scalar. As such the resulting projection method first calculates an intermediate

velocity field then project it onto the divergence-free fields to recover the solenoidal velocity.

Chorin’s projection method requires the discrete divergence operator D and discrete gradient operator G to

be skew-adjoint; i.e.

D = −GT (1.4)

and the projection P to be defined as

P = I −G(DG)−1D. (1.5)

The adjointness of these discrete operators determines the uniqueness of the resulting solution. Chorin

presented the error estimates of his projection method [28] in a follow up to his original paper [24] and

showed that his method is first-order accurate in time and second-order in space for a periodic box in

both 2-D and 3-D. Since Chorin was implementing the projection method on a staggered-grid system,

complications arise as the projection does not commute with the Laplacian in the viscous term in presence of

boundaries. In [24, 28], Chorin proposed a fix by using inhomogeneous boundary conditions when solving for

the intermediate velocity field. This was an important milestone as Kim and Moin [13] subsequently adopted

this method in their implementation of the projection method.

1.3 Previous Works

Approximate Projection Methods

Approximate projection methods satisfy the discrete divergence-free condition up to the truncation error:

DMACu = O(h2) (1.6)

where h is the mesh-spacing and DMAC is the divergence operator pertaining to the MAC (marker-and-cell)

projection which will be detailed later.

Bell, Colella and Glaz [8] came up with a promising scheme which combines the concept of Godunov’s

method (for discretizing the non-linear convective term) together with projection methods. Unfortunately,

the matrimony between the two was a strained one. Godunov’s method required velocity components u and v

to be at cell-centers due to the cell-centered discretization inherent in the method, whereas a MAC projection

method satisfies the continuity constraint to machine precision due to location of velocity at cell-edges (in

3

2-D) or cell-faces (in 3-D). We will demonstrate this issue by presenting a simple 2-D toy example with

simple centered-differencing schemes. The divergence operator using centered differencing is:

(Dcu)ij =
ui+1,j − ui−1,j

2h
+
vi,j+1 − vi,j−1

2h
(1.7)

and the gradient operator is similarly given by:

(Gcφ)ij =

(
φi+1,j − φi−1,j

2h
,
φi,j+1 − φi,j−1

2h

)
, (1.8)

where φ is the solution to the discrete Poisson equation. We recall that in the Poisson equation present in

the fractional step, we have to invert a Laplacian operator DcGc:

(DcGcφ)ij =
φj+2,j + φi+2,j − 4φij + φi−2,j + φi,j−2

4h2
. (1.9)

This looks similar to the “star-stencil” that we usually see in a five-point Laplacian, except for the fact that

it is twice as wide. The stencil in Eq. (1.9) has a spacing of 2h and it decouples onto four distinct subgrids

where values on each subgrid are independent of the others. This means that every point relies only on other

values on their own subgrids (except possibly at boundaries), and hence is a locally decoupled stencil, as

coined by Almgren [21]. Minion [23] explains that in the periodic boundary case, this results in an oscillatory

mode in the null space of the Laplacian operator, where the null space is a sum of the different constants

in each subgrid (checkerboard effect). This oscillatory mode is unfortunately also present in the divergence

operator. Minion pointed that in the presence of sharp gradients in pressure or velocity, this mode can be

introduced into the velocity field and there might be no way for the projection to remove it. This is also noted

by Almgren et al. [21] where the authors commented that the local decoupling results in a 2d-dimensional

kernel for Gc where d is the dimension of the problem.

Bell, Colella and Howell [9] came up with a fix for this problem shortly after. They recommended the use

of multigrid method to solve the Poisson equation. Although such multigrid methods fit nicely into the

concept of locally refined grids, it was proven to be difficult to implement by Howell [26]. The need for the

multigrid operator to maintain the decoupling of Laplacian stencil is pretty involved and arduous. Lai, Bell

and Colella [22] also came up with a “filtering” technique to filter these oscillations present in the velocity

field at every time step. They presented the method to be successful in the simulation of reacting flows.

Rhie and Chow [1] also came up with a solution for this checkerboard effect by adding a pressure gradient

(evaluated at the face) to the intermediate velocity field (interpolated to the face). This method widely known

as the Rhie-Chow Interpolation is essentially adding a term that is proportional to the third derivative of

the pressure. This term is proportional to a fourth order derivative in the continuity equation and acts as

4

dissipative or damping term which suppresses the pressure oscillations.

One other way of avoiding the decoupled Laplacian stencil is to use a MAC projector [9]. A MAC projector

is the projection that one would use when using a MAC grid. In other words, we are using a MAC projection

on a colocated grid (this is also known as approximate projection). Since the velocity components lie at cell

centers, interpolation of the velocity to the cell faces will be necessary. For example, using:

ũi−1/2,j =
ui−1,j + ui,j

2
and ṽi,j−1/2 =

vi,j−1 + vi,j
2

. (1.10)

The resulting discrete Poisson equation to be solved is:

(DMACGMACφ)ij = (DMAC ũ)ij (1.11)

and solutions will have to be interpolated from cell faces back to cell centers. Minion [23] states that

the main advantages of approximation projection methods includes: (1) easy extension to locally refined

grid implementation, (2) guaranteed well-posedness since MAC projection is already well-posed and (3)

unambiguous application of boundary conditions for the approximate projection Poisson problem in Eq. (1.11).

MAC Projection Methods

MAC projection methods satisfy the discrete divergence-free condition up to machine precision ε:

DMACu = O(ε). (1.12)

The staggered grid system or MAC grid first sees an application in Harlow and Welch’s numerical simulations

for incompressible flow [20]. On the MAC grid, vector quantities such as velocity components u and v are

stored on cell edges in 2-D (cell faces in 3-D) while scalar quantities such as the divergence of a vector field

or the pressure are represented at cell centers.

ui-1/2, j ui+1/2, j

vi, j-1/2

φi,j

vi, j+1/2

Figure 1.2: Variable arrangement on a staggered grid.

5

We define the MAC divergence as follows:

(DMACu)i,j =
ui+1/2,j − ui−1/2,j

h
+
vi,j+1/2 − vi,j−1/2

h
. (1.13)

It is important to note that the MAC divergence is conservative and, thus, the discrete analog of the divergence

theorem is trivially true. Minion [23] derived two very important properties of the MAC projection in his

derivation of the discrete Hodge decomposition: (1) the existence of a unique solution depends on the

adjointness or orthogonality condition of the discrete operators DMAC and GMAC , (2) the projection P

whose definition is given in [23, 21] has the norm reducing property and hence is a stable method. Lastly,

one can see that the resulting Laplacian on a MAC grid uses the familiar 5-point stencil:

(
DMACGMACφ

)
i,j

=
φj+1,j + φi+1,j − 4φij + φi−1,j + φi,j−1

h2
. (1.14)

Kim and Moin [13] implemented the MAC projection method using explicit Adams–Bashforth for the non-

linear convective terms and Crank-Nicolson for the viscous term. Numerical evidence showed their scheme

to be second-order accurate. They took up Chorin’s [24, 28] technique of tackling problems with boundaries

and applied inhomogeneous boundary conditions for solving the intermediate velocity field:

u∗ = un+1 + ∆t∇φn, on ∂Ω. (1.15)

This intermediate boundary condition uses a lagged value of φn to approximate φn+1 which is not available

at this intermediate step. Brown et al. [15] later proved in their paper, using normal mode analysis, that

this is in fact a sufficient condition to obtain second-order accuracy in the velocity components and is also a

necessary condition to achieve global second-order for the scheme. Kim and Moin also pointed out that their

auxiliary pressure variable φ (which is also the solution to the Poisson problem) can be used to recover the

pressure variable in the following way:

p = φ− ν∆t

2
∇2φ.

It is not well understood what time-step the pressure p or φ is in fact evaluated at and this has resulted in

considerable debate in the literature by authors such as Perot [4], Strikwerda and Lee [10]. If the pressure

variable and φ were both evaluated at the same time n+ 1, then Strikwerda and Lee proved that the pressure

is only first-order accurate in time. This is one of the main reasons why Perot and Strikwerda speculated

that fractional step methods as such are inherently first-order in pressure and cannot be improved to achieve

higher order in time.

However, Brown et al. showed that, in order for Kim and Moin’s fractional step to be consistent with the

6

second-order discretization of the Crank-Nicolson method, the pressure recovery equation in Kim and Moin’s

paper has to be interpreted as the time-centered pressure:

pn+1/2 = φn+1 − ν∆t

2
∇2φn+1. (1.16)

Brown et al. demonstrates, using normal mode analysis, that Eq. (1.16) does indeed lead to global second-

order accuracy in time. Van Kan [25] subsequently proposed a second-order generalization of such projection

methods. His scheme is first discretized in space using the staggered grid of Harlow and Welch and in time

using a second-order time integration. Perot provided numerical evidence that the trapezoidal pressure scheme

proposed by van Kan is in fact first-order in time even though the time integration technique was supposedly

second-order. Bell et al. [8] also commented that van Kan’s analysis assumes fixed bounds on the operators

and is hence invalid if space and time were refined simultaneously.

Immersed Boundary Projection Methods

The immersed boundary method (IBM) was originally described by Peskin [34] in 1972 with an application to

the simulation of blood flow in heart valves. The implementation involved the spatial discretization using an

Eulerian grid with a set of Lagrangian points on the surface of the immersed boundary. The main advantage

of the method came from the fact that the Eulerian discretization did not have to conform to the geometry

of the immersed body. No-slip conditions were enforced on the immersed surface by adding appropriate

boundary forces at the Lagrangian points. In the continuous equations, these boundary forces are singular

functions which exist on the immersed surface and are described by discrete Dirac Delta functions which

“smear” the forcing effect to neighboring Eulerian cells. Peskin proposed the forcing function by means of

Hooke’s Law. In 1992, Beyer and LeVeque [36] subsequently used a spring constant � 1 to simulate flow

over rigid bodies. They noted that naive approximations of the Dirac Delta function can affect the order of

convergence and correction terms are sometimes required to maintain accuracy levels. Goldstein et al. [35]

then proposed the use of feedback control instead of the conventional use of Hooke’s Law for the forcing

function in 1993. In their method, velocity is iterated using a proportional-integral control to determine the

desired velocity at the immersed boundary.

The gain in the feedback control or the spring constant (or stiffness) in Hooke’s Law all seemed arbitrary in

calculating the forces to be applied on the immersed boundary. Taira and Colonius [14] in 2007 sought to

disregard all these tuning parameters and proposed a projection approach for the IB Method. The immersed

7

boundary projection method (IBPM) regards boundary forces and pressure as Lagrange multipliers that

enforce the no-slip boundary condition on the immersed surface and divergence-free constraint, respectively.

The authors closely followed Perot’s [4] algebraic approach towards the Navier-Stokes equations and applied

a block LU factorization to the resulting IBPM equations in order to avoid the solution of a fully coupled

system (saddle point problem). IBPM garnered popularity quickly as its IB capability can be easily added

to an existing Navier-Stokes solver which employs a projection method [37].

1.4 Scope and Outline of the Present Work

Navier-Stokes Equations

It might seem trivial at first to extend Brown et al.’s [15] global second-order pressure update schemes to the

staggered-grid system. However, there problem is considerately more complex than can be deduced at first

sight. Brown et al.’s higher order update schemes are able to achieve global second-order accuracy because

of a very important ingredient which is absent in other works, which use staggered grids. The colocation of

velocity components allowed certain discrete operators (viscous and gradient) to commute and hence allowed

for the possibility of higher order pressure update schemes. However, is it possible to stretch this to the

staggered-grid system, where discrete operators are not square and do not commute? We will show that,

even when the operators do not commute, a second-order approximation of the updated pressure can be

obtained if an additional Poisson equation is solved. It should be noted however that this extra step involves

a significant computational overhead. The details of which are slightly involved and will be explained in a

coherent manner in subsequent chapters.

Immersed Boundary Projection Methods

A thorough understanding of the projection method for the Navier-Stokes equations is critical in extending

existing results to the immersed boundary projection method (IBPM). In the Navier-Stokes equations,

pressure is seen as a Lagrange multiplier to enforce the divergence-free constraint and, similarly, in IBPM,

boundary forces applied at immersed surfaces are used as Lagrange multipliers to enforce the no-slip constraint.

The extension to accurate IBPMs is straightforward as long as we learn the ways of achieving higher order

accuracy for the pressure term in Navier-Stokes. As we see it, there are two distinct methodologies applied

8

to this problem: (1) Perot’s [4] LU approximation and (2) Brown et al.’s [15] higher order pressure update

schemes. These two methodologies allow for the possibility of higher order temporal accuracy in pressure and

are suitable candidates to be used in IBPM. Taira and Colonius [14] have demonstrated the use of Perot’s

LU approximation to achieve global second-order IBPM schemes. In this thesis, we attempt to explore the

second route, using Brown’s improved fractional step methods for use in IBPM.

Next, we conduct a thorough derivation of Taira and Colonius’s IBPM to understand their implementation in

sufficient detail. A derivation of the Karush–Kuhn–Tucker conditions revealed intricate technicalities which

explained their choice of solving in velocity fluxes instead of primitive variables and so on. In this thesis, we

formulate a sharp immersed boundary projection method where we solve in primitive variables (i.e. velocity)

and replace the discrete Dirac Delta function by a sharper multi-linear interpolation. Taira and Colonius used

the discrete Dirac Delta function [27] in their implementation, which involved the smearing of boundary forces

from the Lagrangian points (which lie on the immersed boundary surface) to neighboring cells. If multi-linear

interpolation were to be used, there will be no smearing of forces and hence the “sharp” characteristic. Taira

and Colonius also created colocated Lagrangian points where the (x, y, z) components of the forces all lie

at the same point. We will however have one set of Lagrangian points per dimension, with each Lagrangian

point chosen to be the center of the immersed segment within each of the staggered lattices.

9

Part I

Navier-Stokes Equations

10

Chapter 2

Survey of Projection Methods

2.1 Introduction

A survey on various fractional step methods will be critical to our understanding of the immersed boundary

projection method. It has been proven in many highly cited papers that the fractional step method results

in first-order temporal accuracy in pressure with second-order accuracy for the velocity [8, 10, 11, 15]. This

is important because pressure acts as a Lagrange multiplier and we will eventually increase the number

of Lagrange multipliers in the immersed boundary method. Hence, analyzing the possibility of achieving

second-order accuracy in pressure is a first step in understanding how to achieve higher order for all such

multipliers.

Let’s review the fractional step method for the Stokes equations in a more general manner as presented by

Brown [15]. The method has 3 steps:

Step 1: Solve for the intermediate velocity u∗:

u∗ − un

∆t
+∇q =

ν

2
∇2(u∗ + un),

where ∇q is an approximation to the pressure gradient ∇pn+1/2 used in finding the intermediate

velocity.

Step 2: Perform a projection to solve for un+1:

un+1 = u∗ −∆t∇φn+1.

Step 3: Update the pressure:

pn+1/2 = q + Lφn+1,

where L is a linear differential operator.

In the following sections, we survey a few of the most important references in the context of second-order

11

projection methods. For simplicity, we will restrict the discussion to the Stokes equations. The highlight

would be Perot’s [4] LU approximation, where no pressure update is required, and the various pressure update

schemes proposed by Bell, Colella and Glaz [8] and Kim and Moin [13].

2.2 Approximate LU Factorization Methods

The fully discretized Stokes equations are:
un+1 − un

∆t
+ (A BN)Gpn+1 =

ν

2
L(un+1 + un) + bc1,

Dun+1 = bc2,

(2.1)

where L is the discrete Laplacian, G is the discrete gradient, D is the discrete divergence and

A =

(
1

∆t
− ν

2
L

)
, (2.2a)

BN ≈ A−1 = ∆t+
∆t2

2
L+ · · ·+ ∆tN

2N−1
LN−1, (2.2b)

with BN as an N th order approximation of the inverse of A. Using this specific discretization, the steps of

the method can be reformulated as follows:

Step 1: Solve for the intermediate velocity u∗:

u∗ − un

∆t
=
ν

2
L(u∗ + un) + bc1. (2.3)

Step 2: Perform the projection to find the divergence-free velocity un+1:

un+1 = u∗ −BNGpn+1, (2.4)

where

DBNGpn+1 = Du∗ − bc2. (2.5a)

By substituting u∗ from Eq. (2.4) into Eq. (2.3) we can get back our original governing equations in Eq. (2.1),

so this method is a valid approximation. It can be shown that Eq. (2.1) is obtained from an LU approximation.

12

Analog to LU Approximation

Re-writing Eq. (2.1) in block matrix form, we have:A (ABN)G

D 0


un+1

pn+1

 =

rn

0

+

bc1

bc2

 (2.6)

The operator acting on the concatenated vector (un+1, pn+1) can be decomposed using LU factorization as

follows: A 0

D −DBNG


I BNG

0 I


un+1

pn+1

 =

rn

0

 , (2.7)

where

rn =

(
1

∆t
+
ν

2
L

)
un.

Reconciling Perot’s LU approximation with Brown’s higher order pressure-updating schemes has been a

challenging endeavor. As can be seen, in the realm of LU approximations, there is no such thing as a pressure

update. This is because the pressure update step simply cannot be factored into the discrete operators

in Eq. (2.7). Perot’s LU approximation might just be a very different method of achieving higher order

temporal convergence for the pressure, where the order of convergence of the pressure is determined by the

approximation of A−1 in Eq. (2.2b). At this point, we should reiterate a point made by Perot in [5], where

he stated that his method of achieving higher order convergence for the pressure is by no means the only

way. There are possibilities of improving accuracy by using higher order boundary conditions such as in the

method presented by Brown [15]. Perot stated that his method is merely straightforward as it is easy to

derive the order of accuracy from A−1, whereas Brown actually had to use normal mode analysis to arrive

at his order of accuracy.

2.3 Incremental-Pressure Projection Methods

In the case of incremental-pressure projection methods, we start with the semi-discrete Stokes equations

(discrete in time, continuous in space), which are:
un+1 − un

∆t
+∇pn+1/2 =

ν

2
∇2(un+1 + un),

∇ · un+1 = 0.

(2.8)

13

Bell et al. [8] derived that their pressure update scheme results in second-order accurate velocity while

retaining first-order accuracy for the pressure. This is very much in line with what Perot [4] mentioned. An

improvement on their pressure update scheme will be proposed later in this section and this modification is

later confirmed to bring about second-order temporal accuracy in pressure using normal mode analysis in

Section 3.3. Let us take a look at Bell et al.’s fractional step method:

Step 1: Solve for the intermediate velocity u∗:

u∗ − un

∆t
+∇pn−1/2 =

ν

2
∇2(u∗ + un),

B(u∗) =
(
u∗ − un+1

)
|∂Ω = 0.

(2.9)

Step 2: Perform the projection to obtain the divergence-free velocity un+1:

un+1 = u∗ −∆t∇φn+1, (2.10)

where

∆t∇2φn+1 = ∇ · u∗, (2.11a)

n̂ · ∇φn+1|∂Ω = 0. (2.11b)

Step 3: Update the pressure:

pn+1/2 = pn−1/2 + φn+1. (2.12)

Kim et al. [7] employed a “delta form” method and employed the following pressure-updating scheme

pn+1/2 = pn−1/2 +δp. We noticed the equivalence of this pressure-update scheme with Bell et al.’s where δp is

really just φn+1. Brown et al. advised that this pressure update scheme is not consistent with a second-order

discretization of the Navier–Stokes equations. One can easily check this by substituting u∗ from Eq. (2.10)

into Eq. (2.9) and comparing with Eq. (2.8). The result is as follows:

un+1 − un

∆t
+∇pn−1/2 +∇φn+1

missing term︷ ︸︸ ︷
−ν∆t

2
∇2
(
∇φn+1

)
︸ ︷︷ ︸

≈ ∇pn+1/2

=
ν

2
∇2(un+1 + un). (2.13)

There’s a missing term in the pressure update scheme in Eq. (2.12) and hence the inconsistency. From

Eq. (2.13), the correct pressure gradient update that is consistent with a second-order Crank-Nicolson

method should be:

∇pn+1/2 = ∇pn−1/2 +∇φn+1 − ν∆t

2
∇2
(
∇φn+1

)
. (2.14)

14

2.3.1 Complications in the Discrete Analog

The above discussion applies to the context of the implementation of fractional step methods for a semi-

discrete Stokes equation (continuous in space and discrete in time). Would Eq. (2.14) still work when Stokes

equations are fully discretized? Can we say that:

∇hpn+1/2 = ∇hpn−1/2 +∇hφn+1 − ν∆t

2
∇2
vis

(
∇hφn+1

)
and hence:

pn+1/2 = pn−1/2 + φn+1 − ν∆t

2
∇2
visφ

n+1? (2.15)

Eq. (2.15) is wrong in general (the choice of this wording will be clear shortly). Brown’s normal mode analysis

is done on the continuous operators and thus commutativity is not an issue. However, Brown seemed to have

evaded the problem of commutativity in discrete operators and extended this naturally to the numerical

tests and presented the following pressure gradient update:

∇hpn+1/2 = ∇hpn−1/2 +∇hφn+1 − ν∆t

2
∇h(∇2

visφ
n+1). (2.16)

We would like to know if there are exceptions to this problem of commutativity. There are two known cases

where the two operators commute, namely:

Periodic Boundary Conditions. Perot [5] mentioned in his paper that “. . . the only exception to this

rule known to the author is periodic boundaries.” This would mean that the gradient and viscous

operators commute in the periodic case. This is something that we would like to look into (at least in

the numerical case) in future implementations.

Colocated Grids. This is the main reason why we believe Eq. (2.16) might actually be true in Brown et

al.’s case. Only in the colocated grid arrangement, can the discrete operators commute in the way

suggested by Brown. Although Brown [15] did not mention the grid arrangement used in his numerical

tests, there are some signs that suggest so.

In the colocated system, the velocity components ui (or u, v, w) and the pressure are all stored at the cell

centers. Volume fluxes are defined at cell faces similar to that of the staggered-grid arrangement. These

volume fluxes are calculated by means of an interpolation of ui followed by a projection operation which

guarantees exact mass conservation as noted by Rhie and Chow [1] in 1983. Felten and Lund [3] did

a study on the comparison of colocated and staggered grid arrangements for incompressible turbulent

15

flows and noted that the major draw-back from such a method is that the cell-centered velocity are only

approximately divergence free. This might explain why there’s a table in Brown et al.’s paper where

they measure the numerical errors for the divergence of velocity field. One of the biggest give-away

that truly showed the use of colocated grids in Brown’s numerical tests, is the lack of distinction in ∇2
h

in the discrete Poisson problem in Eq. (2.11a) and the viscous operator in Eq. (2.9). In Brown’s paper,

both operators are written as ∇2
h in the discrete analog. If they were in staggered-grid system, these 2

discrete operators would have required distinction since the viscous term acts on face-centered values

while the Laplacian operator in discrete Poisson problem acts on cell-centered values.

The staggered grid arrangement, when formulated properly, is able to conserve mass, momentum and

energy regardless of underlying coordinate system, as investigated by Morinishi et al. [2]. Its conservation

properties are attractive and they are the main reason why we’ll be employing the staggered grid

arrangement, as do many other researchers [4, 8, 9, 13].

2.3.2 Solution to the Problem of Commutativity

∇hpn+1/2 = ∇hpn−1/2 +∇hφn+1 −

(∗)︷ ︸︸ ︷
ν∆t

2
∇2
vis∇hφn+1︸ ︷︷ ︸

RHS

(2.17)

Eq. (2.17) is certainly consistent with the second-order discretization of Navier-Stokes equations. However,

due to lack of commutativity in general, we can’t just remove the gradient operator. If ∇h and ∇2
vis do not

commute, it brings about another question as to whether the term in (∗) belongs to the column space of ∇h.

The aim is to extend this implementation to staggered grid systems and our solution to this problem is a

simple one. We noted that within the fractional step, pressure is never needed explicitly in time stepping.

We only require the gradient of pressure to march in time. As such, Eq. (2.17) will be used for the pressure

gradient updates. At the very end of the simulation, if we would like to obtain the pressure variable, we can

take a divergence of Eq. (2.17) and invert the cell-centered Laplacian.

∇2
hp
n+1/2 = ∇h · (RHS) (2.18)

2.3.3 Summary of the Improved Fractional Step

The steps of the proposed fractional step methods are:

16

Step 1: Solve for intermediate the velocity u∗:

u∗ − un

∆t
+∇hpn−1/2 =

ν

2
∇2
vis(u

∗ + un),

B(u∗) =
(
u∗ − un+1

)
|∂Ω = 0.

(2.19)

Step 2: Perform projection to obtain divergence-free velocity un+1:

un+1 = u∗ −∆t∇hφn+1, (2.20)

where

∆t∇2
hφ

n+1 = ∇h · u∗, (2.21a)

n̂ · ∇φn+1|∂Ω = 0. (2.21b)

Step 3: Update the pressure gradient:

∇hpn+1/2 = ∇hpn−1/2 +∇hφn+1 − ν∆t

2
∇2
vis∇hφn+1. (2.22)

Step 4 (Optional): Retrieving the pressure by inverting the cell-centered Laplacian:

∇2
hp
n+1/2 = ∇h ·

(
∇hpn−1/2 +∇hφn+1 − ν∆t

2
∇2
vis∇hφn+1

)
. (2.23)

2.4 Pressure-Free Projection Methods

The projection methods mentioned in Kim et al. [7], and Bell et al. [8] are called pressure increment projection

methods, where q 6= 0. Kim and Moin’s [13] fractional step method is part of the pressure-free methods, where

q = 0. We pick up the semi-discrete Stokes equation as given by Eq. (2.8). In this case, the fractional step

method looks like:

Step 1: Solve for the intermediate velocity u∗:

u∗ − un

∆t
=
ν

2
∇2(u∗ + un),

B(u∗) = u∗|∂Ω =
(
un+1 + ∆t∇φn

)
|∂Ω.

(2.24)

Step 2: Perform the projection to obtain the divergence-free velocity un+1:

un+1 = u∗ −∆t∇φn+1, (2.25)

17

where

∆t∇2φn+1 = ∇ · u∗, (2.26a)

n̂ · ∇φn+1|∂Ω = 0. (2.26b)

Step 3 (Optional): Retrieving the pressure variable:

pn+1/2 = φn+1 − ν∆t

2
∇2φn+1. (2.27)

Substituting u∗ from Eq. (2.25) into Eq. (2.24) and comparing with Eq. (2.8) reveals that this pressure

update is consistent with the second-order Crank-Nicolson method.

As is often the case, in this method the pressure is not explicitly required to advance velocity. The auxiliary

pressure variable φ is also discarded at the end of every time step. Kim and Moin’s fractional step seemed to

be consistent with the second-order Crank-Nicolson method. However, does it necessarily lead to second-order

temporal accuracy? As it turns out, it really depends. Kim and Moin presented the pressure equation to be

p = φ − (ν∆t)/2)∇2φ without denoting the time at which both p and φ are evaluated at. If the pressure

variable and φ were both evaluated at same time n + 1, as assumed by Strikwerda and Lee [10], then the

answer is no. Their analysis shows that boundary conditions simply cannot be satisfied in the projection step.

The original governing equation Eq. (2.8) requires two boundary conditions while the system of equations

Eqs. (2.24) and (2.26a) inherent in the method only requires one boundary condition. Strikwerda et al. showed

that the inability of the method to satisfy the boundary conditions limited the accuracy of the fractional

step. The result is second-order for the velocity and first-order for the pressure.

Brown et al. provided an alternative look at Kim and Moin’s fractional step method. Brown noted that the

pressure recovery equation should be understood to be pn+1/2 = φn+1 − (ν∆t)/2)∇2φn+1 for consistency of

the second-order discretization of Navier-Stokes equations. Brown proved his claim by normal mode analysis

and also provided numerical evidence that higher-order accuracy boundary conditions (more specifically at

least first-order) is needed to achieve second-order accuracy in pressure. The possibility of using higher order

boundary conditions to improve the order of accuracy of pressure in fractional step methods is also mentioned

by Perot [5].

18

2.5 Summary

This section reviewed some of the most influential papers in fractional step analysis. We have seen that

Perot’s [4] LU approximation allows for higher order accuracy in the pressure term by means of higher order

approximation of A−1. In fact, the temporal accuracy of the pressure relates directly to the order of accuracy

of the approximation to A−1 that is used. As such, the method makes it easy to derive the order of accuracy

of the resulting scheme. The pressure increment projection methods, such as that of Bell, Colella and Glaz [8],

however require the use of normal mode analysis [10, 15] or even more contrived methods employed by E

and Liu [11] to arrive at the order of convergence of the resulting fractional step method. We explained the

expectations of a fractional step method to be consistent to a second-order discretized Stokes equation, and

noted the flaw in Bell, Colella and Glaz’s pressure update scheme. Brown [15] suggested changes to that

scheme to achieve global second-order accuracy which appeared to be only applicable to the colocated grid

system. The major highlight in this section is our proposal of an improved incremental pressure projection

method for staggered grids.

19

Chapter 3

Normal Mode Analysis

By using transforms for analyzing difference schemes and differential equations [12], we are going to prove

the numerical oddities of the pressure and its role in the fractional step methods. Normal mode analysis will

first reveal the spurious mode that exists in certain pressure update schemes, and we’ll then show that this

spurious modes will subsequently affect the order of convergence of the pressure but never the velocity. The

appropriate modifications that have to be made to such schemes are also analyzed. The following analysis is

conducted on the Stokes equations.

We conducted a survey in Chapter 2 on fractional step methods and revealed their intuitive consistency to a

second-order discretized system. We now go on a more rigorous path in section 3.2.1 to analyze the various

pressure update schemes using normal mode analysis and show that some pressure update schemes result in

spurious modes. In Section 3.1 we derive the “reference” solution for the Stokes equation. We then derive the

solutions for the semi-discrete Stokes equation (continuous in space, discrete in time) and compare it with

the reference solution to attain the expected order of convergence of the velocity and the pressure variables.

Consequently, the suitable update scheme, which will be of second-order convergence, will be used for our

Lagrange multipliers in the immersed boundary projection method.

Let us restate Brown et al.’s generalization of projection methods for the Stokes equations:

u∗ − un

∆t
+∇q =

ν

2
∇2(u∗ + un), (3.1)

where ∇q is an approximation to the pressure gradient ∇pn+1/2 used in finding the intermediate velocity.

The velocity satisfies ∇ · un+1 = 0 and is given by:

un+1 = u∗ −∆t∇φn+1 (3.2)

with a pressure update equation such as:

pn+1/2 = q + Lφn+1 (3.3)

20

We are going to illustrate the analysis on Bell, Colella and Glaz’s inconsistent pressure update first, named

here PmI:

pn+1/2 = pn−1/2 + φn+1

followed by using the corrected pressure update, named here PmII:

pn+1/2 = pn−1/2 + φn+1 − ν∆t

2
∇2φn+1,

such that q = pn−1/2 and L = I − ν∆t

2
∇2.

3.1 Reference Solution

In this section, we shall derive the solutions for the initial-boundary-value problem for the system given by

the partial differential equations Eq. (3.5). We will transform the Stokes equations and solve the system by

taking the limit as ∆t goes to zero using the relation:

z = es∆t, (3.4)

which relates the transformed variable for the discrete Laplace transform to that of the continuous Laplace

transform. Much of the material and notations in this section follows closely those in Strikerda’s book [12]

where an introduction to the use of transforms for estimating convergence of solutions for finite difference

schemes is given.

In the following sections, we will detail the following steps, that allow us to find the formal order of accuracy

of the studied methods:

Find Reference Solutions. Using Fourier and Laplace transforms, we solve the continuous Stokes equa-

tions. This is equivalent to using a normal mode ansatz of the form:

f(x, y, t) = f̂(x)eiωy+st.

Find Solutions Discretized in Time. The system of equations here is discrete in time but continuous in

space. For this case we perform a Fourier transform in space and a discrete Laplace transform in time

and attain the solutions by normal mode analysis.

Temporal Accuracy. By comparing the solutions discretized in time with the “true” solutions, we obtain

the temporal accuracy for the different projection methods.

21

3.1.1 Initial Boundary Value Problem

Re

Im

∞

Figure 3.1: Domain of the Initial Boundary Value problem.

We consider the unsteady Stokes problem in the right half plane where Ω = [0,∞) × [−π, π]. This half

plane analysis has been proven [10, 15] to be simpler than E and Liu’s [11] channel problem, without loss of

generality. We now come back to the completely continuous Stokes equations:
ut = −∇p+ ν∇2u,

∇ · u = 0,

x ∈ Ω,∀t ≥ 0, (3.5)

For the existence of a unique solution, we also specify a set of time-varying boundary conditions as follows:

u(0, y, t) = α(y, t) and v(0, y, t) = β(y, t). (3.6)

Taking the divergence of the Stokes equation and using the divergence-free condition, we arrive at an elliptic

equation for the pressure and the resulting system requires an additional boundary condition where the

divergence of the velocity equals zero at the boundaries. The need for this extra boundary condition and

its eventual equivalence to the original Stokes equations is derived and explained by Henshaw [33]. The new

system of equations becomes: 
ut = −∇p+ ν∇2u,

∇2p = 0,

x ∈ Ω,∀t ≥ 0, (3.7)

with boundary conditions:

u(0, y, t) = α, v(0, y, t) = β, ∇ · u = 0, x ∈ ∂Ω. (3.8)

22

We perform a Fourier transform in y and a Laplace transform in time such that:

L{∂t} → s,

F{∂y} → iω,

where s is the continuous Laplace transform variable and ω is the wave number or spatial frequency of a

wave. Transforming the system in Eq. (3.7), we get:

ν(−∂2
x + µ2)û = −∂xp̂,

ν(−∂2
x + µ2)v̂ = −iωp̂,

(−∂2
x + ω)p̂ = 0,

where µ2 = ω2 + s/ν and in this case µ is always the positive root.

Solving the ODE for p̂

The ordinary differential equation we need to solve is:

(−∂2
x + ω)p̂ = 0,

with the solution:

p̂ = Pe−|ω|x, (3.9)

where P is to be determined.

Solving the ODE for û

The ODE involving û is non-homogeneous. We will first solve for the homogeneous solution then use the

method of undetermined coefficients to determine the particular solution. The homogeneous solution is:

ûh = Ue−µx. (3.10)

We generate the finite family:

f1(x) = −∂xp̂ = |ω|Pe−|ω|x → {e−|ω|x} (3.11)

To find a particular solution up corresponding to f1, we tentatively seek it as a linear combination of terms

23

in Eq. (3.11):

ûp(x) = Ae−|ω|x, (3.12)

which we then substitute into the ODE to get:

ν(−Aω2e−|ω|x + µ2Ae−|ω|x) = |ω|Pe−|ω|x,

which implies that:

A =
|ω|

ν(µ2 − ω2)
P.

This gives us our particular solution up (with the still unknown parameter P) and the final solution for the

original ODE:

û = Ue−µx +
|ω|
s
Pe−|ω|x (3.13)

where we have used the fact that µ2 = ω2 + s/ν.

Solving the ODE for v̂

Using the same method as before, we find that:

v̂ = V e−µx − iω

s
Pe−|ω|x. (3.14)

Together, Eqs. (3.9), (3.13) and (3.14) form a complete solution to the system of equations (3.7) with the yet

undetermined coefficients U, V and P . To find these coefficients we will use the boundary conditions (3.8) in

the next section.

3.1.2 Coefficients (U, V, P)

The system we need to solve for the boundary conditions is given by:
1 0 |ω|/s

0 1 −iω/s

−µ iω 0




U

V

P

 =


α̂

β̂

0


This a simple 3× 3 system which we can invert using the matrix of cofactors C in the well-known formula:

A−1 =
1

det(A)
CT ,

24

which gives the following coefficients:

U =
ν(µ+ |ω|)

s

(
−|ω|α̂+ iωβ̂

)
,

V = − iν(µ+ |ω|)µ
s

(
− ω

|ω|
α̂+ iβ̂

)
,

P =
ν(µ+ |ω|)
|ω|

(
µα̂− iωβ̂

)
,

(3.15)

where ν is a known physical coefficient, µ and ω are given by the normal mode analysis and (α̂, β̂) are known

boundary conditions, so we have determined the three coefficients exactly.

3.1.3 Summary

We substitute the coefficients in Eq. (3.15) and get the functional form of the solutions:

û =
ν(µ+ |ω|)

s

(
−|ω|α̂+ iωβ̂

)
e−µx +

ν(µ+ |ω|)
s

(
µα̂− iωβ̂

)
e−|ω|x,

v̂ =
ν(µ+ |ω|)

s

(
iµω

|ω|
α̂+ µβ̂

)
e−µx − ν(µ+ |ω|)

s

ω

|ω|

(
iµα̂+ ωβ̂

)
e−|ω|x,

p̂ =
ν(µ+ |ω|)
|ω|

(
µα̂− iωβ̂

)
e−|ω|x.

(3.16)

3.2 Solutions for the Semi-discrete Stokes Equations

3.2.1 Spurious Modes

Eliminating u∗ using Eqs. (3.2), (3.1) gives:

un+1 − un

∆t
+∇φn+1 +∇q =

ν

2
∇2(un+1 + un) +

ν∆t

2
∇2∇φn+1. (3.17)

We next solve this equation using continuous Fourier (in space) and discrete Laplace (in time) transforms.

The Laplace transform of a discrete function vn on a grid with spacing ∆t is defined by:

ṽ(z) =
1√
2π

∆t

∞∑
n=−∞

z−nvn, for |z| ≥ 1, (3.18)

25

while the Fourier transform û(w) is defined by:

û(w) =
1√
2π

∫ ∞
−∞

u(y) eiwydy, for w ∈ R. (3.19)

We define f̂(z, w) to be both the Fourier transform and discrete Laplace transform of a function f(t, y). We

begin our analysis of Eq. (3.17) by taking the Fourier transform in the variable y and the discrete Laplace

transform in t. We also let:

q̂ = zn+1Q(z)φ̂, (3.20)

where Q(z) depends on q and L in Eq. (3.3). Using the z-transform table with the Fourier Transform, we

make the following transformations:

Z
{
un+1 − un

∆t

}
=

1

∆t

(
z − 1

z

)
û,

Z
{
F
{ν

2
∇2(un+1 + un)

}}
=
ν

2
(∂2
x − ω2)

(
z + 1

z

)
û,

Z
{
F
{
ν∆t

2
∇2∇φn+1

}}
=
ν∆t

2
(∂2
x − ω2)∇φ̂,

Z
{
F
{
∇φn+1

}}
= ∇φ̂,

Z {F {∇q}} = Q(z)∇φ̂.

(3.21)

According to Eq. (3.21), we have:

1

∆t

(
z − 1

z

)
û +∇φ̂+Q(z)∇φ̂ =

ν

2
(∂2
x − ω2)

(
z + 1

z

)
û +

ν∆t

2
(∂2
x − ω2)∇φ̂

[
2(z − 1)

ν∆t(z + 1)
+ (−∂2

x + ω2)

]
û = − z∆t

z + 1

(
−∂2

x + ω2 +
2

ν∆t

)
∇φ̂− 2zQ(z)

ν(z + 1)
∇φ̂

To simplify the notation, we introduce the following new variables:

µ2 = ω2 + ρ/ν,

ρ =
2(z − 1)

∆t(z + 1)
,

λ2 = ω2 +
2

ν∆t
,

(3.22)

which gives:

(−∂2
x + µ2)û = − z∆t

z + 1
(−∂2

x + λ2)∇φ̂− 2zQ(z)

ν(z + 1)
∇φ̂. (3.23)

26

This concludes the proof of Eq. (49) from Brown et al.’s Eq. (49). We continue by taking the divergence of

Eq. (3.23), whose left-hand side becomes zero as a consequence of the divergence free condition. This leaves:

z∆t

z + 1

(
−∂2

x + λ2
)
∇ · ∇φ̂+

2zQ(z)

ν(z + 1)
∇ · ∇φ̂ = 0

=⇒
(
−∂2

x + λ2 +
2Q(z)

ν∆t

)
∇2φ̂ = 0

=⇒
(
−∂2

x + λ2 +
2Q(z)

ν∆t

)
(−∂2

x + ω2)φ̂ = 0.

We now have a proof for Eq. (50) from Brown et al.. Furthermore, we can write the solution as φ̂ = φ̂1 + φ̂2,

where:

(−∂2
x + ω2)φ̂1 = 0, (3.24a)

(
−∂2

x + λ2 +
2Q(z)

ν∆t

)
φ̂2 = 0. (3.24b)

Brown mentions that φ̂1 contains the solution we expect to have while φ̂2 represents a spurious mode in the

potential φ̂, which should not appear in the velocity or the pressure. He then mentioned that û does not

contain this spurious mode. We will now try to formally prove these statements.

First, we further separate Eq. (3.24b) as follows:

Q(z)φ̂2 = −(−∂2
x + λ2)

ν∆t

2
φ̂2,

which we can then substitute into Eq. (3.23) to obtain:

(−∂2
x + µ2)û =− z∆t

z + 1

(
−∂2

x + λ2
)
∇φ̂1 −

z∆t

z + 1

(
−∂2

x + λ2
)
∇φ̂2

− 2zQ(z)

ν(z + 1)
∇φ̂1 +

2z

ν(z + 1)
(−∂2

x + λ2)
ν∆t

2
∇φ̂2.

Solving Eq. (3.24a), gives:

φ̂1 = A1e
−|ω|x =⇒ φ̂ = A1e

−|ω|x + φ̂2,

which allows us to exactly compute the velocity components:
û = Ue−µx +

2z(1 +Q(z))

ρ(z + 1)
|ω|A1e

−|ω|x,

v̂ = V e−µx − 2z(1 +Q(z))

ρ(z + 1)
iωA1e

−|ω|x.

(3.25)

27

We move on to verify the pressure update equations. From Eqs. (3.3) and (3.20) we have

p̂ = z1/2(Q(z) + L)φ̂. (3.26)

PmI Analysis

In PmI, q = pn−1/2 and L = I. Furthermore, by using Eq. (3.20) and (3.26), we can find that:

Q(z) =
1

z − 1
. (3.27)

Now that we have an explicit formula for Q(z), we can use it, together with Eq. (3.24b), to find an explicit

formula for the spurious mode φ2. Without going into the details, the solution is:

φ̂2 = A2e
−λ̃x, (3.28)

where:

λ̃2 = ω2 +
2z

ν∆t(z − 1)
.

Since φ̂2 6= 0, we have:

p̂ =
z3/2

z − 1

(
A1e

−|ω|x +A2e
−λ̃x

)
. (3.29)

which contains the spurious mode.

PmII Analysis

In PmII, we have:

q = pn−1/2 and L = I − ν∆t

2
∇2φ̂,

where the L operator now contains the correction. Since p̂ = z1/2(Q(z) + L)φ̂, we will first look to find an

explicit formula for Lφ̂:

Lφ̂ =

(
I − ν∆t

2
∇2

)
φ̂

=
ν∆t

2
(−∂2

x + λ2)φ̂, (3.30)

where λ is given in (3.22). By using the previous result and Eqs. (3.20) and (3.26), we get that:

Q(z) =
I − ν∆t

2 ∇
2

z − 1

28

or

Q(z)φ̂ =
ν∆t

2(z − 1)
(−∂2

x + λ2)φ̂. (3.31)

At this point, we can use Eq. (3.24b) and the previous result in Eq. (3.31) to get an explicit solution for φ̂2,

which is:

φ̂2 = A2e
−λx. (3.32)

From Eq. (3.26), we have that:

p̂ = z1/2 (Q(z) + L) φ̂

= z1/2

(
Lφ̂
z − 1

+ Lφ̂

)

=
z3/2

z − 1

ν∆t

2
(−ω2A1e

−|ω|x + λ2A1e
−|ω|x

���
���−λ2A2e
−λx +���

��
λ2A2e

−λx),

where we can clearly see, the improved pressure update formula in PmII has its spurious mode φ̂2 canceled.

This gives a final solution:

p̂ =
z3/2

z − 1
A1e

−|ω|x. (3.33)

3.2.2 Application of Boundary Conditions

We’ll now follow closely the proofs for Brown et al.’s time-varying boundary conditions and include a detailed

derivation of each and every point made in his paper [15]. As stated in (3.8), the boundary conditions are:

u∗ = α, φx = 0, v∗ = β + ∆tφ̃y, and ux + vy = 0,

where φ̃ is an approximation of φn+1 with varying orders of accuracy. To approximate φn+1, we use an

expansion in ∆t:

φ̃ = φ̃0 + ∆tφ̃1 + ∆t2φ̃2 + · · · ,

where the terms up to second-order are:

Zeroth Order. The zeroth order approximation is trivially:

φ̃ = 0.

First Order. To first-order, we have:

φ̃ = φn,

because φn+1 − φn = O(∆t), so φ̃ ≈ φn+1 ≈ φn to first-order.

29

Second Order . To second-order, we have:

φ̃ = 2φn − φn−1,

from a second-order approximation of ∂tφ.

We then perform Fourier and discrete Laplace transform on the boundary conditions,

û = α̂, φ̂x = 0, v̂ = β̂ − iω∆tB(z)φ̂ and ûx + iωv̂ = 0, (3.34)

where B(z) is a function that depends on choice of the approximation φ̃ and can be determined by applying

a Laplace transform on the consecutive approximations as follows:

Zeroth order.

Z{F{φn+1}} = φ̂ =⇒ B(z) = 1.

First order.

Z{F{φn+1 − φn}} =

(
z − 1

z

)
φ̂ =⇒ B(z) =

z − 1

z
.

Second order.

Z{F{φn+1 − 2φn + φn−1}} =
(z − 1)2

z2
φ̂ =⇒ B(z) =

(z − 1)2

z2
.

3.2.3 Coefficients (U, V,A1, A2)

In this section, we would like to use the appropriate boundary conditions obtained in the previous section in

an attempt to find the coefficients (U, V,A1) for the general solutions in (3.25) and A2 from:

φ̂ = A1e
−|ω|x +A2e

−γx, (3.35)

where

γ2 = ω2 +
2

ν∆t
F (z).

and F (z) depends on whether we are looking at the PmI or the PmII pressure update scheme.

Finding A1

Using Eq. (3.25) and the above boundary conditions,

û = α̂ and û = Ue−µx +R(z)
|ω|
ρ
A1e

−|ω|x,

30

we get:

α̂ = U +R(z)
|ω|
ρ
A1. (3.36)

We will now do a series of substitution and try to isolate a single coefficient with which we can express the

others. First, from the boundary condition φ̂x = 0, we get the relationship A2 = −|ω|A1/γ. We substitute

this into φ̂ = A1e
−|ω|x +A2e

−γx such that φ̂ is written only in terms of A1. We then substitute this new φ̂

into the boundary condition v̂ = β̂− iω∆tB(z)φ̂ such that v̂ is also expressed only in terms of one coefficient,

namely A1. Following that, we substitute this new v̂ into the third boundary condition ûx + iωv̂ = 0. Now

that we have a tentative plan to derive the coefficient A1, we will look in detail at each step.

First, we substitute A2 = −|ω|A1/γ into Eq. (3.35):

φ̂ = A1 −
|ω|A1

γ
. (3.37a)

Then, we substitute Eq. (3.37a) into v̂ = β̂ − iω∆tB(z)φ̂:

v̂ = β̂ − iω∆tB(z)

(
A1 −

|ω|A1

γ

)
. (3.37b)

Finally, we substitute Eq. (3.37b) into ûx + iωv̂ = 0:

ûx︷ ︸︸ ︷
−µU − |ω|R(z)

|ω|
ρ
A1 + iω

v̂︷ ︸︸ ︷(
β̂ − iω∆tB(z)

(
A1 −

|ω|A1

γ

))
= 0

µU +R(z)
ω2

ρ
A1 − ω2∆tB(z)

(
A1 −

|ω|A1

γ

)
= iωβ̂

µU + ω2A1

[
R(z)

ρ
−∆tB(z)

(
1− |ω|

γ

)]
= iωβ̂

which, by substituting γ2 = ω2 +
2

ν∆t
F (z), and ∆t =

2F (z)

ν(γ2 − ω2)
, gives:

µU + ω2A1

[
R(z)

ρ
−
(

2F (z)B(z)

ν(γ2 − ω2)

)(
γ − |ω|
γ

)]
= iωβ̂

µU + ω2A1

[
R(z)

ρ
− 2F (z)B(z)

νγ(γ + |ω|)

]
= iωβ̂ (3.37c)

31

Recall that in Eq. (3.36), α̂ = U +R(z)
|ω|
ρ
A1. We substitute U = α̂−R(z)

|ω|
ρ
A1 into Eq. (3.37c) to get:

µα̂− µR(z)
|ω|
ρ
A1 +A1

[
ω2R(z)

ρ
− 2ω2F (z)B(z)

νγ(γ + |ω|)

]
= iωβ̂

A1

[
1 +

2ρ|ω|F (z)B(z)

R(z)(µ− |ω|)νγ(γ + |ω|)

]
=

ρ(µα̂− iωβ̂)

R(z)|ω|(µ− |ω|)
(3.38)

Recall that µ2 = ω2 + ρ/ν. Substitute ρ = ν(µ2 − ω2) to get:

A1

[
1 +

2|ω|ν(µ2 − ω2)F (z)B(z)

R(z)(µ− |ω|)νγ(γ + |ω|)

]
=
ν(µ2 − ω2)(µα̂− iωβ̂)

R(z)|ω|(µ− |ω|)

A1 =
ν(µ+ |ω|)(µα̂− iωβ̂)

R(z)|ω|

[
1 + C

F (z)B(z)

R(z)

]−1

(3.39)

where C =
2|ω|(µ+ |ω|)
γ(γ + |ω|)

. So, Eq. (3.39) gives us an explicit formula for A1.

Finding U

From Eq. (3.36), α̂ = U +R(z)
|ω|
ρ
A1. We see that U = α̂−R(z)

|ω|
ρ
A1. We’ll substitute A1 into this equation

to find coefficient U :

U = α̂−R(z)
|ω|
ρ
A1

=

[
ρα̂− ν(µ+ |ω|)(µα̂− iωβ̂)

ρ
+ α̂C

F (z)B(z)

R(z)

][
1 + C

F (z)B(z)

R(z)

]−1

(3.40)

Again recall that µ2 = ω2 + ρ/ν. Substitute ρ = ν(µ2 − ω2) only to the numerator.

=

[
ν(µ2 − ω2)α̂− ν(µ+ |ω|)(µα̂− iωβ̂)

ρ
+ α̂C

F (z)B(z)

R(z)

] [
1 + C

F (z)B(z)

R(z)

]−1

U =

[
ν(µ+ |ω|)(iωβ̂ − |ω|α̂)

ρ
+ α̂C

F (z)B(z)

R(z)

] [
1 + C

F (z)B(z)

R(z)

]−1

. (3.41)

32

Finding V

From the transformed bc in Eq. (3.34) where ûx + iωv̂ = 0, and substitute the solutions for û and v̂ in

Eq. (3.25). We get:

−µUe−µx − |ω|R(z)
|ω|
ρ
A1e

−|ω|x + iω

(
V e−µx −R(z)

iω

ρ
A1e

−|ω|x
)

= 0

=⇒ V = − iµ
ω
U (3.42)

where U is already found in Eq. (3.41) and for simplicity, we’re not going to state it in full.

Finding A2

We start from Eq. (3.35) and use bc in Eq. (3.34) where φ̂x = 0 ,

φ̂ = A1e
−|ω|x +A2e

−γx

φ̂x = −|ω|A1 − γA2 ≡ 0

A2 =
−|ω|
γ

A1 (3.43)

where A1 is already found in Eq. (3.39) and for simplicity, we’re also not going to state it in full.

3.2.4 Summary

To summarize, we restate the solutions in Eqs. (3.25) and (3.35) for the Stokes equations discretized in time.

û = Ue−µx +R(z)
|ω|
ρ
A1e

−|ω|x,

v̂ = V e−µx −R(z)
iω

ρ
A1e

−|ω|x,

φ̂ = A1e
−|ω|x +A2e

−γx,

(3.44)

where

R(z) =
2z(1 +Q(z))

(z + 1)
and γ2 = ω2 +

2

ν∆t
F (z).

33

The coefficients (U, V,A1 and A2) are in Eqs. (3.41), (3.42), (3.39) and (3.43) respectively. They are restated

below: 

U =

[
ν(µ+ |ω|)(iωβ̂ − |ω|α̂)

ρ
+ α̂C

F (z)B(z)

R(z)

] [
1 + C

F (z)B(z)

R(z)

]−1

V = − iµ
ω
U

A1 =
ν(µ+ |ω|)(µα̂− iωβ̂)

R(z)|ω|

[
1 + C

F (z)B(z)

R(z)

]−1

A2 =
−|ω|
γ

A1

(3.45)

where

C =
2|ω|(µ+ |ω|)
γ(γ + |ω|)

.

Note that the choice of q and L in the pressure update formula determines F (z) and R(z), while B(z) is

determined by the accuracy of boundary conditions used.

3.3 Order of Accuracy

We first compare the coefficient U in Eq. (3.41) with the reference solution Eq. (3.15). We noticed that the

first term differs in terms of denominator:

Reference U :
ν(µ+ |ω|)

s

(
−|ω|α̂+ iωβ̂

)
. Discretized U :

ν(µ+ |ω|)(iωβ̂ − |ω|α̂)

ρ
.

We need to determine the order of accuracy of ρ.

ρ =
1

∆t

2(z − 1)

(z + 1)
.

Recall that in Eq. (3.4), z = es∆t, so:

ρ =
1

∆t

2(es∆t − 1)

(es∆t + 1)
,

which, using a MacLaurin series expansion for es∆t, gives:

ρ =
1

∆t

(
s∆t− s3∆t3

12
+O(s5∆t5)

)
=⇒ ρ = s+O(s3∆t2).

34

Therefore, this first term is second-order as the first error term in denominator is O(s3∆t2) compared to

reference solution. One can also prove that since ρ = s+O(s3∆t2), this leads to µ = µ+O(s2∆t2). In any

case, going to the second term

C
F (z)B(z)

R(z)

gives that this particular term has to be O(∆t2). However, the denominator of C is γ(γ + |ω|), which is not

easy to analyze with respect to its order. We take advantage of the fact that γ(γ+ |ω|) ≥ γ2 = ω2 +
2

ν∆t
F (z),

and analyze γ2 instead. Therefore,

C
F (z)B(z)

R(z)
≤ 2|ω|(µ+ |ω|)

γ2

F (z)B(z)

R(z)

≤ 2|ω|(µ+ |ω|)
ω2ν∆t+ 2F (z)

ν∆t

F (z)B(z)

R(z)

≤ 2|ω|ν(µ+ |ω|) ∆tF (z)B(z)

R(z)[2F (z) + ω2ν∆t]
.

Therefore it suffices to show that:

F (z)B(z)

R(z)[2F (z) + ω2ν∆t]
∼ O(∆t).

3.3.1 PmI Analysis

We previously derived Q(z) = 1/(z − 1) in Eq. (3.27) for PmI. Therefore,

R(z) =
2z(1 +Q(z))

(z + 1)
= O(∆t−1). (by MacLaurin series expansion)

We also recall that from Eq. (3.28) that γ2 = ω2 +
2

ν∆t

z

(z − 1)
, such that:

F (z) =
z

z − 1
= O(∆t−1). (by MacLaurin series expansion)

and hence:

B(z)F (z)

R(z)[2F (z) + ω2ν∆t]
∼ B(z)O(∆t).

Therefore, B(z) = O(1) which means that the zeroth order boundary condition v∗ = β (corresponding to

35

φ̃ = 0) can be used. We recall Eq. (3.29):

p̂ =
z3/2

z − 1
(φ̂1 + φ̂2)

=
z3/2

z − 1
φ̂1 +

z3/2

z − 1
φ̂2

∼ O
(
z3/2

z − 1
A1 +

z3/2

z − 1
A2

)

Order of Accuracy for the Pressure

Lets first prove that
z3/2

z − 1
A1 ∼ O(∆t2). Since we’ve already proven earlier that U = O(∆t2), from Eq. (3.36)

we have:

α̂ = U︸︷︷︸
O(∆t2)

+ R(z)︸︷︷︸
O((s∆t)−1)

|ω|
ρ
A1

=⇒ A1 = O(s2∆t3)

=⇒ z3/2

z − 1
A1 ∼ O(∆t2). (3.46)

Let’s prove that
z3/2

z − 1
A2 ∼ O(ν∆t). Starting from γ2 = ω2 +

2

ν∆t
F (z) and since F (z) = O((s∆t)−1), we

have:

γ2 = ω2 +
2

ν∆t
F (z)

...

γ = λ+O (ν∆t)︸ ︷︷ ︸
λ̃

.

We notice that A2 = −|ω|A1/γ and hence A2 ∼ O(γ) + O(A1). Since γ has a lower order, the order of

accuracy of pressure’s spurious mode has a leading error term of order γ.

z3/2

z − 1
A2 ∼ O(ν∆t) (3.47)

So the final order of accuracy for the pressure is:

p̂ = O(ν∆t). (3.48)

Pressure is only expected to be first-order in time with PmI due to the presence of spurious mode A2 in p̂.

36

Order of Accuracy for the Velocity

Comparing the coefficients of U between the discretized system and the reference solution we see that for

either PmI or PmII, the velocity are always O(∆t2). This is further confirmed by an earlier analysis that û

do not contain the spurious modes in pressure regardless of pressure update formula. So the formal order of

the velocity is:

û = O(∆t2). (3.49)

Order of Accuracy for the Boundary Conditions

Since B(z) ∼ O(1), zeroth order accurate boundary conditions are permitted. This means that we are allowed

to use:

v∗ = β =⇒ φ̃ = 0. (3.50)

3.3.2 PmII Analysis

Previously, in PmII’s analysis of its pressure modes, we observed the following in Eq. (3.31):

Q(z)φ̂ =
Lφ̂
z − 1

,

Q(z) =
L

z − 1
,

noting that L is not a function of the discrete Laplace variable, z

Q(z) =
1

z − 1

which is the same as PmI. This leads to the same R(z):

R(z) =
2z(1 +Q(z))

z + 1

=
2z2

z2 − 1
∼ O((s∆t)−1).

We recall that in PmII γ = λ such that F (z) = 1, so:

B(z)F (z)

R(z)[2F (z) + ω2ν∆t]
∼ B(z)O(∆t).

Again, B(z) = O(1) which means that the zeroth order boundary condition v∗ = β can be used. In this case,

37

both the velocity and the pressure are expected to converge to second-order in time. Zeroth order boundary

conditions are also permitted.

3.3.3 Comments on Higher Order Boundary Conditions

It might be curious to the reader why are boundary conditions with higher accuracy introduced in the scheme.

This is because it can be proven [15] that Kim and Moin’s [13] fractional step method [13] requires at least

first-order accurate boundary conditions (i.e. v∗ = β + ∆tφ̃y, where φ̃ = φn) in order for the pressure to be

second-order in time. Many others [10, 11] have proven that using the boundary conditions proposed by Kim

and Moin leads to first-order accurate pressure updating. Brown et al. [15] saw that the pressure recovery

equation in Kim and Moin’s paper should be thought of as the time-centered pressure in Eq. (1.16) in order

for global second-order accuracy to be achieved. Even though the analysis is not stated in this report, we

did follow the necessary steps that led up to Brown’s conclusions.

38

Chapter 4

Numerical Tests

We solve the Navier-Stokes equations using Crank-Nicolson for both the convective and the viscous terms,

with Bell, Colella and Glaz’s [8] pressure update scheme:

M
un+1 − un

∆t
+Nun+1 +Gpn+1/2 =

ν

2
L(un+1 + un) + mbc, (4.1)

Dun+1 = cbc, (4.2)

where we refer to Beam-Warming [17] and Eq. (4.17) for the linearization of the convective term Nun+1. In

this case, the fractional step method can be written as:

Step 1: Solve for the intermediate velocity u∗:

Au∗ = r + mbc, (4.3)

where

A =
1

∆t
M +N − ν

2
L, (4.4)

r =

[
1

∆t
M +

ν

2
L

]
un −Gpn−1/2. (4.5)

Step 2: Perform the projection to obtain the divergence-free velocity un+1:

un+1 = u∗ −∆tM−1Gφn+1, (4.6)

where

∆tDM−1Gφn+1 = Du∗ + cbc. (4.7)

Step 3: Pressure update:

pn+1/2 = pn−1/2 + φn+1. (4.8)

Since Step 1 solves for the intermediate velocity which lies on the face centers, it is solved on the staggered

grid. Step 2, which is the Poisson equation, solves for the auxiliary pressure variable φn+1, which lies on the

39

cell centers. Therefore solving for Eq. (4.7) involves inverting a cell-centered Laplace operator.

The duration of this research project did not allow us to stretch our numerical tests to the extent where

we could test the results of our normal mode analysis in a more rigorous manner that Brown et al. [15] did.

Nevertheless, a Navier-Stokes solver was implemented with the first-order pressure update scheme proposed

by Bell, Colella and Glaz [8]. As will be seen, our numerical results shows Bell, Colella and Glaz’s pressure

update scheme to be global second-order. This is discordant with the results obtained in the normal mode

analysis which predicted this pressure update scheme to be first-order in time. The problem lies in the

fact that this simple numerical test conducted in a periodic box is unable to show the “true colors” of this

first-order pressure update scheme. We chose this numerical test because it is a classic test conducted by

Perot [4]. K.Kim et al. [7] also used the same scheme and numerical tests and achieved results of global

second-order accuracy in a similar periodic test. Essentially, this test problem was not able to reveal the

spurious mode in the pressure update scheme (revealed in Section 3). Brown et al. was able to come up with

test problems that reveals the problematic nature of Bell, Colella and Glaz’s inconsistent pressure update

scheme and they matched well with the results of the normal mode analysis in Section 3.

4.1 Discrete Operators

We use Morinishi’s [2] operators and we propose to include a mesh element’s surface areas and volume directly

so that non-uniform meshes can be handled seamlessly.

A1

A2

Figure 4.1: Definition of area vectors

We will generally refer the reader to [2] for an introduction to the notation used in this chapter. The first

operator we will introduce is the zeroth order geometric surface law, written as:

(GSL)i =
δAi
δξi

, (4.9)

40

where Ai denotes the area of a face perpendicular to the i-th axis and ξi denote the logical coordinates.

Underlying this formula is the choice we made to have a unitary logical mesh spacing ∆ξi = 1 between two

mesh points. We also note that the geometric surface law (or discrete divergence theorem) has to be satisfied

in every cell: ∫
∂Ω

n̂i dS ≡
∑
i

δAi
δξi

= 0 =⇒ (GSL)i = 0. (4.10)

Discrete Continuity Operator (On a Regular Grid)

Using Eq. (4.10), we define our continuity operator as follows:

(Cont.)i =
∑
i

δAiui
δξi

= 0. (4.11)

We also note that Eqs. (4.10) and (4.11) remain true in the context of non-uniform cells. An exercise to

test the conservation properties of our viscous and convective operators are detailed in later sections 4.1.1

and 4.1.2, respectively. Higher order conservation properties in the staggered grid system have already been

proven by Morinishi et al. [2].

4.1.1 Viscous Term

The symmetric gradient tensor of a vector is defined as:

eij =
1

2Vij

δAiijuj
δξi

+
δAj

i
j

uj
δξj

 ,

where the notation A
i

denotes an interpolation along the i-th axis of the given quantity. An equivalent form

is:

eij =
1

2Vij

(
Ai

j δuj
δξi

+Aj
i δui
δξj

+ uj(GSL)
j

i

i

+ ui(GSL)
i

j

j)
, (4.12)

which can be proved using the geometric surface law defined before. We also define the divergence of a

discrete rank 2 tensor as:

[viscous]i ≡
∑
j

(
δAj

i
eij

δξj

)
. (4.13)

41

Proof of Conservation Properties

We assume the fluid to be Newtonian with a stress tensor defined by τij = 2µeij + λ(��>
0

∇·u)δij . We then take

the dot product between the stress tensor and uj to get:

uj
δAi

j
τij

δξi

j

= uj
δ

δξi

(
2µ

Ai
j

2Vij

(
Ai

j δuj
δξi

+Aj
i δui
δξj

))j

=
δ

δξi

(
2µuj

iAi
j
eij

)j
︸ ︷︷ ︸
conservative term

− µ

2Vij

(
Ai

j δuj
δξi

+Aj
i δui
δξj

)2
i
j

︸ ︷︷ ︸
signed negative term

. (4.14)

We can see that we have obtained a conservative term (in the sense that it represents a divergence of a

certain quantity) and a signed (negative) term for first portion of τij . This negative (signed) term in the

discrete kinetic energy budget is a sink term which is beneficial for stability.

4.1.2 Convective Term

We derive the linearization of convective term as presented by Beam and Warming [17]. Such a linearization

technique results in second-order temporal accuracy as shown below. The linearization is obtained from a

Taylor series expansion as follows:

un+1
i un+1

j = uni u
n
j + ∆t

∂

∂t
(uni u

n
j) +O(∆t2)

= uni u
n
j + ∆t

(
unj
∂uni
∂t

+ uni
∂unj
∂t

)
+O(∆t2)

= uni u
n
j + ∆t

(
unj
un+1
i − uni

∆t
+ uni

un+1
j − unj

∆t
+O(∆t)

)
+O(∆t2)

= uni u
n
j + unj u

n+1
i − uni unj + uni u

n+1
j − uni unj +O(∆t2)

= un+1
i unj + uni u

n+1
j − uni unj +O(∆t2). (4.15)

Next, we apply the Crank-Nicolson treatment of convective terms as presented by Kim et al. [7] and linearize

42

it using Eq. (4.15):

1

2
H(un+1) +

1

2
H(un) =

1

2

∂

∂xj
(un+1
i un+1

j) +
1

2

∂

∂xj
(uni u

n
j)

=
1

2

∂

∂xj
(un+1
i unj + uni u

n+1
j − uni unj) +

1

2

∂

∂xj
(uni u

n
j)

=
1

2

∂

∂xj
(un+1
i unj + uni u

n+1
j). (4.16)

We express Eq. (4.16) as a linear convective operator N such that:

Nun+1 =
1

2
H(un+1) +

1

2
H(un). (4.17)

In the numerical tests presented in later sections, we use a divergence form [2] to discretize Eq. (4.16) where

∂

∂xj
(uiuj) '

∑
j

δAjuj
i
ui
j

δξj
. To illustrate this better, the N operator that results from Eq. (4.17) for a 3-D

case is as follows:

1

2

(
2
δA1un

1

δξ1
+
δA2vn

1

δξ2
+
δA3wn

1

δξ3

)
1

2

δA2
1
un

2

δξ2

1

2

δA3
1
un

3

δδξ3

1

2

δA1
2
vn

1

δξ1

1

2

(
δA1un

2

δξ1
+ 2

δA2vn
2

δξ2
+
δA3wn

2

δξ3

)
1

2

δA3
2
vn

3

δξ3

1

2

δA1
3
wn

1

δξ1

1

2

δA2
3
wn

2

δξ2

1

2

(
δA1un

3

δξ1
+
δA2vn

3

δξ2
+ 2

δA3wn
3

δξ3

)



Proof of Conservation Properties

We take the dot product of ui with the ith component of convective discretization and use Morinishi’s identity

in Eq. (42) from his paper [2], to get:

ui
∑
j

δujAj
i
ui
j

δξj
=
∑
j

[
1

2

δujAj
i · ũiuij

δξj
+
uiui

2

δ1ujAj
i

δξj

]

=
∑
j

[
δujAj

i · ũiuij/2
δξj

]
︸ ︷︷ ︸

conservative term

+
uiui

2
(Cont.)

i

j (4.18)

Although (Cont.)j = 0, we have proven that the divergence form of the convective term is fully conservative

in the energy equation, we also note that the resulting Beam-Warming linearization applied to the convective

term is not skew-symmetric, and hence is not energy-conserving.

43

4.1.3 Approximate Factorization

Details in the implementation of Step 1 of the fractional step method will be explained here. We employ

the approximate factorization used by Kim et al. [7] to avoid the inversion of the large and sparse matrix A

defined in Eq. (4.4). The use of the “delta form” ensures a second-order temporal accuracy in the resulting

approximate factorization as we will see. We first subtract Aun on both sides of Eq. (4.3):

Aδu∗ = −Aun + r + mbc ≡ R, (4.19)

where:

δu∗ = u∗ − un. (4.20)

We recall that A =
1

∆t
M +N − ν

2
L. We replace M ≡ N − ν

2
L such that Eq. (4.19) in the 3-D case is:


δV

1
+ ∆tM11 ∆tM12 ∆tM13

∆tM21 δV
2

+ ∆tM22 ∆tM23

∆tM31 ∆tM32 δV
3

+ ∆tM33




δu∗1

δu∗2

δu∗3


=


∆tR1

∆tR2

∆tR3


(4.21)

We perform an approximate factorization of Eq. (4.21), which preserves second-order temporal accuracy. This

LU approximation together with the “delta form” proposed by Kim et al. results in O(∆t2) errors.
δV

1
+ ∆tM11 0 0

∆tM21 δV
2

+ ∆tM22 0

∆tM31 ∆tM32 δV
3

+ ∆tM33




I ∆tM12/δV

1
∆tM13/δV

1

0 I ∆tM23/δV
2

0 0 I




δu∗1

δu∗2

δu∗3


=


∆tR1

∆tR2

∆tR3


One can simply multiply the factorized LU approximation matrices and compare the result with the original

matrix in Eq. (4.21) to arrive at the following second-order temporal error:

O(∆t2) =


∆t2M11M12δu

∗
2/δV

1
+ ∆t2M11M13δu

∗
3/δV

1

∆t2M21M12δu
∗
2/δV

1
+ ∆t2M21M13δu

∗
3/δV

1
+ ∆t2M22M23δu

∗
3/δV

2

∆t2M31M12δu
∗
2/δV

1
+ ∆t2M31M13δu

∗
3/δV

1
+ ∆t2M32M23δu

∗
3/δV

2


(4.22)

The following are the steps used in solving for u∗ in Eq. (4.3). Note that the intermediate term δu∗∗ needs

44

to be introduced due to the nature of the LU approximation.(
δV

1
+ ∆tM11

)
δu∗∗1 = ∆tR1 (4.23a)

(
δV

2
+ ∆tM22

)
δu∗∗2 = ∆tR2 −∆tM21δu

∗∗
1 (4.23b)

(
δV

3
+ ∆tM33

)
δu∗3 = ∆tR3 −∆tM31δu

∗∗
1 −∆tM32δu

∗∗
2 (4.23c)

δu∗2 = δu∗∗2 −
(

∆tM23/δV
2
)
δu∗3 (4.23d)

δu∗1 = δu∗∗1 −
(

∆tM12/δV
1
)
δu∗2 −

(
∆tM13/δV

1
)
δu∗3 (4.23e)

u∗i = uni + δu∗i , (i = 1, 2, 3) (4.23f)

Kim et al.’s [7] approximate factorization for solving the intermediate velocity u∗ results in the inversion of

only the diagonal submatrices instead of the original matrix A, which also contains off-diagonal terms and is

considerably more difficult to invert. This is a significant reduction in computational cost and memory since

A is usually large and sparse and the inversion has to be done once at every time-step.

4.2 Stokes Equations

For a first test, we take a case where the convective terms are identically zero and the velocity vector is

initialized with the following components:

u =



sin

(
2πx

Lx

)
cos

(
2πy

Ly

)
sin

(
2πz

Lz

)

sin

(
4πx

Lx

)
sin

(
2πy

Ly

)
sin

(
2πz

Lz

)

cos

(
4πx

Lx

)
cos

(
4πy

Ly

)
cos

(
2πz

Lz

)


. (4.24)

4.2.1 Temporal Convergence

Temporal convergence is carried out on a 323 uniform grid with varying computational time steps. The

reference “solution” is obtained by using a sufficiently fine time step of ∆t = 10−5. Pressure terms are

evaluated at n+1/2 to reproduce the order of temporal accuracy presented in Kim’s paper [7]. Measurements

45

are made at T = 0.1.

Table 4.1: Stokes equations: Temporal errors for the u velocity.

∆t L1 L2 L∞

0.1E−2 1.06173E-06 1.45226E-06 4.11000E-06

0.5E−3 2.65836E-07 3.63235E-07 1.02000E-06

0.25E−3 6.62966E-08 9.04434E-08 2.70000E-07

Order 2.00 2.00 1.96

Table 4.2: Stokes equations: Temporal errors for the v velocity.

∆t L1 L2 L∞

0.1E−2 3.66445E-07 5.03251E-07 1.44600E-06

0.5E−3 9.15660E-08 1.25590E-07 3.66000E-07

0.25E−3 2.42005E-08 3.28765E-08 1.03000E-07

Order 1.96 1.96 1.90

Table 4.3: Stokes equations: Temporal errors for the w velocity.

∆t L1 L2 L∞

0.1E−2 6.94010E-07 9.50947E-07 2.66900E-06

0.5E−3 1.73817E-07 2.38159E-07 6.67000E-07

0.25E−3 4.30412E-08 5.89074E-08 1.66000E-07

Order 2.00 2.00 2.00

Table 4.4: Stokes equations: Temporal errors for the pressure.

∆t L1 L2 L∞

0.1E−2 1.25663E-06 1.71432E-06 4.80727E-06

0.5E−3 3.08830E-07 4.21676E-07 1.19330E-06

0.25E−3 7.68541E-08 1.04561E-07 3.14380E-07

Order 2.01 2.01 1.96

4.2.2 Spatial Convergence

Method of Manufactured Solutions (MMS)

It is not always easy to isolate the purely spatial or temporal error for a numerical scheme. However, we

will attempt to isolate the spatial errors by use of the Method of Manufactured Solutions. Neglecting higher

order terms, discretization error for any scheme can be written as:

‖εht

hx
‖ = cxh

p
x + cth

q
t , (4.25)

46

where p and q are the orders of convergence in space and time, respectively, while cx and ct are constant

coefficients that do not depend on the grid spacing or time step. Presenting the case for spatial refinement

from mesh configuration of 16 to 64 with a refinement factor of 1/2 in space and keeping ∆t = constant, the

errors are as follows:

‖εht
16‖ = cxh

p
16 + cth

q
t , (4.26)

‖εht
32‖ = cxh

p
32 + cth

q
t , (4.27)

‖εht
64‖ = cxh

p
64 + cth

q
t . (4.28)

We notice that cth
q
t is a constant term that can be eliminated by doing some arithmetic between the equations.

We finally get the following formula for determining the spatial order:

p =

ln

(
‖εht

r2hx
‖ − ‖εht

rhx
‖

‖εht

rhx
‖ − ‖εht

hx
‖

)
ln(r)

, (4.29)

where r is the constant refinement factor and (ht, hx) are the time step and grid spacing at the coarsest level.

The following convergence tests makes use of Eq. (4.29) with a refinement factor r = 1/2 and a constant

time step of ∆t = 0.1E−2. Measurements are made at T = 0.1 as in [4, 14, 7].

Table 4.5: Stokes equations: Spatial errors for the u velocity.

Mesh L1 L2 L∞

163 3.88652E-03 5.33826E-03 1.94406E-02

323 9.54173E-04 1.31298E-03 4.98601E-03

643 2.37275E-04 3.26906E-04 1.26161E-03

Order 2.01 2.01 1.97

Table 4.6: Stokes equations: Spatial errors for the v velocity.

Mesh L1 L2 L∞

163 7.66764E-03 1.05784E-02 2.77226E-02

323 1.92405E-03 2.61358E-03 7.32688E-03

643 4.79762E-04 6.51415E-04 1.85406E-03

Order 1.99 2.01 1.95

47

Table 4.7: Stokes equations: Spatial errors for the w velocity.

Mesh L1 L2 L∞

163 1.01922E-02 1.36347E-02 3.69281E-02

323 2.47951E-03 3.35161E-03 9.78369E-03

643 6.18401E-04 8.34346E-04 2.46126E-03

Order 2.02 2.01 1.95

Table 4.8: Stokes equations: Spatial errors for the pressure.

Mesh L1 L2 L∞

163 6.75709E-02 8.53005E-02 2.46821E-01

323 1.64249E-02 2.10507E-02 6.66404E-02

643 4.09184E-03 5.24921E-03 1.68809E-02

Order 2.02 2.01 1.93

4.3 Navier-Stokes Equations

We will now proceed to test the full Navier-Stokes equations. The velocity field is initialized to the following

divergence-free field:

u =



cos

(
2πx

L

)
sin

(
2πy

L

)
sin

(
2πz

L

)

sin

(
2πx

L

)
cos

(
2πy

L

)
sin

(
2πz

L

)

−2 sin

(
2πx

L

)
sin

(
2πy

L

)
cos

(
2πz

L

)


(4.30)

where L is the size of the domain in x, y and z.

4.3.1 Temporal Convergence

Temporal convergence is carried out on 323 uniform grid with varying computational time steps. The reference

“solution” is obtained by again by choosing a sufficiently fine time step of ∆t = 10−5. Measurements are made

at T = 0.1. The following results are obtained using the Beam-Warming linearization for the convective

terms.

48

Table 4.9: Navier-Stokes equations: Temporal errors for the u velocity.

∆t L1 L2 L∞

0.1E−2 6.70941E-07 9.17701E-07 2.59000E-06

0.5E−3 1.68593E-07 2.29564E-07 6.50000E-07

0.25E−3 4.23217E-08 5.73956E-08 1.70000E-07

Order 1.99 1.99 1.96

Table 4.10: Navier-Stokes equations: Temporal errors for the v velocity.

∆t L1 L2 L∞

0.1E−2 2.68110E-06 3.67270E-06 1.03000E-05

0.5E−3 6.71190E-07 9.18492E-07 2.58000E-06

0.25E−3 1.67915E-07 2.29559E-07 6.50000E-07

Order 1.99 1.99 1.99

Table 4.11: Navier-Stokes equations: Temporal errors for the w velocity.

∆t L1 L2 L∞

0.1E−2 3.35443E-06 4.59075E-06 1.29300E-05

0.5E−3 8.43181E-07 1.14947E-06 3.28000E-06

0.25E−3 2.10828E-07 2.87176E-07 8.20000E-07

Order 1.99 1.99 1.98

Table 4.12: Navier-Stokes equations: Temporal errors for the pressure.

∆t L1 L2 L∞

0.1E−2 3.55313E-06 4.84519E-06 1.41653E-05

0.5E−3 8.76065E-07 1.19415E-06 3.62238E-06

0.25E−3 2.21976E-07 2.99268E-07 9.64810E-07

Order 2.00 2.00 1.93

4.4 Grid-Stretching: Navier-Stokes Equations

We will now proceed to test the Navier-Stokes equations on a non-uniform mesh to further validate the

accuracy results from the previous section. Again, we use a divergence-free velocity field:

u =



sin

(
2πx

L

)
cos

(
2πy

L

)
cos

(
2πz

L

)

cos

(
2πx

L

)
sin

(
2πy

L

)
cos

(
2πz

Lz

)

−2 cos

(
2πx

L

)
cos

(
2πy

L

)
sin

(
2πz

L

)


(4.31)

49

Figure 4.2: Mesh stretching in each dimension

The equation used for stretching the mesh is:

xi = ξi +A(xc − Lξi)(1− ξi)ξi (4.32)

where the chosen coefficients are L = 2, A = 1 and xc = 1. The coefficient A is generally referred to as the

strength, because it concentrates on points inside the domain (if A > 0) or towards the boundary (if A < 0).

The term (1 − ξi)ξi ensures that the end points of the grid remain at {0, 1}. Finally, xc − Lξi makes the

formula switch sign at the points xc/L.

In all tests below, we scaled all three axes with Eq. (4.32) in an attempt to find bugs in all three directions.

We actually did it incrementally to be more rigorous in debugging (by scaling in one direction, then two, then

three), even though the we did not reveal the numerical results for these tests here, since they are simplified

examples of the more general case.

50

4.4.1 Temporal Convergence

Temporal convergence is carried out on 323 non-uniform grid with varying computational time steps. The

reference “solution” is obtained by using a sufficiently fine time step of ∆t = 10−5. Measurements are made

at T = 0.1.

Table 4.13: Non-uniform mesh: Temporal errors for the u velocity.

∆t L1 L2 L∞

0.250E−3 4.38690E-08 5.97704E-08 2.00000E-07

0.200E−3 3.60916E-08 4.81427E-08 1.60000E-07

0.125E−3 1.18316E-08 1.65942E-08 7.00000E-08

Order 1.96 1.91 1.55

Table 4.14: Non-uniform mesh: Temporal errors for the v velocity.

∆t L1 L2 L∞

0.250E−3 1.76539E-07 2.39717E-07 6.70000E-07

0.200E−3 1.15187E-07 1.56096E-07 4.70000E-07

0.125E−3 4.38866E-08 5.98077E-08 1.90000E-07

Order 2.01 2.00 1.83

Table 4.15: Non-uniform mesh: Temporal errors for the w velocity.

∆t L1 L2 L∞

0.250E−3 2.19949E-07 2.98545E-07 8.70000E-07

0.200E−3 1.47276E-07 1.98929E-07 6.30000E-07

0.125E−3 5.50014E-08 7.47811E-08 2.40000E-07

Order 2.01 2.01 1.88

Table 4.16: Non-uniform mesh: Temporal errors for the pressure.

∆t L1 L2 L∞

0.250E−3 2.68324E-07 3.43407E-07 9.93270E-07

0.200E−3 1.73002E-07 2.21560E-07 8.73150E-07

0.125E−3 6.95216E-08 8.68382E-08 2.77740E-07

Order 1.94 1.98 1.93

4.4.2 Spatial Convergence: Convective Operator

We can see that the (u, v) components of the velocity have very similar orders and w is slightly worse. This

is because of the periodicity in the initial condition for the (u, v) components, which are virtually the same,

51

Table 4.17: Non-uniform mesh: Spatial errors in the convective term for u.

Mesh L1 L2 L∞

323 4.66191E-02 6.85506E-02 3.03591E-01

643 1.22076E-02 1.76417E-02 8.81622E-02

Order 1.93 1.95 1.78

Table 4.18: Non-uniform mesh: Spatial errors in convective term for v velocity.

Mesh L1 L2 L∞

323 4.66191E-02 6.85506E-02 3.03591E-01

643 1.22076E-02 1.76417E-02 8.81622E-02

Order 1.93 1.95 1.78

Table 4.19: Non-uniform mesh: Spatial errors in convective term for w velocity.

Mesh L1 L2 L∞

323 1.24354E-01 1.92789E-01 9.94647E-01

643 3.28181E-02 5.01937E-02 2.56643E-01

Order 1.92 1.94 1.95

while the w component has an extra factor of 2, which basically increases its period by a factor of two, thus

keeping it out of sync with the other two.

4.4.3 Spatial Convergence: Viscous Operator

Table 4.20: Non-uniform mesh: Spatial errors in the viscous term for u.

Mesh L1 L2 L∞

323 3.12108E-01 4.48803E-01 1.99704E+00

643 8.04149E-02 1.17428E-01 6.38208E-01

Order 1.95 1.93 1.64

Table 4.21: Non-uniform mesh: Spatial errors in the viscous term for v.

Mesh L1 L2 L∞

323 6.63976E-01 9.92639E-01 3.89627E+00

643 1.71557E-01 2.53897E-01 1.03040E+00

Order 1.95 1.96 1.91

Note that different MMS functions were used for testing the diffusive operator. Each of the velocity components

has a different periodicity in one of the axes such that convergence results vary, unlike in the convective term.

In the tests, we noticed that L∞ suffers when functions are more oscillatory (w velocity is initialized with a

52

Table 4.22: Non-uniform mesh: Spatial errors in the viscous term for w.

Mesh L1 L2 L∞

323 1.04915E+00 1.66823E+00 8.70721E+00

643 2.66713E-01 4.51114E-01 3.54487E+00

Order 1.97 1.88 1.29

function of periodicity 4π).

We are interested to check if there were bugs in the divergence and gradient operators (both for the staggered

and collocated grid) because numerous interpolations between face areas are required in the construction

of those operators and if the mesh size were all uniform, it is not possible to detect a large class of issues.

Again, as a reminder, the viscous term results from the convolution of the discrete divergence and gradient

operator on the staggered grid, while the Laplacian in the Poisson equation results from the convolution

of the discrete divergence and gradient operator on the collocated grid. Hence such spatial checks as above

would have required proper formulation in all the divergence and gradient operators. As it seems, the spatial

and temporal convergence results are convincing and give reasons to believe that the implementation is

correct.

53

Part II

Immersed Boundary Projection

Method

54

Chapter 5

Immersed Boundary Method:
Projection Approach

Figure 5.1: Distribution of Lagrangian points on Eulerian grid (Taira and Colonius [14]).

We first review how Taira and Colonius [14] incorporated Perot’s LU decomposition in their formulation of

the Immersed Boundary Projection Method (IBPM) and we will talk about how it can be enhanced using

Brown et al.’s [15] higher order pressure update schemes. A derivation of Taira and Colonius’s IBPM is given

in this section.

We have the underlying spatial grid or the computational domain D as well as the Lagrangian points,

ξk that lie on the immersed object’s surface ∂B. As one can imagine, it is important for both parties to

communicate and exchange information from ∂B to D and vice versa. This is done by adding extra terms to

the Navier-Stokes equations that represent these transfers. The new system of equations is:

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u+

∫
s

f(ξ(s, t))δ(ξ − x)ds,

∇ · u = 0,

u(ξ(s, t)) =

∫
s

u(ξ(s, t))δ(ξ − x)ds = uB(ξ(s, t)).

(5.1)

55

Some further remarks on the above equations:

• The immersed object’s boundary ∂B is parameterized by s and moves with a velocity of uB(ξ(s, t)).

• f is the boundary force (treated like a body force in the Navier-Stokes equations).

• Taira and Colonius [14] also mentioned that the distance between the Lagrangian points should be ≈

the grid size of the computational domain, for stability reasons. Also no two Lagrangian points should

coincide (it leads to singularities in some of the operators we will define).

In Taira and Colonius’s implementation, they solved in terms of velocity fluxes, q instead of velocity u. If we

discretize (5.1) completely in space and time and replace velocity with velocity fluxes, the resulting system

can be written in block matrix form as follows:
A G −H

D 0 0

E 0 0



qn+1

φ

f

 =


rn

0

un+1
B

+


bc1

bc2

0

 (5.2)

We make use of certain properties of the submatrices (D = −GT and Hf = −ET f̃), which allows us to

obtain the following system of equations:
A G ET

GT 0 0

E 0 0



qn+1

φ

f̃

 =


rn

0

un+1
B

+


bc1

bc2

0

 , (5.3)

which can take the form of the KKT conditions encountered in quadratic minimization problems (seen later).

Taira and Colonius follow closely the fractional step based on Perot’s LU approximation in solving the system

above. If we let:

Q ≡
[
G ET

]
, λ ≡

φ
f̃

 , r2 ≡

−bc2
un+1
B

 ,

we can rewrite (5.3) as:  A Q

QT 0


qn+1

λ

 =

r1

r2

 . (5.4)

After performing a block LU decomposition on (5.4), we get: A 0

QT −QTBNQ


I BNQ

0 I


qn+1

λ

 =

r1

r2

+

−∆tN

2N
(LM−1)NQλ

0

 . (5.5)

However, the system is usually not solved using (5.5), since it would require inverting very large matrices.

56

We can also write the system in a more manageable manner as follows:

Aq∗ = r1, (Get intermediate velocity flux, q∗) (5.6)

QTBNQλ = QT q∗ − r2, (Solve Poisson equation for λ) (5.7)

qn+1 = u∗ −BNQλ. (Projection step) (5.8)

5.1 Dimensional Consistency

In checking for dimensional consistency in the equations, much can be learned from Taira and Colonius’s

implementation. There exist two types of equations in their 2-D implementation: (1) the original equations

and (2) the scaled equations. Questions such as what are the dimensions of φ, why did they solve the system

in terms of velocity fluxes instead of velocity itself will be answered.

Scaling Matrices

There are two kinds of operators that exist in [14]: (1) with “hats” (e.g. Â) and (2) without “hats” (e.g.

A). Those with “hats” represent the original operators with the usual dimensions, while those without have

already been scaled by matrices such as R and M̂ :

R ≡

∆yj 0

0 ∆xi

 M̂ ≡

 1
2 (∆xi−1 + ∆xi) 0

0 1
2 (∆yj−1 + ∆yj)

 (5.9)

Both are scaling matrices with dimensions of length. For simplicity, SI units are used to represent the

dimensions. All dimensions that are presented below have already been divided by the dimensions of density

(which is kg/m3).

57

5.1.1 Original Equations

un+1 − un

∆t
+

3

2
N̂(un)− 1

2
N̂(un−1) = −Ĝφ+

1

2
(L̂(un+1) + L̂(un)) + Ĥ(f) + ˆbc1

Â(un+1) + Ĝφ− Ĥ(f) =

[
1

∆t
I +

1

2
L̂

]
un − 3

2
N̂(un) +

1

2
N̂(un−1)︸ ︷︷ ︸

r̂n

+ ˆbc1 (5.10)

D̂(un+1) = bc2 (5.11)

Ê(un+1) = un+1
B (5.12)

This is the fully discretized form of the original equations that was presented in Taira’s paper. Lets analyze

each term:

1:
un+1 − un

∆t
: the dimensions of this first term are simply

[
un+1 − un

∆t

]
units

≡ m/s2. This also

means that each and every term in Eq. (5.10) should be m/s2.

2: Â: Mentioned in Eq. (47) in [14], Â ≡ 1

∆t
I − 1

2
L̂. Therefore the dimensions of the operator have

to be:

[Â]units ≡ 1/s. (5.13)

We can also back-check to see that [Â(u)]units ≡ m/s2, which is again consistent with previous

results.

3: Ĝ: We first need to find out the dimensions of φ. Does it have the same dimensions as pressure?

Direct quote from Taira’s paper, “ . . . discrete pressure is denoted by φ without any superscript

for its time level, as we regard pressure as a Lagrange multiplier. ”, “. . . we use φ as a simple

representation of the pressure variable . . . ”. This suggests that φ does indeed hold the same

dimensions as pressure and pressure’s dimensions (divided by density) is m2/s2. This hypothesis

will be not be left unchecked, as we will eventually prove in later sections that this dimension is

necessary for consistency. Given that [Ĝφ]units has to be m/s2, the dimensions of the operator has

to be:

[Ĝ]units ≡ 1/m. (5.14)

4: L̂: This is simple as we see from once again Eq. (47) in [14], Â ≡ 1

∆t
I − 1

2
L̂. Therefore L̂ and Â

58

must have same dimensions:

[L̂]units ≡ 1/s. (5.15)

We can more rigorously check this result by realizing that L̂’s dimensions consists of one par-

tial derivative [∂/∂xi]units ≡ 1/m, one divergence [∂/∂xj]units ≡ 1/m and a dynamic viscosity

[µ]units ≡ Pa.s ≡ m2/s , such that

[L̂]units ≡ (1/m)(1/m)(m2/s)

= 1/s, (5.16)

with dimensions of [L̂(u)]units ≡ m/s2 being consistent.

5: Ĥ: In the Navier-Stokes equations, f has the units of acceleration or force per unit mass m/s2. For

consistency, Ĥ(f) must have dimensions of m/s2, giving us:

[Ĥ]units ≡ dimensionless. (5.17)

6: D̂: A reasonable assumption is

[D̂]units ≡ m. (5.18)

and this will eventually be proven to be correct in later sections. The above tells us that [bc2]units ≡

m2/s. This will be important to us later on.

7: Ê: The following has to be true for Eq. (5.12) to be consistent:

[Ê]units ≡ dimensionless. (5.19)

All the above material will be ascertained when we look at the dimensions of the scaled equations.

59

5.1.2 Scaled Equations

q = R(u) (5.20)

qn+1 − qn

∆t
+

3

2
N(qn)− 1

2
N(qn−1) = −Gφ+

1

2
(L(qn+1) + L(qn)) +H(f) + bc1

A(qn+1) +Gφ−H(f) =

[
1

∆t
M +

1

2
L

]
qn − 3

2
N(qn) +

1

2
N(qn−1)︸ ︷︷ ︸

rn

+bc1 (5.21)

D(qn+1) = bc2 (5.22)

E(qn+1) = un+1
B (5.23)

1: q : In Taira’s paper, the following equation is mentioned without index, q = Ru. As such, q is to

be understood as a velocity flux with dimensions

[q]units ≡ (m)(m/s)

= m2/s. (5.24)

2:
qn+1 − qn

∆t
: [

qn+1 − qn

∆t

]
units

≡ m2/s2. (5.25)

This means that, for consistency, every term in Eq. (5.21) should have the dimensions of m2/s2.

3: A: In Eq. (50) from Taira’s paper [14], we were given the scaling of A where A = M̂ÂR−1

[A]units ≡ (m)(1/s)(1/m)

= 1/s. (5.26)

We can also back-check to see that [A(q)]units ≡ m2/s2 which is consistent.

4: G: Also in Eq. (50) [14], we see the scaling of G where G = M̂Ĝ giving us

[G]units ≡ (m)(1/m)

= dimensionless. (5.27)

This is further evidenced by quoting directly from [14] “Both operators (referring to gradient and

divergence) can be scaled appropriately so that the entries consist solely of ±1 by introducing R and

60

M̂ .” As it seems, this validated the dimensions of φ when we hypothesized that [φ]units = [p]units.

This is because ifG is dimensionless, dimensional consistency in Eq. (5.21) requires [φ]units ≡ m2/s2.

5: L: The following is given without indexing in Taira’s paperA = 1
∆tM−

1
2L where M ≡ M̂R−1. Both

equations appear within some text slightly after Eq. (50) [14]. Hence, [M]units ≡ dimensionless

and once again we see that

[L]units ≡ [A]units

= 1/s. (5.28)

We also see that [L(q)]units ≡ m2/s2 which is consistent.

6: H: From Eq. (51) in [14], we see the scaling of H, where H ≡ M̂Ĥ, giving us:

[H]units ≡ m (5.29)

As a result, H(f) has dimensions of m2/s2 which is consistent.

7: D: We come to the scaled continuity equations and noticed that throughout Taira’s paper, bc2 has

no “hats” whether in the original or scaled equations. This must mean that bc2 did not change

in dimensions. This can be further confirmed with the following scaling provided in Eq. (50) [14]

that D ≡ D̂R−1, which gives us [D]units ≡ (m)(1/m) = dimensionless. This is further confirmed

by the statement made by Taira that his G and D are ±1 together with his Eq. (50) where

D ≡ D̂R−1 = −GT . This is proof that his [D̂]units is indeed = m. Hence

[D]units ≡ dimensionless. (5.30)

Once again, we back check to see that the units of D(q) is m2/s which means that bc2’s dimensions

truly didn’t change from original to scaled equations.

8: E: The checking of dimensions revealed certain keywords mentioned in Taira’s paper when he

said “It should be observed that E and H are symmetric up to a constant . . . ”. Let’s check the

dimensions of E. It is given again in Eq. (51) [14] that E ≡ ÊR−1, implying that [E]units ≡ 1/m.

This is further substantiated when we look at Eq. (5.23), where E(q) = uB and for consistency

[E]units has to be 1/m.

[E]units ≡ 1/m. (5.31)

61

The following is the biggest revelation of it all - the need for f̃ . E and H operators do not have the

same dimensions. In 2-D, H has dimensions of m and therefore f̃ not only absorbs the difference in

dimensions, it also absorbs any constants to make the following matrix symmetric positive definite
A G ET

GT 0 0

E 0 0


This appears in Eq. (21) [14]. This is critical because without this property, we do not arrive at a

symmetric system. Quoting directly from Taira’s paper [14], H(f) = −ET (f̃), where f = − 1
∆x2

α
β f̃ .

5.2 Derivation of a KKT System

We would like to present the derivation to prove that the algebraic system of equations which results from

the Navier-Stokes equations is indeed a Karush–Kuhn–Tucker (KKT) system that appears in constrained

optimization problems. We are interested to see if the resulting system of equations do turn out to be a

symmetric system when solved in terms of velocity fluxes (as implemented by Taira and Colonius). First, we

define the following optimization problem:

min
qn+1

[
1

2

(
qn+1

)T
Aqn+1 −

(
qn+1

)T
(rn + bc1)

]
subjected to Dqn+1 = bc2. (5.32)

For convenience, the following notation is used:

(rn + bc1) ≡ b,

qn+1 ≡ x,

f(x) ≡ 1

2
xTAx− xT b,

g(x) ≡ Dx− bc2 = 0.

A necessary condition for a feasible point x∗ to be a solution to this problem is that the negative gradient of

f lie in the space spanned by the constraint normals, i.e., that:

−∇f(x∗) = JTg (x∗)λ∗,

62

for some λ∗ ∈ Rm, where JTg (x∗) is the Jacobian matrix of g(x∗). The Lagrangian associated with this

constrained optimization problem is:

L(x, λ) = f(x) + λg(x∗)

=
1

2
xTAx− xT b+ λ (Dx− bc2)

where λ ∈ Rm is a vector of the Lagrange multipliers for each unknown in the original system. Consequently,

the gradient of the Lagrangian function is:

∇L(x, λ) =

∇xL(x, λ)

∇λL(x, λ)

 = 0. (5.33)

We shall derive the elements in Eq. 5.33 step by step.Let P (x) := 〈x,Ax〉 and let w, with ‖w‖ = 1, be a

vector. We denote the directional derivative of P with respect to x in the direction w by:

P ′(x)w = lim
h→0

P (x+ hw)− P (x)

h

= lim
h→0
〈x,Aw〉+ 〈w,Ax〉+ h 〈w,Aw〉

= 2 〈x,Aw〉 ,

since A is symmetric.

Let K(x) := 〈x, b〉, we have:

K ′(x)w = lim
h→0

K(x+ hw)−K(x)

h

= 〈b, w〉

Finally, let Q1(x) := 〈λ,Dx− bc2〉. We have that:

Q′1(x, λ)w = lim
h→0

Q(x+ hw, λ)−Q(x, λ)

h

=
〈
DTλ,w

〉
and let Q2(λ), which gives:

Q′2(λ)w = lim
h→0

Q(x, λ+ hw)−Q(x, λ)

h

= 〈Dx− bc2, w〉

We can then use the Riesz Representation Theorem to find the gradients for the above directional derivatives,

63

which we can then replace into Eq. (5.33) to get the following results:

∇L(x, λ) =

∇xL(x, λ)

∇λL(x, λ)

 =

Ax− b+DTλ

Dx− bc2

 = 0 (5.34)

which is equivalent to: A DT

D 0


x
λ

 =

 b

bc2

 (5.35)

We can now substitute back the original variable names and multiply the second equation by −1 to match

up with Navier-Stokes equations. This leaves: A −DT

−D 0


qn+1

λ

 =

rn + bc1

−bc2



Recall that G = −DT , by construction from [31], we have that: A G

GT 0


qn+1

λ

 =

rn + bc1

−bc2


(5.36)

which is a symmetric system. A very similar analysis can be carried out to obtain the full IBPM system

in (5.3) by simply adding a second Lagrange multiplier corresponding to the immersed boundary points.

64

Chapter 6

Sharp Immersed Boundary Projection
Method

In this section, we introduce our modifications to the immersed boundary projection method presented by

Taira and Colonius [14].

Original Fully-Discretized IBPM Equations

We have omitted convective term for simplicity of discussion. In any case, we’ll use Morinishi’s skew-symmetric

form [2] for the convective term with Picard iteration for the implementation. The discretized system is:

M
un+1 − un

∆t
+Gpn+1/2 =

ν

2
L(un+1 + un) +HWT fn+1/2 +mbc (6.1)

Dun+1 = cbc (6.2)

WEun+1 = Wun+1
B (6.3)

where the following defines the discrete operators were used above:

M ' diagonal mass matrix (6.4a)

D ' divergence operator for first-order tensor (6.4b)

G ' gradient operator for zeroth order tensor (6.4c)

L ' symmetric viscous operator for first-order tensor (6.4d)

We propose the following modifications to the existing method by Taira and Colonius [14] :

1. Solve directly in terms of velocity, u instead of velocity fluxes, q.

2. Replace the discrete Dirac delta function with multi-linear interpolation.

3. Experimenting with incremental-Lagrange multiplier projection methods as proposed by Brown et al..

65

6.1 Approximate LU Factorization Methods

Given the previous system:

M
un+1 − un

∆t
= −Gφ+

ν

2
L(un+1 + un) +HWT f +mbc, (6.5)

Dun+1 = cbc, (6.6)

WEun+1 = Wun+1
B , (6.7)

we can perform an LU approximation on its block matrix form, to obtain:
A 0 0

D −DBNG DBNHWT

WE −WEBNG WEBNHWT



I BNG −BNHWT

0 I 0

0 0 I



un+1

φ

f

 =


r

0

0

+


mbc

−cbc

Wun+1
B

 (6.8)

where:

A =
1

∆t
M − ν

2
L (6.9a)

r =

[
1

∆t
M +

ν

2
L

]
un (6.9b)

BN ≈ A−1 = ∆tM−1 +
∆t2

2
(M−1L)M−1 + · · ·+ ∆tN

2N−1
(M−1L)N−1M−1 (6.9c)

6.1.1 Dimensional Consistency in the Lagrangian

The KKT-type optimization problem posed for the full IBPM system is:

min
un+1

f(un+1) ≡ min
un+1

[
1

2

(
un+1

)T
A un+1 −

(
un+1

)T
(r +mbc)

]
(6.10)

subjected to −Dun+1 + cbc = 0 (6.11)

W (Eun+1 − un+1
B) = 0 (6.12)

The constraint equation Eq. (6.11) is multiplied by negative one so that the KKT system reverts back to our

governing equations in a more intuitive manner. A necessary condition for a feasible point (un+1)∗ to be a

solution (i.e. a minimum) to this problem is that the negative gradient of f lies in the space spanned by the

constraint normals, i.e., that:

−∇f((un+1)∗) = JTg ((un+1)∗)λ∗, (6.13)

for some λ∗ ∈ Rm, where JTg ((un+1)∗) is the Jacobian matrix of g((un+1)∗), the set of constraints in Eqs. (6.11)

66

and (6.12).

The Lagrangian associated with this optimization problem is:

L(un+1, λ1, λ2, . . . , λM) = f(un+1) +

M∑
k=1

λTk gk(un+1)

=
1

2

(
un+1

)T
A un+1 −

(
un+1

)T
(r +mbc)

+ φ (−Dun+1 + cbc)

+ fTW (Eun+1 − un+1
B) (6.14)

where M = 2 (we only have two constraints) and the Lagrange multipliers we have introduced for our system

are as follows

λ1 = φ (6.15a)

λ2 = f (6.15b)

We will now perform a dimensional analysis on all the terms in the Lagrangian:

1: f(un+1) :

[
f(un+1)

]
units

≡
[

1

2

(
un+1

)T
A un+1 −

(
un+1

)T
(r +mbc)

]
units

=
[(
un+1

)T
A un+1

]
units

= (m/s)(m3/s)(m/s)

= m5/s3 (6.16)

Recall that [A]units ≡
[
δV

i
/∆t

]
units

= m3/s for a 3-D implementation. This means that every

term in the Lagrangian function Eq. (6.14) should have dimensions of m5/s3.

2: λT1 g1(un+1) :

[
λT1 g1(un+1)

]
units

≡
[
φ (−Dun+1 + cbc)

]
units

=
[
φ (Dun+1)

]
units

= (m2/s2)(m2)(m/s)

= m5/s3 (6.17)

This term is dimensionally consistent. We once again recall that the units for our Lagrange multiplier,

67

φ should be synonymous with pressure giving us units of m2/s2 when it is divided by density.

3: λT2 g2(un+1) :

[
λT2 g2(un+1)

]
units

≡
[
(f)TW (Eun+1 − un+1

B)
]
units

=
[
(f)TW (Eun+1)

]
units

= (m2/s2)(m2)(1)(m/s)

= m5/s3 (6.18)

where W is a diagonal matrix that contains the surface areas of each boundary segment (for the

u, v, and w lattices) and E is a dimensionless operator containing the multi-linear interpolation

coefficients.

6.1.2 Derivation of a KKT System

The Lagrangian function that follows the new modified governing equations:

L(un+1, λ1, λ2, . . . , λM) = f(un+1) +

M∑
k=1

λTk gk(un+1)

=
1

2

(
un+1

)T
A un+1 −

(
un+1

)T
(r +mbc)

+ φ (−Dun+1 + cbc)

+ fTW (Eun+1 − un+1
B) (6.19)

To find our KKT system, we differentiate the Lagrangian with respect to each of its variables and impose

the first-order necessary condition for a feasible minimum to get:

∇(un+1,φ,f)L(un+1, φ, f) =



∇un+1L(un+1, φ, f)

∇φL(un+1, φ, f)

∇fL(un+1, φ, f)


= 0

68

After performing the necessary derivations, we get:

Aun+1 − r −mbc−DTφ+ ETWT f

−Dun+1 + cbc

WEun+1 −Wun+1
B


= 0 (6.20)

The above system can then be written in block matrix form as follows:

A −DT ETWT

−D 0 0

WE 0 0





un+1

φ

f


=



r +mbc

−cbc

Wun+1
B


(6.21)

Next we’ll try to apply certain properties of our sub-matrices such as D = −GT and WE = −(HWT)T , to

revert the above result for the KKT system back to our governing equations. We’ll also multiply the second

equation in Eq. (6.21) by −1. This leads to:

A G −HWT

D 0 0

WE 0 0





un+1

φ

f


=



r +mbc

cbc

Wun+1
B


(6.22)

which is exactly our original system (6.1)-(6.3). We have thus proven that our governing equations result in

a KKT system.

6.1.3 Fractional Step Method

The fractional step method that we will employ to solve the system can be described by the following steps:

Step 1: Solve for the intermediate velocity u∗:

M
u∗ − un

∆t
=
ν

2
L(u∗ + un) +mbc. (6.23)

Step 2: Perform the projection by solving the following system:DBNG −DBNHWT

EBNG −EBNHWT


φ
f

 =

Du∗
Eu∗

+

−cbc
un+1
B

 (6.24)

69

and then updating the velocity using:

un+1 = u∗ −BNGφ+BNHWT f. (6.25)

6.2 Incremental-Lagrange Multiplier Projection Methods

Brown et al. [15] has presented quite a few pressure increment projection methods which are globally second-

order accurate for the Navier-Stokes equations. We believe it is possible to extend these pressure increment

schemes to the immersed boundary projection method by treating the pressure term as Lagrange multiplier.

The downside to such an implementation is its difficulty to prove that such a scheme fits into a KKT

system. In Perot’s LU approximation, there’s no such thing as a pressure update. Update equations for

the Lagrange multipliers simply cannot be factored into the discrete operators that act on the velocity and

Lagrange multipliers. As such it might simply be impossible to derive a KKT system for incremental-Lagrange

multiplier projection methods. Fortunately, this will not affect the quality of such schemes or the possibility

for a globally second-order projection method.

6.2.1 Fractional Step Method

The fractional step method used for the full IBPM system can be described by the following steps:

Step 1: Solve for the intermediate velocity u∗:

M
u∗ − un

∆t
+Gpn−1/2 =

ν

2
L(u∗ + un) +HWT fn−1/2 +mbc. (6.26)

Step 2: Perform the projection by solving the following system:∆tDM−1G −∆tDM−1HWT

∆tEM−1G −∆tEM−1HWT


φn+1

ϕn+1

 =

Du∗
Eu∗

+

−cbc
un+1
B

 , (6.27)

where the velocity is updated using:

un+1 = u∗ −∆tM−1Gφn+1 + ∆tM−1HWTϕn+1. (6.28)

70

Step 3: Update the Lagrange multipliers:

Gpn+1/2 = Gpn−1/2 +Gφn+1 − ν∆t

2
LM−1Gφn+1 (6.29)

HWT fn+1/2 = HWT fn−1/2 +HWTϕn+1 − ν∆t

2
LM−1HWTϕn+1 (6.30)

Derivation of Lagrange Multiplier Updates

We rearrange the variables in Eq. (6.28) as follows:

u∗ = un+1 + ∆tM−1Gφn+1 −∆tM−1HWTϕn+1 (6.31)

and formulate the Lagrange multiplier updates by substituting u∗ in Eq. (6.31) into Eq. (6.26) and comparing

it to Eq. (6.1):

M
un+1 − un

∆t
+Gpn−1/2 +Gφn+1 − ν∆t

2
LM−1Gφn+1︸ ︷︷ ︸

≈ Gpn+1/2

=

ν

2
L(un+1 + un) +HWT fn−1/2 +HWTϕn+1 − ν∆t

2
LM−1HWTϕn+1︸ ︷︷ ︸

≈ HWT fn+1/2

(6.32)

Retrieving the primitive Lagrange multipliers from the equations above gives:

Gpn+1/2 = Gpn−1/2 +Gφn+1 − ν∆t

2
LM−1Gφn+1︸ ︷︷ ︸

RHS1

(6.33)

HWT fn+1/2 = HWT fn−1/2 +HWTϕn+1 − ν∆t

2
LM−1HWTϕn+1︸ ︷︷ ︸

RHS2

(6.34)

We can see from the previous equations, that the values for both pn+1/2 and fn+1/2 are not needed during

the fractional step method, just the result of applying certain operators on them. Once again, if the Lagrange

multipliers are needed at the end of the simulation (for visualization or testing purposes), we can take a

divergence of Eqs. (6.33), (6.34) and invert the cell-centered discrete operators DM−1G and DM−1HWT .

DM−1(Gpn+1/2) = DM−1(RHS1) (6.35)

DM−1(HWT fn+1/2) = DM−1(RHS2) (6.36)

71

6.3 Interpolation and Smoothing Functions

6.3.1 Multi-linear Interpolation

We first consider multi-linear interpolation for the E and H operators, with the E operator playing the role

of interpolating face velocity to Lagrangian points and the H operator interpolates forces that lie on the

Lagrangian points to cell faces. Differences with Taira and Colonius’s E and H operators include:

No “smearing”. The H operator in Taira and Colonius’s implementation results in “smearing” of the

singular boundary forces that lie on Lagrangian points over to a few neighboring cells. By replacing

the discrete Dirac delta function with multi-linear interpolation, there is no smearing involved. Forces

on the Lagrangian points merely interpolates to grid points within that same staggered cell. Hence the

name “sharp” immersed boundary projection method.

Location of Lagrangian points. Taira and Colonius have Lagrangian points that are colocated. This

means that the x, y, z components of the forces and velocities all lie on one same Lagrangian point. Our

formulation will result in one set of Lagrangian points for each spatial direction. Lagrangian points are

chosen to be the center of the immersed boundary segment in each of the staggered lattices.

ui-1/2, j

ui+1/2, j

ui+1/2, j+1
ui-1/2, j+1

uB

ξ 1-ξ

 η

 1-η

Figure 6.1: Bi-linear interpolation of u velocities to Lagrange point

Having proven in section 6.1.2 that for a KKT system to exist, E = −HT , it would suffice to present the

construction of E operator. As an illustrative example, we’ll present the 2-D case in Figure 6.2.

To shed some light on the details of the construction of the E operator, we will use a toy example looking

into one of the x-staggered cell (see Figure 6.1).

72

(a) x staggered grid (b) y staggered grid

(c) all Lagrangian unknowns

Figure 6.2: Lagrangian points for 2-D case

The above bilinear interpolation in the 2-D toy problem results in the following stencil for the E operator:

uB = (1− ξ) (1− η) ui−1/2,j

+ ξ (1− η) ui+1/2,j

+ (1− ξ) η ui−1/2,j+1

+ ξ η ui+1/2,j+1

(6.37)

While E is constructed using multi-linear interpolation, the H operator is constructed by means of the

following relation: H = −ET .

73

6.3.2 Higher-Order Interpolation and Smoothing

Point l

Figure 6.3: Effect of smoothing

In this section we attempt to generalize the formulation of the interpolation and smoothing functions and

explain the possibility of achieving higher-orders.

Interpolation

(i, j) (i+1, j)

(i+1, j+1)(i, j+1)

xl

wi,j

wi,j+1

wi+1,j

wi+1,j+1

Figure 6.4: Interpolation weights

We refer to Figure 6.4 and rewrite the multi-linear interpolation for the two-dimensional case as

ϕlf =
∑
i,j

wlijϕij , (6.38)

where the weights necessarily have to be a convex sum for stability, i.e.

∑
i,j

wlij = 1, ∀l. (6.39)

74

Smoothing

In the IB governing equations, information (in this case boundary forces) needs to be transferred from the

Lagrangian points to the Eulerian grid, i.e.∫
∆s

ϕf (s) ds =

∫
∆V

ϕij(x) dx, (6.40)

where ∆s is the length between adjacent Lagrangian points, ∆V is the discrete volume. In the discrete 2-D

case we rewrite the above formulation as

ϕlij =
∑
l

ϕlfw
l
ij

∆sl

∆xi∆yj
. (6.41)

We present the general two-dimensional function wlij constructed by the product of single-variable functions,

wlij(x
l) = d (ξ) d (η) ,

ξ =
xlf − xi
δx

, η =
xlf − yj
δy

.

(6.42)

In the case of multi-linear interpolation, the resulting smoothing function is

d : r 7−→


1 + r if − 1 < r < 0

1− r if 0 < r < 1

0 otherwise

, (6.43)

where r is the distance from Lagrangian point to Eulerian grid point.

Comments on Higher-Order Considerations

Multi-linear interpolation is exact for linear functions and second-order accurate for smooth functions. How-

ever, it is important to note that such interpolations when applied on true boundaries with zero thickness

results in first-order accuracy. Peskin [43] noted that the use of multi-linear interpolation for true boundaries

results in a velocity field which is not smooth. Although the velocity is continuous, it suffers a jump in the

normal derivative. This is also true for the smoothing function in Eq. (6.43) which is a “hat” function.

Smoother kernels can be created to achieve higher-order accuracy. In particular, Peskin [43] gave some

examples involving trigonometric functions. It should however be noted that kernels are required to satisfy a

number of conditions. These conditions are elaborate and we refer the reader to Peskin [43] and Roma et al.

75

[27] for a complete list. In this sense, one simply need to change Eq. (6.43) to a smoother kernel (possibly

with a wider stencil, see Figure 6.3) that satisfies all the required conditions to achieve matching accuracy

with the temporal discretization of the IBPM.

76

Chapter 7

Conclusions and Future Work

The accuracy of projection methods for use in the Navier-Stokes equations has been studied theoretically

and numerically in this thesis. The present investigation was motivated by the need to better understand

the intricate interplay between the pressure term in the application of fractional step methods and its role as

a Lagrange multiplier. The ability to obtain second or higher order temporal accuracy in pressure has given

us the basis to extend this formulation to develop our sharp immersed boundary projection method.

In this thesis, we presented a new projection algorithm for the incompressible Navier-Stokes equations as

well as the immersed boundary projection method. The algorithm is expected to resolve the problem of

commutativity of discrete operators in the staggered grid by Harlow and Welch [20] such that the overall

discretization is second-order accurate. The underlying motivation is to extend Brown et al.’s higher order

pressure update schemes for the Navier-Stokes equations for use in immersed boundary projection methods.

The pressure term in Navier-Stokes is most intuitively seen as a Lagrange multiplier and we subsequently

demonstrated the global second-order property using normal mode analysis. The model is tested only on

Navier-Stokes equations on a simple periodic box in 3-D to validate the second-order convergence of the

method. The solutions appears to be quadratically convergent in both time and space even in the case of

non-uniform grids.

Future work will provide numerical evidence for the sharp immersed boundary projection method proposed

in this thesis. The present thesis has provided a clear quantitative description of the different classes of

second-order projection methods. We proposed new ways in which Brown et al.’s approximate projection

method can be extended to the staggered grid system. Indeed, a thorough understanding of higher order

projection methods in the Navier-Stokes equations has proven critical to the development of the new sharp

immersed boundary projection method which we believe improves upon current existing method [14].

In recent years, Sanderse and Koren in [40, 41] introduced a class of energy conserving time-integrators by

means of implicit Runge-Kutta methods based on Gauss, Radau and Lobatto quadrature. These methods

77

are attractive in its application towards the solving of the incompressible Navier-Stokes equations due to

its energy-conserving properties and most importantly, its promise towards higher order temporal accuracy

for pressure. While classical fractional step methods seemed to have bottle-necked at global second-order

accuracy, Sanderse and Koren saw the incompressible Navier-Stokes equations as a set of differential-algebraic

equations (DAE) to which Runge-Kutta methods can be applied. Sanderse et al. did some accuracy studies on

both explicit [42] and implicit [40] Runge-Kutta methods and we will briefly summarize these recent findings.

For explicit Runge-Kutta methods, it was noted that if boundary conditions for the continuity equations

are independent of time, one can achieve same order of accuracy in both pressure and velocity with respect

to the “classical” order of the Runge-Kutta method at the cost of an additional Poisson solve. However,

if continuity boundary conditions are time-dependent, Sanderse showed that it is possible to construct

higher-order approximations by linear combinations of stage values of pressure. In this approach, one cannot

expect to attain the same order of accuracy for pressure as the velocity. Sanderse proposed some ways to

achieve second-order pressure in [42] and seemed to have come to the conclusion that although higher order

accurate pressures might be attainable by means of more stages, such methods are not very relevant from a

practical point of view. They concluded that the “best” explicit Runge-Kutta method for the incompressible

Navier-Stokes is a three-stage method of type M2, which results in third-order velocity and second-order for

pressure.

Energy conserving methods are attractive because they are free of numerical diffusion which could possibly

overwhelm molecular diffusion in turbulent flow simulations. This ensures that all modeled diffusion are not

artificial. Such schemes are also not limited by restrictive time steps and are useful for simulations which

take place in large time or length scales. These energy-conserving methods [41] which are necessarily implicit,

requires solving an additional Poisson problem in order for pressure to be of same order as velocity regardless

of steady or time-dependent continuity boundary conditions. One of these schemes is the diagonally implicit

Runge-Kutta (DIRK) method which has the advantage that the stages of the Runge-Kutta method can

be solved sequentially (due to zeros in upper triangle of the Butcher tableau). Nevertheless, with all the

advantages of the energy-conserving schemes, it is required to solve a non-linear fully coupled saddle point

problem in every stage per time-step. This is extremely costly and the trade-off between stability and cost

have to be carefully considered.

An important difference between (1) the standard second-order pressure projection methods (i.e. Kim and

Moin [13] and Bell, Colella and Glaz [8]) and (2) Sanderse’s Runge-Kutta schemes [40, 41, 42] is that in

order to achieve global second-order accuracy, Sanderse requires the solution of 2 Poisson problems, while

78

the former only require one. Since most of the computational time is actually spent on the solution of

the Poisson system, Sanderse’s method could substantially be more costly. Nevertheless, Sanderse’s work

is more general, and in particular he extends it to 4th order relatively seamlessly. This raises the following

possibility: could Sanderse’s method be combined with classical second-order projection methods to get for

example, a global 3rd order scheme that requires the solution of only 2 Poisson systems (or perhaps global

4th order scheme with 3 Poisson systems)? In the near future, we would like to incorporate Brown et al.’s [15]

incremental-pressure projection methods into Sanderse’s work, by including pressure terms (i.e. gradient of

pressure) into the intermediate stages of Runge-Kutta schemes in the hope of achieving higher-order schemes

with fewer Poisson problems to be solved.

These Runge-Kutta methods seem to be the future of achieving higher-orders in the solving of the incom-

pressible Navier-Stokes equations. For implicit methods, computational cost is restricted by ability to solve

the non-linear saddle point problem efficiently, while the most practical explicit scheme recommended by

Sanderse only leads to second-order pressure. At this point, such methods do not seem competitive to classical

fractional step methods [15, 4, 13, 8, 9]. As research in this field progresses and cheaper methods developed,

we do foresee the use of such higher-order schemes in our future implementation.

79

Bibliography

[1] C.M. Rhie, and W.L. Chow, A numerical study of the turbulent flow past an isolated airfoil with trailing
edge separation, AIAA J., Vol. 21. 11, pp. 1525-1532 (1983).

[2] Y. Morinishi, T.S. Lund, O.V. Vasilyev, and P. Moin, Fully conservative higher order finite difference
schemes for incompressible flow, J. Comput. Phys., Vol. 143, pp. 90-124 (1998).

[3] F.N. Felten and T.S. Lund, Critical comparison of the colocated and staggered grid arrangements for
incompressible turbulent flows, Proceedings of the Third AFOSR International Conference on DNS/LES
(2001).

[4] J.B. Perot, An Analysis of the fractional step method, J. Comput. Phys. 108, pp. 51-58 (1993).

[5] J.B. Perot, Letter to the editor, J. Comput. Phys. 121, pp. 190-191 (1995).

[6] S. Abdallah, Comments on the fractional step method, J. Comput. Phys. 117, pp. 179 (1995).

[7] K. Kim, S. Baek, H. Sung, An implicit velocity decoupling procedure for the incompressible Navier–Stokes
equations, International Journal for Numerical Methods in Fluids. 38, pp. 125–138 (2001).

[8] J.B. Bell, P. Colella, and H.M. Glaz, A second order projection method for the incompressible Navier–Stokes
equations, J. Comput. Phys. 85, pp. 257 (1989).

[9] J.B. Bell, P. Colella, and L.H. Howell, An efficient second-order projection method for viscous incompress-
ible flow, in Proceedings of the Tenth AIAA Computational Fluid Dynamics Conference, AIAA, pp. 360
(1991).

[10] J.C. Strikwerda and Y. S. Lee, The accuracy of the fractional step method, SIAM J. Numer. Anal. 37,
pp. 37 (1999).

[11] W. E and J. Guo Liu, Projection method. I. Convergence and numerical boundary layers, SIAM J.
Numer. Anal. 32, pp. 1017 (1995).

[12] J.C. Strikwerda, Finite difference schemes and partial differential equations, 2nd edition, SIAM, Chapter
11 (2004).

[13] J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier–Stokes equations,
J. Comput. Phys. 59, pp. 308 (1985).

[14] K. Taira and T. Colonius, The immersed boundary method: A projection approach, J. Comput. Phys.
225, pp. 2118-2137 (2007).

[15] D. Brown, R. Cortez, and M. Minion, Accurate projection methods for the incompressible Navier–Stokes
equations, J. Comput. Phys. 168, pp. 464–499 (2001).

[16] M.M. Rai and P. Moin, Direct simulations of turbulent flow using finite-difference schemes, J. Comput.
Phys. 96, pp. 15-53 (1991).

80

[17] R.M. Beam and R.F. Warming, An Implicit Factored Scheme for the Compressible Navier–Stokes
Equations, AIAA Journal, Vol. 16, No. 4, pp. 393-402 (1978).

[18] G. Tryggvason , Lecture 25: Elementary Grid Generation , Lecture Notes from University of Notre Dame
for Computational Fluid Dynamics (2011).

[19] M. Rosenfeld, An uncoupled temporally second-order accurate implicit solver of the incompressible Navier-
Stokes equations, AIAA Journal, Vol. 34, pp. 1829-1834 (1996).

[20] E H. Harlow and J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of
fluids with free surfaces, Phys. Fluids, 8, pp. 2182-2189 (1965).

[21] A.S. Almgren, J.B. Bell and W.G. Szymczak, A numerical method for the incompressible Navier-Stokes
equations based on an approximate projection, SIAM J. Sci. Comput. 17(2), (1996).

[22] M.F. Lai, J. Bell and P. Colella, A projection method for combustion in the zero Mach number limit, in
Proceedings of the Eleventh AIAA CFD Conference, AIAA, pp. 776 (1993).

[23] M.L. Minion, A projection method for locally refined grids, J. Comput. Phys. 127, pp. 158–178 (1996).

[24] A.J. Chorin, Numerical solution of the Navier-Stokes equations, J. Math. Comput., 22, pp. 745-762
(1968).

[25] J. van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM
J. Sci. Comput. 7, 870 (1986).

[26] L.H. Howell, A multilevel adaptive projection method for unsteady incompressible flow, 6th Copper
Mountain Conf. on Multigrid Methods (1993).

[27] A.M. Roma, C.S. Peskin and M.J. Berger, An adaptive version of the immersed boundary method, J.
Comput. Phys. 153, 509-534 (1999).

[28] A.J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equations, J. Math.
Comput., 23, pp. 341-353 (1969).

[29] K. Taira, The immersed boundary projection method and its application to simulation and control of
flows around low-aspect-ratio wings, CalTech Thesis (2008).

[30] T. Colonius and K. Taira, A fast immersed boundary method using a nullspace approach and multi-domain
far-field boundary conditions, Comput. Methods Appl. Mech. Engrg. 197, 2131-2146 (2008).

[31] W. Chang, F. Geraldo and B. Perot, Analysis of an exact fractional step method, J. Comput. Phys. 180,
183-199 (2002).

[32] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Univ. Press (2009).

[33] W.D. Henshaw, A fourth-order accurate method for the incompressible Navier–Stokes equations on
overlapping grids, J. Comput. Phys. 113, pp. 13-25 (1994).

[34] CS. Peskin, Flow patterns around heart valves: a digital computer method for solving the equations of
motion, PhD thesis. Physiol., Albert Einstein Coll. Med., Univ. Microfilms (1972).

[35] D. Goldstein, R. Handler and L. Sirovich, Modeling a no-slip flow boundary with an external force field,
J. Comput. Phys. 105, pp. 354–366 (1993).

[36] R.P. Beyer and R.J. LeVeque, Analysis of a one-dimensional model for the immersed boundary method,
SIAM J. Numer. Anal. 29, pp. 332-364 (1992).

[37] R. Mittal and G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. 37, pp. 239–61 (2005).

81

[38] U. Ascher and L. Petzold, Computer methods for ordinary differential equations and differential-algebraic
equations, SIAM (1998).

[39] E. Hairer, C. Lubich and M. Roche, The numerical solution of differential-algebraic systems by Runge-
Kutta methods, Springer (1989).

[40] B. Sanderse and B. Koren, Runge-Kutta methods for the incompressible Navier-Stokes equations, 21st
AIAA Computational Fluid Dynamics Conference, 3085 (2013).

[41] B. Sanderse, Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations, J.
Comput. Phys. 233, pp. 100-131 (2013).

[42] B. Sanderse and B. Koren, Accuracy analysis of explicit Runge–Kutta methods applied to the incom-
pressible Navier–Stokes equations, J. Comput. Phys. 231, pp. 3041–3063 (2012).

[43] C.S. Peskin, The immersed boundary method, Acta Numerica, 11, pp. 479–517 (2003).

82

	List of Tables
	List of Figures
	Chapter 1 Introduction
	Background
	Origin of Projection Methods
	Previous Works
	Scope and Outline of the Present Work

	I Navier-Stokes Equations
	Chapter 2 Survey of Projection Methods
	Introduction
	Approximate LU Factorization Methods
	Incremental-Pressure Projection Methods
	Complications in the Discrete Analog
	Solution to the Problem of Commutativity
	Summary of the Improved Fractional Step

	Pressure-Free Projection Methods
	Summary

	Chapter 3 Normal Mode Analysis
	Reference Solution
	Initial Boundary Value Problem
	Coefficients (U, V, P)
	Summary

	Solutions for the Semi-discrete Stokes Equations
	Spurious Modes
	Application of Boundary Conditions
	Coefficients (U, V, A1, A2)
	Summary

	Order of Accuracy
	Pmi Analysis
	Pmii Analysis
	Comments on Higher Order Boundary Conditions

	Chapter 4 Numerical Tests
	Discrete Operators
	Viscous Term
	Convective Term
	Approximate Factorization

	Stokes Equations
	Temporal Convergence
	Spatial Convergence

	Navier-Stokes Equations
	Temporal Convergence

	Grid-Stretching: Navier-Stokes Equations
	Temporal Convergence
	Spatial Convergence: Convective Operator
	Spatial Convergence: Viscous Operator

	II Immersed Boundary Projection Method
	Chapter 5 Immersed Boundary Method: Projection Approach
	Dimensional Consistency
	Original Equations
	Scaled Equations

	Derivation of a KKT System

	Chapter 6 Sharp Immersed Boundary Projection Method
	Approximate LU Factorization Methods
	Dimensional Consistency in the Lagrangian
	Derivation of a KKT System
	Fractional Step Method

	Incremental-Lagrange Multiplier Projection Methods
	Fractional Step Method

	Interpolation and Smoothing Functions
	Multi-linear Interpolation
	Higher-Order Interpolation and Smoothing

	Chapter 7 Conclusions and Future Work
	Bibliography

