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Abstract

With the advent of big data, scientists are collecting biological data faster than they have in the past, including

genomic profiles which describe individuals by thousands of genes at a time. Adding to this library of knowledge

are gene interaction networks, which model overarching cellular processes by describing how genes interact with

each other.

When approached with genomic profile data together with gene interaction data, it becomes a question of

how to integrate these two pieces of knowledge together for machine learning. Previous studies have attempted

to employ some form of feature engineering process to “collapse” the network topology alongside the genomic

profiles, losing the potential for global network information.

Instead, we explore a framework based upon network propagation. We explain how network propagation

algorithms can enhance standalone genomic profiles, called embeddings, and show these enhancements lead

to improved predictive accuracies on drug response classification. We next show that these embeddings contain

predictive signals that are not necessarily implicated by gene ranking methods such as PageRank. Last, we apply

network propagation to a dataset presented by the DREAM organization, and show we can improve a naïve linear

regression that solves for a drug sensitive ranking task.
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Chapter 1

Introduction

Over decades of research, biologists have curated and published data of heterogeneous types for use in future

studies. In the context of machine learning, we wish to gain insight into these datasets by building predictive

models from these datasets. For example, some studies (Friedman et al. (2009)) employ regression algorithms

to understand what genes lead to a particular phenotype, such as drug response.

However, underlying interactions between genes in the data pose a problem for classical methods such as

linear regressions and classifiers, which learn univariate models between the genes. In other words, most popular

linear models assume each of these genes is independent of each other, and weigh their importance as such. In

reality, genes are known to interact with one another, and we ideally want to construct a model which captures

the interactions between features.

New research has now focused on the idea of embedding. Embedding is the concept of transforming one

or several objects into a different space. For example, researchers have developed a software package called

Word2Vec for natural language processing which transforms words into vector representations (Mikolov et al.

(2013)). For our purpose, what we are interested in is embedding our genomic profiles, whose genes are

connected by interaction networks, into some representation that can aid our linear models.

1.1 Problem Statement

Assume the standard problem setting, where we are given genomic profiles X ∈ RN×g describing N cell line

samples such that each X i1, . . . , X i g is associated with some gene in some set GX . Figure 1.1, for example, shows

part of a dataset which describes cell lines using its genes. Each cell line / gene pair corresponds to the gene

microarray expression data (“expression data”, for short).1

When we have a set of responses, y ∈ RN , we can fit an off-the-shelf linear model to this data. However, as

mentioned before, these genes have an underlying interaction between them, which may not be captured in our

1Cell lines act as proxies to individuals. For example, we can associate a tumor cell line with a cancer patient of whom we would like to
cure.

Because each row of our dataset X is said to be a learning sample (or example) in a machine algorithm, we may interchange the terms
“cell line”, “sample”, “cell line sample”, or even “patient”.
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Figure 1.1: Example gene expression data from the GDSC (Yang et al. (2013))
Each row i represents the microarray gene expression for a tumor cell line i, while each column j represents the
microarray gene expression for a given gene j across all cell lines. The set of all genes in this data X is denoted

as GX .

linear model. We now introduce the underlying network, G, whose genes form the set GG .2 What we wish to do

is capture these underlying gene interactions within our original genomic profiles.

1.2 Related methods which solve different tasks

As we have alluded to previously, there have been many studies trying to utilize these underlying networks

and their genes. For example, Paradigm-shift (Kalia and Gupta (2005)) both try to use the network data to

understand perturbations in networks due to somatic gene mutations. DCA and ClusDCA (Cho et al. (2015);

Wang et al. (2015)) both try to embed each gene into some feature vector x for protein function prediction.

LINE (Tang et al. (2015)) is also another gene embedding algorithm which can use the local context and similar

graph substructures to predict a gene’s function in the network.3 But we emphasize that these algorithms do

not solve the task at hand. Remember that we are trying to represent an individual with a genomic profile; our

individuals cannot be represented by single genes.

An algorithm which more closely represents what we would like to do, but still solves a different task, is

DawnRank (Hou and Ma (2014)). Dawnrank tries to find “personalized” driver genes by ranking these genes in

a network. The algorithm is able to achieve personalization by using a cell line’s unique gene expression profile

and somatic mutation data. Though our algorithm does have a personalization component to it, we are not

trying to rank genes, but to embed this data into a form of which machine learning models can use.

2Note that, in some cases, GX 6= GG .
3Results for LINE on protein function prediction have not yet been published.
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1.3 Related network embedding works

One method that utilizes network information to improve a machine learning model is the generalized elastic

net algorithm from Sokolov et al. (2016). In this work, the authors created a regularizer based upon the graph

laplacian L of a gene network G. This problem formulation is different than our vision of embedding and en-

hancing the samples, though one could argue it seems more simple and takes into account the network topology

into the machine learning tasks. Unfortunately, we did not compare our method to this method, in part because

the published R package does not function correctly as expected.

More approaches that try to take advantage of the network structure into predictions are evaluated in Staiger

et al. (2011). These algorithms tried to perform feature engineering to “collapse” the underlying networks into

feature vectors for breast cancer survival prediction. Surprisingly, what the authors discuss disagrees with our

hypothesis. The authors discuss how under strict evaluation settings, and with consistent datasets across all tests,

the genomic networks actually do not improve the classifiers mentioned in the paper. In one of the tests, the

authors generate a random network, and show that even while using this random network, there is no significant

decrease in performance across the evaluated classifiers.

Nonetheless, the classifiers discussed in Staiger et al. (2011) do not use network propagation for integrating

the genomic profiles and networks together. And we will show in this work that this method improves the

results of baseline linear models. Chapter 2 discusses network propagation algorithms, and how we build our

framework around them. Chapter 3 reveals some results using this method for a drug response prediction task.

Our last chapter, chapter 4, introduces this method for cell line ranking using a famous dataset curated by the

NCI-DREAM organization.
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Chapter 2

Network propagation across samples

In this section, we discuss the PageRank algorithm, a random walk with restart (RWR) algorithm. RWR algo-

rithms provide the foundation for network propagation. We then discuss previous uses of the PageRank algorithm

in other studies, and explain why our approach is different.

2.1 The PageRank Algorithm

We define network propagation as the process used to diffuse heat through a network using a RWR algorithm

such as PageRank. We review the network propagation algorithm, as described in Vanunu et al. (2010).

Let G = (V, E) be a weighted directed graph with N nodes, and let W ∈ [0,∞)N×N be the corresponding

weight matrix, such that if edge i→ j has weight w, then Wi j = w. We will assume in this thesis that if Wi j = 0,

edge i→ j effectively does not exist in G. (Observe that we can adapt this definition to unweighted networks by

setting each Wi j = 1.) Furthermore, in the case that G is undirected, we can assume that W is symmetric.

We first want to form a row stochastic matrix fW 1. We can intuitively think of fWi j being the probability that a

particle starting from node i will transition to node j. If each node in G has an outgoing edge, we can define fW

by the following.

Definition 1

Assuming W is the weight matrix of G, and each node in G has an outgoing edge (which is usually not

the case), define the transition matrix fW as

fWi j =
Wi j
∑

j Wi j
.

We now consider the case when G contains nodes with no outgoing edges, called dangling nodes. If G contains

danging nodes, we can modify the weight matrix W of G by setting Wi j = 1 for each j, if i is a dangling node.

1A matrix fW ∈ [0,1]N×N is row stochastic if
∑

j
fWi j = 1 for each row i.
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Applying definition 1 gets us our transition matrix of interest.2

With these definitions, the following is the PageRank algorithm from Page et al. (1998).

Definition 2

The PageRank recurrence is given by

pt+1 = (1−α) · pt ·fW +α · u

where u = (1/N , . . . , 1/N) is a vector of length N, and � represents element-wise multiplication. p0 is

set to be a vector representing any probability distribution.

As t →∞, this algorithm provably converges to a unique solution (regardless of p0). When it does, p∞

is the equilibrium distribution, denoted as p for simplicity.

The three components of interest in definition 2 are p, α, u.

• p, the equilibrium distribution, represents how heat is spread across the network after being introduced.

Because p is a distribution,
∑

i pi = 1, and pi ≥ 0.

• α can be thought of as a “smoothness” parameter. It is referred to as the “restart probability” in Page et al.

(1998), and it describes how far heat is allowed to travel starting from its source node. It is chosen based

upon the network itself (Leiserson et al. (2015); Hofree et al. (2013)).

The authors in Leiserson et al. (2015) state that their network propagation algorithm works best if large

values of α (≈ 0.5) are chosen, since this helps capture local structure in the network. However, because

we distribute our heat using u, we can capture global structure as well. We believe this is one of the

advantages of using network propagation over the methods described in Staiger et al. (2011).

• u is the personalization distribution granted to each node in the network. Given some fraction of heat ui ,

ui heat is transferred back to gene i when the walk restarts.

u can be thought of as a prior knowledge vector (Hofree et al. (2013); Vanunu et al. (2010)), and the RWR

moves this “prior knowedge” across the network, leading to a “smooth” distribution of node probabilities.

We describe network propagation as the process of how different personalization distributions u will result

in different distributions of heat across the network. By biasing the RWR with this personalization, one can

integrate outside knowledge not originally part of the genomic network.

2One difference between our algorithm and the formulation in Vanunu et al. (2010) is that in their work, the authors set fW =
D−1/2W D−1/2. This product is similar to a graph laplacian for directed networks. fW in this case is usually not row stochastic, but will
still cause the algorithm in 2 to converge.
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Figure 2.1: Mapping genes to diseases.
Köhler et al. (2008) demonstrates how the results of a RWR algorithm can rank genes in a network.

For the rest of this work, we refer to the equilibrium distribution p as an embedding. We will provide our

explicit framework in 2.3, and show results in section 3.2 and chapter 4.

2.2 Previous uses of network propagation

In bioinformatics, one of the challenges is annotating genes with their functions, and understanding how genes

cause certain diseases. Many scientific studies (Weston et al. (2004); Köhler et al. (2008); Vanunu et al. (2010);

Leiserson et al. (2015); Hou and Ma (2014), and others) have previously used network propagation to rank

genes in a network. The most basic of ranking schemes is simply by biasing the RWR with genomic data by

changing u. The work by Köhler et al. (2008) in figure 2.1 demonstrates this process.

However, we are not interested in ranking genes in this work. Though we are interested in using network

propagation, we want to use network propagation to embed a cell line’s information alongside the genomic

network. The work algorithm “network based stratification” (NBS) most similarly demonstrates this process

(Hofree et al. (2013)). In Hofree et al. (2013), the authors clustered cancer subtypes using the mutation profiles

of patients. For each of the N cell lines, the authors performed a RWR by using the patient’s mutation profile

to modify u, creating N unique embeddings. Using the N embeddings, the authors used non-negative matrix

factorization to cluster these cell lines into cancer subtypes.

As far as we know, this may be one of the first instances where a sample’s embedding was used as input into

a machine learning model. And so we build off of NBS, and try generalizing this framework for other machine
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learning tasks.

2.3 The embedding framework

Our framework for embedding network information in our genomic profiles is shown in algorithm 1. We also

depict our framework using figure 2.2 For brevity, we omit the details about preprocessing and postprocessing,

but these can be found in the supplements of this work. (See section 6.1.)

The first preprocessing step removes genes from X that are absent from the network G. It also imputes values

for genes not in X which are present in G. From here, any RWR algorithm (such as PageRank) can be used to

embed the samples.

The postprocessing step on line 4 is crucial for the use of a machine learning algorithm on line 5. Since

the output of the embeddings are probability values, we can think of each feature (a probability on a gene) to

be used in classification as dependent on each other; we have the constraint that
∑

j Pi j = 1. One of the main

functions of the postprocessings step is to decouple each feature for use in a predictive learning model.

Furthermore, the postprocessing step selects ideal genes for use in classification. Some studies in the past

(see the supplements of Costello et al. (2014)) have attempted to use the top k genes chosen from a RWR as

the canonical features to use in a machine learning algorithm. Instead, we use a supervised feature selection

procedure (χ2 feature selection) to select the best features for use in the model. We will show that this produces

better results than choosing the top genes with the greatest ranks (see section 3.3.2).

We clarify that this framework simply uses network propagation algorithms in a different way than used

previously for sample level machine learning. It is not meant to be complex, but simply an outline of how we

envision embedding frameworks to act using network propagation.

We can generalize and state that NBS follows this pipeline, except instead of classification the authors perform

clustering. The authors use gene mutation profiles to generate their personalizations, U , and postprocess their

output features using quartile discretization along each feature.

DawnRank also follows this pipeline, up to the postprocessing step. The preprocessed inputs include the

absolute values of the z-scored gene expression values, scaled to sum to one.
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Algorithm 1 Network Enhanced Model
1: procedure TRAINNETWORKMODEL(G, X , y)
2: GG ← GETGENES(G) . Genes in the network
3: GX ← GETGENES(X ) . Genes in the profile
4: U ← PREPROCESS(X ,GG ,XG)
5: P ← EMBEDSAMPLES(G, U) . Pagerank, or any other RWR algorithm
6: X ′← POSTPROCESS(P)
7: return TRAINMODEL(X ′, y) . y might not exist for clustering
8: end procedure

Figure 2.2: Framework outline
Red: Original genomic data (X ). Green: Preprocessed data (U). White nodes in network: genes introduced by
network data without genomic data. Orange nodes: The network embeddings produced by a RWR (P). Purple:

postprocessed features ready to be used for predictive modeling (X ′).
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Chapter 3

Experimental results

In this chapter, we demonstrate the usefulness of our method to a drug responses task (section 3.2). We then

analyze the features produced by the embeddings, and show that they have more signal than the original genomic

profile (3.3).

3.1 Data and task introduction

We used curated data collected from the Genomics of Drug Sensitivity in Cancer (GDSC) website (Yang et al.

(2013)). This data contains inhibitory concentration1 across cell lines and drug samples.

We chose to classify whether a drug d ’s IC50 value for cell line c exceeded the recommended dosage of d.

Furthermore, we limited our classification task to one drug (midostaurin) for consistency. At the end, our drug

response data contains 2283 genes, 592 samples, 309 negative examples, and 283 positive samples. Each gene

is associated with a corresponding z-scored gene expression value. For brevity, we refer to this dataset X as the

drug response data.

We conducted experiments across two different network datasets, both originating from the Kyoto Encyclope-

dia of Genes and Genomes (KEGG) database. (See table 3.1.) Network 1 was published with Hou and Ma (2014),

and Network 3 has not yet been published. Last, we formed networks 2, 4, and 6 ourselves. The idea behind

networks 2 and 6 was mainly from Leiserson et al. (2015), where the authors only considered one connected

component to find gene subnetworks.

It’s important to note that it’s possible we won’t have gene expression values for each gene in the network,

and conversely genes in the network might not have associating gene expression values. See chapter 6.1 to see

the full details of how we handle these missing values.

Last, we evaluated each of our models using F1 score, accuracy score, and precision. With the consideration

that in the field of precision medicine, it’s important that we minimize the number of false negatives as possible.

Hence, precision and F1 score are ideal metrics for this task.

1A cell line is said to have an inhibitory concentration x value (ICx ) of c for some drug d if a concentration of c is needed to kill x percent
of the cell line using d.
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Table 3.3: Drug response prediction accuracy
F1 score Accuracy Precision # Genes selected
59.43 63.18 63.25 2283 (all)

Network ID Restart probability F1 score Accuracy Precision # Genes selected
1 0.60 60.04 63.35 63.58 6980
2 0.55 60.27 63.68 63.78 6701
3 0.70 59.93 63.35 63.23 1598
4 0.60 58.90 61.83 61.60 510
5 0.55 60.26 63.35 63.65 3556
6 0.60 59.39 63.00 63.15 6776

3.2 Results for drug response classification

We evaluated an L2 regularized logistic regression using only drug response data. See section 6.2 for full details

about hyperparameter tuning this baseline model. Just like we do for our network propagation tasks, we also

applied feature selection before training the logistic regression. Figure 3.1 contains a plot of the feature selection

search on the gene drug response data.

Next, using the same regularization value as our baseline logistic regression, as well as the same regulariza-

tion (L2), we conducted our experiments across all six of our networks. Figure 3.2 contains the feature selection

searchs on the embeddings.

Last, we display the obtained accuracies in table 3.3.

Figure 3.1: Feature selection search on the number of genes selected from the data, step size 0.05% of the genes.
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Figure 3.2: Feature selection search on the number of genes selected from the embeddings. Row one: using

networks 1 and 2. Row two: using networks 3 and 4. Row three: using networks 5 and 6

12



As we can see from table 3.3, using networks 1, 2, 3, and 5 yields an improvement over baseline accuracies.

We also observe that there was an increase of accuracy between networks 1 and 2, but a decrease in accuracies

between 3 and 4, and 5 and 6. Referring back to table 3.1, it seems we pruned 349 genes when producing

Network 2 from Network 1, 434 genes from Network 3 to Network 4, and 583 genes from Network 5 to Network

6. So perhaps there is some threshold where overpruning the network does damage to our prediction accuracies.

3.2.1 Improving the embeddings using DirichletRank

One problem that Larry Page and Sergey Brin identified in their original formulation of PageRank (Page et al.

(1998)) is the existance of dangling nodes. Recall a dangling node is a node that does not have any outgoing

edges. The solution we discussed in section 2.1 is to allow this node to have outgoing edges to each other node

in the graph.

However, as identified in Wang et al. (2008), this dramatically reduces the importances of these dangling

nodes. In fact, the authors show that a node with one outgoing edge has much greater importance than one with

none.

With some modifications to PageRank, one can produce DirichletRank, which is a very similar RWR algorithm.

It more accurately weighs each node’s restart probability with a “dynamic damping factor” µ, rather than a

constant probability of restart α. Our results for the drug response task from section 3.2 are compared with

those using DirichletRank instead of PageRank.

In the results, Network 6 now has accuracies that exceed the baseline. However, only Network 5’s F1 score

exceeds the baseline now.

3.3 Analyzing the embeddings

We now analyze the features. In this section, we show that the features produced by network propagation have

more signal than the original gene expression features.

We limit this analysis to using only the embeddings produced by network 1, with α= 0.55.2 We also apply χ2

feature selection on the entire data set, rather than 5 fold cross validation. This makes it easier for us to discuss

the representative genes from both of the datasets.

2We should have used α= 0.6 in our analysis, since this produced the best results from section 3.2.
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Table 3.4: Drug response prediction accuracy comparison of PageRank and DirichletRank
Top: Baseline results. Middle: PageRank. Bottom: DirichletRank

F1 score Accuracy Precision # Genes selected
59.43 63.18 63.25 2283 (all)

Network ID Restart probability F1 score Accuracy Precision # Genes selected
1 0.60 60.04 63.35 63.58 6980
2 0.55 60.27 63.68 63.78 6701
3 0.70 59.93 63.35 63.23 1598
4 0.60 58.90 61.83 61.60 510
5 0.55 60.26 63.35 63.65 3556
6 0.60 59.39 63.00 63.15 6776

Network ID Dynamic Damping Factor F1 score Accuracy Precision # Genes selected
1 18 60.73 63.86 64.47 5671
2 19 60.51 64.03 64.49 3769
3 16 60.05 63.52 63.61 1369
4 5 58.72 61.49 61.13 425
5 14 59.96 63.01 63.16 5335
6 12 59.63 63.18 64.01 5074

3.3.1 Gene level analysis

Figure 3.3: p-value distribution

Figure 3.3 shows us the distribution of each gene’s p-values generated by a χ2 distribution. Observe that the net-

work embeddings add more features (genes) to our dataset. Therefore, one reason the classification accuracies

of the network propagated classifier are higher than the baseline classifier is because we have augmented our

feature set with more genes. Furthermore, some of these genes have more signal than the genes in the original

drug response dataset.

We next want to compare the top twenty genes chosen by our feature selection. Figure 3.4 presents the top

twenty genes chosen by the feature selection process. In general, we are quite pleased by the results in figure 3.4.

14



For example, some of the genes chosen by χ2 feature selection did not have gene expression in the drug response

dataset. This agrees with our intuition that information is passed from gene to gene, which could potentially

make other genes in the network informative.

We also included information about the network itself to try explaining what topological features made these

predictive genes. We observe that SPON1 is ranked as a predictive gene, but it only has 2 in-edges, and no gene

expression data. One may assume that since SPON1 is a dangling node that it collected much of the heat in the

network. However, our feature selection process would have not chosen SPON1 if its heat distribution remained

the same across all cell line samples. Hence, SPON1 must be receiving heat from its neighbors, which causes

SPON1 to be a predictive gene. More research must be performed to truly assess the predictive power of SPON1.

We also observe that MYL9, CTGF, THBS1, DCC, CAV1, COL6A2, CDKN2A are in the top selected genes for

both the original drug response dataset as well as the embeddings. This implies is that our network propagations

can not only capture genes implicated by network topology, but also by the original gene expression data.
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Table 3.5: Subtask 1 results
F1 score Accuracy Precision

Drug response gene expressions 59.53 63.35 63.56
Embeddings 65.13 66.90 67.25

Table 3.6: Subtask 2 results
F1 score Accuracy Precision

Drug response gene expressions (see table 3.5) 59.53 63.35 63.56
Embedding induced feature selection 62.08 65.38 66.00
Embeddings (see table 3.5) 65.13 66.90 67.25

3.3.2 Using the χ2 ranked features

The purpose of this section is to show that the features found by using χ2 feature selection on the embeddings,

X ′, are more informative than using χ2 feature selection on the original drug response dataset, X .3

We perform three additional subtasks:

1. Take the first 2283 ranked genes from both X and the X ′, and evaluate a logistic regression using these features.

Task one seeks to prove that having more genes (in quantity) in the network propagated dataset does not

necessarily cause the classifier to be better. Rather, the improved accuracies are a result of, in part by, the

new genes introduced in X ′. Table 3.5 displays these results.

2. Consider the first 2283 ranked genes from X ′. Filter out the genes from X ′ that do not exist in X . Using these

filtered genes, take the corresponding features from X (not X ′), and evaluate a logistic regression on this subset

of X .

Task two shows that network propagation isn’t simply a data augmentation method. Rather, the genes

chosen by network propagation are also informative in our original dataset X . Our results for this task are

in table 3.6.

These results actually help us understand how much signal the extra genes included from the network

dataset provide for us.

3. Consider the original probabilities P, and take the average of these probabilities for each gene. Use these

averaged probabilities as a rank for a gene and evaluate a logistic regression on these rank selected features.

Task three simply shows that we cannot use RWR alone for feature selection. Our results in table 3.7 shows

the supervised feature selection outperforms this unsupervised approach. These results are to be expected.

3Remember that we are performing feature selection before breaking the dataset up into folds. As a result, the accuracy scores in this
section are not representative of the scores in the original task in section 3.2.
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Table 3.7: Subtask 3 results
F1 score Accuracy Precision # Genes

Drug response gene expressions 59.53 63.35 63.56 2283 (all)
PageRank feature selection on embeddings 53.82 56.27 54.38 6108
PageRank feature selection on drug response 55.30 57.45 55.69 1397
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Chapter 4

The NCI-DREAM 7 Challange

The NCI-DREAM 7 Challange (Costello et al. (2014)) was a predictive modeling challenge hosted in 2012 by the

National Cancer Institute and the DREAM organization.1 Their objective was to crowdsource a model that can

predict how sensitive a breast cancer cell line is to a drug. To this end, the authors were trying to push towards

precision medicine, building in silico models which are inexpensive to run in contrast with conventional wet lab

tests.

4.1 DREAM 7 Data

Figure 4.1 outlines the data given to contestants, as well as the evaluation procedure. Contestants were given

• Gene expression data, gene mutation profiles, SNP2 data, and other genomic data.

• A table of cell lines and 31 drugs, where each cell line / drug pair represented a cell line’s GI50 value for

the drug. A lower GI50 value represents a higher sensitivity to a drug.

The output of the algorithms were judged based upon 28 ranked lists of cell lines, each list induced by one of the

28 drugs used for testing. (3 from the original 31 were not included in evaluation.) The evaluation metric the

authors used was the weighted probabilistic concordance index, which calculates a score between a “true” ranking

and a “predicted” ranking. (See the supplements of Costello et al. (2014) for more information.) Because the

GI50 values are real values, one way to view this problem is by multi-task regression.

4.2 Methods and results for DREAM 7

We used Network 1 from table 3.1 and only the gene expression profiles of the cell lines in our experiments.

Between the genes in our network, GG and the genes in the drug response data, XG , the two sets had 8628

1See http://dreamchallenges.org/project/closed/dream-7-nci-dream-drug-sensitivity-prediction-challenge/.
2Single nucliotide polymorphism
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Figure 4.1: Dataset information and evaluation procedure outline for the DREAM 7 challenge

overlapping genes, but the network lacked 10004 genes which the drug response data contained. The drug

response data X was only missing 98 genes from the network; we dropped these 98 genes from X altogether.

Next, we had to perform data imputation. Some of the cell lines in the testing set did not have gene expression

values altogether. We set these expression values to the mean of the genes in question.

The drug response data was also lacking GI50 values which needed to be predicted. For this, we found that

taking the max GI50 for a given cell line, and replacing each missing value for this cell line produced the best

results.3

Next, we generated our embeddings using DirichletRank with a dynamic damping factor of µ = 14. Our

postprocessing consisted of min-max scaling each feature, however we did not perform feature selection in our

postprocessing step.

In our modeling process, we used a simple linear regression to predict the GI50 values. Our results in 4.1

show that we were successfully able to improve the score of the baseline regressor simply by using network

embeddings in our model.

Our baseline regressor would have scored 35th out of 44 in the competition, while our network propagated

model would have scored 22nd. Choosing a different model, as well as including more than just gene expression

3We believe that imputation using univariate statistics per drug (as opposed to per sample) yielded a loss in performance because of
severe overfitting.
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Table 4.1: Our results on the DREAM 7 Challenge
Data WPC index

Baseline Gene expression data 0.530
Network Propagation Gene expression data, Network 1 0.549

data, may help our predictions in the future.
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Chapter 5

Conclusion

In this thesis, we outline a method to enhance sample level gene profiles through use of network propagation. We

showed in this work that by utilizing network structure, we can enhance the features used in machine learning

methods to produce better predictive results.

We do believe, however, that there is more room to grow in this research area. For example, in our experi-

ments, we chose to only use gene expression data, while there are many other kinds of genomic data available

to biologists. Furthermore, we limited our analysis to KEGG pathway interactions, while there are many other

networks available for analysis. Other networks may contain more data and interaction strengths on their edges.

Nonetheless, we hope that this framework be adopted for further research in computational biology. We hope

that researchers will divert their attention from feature engineering methods like those mentioned in Staiger et al.

(2011), and explore random walks to improve the results of their very own experiments.
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Chapter 6

Supplements

6.1 The full network enhanced model pipeline

We omitted the entire pipleine for brevity in the main text. Observe that in PREPROCESS, we remove genes from

X that are not in the network. Furthermore, we set the genes that are in the network but not X to zero. In most

cases, X will represent z-scored gene expression values. Therefore, these padded zeros are actually converted to

some other positive constant feature. We found that this imputation procedure performed well on our datasets.

For the χ2 feature selection process, to select the ideal number of genes to use, we considered 5%, 10%,

. . . , 100% percents of the number of genes in the datasets. Smaller step sizes provide better granularity in the

number of genes chosen.

6.2 Hyperparameters for baseline logistic regression

Our baseline classifier for drug response prediction was an L2 regularized logistic regression, trained on only drug

response data (microarray gene expression data). We chose an L2 regularizer over an L1 regularizer because we

found that L2 yielded higher classification accuracies. Furthermore, our task was not feature selection, which

L1 regularization is known for. Note that this accuracy comparison agrees with Andrew Ng’s postuation in Ng

(2004) that L2 regularization generally outperforms L1 regularization in accuracy when there are many features.

Next, we set our regularization constant C to 5/592. Over grid search (1/592,5/592, 0.1,0.2, . . . , 1.0, 1.1, . . . , 2.0),

we found that this regularization constant yielded the best accuracy.

Note that this fractional value chosen is not arbitrary. The implementation of the logsitic regression we used

is Liblinear’s logistic regression Fan et al. (2008). This regularization value is equivalent to setting λ = 1 in

Jerome Friedman and Trevor Hastie’s formulation in Friedman et al. (2009).
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Algorithm 2 Network Enhanced Model
1: procedure TRAINNETWORKMODEL(G, X , y)
2: GG ← GETGENES(G) . Genes in the network
3: GX ← GETGENES(X ) . Genes in the profile
4: U ← PREPROCESS(X ,GG ,XG)
5: P ← EMBEDSAMPLES(G, U) . Pagerank, or any other RWR algorithm
6: X ′← POSTPROCESS(P)
7: return TRAINMODEL(X ′, y) . y might not exist for clustering
8: end procedure

Algorithm 3 Normalize data so each sample is a probability distribution u
1: procedure PREPROCESS(X ,GG ,XG)
2: Remove columns in X that correspond to genes in GX \ GG .
3: Add columns of zeros to X that correspond to genes in GG \ GX
4: Initialize U as empty
5: for sample x ∈ X do
6: Scale x between [0, 1]
7: u← x/

∑

i x i .
∑

i ui = 1
8: Add u to U
9: end for

10: return U
11: end procedure

Algorithm 4 Perform rescaling and feature selection on data
1: procedure POSTPROCESS(X , y)
2: for x i j ∈ X do . Min-max scaling per feature
3: M ←max1≤i≤N x i j
4: m←min1≤i≤N x i j

5: x i j ←
x i j−m

M−m
6: end for
7: X ′← FEATURESELECTION(X , y)
8: X ′← 2 · X ′ − 1 . Spreads the data between [-1, 1]
9: return X’

10: end procedure
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