
c© 2016 Guangxiang Du

NEW TECHNIQUES TO LOWER THE TAIL LATENCY IN STREAM
PROCESSING SYSTEMS

BY

GUANGXIANG DU

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Associate Professor Indranil Gupta

ABSTRACT

Over the past decade, the demand for real time processing of huge

amount of streaming data has emerged and grown rapidly. Apache Storm,

Apache Flink, Samza and many other stream processing frameworks have

been proposed and implemented to meet this need. Although lots of effort

has been made to reduce the average latency of stream processing systems,

how to shorten their tail latency has received little attention.

This thesis presents a series of novel techniques for reducing the tail

latency in stream processing systems like Apache Storm. Concretely, we

present three mechanisms: (1) adaptive timeout coupled with selective re-

play to catch straggler tuples; (2) shared queues among different tasks of the

same operator to reduce overall queueing delay; (3) latency feedback-based

load balancing, intended to mitigate heterogenous scenarios. We have imple-

mented these techniques in Apache Storm, and present experimental results

using sets of micro-benchmarks as well as two topologies from Yahoo! Inc.

Our results show improvement in tail latency in the range of 2%-72.9%.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Indranil Gupta, for his guidance,

advice, patience and support for my thesis research project. Without his

assistance and invaluable suggestions on improving writing skills, this thesis

would not have been possible.

I would like to thank Le Xu, for sharing two topologies layout from

Yahoo! Inc. used in her Stela project as well as her help and advice.

I also want to extend my sincere gratitude to Qi Wang and Hongwei

Wang, my teammates for CS 525 course project. My thesis research project

is based on the work of our course project in Advanced Distributed Systems.

Therefore, I want to thank them for inspiration, research suggestions and

collaboration.

Last of all, I would like to thank my parents and my friends, for their

love, encouragement and help throughout the journey.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Contributions of this Thesis 3

CHAPTER 2 SYSTEM MODEL . 4

CHAPTER 3 DESIGN . 6
3.1 Adaptive Timeout Strategy 6
3.2 Improved Concurrency For Worker Process 9
3.3 Latency-based Load Balancing 11

CHAPTER 4 IMPLEMENTATION 14
4.1 Adaptive Timeout Strategy 14
4.2 Improved Concurrency For Worker Process 15
4.3 Latency-based Load Balancing 16

CHAPTER 5 EXPERIMENTAL RESULTS 18
5.1 Micro-benchmark Experiments 18
5.2 Yahoo! Benchmark Experiments 26

CHAPTER 6 RELATED WORK . 29

CHAPTER 7 CONCLUSION . 31

REFERENCES . 32

v

CHAPTER 1

INTRODUCTION

1.1 Motivation

Stream processing systems have become extremely popular in the last

few years [1], and they are being used to process a variety of data in real-time,

ranging from social network feeds (to provide trending topics or real-time

searches) to processing data from advertisement engines. Stream processing

systems that are actively used in industry today include Apache Storm [2],

Twitter’s Heron [3], Apache Flink [4], Spark Streaming [5], Samza [6], S4 [7],

etc.

Due to the real-time nature of these systems, responsiveness of the sys-

tem is critical. Responsiveness means lowering the latency of processing a

tuple of data, i.e., from its input into the system to its results reflecting to

users (e.g., on admin dashboards).

Although many approaches have been proposed to reduce the latency,

such as traffic-aware [8, 9], resource-aware [10, 11], priority-based [12] task

scheduling as well as elastic scaling of the system [13, 14, 15, 16], etc., they

generally target at decreasing the average tuple latency without giving special

1

consideration for the tail. However, for applications that require consistently

high performance, like interactive web service, financial trading or security-

related applications, tail latency is more critical than average latency.

The causes for tail latency have been well studied [17, 18, 19, 20]. The

tail may be prolonged due to a variety of factors: network congestion, high

resource utilization, interference, heterogeneity, highly variable I/O blocking,

power saving mode of the hosts and etc. Tail latency has received attention

in areas like Web search engines [21, 22, 23, 24], high capacity data-stores

[25, 26] and datacenter networks [27, 28, 29, 30, 31]. However, tail latency

has received little attention in stream processing systems.

In this thesis, we present three novel techniques to reduce the tail la-

tency of stream processing systems. The high level ideas of our techniques

share bare similarity with some existing work, such as execulative execution

[32, 33], work stealing [34, 35], yet those approaches cannot be applied to

stream processing systems directly. Our first approach sets timeouts for tu-

ples in an adaptive manner to catch the stragglers, and then replays tuples

automatically. The latency of the fastest incarnation of a tuple is consid-

ered the tuple’s latency (more details in Section 3.1). Our second technique

seeks to merge input queues of several tasks of the same operator inside each

worker process–this leverages well-known queueing theory results [36] (more

details in Section 3.2). Our third technique targets heterogeneous scenar-

ios, where we implement a novel latency-based load balancing scheme that

2

is not as expensive as the power of two choices, but uses the similar intu-

ition to gradually adjust load and achieve latency balance (more details in

Section 3.3).

We implemented these three techniques into Apache Storm. Our ex-

perimental results with sets of micro-benchmarks as well as two topologies

from Yahoo! Inc. show that we lower the 90th latency by 2.2%-56%, the 99th

latency by 17.5%-60.8%, and the 99.9th latency by 13.3%-72.9%.

1.2 Contributions of this Thesis

The contributions of the thesis are:

(i) We show why traditional methods such as blind replication and the

power of two choices in load balancing, may not be appropriate for the

problem we focus on. Then we propose three techniques: (1) Adaptive

Timeout Strategy coupled with selective replay; (2) Improved Concur-

reny for worker process by merging input queue for tasks of the same

operator; and (3) Latency feedback-based Load Balance.

(ii) We implement these three techniques on Apache Storm, one of the most

popular stream processing systems.

(iii) We perform evaluation on our three techniques and compare them with

the Storm default implementation. Our techniques achieve improve-

ment in tail latency in the range of 2%-74%.

3

CHAPTER 2

SYSTEM MODEL

In this chapter, we outline our system model for a stream processing job.

This model is generally applicable to a variety of systems including Storm

[2], Flink [4], Samza [6], etc.

(i) A job is called a topology. It is a DAG (Directed Acyclic graph) of

operators—in Storm, source operators are also referred to as spouts,

non-source operators are referred to as bolts. We assume operators

are stateless, as this covers a wide variety of applications, e.g., Storm

assumes statelessness. Popular operator kinds include filter, transform,

join, etc.

(ii) Data flows along the edges of the DAG in the form of discrete units

called tuples.

(iii) Tuples originate from the root nodes of the DAG, and output tuples

exit out of the sink nodes.

(iv) Each operator is split into multiple tasks (as specified by the user).

(v) The tuples arriving at a given operator can be programmatically split

across the tasks, using a grouping mechanism. Popular choices in

4

Apache Storm include shuffle grouping, fields grouping, and all group-

ing.

Shuffle grouping: tuples arriving at an operator are spread in a random

and round-robin way across its constituent tasks.

Fields grouping: tuples are partitioned by the fields specified in the

grouping. For instance, in the WordCount topology, the stream is

grouped by “word” field, then tuples with the same “word” field will

be sent to the same task.

All grouping: all tuples are replicated at all the operator’s tasks.

Stateless DAGs predominantly use shuffle grouping, e.g., filter, trans-

form operators consume shuffle grouping streams. As a result, the rest

of the thesis assumes shuffle grouping at all operators.

(vi) At each machine, one or more worker processes are run. Each worker

process is assigned some tasks from one topology.

5

CHAPTER 3

DESIGN

In this chapter, we describe the three techniques we use to curtail tail

latency in a stream processing application: 1) Adaptive Timeout Strategy,

2) Improved Concurrency Model for Worker Process, and 3) Latency-based

Load Balancing.

3.1 Adaptive Timeout Strategy

Consider a topology where operators use only shuffle grouping. By de-

fault, each tuple flows through a linear path of operators, starting from source

operator. In fact, not only is it a linear path of operators, but also a linear

path of tasks. As shown in Figure 3.1 a given linear path of operator can

have multiple linear paths of tasks. This increases the effect of congestion

on that tuple–if any task on that linear path is congested, the tuple will be

delayed.

However, we observed that it is possible that only some linear paths of

tasks on a linear path of operators are congested, while other paths are not.

This raises the possibility of replicating multiple instances of a tuple at or

near the source operator and letting them choose potentially different paths.

6

Figure 3.1: A Simple Three-stage Topology Connected Through Shuffle-grouping
Streams. Any Tuple From a Spout Task has 9 Possible Source-Sink Paths.

The latency of the fastest instance is then the given tuple’s latency.

Replication, while proven effective in several systems [28, 29, 30], in-

creases load significantly. Even if we were to replicate each tuple only once

at the source operator, this would double the workload, and would not scale

for systems that have a 50% utilization.

As a result, we propose to use an adaptive timeout strategy to selec-

tively replay tuples that have not been fully processed within the timeout.

Though similar ideas have been proposed to address tail latency elsewhere,

e.g., large scale web search [21], we are the first to apply it to distributed

stream processing, to the best of our knowledge.

Our technique, shown in Algorithm 1, continuously collects the statistics

of tuple latency, and periodically adjusts the timeout value based on latency

distribution of recent issued tuples. Intuitively, we decide how aggressively

(or not) to set the timeout value, based on how long the tail has been in the

last adjustment period (set to 1 sec in our implementation). For example,

shown in Figure 3.2, at moment ti, Algorithm 1 takes the statistics collected

during interval Ii−1 as input to compute the timeout value for interval Ii.

7

Figure 3.2: Time Diagram for Adaptive Timeout Strategy

Algorithm 1 Adaptive Timeout Adjustment

1: procedure Adaptive–Timeout–Adjustment
2: for adjustment period do
3: Sort the array of collected tuple latencies
4: Get the 90th, 95th, 99th and 99.9th latency
5: if 99th latency > 2 × 90th latency then
6: Timeout = 90th latency
7: else if 99.9th latency > 2 × 95th latency then
8: Timeout = 95th latency
9: else

10: Timeout = 99.9th latency
11: end if
12: Clear the array of collected tuple latencies
13: end for
14: end procedure

The key idea of the algorithm is to measure the gaps between the 90th,

95th, 99th, 99.9th percentile latencies. If the tail is very long, we set the

timeout aggressively. For instance, if the 99th percentile latency is relatively

high compared to the 90th (line 5), then we set the timeout aggressively to

be low. Otherwise, we set the timeout to a high value, to avoid unnecessary

replay of tuples.

Only the spout tasks replay the straggler tuples that miss the timeout.

This means that tuples are not duplicated at non-source operators.

8

3.2 Improved Concurrency For Worker Process

By default in today’s systems (Storm [2], Flink [4]) each task has an

independent queue to buffer incoming tuples. Our second technique to im-

prove tail latency applies when a worker process contains more than one task

from the same operator (and in the same topology). Then we can improve

the latency by merging the input queues for these tasks. A task, whenever

free, then opportunistically grabs the next available tuple from the shared

input queue. The approach is illustrated in Figure 3.3. Since we assume

shuffle grouping stream at the operator (Chapter 2), this keeps the execution

correct.

Figure 3.3: Modified Concurrency Model of Worker Process. (a) Default
(original): Each task has an independent input buffer. (b) Modified: Different
tasks, inside the same worker process, of the same operator (whose input only
consists of shuffle grouping streams) share the input buffer.

In an M/M/c queue model, let λ represent the queue’s input rate, µ be

the server’s service rate, and c be the number of servers for the queue. Two

quantities are important: the queue’s utilization ρ (proportion of time the

9

servers are occupied, with ρ < 1 required for the queue to be stable), and

average queueing time Qtavg (time items spend in the queue before they are

served). They are derived as follows from [36]:

ρ =
λ

cµ
(3.1)

Qtavg =

(
(cρ)c

c!
)(1

1−ρ)

Σc−1
k=0

(cρ)k

k!
+(

(cρ)c

c!
)(1

1−ρ)

cµ− λ
(3.2)

Figure 3.4 plots the variation of Qtavg with c and ρ. It shows that for

a given queue utilization, increasing the number of servers for a queue will

lead to lower queueing time.

0 20 40 60 80 100
utilization of the queue (%)

0

1

2

3

4

5

av
er

ag
e

qu
eu

in
g

de
la

y
(m

se
c)

server = 1
server = 2
server = 4

Figure 3.4: Average Queueing Time vs Utilization as number of servers is scaled
up: From M/M/c queueing theory model.

The decrease in queueing time is larger under higher queue utilization.

This means this technique especially works well under high queue utilization.

While the M/M/c model assumed Poisson arrivals, Chapter 5 evaluates

10

our technique under realistic input patterns.

3.3 Latency-based Load Balancing

Many stream processing systems run in heterogeneous conditions, e.g.,

the machines (or VMs) may be heterogeneous, the task assignment may be

heterogeneous (machines have different number of tasks), etc. In these sce-

narios, some tasks may be faster than other tasks within the same operator.

Partitioning the incoming stream of tuples uniformly across tasks thus exac-

erbates the tail latency.

The power of two choices in randomized load balancing [37, 38, 39] sug-

gests that letting an incoming tuple choose the least loaded of two randomly

chosen downstream tasks reduces latency (and can in fact perform close to

optimal). However, this technique inherently relies on incoming tuples having

up-to-date load information about the selected tasks. In a stream processing

system with fast moving tuples being processed in microseconds, continu-

ously monitoring load statistics incurs prohibitive control traffic. This makes

the power of two choices hard to implement as-is.

We propose a new technique called latency-based load balancing. The

key idea is to collect statistics only periodically, and to pair up slow and

fast tasks allowing the fast part of the pair to steal work. Our algorithm

differs from the power of two choice mainly in two aspects: (1) periodic

statistics collection; (2) smooth load adjustment among tasks to suppress

11

load oscillation. Our algorithm is shown in Algorithm 2.

Algorithm 2 Latency-based Load Balancing

Notations:
Di: taski’s set of downstream tasks.
Wti: taski’s aged latency. α: aging rate.
Ti: taski’s average latency measured in last period.
thres: tolerance for difference among tasks’ latencies within the same
operator.

1: procedure Latency-based–Load–Balancing
2: for monitor period do
3: for taskj in Di do
4: Collect Tj
5: Wtj ← α× Tj + (1− α)×Wtj
6: end for
7: Sort tasks in Di based on Wt in ascending order and store them

in array A[]
8: for k in {0, 1, 2 . . . |A|/2} do
9: if A[|A|−1−k].Wt

A[k].Wt
> thres then

10: A[|A| − 1− k].traffic- -
11: A[k].traffic+ +
12: else
13: break
14: end if
15: end for
16: end for
17: end procedure

The algorithm is activated once per monitoring period (set to 5 sec in

our implementation) at each task, except at the sinks. Each task collects

latency statistics from its own immediate downstream tasks and uses Wt as

criteria to sort the tasks from fastest to slowest. The tasks are then divided

into two groups of equal size: faster tasks and slower tasks. Each slower task

is paired up with a faster task. For each pair, the algorithm balances load

by shifting one unit of traffic (1% of the upstream task’s outgoing traffic in

12

our implementation) from the slower task to the faster task at a time. The

effect of the algorithm is that faster tasks steal load from slower tasks, and

thus latencies of tasks converge over a period of time. Further, this algorithm

requires only periodic collection of data, and thus has lower overhead than

continuous load collection.

13

CHAPTER 4

IMPLEMENTATION

In this chapter, we will discuss our implementation of three techniques

we described in Chapter 3 on top of Apache Storm. Apache Storm [2] is one

of the most popular open-source, highly scalable, fault-tolerant distributed

stream processing framework used in industry for realtime processing today.

We implemented the three techniques based on Apache Storm version 0.10.0.

4.1 Adaptive Timeout Strategy

Storm has a built-in mechanism to guarantee message processing [40] and

provide at-least once semantics so that if a tuple has not been completely

processed within timeout, it will get replayed. Every spout task stores records

of the pending tuples, i.e., not completely processed tuples, that it issues.

When a tuple is fullly processed, its associated acker task will notify its

originating spout task to erase its record. If a tuple’s record remains in a

spout task longer than timeout, the spout task regards that tuple as failed

and retransmits it. The timeout is typically specified by user and fixed once

the topology is deployed.

We embedded our adaptive timeout adjustment algorithm into this mech-

14

anism such that the system adaptively adjusts the timeout to catch only the

straggler tuples. Another modification is also required: if any instances of a

tuple, which has a unique identifier, finishes, no new instances of that tuple

will be replayed from spout (already in flight instances will flow through the

topology).

4.2 Improved Concurrency For Worker Process

Storm has an intermediate abstraction between a worker process and a

task, called an executor [41]. Their relationships are illustrated in Figure 4.1.

Figure 4.1: Relationship of Worker Process, Executor, Task

Each Worker Process is a JVM process. A machine (or VM) may run

one or more worker processes for one or more topologies. A worker process

runs executors for a specific topology.

Each Executor is a processing thread within a worker process. Each ex-

ecutor runs one (by default) or more tasks of the same operator in a topology.

It is the executor (not the task) that has an independent input queue.

15

Each Task is the actual data processing logic.

Therefore, we apply our technique across executors instead of tasks.

Each Storm worker has a data structure to record the metadata of the topol-

ogy, including which operators the executors belong to, and which streams

operators subscribe to. During the initialization phase of worker processes, if

two or more executors are found to belong to the same bolt, they will share

a queue in our system.

4.3 Latency-based Load Balancing

Figure 4.2: Asynchronous, Independent Load Adjustment of Upstream Tasks.
The upstream tasks perform load adjustment at different moments, and they
make slightly different decisions. 44%, 33% and 23% of upstream task1’s outgoing
traffic are fed into downstream task1, 2, 3 respectively. 42%, 34% and 24% of
upstream task2’s outgoing traffic are fed into downstream task1, 2, 3 respectively.

Each task performs the load adjustment for its downstream tasks peri-

odically. Different tasks perform the adjustment independently without syn-

chronization, as shown in Figure 4.2. Note that this asynchrony means that

16

upstream tasks may have slightly inconsistent views of statistics of down-

stream tasks. However, this inconsistency does not affect correctness, i.e.,

the aggregate effect over multiple upstream tasks is close to the case if they

had consistent measurements.

In our implementation, the basic unit of traffic adjustment is 1% of

the upstream task’s outgoing traffic. The aging parameter (α), tolerance

threshold (thres) and monitor period in Algorithm 2 are set to 0.5, 1.2 and

5 sec respectively.

17

CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter, we present evaluation of our three techniques. We per-

formed experiments on the Google Compute Engine [42]. Our default ex-

perimental settings are in Table 5.1. Each VM by default runs one worker

process. We evaluate our three individual techniques separately on sets of

micro-benchmarks (Section 5.1) as well as two topologies from Yahoo! (Sec-

tion 5.2).

Table 5.1: Storm Cluster Configuration.

VM Node Machine configuration Role

1 VM
(Master node)

n1-standard-1
(1 vCPU, 3.75GB memory) Zookeeper [43] & Nimbus

5 VMs
(storm1-storm5)

n1-standard-2
(2 vCPUs, 7.5GB memory) Worker Node

5.1 Micro-benchmark Experiments

5.1.1 Adaptive Timeout Strategy

We compared the tail latency as well as the cost of different approaches:

adaptive timeout strategy and different levels of blind tuple replication (0%,

20%, 50% and 100%). x% of replication means that a randomly chosen x%

18

of tuples are issued with two instances at the spout task and the latency

of the faster one is regarded as the tuple’s latency. The benchmark is a

”Exclamation Topology” (a 4-operator linear topology connected by shuffle

grouping stream) from Storm example topologies, where each operator has 5

tasks.

100 101 102

tuple processing latency (msec)
10-3

10-2

10-1

100

fra
ct

io
n

default (0% replication)
adaptive timeout strategy
20% replication
50% replication
100% replication

Figure 5.1: Latency Comparison between Adaptive Timeout Strategy and
Replication Approach (spout-only replication).

Table 5.2: 99th, 99.9th Latency and Cost of Adaptive Timeout Strategy versus
the Replication Approach (spout-only replication).

Approach 99th latency (ms) 99.9th latency (ms) Cost

default 29.2 76.6 —–

adaptive timeout 24.1 66.4 2.92%

20% replication 25.5 87.8 20%

50% replication 22.1 107.7 50%

100% replication 17.9 78.1 100%

The experimental results are shown in Figure 5.1, which is a comple-

mentary cumulative distribution function (CDF). The (x,y) point on the plot

19

means that y fraction of tuples experience a latency of at least x ms. The

same results are also summarized in Table 5.2. The cost column represents

increased workload compared with the default method, i.e., 0% replication.

The adaptive timeout strategy improves the 99th percentile latency and

99.9th latency by 17.5% and 13.3% respectively compared to the default. The

adaptive timeout strategy is better than 20% replication not only by provid-

ing lower latency but also by incurring less cost. Although 50% and 100%

replication achieve lower 99th latency than the adaptive timeout strategy,

they incur prohibitively high cost. Thus, the adaptive timeout technique can

serve as an effective alternative to replication, especially when the system

cannot afford the expense of replicating many tuples.

5.1.2 Improved Concurrency For Worker Process

We use a micro-topology where a spout connects to a bolt through

shuffle-grouping stream. This is small but representative of a part of a larger

topology. The bolt is configured with 20 executors, so each worker process is

assigned with 4 executors. For each executor’s input queue, λ = 350 tuples/s

and µ = 450 tuples/s, thus its ρ = 78%. We examine the improvement of

merging executors’ input queues with respect to the Storm default, i.e., an

independent input queue for each executor. Our experimental results are

plotted in Figure 5.2 and Figure 5.3. It shows that the average queueing

delay drops from 2.07 ms to 0.516 ms, and this translates to reduced tail

20

latency. The 90th latency, 99th latency and 99.9th latency are improved by

3.49 ms (35.5%), 3.94 ms (24.9%) and 30.1 ms (36.2%) respectively.

50 100 150 200 250 300 350 400 450 500
Time since the activation of the topology (sec)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

qu
eu

ei
ng

 d
el

ay
 a

t b
ol

t (
m

se
c)

Storm Default
Merging input queue for tasks

Figure 5.2: Merging input queues among executors reduces queueing delay.

100 101 102

tuple processing latency (msec)

10-3

10-2

10-1

100

fra
ct

io
n

Storm Default
Merging input queue for tasks

Figure 5.3: Latency Achieved by Improved Concurrency Model for Storm
Worker.

5.1.3 Latency-based Load Balancing

We experiment with three kinds of heterogeneous scenarios: (a) Different

Storm workers are assigned different numbers of tasks; (b) Subset of Storm

21

workers are competing for resources with external processes (residing in the

same VM); (c) Storm workers are deployed in a cluster of heterogeneous VMs.

When the tasks are computation-intensive, the heterogeneity they experience

is severe.

The benchmark is a 4-operator linear topology connected by shuffle

grouping stream, where each bolt task performs 200,000 arithmetic oper-

ations. In detail, the scenarios are:

Scenario-a: The spout has 5 tasks and the bolts have 3 tasks each, thus

total number of tasks in the topology is 14. The default Storm scheduler

assigns 4 VMs with 3 tasks each and the fifth VM with 2 tasks.

Scenario-b: All operators each have 5 tasks, evenly distributed in 5

worker processes. Within 2 of 5 VMs, we run a data compression program

as an external process that causes interference (and thus heterogeneity).

Scenario-c: All operators each have 5 tasks, evenly distributed in 5

worker processes. The topology is deployed in a cluster of 4 ‘n1-standard-2’

VMs and a ‘n1-standard-1’ VM.

As shown in Figure 5.4 and Figure 5.5, the latency-based load balancing

technique shifts load from slower tasks to faster tasks to achieve latency

balance among tasks from the same operator.

The experimental results are summaried in Table 5.3. We observe that

the 90th, 99th, 99.9th latency are reduced by 2.2%-56%, 21.4%-60.8% and

25%-72.9%, respectively.

22

100 200 300 400 500
Time since the activation of the topology (sec)

0

500

1000

1500

2000

2500

#
 tu

pl
e

pr
oc

es
se

d
by

 a
 ta

sk
 p

er
 s

ec
task1
task2
task3

Figure 5.4: Load of different tasks from the same bolt changes over time. Faster
tasks attract more load.

100 200 300 400 500
Time since the activation of the topology (sec)

0

1

2

3

4

5

6

tu
pl

e
la

te
nc

y
of

 a
 ta

sk
 (m

se
c)

task1
task2
task3

Figure 5.5: Latency of different tasks from the same bolt changes over time.
Latencis of different tasks converge.

Table 5.3: Latency Achieved by Latency-based Load Balancing under different
scenarios. ‘D’ means the default approach: split traffic evenly across tasks. ‘L’
means the Latency-based load balancing approach.

Scenario 90th latency (ms) 99th latency (ms) 99.9th latency (ms)

D L D L D L

(a) 11.15 10.9 29.9 23.5 104.5 57.1

(b) 21.05 9.16 92.9 36.4 204.3 153.1

(c) 9.3 7.67 127.8 62.4 598.6 162

23

5.1.4 Conditions for Applying the Techniques

With the benchmark used in Section 5.1.2, we vary the tasks’s input

queue utilization (ρ) and observe its effect on the adaptive timeout strategy

and the improved concurrency model, shown in Figure 5.6. For the adaptive

timeout strategy, its improvement on tail latency first increases and then de-

creases as tasks’ input queue utilization rises. For the improved concurrency

model, there is a positive correlation between tasks’ input queue utilization

and its improvement on tail latency, as we showed in Section 3.2. Overall, we

see that the adaptive timeout strategy is preferable over the improved con-

currency model when the utilization of bolt task’s input queue is low (<58%,

under our experiment settings).

20 30 40 50 60 70
bolt task's input queue utilization (%)

5

0

5

10

15

20

25

30

Pe
rc

en
ta

ge
 o

f I
m

pr
ov

em
en

t o
n

th
e

99
%

 la
te

nc
y

Adaptive Timeout Strategy
Improved Concurrency Model

Figure 5.6: Effect of tasks’s input queue utilization on the Adaptive Timeout
Strategy and the Improved Concurrency Model.

With the benchmark used in scenario-c of Section 5.1.3, we vary the

system workload and observe its effect on the latency-based load balance

and the adaptive timeout strategy, shown in Figure 5.7. The latency-based

24

load balance works well under high workload when the heterogeneity among

different VMs is most prominent. The adaptive timeout strategy achieves

improvement on tail latency under moderate or low system workload (<49%

CPU utilization, under our experiment settings).

30 40 50 60 70 80
CPU utilization of the 'n1-standard-1' VM (%)

20

0

20

40

60

80
Pe

rc
en

ta
ge

 o
f I

m
pr

ov
em

en
t o

n
th

e
99

%
 la

te
nc

y
Adaptive Timeout Strategy
Latency-based Load Balance

Figure 5.7: Effect of workload on the Latency-based Load Balance and the
Adaptive Timeout Strategy.

The suggested conditions for applying each technique are summarized

in Table 5.4. Since the scopes of each different techniques do not overlap

with each other, we recommend using each technique exclusively for its own

targeted scenarios.

Table 5.4: Conditions for Applying Techniques

Name Conditions for applying the technique

Adaptive Timeout
Strategy

moderate or low system workload
&&

moderate or low utilization for queues in the systems.

Improved Concurrency
Model

≥ 2 tasks of the same operator in a worker process
&&

high utilization for tasks’ input queues.

Latency-based
Load Balance

heterogeneity within systems causes some tasks
to be much slower than others of the same operator.

25

5.2 Yahoo! Benchmark Experiments

We acquired two Yahoo! topologies (Page Load Topology and Processing

Topology) from the Stela project [44]. The layout of these two topologies is

shown in Figure 5.8. We evaluate our three techniques and compare them

with the Storm default implementation.

(a) Page Load Topology (b) Processing Topology

Figure 5.8: Yahoo! Benchmark topology layout

Our three sets of experiments use Page Load Topology and Processing

Topology, yet the settings are different such that each technique is evaluated

under their targeted scenarios.

Experiment settings for the adaptive timeout strategy are as follows:

Each operator has 5 tasks, evenly distributed among 5 worker processes in

round robin manner. Each spout task emits 240 tuples per second.

Experiment settings for the improved concurrency model are as follows:

The spout and output bolt each have 5 tasks, evenly distributed among 5

26

worker processes. Other bolts each have 4 tasks and all tasks of a given

operator are assigned to the same worker process. Each spout task emits

530 tuples per second, the bolt tasks have 1 ms delay. For each task’s input

queue, λ = 660 tuples/s and µ = 830 tuples/s, thus its ρ = 80%.

Experiment settings for the latency-based load balance are as follows:

Each operator each have 5 tasks, evenly distributed among 5 worker pro-

cesses. The topologies are deployed in a heterogeneous cluster (4 ‘n1-standard-

2’ VMs and a ‘n1-standard-1’ VM). Each spout task emits 600 tuples per

second.

The latency improvement achieved by our three techniques are shown

in Figure 5.9, Figure 5.10 and Figure 5.11. The same result is summarized

in Table 5.5.

Table 5.5: Latency Improvement Achieved by our three techniques with two
Yahoo! Benckmark Topologies

Name 90th latency 99th latency 99.9th latency

Adaptive Timeout Strategy —– 28%-40% 24%-26%

Improved Concurrency Model 16%-19% 36%-42% 20%-32%

Latency-based Load Balance 22%-48% 50%-57% 21%-50%

27

100 101 102

tuple processing latency (msec)
10-3

10-2

10-1

100

fra
ct

io
n

default (0% replication)
adaptive timeout strategy

(a) Page Load Topology

100 101 102

tuple processing latency (msec)
10-3

10-2

10-1

100

fra
ct

io
n

default (0% replication)
adaptive timeout strategy

(b) Processing Topology

Figure 5.9: Latency Improvement Achieved by Adaptive Timeout Strategy with
Yahoo! Benchmark Topology

101 102

tuple processing latency (msec)

10-3

10-2

10-1

100

fra
ct

io
n

Storm Default
Merging input queue for tasks

(a) Page Load Topology

101 102

tuple processing latency (msec)

10-3

10-2

10-1

100

fra
ct

io
n

Storm Default
Merging input queue for tasks

(b) Processing Topology

Figure 5.10: Latency Improvement Achieved by Improved Concurreny Model for
Worker Process with Yahoo! Benchmark Topology

100 101 102

tuple processing latency (msec)

10-3

10-2

10-1

100

fra
ct

io
n

Storm Default
Latency-based load balance

(a) Page Load Topology

100 101 102

tuple processing latency (msec)

10-3

10-2

10-1

100

fra
ct

io
n

Storm Default
Latency-based load balance

(b) Processing Topology

Figure 5.11: Latency Improvement Achieved by Latency-based Load Balance
with Yahoo! Benchmark Topology

28

CHAPTER 6

RELATED WORK

A variety of techniques have been proposed to shorten tail latency in

different areas.

In networking, reducing tail latency by redundancy has been applied,

including issuing multiple DNS queries in parallel to resolve the same name

[29, 30], replicating the SYN packets or even the entire flow [28] to avoid

uncertainty.

In batch processing systems such as MapReduce [32], Dryad [45] and

Apache Spark [46, 47, 48], when a job is close to completion, the master

schedules backup execution for the straggler tasks, called as speculative ex-

ecution.

In large scale Web services platforms, the concept of hedged requests

and tied requests have been proposed [21]. A hedged request means that a

secondary request would be sent if the first request has not finished within

95th-percent of expected latency. A tied request is an enhancement of hedged

request in that when the first copy of request is scheduled to execute, the

second copy would be canceled via inter-machine communication. Some sys-

tems [22, 23] try to predict which requests are long-running requests and

29

then selectively parallelize them.

In applications like RPC server, Memcached and Nginx, increasing the

number of workers (CPUs) at the server, with parallel workers pulling re-

quests from a shared queue, can improve tail latency [17]. Raising voltage

supply [49, 50, 51] is another option to rein the applications’ tail latency, at

the cost of increased power consumption.

In shared networked storage, reactive feedback-control based storage

scheduling [52] as well as a combination of per-workload priority differentia-

tion and rate limiting [53] has been shown effective.

From the perspective of cloud service provider, a judicious VM schedul-

ing algorithm, such as separating computing intensive and latency sensitive

VMs, is beneficial to low tail latency [19, 54].

30

CHAPTER 7

CONCLUSION

In this thesis, we presented three novel techniques to shorten the tail

latency in stream processing systems. The adaptive timeout strategey can

reduce 99th and 99.9th latency in a variety of situations at the cost of slightly

increased workload. The improved concurrency for worker process and the

latency-based load balance improve 90th, 99th and 99.9th latency under high

queue utilization and heterogeneity respectively. Our implementation on top

of Apache Storm shows that these techniques lower the tail latency up to

72.9% compared with the default Storm implementation.

Future Work: One direction for future work is enable the stream process-

ing systems to apply these techniques adaptively. In other words, the stream

processing systems can decide when to turn on which technique given de-

tailed profiles of workload and resource during runtime. Another direction is

to adapt, within a technique, to a set of optimal parameters such as period,

aging parameter and etc.

31

REFERENCES

[1] “Real-Time Stream Processing as Game Changer in a
Big Data World with Hadoop and Data Warehouse,”
http://www.infoq.com/articles/stream-processing-hadoop, last vis-
ited: 04/2016.

[2] “Apache Storm,” http://storm.apache.org/, last visited: 04/2016.

[3] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter Heron: Stream
processing at scale,” in Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data. ACM, 2015, pp. 239–250.

[4] “Apache Flink,” https://flink.apache.org/, last visited: 04/2016.

[5] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
streams: An efficient and fault-tolerant model for stream processing
on large clusters,” in Proceedings of the 4th USENIX Conference on Hot
Topics in Cloud Ccomputing. USENIX, 2012, pp. 10–10.

[6] “Samza,” http://samza.apache.org/, last visited: 04/2016.

[7] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in Proceedings of the 2010 IEEE Interna-
tional Conference on Data Mining Workshops. IEEE, 2010, pp. 170–
177.

[8] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive online scheduling
in Storm,” in Proceedings of the 7th ACM International Conference on
Distributed Event-Based Systems. ACM, 2013, pp. 207–218.

[9] J. Xu, Z. Chen, J. Tang, and S. Su, “T-Storm: Traffic-Aware Online
Scheduling in Storm,” in Proceedings of the 2014 IEEE 34th Interna-
tional Conference on Distributed Computing Systems. IEEE, 2014, pp.
535–544.

32

[10] J. Wolf, N. Bansal, K. Hildrum, S. Parekh, D. Rajan, R. Wagle, K.-
L. Wu, and L. Fleischer, “Soda: An optimizing scheduler for large-
scale stream-based distributed computer systems,” in Proceedings of
the 9th ACM/IFIP/USENIX International Conference on Middleware.
Springer-Verlag New York, Inc., 2008, pp. 306–325.

[11] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-storm:
Resource-aware scheduling in storm,” in Proceedings of the 16th Annual
Middleware Conference. ACM, 2015, pp. 149–161.

[12] P. Bellavista, A. Corradi, A. Reale, and N. Ticca, “Priority-based re-
source scheduling in distributed stream processing systems for big data
applications,” in 2014 IEEE/ACM 7th International Conference on Util-
ity and Cloud Computing (UCC). IEEE, 2014, pp. 363–370.

[13] T. Z. J. Fu, J. Ding, R. T. B. Ma, M. Winslett, Y. Yang, and Z. Zhang,
“DRS: Dynamic Resource Scheduling for Real-Time Analytics over Fast
Streams,” in Proceedings of 2015 IEEE 35th International Conference
on Distributed Computing Systems (ICDCS).

[14] B. Lohrmann, P. Janacik, and O. Kao, “Elastic stream processing with
latency guarantees,” in Proceedings of 2015 IEEE 35th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2015,
pp. 399–410.

[15] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling for
data stream processing,” IEEE Transactions on Parallel and Distributed
Systems, pp. 1447–1463, 2014.

[16] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K. L. Wu, “Elastic
scaling of data parallel operators in stream processing,” in IEEE Inter-
national Symposium on Parallel Distributed Processing, 2009. IPDPS
2009. IEEE, 2009, pp. 1–12.

[17] J. Li, N. K. Sharma, D. R. Ports, and S. D. Gribble, “Tales of the
tail: Hardware, OS, and Application-level Sources of Tail Latency,” in
Proceedings of the ACM Symposium on Cloud Computing. ACM, 2014,
pp. 1–14.

[18] “Google: Taming the Long Latency Tail,”
http://highscalability.com/blog/2012/3/12/google-taming-the-long-
latency-tail-when-more-machines-equal.html, last visited: 04/2016.

[19] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey, “Bobtail: Avoiding Long
Tails in the Cloud,” in Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation. USENIX, 2013, pp.
329–342.

33

[20] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat,
“Chronos: predictable low latency for data center applications,” in Pro-
ceedings of the Third ACM Symposium on Cloud Computing. ACM,
2012, p. 9.

[21] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, pp. 74–80, 2013.

[22] M. E. Haque, Y. He, S. Elnikety, R. Bianchini, K. S. McKinley et al.,
“Few-to-many: Incremental parallelism for reducing tail latency in in-
teractive services,” in Proceedings of the Twentieth International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems. ACM, 2015, pp. 161–175.

[23] M. Jeon, S. Kim, S.-w. Hwang, Y. He, S. Elnikety, A. L. Cox, and
S. Rixner, “Predictive parallelization: Taming tail latencies in web
search,” in Proceedings of the 37th International ACM SIGIR Confer-
ence on Research & development in Information Retrieval. ACM, 2014,
pp. 253–262.

[24] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng,
A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan, “Reducing web
latency: the virtue of gentle aggression,” in ACM SIGCOMM Computer
Communication Review. ACM, 2013, pp. 159–170.

[25] L. Suresh, M. Canini, S. Schmid, and A. Feldmann, “C3: Cutting Tail
Latency in Cloud Data Stores via Adaptive Replica Selection,” in Pro-
ceedings of the 12th USENIX Conference on Networked Systems Design
and Implementation. USENIX, 2015, pp. 513–527.

[26] Z. Wu, C. Yu, and H. V. Madhyastha, “Costlo: Cost-effective redun-
dancy for lower latency variance on cloud storage services,” in Proceed-
ings of the 12th USENIX Conference on Networked Systems Design and
Implementation. USENIX, 2015, pp. 543–557.

[27] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is More: Trading a Little Bandwidth for Ultra-low
Latency in the Data Center,” in Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation. USENIX,
2012, pp. 19–19.

[28] S. Liu, W. Bai, H. Xu, K. Chen, and Z. Cai, “Repflow on node. js:
Cutting tail latency in data center networks at the applications layer.”
Computing Research Repository, 2014.

34

[29] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and
S. Shenker, “Low latency via redundancy,” in Proceedings of the ninth
ACM Conference on Emerging Networking Experiments and Technolo-
gies. ACM, 2013, pp. 283–294.

[30] A. Vulimiri, O. Michel, P. Godfrey, and S. Shenker, “More is less: reduc-
ing latency via redundancy,” in Proceedings of the 11th ACM Workshop
on Hot Topics in Networks. ACM, 2012, pp. 13–18.

[31] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),”
in Proceedings of the ACM SIGCOMM 2010 Conference. ACM, 2010,
pp. 63–74.

[32] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, pp. 107–113, 2008.

[33] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the Outliers in Map-reduce Clusters
Using Mantri,” in Proceedings of the 9th USENIX Conference on Op-
erating Systems Design and Implementation, ser. OSDI’10. USENIX,
2010, pp. 265–278.

[34] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” Journal of the ACM (JACM), pp. 720–748,
1999.

[35] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel, “Chaos:
Scale-out graph processing from secondary storage,” in Proceedings of
the 25th Symposium on Operating Systems Principles. ACM, 2015, pp.
410–424.

[36] “M/M/c queue,” https://en.wikipedia.org/wiki/M/M/c queue/, last
visited: 04/2016.

[37] M. Mitzenmacher, “The power of two choices in randomized load bal-
ancing,” Parallel and Distributed Systems, IEEE Transactions on, pp.
1094–1104, 2001.

[38] N. D. Vvedenskaya, R. L. Dobrushin, and F. I. Karpelevich, “Queueing
system with selection of the shortest of two queues: An asymptotic
approach,” Problemy Peredachi Informatsii, pp. 20–34, 1996.

[39] M. Harchol-Balter, M. Crovella, and C. D. Murta, “On choosing a task
assignment policy for a distributed server system,” in Proceedings of the
10th International Conference on Computer Performance Evaluation:
Modelling Techniques and Tools. Springer-Verlag, 1998, pp. 231–242.

35

[40] “Guaranteeing Message Processing of Storm,”
http://storm.apache.org/documentation/Guaranteeing-message-
processing.html, last visited: 04/2016.

[41] “Understanding the Parallelism of a Storm Topology,”
http://storm.apache.org/documentation/Understanding-the-
parallelism-of-a-Storm-topology.html, last visited: 04/2016.

[42] “Google Compute Engine,” https://cloud.google.com/compute/, last
visited: 04/2016.

[43] “Zookeeper,” https://zookeeper.apache.org/, last visited: 04/2016.

[44] L. Xu, B. Peng, and I. Gupta, “Stela: Enabling Stream Processing
Systems to Scale-in and Scale-out On-demand,” in IEEE International
Conference on Cloud Engineering (IC2E), 2016.

[45] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Dis-
tributed data-parallel programs from sequential building blocks,” in Pro-
ceedings of the 2Nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007. ACM, 2007, pp. 59–72.

[46] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Proceed-
ings of the 9th USENIX Conference on Networked Systems Design and
Implementation. USENIX, 2012, pp. 2–2.

[47] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing. USENIX,
2010, pp. 10–10.

[48] “Apache Spark,” http://spark.apache.org/, last visited: 04/2016.

[49] C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch,
J. Mars, L. Tang, and R. G. Dreslinski, “Adrenaline: Pinpointing and
reining in tail queries with quick voltage boosting,” in Proceedings of
2015 IEEE 21st International Symposium on High Performance Com-
puter Architecture (HPCA). IEEE, 2015, pp. 271–282.

[50] S. Kanev, K. Hazelwood, G.-Y. Wei, and D. Brooks, “Tradeoffs between
power management and tail latency in warehouse-scale applications,” in
Proceedings of 2014 IEEE International Symposium on Workload Char-
acterization (IISWC). IEEE, 2014, pp. 31–40.

36

[51] B. Vamanan, H. B. Sohail, J. Hasan, and T. Vijaykumar, “Timetrader:
exploiting latency tail to save datacenter energy for online search,” in
Proceedings of the 48th International Symposium on Microarchitecture.
ACM, 2015, pp. 585–597.

[52] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica, “Cake:
Enabling high-level slos on shared storage systems,” in Proceedings of
the Third ACM Symposium on Cloud Computing. ACM, 2012, pp.
14:1–14:14.

[53] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R.
Ganger, “PriorityMeister: Tail latency QoS for shared networked stor-
age,” in Proceedings of the ACM Symposium on Cloud Computing, ser.
SOCC ’14. ACM, 2014, pp. 1–14.

[54] Y. Xu, M. Bailey, B. Noble, and F. Jahanian, “Small is better: Avoid-
ing latency traps in virtualized data centers,” in Proceedings of the 4th
Annual Symposium on Cloud Computing. ACM, 2013, p. 7.

37

