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ABSTRACT

In a world of advanced technology and its close integration within indoor

environments, the ability to navigate people and devices indoors has become

increasingly important for numerous applications. Global Positioning Sys-

tem (GPS) has solved the issue of positioning and navigation for outdoor

environments. However, it fails to achieve a good indoor performance due

to the lack of line of sight with the GPS satellites as well as drastic signal

attenuation due to buildings. This calls for a new technology to address this

field, thus making indoor positioning a focus of research and development in

the past decade. This thesis discusses a positioning system called MERLIN,

which is based on the phase information of CW RF signals. Different range

estimation methods are also discussed. Indoor positioning or localization is

bound to become a popular feature in the next generation of wireless systems.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In the field of wireless communication, location based services and contextual

awareness are on the rise. LBSs are applications or programs that rely on

the position of the user in order to render services. These services include

navigation, healthcare, safety and emergency services, billing and payments,

and other personalized services. With many of these services migrating to

the modern cellphone as the primary platform, there is a need for a strong,

reliable, and accurate positioning technology. So far these services have been

satellite based, making its application in an indoor environment a relatively

new field. The existing indoor positioning technologies are fairly new and far

from scalability. Advancement in indoor localization system design will open

up a plethora of opportunities for the wireless industry while significantly

improving the value of services already available.

There are multiple technologies in use today to determine the location of

a user. GPS, or the Global Positioning System, is the most popular one for

outdoor applications [1]. Unfortunately, GPS performance is unsatisfactory

inside buildings, near urban canyons and underground. The GPS signal

strength is highly attenuated because of the concrete obstacles. This renders

GPS ineffective as a source for indoor positioning.

Hence, there is a need to develop a positioning system for indoor envi-

ronments. However, there are multiple challenges for this task as there are

numerous obstacles to EM wave propagation due to walls, furniture and

presence of noise or interference. A good positioning system should be able

to overcome these obstacles and determine the location with high accuracy.

Some of the indoor technologies used today are shown in Fig. 1.1 [2].

The location or position of the user does not have to be absolute. It could
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Figure 1.1: Indoor Navigation Technologies

be determined in relation to a pre-determined reference point as well. Thus, a

positioning system should be able to estimate the location of a user (absolute

or relative).

1.2 Positioning Systems

Positioning systems can be classified as indoor, outdoor or both based on

the target environment. For outdoors, Global Navigation Satellite Systems

(GNSS) have been in use to provide geo-spatial positioning globally. They

rely on small receivers to determine their location based on the time sig-

nals transmitted from the satellites using RF. Presently, the United States

GPS and Russian GLONASS are operational worldwide. China’s BeiDou-

Compass and European Union’s Galileo are scheduled to be fully operational

by 2020. Applications of these positioning systems range from asset track-

ing to navigation, geodetic survey and synchronization of telecommunication

networks. The most widely used service, GPS, works well outdoors but does

not perform well in urban canyons or inside buildings as the signals are

highly attenuated by these obstacles. This renders GPS inefficient for indoor

positioning.
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An indoor positioning or localization system is one that can overcome

these hurdles and provide location details for an indoor environment, such

as buildings. Indoor environments are much more complex compared to

outdoors. This gives rise to challenges like smaller equipment size, no LoS,

influence of nearby objects and so on. Multipath is another issue as there

are multiple reflective surfaces in an indoor environment. Interference from

other wireless systems could also play a role in the overall performance of

the indoor positioning system. The degree of accuracy needed for indoor

environments is higher as well. An ideal positioning system would overcome

all these challenges.

1.3 Applications

The development of an accurate and reliable indoor localization system could

lead to exciting developments. The applications mentioned in this chapter

give a glimpse of how indoor localization could change the world of wireless

technology.

1.3.1 Location Based Services in Indoor Environments

This feature would have the biggest impact on business and marketing re-

lated firms. The geographical position of the client could be used to deliver

contextually aware information. This feature could be used at venues like

museums and fairs for navigation, advertising, information and billing. All

these services have a high commercial value.

1.3.2 Smarter Homes

LBSs could be employed at home as well to detect lost items, provide assis-

tance for kids and the elderly and a multitude of other possible applications

like housekeeping robots etc.
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1.3.3 Medical Care

Indoor positioning could enable accurate tracking of patients and equipment.

In emergency situations, tracking of medical personnel becomes important

too. If robotic assistance is involved, precise positioning might be helpful.

1.3.4 Social Networking

A large number of people indulge in social networking. Accurate indoor

positioning might facilitate easier coordination of joint activities.

1.3.5 Police, Firefighters and Emergency Medical Services

Indoor positioning could provide some major benefits in law enforcement,

rescue and fire services. Knowing the exact location of survivors in a building

will make the search operations more time and resource efficient.

1.3.6 Self-Driving Automobiles

The advent of self-driving cars calls for a need for accurate positioning in

covered environments such as underground tunnels and parking garages.

1.3.7 Industrial Asset Tracking

Most manufacturing processes employ robotics these days. Accurate posi-

tions might be useful in course guidance and collision avoidance.

1.4 Outline

This thesis provides a brief overview of indoor positioning history, concepts

and technologies. It presents a novel method of range estimation called MER-

LIN, which when used in conjunction with positioning algorithms should

reveal the previously unknown target location. Later, a few possibilities of
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introducing wireless localization as a feature in future communication devices

are discussed.

• Chapter 1 covers the motivation behind this research and describes the

primary differences between indoor and outdoor positioning systems.

• Chapter 2 looks into positioning technologies (IR,RF,Cell ID, etc.) be-

ing used today.

• Chapter 3 gives a brief overview of indoor positioning systems. It also

describes the propagation challenges faced by RF based systems.

• Chapter 4 discusses some location detection techniques and algorithms.

• Chapter 5 introduces MERLIN, our positioning system, and briefly

summarizes the process of localization.

• Chapter 6 provides the mathematical foundation for the system. Sim-

ulation results for different positioning techniques are also included.

• Chapter 7 presents in-lab measurements for distance estimation using

time-domain signals.

• Chapter 8 concludes the thesis with some discussion of future possibil-

ities.

• Lastly, the appendix includes the MATLAB code for the numerical

analysis.
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CHAPTER 2

POSITIONING TECHNOLOGIES

This chapter presents technologies that have been used in the past for posi-

tioning. Figure 2.1 shows the accuracy and range for different technologies

[3]. We can also see that many of the technologies rely on EM waves. This

chapter will primarily focus on RF based positioning systems.

Figure 2.1: Overview of Wireless Positioning Systems

2.1 Global Positioning System (GPS)

GPS is the most popular radio positioning system used worldwide for navi-

gation. However, it works well in outdoor environments only. In indoor envi-

ronments it performs poorly due to obstruction of LoS between the satellite
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and the receiver and the attenuation of the signal by buildings and other

obstacles [2].

2.2 Cell ID

Numerous systems use cellular networks for positioning but their accuracy is

low. Cellular networks could be used for indoor positioning as long as there

is a base station nearby such that the RSS is high.

2.3 Infrared Radiation (IR)

Another commonly used technology is infrared radiation (IR). Most IR de-

vices use LoS communication. The main advantage of this technology is the

small and compact device implementation. However, IR signals are limited

by interference from fluorescent light and sunlight [4].

2.4 Radio Frequency (RF)

RF is being commonly used as a positioning technology these days. Due to

its large wavelength, it can pass through obstacles resulting in larger range

and less complicated hardware. RADAR by Microsoft Research was the first

RF based technique for location determination and user tracking [5]. It uses

RSS fingerprinting and WLAN components. RFID has also proved to be

a promising technology for localization applications. RFID enables a one-

way wireless communication that uses RF signals and RFID tags for the

purpose of tracking. Tracking is carried out through a network of scanning

devices at a distance of few meters without the need for LoS communication.

The Bluetooth community has also been active with positioning applications.

Bluetooth can easily be integrated into personal devices and operates in the

license-free 2.4 GHz ISM band. It is also compact, low-cost and low-power.

One disadvantage of Bluetooth is its device discovery feature, which gives rise

to a localization latency which makes it unsuitable for real-time applications

[2].
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2.4.1 Ultra-wideband (UWB)

UWB, another radio technology, is meant for short-range, high bandwidth

communication, and is very useful in overcoming multipath. A typical UWB

system would include a stimulus radio wave generator and a receiver which

captures the propagated and scattered wave. UWB hardware implementation

is expensive, which becomes a disadvantage for wide-scale usage.

2.4.2 Radar

Radar (RAdio Detection And Ranging) is a technique to measure the distance

and angle of incidence to a target. Originally, the radar concept involves

determining the time of travel of a signal sent by an antenna and bounced

back from a passive reflector. However, a significant amount of energy is

lost due to the reflection and steerable antennas are difficult to implement.

Thus, the concept can be modified to include more transmitters and active

reflectors. Essentially, radars use the linear relation between RTOF and

distance for localization. If the signals in each direction are separated in

frequency, the signal can travel back immediately. A similar approach is

used in our conceptualization of MERLIN.

2.4.3 FM

FM radio signals have also been used for positioning. FM radio uses FDMA,

which splits a frequency band into multiple channels that can be used simul-

taneously. FM radio signals based on signal strength and fingerprinting can

be used for indoor navigation. One of the advantages of this technology is

the easy availability in most wireless devices.

2.4.4 ZigBee

ZigBee is an emerging wireless technology standard, mainly used for short

and medium range communications. Distance calculation is based on RSSI

values. ZigBee operates in the unlicensed ISM bands, making it vulnerable

to interference from a wide range of signal types using the same frequency.

8



2.5 Hybrid Positioning Systems

Hybrid positioning systems are on the rise as well. They are defined as lo-

calization systems made by combining several positioning technologies. The

local positioning systems fail outdoors and the GPS based systems fail in-

doors. Hence, there is a need for positioning systems that can do both.

Several hybrid positioning systems are under development and are used in

navigation services like Google Maps for Mobile, Sky Hook, Navizon and

Combain Mobile [2].
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CHAPTER 3

INDOOR POSITIONING OVERVIEW

A wireless indoor positioning or localization system mainly consists of a trans-

mitter, and a receiver, or the measuring unit where the data processing takes

place. Multiple transmitters and receivers maybe used to enable multilat-

eration. This chapter looks at challenges of implementing positioning in an

indoor environment. We briefly look at the different topologies of indoor

positioning systems as well.

3.1 Indoor Radio Propagation Issues

According to the free-space radio propagation model, radio waves propagate

in all directions with a signal power level proportional to 1
r2

, where r is the

distance that the wave travels. The propagation is affected by phenomena

such as reflection, refraction , diffraction, and scattering. These result in the

attenuation, distortion and additional losses of the transmitted signal.

If uninhibited, radio waves travel in a straight line. However, when they hit

obstacles whose dimensions are larger than a wavelength, they get reflected

or refracted. Reflection causes loss of signal strength as well. In an indoor

environment, there are multiple obstacles to radio propagation such as walls,

windows and furniture which cause multiple reflections of signals.

Refraction is caused by change in density of the propagation medium. The

refracted traveling wave changes direction after getting refracted from walls

and windows. Diffraction occurs when the waves hit sharp objects such as

edges of a building. Diffracted waves bend around the object. Scattering

is caused by localized non-uniformities in the medium, which are usually

smaller objects such as construction material or small sized indoor equip-

ment.
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Figure 3.1: Causes of Multipath: Reflection, Refraction, Diffraction and
Scattering

All of these effects give rise to the phenomenon of Multipath. Multipath

refers to propagation of the transmitted signal to the receiver via two or more

paths. It causes constructive as well as destructive interference and change

of phase of the received signal. In a way, all these issues (shown in Fig. 3.1,

adapted from [6]) may affect the range or accuracy of the positioning system.

3.1.1 Signal Attenuation and Noise Sources

Signal attenuation and noise are two of the main problems for a good po-

sitioning system. The transmitted signals need to be strong enough to be

detected by the receiver. It is difficult to build a good positioning system

using weak signals as the desired signal might get buried under noise. Signal

attenuation is frequency dependent. The higher the frequency, the greater

the attenuation. This is the reason why GPS does not work indoors. The

signal undergoes severe attenuation as it passes through the concrete walls

and metallic frames of buildings. Besides the attenuation of the signal itself,

other factors such as AWGN noise, thermal noise, phase noise in oscillators

and frequency synthesizers, and wireless interference from other electronic

equipment severely affect the performance of the positioning system.
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3.2 Topologies

Based on the role of the different hardware components, the topologies can

be defined as in Table 3.1 [7]. To distinguish between remote and self posi-

tioning, if the measuring unit is mobile and has the capability to interpret

the received signal and find the distance, then it is called a self-positioning

system. On the other hand, for remote positioning systems, the signal trans-

mitter is mobile and the measurement units are fixed. At the master station

all the data is collected and the positions of the transmitters are calculated.

One of the advantages of remote positioning systems is that the mobile de-

vice can be small, low-cost and low-power. However, this topology needs a

complex backbone network which might be expensive. Different topologies

might be better for different applications.

Table 3.1: Wireless Positioning System Topologies

Concept Definition

Remote posi-
tioning

Measurement from remote site to mobile de-
vice

Self-positioning Measurement from mobile unit to usually
fixed transponders

Indirect remote
positioning

Self-positioning with data communication of
measurements to remote site

Indirect self-
positioning

Remote positioning with data communica-
tion of measurements to mobile unit

If there is a means to communicate with the remote side, then the mobile

unit has the option to send its measurements over for calculation. This

makes it an indirect remote positioning system. On the other hand, if the

measurements are passed from the remote unit to the mobile unit, then it

can be considered an indirect self-positioning system.
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CHAPTER 4

LOCATION DETECTION TECHNIQUES

Numerous different methods can be used for localization. Broadly, they

can be classified into proximity, triangulation and scene analysis. Further

classification of location detection techniques is shown in Fig. 4.1(adapted

from [2]).

Figure 4.1: Classification of Location Detection Techniques
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4.1 Proximity

The proximity method is comparatively easy to implement. The location is

determined by the cell of origin (CoO) method where every cell has a known

fixed location and a definite range. When more than one cell detects a signal

from the target, the location is forwarded to the cell receiving the highest

signal strength. This positioning technique is employed by the likes of RFID,

cell ID and other custom devices.

4.2 Triangulation

Triangulation uses the geometric properties of triangles to estimate the user

location. Lateration and angulation are derivatives of triangulation. Tech-

niques that rely on RSS, POA and the measurement of the propagation-time

(e.g., TOA, RTOF and TDOA) are called lateration techniques. AOA esti-

mation is the angulation technique [2].

4.2.1 Lateration

Lateration estimates the position by measuring the distance of the user from

multiple reference points. Thus, it can also be called the range measurement

technique. Besides using RSSI to estimate distance, TOA and TDOA can be

used where distance is found by multiplying the propagation velocity with

the travel time. RTOF and POA can also be used for range estimation [3].

RSSI

The empirical model based on this method translates the difference between

the transmitted signal strength and the received signal strength into distance

as shown in Fig 4.2 [3]. At times this involves calculating the path loss due

to propagation. Due to multipath in indoor environments, path-loss models

are not always applicable. The accuracy of this method is low due to the

dynamic nature of the radiation environment but can be improved by using

pre-measured contours at the receiver [8].
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Figure 4.2: RSSI Based Positioning

TOA

The time taken for a signal to travel between two points is directly propor-

tional to the distance between them. For a 2D location, TOA measurements

must be made with respect to signals from at least three reference points.

The main challenges in using this method are the need for synchronization of

the transmitter and the receiver. Also, a time stamp is needed to determine

the actual distance traveled. TOA can be measured using direct sequence

spread spectrum (DSSS) or ultra-wideband (UWB). A geometric method

can be used to compute the intersection points of the circles generated by

each reference point for the estimated distance. One could also use the least

squares, closest neighbor or the residual weighting algorithm for distance

estimation. For example, in the LS algorithm, assume the mobile unit at

(xo, yo), transmits a signal at time to,which is received by N base stations

located at (x1, y1), (x2, y2), ...(xN , yN) at time t1, t2, ...tN . The cost function

is given by

F(x) =
N∑
i=1

αi
2f 2
i (x) = 1 (4.1)

where αi is chosen to represent the signal reliability at the receiving location.

fi(x) = c(ti − t))−
√

(xi − x)2 + (yi − y)2 (4.2)

where c is the speed of light and x = (x, y, t)T . This function is formed for

each receiving unit and fi(x) could be made zero. To determine the location,
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the function F(x) needs to be minimized [3].

TDOA

TDOA relies on the time difference between the instances when the transmit-

ter signal arrives at multiple measuring units. Two hyperbolas are formed

from TDOA measurements using three measuring units and their intersection

point is considered to be the location of the target. Equation (4.3) shows the

mathematical expression for the hyperboloid,

Ri,j =
√

(xi − x)2 + (yi − y)2 + (zi − z)2

−
√

(xj − x)2 + (yj − y)2 + (zj − z)2

(4.3)

where (xi, yi, zi) and (xj, yj, zj) are the locations of the measuring units and

(x, y, z) is the location of the target. A 2D target location can be found from

the intersection of two or more measurements, as shown in Fig. 4.3 [3].

Figure 4.3: TDOA Based Positioning
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RTOF

The RTOF technique measures the time of flight of the transmitted signal

from the transmitter to the secondary unit and back. This method has a

slightly relaxed requirement for time synchronization in comparison to TOA.

Figure 4.4: Phase of Arrival Based Positioning

POA

POA method uses the carrier phase (or phase difference) of the received

signal to determine the distance as shown in Fig. 4.4 (adapted from [3]).

All transmitters are considered to transmit sinusoidal signals at the same

frequency f, with no initial phase offset. These signals are received with an

acquired phase due to the transit delay. This delay can be expressed in terms

of the carrier wavelength,

φn =
2πfd1
c

(4.4)

Here φn is the acquired phase, d is the distance traveled between the trans-

mitting and receiving end and c is the propagation velocity. The received

sinusoidal signal can be represented as

Sn(t) = sin(2πft+ φn) (4.5)
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This method works as long as the distance being estimated is smaller than

the carrier wavelength. In other words, the acquired phase should not exceed

2π. Once the acquired phase is estimated, one can calculate the distance

d =
φnc

2πf
(4.6)

Next, we can use the positioning algorithms similar to the ones used in TOA

measurements.

It would be best to use the POA method in an indoor environment in

conjunction with other methods like TOA or RSSI for better prediction.

One drawback of this method is ambiguous phase measurements.

4.2.2 Angulation

Angulation computes the angles of the signals relative to multiple reference

points. The user location can be found from the intersection of the angle

direction lines shown in Fig. 4.5, which are formed by the circles of radius

equal to the distance between the master and the remote unit. One of the

advantages is the need for fewer measuring units; only two are needed for 2D

positioning. Disadvantages include complex hardware implementation and

location estimate degradation as the distance increases [3].

Figure 4.5: Angle of Arrival Based Positioning
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4.3 Scene Analysis

Scene analysis depends on data collected previously at a scene to correlate

with real-time measurements. Scene analysis using RF signals involves fin-

gerprinting, where signal descriptive features or fingerprints are collected in

advance [3]. An object’s location is found by comparing new data collected

by the mobile unit with the scene fingerprint. RSS based fingerprinting is

very common.
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CHAPTER 5

SYSTEM OVERVIEW

This chapter presents our RF based remote positioning system, called the

Modulated Echo Radio Localization Instrument (MERLIN). This system

employs a combination of POA technique for lateration and the reflection

concept from radars.

5.1 MERLIN Distance Estimation Model

This model utilizes POA or phase of arrival technique to solve the distance

estimation problem. The phases of the transmitted and received signals are

measured at different frequencies to get the correct distance. Figure 5.1

shows the setup for our model.

Figure 5.1: Conceptual Diagram

The system consists of a Master Tx/Rx and a target Tx/Rx. The un-

known distance between the master and the target units is r. The Master

Tx transmits a CW signal, St1, at frequency fc1 with an initial phase offset

of Ψ0. The signal acquires phase as it travels a distance r and is received by
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the target unit. This signal is mixed with the LO signal, Slo, to generate CW

signals with a frequency offset. The mixing of the carrier frequency with the

LO signal results in sidebands, hence giving rise to the term modulated. The

main reason for the use of an offset frequency for the re-transmitted signal

is to be able to distinguish between the original transmitted CW signal and

the final received CW signal at the master unit in a wireless environment. If

this were to be implemented in a wire-line setup, there would be no need to

shift the frequency. This newly generated signal, St2, along with the acquired

phase and the phase offset of the LO is transmitted back to the master unit.

This reflective action is analogous to an echo. The CW signal again accrues

phase while traveling the distance r back to the master unit. The sum of all

these phases is the overall phase of the signal received at the master unit.

Once the phase is estimated, the distance can be calculated as explained in

Chapter 6.

5.2 Distance Estimation using Phase Shift of Received

Signal in Time Domain

The transmitted signal takes time to travel to the target object and back.

If we look at the signals received at the master unit in time-domain, we

observe that the signal Sr2 is delayed as a function of the distance traveled.

We compare the position of the nulls in the envelope signal for different

distances to estimate the distance between the master unit and the target

unit. More is explained in Chapter 6. The carrier frequency used for this

observation is 150 MHz with an LO of 20 MHz. This frequency was chosen

to facilitate the comparison with measurements on a real-time oscilloscope

with a 200 MHz limit.

5.3 Distance Estimation using Phase of Received

Signal in Frequency Domain

The phase estimation for the frequency domain relies on Fast Fourier trans-

forms. For these simulations, the signals lie in the ISM band around 900

MHz as this frequency does not require a license for usage and does not in-
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terfere with the widely used Wi-Fi signals in an indoor environment. The

wavelength at such frequencies is ≈ 0.3 m. The mathematical formulation

of the signals is presented in Chapter 6. The frequencies of operation can be

changed; however the main concept of this model should still be applicable.

5.4 Positioning using Trilateration

The distance r determined from the phase information of the received signals

is an indication of how far the target is from the known location. If we draw

a locus of the points that are a distance r away from the source, then we get

a circle with radius r and center at the location of the source transmitter.

To find the exact location of the target, more transmitters are required. On

using two more transmitters at known locations, we can draw the locus of the

possible location of the target with respect to each transmitter. This gives

us three circles as shown in Fig. 5.2 [2], one for each transmitter. The point

of intersection of these three circles should give us the exact 2D position of

the target. Therefore, this positioning technique makes use of the following:

• Distance of the target from three different transmitters whose locations

are known.

• Geometrical coordinates of the three points.

For example, if we determine the distance r21 between node 2 and the

target (represented by 1 in Fig. 5.2), we can conclude that the target lies on

the circumference of the circle with radius r21 centered at node 2. We can

use the Euclidian distance equation to represent the circle, as shown in Eq.

(5.1).

(x1 − x2)2 + (y1 − y2)2 = r221 (5.1)

where (x1, y1) and (x2, y2) are the coordinates of the target and the node 2

master unit respectively. The location of nodes 2, 3 and 4 are known. The

location of the target is unknown. To determine the location of the target

we need to find values of (x1, y1) that satisfy the set of equations shown in
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Figure 5.2: Location Estimation using Trilateration

Eq. (5.2).  (x1 − x2)2 + (y1 − y2)2

(x1 − x3)2 + (y1 − y3)2

(x1 − x3)2 + (y1 − y3)2

−
r

2
21

r231

r241

 =

 0

0

0

 (5.2)

This is the trilateration method of location determination. It maybe possible

that due to noise, the curves do not intersect at a particular point. Thus,

it is better to have more than the minimum number of transmitters to in-

crease the possibility of an accurate prediction. One could also implement

the Kalman filter algorithm to disregard the unlikely positions from the pre-

dictions. Kalman filter, or the linear quadratic estimation (LQE), uses a

series of measurements observed over time, containing statistical noise and

other inaccuracies, and produces estimates of unknown variables that tend

to be more precise than those based on a single measurement alone.
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CHAPTER 6

NUMERICAL SYSTEM MODEL AND
SIMULATIONS

In this thesis, we mainly look at positioning using phase information of the

received CW signal. The task of finding the target position can be broken

down further into:

• Formulating the transmitted and received signals

• Determining the phases of the signals on the receive end

• Estimating distance from phase information

It is assumed that propagation velocity of the waves is c, where c is the speed

of light in vacuum and is equal to ≈ 3∗108m
s2

. In reality, the velocity of wave

propagation depends on the material medium and is defined by v =
√

1
µε

,

where µ is the magnetic permeability of the material and ε is its dielectric

constant. In an indoor environment, signals might travel slower due to the

presence of media other than air.

Say the original transmitted signal from the master unit is a CW signal at

frequency fc with amplitude proportional to a constant A, and a phase offset

of ψo:

St1(t) = Asin(2πfct+ ψo) (6.1)

This signal travels to the remote unit distance r away and accrues phase such

that

Sr1(t) = Bsin(2πfc(t+
r

c
) + ψo) (6.2)

where Sr1 is the signal received at the target unit. On this end, the signal is

mixed with an LO signal at frequency flo and amplitude C. ψr is the phase

offset introduced by the LO.

Slo(t) = Csin(2πflot+ ψr) (6.3)
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After mixing, the signal is translated to frequencies fc + flo and fc − flo to

give St2,

St2(t) = Sr1(t) ∗ Slo

= Bsin(2πfc(t+
r

c
) + ψo) ∗ Csin(2πflot+ ψr)

=
BC

2
∗ cos[(2πfc(t+

r

c
) + ψo)− (2πflot+ ψr)]...

− cos[(2πfc(t+
r

c
) + ψo) + (2πflot+ ψr)]

=
BC

2
∗ cos[2π(fc − flo)t+ 2πfc

r

c
+ ψo − ψr]...

− cos[2π(fc + flo)t+ 2πfc
r

c
+ ψo + ψr]

(6.4)

The signal described in Eq. (6.4) is then transmitted back to the master unit

(original transmitter), where it is called S ′r2. The signal received at that end

is described in Eq. 6.5). This includes the original signal St1.

Sr2 = St1 + S ′r2

= Asin(2πfct+ ψo) +
BC

2
∗ [cos(2π(fc − flo)(t+

r

c
) + 2πfc

r

c
+ ψo − ψr)...

− cos(2π(fc + flo)(t+
r

c
) + 2πfc

r

c
+ ψo + ψr)]

= Asin(2πfct+ ψo) +
BC

2
∗ [cos(2π(fc − flo)t+ (4πfc − 2πflo)

r

c
+ ψo − ψr)...

− cos(2π(fc + flo)t+ (4πfc − 2πflo)
r

c
+ ψo + ψr)]

(6.5)

The received signal is composed mainly of three frequencies, fc, fc + flo and

fC − flo. Defining the phase of arrival of the received signal at each of these

frequencies,

6 Sfc = ψo

6 Sr2up = (4πfc − 2πflo)
r

c
+ ψo + ψr)

6 Sr2dwn
= (4πfc − 2πflo)

r

c
+ ψo − ψr)

(6.6)

where Sr2up is at fc + flo and Sr2dwn
is at fc− flo. To eliminate the unknown
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offsets we use Eq. (6.7).

∆ = 6 Sr2up + 6 Sr2dwn − 26 Sfc

= 8πfc
r

c

(6.7)

Hence, if we can acquire phase information of the transmitted and received

CW signals, then we can determine the distance r using Eq. (6.8).

r =
c ·∆

8π · fc
(6.8)

where c is the propagation velocity.

6.0.1 Use of Multiple Frequencies

There is one drawback with such a model. The distance estimated will always

have an ambiguity of being of the form r+nλc, where n is an integer multiple

and λc is the wavelength of the carrier. To avoid this ambiguity we can make

use of two carrier frequencies fc1 and fc2. The first step would be to use fc1

to calculate ∆. The second step would be to repeat the same calculation for

fc2. This gives us two values, ∆fc1 and ∆fc2 . Using this information, we can

calculate the quantities mentioned in Eq. (6.9).

∆big = ∆fc1 −∆fc2

fdiff = fc1 − fc2
(6.9)

These values can be substituted into Eq. (6.8) to give Eq. (6.10).

r =
c ·∆big

8π · fdiff
(6.10)

Equation (6.10) gives us the distance between the master and remote unit.

This is the required distance.

6.1 Analysis in Time Domain

We can look at what the signals would look like in the time-domain. For

this purpose, one could use a real-time oscilloscope. In run mode, the scope
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continues to acquire and display each condition that matches the scope’s

trigger specification. Variable or infinite persistence enables successive signal

captures to be overlaid on the original signal [9].
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Figure 6.1: Signals Received at Master Unit (Time Domain)

Figure 6.1 shows what the received signals would look like at the master

unit. The received signal is composed of:

• The transmitted signal St1, which is received due to the wireless na-

ture of the system. This signal barely travels any distance and can be

assumed to have accumulated no phase.

• The round-trip Sr2 signal, which is a superposition of the Sr2up and

Sr2dwn signals, giving it the appearance of being amplitude modulated.

The Sr2 signal is delayed in time as it travels a long distance. The time

delay is proportional to the distance traveled. In order to find the distance

traveled by the wave, we use the nulls of the envelope of the signal. Figure

6.2 shows the Sr2 signal with its envelope.

The nulls are a clear indication of how the waveform moves as distances

increase. We can use the time difference between nulls for zero distance and
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Figure 6.2: Signal Sr2 and Its Envelope in Time Domain

some distance r to calculate the distance traveled by the wave. Figure 6.3

shows the received signals in time domain for r = 0.

Figure 6.4 shows the signals for r = 0.5 m. We can see from the markers

in Fig. 6.3 and Fig. 6.4 that the nulls of the envelope lie at time stamps 62

and 54 respectively. The time step, tstep for these calculations is 0.2 ns. This

translates to

tnull(r = 0 m) = 62× tstep = 62× 0.2× e−9 s = 12.4 ns

tnull(r = 0.5 m) = 54× tstep = 54× 0.2× e−9 s = 10.8 ns
(6.11)

To calculate the distance we use the following relation between the change
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Figure 6.3: Received Signal Waveform for r = 0 m

in phase and the distance traveled:

∆φ =
2πfenvr

c

r =
∆φ

2πfenv
· c

=
ωenv∆t

2πfenv
· c

= c ·∆t

(6.12)

where ∆φ is the phase change due to the distance traveled by the wave and

is also equal to ωenv · ∆t, fenv is the frequency of the envelope of Sr2, ωenv

is the angular frequency of the envelope and is equal to 2πfenv and c is the

speed of light≈ 3 × 108 m/s. If we know the shift in time of the waveform,
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we should be able to determine the distance using Eq. (6.11) and Eq. (6.12):

r = c · (12.4− 10.8) · 10−9

= 0.48 m ≈ 0.5 m
(6.13)
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Figure 6.4: Transmitted and Received Signal Waveform for r = 0.5 m

Thus, we were able to recover the distance from the time-domain wave-

forms.

6.2 Analysis in Fourier Domain

As mentioned in the previous sections, the determination of the phase of

the received signals is the key to finding the location of the target. This

mathematical model was implemented in MATLAB. Mainly two methods

were used to determine the phase of the signals: FFT and PLL . This chapter

goes over the implementation of the FFT method.
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The band of operation for this setup is chosen to be in the license-free ISM

range. We also assume the amplitude coefficients of the transmitted signals

to be 1. Initially, the phase offset at the transmitter, as well as the phase

offset introduced by the local oscillator, is assumed to be zero for simpler

calculations. These quantities can be modified to observe their effect on

location tracking.

For fc1 = 910 MHz, fc2 = 920 MHz and flo = 20 MHz, we implement

the mathematical model described earlier in this chapter. Note that λc1 =

0.3294 m and λc2 = 0.3259 m. These values need to be kept in mind, as

for distances beyond half a wavelength (one full wavelength in round trip),

the issue of unambiguity is introduced. This is resolved using at least two

different frequencies, and is the main reason for the use of fc2.

Listing 1: Sampling Frequency and Time Vector

1 fs_fc2 =10* f_c2;

2 t_fc2 =0:1/ fs_fc2 :1000*1/ fs_fc2;

For FFT, the sampling rate is defined in Listing 1. The number of the

points were chosen for convenience, so that the expected FFT peaks are at a

frequency that is an integer multiple of the sampling frequency. The double

sided FFT plot for the transmitted signal is shown in Fig. 6.5, where we can

see that the peak lies at fc1.

If the FFT peak is not at fc1, then we can find the index for the closest

frequency using Listing 2.

Listing 2: To find closest f value

1 s_t1err=abs(f-f_c); %Minimizing difference

2 [idx idx]=min(s_t1err); %Index of closest

3 %frequency

4 closestf=f(idx); %Closest frequency

The double sided FFT plot for the received signal is shown in Fig. 6.6,

where we can see that the peak lies at 930 MHz and 890 MHz.
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Figure 6.5: FFT Plot for St1

To obtain the phase information for different frequencies, there are multi-

ple approaches like using the phase or angle commands in MATLAB. In this

script the tan inverse relation shown in Listing 3 is used to obtain the phase

of St1 , Sr2up and Sr2dwn. Here, X is the transmitted signal St1.

Listing 3: Calculating phase information

1 phase=atan2(imag(X),real(X))*180/pi;
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Figure 6.6: FFT Plot for Sr2

The phase information is substituted in Eq. (6.7) and Eq. (6.8). On com-

paring the actual distance with the estimated distances, we notice that some

of the distances are negative. Slight modification shown in Listing 4 is used

to correct it. Figure 6.7 shows the comparison results after the modification.

Listing 4: For negative distances

1 if r_cal <0

2 r_cal=r_cal +(( lambda_fc)/2);

3 end

33



Actual distance (m)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
s
ti

m
a
te

d
 d

is
ta

n
c
e
 (

m
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Actual vs Estimated distance r

Estimated r

Actual r

X: 0.16

Y: 0.16

Figure 6.7: Distance Estimation with Single Carrier Frequency

We can see that the method with single carrier frequency fails beyond a

distance of 0.16 m which is equal to
λfc1
2

. Beyond this distance the prob-

lem of wavelength ambiguity kicks in. To overcome this we use two carrier

frequencies.

We introduce the concept of Bigdelta which is basically from Eq. (6.9).

Listing 5 shows the code for it.

Listing 5: Bigdelta

1 Bigdelta =(delta_fc2 -delta_fc1);

2 r_cal_del =( Bigdelta*c)/(8*pi*fdiff);

The estimated distance is shown in Fig. 6.8. We observe that the method

fails for some values of r. It can be seen be seen that when it fails the

estimated value of r is negative. On investigating further, it was noticed

that this was due to the 2π periodicity of the wrapped phase. Changes were

made to the code as shown in Listing 6.
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Figure 6.8: Distance Estimation with Two Carrier Frequencies

Listing 6: To unwrap phase

1 if delta_fc1 >delta_fc2

2 delta_fc2=delta_fc2 +(2*pi);

3 Bigdelta =(delta_fc2 -delta_fc1);

4 r_cal_del =( Bigdelta*c)/(8*pi*fdiff);

5 else

6 r_cal_del =( Bigdelta*c)/(8*pi*fdiff);

7 end

The outcome after the changes are made is shown in Fig. 6.9. The distance

is correctly tracked without any wavelength or phase ambiguity.
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Figure 6.9: Distance Estimation using Two Carrier Frequencies (No
Ambiguity)

Hence, Fourier analysis of the transmitted and received signals yields the

correct distance between the master unit and the target unit.

6.3 Analysis using Phase Lock Loop

The computational cost of using the FFT method for phase tracking is high.

This section shows an alternate method using the well-known phase locked

loop (PLL). A PLL is a feedback system that generates a signal locked to

the phase of a reference signal.
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Figure 6.10: The Dual Phase Locked Loop Structure

The objective of the PLL is to minimize the phase error between the in-

coming CW signal and the newly generated signal. Any phase misalignment

in the new carrier with respect to the incoming CW signal results in a non-

zero phase angle of the I and Q vectors, so that the magnitude and direction

of the phase difference can be detected and used as feedback to correct the

new signal.

When there is a difference in the transmitted frequency and the frequency

assumed at the receiver, problems arise. As it is extremely difficult to have

two oscillators exactly aligned, it is important to find ways to estimate the

frequency from the received signal. Thus, it is advised to use a PLL that

can track phase as well as frequency. This section uses a method of indirect

frequency estimation. In this method two PLLs are cascaded: one for fre-

quency specification and the other for phase. Figure 6.10 shows the scheme.

Say the received signal is of the form rp(t) = cos(4πfct+ 2φ). This signal

serves as the reference for the two loops. For the first loop, if the oscillator

frequency is 2fo, then the phase estimate 2θ1 converges to a ramp with slope

equal to 2π(f0 − fc). Equation (6.14) shows the convergence relation.

θ1(t)→ 2π(f0 − fc)(t) (6.14)
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Here, b is the y-intercept of the ramp. The phase estimate of the first loop

θ1 is added to the theta estimate of the second loop, θ2. The output of the

second oscillator is shown in Eq. (6.15).

sin(4πf0t+ 2θ1(t) + 2θ2(t) = sin(4πf0 + 4π(fc − f0)t) + 2b+ 2θ2(t))

→ sin(4πfct+ 2b+ 2θ(t)).

(6.15)

Essentially, the top loop determines the carrier frequency which is used by

the second loop. θ2(t) converges to φ − b. A sinusoid of frequency 2πf0t

and phase θ1 + θ2 is indistinguishable from a sinusoid of frequency 2πfct and

phase θ2. These values can then be used to generate a signal that is aligned

with rp(t) in both phase and frequency. This scheme was also implemented

in MATLAB.

Listing 7 shows the code form of the received signal.
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Figure 6.11: Convergence Function of a Dual PLL
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Listing 7: Received up and down signals

1 rp_up=cos ((4*pi*(f_c+f_lo)*t)+(2*(4* pi*f_c+2*pi*

f_lo)*(r/c)));

2 rp_dwn=cos ((4*pi*(f_c -f_lo)*t)+(2*(4* pi*f_c -2*pi*

f_lo)*(r/c)));

Figure 6.11 shows that the PLL converges to a particular phase depending

on the phase of the input signal. The phase estimate of the first pll, θ1,

converges to a ramp. The phase estimate of the second pll, θ2, converges to

a constant.
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Figure 6.12: Distance Estimation using PLL

Figure 6.12 shows the distance estimation using the dual PLL method at

two carrier frequencies with a modified Bigdelta function. It is observed that

there is an error in estimation due to the 2π phase periodicity experienced

in the FFT estimation as well. The calculated phase is modified by a factor

of π to yield the correct distance. The modification is shown in Listing 8.
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Listing 8: Avoiding Phase Ambiguity

1 if r_cal_del2 <0

2 delta_pll2=delta_pll2 +(pi);

3 Bigdelta =(delta_pll2 -delta_pll);

4 r_cal_del =( Bigdelta*c)/(8*pi*fdiff);

Figure 6.13 shows the distance estimation with the phase correction. The

calculated distance closely follows the actual distance.
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Figure 6.13: Distance Estimation with Correction using PLL

Thus, we were able to use three different techniques to extract distance

information from the received signal characteristics: null positions in time

domain, Fourier analysis, and phase determination using PLL.
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CHAPTER 7

MEASUREMENTS

In-lab measurements were carried out as a proof of concept. The benchtop

model was implemented using cables to eliminate any errors due to wireless

factors. The lab setup included a signal generator for transmission of St1 at

frequency fc1. At the transmitting end the signal was split using a power

splitter and sent to the reflector unit on the other end of the room, as well as

to a real-time oscilloscope which sits on the original transmitting end. The

signal is received by a mixer on the other end. This mixer is also fed an LO

signal, SLO, giving rise to two new frequencies, fc1 ± flo. These signals are

transmitted back to the oscilloscope at the master unit through cables.

Figure 7.1: Sr2 with a Null at Cursor X1 =-8.880 ns

The original signal St1, is observed on channel 1. This signal undergoes a

negligible phase shift due to the small distance between the signal generator

and the oscilloscope. The combination of the fc1±flo signals, Sr2, is observed
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on channel 2 as shown in Fig. 7.1. The oscilloscope data is triggered to the

St1 signal.

A cable of unknown length is added to the wired path in between the

master unit and the reflector unit. This introduces a further delay in the

path of the received signal, Sr2.

7.1 Shift of Envelope Nulls

The delay is noticeable as a shift of the nulls of the envelope towards the

right as shown in Fig. 7.2.

Figure 7.2: Delayed Sr2 with a Null at Cursor X2 =-5.94 ns

The difference between the x-cursors gives us the shift in the nulls. From

prior knowledge and the oscilloscope data

∆x = −5.94− (−8.88) ns = 2.94 ns

v =
1

√
εteflon

=
1√
2.1

= 0.7 ∗ c

r = v ∗∆x = 0.7 ∗ c ∗ 2.94 ∗ 10−9 = 0.60 m

(7.1)

The length of the cable was measured and found to be ≈ 0.58 m, which
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is very close to calculated length shown in Eq (7.1). Thus, the shift of the

nulls indicates the delay added in the path.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

Different technological solutions for wireless indoor positioning and naviga-

tion were discussed and implemented in code. Although multiple approaches

exist to handle the indoor positioning problem, current solutions cannot

achieve the performance that significant applications require. In short, re-

quirements for different application environments are accuracy, range, avail-

ability, and costs for implementation. To achieve these specifications, a good

variety of research approaches is required.

Some of the future trends of wireless indoor positioning systems are the

following [2]:

• New hybrid solution for positioning and tracking estimation in 4G with

the currently available position system,

• Need for cooperative mobile localization which will help mobile nodes,

working with each other, to determine their locations,

• New innovative mobile applications in which location information can

be used to improve the quality of the user experience and to add value

to existing services offered by wireless providers.

With the integration of more and more wireless technology and the advent

of IoT, localization is bound to have a significant impact in the field of wire-

less systems. The applications can range from smarter asset localization at

industrial plants to the experience of augmented reality. Several big compa-

nies in the wireless domain have picked up on this hunch, and have employed

several intensive research activities in this field.

This thesis is a first step to indoor positioning using MERLIN. Future

work in this direction could involve observing the effects of non-idealities

in the system such as noise and phase drifts which would occur in realistic
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implementations. This approach could also be developed using software de-

fined radio. SDR is an emerging, state-of-the-art technology which features

modulation/de-modulation and other techniques in digital signal processing

(DSP) in software as opposed to hardware. The extreme flexibility of the

SDR technology is also very useful in areas where evaluation and analysis of

RF signals is needed, making it suitable for location determination.
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APPENDIX A

MATLAB CODE

A.1 Forwardmodel.m

Listing 9: Code 1

1 close all;

2 clc;

3 %For a different r

4

5 %Amplitude Coefficients

6 A=1;

7 B=1;

8 C=1;

9 %Distance r, speed of light ,frequencies , time

step

10 prompt=’Enter value of r in meters:’;

11 r=input(prompt)

12 c=2.99792458 e8;

13 f_c =910e6;

14 lambda_fc=c/f_c;

15 tdiff =2*r/c;

16 f_lo =20e6;

17 fs=10* f_c;

18 t=1/fs:1/fs :10000*1/ fs;

19 x=0*t;
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Listing 10:

1 % signal transmitted

2 s_t1=A*cos(2*pi*f_c*t);

3

4

5 % Signal received

6 s_r1=B*cos ((2*pi*f_c*t)+(2*pi*f_c*(r/c)));

7

8 % Mixer LO signal

9 s_lo=C*cos(2*pi*f_lo*t);

10 % Signal transmitted from the repeater

11 s_t2_mul=s_r1.*s_lo;

12

13 s_t2_up=cos ((2*pi*(f_c+f_lo)*t)+(2*pi*f_c*(r/c)))

;

14

15 s_t2_dwn=cos ((2*pi*(f_c -f_lo)*t)+(2*pi*f_c*(r/c))

);

16

17 s_t2 =0.5*B*C*( s_t2_dwn+s_t2_up);

18

19 % Signal received at PMU

20 s_r2_dwn=cos ((2*pi*(f_c -f_lo)*t)+((4*pi*f_c -2*pi*

f_lo)*(r/c)));

21

22 s_r2_up=cos ((2*pi*(f_c+f_lo)*t)+((4*pi*f_c+2*pi*

f_lo)*(r/c)));

23

24 s_r2 =0.5*B*C*( s_r2_dwn+s_r2_up);

25

26 s_r1=B*sin ((2*pi*f_c*t)+(pi/2));
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Listing 11:

1 % FFT Calculation

2 nfft =1820;

3 X=fftshift(fft(s_t1 ,nfft));

4

5 title(’Double Sided FFT - with FFTShift ’);

6 xlabel(’Frequency (Hz)’)

7 ylabel(’|DFT Values|’);

8

9 %Extract amplitude and phase of frequency

components (amplitude and phase spectrum)

10 df=fs/nfft; %frequency resolution

11

12 sampleIndex = -nfft /2: nfft /2-1; %ordered index

for FFT plot

13 f=sampleIndex*df; %x-axis index converted to

ordered frequencies

14 figure;

15 plot(f,abs(X),’b’);

16

17 %%To find closest f value

18 s_t1err=abs(f-f_c);%Minimizing difference

19 [idx idx]=min(s_t1err);% Index of closest

frequency

20 closestf=f(idx);%Closest frequency

21

22 s_r2_uperr=abs(f-(f_c+f_lo));%Minimizing

difference

23 [idy idy]=min(s_r2_uperr);% Index of closest

frequency

24 closestf1=f(idy);%Closest frequency

25

26

27 s_r2_dwnerr=abs(f-(f_c -f_lo));%Minimizing

difference
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Listing 12:

1 [idz idz]=min(s_r2_dwnerr);% Index of closest

frequency

2 closestf2=f(idz);%Closest frequency

3

4

5 % Phase calculations

6 phase=atan2(imag(X),real(X))*180/pi; %phase

information

7 phase(idx);

8

9 Z=fftshift(fft(s_r2_dwn+s_r2_up ,nfft));

10 plot(f,abs(Z),’r’);

11

12 % figure;

13 phase2=atan2(imag(Z),real(Z))*180/pi; %phase

information

14

15 % plot(f,phase2); %phase vs frequencies

16 phase2(idz);

17

18 %%% Calculating delta and r_cal

19 delta_fc1=degtorad(phase2(idz)+phase2(idy) -2*

phase(idx));

20

21 r_cal=( delta_fc1*c)/(8*pi*f_c);

22

23 r_cal;

24

25 Forwardmodel_trial;

26 bigdelta;
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A.2 bigdelta.m

Listing 13: Code 2

1 Bigdelta =(delta_fc2 -delta_fc1);

2 if delta_fc1 >delta_fc2

3 delta_fc2=delta_fc2 +(2*pi);

4 Bigdelta =(delta_fc2 -delta_fc1);

5 r_cal_del =( Bigdelta*c)/(8*pi*fdiff);

6

7 else

8 r_cal_del =( Bigdelta*c)/(8*pi*fdiff);

9

10 end

11 r_cal_del;
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