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Abstract

We study the C∗ action on the moduli space of G-Higgs bundles. Focus is especially put on Higgs bundle

which are not fixed points of the whole action but are fixed by a roots of unity subgroup of C∗. When G

is a complex simple Lie group, we classify these “cyclic Higgs bundles”. One main property of cyclic Higgs

bundles is that the corresponding equivariant harmonic map to the symmetric space of G admits a canonical

harmonic (in fact minimal) lift to a homogeneous space fibering over the symmetric space. In terms of the

hermitian metric solving the Hitchin equations, such a lift implies extra symmetries of the solution metric.

Such properties were first studied by Baraglia [Bar10] for Higgs bundles in the Hitchin component which are

fixed by an nth roots of unity action. The extra symmetries of the metric are used to study the asymptotics

of Higgs bundles in the Hitchin component along certain rays. This analysis allows us to partially understand

the asymptotic holonomy of certain families of Hitchin representations.

For G a complex simple Lie group and m` the length of the longest root of the Lie algebra g of G, the lifted

harmonic maps associated to a fixed point of the (m`+1)-roots of unity are study in detail. When such fixed

points which arise from a G0-Higgs bundle, where G0 is the split real form of G, these lifted maps satisfy an

additional “reality” symmetry. For these equivariant harmonic maps we prove a rigidity result generalizing

Labourie’s work in [Lab14]. We build on the work of [BGPG12] to parameterize the connected components

of maximal PSp(4,R) = SO0(2, 3)-Higgs bundles which contain fixed points of the 4th-roots of unity action as

the product of a vector bundle over a symmetric product of the surface with the vector space of holomorphic

quadratic differentials. Generalizing Labourie’s work [Lab14] on the Hitchin component, the rigidity results

above yield a unique “preferred” Riemann surface structure to each maximal SO0(2, 3)-representation. As a

consequence, we obtain a mapping class group invariant parameterization of the 4g−3-connected components

(which we call Gothen components) of maximal SO0(2, 3)-representations which contain fixed points. Finally,

we generalize our parameterization of the Gothen components to provide n(2g−2) connected components of

the SO0(n, n+ 1)-Higgs bundle moduli space which generalize the SO0(n, n+ 1)-Hitchin component. When

n ≥ 3, this is the first example of non-maximal and non-Hitchin connected components which are not labeled

by a topological invariant in π1(G).
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Chapter 1

Overview and statement of results

For a closed surface S with genus at least two, the nonabelian Hodge correspondence asserts that, for each

Riemann surface structure Σ on S, there is a homeomorphism between the moduli space M(G) of G-Higgs

bundles on Σ and the moduli space X (π1(S),G) of reductive representations of the fundamental group of

S in G. As illuminated by Hitchin [Hit87a, Hit87b], Simpson [Sim88], and others, the rich geometric and

algebraic structures on the Higgs bundle moduli space provide a distinctive set of tools for studying the

topology of M(G), and thus, through the nonabelian Hodge correspondence, the topology of X (π1(S),G).

One such geometric aspect is the natural C∗-action on M(G) defined by scaling the Higgs field. The fixed

points of this action correspond to critical points of a Morse function on M(G), and a proper analysis of

these fixed points yields information on the cohomology of M(G). This thesis is dedicated to the study of

Higgs bundles which have nontrivial stabilizer for the C∗ action, i.e. fixed points of roots of unity subgroups

〈ζ
k
〉 ⊂ C∗.

Since Higgs bundles were introduced in 1987 [Hit87a], they have found application in parameterizing con-

nected components of surface group representations. In particular, Hitchin gave an explicit parameterization

of all but one of the connected components of X (π1(S),PSL(2,R)) (these are the components with nonzero

Toledo invariant), as vector bundles over symmetric products of a Riemann surface. After this ground

breaking work, Hitchin showed that, for G a split real form such as PSL(n,R),PSp(2n,R), or SO0(n, n+ 1),

there is a connected component of X (π1,G) which directly generalizes Teichmüller space [Hit92]. More-

over, Hitchin gave an explicit parameterization of this connected component, now called the Hitchin or

Hitchin-Teichmüller component. More precisely, he showed that for each Riemann surface structure on the

topological surface S, the Hitchin component Hit(G) is parameterized by a vector space of holomorphic dif-

ferentials which generalizes Wolf’s parameterization of Teichmüller space by Hopf differentials of harmonic

maps [Wol89].

The effective tools of Higgs bundles however come at a cost: since they require fixing a Riemann surface

structure, they break the mapping class group action on X (π1(S),G). Using the properties we establish for

finite order fixed points, we use Higgs bundles to provide a mapping class group invariant parameterization
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of certain connected components of maximal PSp(4,R) representations as fiber bundles over Teichmüller

space. Generalizing this to higher rank, we also give a Higgs bundle parameterization of n(2g − 2) smooth

connected components of X (π1(S),SO0(n, n+ 1)), one of which is Hit(SO0(n, n+ 1)). For n = 1, we recover

Hitchin’s parameterization for SO0(1, 2) = PSL(2,R), for n = 2 these are the maximal PSp(4,R) = SO0(2, 3)

components discussed above, and for n ≥ 3, these provides n(2g − 2)− 1 new connected components.

Since the techniques and results that follow concern the interplay between Lie theory, Higgs bundles,

harmonic map theory, and surface group representations, we have devoted Chapter 2 and 3 to a lengthy

introduction to the relevant background. We hope this is beneficial to anyone interested in learning the

subject. For a complex Lie group G a Higgs bundle consists of a pair (E , ϕ) where E→Σ is a holomorphic

principal G-bundle and ϕ is a holomorphic section of the adjoint bundle twisted by the canonical bundle K of

Σ, i.e. ϕ ∈ H0((E×Gg)⊗K). The natural C∗-action on the space of Higgs bundles is defined (E , ϕ)→(E , λϕ).

In chapter 4, for complex group simple groups G, we classify the Higgs bundles which are fixed by a root of

unity subgroup of C∗ in terms of labellings of the extended Dynkin diagram of the Lie algebra g (Theorem

4.2.2). For the group SL(n,C) this was done by Simpson in [Sim09], however we will see that generalizing

this work to groups that are not of type A is subtle and requires some care. One key observation which

lead to this classification was a reinterpretation of the well known classification of fixed points of the whole

C∗-action as coming from Z-gradings on the Lie algebra g. As is the case of C∗-fixed points, a Higgs bundle

(E , ϕ) which is fixed by a roots of unity action admits a holomorphic reduction of E to a subgroup G0.

However, unlike fixed points of the C∗ action, when G 6= SL(n,C), the subgroup G0 need not be the Levi

factor of a parabolic subgroup of G.

Using the standard representation of SL(n,C) on Cn, an SL(n,C) Higgs bundle over a Riemann surface

Σ is equivalent to a pair (E , φ) where E→Σ is a holomorphic rank n vector bundle with det(E) = O and

φ is a traceless holomorphic section of End(E)⊗K. One direction of the nonabelian Hodge correspondence

is provided by the relation of stability of Higgs bundles and solutions to the gauge theoretic Higgs bundle

equations. For SL(n,C) this works as follows: if (E , φ) is a stable Higgs bundle then there exists a unique

hermitian metric h (with Chern connection Ah) on E so that

FAh + [φ, φ∗h ] = 0, (1.0.1)

here φ∗h denotes the hermitian adjoint of φ. Given a solution to (1.0.1), the connection Ah + φ + φ∗h is a

flat SL(n,C)-connection whose holonomy representation is reductive. The other direction of the correspon-

dence concerns harmonic metrics on flat G bundles, and is provided Corlette’s Theorem [Cor88]. Given a
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representations ρ : π1(S)→G, any metric on the flat G-bundle S̃ ×ρ G (i.e. reduction of structure group to

the maximal compact subgroup H ⊂ G) is equivalent to a ρ-equivariant map S̃→G/H. If the conjugacy class

of ρ defines a point in X (π1(S),G), then Corlette proved that, for each Riemann surface structure Σ on S,

there is a metric hρ : Σ̃→G/H which is a harmonic map.

The rest of chapter 4 is devoted to studying the consequences of a G-Higgs bundle being a fixed point of

a root of unity action. The first such application is that the metric solving the Hitchin equations for stable

and simple G-Higgs bundles is compatible the holomorphic reduction to G0. In other words, we have the

following commuting diagram of reductions of structure:

G/G0 G/H0

��

oo

Σ̃
hρ

//

::OO

G/H

where H0 = G0 ∩ H. In section 4.3, polystable G-Higgs bundles which are fixed by 〈ζ
k
〉 are interpreted in

terms of harmonic maps f : Σ̃→G/H0 which satisfy certain symmetries (see Theorem 4.3.4). This analysis

is used to prove Theorem 4.3.7 which answers a question of Toledo on G-variations of Hodge structures.

For SL(n,C) the group G0 is always a Levi factor of a parabolic subgroup of SL(n,C). If (E , φ) is an

SL(n,C)-Higgs bundle fixed by the kth roots of unity, then, in terms of vector bundles, the rank n holomorphic

vector bundle E splits holomorphically as E = E1 ⊕ · · · ⊕ Ek. Moreover, with respect to the metric solving

the Higgs bundle equations, this holomorphic splitting is also orthogonal, i.e. the metric h is a direct sum

h = h1 ⊕ · · ·hk. If we decompose the Higgs field φ : E→E ⊗K in terms of the above holomorphic splitting,

then, by Theorem 4.1.6, the only components which are nonzero are φj : Ej→Ej+1 mod k. In this case, the

Higgs bundle equations simplify into a fully coupled system of simpler equations:

FAhj + φj−1 ∧ φ∗j−1 + φ∗j ∧ φj = 0. (1.0.2)

If G is a real group and (E , φ) is a G-Higgs bundle which is fixed by a kth roots of unity action and with

the propert that the corresponding GC Higgs bundle is stable, then the simplification the Hitchin equations

(1.0.2) for the complex group GC has extra symmetries which reflect the real form G. Chapter 5 is based

on a joint work with Q. Li [CL14]. In this work, the extra symmetries of the metric for fixed points of the

nth and (n− 1)st roots of unity actions in the SL(n,R)-Hitchin component are exploited to solve the Higgs

bundle equations asymptotically. This analysis also allows us to analyze the asymptotic holonomy of the

corresponding family of representations of π1(S).

3



To describe this, we recall that the SL(n,R)-Hitchin component Hit(SL(n,R)) is parameterized by the

vector space
n⊕
j=2

H0(Σ,Kj) of holomorphic differentials, and the Higgs bundle (E , φ) associated to a tuple

(q2, . . . , qn) of differentials is

E = K
n−1

2 ⊕K
n−3

2 ⊕ · · · ⊕K−
n−3

2 ⊕K−
n−1

2

and

φ =



0 q2 q3 . . . qn−1 qn
n−1

2 0 q2 . . . qn−2 qn−1

. . .
. . .

q2 q3
n−3

2 0 q2

n−1
2 0


: E −→ E ⊗K.

Such a φ will be denoted by ẽ1 + q2e1 + q3e2 + · · ·+ qnen−1. Moreover, (E , φ) is a fixed point of the kth roots

of unity if and only if φ = ẽ1 +
∑

j=0 mod k

qjej−1 (see Proposition4.2.7). Using the SL(n,R)-symmetry the

following key corollary can be deduced:

Corollary 4.2.8. For k = n and k = n− 1 the harmonic metric splits as h1⊕ h2⊕ · · · ⊕ h−1
2 ⊕ h

−1
1 on the

line bundles K
n−1

2 ⊕K n−3
2 ⊕ · · · ⊕K−n−3

2 ⊕K−n−1
2 .

For k = n, this was proven by Baraglia [Bar15], and was used to study, amongst other things, the

relation between the Hitchin equations and the affine Toda equations. We first obtain estimates for the

solution metric ht of the Hitchin equations as t→∞ by repeatedly using the maximum principle and a

standard “telescope” trick.

Theorem 5.1.1. For every point p ∈ Σ away from the zeros of qn or qn−1, as t→∞

1. For (Σ, ẽ1 + tqnen−1) ∈ Hit(SL(n,R)), the metric hj(t) on K
n+1−2j

2 admits the expansion

hj(t) = (t|qn|)−
n+1−2j

n

(
1 +O

(
t−

2
n

))
for all j

2. For (Σ, ẽ1 + tqn−1en−2) ∈ Hit(SL(n,R)), the metric hj(t) on K
n+1−2j

2 admits the expansion

hj(t) =


(t|qn−1|)−

n+1−2j
n−1

(
1 +O

(
t−

2
n−1

))
for j = 1 and j = n

(2t|qn−1|)−
n+1−2j
n−1

(
1 +O

(
t−

2
n−1

))
for 1 < j < n

Using the asymptotic estimates of the solution metric and error estimates, we integrate the ODE defined
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by the flat connection. This yields an estimate of the parallel transport matrices TP,P ′(t) as t→∞. For

(Σ, (0, . . . , 0, tqn)) ∈ Hit(SL(n,R)), let P ∈ Σ̃ be a point at which qn does not vanish. Choose a neighborhood

U
P

centered at P , with coordinate z, so that qn = dzn. Any P ′ ∈ U
P

may be written in polar coordinate as

P ′ = Leiθ. Suppose γ(s) is a |qn|
2
n−geodesic from P to P ′ parametrized by arc length s. With some work

and an extra condition on the path, we obtain the entire set of eigenvalues of the parallel transport operator

along the path asymptotically.

Theorem 5.3.2. Suppose P, P ′ and the path γ(s) are as above. If P ′ has the property that for every s,

s < d(γ(s)) := min{d(γ(s), z0)| for all zeros z0 of qn},

then there exists a constant unitary matrix S, not depending on the pair (P, P ′), so that as t→∞,

TP,P ′(t) =
(
Id+O

(
t−

1
2n

))
S


e−Lt

1
n µ1

. . .

e−Lt
1
n µn

S−1

where µj = 2cos
(
θ + 2π(j−1)

n

)
.

Remark 1.0.4. For (Σ, (0, · · · , 0, tqn−1, 0)) ∈ Hit(SL(n,R)), we have similar results in Theorem 5.2.8. In

particular, in this case, µ1 = 0 and for j > 1, µj = 2cos
(
θ + 2π(j−2)

n−1

)
. When P and P ′ both project to the

same point in Σ, the projected path is a loop. In this case, the above asymptotics correspond to the values

of the associated family of representations on the homotopy class of the loop.

By studying the geometry of the family of harmonic equivariant maps ht : Σ̃→SL(n,R)/SO(n) corre-

sponding to the family of Higgs fields φt = ẽ1 + tqnen−1 we also obtain a geometric interpretation of the

‘boundary point’ (see Theorem 5.3.2). In particular, with the proper interpretation, this proves a conjecture

of Katzarkov, Noll, Pandit, and Simpson [KNPS15] on the Hitchin-WKB problem in a special case.

For a simple complex Lie group G let m` be the height of the highest root of the Lie algebra. Stable

G-Higgs bundles which are fixed points of the (m` + 1)-roots of unity action always correspond compatible

reduction of structure diagrams given by

G/C G/T

��

oo

Σ̃
hρ

//

<<OO

G/H

where C is a maximal complex torus and T is a maximal compact torus. In Chapter 6 we define a special
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class of equivariant harmonic maps to the space G/T. For the split real form G0 ⊂ G, the G0-Higgs bundles

fixed by (m` + 1)-roots of unity give rise to such maps which satisfy additional symmetries. Specifying a bit

more, we introduce the notion of a cyclic surface which generalize those defined by Labourie [Lab14]. For

this special class of maps we prove a rigidity result (Theorem 6.1.37). This analysis allows us to use Higgs

bundles to understand the mapping class group action on certain connected components of X (π1,PSp(4,R)),

which we now describe.

For a group of hermitian type such as PSp(2n,R), the set of maximal representations and maximal Higgs

bundles are an especially interesting class of objects. In particular, these representations are all discrete

and faithful and the mapping class group Mod(S) acts properly discontinuously on maximal representations

[BILW05]. Later in chapter 5, we analyze fixed points of 4th roots of unity on the space of maximal

PSp(4,R) Higgs bundles. Generalizing the work of Bradlow, Garcia-Prada, and Gothen [BGPG12] for

maximal Sp(4,R)-Higgs bundles, we describe all maximal PSp(4,R)-Higgs bundles by exploiting the low

dimensional isomorphism PSp(4,R) ∼= SO0(2, 3). Denote the set of maximal SO0(2, 3)-Higgs bundles by

M2g−2(SO0(2, 3)), we prove:

Theorem 6.2.16. For each d ∈ (0, 4g − 4], there is a smooth connected component M2g−2
d (SO0(2, 3)) of

M2g−2(SO0(2, 3)) and a diffeomorphism

M2g−2
d (SO0(2, 3)) ∼= FdΣ ×H0(K2)

where FdΣ is a rank d+ 3g − 3 vector bundle over the symmetric product Sym−d+4g−4(Σ).

Corollary 6.2.18. M2g−2
d (SO0(2, 3)) deformation retracts onto Sym−d+4g−4(Σ). In particular, there is

an isomorphism of cohomology rings

H∗(M2g−2
d (SO0(2, 3))) ∼= H∗(Sym−d+4g−4(Σ)).

Remark 1.0.7. Since the connected componentsM2g−2
d (SO0(2, 3)) generalize those discovered for Sp(4,R)

by Gothen [Got01], we will call these Gothen components. For d = 4g − 4, the space F4g−4
Σ = H0(K4) and

we recover the SO0(2, 3)-Hitchin component. For 0 < d < 4g − 4, it clear from the above theorem that

M2g−2
d (SO0(2, 3)) is noncontractible. Furthermore, we show that, if Gothd(SO0(2, 3)) is the connected com-

ponent of X (π1,SO0(2, 3)) corresponding toM2g−2
d (SO0(2, 3)), then all representations ρ ∈ Gothd(SO0(2, 3))

are Zariski dense, again generalizing what is known for Sp(4,R) [BGPG12].

Applying the cyclic surface analysis mentioned above to the Gothen components we prove:
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Theorem 6.3.5. For each ρ ∈ Gothd(SO0(2, 3)) there exists a unique Riemann surface structure Σρ in

which the harmonic map hρ : Σ̃ρ→SO0(2, 3)/(SO(2)× SO(3)) is a minimal immersion.

It is not hard to show that, in Theorem 6.2.16, the quadratic differential in the parameterization is a con-

stant multiple of the Hopf differential of the corresponding equivariant harmonic map h : Σ̃→SO0(2, 3)/(SO(2)×

SO(3)). As a result, we obtain a mapping class group invariant parameterization of Gothd(SO0(2, 3)) as a

fiber bundle over Teichmüller space.

Theorem 6.3.6. There is a Mod(S)-invariant diffeomorphism between Gothd(SO0(2, 3)) and the fiber

bundle Fd→Teich(S) with fiber FΣ
d from Theorem 6.2.16 over a Riemann surface Σ ∈ Teich(S).

Remark 1.0.10. When d = 4g − 4, Theorems 6.3.5 and 6.3.6 recover results of Labourie which describes

the PSp(4,R)-Hitchin component as the vector bundle of holomorphic quartic differentials over Teichmüller

space [Lab14].

In the final section of the thesis we discuss generalizations of the Gothen components to higher rank

groups. For n ≥ 3, the space of maximal PSp(2n,R) representations is not as rich as the space of maximal

PSp(4,R) representations. For instance, for n ≥ 3 there are 3 · 22g connected components of maximal

Sp(2n,R)-Higgs bundles, and since every connected component of maximal Sp(2n,R) representations can

be deformed to either a Hitchin representations or a ‘twisted product representation’ [GW10], none of these

components behave like the Gothen components. For these reasons, it was believed that the diversity of

Sp(4,R)-maximal representations and Higgs bundles was an anomaly of low dimensions. However, motivated

by the isomorphism PSp(4,R) ∼= SO0(2, 3), we show that the Gothen components should be thought of as

an SO0(n, n+ 1) phenomenon.

Theorem 6.4.1. For each 0 < d ≤ n(2g− 2) there is a smooth connected component Md(SO0(n, n+ 1)) ⊂

M(SO0(n, n+1)) which is smooth and parameterized by FdΣ×
n−1⊕
j=1

H0(Σ,K2j) where FdΣ→Sym−d+n(2n−2)(Σ)

is a vector bundle of rank d+ (2n− 1)(g − 1). Moreover, Mn(2g−2)(SO0(n, n+ 1)) = Hit(SO0(n, n+ 1)).

In particular, using SO0(1, 2) ∼= PSL(2,R), we recover Hitchin’s [Hit87a] parameterization of all connected

components of M(PSL(2,R)) with positive Toledo invariant mentioned earlier.

Corollary 6.4.2. For 0 < d ≤ 2g − 2, there is a connected component of M(PSL(2,R)) which is parame-

terized by a rank d+ 2g − 2 vector bundle over Sym−d+2g−2(Σ).

Remark 1.0.13. The group SO0(n, n+1) is not a group of hermitian type for n > 2, thus there is no notion

of maximality. As a result, the geometry of the corresponding representations is completely unexplored.
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Corollary 6.4.3. Each of the spaces Md(SO0(n, n+ 1)) is homotopy equivalent to Sym−d+n(2g−2)(Σ). In

particular, there is an isomorphism H∗(Md(SO0(n, n+ 1))) ∼= H∗(Sym−d+n(2g−2)(Σ)).

Corollary 6.4.4. The moduli space M(SO0(n, n + 1)), and hence X (π1,SO0(n, n + 1)), has at least

n(2g − 2) + 4 connected components.
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Chapter 2

Lie theory and homogeneous space
background

2.1 Lie Theory for real reductive Lie groups and Lie algebras

For most Lie theory facts we follow [Kna02], [Oni04] and [Vin94]. Let g be a Lie algebra, and let Aut(g)

denote the group of Lie algebra automorphisms. The adjoint representation is given by

ad : g // End(g)

X � // adX = [X,−]

The group of inner automorphisms Inn(g) ⊂ Aut(g) is defined to be the subgroup generated by exp(adX) for

allX ∈ g. The group Inn(g) is a normal subgroup and the quotient Out(g) is the group of outer automorphism:

1 // Inn(g) // Aut(g) // Out(g) // 1 .

The Killing form Bg : g× g→R is defined by

Bg(X,Y ) = Tr(ad(X) ◦ ad(Y ));

it is symmetric and Inn(g)-invariant, i.e. Bg([X,Z], Y ) = Bg(X, [Y,Z]).

Definition 2.1.1. A Lie algebra g is called simple if it has no nontrivial ideals, and semisimple if it is a

direct sum of simple Lie algebras. A Lie algebra g is is called reductive if g = z(g) ⊕ gss where z(g) is an

abelian subalgebra and gss is semisimple.

We will mostly deal with semisimple Lie algebras, but on occasion we will need to work with a reductive

Lie algebra. Cartan showed that the Killing form Bg is nondegenerate if and only if Bg is semisimple. In

particular, semisimple Lie algebras have trivial center:

z(g) = {X ∈ g | adX ≡ 0} = {0}.
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If H is a Lie group with Lie algebra h, then H is compact if and only if the Killing form Bk is negative

semidefinite (Corollary 4.36 [Kna02]). Let σ : g→g be an involutary Lie algebra isomorphism with ±1

eigenspace decomposition g = h⊕m, then

[h, h] ⊂ h , [h,m] ⊂ m , [m,m] ⊂ h . (2.1.1)

Hence, h ⊂ g is a Lie subalgebra, and the splitting g = h⊕ m is adh-invariant. If G is a Lie group with Lie

algebra g and H ⊂ G is a Lie subgroup with Lie algebra h, then the splitting h⊕m is AdH-invariant.

Definition 2.1.2. Let g be a real semisimple Lie algebra, an involution σ : g→g so that

Bσ(X,Y ) = −Bg(X,σ(Y ))

is a symmetric positive definite bilinear form is called a Cartan involution.

For a Cartan involution, it follows that the splitting g = h ⊕ m is orthogonal and that Bg is positive

definite on m and negative definite on h. Thus, h is the Lie algebra of a maximal compact subgroup H ⊂ G. If

gC = g⊗R C is the complexification of g, then an involution σ : g→g extends to a complex linear involution

of gC, and the splitting gC = hC ⊕mC is AdHC -invariant.

Cartan involutions exist and are unique up to conjugation. Furthermore, under the conjugation action,

the stabilizer of a Cartan involution θ is the group Hθ. Thus we obtain:

Proposition 2.1.3. Let G be a real simple Lie group with maximal compact H then

G/H ∼= {θ : g→g | θ a Cartan involution}.

Example 2.1.4. Let SL(n,C) be the Lie group of determinant 1 complex valued n × n matrices, its Lie

algebra sl(n,C) consists of all n × n traceless matrices. The involution X 7−→ −XT
is a Cartan involution

with Cartan decomposition

sl(n,C) = su(n)⊕ isu(n) = su(n)⊕ herm0(n),

where su(n) consists of all skew adjoint matrices and herm0(n) consists of all traceless hermitian matrices.

Example 2.1.5. Let SL(n,R) be the Lie group of determinant 1 real valued n× n matrices, its Lie algebra

sl(n,R) consists of all n × n traceless matrices. The involution X 7−→ −XT is a Cartan involution with
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Cartan decomposition

sl(n,R) = so(n)⊕ sym0(n)

where so(n) consists of all skew symmetric matrices and sym0(n) consists of all traceless symmetric matrices.

Definition 2.1.6. Let g be a complex Lie algebra, a subalgebra g0 ⊂ g is a real form of g if g0 ⊗ C ∼= g.

Equivalently, g0 is a real form if it is the +1-eigenspace of a conjugate linear involution λ : g→g. The

±1-eigenspace decomposition of g with respect to λ is given by g = g0 ⊕ ig0.

A complex Lie algebra g is semisimple if and only if g = k ⊗ C for a semisimple compact Lie algebra

k (Theorem 6.11 [Kna02]). In particular, complex semisimple Lie algebras always have compact real forms

k ⊂ g. We will always denote the involution associated to a compact real form by θ.

Proposition 2.1.7. (Ch 2, Prop 1 [Oni04]) Let λ0 and λ1 be two real forms of a complex Lie algebra g. If

gλ0 and gλ1 are the corresponding +1-eigenspaces then gλ0 ∼= gλ1 if and only if there is an automorphism

g ∈ Aut(g) so that λ0 = gλ1g
−1.

Fix a real form λ, given any other real form τ , the composition λ ◦ τ : g→g is a complex linear automor-

phism. The map λτ is an involution if and only if λτ = τλ. In this case, the real form τ is invariant under

the involutions λ and λτ. If θ is a fixed compact real form, then Cartan proved that for any other real form

λ there exists an inner automorphism g so that gλg−1 commutes with θ. In this way, one can study real

forms in terms of complex linear involutions that commute with a fixed compact real form.

2.1.1 Roots and parabolics for complex Lie algebras

The root theory reviewed here will be used throughout the thesis. In particular, the Z-gradings play a vital

role in describing fixed points of the C∗ action on the Higgs bundle moduli space and the Z/kZ-gradings are

an essential part of the classification theorem (Theorem 4.2.2) of fixed points of roots of unity actions.

A maximal abelian subalgebra c ⊂ g consisting of semisimple elements is called a be a Cartan subalgebra.

Cartan subalgebras exist and are unique up to conjugation. The dimension of c is called the rank of g and

the restriction of the Killing form Bg|c×c is nondegenerate. An element α ∈ c∗ is called a root if α 6= 0 and

gα = {X ∈ g | [H,X] = α(H)X for all H ∈ c} 6= {0}.

Denote the set of roots by ∆(g, c) ⊂ c∗. If α is a root, the space gα is called the root space of α; the dimension

of a root space gα is always 1. Given two roots α, β ∈ ∆(g, c), a simple calculation shows [gα, gβ ] ⊂ gα+β .
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Note that if α is a root, then −α is also a root. This allows us to choose a subset ∆+ ⊂ ∆(g, c) of positive

roots such that α ∈ ∆+ if and only if −α /∈ ∆+. A choice of positivity defines a set of simple roots

Π = {α1, · · · , α`} ⊂ ∆(g, c) ⊂ c∗,

where α ∈ ∆+ implies α =
∑̀
j=1

njαj with nj ∈ N and αj ∈ Π. The integer l(α) =
∑
j

nj is called the height or

length of the root α. Let m` be the maximum height, then, since g is simple, there is a unique root µ with

l(µ) = m` called the highest root.

Let C ⊂ Inn(g) be the maximal torus (with Lie algebra c). Any inner automorphism h is conjugate to

an element on C and moreover, two elements of C are conjugate if and only if they are equivalent under

the action of the Weyl group N(C)/C where N(C) is the normalizer of C. Although the Weyl group action

preserves a Cartan subalgebra, if one fixes a notion of positivity we have the following:

Proposition 2.1.8. The group G acts transitively on the space of a Cartan subalgebra with a choice of

simple roots, and the stabilizer of a point is the corresponding Lie group C ⊂ G with Lie algebra c; thus

G/C ∼= {(c,∆+) | c ⊂ g a Cartan subalgebra , ∆+ ⊂ c∗a positive root system}. (2.1.2)

If c(R) = {H ∈ c | α(H) ∈ R for all α ∈ ∆(g, c)}, then c(R) is a real form of c. The Killing form Bg is

real and positive definite on c(R) and c(R)∗ = Span{∆(g, c)}. Furthermore, the Killing form satisfies

Bg(X,Y ) = 0 for X ∈ gα, Y ∈ gβ with α+ β 6= 0. (2.1.3)

Thus c and the vector subspaces (gα ⊕ g−α) of g are pairwise orthogonal.

Since the Killing form restricted to c is nondegenerate, define the coroot Hα ∈ c of a root α by duality

β(Hα) =
2Bg∗(β, α)

Bg∗(α, α)
.

By construction, α(Hα) = 2, Hα ∈ c(R) and {Hαi}`i=1 is a basis for c(R). A collection {Xα}α∈∆ satisfying

• [Xα, X−α] = Hα

• [Xα, Xβ ] = Nα,β Xα+β with Nα,β = −N−α,−β ∈ N and Nα,β = 0 if α+ β is not a root.

is called a Chevalley basis; Chevalley bases exist (Theorem 6.6 [Kna02]).

Definition 2.1.9. A Cartan involution which globally preserves a Cartan subalgebra c is called a c-Cartan
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involution.

Lemma 2.1.10. A c-Cartan involution θ takes a root space gα to g−α and θ(Hα) = −Hα.

Proof. Since θ is an isomorphism and α(Hβ) real, for all X ∈ gα, we have θ([Hβ , X]) = α(Hβ)θ(X). So θ

takes root spaces to roots spaces. Recall that for α + β 6= 0, the root spaces gα and gβ are orthogonal. By

definitinion of a Cartan involution, −Bg(·, θ·) is positive definite. Thus θ takes gα to g−α. Let X±α ∈ g±α

with [Xα, X−α] = Hα, then

θ(Hα) = [θ(Xα), θ(X−α)] = [λ1X−α, λ2Xα] = −λ1λ2Hα.

Since, θ is an involution, Bg(Hα, Hα) > 0 and −Bg(Hα, θ(Hα) > 0 we conclude θ(Hα) = −Hα.

The existence of a Chevalley basis gives the existence of two real forms, the split real form and the

compact real form. The Lie subalgebra

g′ =
⊕̀
i=1

RHαi ⊕
⊕
α∈∆

RXα (2.1.4)

is a split real form (Corollary 6.10 [Kna02]). In terms of the Chevalley basis, g′ is the fixed point set of the

conjugate linear involution λ defined by λ(Xα) = X−α and λ(Hαi) = Hαi . The subalgebra

k =
⊕̀
i=1

RiHαi ⊕
⊕

α∈∆(g,c)

R(Xα −X−α)⊕ Ri(Xα +X−α)

is a compact real form of g (Theorem 6.11 [Kna02]). In terms of the Chevalley basis, k is the fixed point set

the conjugate linear Cartan involution defined by

θ(Xα) = −X−α and θ(Hα) = −Hα . (2.1.5)

Complex simple Lie algebras are classified by a diagram associated to a set of simple roots Π ⊂ ∆ called

its Dynkin diagram. Fix a Cartan subalgebra c ⊂ g and a set of simple roots Π = {α1, · · · , α`} ⊂ ∆. With

this choice, the Dynkin diagram has exactly one vertex for each simple root αi and an edge is drawn between

each nonorthogonal pair of vectors. The edge is undirected and single if the root vectors make an angle of

2π
3 , it is a directed double edge the root vectors make an angle of 3π

4 , and a directed triple edge the root

vectors make an angle of 5π
6 . If directed, the edge points towards the shorter root.

Example 2.1.11. The classical Lie algebras have the following Dynkin Diagrams
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• For g = sl(n+1,C) there are n simple roots α1 · · · , αn with αi orthogonal to αj if and only if j 6= i±1.

Furthermore, the angle between all nonorthogonal roots is 2π
3 , thus the Dynkin diagram is

◦
α1

◦
α2

· · · ◦
αn−1

◦
αn

• For g = so(2n + 1,C) there are n simple roots α1 · · · , αn with αi orthogonal to αj if and only if

j 6= i±1. Furthermore, for i < n−1, the angle between αi and αi+1 is 2π
3 and the angle between αn−1

and αn is 3π
4 with αn being the shorter root, thus the Dynkin diagram is

◦
α1

◦
α2

· · · ◦ //
αn−1

◦
αn

• For g = sp(2n,C) there are again n simple roots which satisfy the same orthogonality conditions and

angle conditions as so(2n+ 1,C) but with αn−1 shorter than αn, thus the Dynkin Diagram is

◦
α1

◦
α2

· · · ◦ oo
αn−1

◦
αn

• For g = so(2n,C) there are n simple roots α1, · · · , αn with αi orthogonal to αj if i < n − 1 and

j 6= i ± 1 and αn is orthogonal to all roots except αn−2. Furthermore all angles are 2π
3 , hence the

Dynkin diagram is given by

◦
αn−1◦

α1
◦
α2

· · · ◦
αn−2 ◦

αn

Example 2.1.12. For g = so(7,C), the rank of g is 3 and if Π = {α1, α2, α3} is a set of simple roots, the

positive roots is given by

∆+ = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3, α2 + 2α3, α1 + α2 + 2α3, α1 + 2α2 + 2α3}

The highest root µ = α1 + 2α2 + 2α3 has height 5. This can be depicted in the root poset of so(7,C) :

◦
◦

◦ ◦
◦ ◦

◦ ◦ // ◦
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Parabolics and Z-gradings on g

There are many equivalent definitions of parabolic subgroups P ⊂ G, for instance, a subgroup P with G/P

compact. If we fix a root system with a notion of positivity, then the standard classification says parabolic

subalgebras p ⊂ g are in one-to-one correspondence with subsets of simple roots.

Definition 2.1.13. Let Π ⊂ ∆(g, c) be a set of simple roots. For a positive root system and for a subset

A ⊂ Π, define the set RA = {β
∑
αj∈Π

mjαj ∈ ∆(g, c)|mj ≥ 0 for αj ∈ A}. The parabolic subalgebra associated

to A ⊂ Π is defined by

pA = c⊕
⊕
α∈RA

gα.

Note that for the two extremes A = Π and A = ∅ we have pΠ = c ⊕
⊕

α∈∆+(g,c)

gα and p∅ = g. Given a

parabolic pA denote the connected Lie subgroup with Lie algebra pA by PA ⊂ G.

Definition 2.1.14. Given a subset A ⊂ Π define R0
A = {β =

∑
αj∈Π

mjαj ∈ ∆(g, c)|mj = 0 for all αj ∈ A}.

The subalgebras of the parabolic pA given by

lA = c⊕
⊕

α∈R0
A

gα uA =
⊕

α∈RA\R0
A

gα

are respectively called the Levi and unipotent radical subalgebra, and pA = lA ⊕ uA.

Recall that if α ∈ c∗ is a root, then the coroot Hα ∈ c was defined by duality with respect to the Killing

form. Denote the root lattice of g by Q ⊂ c(R)∗. Consider the map c→C defined by x 7→ exp(2πix), the

kernel of this map is the lattice P̌ dual to Q. The lattice P̌ is generated by the fundamental weights {πj}

defined previously, and if Q̌ ⊂ c is the coroot lattice, then Q̌ ⊂ P̌ . The fundamental group π1(Inn(g)) is

canonically isomorphic to P̌ /Q̌.

The set of simple coroots generate define the set of fundamental weights {πj} ∈ c∗ as the dual basis:

πj(Hαi) = δij .

It is not hard to show that center of pA is the same as the center of lA and that

z(pA) = z(lA) =
⋂

αj∈Π\A

Ker(παj ). (2.1.6)

The set of characters of an arbitrary complex Lie algebra consists of the the set of maps g→C which

factor through g/[g, g], i.e. they are given by elements of the dual of the center z∗(g). Any character χ of a
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parabolic pA can be written as χ =
∑
αj∈A

njπj for nj ∈ R. For a semisimple Lie algebra the only character

is the constant map. Characters of parabolic subalgebras will play an important role in the definition of

stability for Higgs bundles.

Definition 2.1.15. An (anti)dominant character of a parabolic pA is an element of z(lA) of the form

χ =
∑
αj∈A

njπj with nj ≥ 0, (nj ≤ 0), if the inequality is strict for all αj ∈ A the character is called strictly

(anti)dominant.

Given a parabolic pA the strictly dominant character χ =
∑
πj defines a Z grading on g called the height

grading of the parabolic pA

g = g−k ⊕ · · · ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ · · · ⊕ gk (2.1.7)

If i 6= 0, gi consists of the root spaces gα where α =
∑
αj∈Π

njαj with
∑

αj∈Π\A
nj = i and g0 = lA. Since

[gi, gj ] ⊂ gi+j , the decomposition (2.1.7) is a splitting as lA-modules with respect to which gi is the dual

representation of g−i.

A Z-grading g =
⊕
j∈Z

gj is equivalent to a homomorphism γ : C∗→Aut(g) and such an object is defined

by any element h ∈ g so that dγ(1) = ad(h), i.e. exp(2πiad(h)) = id. For a fixed Cartan subalgebra c with

simple roots Π, we can act by inner automorphisms to arrange h ∈ c and αj(h) ≥ 0 for all αj ∈ Π. If we

set pj = αj(h), then the vector subspace gn consists of root spaces gα with α =
∑
αj∈Π

njαj and
∑
njpj = n.

Given a Z-grading, let A = {αj ∈ Π | pj 6= 0} then the Lie algebra pA =
⊕
j≥0

gj is a parabolic subalgebra,

furthermore, γ is a dominant character of pA.

Remark 2.1.16. From the above discussion, we see that Z-gradings are in one-to-one correspondence with

labelings of the Dynkin diagram with integers. For any Z-grading, the Lie subalgebra g0 is always a Levi

factor of a parabolic. Moreover, the height grading corresponding to a parabolic pA ⊂ g is determined by a

Z-grading with only 1’s and 0’s.

Example 2.1.17. Recall from example 2.1.12, g = so(7,C) has simple roots {α1, α2, α3} and the highest root

is given by µ = α1 + 2α2 + 2α3. The labeling of the so(7,C) Dynkin diagram ◦
0

◦ //
2

◦
1

defines the parabolic pA with A = {α2, α3} and gives the follow Z-grading g =
6⊕

j=−6

gj where

g0 = c⊕ gα1
⊕ g−α1

g1 = gα3
g2 = gα2

⊕ gα1+α2
g3 = gα1+α2+α3

⊕ gα2+α3

g4 = gα2+2α3
⊕ gα1+α2+2α3

g5 = {0} g6 = gα1+2α2+2α3

Moreover, the height grading of the parabolic pA is defined by labeling the Dynkin diagram by ◦
0

◦ //
1

◦
1
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Z/kZ-gradings

A Z/kZ-grading g =
⊕

j∈Z/kZ
ĝj is equivalent to defining a homomorphism γ : Z/kZ→Aut(g). Unlike Z-

gradings, the image of γ : Z/kZ→Aut(g) does not necessarily land in Inn(g) since Z/kZ is not connected.

However, we will only discuss Z/k/Z-gradings which arise from homomorphisms Z/kZ→Inn(g). Such an

object arises from an element σ ∈ Inn(g) with σm = id. A good reference for this subsection is Chapter 3

of [Vin94]. Just as Z-gradings correspond to integer labelings of the Dynkin diagram, Z/kZ-gradings with

σ ∈ Inn(g) correspond to certain labelings of the extended Dynkin diagram of g.

Let c ⊂ g be a Cartan subalgebra with Π = {α1, · · · , α`} ⊂ c∗ a set of simple roots. Denote the unique

highest root by µ =
∑̀
j=1

njαj and set α0 = −µ. The extended system of simple roots Π̃ = {α0, α1, · · · , α`}

is an admissible system of vectors. Its metric properties are described by the so-called extended Dynkin

diagram (see Chapter 1 [Vin94]). If n0 = 1 then the elements of the system Π̃ satisfy the linear relation that∑̀
j=0

njαj = 0. Any automorphism of the system Π can be extended to an automorphism of Π̃ is such a way

so that Aut(Π) is a subgroup of Aut(Π̃), and the fundamental group of the adjoint group π1(Inn(G)) = P̌ /Q̌

is naturally identified with a subgroup of Aut(Π̃) which acts simply transitively on the set of roots αj ∈ Π̃

with nj = 1.

Example 2.1.18. For the classical Lie algebras the extended Dynkin diagrams are given by:

• For g = sl(n+ 1,C) if Π = {α1, · · · , αn} is the set of simple roots then α0 =
n∑
j=1

−αj and the extended

Dynkin diagram is given by

◦α0

◦ ◦ · · · ◦ ◦

◦1

◦
1

◦
1

· · · ◦
1

◦
1

where the labels on second diagram correspond to {nj}.

• For g = so(2n+ 1,C) if Π = {α1, · · · , αn} is the set of simple roots then α0 =
n∑
j=1

−njαj where nj = 2

for j ≥ 2 and n1 = 1. The extended Dynkin Diagram is given by

◦
α0 ◦ · · · ◦ // ◦
◦

◦
1 ◦

2
· · · ◦ //

2
◦
2◦

1

where the labels on second diagram correspond to {nj}.
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• For g = sp(2n,C) if Π = {α1, · · · , αn} is the set of simple roots then α0 =
n∑
j=1

−njαj where nj = 2 for

j ≤ n− 1 and nn = 1. The extended Dynkin Diagram is given by

◦
α0

// ◦ ◦ · · · ◦ oo ◦ ◦
1
// ◦

2
◦
2

· · · ◦ oo
2

◦
1

where the labels on second diagram correspond to {nj}.

• For g = so(2n,C) if Π = {α1, · · · , αn} is the set of simple roots then α0 =
n∑
j=1

−njαj where nj = 1 for

j = 1, n− 1, n and nj = 2 otherwise. The extended Dynkin Diagram is given by

◦
α0

◦
◦ · · · ◦

◦ ◦

◦
1

◦
1◦

2
· · · ◦

2◦
1

◦
1

where the labels on second diagram correspond to {nj}.

Let c be a Cartan subalgebra with simple roots Π = {α1, · · · , α`} and highest root µ. For any element

x ∈ c define the coordinates (x0, · · · , x`) by

x0 = 1− µ(x) x1 = α1(x) x2 = α2(x) · · · x` = α`(x) .

We will make extensive use of the following theorem.

Theorem 2.1.19. (Theorem 3.11 [Vin94]) Let G be a complex simple Lie group with Lie algebra g. Let

c be a Cartan subalgebra with simple roots Π = {α1, · · · , α`} and highest root µ. Any inner semisimple

automorphism of g is conjugate to an automorphism of the form exp(2πix), where x ∈ c and Re(xj) ≥ 0 for

all j and if Re(xj) = 0 then Im(xj) ≥ 0. Moreover, two automorphisms exp(2πix) and exp(2πix′) of such a

form are conjugate if and only if the the coordinates (x0, · · · , x`) can be taken to (x′0, · · · , x′`) by an element

of π1(Inn(g)).

Note, that by ignoring the group π1(Inn(g)) we obtain a classification of semisimple elements of the

simply connected Lie group G with Lie algebra G. If π1(Inn(g)) is replaced by Aut(Π̃) then we obtain an

classification of inner semisimple automorphisms up to conjugacy in Aut(g).

Using this theorem, for any inner automorphism σ we may assume that σ = exp(2πix) where x ∈ c has

coordinates (x0, · · · , x`) satisfying the hypotheses of Theorem 2.1.19. If σk = Id then we have xj =
pj
k for

pj ∈ N such that
∑̀
j=0

njpj = k. Thus, a Z/kZ-grading arising from an inner automorphism can be defined
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by a labeling of the extended Dynkin diagram by non negative integers pj satisfying
∑̀
j=0

njpj = k. Two such

Z/kZ-gradings can be taken to one another via an automorphism if and only if the labeled extended Dynkin

diagrams can be taken to each other by a diagram automorphism.

Example 2.1.20. • Given a Z grading g =
n⊕

j=−n
gj on can obtain a Z/kZ-grading g =

⊕
j∈Z/kZ

ĝj by

setting gj =
⊕

i=j mod k

gi. One particular instance of such a grading which will be important later is

the following: Let µ =
∑̀
j=1

njαj be the highest root and set k = 1 +
∑̀
j=1

nj . The Z-grading given by

labeling the Dynkin diagram with a 1 on each simple root is given by g =
k−1⊕

j=−k+1

gj , in particular

g0 = c. The associated Z/kZ grading g =
⊕

j∈Z/kZ
ĝj has ĝ0 = c and ĝj = gj⊕g−k+j . The labeling of the

extended Dynkin diagram has a 1 on each vertex. For example, for so(7,C), k = 8 and the labeling of

the extended Dynkin diagram is

◦
1 ◦ //

1
◦
1◦

1

• Unlike Z-gradings, the identity eigenspace ĝ0 does not need to be the Levi factor of a parabolic

subalgebra. For example, the Z/4Z-grading of so(7,C) associated to the extended Dynkin diagram

labeling

◦
1 ◦ //

0
◦
1◦

1

is isomorphic to sl(2,C)⊕ sl(2,C)⊕ sl(2,C)⊕C which is not the Levi factor

any parabolic of so(7,C).

Remark 2.1.21. Note that is g = sl(n,C) then for any Z/kZ-grading the Lie subalgebra ĝ0 is the Levi

factor of a parabolic subalgebra.

The identity eigenspace ĝ0 of a finite order automorphism σ ∈ Inn(g) is a reductive Lie subgroup of g

and its type can be determined by the labeling of the extended Dynkin diagram. The simple roots labeled

with a 0 define a root system for ĝ0, thus one simply removes all vertices without a 0 label to obtain the

Dynkin diagram of ĝ0.

Remark 2.1.22. Let ĝ1 =
⊕

ĝν1 be the decomposition of ĝ1 into irreducible ĝ0 representations. If there are

roots labeled with a 0, then the irreducible representations which appear are in one-to-one correspondence

with the connected components which contain a root labeled with a 1 of the Dynkin diagram which results

from removing the roots labeled with a 0 from the extended Dynkin diagram. If there are no roots labeled

with a 0 then ĝ0 = c and the root space of each root labeled with a 1 defines an irreducible representations.
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2.1.2 Maximally compact Cartan subalgebras and roots for real Lie algebras

The interaction between the root theory of a complex simple Lie algebra and its real forms will be important

for the definition of Hitchin triples and the notion of a cyclic surface introduced in Chapter 6. The main

reference for this subsection is Chapter 6 sections 6-10 of [Kna02]. For this subsection fix g0 a real form of

a complex simple Lie algebra g with Cartan involution θ : g0→g0 and corresponding Cartan decomposition

g0 = h⊕m.

Definition 2.1.23. A θ-stable Cartan subalgebra of g0 is a maximal abelian subalgebra c0 ⊂ g0 such that

c0 ⊗ C ⊂ g is a Cartan subalgebra and θ(c0) = c0. This gives a decomposition of c0 into compact and

noncompact parts: c0 = t0 ⊕ a0 ⊂ h⊕m.

Definition 2.1.24. Let c0 = t0 ⊕ a0 ⊂ h ⊕ m be a Cartan subalgebra. If dim(t0) maximal amongst all

Cartan subalgebras then c0 is called maximally compact and if dim(a0) is maximal then c0 is called maximally

noncompact.

For a fixed real simple Lie algebra g0 with Cartan involution θ, a Cartan subalgebras c0 ⊂ g0 compatible

with θ is not unique up to conjugation. If c0 and c′0 are two such Cartan subalgebras with different compact

dimensions then they are clearly not conjugate; even if they have the same compact dimension, they are not

necessarily conjugate. However, for maximally compact and maximally noncompact Cartan subalgebras we

have:

Proposition 2.1.25. If c0 = t0 ⊕ a0 ⊂ h ⊕ m is a maximally compact or maximally noncompact Cartan

subalgebra then c0 is unique up to conjugation.

Definition 2.1.26. If c0 ⊂ g is a maximally noncompact Cartan with t0 = {0} the real Lie algebra g0

is the split real form of g. The split real forms of sl(n,C), so(2n + 1,C), sp(2n,C) and so(2n,C) are

sl(n,R), so(n, n+ 1), sp(2n,R) and so(n, n) respectively.

Remark 2.1.27. We will give an equivalent definition of split real forms in terms of maximally compact

Cartan subalgebras in Proposition 2.1.43. The Lie algebra g0 ⊂ g is a compact real form if and only if

a0 = {0} for any Cartan subalgebra.

Let c0 ⊂ g0 = h⊕m be a Cartan subalgebra. If c = c0⊗C then we have a decomposition c = t⊕ a where

t = t0 ⊗C and a = a0 ⊗C. Denote the complex linear extension of the Cartan ivolution to g∗ by θ also, the

set of roots ∆ ⊂ c∗ is preserved by the involution θ. Furthermore, since the Killing form is positive definite

on the set roots, ∆ lives in the noncompact part of c∗, i.e.

∆ ⊂ it∗0 ⊕ a∗0.
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This leads to the notion of real, imaginary and complex roots:

Definition 2.1.28. A root α ∈ (it∗ ⊕ a∗) is called real if α|it = 0, imaginary if α|a = 0 and complex

otherwise. By construction, if α is real then θ(α) = −α, if α is imaginary then θ(α) = α and if α is complex

then θ(α) is a root different than α.

For a root α, the Cartan involution satisfies θ(gα) = gθ(α). Thus, if α is real then θ(gα) = g−α and if

α is imaginary then θ(gα) = gα. Since the root space gα is one dimensional for an imaginary root α either

gα ⊂ hC or gα ⊂ mC.

Definition 2.1.29. An imaginary root α is called compact if gα ⊂ hC, and noncompact if gα ⊂ mC.

The number of each type of roots depends on the dimension of the compact part of a Cartan subalgebra,

for maximal compact and maximal noncompact Cartan subalgebras we have the following classification.

Proposition 2.1.30. A Cartan subalgebra c0 ⊂ g0 is maximally compact if and only if there are no real

roots and a maximally noncompact if and only if there are no noncompact imaginary roots.

For any choice of positive roots, if a complex root α is simple then θ(α) is also simple and θ(α) is the

image of α under a nontrivial automorphism of the Dynkin diagram. In particular, when the Dynkin diagram

has no nontrivial automorphism, there are never complex roots.

One way to classify real forms of a complex simple Lie algebra gC is the notion of Vogan diagrams. This

is a done by decorating the Dynkin diagram of gC to encode the data of the real form.

Definition 2.1.31. (Vogan Diagram see Chapter 6.8 [Kna02]) Let g0 ⊂ g be a real form with Cartan

involution θ and choose a maximally compact θ-stable Cartan subalgebra c = t ⊕ a and choose a notion of

positivity ∆+ for the corresponding roots. The Vogan diagram of the triple (g0, c,∆
+) is Dynkin diagram

of ∆+ where the order 2 orbits of θ have been labeled and the order 1 orbits of θ are painted if and only if

they correspond to noncompact imaginary roots.

Theorem 2.1.32. (Theorem 6.74 in [Kna02]) Let (g0, c,∆
+) ⊂ g and (g′0, c

′, (∆+)′) ⊂ g be two real forms

with fixed maximally compact Cartan subalgebra and choice of positivity. If the correspond Vogan diagrams

are the same, then g0
∼= g′0.

Thus, non-isomorphic real forms always give different Vogan diagrams. An abstract Vogan diagram is

defined as a choice of painting of the Dynkin diagram.

Theorem 2.1.33. (Theorem 6.88 in [Kna02]) For any abstract Vogan diagram, there is a real form g0 ⊂ g

with Cartan involution θ, maximally compact Cartan subalgebra c = t⊕ a and notion of positivity ∆+ with

this Vogan diagram.
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Example 2.1.34. Here are some examples of Vogan diagrams

• g = sl(2n,R): ◦ ))◦ ((· · · • · · · ◦vv ◦uu

• g = so(n, n+ 1): • • · · · • // •

• g = sp(4, 8): ◦ • ◦ ◦ ◦ oo ◦

• g = so(10): ◦
◦ ◦ ◦

◦
Given a real form g0 ⊂ g, the form of the corresponding Vogan diagram depends on the choice of positive

roots. Due to this redundancy, Vogan diagrams do not classify real forms of g. However, we have the following

classification.

Theorem 2.1.35. (Theorem 6.96 in [Kna02]) For every real form g0 ⊂ g with Cartan involution θ and

maximally compact θ-stable Cartan subalgebra c = t⊕ a, there exists a unique choice of simple roots so that

the Vogan diagram has exactly one painted root.

Putting this all together, there is a one-to-one correspondence between real forms of a complex simple

Lie algebra g and Vogan diagrams with exactly one painted root. With respect to such a choice of positivity,

all but at most one simple root is complex or compact. This is not the notion of positivity we want to use

for the Higgs bundles considered later.

2.1.3 Principal three dimensional subalgebras

The definition and properties of the principal three dimensional subalgebra developed below play a crucial

role throughout the thesis. In particular, it is needed to define the Hitchin component, it is necessary for the

notion of the cyclic surfaces of Chapter 6 and is important for the generalizations of Hitchin representations

of Theorem 6.4.1.

Following Kostant [Kos59], we define the principal three dimensional subalgebra (PTDS) with respect to

the Chevalley basis {Hαi , X±α}. If {π1, · · · , π`} is the set of fundamental weights (i.e. the basis of c dual

to the simple roots), set

x =
∑̀
i=1

πi =
1

2

∑
α∈∆+

Hα =
1

2

∑̀
ı=1

rαiHαi . (2.1.8)

By construction of x, if X ∈ gα and l(α) is the height of the root α, then [x,X] = l(α)X. The eigenspace

decomposition of g with respect to adx gives a Z-grading on g called the height decomposition:

g = g−m` ⊕ · · · ⊕ g−1 ⊕⊕c⊕ g1 ⊕ · · · ⊕ gm` (2.1.9)
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where gj =
⊕

l(α)=j

gα. Define

e1 =
∑̀
i=1

√
rαiXαi and ẽ1 =

∑̀
i=1

√
rαiX−αi .

By construction s = 〈ẽ1, x, e1〉 satisfies the bracket relations

[x, e1] = e1 , [x, ẽ1] = −ẽ1 , [e1, ẽ1] = x ,

and thus s ∼= sl(2,C).

The adjoint action of s on g decomposes into a direct sum of irreducible sl(2,C)-representations g =
⊕
Vj .

Kostant [Kos59] showed that there are exactly ` = rank(g) irreducible summands

g =
⊕̀
j=1

Vj . (2.1.10)

Furthermore, dim(Vj) = 2mj + 1 and the integers {mj} are independent of all the choices. The numbers

{m1, · · · ,m`} are called the exponents of g and always satisfy m1 = 1 and m` = l(µ) where µ is the highest

root. A three dimensional subalgebra with this property is unique up to conjugation [Kos59].

Definition 2.1.36. Any subalgebra s′ conjugate to s is called a principal three dimensional subalgebra

(PTDS), if s′ ∩ c 6= {0} the PTDS is called a c-PTDS.

Theorem 2.1.37. (Theorem 4.2 [Kos59]) Let s ⊂ g be PTDS and x ∈ s be a semisimple element with

centeralizer gx. Then any other PTDS s′ ⊂ g containing x is conjugate to s by an element in Lie group Gx

with Lie algebra gx = Ker(adx).

Let ej ∈ Vj be the highest weight vector, by definition, [e1, ej ] = 0. Since [x, e`] = m`e`, one can always

take e` = Xµ, where µ is the highest root. The decomposition (2.1.10) allows us to define an involution

σ : g→g by

σ(ej) = −ej σ(ẽ1) = −ẽ1 (2.1.11)

and extended by the bracket relations.

Proposition 2.1.38. ([Kos59]) The involution σ commutes with the c-Cartan involution θ defined by

θ(Xα) = −X−α. Furthermore, the resulting real form λ = θ ◦ σ is a split real form.

Remark 2.1.39. The involution σ can be represented pictorial using the theory of irreducible represen-

tations of sl(2,C). For instance, when g = sl(4,C) the exponents (m1,m2,m3) = (1, 2, 3). The irreducible
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representations of equation (2.1.10) have dimensions (3, 5, 7) and the involution σ is defined by:

−3 −2 −1 0 1 2 3

V1
ẽ1•
−1

x•
1

e1•
−1

V2

ad4
ẽ1

(e2)

•
−1

•
1

•
−1

•
1

e2•
−1

V3

ad6
ẽ1

(e3)

•
−1

•
1

•
−1

•
1

•
−1

•
1

e3•
−1

(2.1.12)

where the ±1 below each bullet is the value of the involution σ, and the top row represents the height grading

of (2.1.9). By construction, the involution σ is complex linear and preserves the height grading of (2.1.9).

In particular, it preserves the middle column which is the Cartan subalgebra c. Thus {admjẽ1 ej} generate the

c, and whenever mj is odd, σ(ad
mj
ẽ1
ej) = 1.

Recall that we may take em` = Xµ where µ is the highest root. Since σ commutes with θ,

σ(X−µ) = θ(σ(θ(X−µ))) = −X−µ,

and thus, σ(Hµ) = σ([Xµ, X−µ]) = Hµ. Following Labourie [Lab14], we note that the involution σ is unique.

Proposition 2.1.40. (Proposition 2.5.6 [Lab14]) Let c be a Cartan subalgebra with a positive root system

and µ the highest root. If σ is an involution which preserves globally preserves c and a c-PTDS s with

σ(Hµ) = Hµ, then σ is unique.

The involutions θ and σ give eigenspace decompositions

g = gθ ⊕ igθ g = gσ ⊕ g−σ.

Since the compact form θ and the involution σ commute, the restriction of σ to the split real form g0 = gλ

is a Cartan involution for g0 :

g0 = h⊕m = (gθ ∩ gσ)⊕ (igθ ∩ g−σ).

Since both θ and σ globally preserve c, we may write cλ = c0 = t⊕ a where t ⊂ h and a ⊂ m,

c = tC ⊕ aC.

Recall that the coroots {Hα} ⊂ c are in the (−1)-eigenspace of the compact real form θ. In terms of the

decomposition c = tC ⊕ aC, the (−1)-eigenspace of θ is it⊕ a.
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By definition, the Cartan involution σ|g0 preserves the set of positive roots, so there are no real roots.

Thus, the Cartan subalgebra c0 is a maximally compact Cartan subalgebra. Furthermore, since σ(e1) = −e1,

by definition of e1, it follows that there are no imaginary compact simple roots. Thus, we have proven:

Proposition 2.1.41. The Cartan subalgebra c0 ⊂ g0 is a maximally compact Cartan subalgebra and, with

respect to the Cartan involution σ on g0, all simple roots are noncompact imaginary or complex. Furthermore,

the subgroup T ⊂ G with Lie algebra t is a maximal compact torus of G0.

Remark 2.1.42. It is important to note that the split real form g0 = gσ◦θ is very different than the split

real form g′ of equation (2.1.4). For g0, the Cartan subalgebra c is maximally compact, and for g′, the

Cartan subalgebra c is maximally noncompact. Thus

c ∩ k ∩ g0 = t 6= ∅ and c ∩ k ∩ g′ = ∅ .

This gives the following formulation of a split real form, although this must certainly be know by Lie

theory experts, to my knowledge, it does not appear in the literature.

Proposition 2.1.43. Let g be a split real simple Lie algebra fix a Cartan involution σ with Cartan decom-

position g = h ⊕ m, and let c ⊂ g be a maximally compact Cartan subalgebra. There exists a set of simple

roots

{α1, · · · , α`} ⊂ c∗

such that, for all i, αi is either complex or compact imaginary.

Remark 2.1.44. The converse of Proposition 2.1.43 holds for complex simple Lie algebras g whose Dynkin

diagram has no automorphisms, or equivalently, when there are no complex roots. Namely, for a real

form g0 of such a g, there is a choice of simple roots such that no simple root is compact imaginary

(equivalently all simple roots are noncompact imaginary) if and only if g0 is a split real form. When g has

outer automorphisms, then there is a choice of simple roots such that no simple root is compact imaginary

if and only if g0 is a quasi-split real form. For the classical Lie algebras sl(2n,C), sl(2n+ 1,C) and so(2n,C)

the quasi split real forms which are not split are su(n, n), su(n, n+ 1) and so(n, n+ 2) respectively.

Remark 2.1.45. Complex roots only appear in types A and E, thus, for the split real forms of types

B,C,D, F and G, all simple roots are noncompact imaginary. For types B,C,D,G the involution σ preserves

the all roots, and is defined on the Chevalley basis {eα}α∈±Π by

σ(eα) = −eα.
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For type A2n+1 all simple roots are complex, thus the simple roots come in pairs {α, σ(α)} the involution σ

is defined on the Chevalley bases {eα}α∈±Π by

σ(eα) = −eσ(α).

For type A2n there is one noncompact imaginary simple root α̂ and the rest are complex. Thus σ is defined

on the Chevalley bases {eα}α∈±Π by


σ(eα) = −eσ(α) α 6= α̂

σ(eα̂) = −eα̂

2.2 Homogeneous spaces and reductions of structure

The geometry of reductive homogeneous spaces will also be essential for the rest of the thesis, a good reference

for this is [BR90]. Let X be a manifold with a smooth transitive action of G. If we fix a base point x0 ∈ X

and define H = StabG(x0), then, since the action is transitive, we have a principal H-bundle

H G
π // X

g � // g · x0

Thus, the tangent bundle is given by TX = G×H g/h.

2.2.1 The geometry of reductive homogeneous spaces

We will mostly be interested in reductive homogeneous spaces.

Definition 2.2.1. A homogeneous space X is called reductive if the Lie algebra g has a decomposition

g = h⊕m as AdH-modules.

If W is a linear representation of H we will denote the associated bundle by G ×H W = [W ]. Thus,

[m] ∼= TX. Since m is an AdH-invariant subspace of g, we have [m] ⊂ [g]. The action of H on g is the

restriction of the G action, hence [g] is trivializable

G[g] oo
∼= // X × g

[g, ξ] � // (π(g), Adgξ)

Example 2.2.2. When G is a complex simple Lie group with maximal compact K, the symmetric space
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G/K is a reductive homogeneous space. Furthermore, since k⊗ C = g, we have

T (G/K)⊗ C ∼= [k]⊕ [ik] = [g] ∼= G/H× g.

Using [m] ∼= TX, we have TX ⊂ [g] ∼= X × g. This inclusions can be interpreted as an H-equivariant

1-form on X valued in g.

Definition 2.2.3. The equivariant g-valued 1-form ω ∈ Ω1(X, g) is called the Maurer Cartan form of the

homogeneous space X.

We will view a reductive homogeneous space as coming equipped with a fixed summand m ⊂ g. Let

ωG ∈ Ω1(G, g)G be the left Maurer-Cartan form of G, it is G-equivariant. Since g = h⊕m, we may split ωG

in terms of its projections onto h and m

ωG = ωh
G ⊕ ω

m
G .

This an AdH-invariant splitting since g = h⊕m is AdH-invariant, thus

ωh
G ∈ Ω1(G, h)H and ωm

G ∈ Ω1(G,m)H.

The form ωh
G is a connection on the principal H-bundle G→X which we call the canonical connection. For any

H-representation V , the canonical connection induces a covariant derivative ∇c on any associated bundle

[V ]. By construction, if s ∈ C∞(X, [V ]) is G-equivariant, then ∇cs = 0. The form ωm
G is an equivariant

horizontal 1-form, i.e. it vanishes along vector fields induced by the action. Thus, ωm
G descends to a 1-form

on X valued in [m] which is the Maurer Cartan form ω.

When V is the restriction of a representation of G, [V ] is trivializable, in which case, there is a simple

relationship between flat differentiation on X ×V and covariant differentiation by the canonical connection.

This will be important for our later considerations of cyclic surfaces and the Hitchin equations.

Lemma 2.2.4. (see chapter 1 [BR90]) Let f : X→X × V be a smooth section, then df = ∇cf + ω · f.

If V = g is the adjoint representation, then ∇c = d − adω and the torsion of the canonical connection on

TX = [m] is given by T∇c = − 1
2 [ω, ω]m.

Remark 2.2.5. If [ , ]m and [ , ]h denote the projections onto [m] and [h], then the flatness of d can be

written in terms of ∇c and ω as


F∇c +

1

2
[ω, ω]h = 0 h− part

d∇
c

ω +
1

2
[ω, ω]m = 0 m− part
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Moreover, if we decompose m =
⊕
j

mj into irreducible H-representations then

TX ∼=
⊕
j

G×H mj =
⊕
j

[mj ].

This gives a decomposition of the trivial bundle [g]→X as a direct sum of ∇c-parallel vector bundles

[g] = [h]⊕
⊕
j

[mj ].

Furthermore, the Maurer Cartan form decomposes ω =
∑
j

ωj , and the zero curvature equations are

F∇c +
1

2

∑
j,k

[ωj , ωk]h = 0 h− part

d∇
c

ωj +
1

2

∑
k,`

[ωk, ω`]
mj = 0 mj − part

(2.2.1)

Example 2.2.6. A homogeneous space X is called a symmetric space if there is an involution σ : G→G with

(Gσ)0 ⊂ H ⊂ Gσ. In this case, h = gσ, m = g−σ and by equation (2.1.1) [m,m] ⊂ h. When G is a semisimple

Lie group, with K ⊂ G a maximal compact, any G-invariant metric on G/K is a G-equivariant section of an

associated bundle. Thus, the canonical connection ∇c is a metric connection. Since [m,m] ⊂ k, by Lemma

2.2.4, the torsion of the canonical connection vanishes. Hence, for a symmetric space G/K, the canonical

connection is the Levi Civita connection of any G-invariant metric. Furthermore, the flatness equations

decompose as 
F∇c +

1

2
[ω, ω] = 0 k− part

d∇
c

ω = 0 m− part
(2.2.2)

2.2.2 Reductions of structure group

Let M be a manifold, G be a semisimple Lie group and i : H→G be a subgroup so that g = h ⊕ m is AdH

invariant. An important example of this is when M is a closed surface, and G is a noncompact semisimple

Lie group (for example SL(n,R) or SL(n,C)) and H is the maximal compact subgroup of G (for example

SO(n) ⊂ SL(n,R) or SU(n) ⊂ SL(n,C)). Given a be a principal G-bundle EG→M , and a manifold X with

a G-action, denote the associated fiber bundle by EG[X] = EG ×G X.

Definition 2.2.7. A reduction of structure of E from G to H is a principal H-subbundle EH ↪→ EG so that

EH[G] ∼= EG.
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Reductions of structure are in one to one correspondence with sections (we will always work in the smooth

category) of the associated G/H fiber bundle EG[G/H]→M. To see this, the following diagram is very helpful:

G H

EG

��

EG

��
M EG/H

πoo oo ∼= // EG[G/H] G/H

Given a section σ ∈ C∞(M ;EG[G/H]), we can pullback EG→EG/H to a H bundle σ∗EG over M which

naturally includes, H-equivariantly, in EG→M

H G H

σ∗EG
σ̃ //

%%

EG

��

EG

��
M

σ

77
EG[G/H]

πoo G/H

Remark 2.2.8. Sections of the associated bundle EG[G/H] are equivalent to G-equivariant maps PG→G/H.

It will be useful to sometimes think of reductions as G-equivariant maps.

Reductions and connections

Given a principal bundle G EG
π // M we get a exact sequence of tangent bundles

0 // ker(dπ) // TEG
dπ // TM // 0

the bundle ker(dπ) is the vertical bundle VG→EG.

Recall that a connection on a principal bundle is given by a 1-form B ∈ Ω1(EG, g) satisfying:

1. (Vertical) For all X ∈ g let XP be the vector field determined by the G action, then B(XP ) = X.

2. (Equivariance) If Rg : EG→EG is the diffeomorphism of EG given by the right action of G then we require

(R∗gB)(Y ) = Adg−1B(Y ) for all g ∈ G and Y ∈ C∞(EG;TEG).

Such a B defines an equivariant projection TEG→VG and thus gives an equivariant splitting TEG
∼=

VG ⊕ ker(B), with ker(B) ∼= TM. The subbundle ker(B) is called the horizontal distribution associated to

B and will be denoted HB .
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Recall that a section of Ω∗(EG, g) is called horizontal if it vanishes on vertical vector fields. Equivariant

horizontal sections of a principal bundle are called basic and are in one-to-one correspondence with sections

of EG[g]→M , i.e. Ω∗(EG, g)basic ∼= Ω∗(M,EG[g]).

Now fix a connection B ∈ Ω1(EG, g), and consider the following diagram

(EG, B)

%%��
M EG/H

πoo

If prh : g→h denotes the projection then set Bh = prh ◦ B. Since Bh ∈ Ω1(EG, h) is H equivariant and

Bh(XP ) = X for all X ∈ h, the 1-form Bh defines connection on EG→EG/H.

We will write

B = Bh + µ

where µ ∈ Ω1(EG,m)H. It is straight forward to check that µ is a basic form and hence descends to

µ̂ ∈ Ω1(EG/H, EG ×H m).

Note that the vertical bundle ker(dπ) ⊂ TEG/H is isomorphic to EG ×H
m so µ̂ defines a projection

µ̂ : TEG/H→VG/H.

Given a reduction of structure σ : M→EG/H we get a principal H bundle

(σ∗EG, σ̃
∗B)

σ̃ //

''

(EG, B)

�� %%
M

σ

77
EG/Hoo

Definition 2.2.9. Given a reduction of structure σ : M→EG/H we define the vertical derivative of σ, with

respect to the connection B, to be D
B
σ = µ̂ ◦ dσ. That is

TM
dσ //

D
B
σ

77
TEG/H

µ̂ // VG/H ∼= EG ×H
m

Here D
B
σ ∈ C∞(M ;T ∗M ⊗ σ∗VG/H) = Ω1(M,σ∗EG ×H

m).
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We can pull back B by σ̃ to σ̃∗B ∈ Ω1(σ∗EG, g), since the map σ̃ is H equivariant, we get the decompo-

sition

σ̃∗B = σ̃∗Bh + σ̃∗µ.

We will use the following notation

Aσ = σ̃∗Bh ∈ Ω1(σ̃∗EG, h) and ψσ = σ̃∗µ ∈ Ω1(σ̃∗EG,m) .

As before, Aσ defines a connection on σ∗EG and ψσ is a basic 1-form valued in m which we identify with

a section ψ̂
σ
∈ Ω1(M,σ∗EG ×H

m).

Proposition 2.2.10. With the set up above, ψ̂σ can be identified with vertical derivative D
B
σ.

Proof. With the above set up, the proof is straight forward. We defined ψ
σ

by ψ
σ

= σ̃∗µ and saw that

both µ and ψ were basic forms so descend to sections µ̂ and ψ̂ of the appropriate bundles. We have that

ψ̂σ = σ∗µ̂, thus for a vector field X ∈ C∞(M ;TM)

ψ̂
σ
(X) = (σ∗µ̂)(X) = µ̂(dσ(X)) = D

B
(σ)(X)

by definition of the vertical derivative.
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Chapter 3

Background on nonabelian Hodge
correspondence

3.1 Character varieties

A good reference for the basics of character varieties discussed below is [Gol84]. Let G be a real reductive

Lie group and M be a smooth manifold with fundamental group π1 acting on the universal cover M̃ by deck

transformations.

Definition 3.1.1. The G-representation variety of π1 is the space of group homomorphisms Hom(π1,G).

The space Hom(π1,G) is a real analytic variety which is algebraic if G is algebraic. The groups Aut(π1)

and G both act on Hom(π1,G) by pre and post composition: if (f, g) ∈ Aut(π1)×G and ρ ∈ Hom(π1,G) then

for all γ ∈ π1

((f, g) · ρ)(γ) = Adg(ρ(f(γ))).

Denote the composition Ad ◦ ρ : π1→G→Aut(g) by Adρ. The tangent space to a representation ρ ∈

Hom(π1,G) is the set of Adρ-twisted group homomorphisms π1→Aut(g) or equivalently the space Z1
ρ(π1, g)

of twisted 1-cocycles valued in g,

TρHom(π1,G) = {u : π1→Aut(g)|u(γδ) = u(γ) +Adρ(γ) ◦ u(δ)} = Z1
ρ(π1, g).

This can be seen by differentiating at t = 0 any family ρt = exp(tu + O(t2)) · ρ, the fact that ρ is group

homomorphism implies the cocycle condition. When M is a closed surface of genus g we have the following

result.

Proposition 3.1.2. ([Gol84]) Let S be a closed surface of genus g and ρ ∈ Hom(π1,G). If Z(ρ) is the

centralizer of ρ(π1) then

dim(Z1
ρ(π1, g)) = (2g − 1)dim(G) + dim(Z(ρ)). (3.1.1)

In particular, TρHom(π1,G) is of minimal dimension if and only if dim(Z(ρ)/Z(G)) = 0.
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One is usually only interested in representations up to the conjugation action of G. To calculate the

tangent space of the orbit Gρ through ρ, note that any family ρt in the or bit Gρ is defined by ρt = g−1
t ρgt

for some family gt in G. Writing gt = exp(tu0 +O(t2)) and differentiating implies the cocycle u corresponding

to ρt satisfies u(γ) = Adρ(γu0 − u0). In other words, u is the coboundary ∂u0, and the space B1
ρ(π1, g) of

coboundaries is isomorphic to the vector space g/z(ρ) where z(ρ) is the Lie algebra of Z(ρ). Thus,

dim(Gρ) = dim(B1
ρ(π, g)) = dim(G)− dim(Z(ρ)). (3.1.2)

Definition 3.1.3. A representation ρ ∈ Hom(π1,G) is completely reducible if the composition AdG ◦ ρ :

π1→GL(g) is completely reducible.

Definition 3.1.4. Denote the set of completely reducible representations by Hom+(π1,G). The G-character

variety X (π1,G) is defined by Hom+(π1,G)/G. This is equivalent to taking the GIT-quotient: X (π1,G) =

Hom(π1,G)//G when G is a reductive complex algebraic group.

To simplify notation, we will usually denote a conjugacy class [ρ] ∈ X (π1,G) by ρ. By the above discussion,

the tangent space to ρ ∈ X (π1,G) is defined by the twisted cohomology group H1
ρ(π1, g) :

TρX (π1, g) = Z1
ρ(π1, g)/B1

ρ(π1, g) = H1
ρ(π1, g). (3.1.3)

So the dimension of the tangent space TρX (π1, g) is |χ(S)| · dim(G) + 2dim(Z(ρ)).

Definition 3.1.5. A point X (π1,G) is called infinitesimally simple if the tangent space TρX (π1,G) has

minimal dimension. By equations (3.1.2) and (3.1.1) this is equivalent to dim(Z(ρ)/Z(G)) = 0.

Proposition 3.1.6. A point ρ ∈ X (π1,G) is smooth if and only if Z(ρ) = Z(G), in particular, such a ρ is

irreducible and infinitesimally simple.

The group Aut(π1) acts on the character variety as above. An inner automorphisms is defined by

conjugating by a fixed element δ ∈ π1. If ρ ∈ X (π1,G) then for all γ ∈ π1 :

δ · ρ(γ) = ρ(δ · γ · δ−1) = ρ(δ)ρ(γ)ρ(δ)−1.

Since ρ is conjugate to δ · ρ, they define the same point in X (π1,G). This gives rise to a well defined action

of the outer automorphisms Out(π1) = Aut(π1)/Inn(π1) on the character variety X (π1,G).

Remark 3.1.7. The mapping class group Mod(M) of M is the group of isotopy classes of orientation-

preserving homeomorphisms of M. There is always a map Mod(M)→Out(π1), so the mapping class group
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acts on the character variety. We will mostly be interested in the case where the manifold M is a closed

surface of genus g ≥ 2 which we will denote by S. In this case the group Mod(S) are isomorphic to an index

two subgroup of Out(π)1) by the Dehn-Nielsen-Baer Theorem (see Chapter 8 of [FM12]).

Example 3.1.8. For a closed surface S define the set of Fuchsian representations by

Fuch(S) = {ρ ∈ X (π1,PSL(2,R)) | ρ is discrete and faithful}.

Using the isomorphism of PSL(2,R) with the orientation preserving isometries of the hyperbolic plane H2,

if ρ ∈ Fuch(S) then S̃/ρ = H2/ρ(π1) = S and the hyperbolic metric descends to the surface S. In fact,

Fuch(S) defines two connected component of X (π1,PSL(2,R)) [Gol88] and is homeomorphic to two copies

of Teichmüller space Teich(S) of isotopy classes of marked hyperbolic structures on S. The two components

come from a choice of orientation on S. In particular, by a classical result of Fricke, the mapping class group

Mod(S) acts properly discontinuously on Fuch(S).

Recall from Proposition 2.1.38, Kostant’s principal three dimensional subalgebra defines an irreducible

representations of PSL(2,R) into any split real form G which we denote by i : PSL(2,R) ↪→ G.

Definition 3.1.9. Let G be a split real form. The Hitchin component Hit(G) ⊂ X (π1,G) is the connected

component containing i(Fuch(S)).

The Hitchin component is a natural object to consider since it is the deformation space of Fuch(S).

However, to understand this component, we will need Higgs bundles.

3.1.1 Flat connections and the Riemann-Hilbert correspondence

The universal cover M̃ of a manifold defines a principal π1-bundle over M.

Definition 3.1.10. A principal G-bundle E→M is flat if the transition functions can be chosen to be locally

constant.

In particular, M̃→M is a flat bundle since π1 is discrete. Given a representation ρ ∈ Hom(π1,G) the

associated bundle M̃×ρG−→M inherits a flat structure from M̃→M. Furthermore, if ρ′ = gρg−1 is conjugate

to ρ then the flat bundles associated to ρ and ρ′ are isomorphic. Thus, there is a map from the G-character

variety to the set of flat structures on G-bundles over M

X (π1,G) // {flat G-structures on M}/Iso

[ρ]
� // [M̃ ×ρ G]

.
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The Riemann-Hilbert correspondence asserts that the above map is an isomorphism onto the space of

reductive flat connections. Establishing this correspondence involves the standard exercise of showing that a

principal G-bundle E is flat if and only if there exists a flat connection, i.e. a connection 1-form B ∈ Ω1(E, g)

with curvature FB = 0.

Any connection B on a principal G-bundle defines a parallel transport operator form the path groupoid to

the category of G torsors TransB : Π(M)→G-tors. The map TransB descends to the fundamental groupoid

Π1(M) if and only if the connection B is flat. Restricting to the space of smooth based loops Ω∗(M) defines

a holonomy map

HolB : Ω∗(M)→G.

Denote the space of flat connections on G bundles over M by B(M). Holonomy defines a map:

Hol : B(M)−→Hom(π1,G).

However, the space of connections is an infinite dimensional affine space modeled on the vector space

Ω1(E, g)G of equivariant 1-forms. Fortunately, the natural group of isomorphism is also infinite dimensional.

Definition 3.1.11. Let E→M be a principal G-bundle, then the gauge group GG is the group of smooth

bundle isomorphisms.

As with the character variety, the action of GG on the space of flat connections does not in general admit

a Hausdorff quotient. However, if we restrict to a subset of flat connections a Hausdorff quotient can be

defined.

Definition 3.1.12. A flat connection B is called reductive if the holonomy map HolB : π1→G is a completely

reducible representation in the sense of Definition 3.1.3.

Theorem 3.1.13. (Riemann-Hilbert correspondence) The space of isomorphism classes of reductive flat

G-connections Bred(M)/GG is homeomorphic to the character variety X (π1,G). Furthermore the homeomor-

phism is analytic

Remark 3.1.14. When G is algebraic, both Bred(M)/GG and X (π1,G) are algebraic varieties. However,

since the holonomy map involves exponentiating, the homeomorphism in the Riemann-Hilbert correspon-

dence is not algebraic.
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3.2 Harmonic maps and Corlette’s Theorem

3.2.1 Harmonic map basics

A good source for this subsection is Chapter 8 of [Jos08]. Let (M, g) and (N,h) be Riemannian manifolds

with M compact, denote their Levi-Civita connections by ∇g

and ∇h

. They are given by Kozul’s formula

2g(∇
g

XY, Z) = X(g(Y, Z) + Y (g(Z,X))− Z(g(X,Y )) + g([X,Y ], Z)− g([Y,Z], X)− g([X,Z], Y ).

With respect to coordinates {x1, . . . , xm} on M and {y1, . . . , yn} on N, we have

∇g

∂
∂xj

∂
∂xi

= Γkij
∂
∂xk

and ∇h

∂
∂yβ

∂
∂yα

= Γγαβ
∂
∂yγ

where

Γkij = 1
2g
kl( ∂

∂xi
gjl + ∂

∂xj
gil − ∂

∂xl
gij) and Γγαβ = 1

2h
γδ( ∂

∂yα
hβδ + ∂

∂yβ
hαδ − ∂

∂yδ
hαβ)

Let f : M→N be a smooth map, the differential df is a section of the bundle T ∗M ⊗ f∗TN. The bundle

T ∗M ⊗ f∗TN has metric g∗ ⊗ f∗h and connection ∇g∗ ⊗ f∗∇h. The Christoffel symbols for ∇g∗

are given

by

∇
g∗

∂
∂xj

dxi = Γ̃kijdxk = −Γjikdxk

We can view df in a slightly manor, namely df ∈ Ω1(M,f∗TN). The covariant derivative f∗∇h

induces an

exterior differential operator

df
∗∇

h

: Ω∗(M,f∗TN)→Ω∗+1(M,f∗TN)

here df
∗∇

h

is the skew symmetrization of ∇Λ•g∗ ⊗ f∗∇h

.

Definition 3.2.1. Let (M, g) and (N,h) be Riemannian manifolds with M compact, the energy of a C1

map f : (M, g)→(N,h) is given by

E(f) =
1

2

∫
M

〈df, df〉
T∗M⊗f∗TNdV olM

Locally we have |df(x)|2 = 1
2g
ijhαβ(f(x))∂f

α(x)
∂xi

∂fβ(x)
∂xj .

Definition 3.2.2. A C1 map f : (M, g)→(N,h) is called harmonic if it is a critical point of the energy

function E .
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Euler Lagrange equations for the energy

We want to find the Euler Lagrange Equations for harmonic maps. To do this, we start with a map

f : M→N and consider a variation ξ of f . By a variation we mean a vector field along f , that is, a section

ξ ∈ Γ(M,f∗TN). Given ξ ∈ Γ(M,f∗TN) consider the one parameter family

Fξ(x, t) = expf(x)(ξ(x)t) : M × [−ε, ε]→TN

The critical points of E are the maps f so that, for all ξ, ∂
∂t (E(Fξ)) = 0.

Theorem 3.2.3. The Euler Lagrange Equations for the energy functional are (df
∗∇

h

)∗(df) = 0 or equiva-

lently, Trg(∇
g∗ ⊗ f∗∇h

)(df) = 0.

Locally the Euler Lagrange equations for a map f : (M, g)→(N,h) are given by

trace(∇df) = gij
∂2f

∂xi∂xj
− gijΓijk

∂fα

∂xk
+ gijΓαβγ

∂fβ

∂xi

∂fγ

∂xj

The first part is the Laplace Beltrami operator

∆Mf =
1√
det(g)

∂

∂xi
(
√
det(g)gij

∂fα

∂xj
) = gij

∂2f

∂xi∂xj
− gijΓijk

∂fα

∂xk

So the Euler Lagrange equations become ∆Mf + gijΓαβγ
∂fβ

∂xi

∂fγ

∂xj
= 0, or equivalently

1√
det(g)

∂

∂xi
(
√
det(g)gij

∂fα

∂xj
) + gijΓαβγ(f(x))

∂fβ

∂xi

∂fγ

xj
= 0

Remark 3.2.4. Since the Cristoffel symbols for R with the Euclidean metric are zero, we see that a function

f : (M, g)→R is harmonic if and only if ∆Mf = 0; recovering the standard notion.

Harmonic maps from a Riemann Surface

For maps with a closed surface domain, the harmonic map equations simplify and only depend on the

conformal class of the domain metric.

Definition 3.2.5. Let Σ be a Riemann surface, a Riemannian metric g on Σ is called conformal if, in local

coordinates, it can be written as ρ2(z)dz ⊗ dz̄ for ρ a positive real valued function:

g( ∂∂z ,
∂
∂z ) = g( ∂∂z̄ ,

∂
∂z̄ ) = 0 and g( ∂∂z ,

∂
∂z̄ ) = ρ2(z)
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In real coordinates z = x+ iy this means

g( ∂
∂x ,

∂
∂x ) = g( ∂∂y ,

∂
∂y ) = ρ2(z) and g( ∂

∂x ,
∂
∂y ) = 0 .

Form now on, (Σ, g) will be a Riemann surface with a conformal metric.

Definition 3.2.6. A C1 map f : (Σ, g)→(N,h) is called conformal if h(∂f∂z ,
∂f
∂z ) = 0.

Proposition 3.2.7. The energy of a map f : Σ→(N,h) is conformally invariant.

Proof. The energy of f is given by

E(f) =
1

2

∫
Σ

〈df, df〉
T∗Σ⊗f∗TNdV olΣ

writing the integrand locally and remembering the metric on T ∗Σ has conformal factor 1
ρ we have

〈df, df〉
T∗M⊗f∗TNdV olM =

4

ρ2(x)
hαβ(

∂fα

∂z

∂fβ

∂z̄
)

√
−1

2
ρ2(z)dz ∧ dz̄

Thus the energy is given by the conformally invariant expression:

E(f) =
√
−1

∫
Σ

hαβ
∂fα

∂z

∂fβ

∂z̄
dz ∧ dz̄

Lemma 3.2.8. The Laplace-Beltrami operator for (Σ, g) is given by ∆ =
4

ρ2

∂2

∂z∂z̄
.

Proof. We compute, the metric is given by

(
ρ2 0

0 ρ2

)

∆ =
1√
det(g)

∂

∂xi
(
√
det(g)gij

∂

∂xj
) =

1

ρ2
(

(
∂
∂x

∂
∂y

)
(ρ2

(
ρ−2 0

0 ρ−2

)
)

 ∂
∂x

∂
∂y

)

=
1

ρ2
(
∂2

∂x2
+

∂2

∂y2
) =

4

ρ2

∂2

∂z∂z̄

With this we have the following form of the harmonic map equations
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Lemma 3.2.9. The harmonic map equations for f : (Σ, g)→(N,h) are (d∇
f∗h

)0,1d1,0f = 0 locally the

harmonic map equations are

(d∇
f∗h

(
∂fα

∂z
dz))(

∂

∂z̄
) = −∂

2fα

∂z∂z̄
dz ∧ dz̄ − Γαβγ

∂fβ

∂z

∂fγ

∂z̄
dz ∧ dz̄ = 0

Proof. The harmonic map equations are ∆f+gijΓαβγ
∂fβ

∂xi

∂fγ

∂xj
= 0. By the previous lemma and after converting

everything to complex coordinates we may rewrite them as:

4

ρ2
(
∂2fα

∂z∂z̄
+ Γαβγ

∂fβ

∂z

∂fγ

∂z̄
) = 0

Corollary 3.2.10. The harmonic map equations for maps (Σ, g)→(N,h) only depend on the conformal of

Σ and not on the actual metric g.

The Hopf differential and Minimal surfaces

Definition 3.2.11. The Hopf differential qf of a map f : (Σ, g)→(N,h) is the quadratic differential qf =

(f∗h)2,0 ∈ Ω0(Σ,K2), in real coordinates z = x+ iy the Hopf differential is given by

qf = h

(
∂f

∂x
,
∂f

∂x

)
dz2 − h

(
∂f

∂y
,
∂f

∂y

)
dz2 − 2ih

(
∂f

∂x
,
∂f

∂y

)
dz2 (3.2.1)

Lemma 3.2.12. If f : (Σ, g)→(N,h) is harmonic then the Hopf differential qf is holomorphic.

Proof. We calculate ∂̄qf . By Lemma 3.2.9, locally d1,0f = ∂f
∂z

∂̄qf = ∂̄h

(
∂f

∂z
,
∂f

∂z

)
dz2 = 2h

(
(∇f

∗TN )0,1 ∂f

∂z
,
∂f

∂z

)
dz2 = 0.

Remark 3.2.13. Since any conformal metric on Σ has tensor type dz ⊗ dz̄, the Hopf differential measures

the failure of a harmonic map to be conformal. A harmonic map f is weakly conformal (i.e. conformal

away from singularities) if and only if the Hopf differential qf vanishes. This is equivalent to f being a

branched minimal immersion [SU82, SY79]. From equation (3.2.1) it is clear that the differential df of a

weakly conformal map is always of rank 2 or 0. Thus, if f is a weakly conformal map with nowhere vanishing

differential, then f is a conformal immersion, or equivalently, a minimal immersion.
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Example 3.2.14. Fix a Riemann surface structure Σ on S. Recall from example 3.1.8 that the Teichmüller

space Teich(S) of hyperbolic metrics on S is equivalent to the set of Fuchsian representations. By classical

results of Eels-Sampson [ES64], for each hyperbolic surface (S, g) ∈ Teich(S), there is a unique harmonic

map fg : Σ→(S, g) which is isotopic to the identity. The Hopf differential of fg gives a map

Teich(S) // H0(K2)

(S, g) � // (f∗g g)(2,0)

In [Wol89], Wolf showed that, for each Riemann surface structure Σ, this map gives a diffeomorphism of

Teich(S) ∼=Σ H0(K2) using harmonic map techniques.

3.2.2 Corlette’s Theorem

Given a flat G-bundle, a metric is defined by a reduction of structure group from G to the maximal compact

subgroup H ⊂ G. Since there is a homotopy equivalence between G and its maximal compact subgroup H,

such reductions of structure always exist. Unless the corresponding representation has Zariski closure in H,

this reduction will not be a flat bundle.

As discussed above, if E→M is a principal G-bundle then a reduction of structure group to H is defined by

an G-equivariant map E→G/H. If E is flat than it arises via a representation ρ ∈ Hom(π1,G) and extension

of structure group from the principal π1-bundle M̃→M. Thus, for a flat bundle, a reduction of structure is

equivalent to a ρ-equivariant map from the universal cover to symmetric space

σρ : M̃−→G/H.

Recall from 2.2.4 and Example 2.2.6, in terms of the canonical connection and the Maurer-Cartan form, flat

differentiation on the trivial [g]→G/H is given by d = ∇c + ω. Pulling back the H bundle G→G/H and the

trivial bundle [g]→G/H by σρ gives a principal H-bundle σ∗ρG and an m-bundle σ∗ρ[m] over M̃. Moreover,

pulling back the canonical connection and the Maurer-Cartan form defines a connection ∇̃A = σ∗ρ∇c on

σ∗ρG and a form ψ̃ ∈ Ω1(M̃, σ∗ρ[m]) which descend to an H-bundle EH→M with connection ∇A and ψ ∈

Ω1(M,EH[m]) on M. These objects satisfy the flatness equations

FA + 1
2 [ψ,ψ] = 0 and d∇Aψ = 0. (3.2.2)

on the Lie algebra bundle EH[g]→M.
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Remark 3.2.15. By definition, ψ̃ = σ∗ρω : T Σ̃→[m] is defined by T Σ̃
dσρ // TG/H

ω // [m] . Thus, the

tensor ψ is identified with the derivative of σρ.

Recall that the canonical connection on G→G/H induces the Levi-Civita connection ∇c on [m] = TG/H.

The equivariant map σρ is a harmonic map if and only if (d∇A)∗ψ = 0. For a harmonic equivariant map σρ

the flatness equations (3.2.2) satisfy an extra equation

FA + 1
2 [ψ,ψ] = 0 , d∇Aψ and (d∇A)∗ψ = 0 (3.2.3)

Now let M be a closed surface of genus at least 2 and fix a Riemann surface structure Σ on M. If we

complexify everything we obtain a metric connection ∇A on HC-bundle EHC (which is holomorphic with

respect to ∇(0,1)
A ) and ψ = ψ(1,0) ⊕ ψ(0,1) ∈ Ω(1,0)(Σ, EHC [mC])⊕ Ω(0,1)(Σ, EHC [mC]) which satisfy:

FA + [ψ(1,0), ψ(0,1)] = 0 , d∇A,(0,1)ψ(1,0) = 0 and d∇A,(1,0)ψ(0,1) = 0. (3.2.4)

This leads to Corlette’s Theorem:

Theorem 3.2.16. (Corlette [Cor88]) Let M be compact and ρ ∈ X (π1(M),G) then for each Riemannian

metric g on M , there exists a ρ-equivariant map hρ : Σ̃→G/H which is harmonic. Moreover, hρ is unique

up to the centralizer of ρ.

Remark 3.2.17. We will call such an equivariant harmonic map a harmonic metric.

If we restrict M = S a closed surface of genus at least 2, then we have seen that harmonicity depends

only on a conformal class of a metric. Thus, fix a Riemann surface structure Σ on S, then a ρ-equivariant

map σρ is a harmonic map if and only if dσ
(1,0)
ρ is holomorphic, that is d∇

c,(0,1)(d(1,0)σρ) = 0. By Remark

3.2.15, σρ is harmonic if and only if (d∇A)(0,1)ψ(1,0) = 0. Thus equations (3.2.4) are given by

FA + [ψ(1,0), ψ(0,1)] = 0 and (d∇A)(0,1)ψ(1,0) = 0 (3.2.5)

Remark 3.2.18. If σρ : Σ̃→G/H is harmonic, then, since the metric on G/H is induced from the Killing

form on g, the Hopf differential of σρ is a constant multiple of Tr(ad(ψ1,0)⊗ ad(ψ1,0)).
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3.3 Higgs bundles

Higgs bundles over a Riemann surface were introduced by Hitchin in [Hit87a] and studied in detail for the

groups SL(2,C) and SL(2,R). Simpson [Sim92] studied Higgs bundles for general G over compact Kähler

manifolds. For our purposes, we will focus on G-Higgs bundles over compact Riemann surfaces.

Let Σ be a closed Riemann surface of genus g ≥ 2 and K = T ∗,(1,0)Σ be the canonical bundle. Let G

be a real reductive Lie group with maximal compact H and fix a Cartan involution σ : g→g with Cartan

decomposition g = h⊕m.

Definition 3.3.1. A G-Higgs bundle over Σ is a pair (E , ϕ) where

• E→Σ is a holomorphic principal HC-bundle

• ϕ ∈ H0(Σ, E [mC]⊗K) (the Higgs field)

Remark 3.3.2. By Corlette’s Theorem, for every representation ρ ∈ X (π1(S),G) there is a corresponding

Higgs bundle. The construction works as follows: Let hρ : Σ̃→G/H be a harmonic metric, the Higgs bundle

associated to ρ is given by (h∗ρG[HC], (h∗ρωMC)1,0). Here we are pulling back the H bundle (with total space G)

and extending the structure group to obtain a holomorphic HC-bundle, and pulling back the complexification

of the Maurer-Cartan form and taking its (1, 0) part to obtain a holomorphic section of (h∗ρG[mC])⊗K.

Remark 3.3.3. Under the correspondence between harmonic metrics and Higgs bundles, the Higgs field φ

is identified with d(1,0)hρ. In particular, the Hopf differential of hρ is a constant multiple of the holomorphic

quadratic differential Tr(φ2).

We start with some examples:

Example 3.3.4. G-compact: When the group is compact, then hC = gC and mC = {0}. In this case, a

G-Higgs bundle is just a holomorphic GC bundle over Σ.

Example 3.3.5. G-complex: If G is a complex Lie group, then hC = g and mC = g. Thus, a G-Higgs bundle

is given by a holomorphic G-bundle E over Σ together with a holomorphic section of the adjoint bundle

twisted by K, ϕ ∈ H0(Σ, E [g] ⊗ K). When G = SL(n,C) this data is equivalent to a holomorphic vector

bundle E of rank n with fixed determinant together with a traceless holomorphic section of End(E)⊗K.

Example 3.3.6. G = SL(n,R) : For the group SL(n,R), the maximal compact subgroup is SO(n) ⊂ SL(n,R).

The Cartan decomposition of sl(n,R) is given by so(n)⊕sym0(Rn), thus mC is the space of complex traceless

symmetric n×n matrices sym0(Cn). An SL(n,R)-Higgs bundle consists of a holomorphic SO(n,C)-bundle E
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over Σ together with a holomorphic section of ϕ ∈ H0(E [sym0(Cn)]⊗K). Using the standard representation

of SO(n,C) on Cn, this data is equivalent to a triple (E , Q, φ) where:

• (E , Q) is a holomorphic bundle rank n with det(E) = O and an orthogonal structure, which we will

think of as a symmetric holomorphic isomorphism Q : E→E∗.

• φ is a traceless holomorphic section φ of End(E) that is symmetric, i.e. QφTQ = φ.

The associated SL(n,C) Higgs bundle is given by forgetting the orthogonal structure (E , φ).

Example 3.3.7. G = Sp(2n,R) : The maximal compact subgroup of Sp(2n,R) is H ∼= U(n), and, if Sym2(V )

is the second symmetric tensor product of the standard representation of GL(n,C), the complexification of

the Cartan decomposition is given by

sp(2n,C) ∼= hC ⊕mC ∼= gl(n,C)⊕ (Sym2(V )⊕ Sym2(V ∗)).

Thus a Sp(2n,R) Higgs bundle is given a holomorphic GL(n,C)-bundle E together with a holomorphic section

ϕ ∈ H0(Σ, E [Sym2(V )⊕ Sym2(V ∗])⊗K). This data is equivalent to a triple (V, β, γ) where:

• V is a holomorphic rank n vector bundle

• β ∈ H0(Σ, Sym2(V∗)⊗K) and γ ∈ H0(Σ, Sym2(V)⊗K)

The associated SL(2n,C) bundle is given by

(E , φ) =

(
V ⊕ V∗,

(
0 β
γ 0

))
.

Example 3.3.8. G = SO0(p, q) : The maximal compact of SO0(p, q) is H = SO(p)×SO(q). If V and W denote

the standard representations of SO(p,C) and SO(q,C) respectively then complexified Cartan decomposition

of so(p, q) is given by

so(p+ q,C) ∼= hC ⊕mC ∼= (so(p,C)⊕ so(q,C))⊕ (V ∗ ⊗W ).

Thus a SO(p, q) Higgs bundle is given a holomorphic SO(p,C)×SO(q,C)-bundle E together with a holomor-

phic section ϕ ∈ H0(Σ, E [(V ∗ ⊗W )]⊗K). This data is equivalent to the data (V, QV ,W, QW , η) where:

• (V, QV) and (W, QW) are holomorphic orthogonal bundles of rank p and q respectively.

• η ∈ H0(Σ,V∗ ⊗W ⊗K).
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If η∗ :W∗→V∗ ⊗K is the induced on the duals, then define ηT = (QV ⊗ IdK) ◦ η∗ ◦QW :W→V ⊗K :

W
QW // W∗

η∗ // V∗ ⊗K
QV⊗IdK // V ⊗K .

The SL(p+ q,C)-Higgs bundle associated to the data (V, QV ,W, QW , η) is given by

(E , φ) =

(
V ⊕W,

(
0 ηT

η 0

))
.

We will sometimes need the more general notion of a L-twisted Higgs pair.

Definition 3.3.9. Let HC be a complex reductive Lie group and ρ : HC→GL(V ) be a linear representation. If

L is holomorphic line bundle then an L-twisted Higgs pair over Σ is a pair (E , ϕ) where E→Σ is a holomorphic

principal HC bundle and ϕ is a holomorphic section of (E ×ρ V )⊗ L.

Remark 3.3.10. We will only consider K-twisted Higgs pairs. Note that if V = mC and the representation

ρ : HC→GL(gC) is the restriction of the adjoint action of GC on gC then we recover the definition of a Higgs

bundle.

3.3.1 Stability and moduli spaces

The moduli space of G-Higgs bundles consists of isomorphism classes of semistable G-Higgs bundles. The

notion of stability for SL(n,C)-Higgs bundles is a straight forward slope condition on invariant subbundles,

however, for general G it is significantly more subtle. We start with the definition of the degree.

Definition 3.3.11. Let P be a complex Lie group, E→Σ be a holomorphic P bundle, and let χ be a character

of P. Define the degree deg(E , χ) to be the degree of the associated C∗ bundle E ×χ C∗

deg(E , χ) = deg(E ×χ C∗).

Remark 3.3.12. If we have a character of χ : p→C of the Lie algebra such that exp(nχ) : P→C∗ defines a

character of the group, then we can define the degree of E by normalizing the degree of the associated line

bundle.

deg(E , exp(nχ)) =
1

n
deg(E ×χ C).

For P ⊂ HC a parabolic subgroup and χ an antidominant character of p, let sχ ∈ p be the element

corresponding to χ ∈ p∗. Define the subset (m−C )χ ⊂ mC to be the set of v ∈ mC so that Adetsχ v is bounded

as t→∞ and define (m0
C)χ ⊂ mC to be the set of v ∈ mC so that Adetsχ v = v.
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Given a P bundle EP and an anti dominant character χ, denote the associated (m−C )χ-bundle by Eχ[m−C ].

If L ⊂ P is the Levi factor of P and F is an L-bundle, denote the corresponding (m0
C)χ bundle by by Fχ[m0

C].

To form a moduli space, we need to discuss the appropriate notion of stability, for this general set up,

the reference is [GGMiR09].

Definition 3.3.13. A G-Higgs bundle (E , ϕ) is:

• semistable if, for any parabolic subgroup P ⊂ HC, any strictly antidominant character χ of p and any

holomorphic reduction σ ∈ H0(E(HC/P)) such that ϕ ∈ H0(σ∗Eχ[m−C ]⊗K), we have deg(E)(σ, χ) ≤ 0.

• stable if the inequality is always strict, deg(E)(σ, χ) < 0.

• polystable if it is semistable and for any parabolic subgroup P ⊂ HC, any strictly antidominant character

χ of p and any holomorphic reduction σ ∈ H0(E(HC/P)) such that ϕ ∈ H0(σ∗Eχ[m−C ] ⊗ K) with

deg(E)(σ, χ) = 0, there is a further holomorphic reduction of structure group σL of the P-bundle σ∗EHC

to L. Furthermore, with respect to this reduction, ϕ ∈ H0(σ∗LEχ[m0
C]⊗K).

Recall that the HC-gauge group GHC is the group of smooth bundle automorphisms of a HC bundle EHC .

A gauge transformation g ∈ GHC acts on a Higgs field φ by g · φ = Adgφ where Adg denotes the restriction

of the adjoint action of g on E [hC ⊕mC]⊗K.

Definition 3.3.14. The moduli space of G-Higgs bundlesM(G) is defined to the set of isomorphism classes

of polystable G-Higgs bundles.

Remark 3.3.15. The set M(G) described above can be given the structure of a quasi-projective complex

variety as in [Hit87a, Sim92]. When the group G is complex semisimple the moduli space M(G) has a

hyperKahler structure [Hit87a, Sim92].

For most cases we will consider, SL(n,C)-stability will be sufficient.

Definition 3.3.16. (SL(n,C)-stability) An SL(n,C)-Higgs bundle (E, φ) is semistable if all φ-invariant

subbundles F ⊂ E satisfy deg(F ) ≤ 0 and stable all φ invariant subbundles F satisfy deg(F ) < 0. A

semistable Higgs bundle (E, φ) is polystable if it decomposes as a direct sum of stable Higgs bundles (E, φ) =⊕
j

(Ej , φj).

Definition 3.3.17. Given a Higgs bundle (E , φ) define the automorphism group by

Aut(E , φ) = {g ∈ GHC |g · (E , φ) = (E , φ)}
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and the infinitesimal automorphism group by

aut(E , φ) = {s ∈ H0(E[hC])|adsφ = 0}

Define a Higgs bundle (E , φ) to be infinitesimally simple if

aut(E , φ) = H0(E[z(hC) ∩Ker(Ad : HC→mC)]).

Being infinitesimally simple is equivalent to the dimension of Aut(E , φ) being the same as Z(HC)∩Ker(Ad :

HC→mC).

Definition 3.3.18. A Higgs bundle (E , φ) is simple if Z(E , φ) = Z(HC) ∩Ker(Ad : HC→mC).

Proposition 3.3.19. (See section 3 of [GGMiR09]) If (E , φ) be a stable and simple G-Higgs bundle that is

stable as a GC Higgs bundle, then the isomorphism class of (E , φ) in M(G) is a smooth point.

3.3.2 Hitchin fibration and Hitchin component

For G a complex semisimple Lie group of rank `, let p1, · · · , p` be a basis of the G-invariant polynomials

C[g]G. If {mj} are the exponents of g then deg(pj) = mj + 1. Since the polynomials are AdG-invariant, they

can be evaluated on the Higgs field of a G-Higgs bundle (E , ϕ), and pj(ϕ) ∈ H0(Kmj+1).

Definition 3.3.20. The map H : M(G)−→
⊕̀
j=1

H0(Kmj+1) obtain by applying (p1, · · · , p`) is called the

Hitchin fibration. The space
⊕̀
j=1

H0(Kmj+1) is called the Hitchin base.

In [Hit87b], Hitchin proved that the map H is proper and has abelian varieties as generic fibers. More-

over, Hitchin proved that H : M(G)−→
⊕̀
j=1

H0(Kmj+1) defines a completely integrable system. While the

integrable system aspects of the Hitchin fibration are extremely important, they will not play a role in the

rest of the thesis.

In [Hit92], Hitchin showed that there is a section of the above fibration whose image naturally generalizes

the Teichmüller component of Example 3.3.21. The definition of this section relies on Kostant’s principal

three dimensional subalgebra and works as follows.

Example 3.3.21. Consider SL(2,R)-Higgs bundles given by (K
1
2 ⊕ K− 1

2 ,

(
0 q2

1 0

)
) where K

1
2 is a fixed

square root of K and q2 ∈ H0(K2) is a holomorphic quadratic differential. Up to scaling, there is only one

invariant polynomial for SL(2,C) given by p1(X) = 1
2Tr(X

2). Applying the invariant polynomial to φ above

gives p1(φ) = q2. This gives the Hitchin section for SL(2,C).
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Let g be a complex simple Lie algebra and s ⊂ g be the PTDS. Recall from (2.1.8) that the grading element

x of the PTDS gives the height Z-grading g =
m⊕̀

j=−m`
gj of g, here m` is the height of the highest root of g. The

inclusion x→g defines an inclusion of C = so(2,C) ⊂ hC ⊂ g, where hC is the complexification of the maximal

compact Lie algebra of the split real form of g. If G is the adjoint group of g and HC is the complexification

of the maximal compact of the split real form of G then we have an inclusion i : SO(2,C)→HC ⊂ G. Denote

the principal SO(2,C)-bundle from Example 3.3.21 by E , extending the structure group gives a holomorphic

HC bundle PHC = E ×i HC. Moreover, the g-bundle E ×i g decomposes in terms of the Z-grading defined by

x:

E ×i g =

m⊕̀
j=−m`

gj ⊗Kj (3.3.1)

It also decomposes into line bundles in terms of the irreducible representation
⊕̀
j=1

Vj of ad : s→gl(g) from

(2.1.10). Recall from section 2.1.3 that the irreducible representations Vj have dimension 2mj + 1 where

{mj} are the exponents of g. The highest weight vector ej of each Vj has height mj . If g = hC ⊕mC is the

complexified Cartan decomposition of the split real form, then ej ∈ mC by (2.1.11).

For (qm1+1, qm2+1, · · · , qm`+1) ∈
m⊕̀
j=1

H0(Kmj+1), define the Higgs field ϕ ⊂ H0(P ×i mC ⊗K) by

ϕ = ẽ1 +

m∑̀
j=1

ej ⊗ qmj+1 (3.3.2)

Recall that Kostant [Kos59] showed that there is a basis (p1, · · · , p`) of the invariant polynomials C[g]AdG

with the property that for all elements in g of the form ẽ1 +
m∑̀
j=1

yjej

pj(ẽ1 +

m∑̀
j=1

yjej) = yj .

Thus we obtain:

Proposition 3.3.22. The map sH :
m⊕̀
j=1

H0(Kmj+1)→M(G) given by

sH(qm1+1, · · · , qm`+1) = (E ×i G, ẽ1 +

m∑̀
j=1

ej ⊗ qmj+1)

is a section of the Hitchin fibration. Moreover, if G0 ⊂ G is the split real form then all Higgs bundles in the

image of sH are actually G0-Higgs bundles.

Using the above set up, Hitchin proved that the section sH is onto a connected component of G0 Higgs
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bundles.

Theorem 3.3.23. (Hitchin [Hit92]) Let G0 be a split real form of a simple complex Lie group. There exists

a connected component of M(G0) which is diffeomorphic to the Hitchin base
m⊕̀
j=1

H0(Kmj+1).

The Hitchin component will be the central focus of Chapter 5 and in Chapter 6 we will focus on certain

generalizations of the Hitchin component.

3.3.3 Hitchin equations

To go from an isomorphism class of polystable Higgs bundles to a representations, one must produce a

harmonic metric out of a Higgs bundle. This is the role of the Hitchin equations. Let (E , ϕ) be a G-Higgs

bundle. A reduction of structure group σ : Σ→E/H gives an H-bundle σ∗E ⊂ E and also a splitting of the

adjoint bundle E ×HC (hC ⊕ mC) = σ∗Ee ×H (h ⊕ ih ⊕ m ⊕ im). Moreover, if ϕ ∈ H0(Σ, [mC] ⊗ K) and a

compact real form τ is fixed on gC with στ giving the real form g, then the 1-form ϕ− τ(ϕ) satisfies:

τ(ϕ− τ(ϕ)) = −(ϕ− τ(ϕ)). (3.3.3)

Thus ϕ − τϕ takes values in σ∗E ×H m. Given a metric connection A, the connection A + ϕ − τϕ is a G-

connection on σ∗E ×H G. Moreover, −τ(ϕ) is the Hermitian adjoint of ϕ with respect to the metric induced

by the Killing form.

Given a holomorphic HC-bundle EHC and a reduction of structure EH ⊂ EHC (i.e. a metric), there is a

unique connection A (called the Chern connection) that is compatible with both the holomorphic structure

and the metric reduction. In other words, there is a unique connection A on EH such that the (0, 1) part of

A induces the holomorphic structure on EHC . For holomorphic vector bundles, this is classical, for instance

see [Kob87]. For the general set up see [MiR00].

Theorem 3.3.24. Let (E , ϕ) be a polystable G-Higgs bundle and fix a Cartan involution τ on gC, then there

exists a reduction of structure of E from HC to H which solves the following equations

FA + [ϕ,−τ(ϕ)] = 0 and ∇(0,1)
A ϕ = 0 (3.3.4)

where A is the Chern connection of the reduction. Moreover, if (E , ϕ) is stable, then the metric reduction σ

is unique.

Note that, by definition of the Chern connection, the equation ∇(0,1)
A ϕ = 0 just says ϕ is holomorphic.

48



This theorem was originally proven by Hitchin [Hit87a] for G = SL(2,C) and extended to all complex groups

by Simpson [Sim92]. The form stated above can be found in [BGPMiR03, GGMiR09].

Remark 3.3.25. From a solution to Hitchin’s equations we obtain a flat G-connection D = A+φ−τ(φ), thus

giving a map from the Higgs bundle moduli space to the G-character variety. Since the Hitchin equations are

the same as the interpretation of the harmonic metric equations in (3.2.5) with φ = ψ(1,0) and −τ(φ) = ψ(0,1),

the induced reduction of structure of the flat G-bundle given by σ can be interpreted as an equivariant

harmonic map hD : Σ̃→G/H. This gives an equivalence between harmonic metrics on flat G-bundles and

polystable G-Higgs bundles.

Theorem 3.3.24 completes the correspondence between the moduli space of G-Higgs bundles and the

G-character variety. In fact, the bijection M(G)←→ X (π1,G) defines a homeomorphism [Sim92].

Remark 3.3.26. For the group SL(n,C), Theorem 3.3.24 says that given a stable Higgs bundle (E, φ),

there exists a unique metric hermitian metric H (with Chern connection A) on E which solves the equation

FA + [φ, φ∗H ] = 0.

Example 3.3.27. Recall that Higgs bundles in the SL(2,R)-Hitchin component are given by a choice of

square root of K and a holomorphic quadratic differential q2 ∈ H0(K2). The corresponding SL(2,C)-Higgs

bundle is defined by

(E , φ) = (K
1
2 ⊕K− 1

2 ,

(
0 q2

1 0

)
).

A metric H on K
1
2 ⊕K− 1

2 which solves FA + [φ, φ∗] = 0 splits as H = h⊕ h−1 since it comes from a metric

on a SO(2,C)-bundle. The adjoint of φ is given by

φ∗ =

(
h−1

h

)(
1

q̄2

)(
h
h−1

)
=

(
h−2

h2q̄2

)

and the Hitchin equations are given by

FAh + h2q2 ∧ q̄2 − h−2 = 0. (3.3.5)

In [Hit87a], Hitchin showed that solving for the metric h on K
1
2 is equivalent to finding a metric on Σ with

constant negative curvature. Moreover, if q2 = 0 then the corresponding hyperbolic metric is the which

uniformizes the surface Σ. In this way, for each Riemann surface structure Σ on S, Hitchin parameterized

Teich(S) by H0(K2). Since Tr(φ2) = 2q2, this is equivalent to the Hopf differential parameterization of

Teich(S) by Wolf [Wol89].

49



Remark 3.3.28. Note that if G ⊂ SL(N,C) is a real form a subgroup of SL(N,C) then the inclusion

induces a map gives a map between the moduli spaces M(G)→M(SL(N,C)). In particular, a G-Higgs

bundle is polystable if and only if the corresponding SL(N,C) Higgs bundle is polystable. Equivalently, if

the corresponding SL(N,C)-Higgs bundle is unstable, then the G-Higgs bundle is also unstable. Thus, when

determining whether or not the isomorphism class of a G-Higgs bundle defines a point in the moduli space,

we can use the simpler version of stability for SL(N,C)-Higgs bundles.

We will also need a slightly more general theorem concerning K-twisted Higgs pairs (see Definition 3.3.9).

These objects are an instance of the more general notion of an augmented bundle. Through the work of

many authors, including Bradlow, Garcia-Prada, King, and Mundet, the notions of stability have appropriate

generalizations to the setting of augmented bundles. For this more general set up, the analog of Theorem

3.3.24 also holds, see [BGPMiR03, GGMiR09].

Theorem 3.3.29. Let (E , ϕ) be a polystable K-twisted Higgs pair, then there exists a reduction of structure

of E from HC to H which solves the following equations

FA + [ϕ,ϕ∗] = 0 and ∇(0,1)
A ϕ = 0 (3.3.6)

where A is the Chern connection on E(V ) induced by the reduction and ϕ∗ is the hermitian adjoint with

respect to the metric reduction.
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Chapter 4

Fixed points

The Higgs bundle moduli space M(G) has a natural action of C∗ defined by scaling the Higgs field. For

λ ∈ C∗, the action is given by λ · (E , ϕ) = (E , λϕ). The fixed points of this action are the critical points of

the function onM(G) defined by taking the L2-norm of the Higgs field with respect to the harmonic metric:

H(E , ϕ) =

∫
Σ

||ϕ||2.

This function is a Morse-Bott function and is usually called the Hitchin function [Hit87a, Sim92]. Thus,

studying the fixed points of the C∗-action gives information on the topology of the Higgs bundles mod-

uli space. This has been successfully carried out by many authors, for instance [Hit92, Sim92, Got01,

GPGMiR13, BGPG03].

In this chapter we study the Higgs bundles which are fixed by a root of unity subgroup 〈ζk〉 ⊂ C∗. For

complex simple Lie groups, we classify the Higgs bundles fixed by this action. We start by recalling the work

of Simpson [Sim09] for SL(n,C) and discuss how the Hitchin equations for these fixed points simplify to a

version of K-twisted quiver bundle equations considered in [ÁCGP03]. This relation will be important for

the asymptotics considered in Chapter 5. After relating Higgs bundles fixed by the C∗ action to Z-gradings

gradings on Lie algebras we classify the fixed points of 〈ζ
k
〉 ⊂ C∗ inM(G) for a complex simple Lie group G.

Finally, we discuss the relation between these fixed points and the equivariant harmonic map from Corlette’s

Theorem, this analysis will be crucial for Chapter 6.

4.1 SL(n,C) and relation with quiver bundles

Recall that an SL(n,C)-Higgs bundle is given by a pair (E , φ) where E is a holomorphic vector bundle with

trivial determinant and φ ∈ H0(Σ,End0(E)⊗K) is a traceless twisted endomorphism. The fixed points we

will study are special types of twisted quiver bundles developed by [ÁCGP03].

Definition 4.1.1. A K-twisted quiver bundle is a collection of holomorphic vector bundles {Ej}kj=1 together
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with a collection of holomorphic K-twisted bundle maps Φij : Ei→Ej ⊗K.

For quiver bundles, there is a stability condition which has a parameter developed in [ÁCGP03]. When

the stability parameter is 0, there is a close relation between quiver bundles and Higgs bundles; we will

discuss this case below. This stability condition is used to prove the following theorem.

Theorem 4.1.2. Given a 0-stable K-twisted quiver bundle ({Ej}kj=1, {Φij}) with det(
⊕
Ej) = O, there is a

unique collection of metrics {hj}kj=1 on the bundles {Ej}kj=1 which solve the quiver bundle equations:

Fhj +
∑
i,k

Φ∗kj ∧ Φjk + Φji ∧ Φ∗ij = 0.

Here Φ∗ij : Ej→Ei ⊗K is the adjoint defined with respect to the metrics hi and hj .

Remark 4.1.3. Given a K-twisted quiver bundle ({Ej}kj=1, {Φij}) the holomorphic bundle E =
k⊕
j=1

Ej to-

gether with {Φij} define an GL(
∑
j rank(Ej),C)-Higgs bundle. Moreover, the stability condition of [ÁCGP03]

has the property that the quiver bundle ({Ej}kj=1, {Φij}) is stable if and only if the corresponding Higgs bun-

dle is stable. In this case there are two special metrics on E , the quiver bundle metric and the Higgs bundle

metric. In general, if the holomorphic bundle E admits a holomorphic decomposition, such a splitting is not

orthogonal with respect to the Higgs bundle metric. We will show that, for fixed points, the holomorphic

splitting is indeed orthogonal, and hence the quiver bundle metric and the Higgs bundle metric agree.

The fixed points of the C∗ correspond to special K-twisted quiver bundles called holomorphic chains.

Definition 4.1.4. A K-twisted holomorphic chain is a K-twisted quiver bundle ({Ej}kj=1, {Φij}) with Φij =

0 if i+ 1 6= j. Set Φj,j+1 = φj , we will represent K-twisted holomorphic chains by

E1
φ1

// E2
φ2

// · · ·
φk−2

// Ek
φk−1

// Ek (4.1.1)

where the twisting has been suppressed from he notation.

The relation between fixed points of C∗ action and holomorphic chains is straight forward.

Proposition 4.1.5. Let (E , φ) be a polystable SL(n,C)-Higgs bundle with (E , φ) ∼= (E , λφ) for all λ ∈ C∗

then (E , φ) is a K-twisted holomorphic chain with k > 1. If (E , φ) is stable then each Φj,j+1 6= 0.

The proof of this proposition is very similar to classifying fixed points of roots of unity actions given

below. The fact that (E , φ) stable implies that each Higgs field components φj 6= 0 follows from the fact that
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if some φj is zero then (E , φ) has an invariant subbundle with an invariant compliment, and it is strictly

polystable. Given a K-twisted holomorphic chain as in (4.1.2) the quiver bundle equations simplify to:

Fh1
+ φ∗1 ∧ φ1 = 0

Fhj + φ∗j ∧ φj + φj−1 ∧ φ∗j−1 = 0 2 ≤ j ≤ k − 1

Fhk + φk−1 ∧ φ∗k−1 = 0

(4.1.2)

For SL(n,C), Higgs bundles which are fixed by a root of unity subgroup
〈
e

2πi
k

〉
= 〈ζ

k
〉 ⊂ C∗ but not

necessarily all of C∗ were first studied and classified by Simpson in [Sim09]. We will give a very explicit

proof of this classification.

Theorem 4.1.6. Let (E , φ) be a stable SL(n,C)-Higgs bundle, (E , φ) is a fixed point of 〈ζ
k
〉 if and only if

either (E , φ) is fixed by all of C∗ or (E , φ) is a K-twisted quiver bundle ({Ej}kj=1, {Φij}) with Φij 6= 0 if and

only if i+ 1 = j mod k. Setting Φj,j+1 = φj, such fixed points are given by:

E1
φ1

// E2
φ2

// · · ·
φk−2

// Ek
φk−1

// Ek

φk

tt
(4.1.3)

Proof. Clearly if (E , φ) is a fixed point of the C∗ action then it is a fixed point of the kth-roots of unity

action, so let (E , φ) be of the second type above. To see that a Higgs bundle of the form (4.1.3) is fixed by

〈ζ
k
〉, consider the following gauge transformation of E1 ⊕ · · · ⊕ Ek:

g =


IdE1ζ

j
nk

IdE2ζ
j
nkζ

1
k
. . .

IdEkζ
j
nkζ

k−1
k


It is straight forward to check that Adgφ = ζkφ, furthermore, j can be chosen so that det(g) = 1.

Now assume that (E , φ) = (E , ζ
k
φ) and (E , φ) is stable, then there is a SL(n,C) holomorphic gauge

transformation g : E→E so that Adgφ = ζ
k
φ and gk = ζj

n
IdE for some integer j. Thus the eigenbundles

of g can have eigenvalues ζjnkζ
i
k for 0 ≤ i ≤ k − 1. Let {ζjnkζ

ai
k }

l

i=1
be the distinct eigenvalues of g, and

E = E1 ⊕ · · · ⊕ El be the g-eigenbundle decomposition of E . In this splitting g is given by

g =


IdE1ζ

j
nkζ

a1

k
. . .

IdElζ
j
nkζ

al
k


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Write φ = {φij} in terms of the eigenbundle decomposition E = E1 ⊕ · · · ⊕ El. The action of Adg on φij is

given by Adg(φij) = ζ
ai−aj
k φij . By assumption, Adgφ = ζ1

kφ, so

ai − aj 6= 1 mod k =⇒ φij = 0.

Thus, there are at most l nonzero φij ’s (at most 1 nonzero φij per row and at most 1 nonzero φij per

column). Stability of (E , φ) implies there must be at least l − 1 nonzero φij ’s, otherwise there would be a

φ invariant destabilizing bundle. If there are exactly l − 1 nonzero φij ’s then (E , φ) is a holomorphic chain,

and thus a fixed point of the C∗ action. If (E , φ) is not a fixed point of the C∗ action then there are exactly

l nonzero φij ’s. Finally, if there are exactly l nonzero φij ’s then we have a collection of l distinct numbers

{a1, . . . , al} from the set {0, . . . , k − 1} with exactly l pairwise differences equal to 1 mod k. This implies

l = k, and proves E = E1 ⊕ E2 ⊕ · · · ⊕ Ek. If Ei is the eigenbundle with eigenvalue ζjnkζ
i
k, then the Higgs

bundle is of the form of equation (4.1.3).

Remark 4.1.7. The two cases in Theorem 4.1.6 are not disjoint. For instance, if a =
(
φ1 0

)
and

b =

(
0
φ2

)
, the holomorphic chain E1

φ1 // E2
φ2 // E3 can also be written as E1 ⊕ E3 a

// E2

b
yy

.

As a corollary, we have the following description of polystable fixed points.

Corollary 4.1.8. Let (E , φ) =
l⊕

j=1

(Ej , φj) be strictly polystable with each (Ej , φj) stable. Then (E , φ) is a

fixed point of 〈ζ
k
〉 if and only if each (Ej , φj) is fixed by 〈ζ

d
〉 for some d which divides k.

The quiver bundle equations associated to Higgs bundles fixed by 〈ζ
k
〉 and not C∗ are:

Fh1
+ φ∗1 ∧ φ1 + φk ∧ φ∗k = 0

Fhj + φ∗j ∧ φj + φj−1 ∧ φ∗j−1 = 0 2 ≤ j ≤ k − 1

Fhk + φ∗k ∧ φk + φk−1 ∧ φ∗k−1 = 0

(4.1.4)

For fixed points, the holomorphic splitting is orthogonal with respect to the Higgs bundle metric. Thus,

the Higgs bundle metric is the same as the quiver bundle metric for fixed points.

Theorem 4.1.9. Let (E , φ) be a polystable Higgs bundle that is fixed by 〈ζ
k
〉 , then the holomorphic decom-

position of E in Theorem 4.1.6 is orthogonal with respect to the Higgs bundle metric. Moreover, the Higgs

bundle equations simplify to the quiver bundle equations.

This extra symmetry condition on the Higgs bundle metric is the starting point for all applications

considered later. We will provide two proofs of Theorem 4.1.9, one which is direct and another which uses
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the quiver bundle results. Denote the Dolbeault operator associated to the holomorphic structure on E by

∂̄E . Given a stable Higgs bundle (∂̄E , φ) there is a unique metric H solving the Higgs bundle equations.

For any SL(n,C)-gauge transformation g, the pair (g−1∂̄Eg, g
−1φg) also has a unique metric H ′ solving the

Higgs bundle equations. The metrics H and H ′ are related by H ′ = Hg∗hg. This follows from general gauge

theoretic arguments, for example see section 3 of [Bra90].

Proof. Let (E , φ) be a stable Higgs bundle that is a fixed point of the 〈ζ
k
〉-action that is not fixed by C∗, and

let H be the metric on E solves the Higgs bundle equations. To see that the metric H splits, we will show

the holomorphic gauge transformation g : E→E which acts as g−1φg = ζ
k
φ is unitary, that is g∗Hg = Id.

Since the triple (∂̄E , φ,H) solves the Higgs bundle equations, the triple (g−1∂̄Eg, g
−1φg,HgHg) also solves

the Higgs bundle equations. Since g is holomorphic (g−1∂̄Eg, g
−1φg) = (∂̄E , ζkφ), and thus (∂̄E , ζkφ,Hg

∗Hg)

solves the Higgs bundle equations as well. Now, using the fact that the U(1)-action preserves the metric,

the triple (∂̄E , φ,Hg
∗Hg) solves the equations. By uniqueness of the metric, we conclude g∗Hg = Id. Recall

that the splitting E1 ⊕ · · · ⊕ Ek is an eigenbundle splitting for g, since g is both unitary and preserves the

eigenbundle splitting E1 ⊕ · · · ⊕ Ek, the metric H splits as H = h1 ⊕ · · · ⊕ hk.

Proof. (Quiver bundle proof) The proof for fixed points of C∗ and 〈ζ
k
〉 are very similar, assume (E , φ) is a

stable fixed point of 〈ζ
k
〉 which is not fixed by C∗. The holomorphic bundle decomposes as E = E1⊕· · ·⊕Ek

with φ as in Theorem 4.1.6. By [ÁCGP03], there is a collection of metrics on {hj} on {Ej} which solve the

quiver bundle equations (4.1.4). With respect the metric H = h1 ⊕ · · · ⊕ hl on E the adjoint of the Higgs is

φ∗H = H−1φ
T
H

φ∗H =


h−1

1 φ1
T
h2

. . .

h−1
k−1φk−1

T
hk

h−1
k φk

T
h1

 .

Since h−1
j φjhj+1 = φ∗j , the bracket [φ, φ∗H ] is given by

[φ, φ∗H ] =


φk ∧ φ∗k + φ∗1 ∧ φ1

. . .

φk−1 ∧ φ∗k−1 + φ∗k ∧ φk

 .

Thus, the quiver bundle metric H solves the Higgs bundle equations FH + [φ, φ∗H ] = 0, and we conclude the

Higgs bundle metric on E is diagonal with respect to the holomorphic splitting E1 ⊕ · · · ⊕ Ek.
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4.2 Fixed points of the 〈ζ
k
〉 ⊂ C∗-action on M(G)

4.2.1 G-complex

Recall that a Z-grading associated to the height grading of a parabolic subalgebra corresponds to a labeling

of the Dynkin diagram with only 1’s and 0’s (see Chapter 2.1.1, in particular Example 2.1.17). Let G be a

complex simple Lie group, we first phrase the classification of fixed points of the C∗-action onMG in terms

of Z-gradings.

Let P ⊂ G be a parabolic subgroup with Levi factor L and denote the corresponding Z-grading of g by

g =
⊕
j∈Z

gj . Let c be a Cartan subalgebra, Π = {α1, · · · , α`} a set of simple roots and A ⊂ Π the subset

which gives the parabolic PA conjugate to P. Recall that the corresponding Z-grading arises from a one

parameter family of elements gt ∈ Inn(g) where gt = exp(2πitx) for an element x ∈ z(lA); this implies gt is

in the center of LA.

Recall from Definition 3.3.9 that an K-twisted (LA, g1) Higgs pair consists of a holomorphic LA-bundle

EL→Σ and a holomorphic section of the g1-associated bundle ϕ ∈ H0(EL[g1]⊗K). Denote the moduli space

of such objects by M(LA, g1). We have

⊔
A⊂Π

M(LA, g1) =
⊔

Dynkin Diagram labelings w/ 1’s and 0’s

M(G0, g1)

Theorem 4.2.1. Let G be a complex simple Lie group and denote the subvariety consisting of fixed points

of the C∗ action by F(G). Then there is a map F(G) // ⊔
A⊂Π

M(LA, g1) and extension of structure

group gives a surjective map
⊔
A⊂Π

M(LA, g1) // // F(G) . Moreover, if g1 =
⊕

gν1 is the decomposition of

g1 into irreducible representations of LA then the objects which map to smooth fixed points consist of (LA, g1)

K-twisted Higgs pairs (E , φ) with φν 6= 0 for all ν.

Proof. Given a polystable (LA, g1) K-twisted Higgs bundle (EL, φ) extending the structure group to G defines

a G-Higgs bundles (EG, φ). This will be a polystable Higgs bundle since the reduction of structure from

Theorem 3.3.29 which solves the (LA, g1)-Higgs bundle equations also solves the G-Higgs bundle equations.

To see that this extended object is a fixed point of the C∗-action, note that there is an element x ∈ z(lA)

so that adx defines the Z-grading. In particular, the adx(y) = y for all y ∈ g1. Exponentiating gives a

1-parameter family of gt = exp(2πitx) in the center of LA. This family defines a family of holomorphic gauge

transformations of the bundle EL which acts of the Higgs field φ by gt · φ = e2πitφ. This makes the extended

object a fixed point of the C∗-action.

Given a polystable G-Higgs bundle (E , φ) which is a point of the C∗ action, there is a 1-parameter
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family of holomorphic gauge transformations gt with Adgtφ = e2πitφ. This family gives a Z-grading on

the fibers of the adjoint bundle E [g]. Moreover, for each t, the coefficients of the characteristic polynomial

of Adgt are holomorphic functions on Σ, thus the eigenvalues of Adgt are constant. Hence the family of

gt of gauge transformations gives a Z-grading of the adjoint bundle E([g]) =
⊕
j∈Z

g
j

with φ ∈ g
1
. The Lie

algebra g0 is a Levi factor of a parabolic, let G0 ⊂ G be the corresponding connected subgroup. The Lie

subalgebra bundle g
0
⊂ E(g) defines a reduction of structure group EG0

of E from G to G0. This defines the

map F(G)→
⊔
A⊂Π

M(LA, g1) proves surjectivity of the map
⊔
A⊂Π

M(LA, g1)→F(G).

The bundles g
j

are given by associated bundles EG0
[gj ]. Thus each g

j
decomposes into a direct sum of

irreducible G0 representations. In particular, EG0
[g1] =

⊕
gν1 , where each gν1 is a generalized root space of

the parabolic with Levi factor g0. The Higgs field φ ∈ EG0 [g1] also decomposes as φ =
⊕
φν . If φν = 0 for

some ν, then there is an extension of structure group of EG0
to a Levi factor of a larger parabolic for which

φ is in the Levi subalgebra of the larger parabolic. This implies that the Higgs bundle (E , φ) is strictly

polystable.

Fixed points of the C∗-action have been understood for awhile, however they are not usually phrased in

terms of Z-gradings. With this set up, generalizing from fixed points of the C∗-action to kth-roots of unity

〈ζ
k
〉 ⊂ U(1) is more straight forward. For each Z/kZ-grading g =

⊕
j∈Z/kZ

ĝj arising from a labeling of the

extended Dynkin diagram, let G0 ⊂ G denote the connected Lie group with Lie algebra ĝ0 and denote the

moduli space of K-twisted (G0, ĝ1)-Higgs pairs by M(G0, ĝ1). Define the sets:

• B the set of all Z/kZ-gradings on the Lie algebra g which arise from labeling the extended Dynkin

diagram of g.

• B′ ⊂ B the set of all Z/kZ-gradings on the Lie algebra g which arise from labeling the extended

Dynkin diagram with only 1s and 0s on simple roots αj with nj 6= 1. Here the longest root µ is defined

by
∑
njαj (see section 2.1.1).

• B′′ ⊂ B′ the set of all Z/kZ-gradings on the Lie algebra g which arise from labeling the extended

Dynkin diagram with only 1s and 0s.

Denote the subvariety of fixed points of the C∗-action and the 〈ζ
k
〉-action onM(G) by F and Fk respectively.

Theorem 4.2.2. Let G be a complex simple Lie group, extension of structure group gives a map

⊔
B

M(G0, ĝ1) // Fk .
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If Fsm and Fsmk denote the smooth fixed points and B′ and B′′ are as above, then there are maps

Fsmk
f // ⊔

B′
M(G0, ĝ1) Fsmk \ Fsm

f |Fsm
k
\Fsm

// ⊔
B′′
M(G0, ĝ1)

Furthermore, if ĝ1 =
⊕

ĝν1 is the decomposition of ĝ1 into irreducible representations of G0, then the fixed

points of 〈ζ
k
〉 which are not fixed by all of C∗ satisfy the extra condition that φν 6= 0 for all ν.

Remark 4.2.3. This gives a one-to-one correspondence between polystable (G0, ĝ1) K-twisted Higgs pairs

(E , φ) which arise from Z/kZ-gradings corresponding to labeling the extended Dynkin diagram with only

1’s and 0’s and which satisfy φν 6= 0 for all ν and stable simple fixed points of 〈ζ
k
〉 in M(G) which are not

fixed by all of C∗.

Proof. Let g =
⊕

j∈Z/kZ
ĝj be a Z/kZ-grading which arises from a labeling of the extended Dynkin diagram

with 1’s and 0’s. Recall that this grading arises from an inner automorphism g ∈ Inn(g) with gk = Id.

Moreover, if G′0 ⊂ Inn(g) is the connected subgroup of Inn(g) with Lie algebra ĝ0, then g lies in the center of

G′0. Let G0 ⊂ G be the connected Lie group with Lie algebra ĝ0. To get an element of G we must choose a

lift of g ∈ Inn(g), we will denote this lift by g also. Note that g is a central element of G0 and gk is a central

element of G.

Given a polystable (G0, ĝ1) K-twisted Higgs bundle (EG0 , φ) extending the structure group to G defines a

G-Higgs bundles (EG, φ). This will be a polystable Higgs bundle since the reduction of structure which solves

the (G0, ĝ1)-Higgs bundle equations will also solve the G-Higgs bundle equations. To see that this extended

object is a fixed point of the roots of unity-action 〈ζ
k
〉 ⊂ U(1), note that the central element g ∈ Z(G0)

which defines the Z/kZ-grading gives a well defined holomorphic gauge transformation gIdEG0
of EG0

which

acts on φ by multiplication by ζk.

Now assume (E , φ) is a stable and simple G-Higgs bundle with (E , φ) ∼= (E , ζ
k
φ). Let g ∈ GG be a

holomorphic gauge transformation which acts as Adgφ = ζ
k
φ. Thus Adgkφ = φ and gk is in the center of G

since. The Adg-eigenbundle decomposition of the adjoint bundle E [g] defines a Z/kZ-grading E [g] =
⊕

j∈Z/kZ
ĝ
j

with φ ∈ H0(Σ, ĝ
1
⊗ K). The Lie algebra subbundle ĝ

0
⊂ E [g] defines a reduction of structure group EG0

of E from G to G0, and the bundle ĝj are associated bundles EG0 [ĝj ]. Thus, a stable and simple fixed point

determines a (G0, ĝ1) K-twisted Higgs pair.

Recall that G0 is not necessarily a Levi factor of a parabolic of G, thus polystability of the (G0, ĝ1) K-

twisted Higgs pair does not follow automatically from polystability of (E , φ). However, since (E , φ) is stable

and simple, the metric which solves the G-Higgs bundle equations is unique. Denote the Chern connection

of the metric solving the Higgs bundle equations by ∇A, since it solves the equations for both φ and ζ
k
φ, the
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gauge transformation g is covariantly constant, ∇Ag = 0. Therefore, ∇A preserves the eigenbundles of Adg

which implies the connection 1-form A takes values in the bundle identity eigenbundle ĝ
0
. But the bundle

ĝ
0

is the adjoint bundle of EG0
thus the metric connection A solves the K-twisted (G0, ĝ1)-Higgs bundle

equations. This proves polystability of the K-twisted (G0, ĝ1) Higgs pair associated to a stable and simple

fixed point of 〈ζ
k
〉.

The Z/kZ-grading g =
⊕

ĝj came from an inner automorphism, it corresponds to a labeling of the

extended Dynkin diagram. Thus, we get a map f : Fsmk →
⊔
B

M(G0, ĝ1). Let Π̃ = {α0, α1, · · · , α`} be the

extended simple roots, recall that α0 =
∑̀
j=1

−njαj is the lowest root. Suppose the labeling of the extended

Dynkin diagram has a nonzero label on the root αj . If nj 6= 1 then consider the Z/njZ grading on g

corresponding to labeling the extended Dynkin Diagram with a 1 on αj and 0’s on all other roots. Denote

the this grading by g =
⊕

j∈Z/njZ
ĝ′j , then ĝ0 ⊂ ĝ′0 and ĝ1 ⊂ ĝ′0. The element g′ which gives this second grading

acts trivially on the Higgs bundle (E , φ) but is not in the center of G. This contradicts the simplicity of (E , φ),

and proves that the image of the map f : Fk→
⊔
B

M(G0, ĝ1) lies in
⊔
B′
M(G0, ĝ1). If nj = 1, then, after acting

by an automorphism of the extended Dynkin diagram, we may assume αj = α0. In this case, we obtain a

Z-grading on g with φ at height 1, thus (E , φ) is fixed by all of C∗. Thus, the image of the restriction of the

map f to the space Fsmk \ Fsm lies in
⊔
B′′
M(G0, ĝ1).

Let ĝ1 =
⊕

gν be the decomposition of ĝ1 into irreducible representations of G0. The Higgs field φ ∈

H0(Σ, E [ĝ1] ⊗ K) decomposes as φ =
∑
φν . To prove the last part of the theorem, recall from Remark

2.1.22 there are two case to consider. First, assume that the Z/kZ-grading under consideration has no roots

labeled with a 0, then all roots have are labeled with a 1. Assume that φν = 0 for a root {αj} in the Dynkin

diagram. As above, if nj 6= 1, then consider the Z/njZ-grading associated to labeling the root αj with a 1

and labeling all other roots in Π̃ with a 0. Such a Higgs bundle is not simple since, by assumption, the Higgs

field is in the identity eigenspace of this grading and there is a gauge transformation acting trivially on the

Higgs bundle that is not in the center of G. If nj = 1 then we can assume αj = α0 and (E , φ) is a fixed

point of the C∗-action. If there is a root with 0 label, then let ĝµ1 be the irreducible representations with

φµ = 0. There are again two cases, ĝµ1 is one dimensional and corresponds to a root space gαj with nj = 1

or not. In the first case, as before, we can assume αj = α0 and the Higgs bundle (E , φ) will be fixed by all

of C∗. For the second case, in the finite order grading corresponding to labeling all roots in the irreducible

representations ĝµ1 with a 1 and all other roots 0, the Higgs field will lie in the identity eigenspace, and the

Higgs bundle (E , φ) will not be simple.
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4.2.2 G-real

For real groups G the classification of stable simple fixed points is more subtle. For instance one needs to

understand how a finite a finite order element of Inn(hC) acts on the isotropy subspace mC. Fixed points

of 〈ζ
k
〉 in M(G) will correspond to polystable (H0, m̂C

1
)-Higgs pairs where gC =

⊕
j∈Z/kZ

ĝjC and each ĝjC

decomposes as ĝj = ĥC
j
⊕ m̂C

j
.

For some groups however, there is a way around this subtlety by using results on simplifications of

stability. In [GPGMiR13], it is shown that if (V, β, γ) is a stable and simple Sp(2n,R)-Higgs bundle with

V � V ∗, then the associated SL(n,C)-Higgs bundle

(
V ⊕ V ∗,

(
0 β

γ 0

))
is stable. Also, a stable simple

SL(n,R)-Higgs bundle (E , Q, φ) the corresponding SL(n,C)-Higgs bundle is also stable and simple. Using

Simpson’s classification of fixed points of 〈ζ
k
〉 for SL(n,C)-Higgs bundles (Theorem 4.1.6), we have the

following classification of stable simple fixed points for Sp(2n,R).

Theorem 4.2.4. Let (V, β, γ) be a stable simple Sp(2n,R)-Higgs bundle with V � V ∗. If (V, β, γ) ∼=

(V, ζ
k
γ, ζ

k
β) and is not fixed by all of C∗, then k is even and V = V1 ⊕ V2 ⊕ · · · ⊕ V k

2
with Vj = V k

2 +1−j .

Morever, if βij : V ∗j →Vi ⊗ K and γij : Vj→V ∗i ⊗ K then βTij = βji, γ
T
ij = γji and βij 6= 0 if and only if

(i+ j) = 2 mod k
2 and γij = 0 if and only if (i+ j) = 1 mod k

2 .

Proof. The SL(2n,C) Higgs bundle

(
V ⊕ V ∗, φ =

(
0 β
γ 0

))
is stable. Since (V, β, γ) ∼= (V, ζ

k
β, ζ

k
γ), there

is a gauge transformation g : V→V with the properties gγg = ζ
k
γ and g∗βg∗ = ζ

k
β, thus gk = ±IdV . Let

g̃ = g⊕g∗ be the corresponding gauge transformation of V ⊕V ∗, note that Adg̃φ = ζ
k
φ and (V ⊕V ∗, φ) is not

fixed by all of C∗. Thus, by theorem 4.1.6, V ⊕V ∗ decomposes as E1⊕E2⊕· · ·⊕Ek with φij : Ej→Ei⊗K equal 0

if and only if j−i = −1 mod k. Since φ =

(
0 β
γ 0

)
we must have k even and V =

⊕
j odd

Ej = V1⊕V2⊕· · ·⊕V k
2

and V ∗ =
⊕

j even

Ej = V ∗k
2

⊕ V k
2−1 ⊕ · · · ⊕ V ∗1 . The form of β and γ follow from rearranging the splitting

E1 ⊕ · · · ⊕ Ek as V1 ⊕ V2 ⊕ · · · ⊕ V k
2
⊕ V ∗1 ⊕ · · · ⊕ V ∗k

2

.

For stable and simple SL(n,R)-Higgs bundles (E , Q, φ) we have the following classification theorem.

Theorem 4.2.5. Let (E , Q, φ) be a stable and simple SL(n,R)-Higgs bundle. If (E , Q, φ) ∼= (E , Q, ζ
k
φ) then

E = E1 ⊕ E2 ⊕ · · · Ek, and either Qij : Ej→Ei is 0 if (i+ j) 6= 1 mod k and an isomorphism otherwise, or n

is even and Qij = 0 if (i + j) 6= 2 mod k and an isomorphism otherwise. Furthermore, if φij : Ej→Ei ⊗K

then φij = 0 if and only if (i+ j) = 1 mod k and φTQφ = Q.

Proof. Recall that the orthogonal structureQ is a symmetric isomorphism E→E∗. Since (E , Q, φ) ∼= (E , Q, ζ
k
φ)

and ((E , Q, φ) is stable and simple, there is a SO(n,C) gauge transformation g for which Adgφ = ζ
k

with gk

60



a central element of SO(n,C). There are 2 cases to consider, gk = Id(E,Q) and gk = −Id(E,Q) (the second

case is only possible if n is even).

Suppose gk = Id and let E = E1 ⊕ · · · ⊕ Ek be the eigenbundle decomposition of E with g|Ej = IdEjζ
j−1
k

.

Denote the decomposition of the orthogonal structure Q : E→E∗ by Qij . The gauge transformation g acts

on Qij by ζj−1
k

ζi−1
k

Qij . Since g∗Qg = Q, we must have Qij = 0 for (j + i) 6= 2 mod k and Qij : Ej→E∗i an

isomorphism for (j + i) = 2 mod k. Now suppose n is even and gk = −Id(E,Q), let E = E1 ⊕ · · · ⊕ Ek be the

corresponding decomposition with g|Ej = ζ2j−1
2k

. The gauge transformation acts trivially on the orthogonal

structure Q and as ζ2j−1
2k

ζ2i−1
2k

Qij = ζi+j−1
k

Qij , thus Qij = 0 if i + j 6= 1 mod k and is an isomorphism

otherwise. In both cases, the properties of the Higgs field follow from the definition of SL(n,R) Higgs bundles

and the fact that (E , φ) is a stable SL(n,C) Higgs bundle fixed by 〈ζ
k
〉 .

Remark 4.2.6. When k is even and the gauge transformation g satisfies gk = Id(E,Q) then there are two self

dual bundles E1 and E k
2 +1, and if gk = −Id then there are no self dual bundles. When k-odd is odd, there

is always only one self dual bundle E1. Also, when n is odd and k is odd, after rearranging the eigenbundles

of g, the orthogonal structure can be made to be of the form Qij = 0 if and only if i+ j = 1 mod k.

4.2.3 Fixed points in the Hitchin component for all simple split real forms

For the Hitchin component the fixed points of 〈ζ
k
〉 are easy to classify. For classical groups, we will use

the extra symmetries of SL(n,R), SO(n, n+ 1), SO(n, n), Sp(2n,R)-Higgs bundles, we will deduce stronger

metric splitting properties or equivalently, more symmetries in the quiver bundle equations.

Proposition 4.2.7. Let (E , φ) be a Higgs bundle in the G-Hitchin component with φ = ẽ1 +
∑̀
j=1

ej ⊗ qmj ,

then (E , φ) ∼= (E , ζ
k
φ) if and only if

φ = ẽ1 +
∑

mj+1≡0
mod k

ej ⊗ qmj+1.

Proof. The Hitchin component is the image of a section sh of the Hitchin fibration

MG
p1,··· ,p` // ⊕̀

j=1

H0(Σ,Kmj+1)

shppHit(G)
� ?

OO

and pj(E , λφ) = λmj+1pj(E , φ) for all λ ∈ C∗. Thus if (E , φ) ∼= (E , ζ
k
φ) then pj(E , φ) = pj(E , ζkφ), for

j = 1, · · · , `. But by definition of the Higgs fields in the Hitchin component if φ = ẽ1 +
∑̀
j=1

ej ⊗ qmj+1 then
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pj(φ) = qmj+1, and pj(ζkφ) = ζmj+1
k

qmj+1. Thus if (E , φ) is a fixed point of 〈ζ
k
〉 then

pj(φ) = qmj+1 = 0 for mj + 1 6= 0 mod k.

Conversely if φ = ẽ1 +
∑

mj+1≡0
mod k

ej ⊗ qmj+1 and x⊗ Id ∈ tC ⊗O ⊂ E ×HC hC is the grading element of the

principal three dimensional subalgebra from which the Higgs bundle in the Hitchin component are derived,

then

adx(φ) = −ẽ1 +
∑

mj+1≡0
mod k

mjej ⊗ qmj+1.

Exponentiating, we have gk = exp

(
2πix

k

)
∈ GHC(E) and Adgkφ = ζ−1

k
ẽ1 +

∑
mj+1≡0
mod k

ζmj
k
ej ⊗ qmj+1 = ζ−1

k
φ.

Thus Adg−1
k
φ = ζ

k
φ as desired. The subbundle V ⊂ E ×HC (hC ⊕ mC) fixed by Adgk is

⊕
j=0 mod k

gj ⊗Kj .

The Lie algebra subbundle W ⊂ E ×HC hC given by W =
⊕

j=0 mod k

hj ⊗Kj yields a corresponding reduction

of structure of E compatible with the metric solving the Higgs bundle equations.

The following corollaries of Theorem 4.2.7 was the starting point to prove the asymptotic results of

Chapter 5.

Corollary 4.2.8. For (E , φ) a fixed point of 〈ζ
k
〉 in the SL(n,R)-Hitchin component, the splitting

E = K
n−1

2 ⊕K
n−3

2 ⊕ · · · ⊕K−
n−3

2 ⊕K−
n−1

2 = E1 ⊕ · · · ⊕ Ek

with Ej = K
n−1

2 −j+1 ⊕K n−1
2 −j+1−k ⊕K n−1

2 −j+1−2k ⊕ · · · , is unitary with respect to the metric solving the

Higgs bundle equations.

Corollary 4.2.9. For (E , φ) a fixed point of
〈
ζ
n−1

〉
in the SL(n,R)-Hitchin component, the line bundle

splitting

E = K
n−1

2 ⊕K
n−3

2 ⊕ · · · ⊕K−
n−3

2 ⊕K−
n−1

2

is unitary with respect to the metric H solving the Higgs bundle equations. Moreover, the metric is given by

H = h1 ⊕ h2 ⊕ · · ·h−1
2 ⊕ h

−1
1 .

Proof. By the previous corollary the splitting (K
n−1

2 ⊕K−n−1
2 )⊕K n−3

2 ⊕· · ·⊕K−n−3
2 is unitary with respect

to the metric solving the Higgs bundle equations. But K
n−1

2 ⊕K−n−1
2 is an SO(2,C) bundle thus the metric

is splits as h1⊕h−1
1 on K

n−1
2 ⊕K−n−1

2 . The form of the metric follows from the compatibility of the metric

with the orthogonal structure.
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4.3 Harmonic maps, fixed points and G-variations of Hodge

structure

We now discuss the harmonic maps of fixed points of roots of unity actions. Let G is a complex simple Lie

group. By Theorem 4.2.2, if (E , φ) is a stable, simple G-Higgs bundle which is a fixed point of 〈ζ
k
〉 ⊂ C∗, then

it arises from a K-twisted (G0, ĝ1) Higgs pair where g =
⊕

j∈Z/kZ
ĝj is a Z/kZ-grading and G0 is the connected

Lie subgroup with Lie algebra ĝ0. This gives rise to a commuting diagram of compatible reductions of

structure group, equivalently equivariant maps

G/G0 G/H0
oo

��
Σ̃

h
//

f ::OO

G/H

(4.3.1)

where the map h is the harmonic metric and H0 = G0 ∩ H is the maximal compact subgroup of G0.

We want to rephrase the condition of being fixed by 〈ζ
k
〉 in terms of harmonic maps. Before doing

this, we need to develop a little geometry of homogeneous spaces. Recall from Theorem 3.2.3 that a map

f : M→N between Riemannian manifolds is harmonic if and only if (df
∗∇LC )∗(df) = 0 where ∇LC denotes

the Levi Civita connection on N. Recall also (see section 2.2.1) that every reductive homogeneous space

has a canonical connection, but the canonical connection is the Levi Civita connection for an G-invariant

metric if and only if the homogeneous space is a symmetric space. In general translating the harmonic map

equations into equations with respect to the canonical connection is a little complicated. Fortunately, for

some special homogeneous spaces this is not complicated.

Definition 4.3.1. A homogeneous space G/Q is a naturally reductive homogeneous space there exists a

G-invariant Riemannian metric 〈·, ·〉 and an AdQ invariant splitting g = q⊕m so that

〈[X,Y ]m, Z〉+ 〈Y, [X,Z]m〉 = 0

for all X,Y, Z ∈ m where [ , ]m denotes the projection onto m.

We will use the following proposition, see [Woo03].

Proposition 4.3.2. Let G/Q be a naturally reductive homogeneous space with canonical connection ∇c. Let

M be a Riemannian manifold, a smooth map f : M→G/Q is harmonic if and only if

(df
∗∇c)∗(df) = 0.
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If M is a Riemann surface then harmonicity is equivalent to d(1,0)f being holomorphic with respect f∗∇c,

that is (df
∗∇c)(0,1)(d(1,0)f) = 0.

The space we are interested in is a naturally reductive homogeneous space.

Lemma 4.3.3. The reductive homogeneous space G/H0 is a naturally reductive homogeneous space with the

metric induced by the Riemannian metric 〈X,Y 〉 = −Bg(X, θ(Y )).

Proof. Recall that if µ =
∑̀
j=1

njαj is the highest root of g, then a Z/kZ-grading g =
⊕

j∈Z/kZ
ĝj is equivalent

to a labeling of the extended Dynkin diagram with integers {a0, · · · , a`} so that a0 +
∑̀
j=1

njaj = k. Every

root α can be written as α = −m0µ +
∑̀
j=1

mjαj with m0 = 0 if α is a positive root and m0 = −1 for α a

negative root. Each summand ĝj is a direct sum of root spaces gα with
∑̀
j=0

ajmj = j mod k. In particular,

α ∈ ĝj if and only if −α ∈ ĝ−j . Thus, by (2.1.3) the splitting (ĝ0 ∩ h) ⊕ (ĝ0 ∩ ih) ⊕
k−1⊕
j=1

ĝj = (ĥ0) ⊕ m is

orthogonal with respect to the inner product 〈X,Y 〉 = −Bg(X, θ(Y )). Hence, for all X,Y, Z ∈ m

0 = 〈[X,Y ], Z〉+ 〈Y, [X,Z]〉 = 〈[X,Y ]m, Z〉+ 〈Y, [X,Z]m〉+ 〈[X,Y ]h0 , Z〉+ 〈Y, [X,Z]h0〉

= 〈[X,Y ]m, Z〉+ 〈Y, [X,Z]m〉

Recall that we have the Cartan decomposition g = h⊕m and complexifying gives gC = hC⊕mC (since g is

complex both hC and mC are isomorphic to g). The complexified tangent bundle of G/H is TCG/H = G×HmC.

Given a Z/kZ-grading g =
⊕

j∈Z/kZ
ĝj , recall that the Cartan involution θ acts on this splitting as

θ(ĝj) = ĝ−j .

This gives the splitting g = h0 ⊕m0 ⊕
⊕
j 6=0

ĝj . Thus the tangent bundle of G/H0 is G×H0
(m0 ⊕

⊕
j 6=0

ĝj). The

complexified tangent bundle is

TCG/H0 = G×H0
(mC

0 ⊕
⊕
j 6=0

ĥCj ⊕ m̂C
j ) =

⊕
j∈Z/kZ

G×H0
m̂C
j ⊕

⊕
j 6=0

G×H0
ĥCj .

With respect to this splitting, the map dπ : TCG/H0→TCG/H is given by

dπ = (Id, 0) :
⊕

j∈Z/kZ

G×H0 m̂
C
j ⊕

⊕
j 6=0

G×H0 ĥ
C
j−→G×H mC.
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Theorem 4.3.4. Let (E , ϕ) be a stable and simple G-Higgs bundle. If (E , ϕ) is a fixed point of the 〈ζ
k
〉 then

the map equivariant map f : Σ̃→G/H0 is harmonic and df(T 1,0Σ̃) ⊂ G×G0
m̂C

1 . Conversely, let ρ ∈ X (π1,G)

and g =
⊕

j∈Z/kZ
ĝj be a Z/kZ-grading with G0 and H0 as before, if f : Σ̃→G/H0 is an equivariant harmonic

map with df(T 1,0Σ̃) ⊂ G×G0
m̂C

1 then the Higgs bundle (f∗G×H0
G, d(1,0)f) is a polystable Higgs bundle which

is a fixed point of 〈ζ
k
〉 .

Proof. If (E , ϕ) is a stable and simple fixed point of 〈ζ
k
〉 ⊂ C∗ then, by Theorem 4.2.2, there is a Z/kZ-

grading g =
⊕

j∈Z/kZ
ĝj with G0 ⊂ G the connected Lie group with Lie algebra ĝ0 so that (E , ϕ) arises from a

polystable K-twisted (G0, ĝ1) Higgs pair (E0, ϕ̂) via extension of structure group. This gives the following

commuting diagram of reductions of structures (equivalently equivariant maps)

G/G0 G/H0
oo

��
Σ̃

h
//

f ::OO

G/H

where H0 = G0 ∩H be the maximal compact subgroup of G0. Since the Higgs field ϕ̂ ∈ H0(E0×H0 ĝ1⊗K) is

identified with the (1, 0) part of the derivative of the map f and ĝ1 = m̂C
1 , we have df(T 1,0Σ̃) ⊂ G×G0

m̂C
1 .

Moreover, since G/H0 is a naturally reductive homogeneous space, holomorphicity of ϕ̂ implies the map f is

harmonic.

Now suppose ρ ∈ X (π1,G) and let g =
⊕

j∈Z/kZ
ĝj be a Z/kZ-grading with G0 and H0 as before. Let

f : Σ̃→G/H0 be a ρ-equivariant harmonic map with df(T 1,0Σ̃) ⊂ G ×G0
m̂C

1 . Pulling back the H0 bundle

G→G/H0 and extending the structure group to G0 gives a holomorphic G0 bundle EG0→Σ. Since the f is

harmonic, df(T 1,0Σ̃) ⊂ G ×G0
m̂C

1 and G/H0 is a naturally reductive homogeneous space, d(1,0)f = ϕ̂ ∈

H0(EG0
×H0

m̂1
C ⊗K). Thus (f∗G ×H0

G0, d
(1,0)f) = (EG0

, ϕ̂) defines a (G0, ĝ1) K-twisted Higgs Higgs pair,

and extension of structure group to G defines a polystable G-Higgs bundle which is a fixed point of 〈ζ
k
〉.

4.3.1 G-variations of Hodge structure and harmonic maps

Let G be a real reductive Lie group with the property that G has a maximal torus T which is compact, such

a G is called a group of Hodge type. This is equivalent to the Lie algebra g having no complex roots with

respect to a maximally compact Cartan subalgebra (see 2.1.2). The classical nonexamples are any complex

reductive Lie group (thought of as real), SL(n,R), and SO(p, q) with p, q both odd; there are also two real

forms of E6 which are not of Hodge type. If H ⊂ G is a maximal compact subgroup then the condition that

a Lie group be of Hodge type is equivalent to rank(GC) = rank(HC). For example, for G = Sp(2n,R), we
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have GC = Sp(2n,C), HC = GL(n,C) and rank(Sp(2n,C)) = n = rank(GL(n,C)) while for G = SL(2n,R),

we have GC = SL(2n,C), HC = SO(2n,C) and

rank(SL(2n,C)) = 2n− 1 and rank(SO(2n,C)) = n.

The following comes from [Sim88], although we will follow the set up of [GRT13]. Let G be simple and

of Hodge type, fix a maximal compact H ⊂ G and corresponding Cartan involution Θ : G→G. Let T ⊂ H

be the maximal torus, T′ ⊂ T a subtorus and let V = ZG(T′) be the centralizer of T′ in G. The inclusions

T ⊂ V ⊂ H ⊂ G give a fibration

H/V − G/V→G/H

over the symmetric space; G/V is called a flag domain. On the Lie algebra level we have t′ ⊂ t ⊂ v ⊂ h ⊂ g

with Cartan involution θ : g→g giving g = h⊕m. This splitting to be orthogonal with respect to the Killing

form. Note that the complexification VC ⊂ GC is the Levi factor of a parabolic subgroup.

Note that the roots of gC with respect to the Cartan subalgebra tC satisfy ∆(gC, tC) ⊂ it∗. Since θ|tC = +1,

for all α ∈ ∆(gC, tC) we have θ(α) = α. Recall from 2.1.2 that a root α is called compact if the root space

gα ⊂ hC and noncompact if gα ⊂ mC, and that

• if α, β compact then α+ β compact

• if α, β noncompact then α+ β compact

• if α compact and β noncompact then α+ β noncompact.

For s ⊂ gC define ∆(s) = {α ∈ ∆|gα ⊂ s}. If [tC, s] ⊂ s we have s = (s ∩ tC)⊕
⊕

α∈∆(s)

gα. In particular,

vC = tC ⊕
⊕

α∈∆(vC)

gα hC = tC ⊕
⊕

α∈∆(hC)

gα mC =
⊕

α∈∆(mC)

gα

Picking a positive root system (or equivalently, a Borel subalgebra), gives us simple roots Π ⊂ ∆+(gC, tC).

Fix a set of positive simple roots Π ⊂ ∆+(gC, tC) with Π = {α1, . . . , αl}, and let {εi} be the basis for tC dual

to {αi}. Define

ψ =
∑

πi∈∆(mC)

πi +
∑

πi∈∆(hC)\∆(vC)

2πi

where {πi} are the fundamental weights (i.e. αj(πi) = δij). Since ψ ∈ tC is semisimple, the Lie algebra gC
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decomposes as a direct sum of eigenspaces of ψ,

gC = gk ⊕ gk−1 ⊕ · · · ⊕ g−k+1 ⊕ g−k (4.3.2)

where gm = {ξ ∈ gC|adψ(ξ) = mξ}, since all roots are integer combinations of simple roots, the eigenvalues

of adψ are integers.

Remark 4.3.5. This is the Z-grading which arises from labeling all noncompact imaginary roots in the

Vogan diagram with a 1 and all compact imaginary roots in the Vogan diagram with a 2.

The space g1 consists of all noncompact root spaces of height 1, since G is assumed to be noncompact,

we have dim(g1) ≥ 1. Moreover, since the roots are purely imaginary, we have

gm = g−m

for the compact conjugation. Setting gm,−mC = gm, we recover a real, weight zero Hodge structure on g;

since g = h⊕m, the Hodge structure is polarized by the Killing form (see [Sim88]).

The element ψ is the grading element for the parabolic subalgebra p = g0 ⊕ g1 ⊕ · · · ⊕ gk of gC. Since

the decomposition of a compact root into a linear combination of simple roots must have an even number

of noncompact contributions, we have

tC ⊂ vC = g0 hC = geven =
⊕
m

g2m mC = godd =
⊕
m

g2m+1

Decompose gC into positive and negative eigenspaces

gC = g− ⊕ g0 ⊕ g+ = h− ⊕ h0 ⊕ h+ ⊕m− ⊕m+

and let qm = g ∩ (gm ⊕ g−m), then g = v⊕ q1 ⊕ · · · ⊕ qk.

The real tangent space of G/V is given by T (G/V) =
k⊕
j=1

G×V qj . Complex structures on G/V are given

by specifying TC(G/V) = T 1,0G/V ⊕ T 01G/V with

T 1,0G/V = G×V g− and T 0,1G/V = G×V g+

Thus each choice of positive roots gives a complex structure. Since the splitting (4.3.2) is V-invariant the
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complexified tangent bundle decomposes as

TCG/V =
⊕

0<|j|≤k

G×V gj

with T 1,0G/V =
−k⊕
j=−1

G×V gj . We are now ready to define a G-variation of Hodge structure.

Definition 4.3.6. Let Σ be a compact Riemann surface, a G-variation of Hodge structure is a triple

(ρ,G/V, F ) where ρ : π1(Σ)→G is a representation, G/V is a flag domain for G, and F : Σ̃→G/V is an

ρ-equivariant holomorphic map with dF (T 1,0Σ̃) ⊂ G×V g−1 ⊂ T 1,0G/V.

A G-variation of Hodge structure (ρ,G/V, F ) gives rise to a G-Higgs bundle (E , ϕ) = (F ∗G×V HC, d
(1,0)F );

here we are pulling back the V-bundle with total space G and extending the structure group to HC and pulling

back the Maurer-Cartan form (identified with dF ) and taking its (1, 0)-part. Moreover, since the grading

element ψ is in the center of v, exponentiating exp(λψ) gives a one parameter family of holomorphic gauge

transformation which acts on the Higgs field by e−λ. Thus the Higgs bundle (E , ϕ) associated to a G-variation

of Hodge structure is a fixed point of the C∗-action. In [Sim88], Simpson proved that if (E , φ) is a G-Higgs

bundle that is a fixed point of the C∗ action, then it gives rise to a G-variation of Hodge structure.

The correspondence between G-variations of Hodge structure and fixed points of the C∗ action in M(G)

relies on the holomorphicity of the map F in Definition 4.3.6. In [Tol13], Toledo asked whether this condition

is equivalent to a harmonic condition on F . We now show that this is not the case, and if one only requires

the map F in Definition 4.3.6 to be harmonic, then one is naturally lead to finite order fixed points.

Theorem 4.3.7. Let G/V be a flag domain with g2k−1 the highest nonzero summand in the corresponding

Z-grading. Let Σ be a closed Riemann surface and ρ : π1(Σ)→G be a representations. If F : Σ̃→G/V

is a ρ-equivariant harmonic map with dF (T (1,0)Σ̃) ⊂ G ×V (g−1 ⊕ g2k−1) that is not holomorphic then

(F ∗G×V HC, dF
(1,0)) is a polystable G-Higgs bundle fixed by 〈ζ

2k
〉 and not by all of C∗.

Proof. We first show that G/V is a naturally reductive homogeneous space (see Definition 4.3.1). Recall

that the Killing form satisfies the identity Bg([X,Y ], Z) + Bg(Y, [X,Z]) = 0 for all X,Y, Z ∈ g. The AdV

splitting g = v⊕m is orthogonal with respect to the Riemannian metric 〈X,Y 〉 = −Bg(X, θ(Y )) by (2.1.3).

Thus for all X,Y, Z ∈ m we have

0 = 〈[X,Y ], Z〉+ 〈Y, [X,Z]〉 = 〈[X,Y ]m, Z〉+ 〈Y, [X,Z]m〉+ 〈[X,Y ]l, Z〉+ 〈Y, [X,Z]l〉

= 〈[X,Y ]m, Z〉+ 〈Y, [X,Z]m〉
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Thus, G/V is a naturally reductive homogeneous space and harmonicity of map F is equivalent to holomor-

phicity of d(1,0)F with respect to the canonical connection.

The bundle EHC = F ∗G×VHC is a holomorphic HC bundle and the Higgs field is d(1,0)F ∈ Ω1,0(EHC×HCmC).

Moreover, since F is harmonic, by the above discussion, ϕ = d(1,0)F is holomorphic with respect the pullback

of the canonical connection on G/V. The Higgs bundle (EHC , ϕ) is polystable since the pullback of the flatness

equations (2.2.1) by F and the holomorphicity of d(1,0)F with respect to the pull back of the canonical

connection solve the Higgs bundle equations.

Finally, recall that the grading element ψ ∈ z(v) defines a Z grading gC =
⊕
j∈Z

gj with g2i+1 ⊂ mC

and g2i ⊂ hC with g2k−1 the highest nonzero summand in mC. By assumption, the Higgs field is given by

d(1,0)F ∈ F ∗G×V (g−1 ⊕ g2k−1)⊗K. Thus, g2k = exp(−2πiψ
2k ) defines a holomorphic gauge transformation

of EHC which acts as Adg2k
ϕ = ζ

2k
ϕ. Moreover, F is holomorphic if and only if d(1,0)F ⊂ F ∗G×V

⊕
j<0

gj ⊗K.

Hence, the harmonic map F is not holomorphic if and only if the component of d(1,0)F in g2k−1 is nonzero,

this is equivalent to the Higgs bundle (EHC , ϕ) being fixed by 〈ζ
2k
〉 but not all of C∗.

Remark 4.3.8. Note that for a variation of Hodge structure, the condition dF (T (1,0)Σ̃) ⊂ G ×V g−1 is

an extra condition on the holomorphic map. That is, any map which satisfies dF (T (1,0)Σ̃) ⊂ G ×V g−1

is automatically holomorphic. This is not the case for the harmonic maps considered in Theorem 4.3.7.

Namely, maps which satisfy dF (T (1,0)Σ̃) ⊂ G ×V (g−1 ⊕ g2k−1) are not automatically harmonic. There are

however, many examples of such maps (see Chapter 6).
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Chapter 5

Asymptotics of fixed points in the
Hitchin component

In this chapter we summarize the joint work with Q. Li in [CL14]. We include this work here since it is

an application of finite order fixed points on M(G). Most details and proofs have been omitted, we direct

the interested reader to [CL14]. For fixed points of 〈ζ
n
〉 and

〈
ζ
n−1

〉
in the SL(n,R)-Hitchin components, we

investigate the asymptotics of the nonabelian Hodge correspondence. More precisely, by Proposition 4.2.7,

in terms of the holomorphic differential paramenterization of the Hitchin component, these fixed points

are given by (0, · · · , qn−1, 0) and (0, · · · , 0, qn), and along the rays (0, · · · , tqn−1, 0) and (0, · · · , 0, tqn) in

the Hitchin component, we study the asymptotics of the metric ht solving the Higgs bundle equations, the

harmonic maps ft : Σ̃→SL(n,R)/SO(n) and the parallel transport holonomy. This analysis leads to a proof

of a conjecture by Katzarkov, Pandit, Noll, and Simpson [KNPS15] on the Hitchin WKB-problem.

5.1 Equations, flat connections and metric asymptotics

In this section, the metric splitting property of fixed points will be used to write the Hitchin equations

as a system of bn2 c fully coupled nonlinear elliptic equations, and to give an explicit description of the

corresponding flat connections. There are slight differences when n is even compared to when n is odd.

We will always work in the even case and mention what the differences are for the odd case. One obvious

difference in the odd case is the middle line bundle of E is a trivial bundle; for both φ = ẽ1 + qnen−1 and

φ = ẽ1 + qn−1en−2, the metric on the trivial line bundle is the standard one on C.
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5.1.1 Equations

Since the metric splits as h = h1 ⊕ h2 ⊕ · · · ⊕ h−1
2 ⊕ h−1

1 , the adjoints of the Higgs fields φ = ẽ1 + qnen−1

and φ = ẽ1 + qn−1en−2 are respectively

φ∗ =



0 h−1
1
h2 0

h−1
2
h

3

. . .

0 0 h−1
1
h2

h2
1
q̄n 0 0


φ∗ =



0 h−1
1
h2 0

h−1
2
h3

. . .

h1h2q̄n−1 0 h−1
1
h2

0 h
1
h

2
q̄n−1 0


We are interested in the corresponding family of flat connections as the differentials qn and qn−1 are

scaled by a real parameter t. Using the simplification of the Hitchin equations for fixed points, the Hitchin

equations for n-cyclic Higgs field φ = ẽ1 + tqnen−1 become:


F
A1

+ t2h2
1
qn ∧ q̄n − h−1

1
h2 = 0

F
Aj

+ h−1
j−1hj − h

−1
j
h
j+1

= 0 1 < j <
n

2

F
An

2

+ h−1
n
2
−1
hn

2
− h−2

n
2

= 0

(5.1.1)

Here all the metrics, and hence, all the curvature forms depend on t. We will suppress the t dependence

from the notation. When n is odd, the last equation is changed to F
An−1

2

+ h−1
n−1

2
−1
hn−1

2

− h−1
n−1

2

= 0.

To understand the flat connection we choose a local coordinate z on Σ. Such a choice gives a local

holomorphic frame (s1, s2, . . . , s
∗
2, s
∗
1) for E, where sj = dz

n+1−2j
2 is the local frame of K

n+1−2j
2 induced by

the coordinate z. With respect to this choice of coordinates, the Higgs field is locally given by

φ =


0 fn
1
. . .

1 0


where qn = f

n
dzn, for some function f

n
.

With respect to this frame, locally represent the metric hj by e−λ
j

, here the j is a superscript and not

an exponent. Recall that in a holomorphic frame, the Chern connection has connection 1-form A = H−1∂H

and curvature 2-form given by FA = ∂̄(H−1∂H). Since hj is a metric on a line bundle, the expressions

simplify to

Aj = −λ
j

z
dz and F

Aj
= λ

j

zz̄
dz ∧ dz̄.
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The equations may be rewritten as:


λ

1

zz̄
+ t2e−2λ

1

|qn|2 − eλ
1
−λ

2

= 0

λ
j

zz̄
+ eλ

j−1
−λ

j

− eλ
j
−λ

j+1

= 0 1 < j <
n

2

λ
n
2

zz̄
+ eλ

n
2
−1
−λ

n
2

− e2λ
n
2

= 0

(5.1.2)

Similarly for (n− 1)-cylcic Higgs field φ = ẽ1 + tqn−1en−2, we may rewrite the Hitchin equations as



λ
1

zz̄
+ t2e−λ

1
−λ

2

|qn−1|2 − eλ
1
−λ

2

= 0

λ
2

zz̄
+ t2e−λ

1
−λ

2

|qn−1|2 + eλ
1
−λ

2

− eλ
2
−λ

3

= 0

λ
j

zz̄
+ eλ

j−1
−λ

j

− eλ
j
−λ

j+1

= 0 2 < j <
n

2

λ
n
2

zz̄
+ eλ

n
2
−1
−λ

n
2

− e2λ
n
2

= 0

(5.1.3)

Again, in the odd case, the last equation is changed to λ
n−1

2

zz̄
+ eλ

n−1
2
−1
−λ

n−1
2

− eλ
n−1

2

= 0.

5.1.2 Flat connections

The flat connection is given by D = Ah + φ + φ∗. If, in the holomorphic frame (s1, . . . , sn2 , s
∗
n
2
, . . . , s∗1), we

have

qn = fndz
n and qn−1 = fn−1dz

n−1, (5.1.4)

then the flat connection for the n-cyclic φ = ẽ1 + tqnen−1 is given by

D =



−λ1

zdz tf
n

1 −λ2

zdz
. . .

. . .

1 λ
2

zdz 0

1 λ
1

zdz


+



0 eλ
1
−λ

2

0 0 eλ
2
−λ

3

. . .

eλ
1
−λ

2

te−2λ
1

f̄
n

0


, (5.1.5)
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and the flat connection for the (n− 1)-cyclic φ = ẽ1 + tqn−1en−2, is

D =



−λ1

zdz tf
n−1

0

1 −λ2

zdz tf
n−1

0 1 −λ3

zdz
. . .

1 λ
1

zdz


+



0 eλ
1
−λ

2

0 0 eλ
2
−λ

3

. . .

te−λ
1
−λ

2

f̄n−1 eλ
1
−λ

2

0 te−λ
1
−λ

2

f̄
n−1

0


.

(5.1.6)

We want to calculate the behavior of the flat connection in the limit t→∞. To do so, we need to

understand the asymptotics of the λ
j

’s and the asymptotics of their first derivatives λ
j

z. In order to use the

maximum principle, we will make a change of variables. Let Ωn ⊂ Σ be a compact set away from the zeros

of qn and fix a background metric g
n

on Σ with the following properties:


gn = |qn|

2
n on Ωn

|qn|2

(gn)n
≤ 1 on Σ

(5.1.7)

Using this metric, we make the following change of variables:

u
j

= λ
j

− n+ 1− 2j

2
ln(g

n
).

For φ = ẽ1 + qn−1en−2, we define the analogous compact set Ωn−1 and background metric g
n−1

with the

property 
gn−1 = |qn−1|

2
n−1 on Ωn−1

|qn−1|2

(gn−1)n−1
≤ 1 on Σ

(5.1.8)

Using g
n−1

, we make the change of variables

v
j

= λ
j

− n+ 1− 2j

2
ln(g

n−1
).

Recall that the Laplace-Beltrami operator of a conformal metric g on a Riemann surface is given by

∆g = 4
g∂zz̄ and the scalar curvature is

Kg = −1

2
∆g ln(g) = −2

g
∂zz̄ ln(g).

Because qn and qn−1 are holomorphic, Kgn
= 0 = Kg

n−1
on Ωn and Ωn−1.
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With respect to u
j

, the equations for φ = ẽ1 + tqnen−1 become



(u
1

+
n− 1

2
ln(g

n
))
zz̄

+ t2e−2u
1
−(n−1) ln(gn )|qn|2 − eu

1
−u

2
+ln(gn ) = 0

(u
j

+
n+ 1− 2j

2
ln(g

n
))
zz̄

+ eu
j−1
−u

j
+ln(gn ) − eu

j
−u

j+1
+ln(gn ) = 0 1 < j <

n

2

(u
n
2 +

1

2
ln(g

n
))
zz̄

+ eu
n
2
−1
−u

n
2

+ln(gn ) − e2u
n
2

+ln(gn ) = 0

(5.1.9)

Using our knowledge of Kgn
and ∆gn

, we rewrite the equations as



−1

4
∆gn

u
1

= −n− 1

4
Kgn

+
t2|qn|2

gn
n

e−2u
1

− eu
1
−u

2

−1

4
∆gnu

j

= −n+ 1− 2j

4
Kgn + eu

j−1
−u

j

− eu
j
−u

j+1

1 < j <
n

2

−1

4
∆gn

u
n
2 = −1

4
Kgn

+ eu
n
2
−1
−u

n
2

− e2u
n
2

(5.1.10)

We will show

lim
t→∞

eu
j

= t
n+1−2j

n 1 ≤ j ≤ n

2
.

Similarly, in terms of the v
j

’s, the equations for φ = ẽ1 + tqn−1en−2 become



−1

4
∆g

n−1
v

1

= −n− 1

4
Kg

n−1
+
t2|qn−1|2

gn−1
n−1

e−v
1
−v

2

− ev
1
−v

2

−1

4
∆g

n−1
v

2

= −n− 1

4
Kg

n−1
+
t2|qn−1|2

gn−1
n−1

e−v
1
−v

2

+ ev
1
−v

2

− ev
2
−v

3

−1

4
∆g

n−1
v
j

= −n+ 1− 2j

4
Kg

n−1
+ ev

j−1
−v

j

− ev
j
−v

j+1

2 < j <
n

2

−1

4
∆g

n−1
v
n
2 = −1

4
Kg

n−1
+ ev

n
2
−1
−v

n
2

− e2v
n
2

(5.1.11)

In this case, it will be shown that

lim
t→∞

ev
1

= t

lim
t→∞

ev
j

= (2t)
n+1−2j
n−1 1 < j ≤ n

2

5.1.3 Estimates on asymptotics of λ
j

and λ
j

z

In order to understand the asymptotics of the family of flat connections above, we need to understand the

asymptotics of the metric and its first derivative. For the metric, we have the following theorem.

Theorem 5.1.1. For every point p ∈ Σ away from the zeros of qn or qn−1, as t→∞
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1. For (Σ, ẽ1 + tqnen−1) ∈ Hitn(S), the metric hj(t) on K
n+1−2j

2 admits the expansion

hj(t) = (t|qn|)−
n+1−2j

n

(
1 +O

(
t−

2
n

))
for all j

2. For (Σ, ẽ1 + tqn−1en−2) ∈ Hitn(S), the metric hj(t) on K
n+1−2j

2 admits the expansion

hj(t) =


(t|qn−1|)−

n+1−2j
n−1

(
1 +O

(
t−

2
n−1

))
for j = 1 and j = n

(2t|qn−1|)−
n+1−2j
n−1

(
1 +O

(
t−

2
n−1

))
for 1 < j < n

In terms of the u
j

’s and v
j

’s, Theorem 5.1.1 says the asymptotics of the metric solving the Hitchin

equations on Ωn are

eu
j

= t
n+1−2j

n

(
1 +O

(
t−

2
n

))
1 ≤ j ≤ n

2
,

and for φ = ẽ1 + tqn−1en−2, the asymptotics of the metric solving the Hitchin equations on Ωn−1 are

ev
j

= (2t)
n+1−2j
n−1

(
1 +O

(
t−

2
n−1

))
1 < j ≤ n

2

ev
1

= t
(

1 +O
(
t−

2
n−1

))
.

Using our understanding of the u
j

’s, the v
j

’s, and their Laplacians, we gain control of their first derivatives.

Proposition 5.1.2. Let z be a local coordinate so that qn = dzn, then there is a constant Cn = Cn(Σ, qn,Ωn)

so that

|u
j

z| ≤ Cnt−
1
n .

Similarly, let z be a local coordinate so that qn−1 = dzn−1, then there is a constant Cn−1 = Cn−1(Σ, qn−1,Ωn−1)

so that

|v
j

z| ≤ Cn−1t
− 1
n−1 .

5.2 Parallel transport asymptotics

In this section, the parallel transport ODE we wish to integrate is setup. To avoid some redundancy, we

will sometimes use a subscript or superscript b will be used to denote objects corresponding to the b-cyclic

Higgs field φb = ẽ1 + tqbeb−1 for b = n, n − 1. We will also work in the universal cover Σ̃ of Σ, all objects

should be pulled back to the universal cover.
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Let P ∈ Σ̃ be away from the zeros of the differential qb, and choose a neighborhood U
P

centered at P,

with coordinate z, so that qb = dzb. Note that for this to make sense, UP must be disjoint from the zero set

of qb. In this neighborhood, u
j

= λ
j

for b = n and v
j

= λ
j

for b = n− 1.

As before, the choice of local coordinate z defines a local holomorphic frame (s1, . . . , sn2 , s
∗
n
2
, . . . , s∗1) for

E = K
n−1

2 ⊕K
n−3

2 ⊕ · · · ⊕K−
n−1

2 ,

where sj = dz
n+1−2j

2 . In this frame, the connection 1-form of the corresponding flat connection is given by

(5.1.5) and (5.1.6). By our choice of coordinates, the f
b

in (5.1.4) is identically 1.

Using our estimates from Theorem 5.1.1 and Proposition 5.1.2, we will solve for the transport matrix

TP,P ′(t) along paths starting at P and ending at a point P ′ in the neighborhood U
P

. In fact, TP,P ′(t) will

be calculated along geodesics of the background metric gb = |dz| 2b which start at P and end at P ′. Since the

connection is flat, the value of TP,P ′(t) is path independent in U
P

.

We rescale the holomorphic frame (s1, · · · , s∗1) so that it stays bounded away from 0 and ∞ as t→∞.

For φ = ẽ1 + tqnen−1, the rescaled frame is given by Fn = (σ1, . . . , σ
∗
1) where

σj = t
n+1−2j

2n sj σ∗j = t−
n+1−2j

2n s∗j . (5.2.1)

Remark 5.2.1. By Theorem 5.1.1, in the rescaled frame, the metric h = Id
(

1 +O
(
t−

2
n

))
. To see this,

consider

h(si, sj) = δijt
i+j−n−1

n

(
1 +O

(
t−

2
n

))
thus

h(σi, σj) = h(t
n+1−2i

2n si, t
n+1−2j

2n sj) = t
n+1−(i+j)

n h(si, sj) = δij

(
1 +O

(
t−

2
n

))
.

For φ = ẽ1 + tqn−1en−2, the rescaled frame is denote by Fn−1 = (σ1, . . . , σ
∗
1), it is given by

σ1 = t
1
2 s1 σ∗1 = t−

1
2 s∗1

σj = (2t)
n+1−2j
2(n−1) sj σ∗j = (2t)−

n+1−2j
2(n−1) s∗j j = 2, . . . ,

n

2
.

As in the previous case, the harmonic metric in this frame is h = Id
(

1 +O
(
t−

2
n−1

))
.

If we denote the flat connection by Db = Ubdz + Vbdz̄, then, by the estimates from Theorem 5.1.1 and

Proposition 5.1.2, the matrices in the connection 1-form are given by:
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1. For φ = ẽ1 + qnen−1,

Un =


−u1

z t
1
n

t
1
n −u2

z
. . .

. . .

t
1
n u

1

z

 = t
1
n


1

1
. . .

1

+O
(
t−

1
n

)

Vn =


t−

1
n eu

1
−u

2

. . .

t−
1
n eu

1
−u

2

t−
2n−1
n e−2u

1

 = t
1
n


1
. . .

1
1

+O
(
t−

1
n

)

where O
(
t−

1
n

)
is uniform as t→∞ for all points in Ωn.

2. For φ = ẽ1 + qn−1en−2,

Un−1 =



−v1

z 2−
n−3

2(n−1) t
1

n−1

2−
n−3

2(n−1) t
1

n−1 −v2

z 2−
n−3

2(n−1) t
1

n−1

2
1

n−1 t
1

n−1

. . .

2−
n−3

2(n−1) t
1

n−1 v
1

z



= (2t)
1

n−1



1√
2

1√
2

1√
2

1
. . .

1√
2


+O

(
t−

1
n−1

)

Vn−1 =


ev

1
−v

2

2
n−3

2(n−1) t−
1

n−1

. . .

e−v
1
−v

2

2
n−3

2(n−1) t
2n−3
n−1 ev

1
−v

2

2
n−3

2(n−1) t−
1

n−1

e−v
1
−v

2

2
n−3

2(n−1) t
2n−3
n−1



= (2t)
1

n−1



1√
2

1
. . .

1√
2

1√
2

1√
2


+O

(
t−

1
n−1

)
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where O
(
t−

1
n−1

)
is uniform as t→∞ for all points in Ωn−1.

As noted above, we will integrate the initial value problem along geodesics of the metric |qb|
2
b which

avoid the zeros of qb. Any P ′ ∈ U
P
, can be expressed in polar coordinates P ′ = Leiθ; the geodesic γ of the

metric |qb|
2
b which starts at P and ends at P ′ is the straight line

γ(s) = seiθ for s ∈ [0, L].

To avoid an overload of notation, when there is no confusion, the b will be dropped from the notation.

We start at P with the initial rescaled holomorphic frame F (P ). For a fixed t, parallel transportation along

the geodesic γ(s) : [0, L]→ Σ̃ with respect to the flat connection yields a family of frames G(γ(s))(t) along

γ given by

G(γ(s))(t) = TP,γ(s)(t)(F (P )) with TP,γ(0)(t) = Id.

For each t, consider the family of matrices Ψt(s) satisfying

Ψt(0) = Id and Ψt(s)G(γ(s))(t) = F (γ(s)).

Since G(γ(s))(t) is parallel along γ, rewriting ∇ ∂
∂s
F (γ(s)) in terms of G(γ(s))(t) yields

∇ ∂
∂s
F (γ(s)) =

dΨt

ds
G(γ(s))(t).

Also,

∇ ∂
∂s
F (γ(s)) = (eiθU + e−iθV )F (γ(s)) = (eiθU + e−iθV )ΨtG(γ(s))(t),

hence,

dΨt

ds
=
(
eiθU + e−iθV

)
Ψt.

Rewriting TP,γ(s)(t) in terms of Ψt gives

TP,γ(s)(t)(F (P )) = G(γ(s))(t) = Ψt(γ(s))−1F (γ(s)). (5.2.2)

Thus TP,γ(s)(t) = Ψt(γ(s))−1, and we obtain the following proposition.

Proposition 5.2.2. With respect to the frame (σ1, . . . , σn2 , σ
∗
n
2
, . . . , σ∗1), parallel transport along the geodesic

from P to P ′ for the flat connection is given by Ψt(L)−1
(

1 +O
(
t−

2
b

))
, where Ψt solves the initial value
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problem

Ψt(0) = I
dΨt

ds
=
(
eiθU + e−iθV

)
Ψt

Explicitly, we have

1. For φ = ẽ1 + tqnen−1,

dΨt

ds
=

t
1
n


0 e−iθ 0 eiθ

eiθ 0 e−iθ
. . .

. . .

0 eiθ 0 e−iθ

e−iθ eiθ 0

+O
(
t−

1
n

)
Ψt

2. For φ = ẽ1 + tqn−1en−2,

dΨt

ds
=


(2t)

1
n−1



0 1√
2
e−iθ 1√

2
eiθ 0

1√
2
eiθ 0 e−iθ 1√

2
eiθ

. . .
. . .

1√
2
e−iθ eiθ 0 1√

2
e−iθ

0 1√
2
e−iθ 1√

2
eiθ 0


+O

(
t−

1
n−1

)


Ψt

In the above expressions, the matrix inside the bracket may be diagonalized by a constant unitary matrix

S, and thus can be written as

S

 µ1
. . .

µn

S−1

where the set {µj} is the set of roots of the characteristic polynomial det(µI−(eiθU+e−iθV )). More precisely,

1. For the case φ = ẽ1 + qnen−1, µj = 2 cos(θ + 2πj
n ).

2. For the case φ = ẽ1 + qn−1en−2, µ1 = 0, and for j ≥ 2, µj = 2 cos(θ + 2πj
n−1 ).

To compute Ψ(L), we compute Φ = S−1ΨS

Φ(0) = I,
dΦ

ds
=
[
t

1
bM(θ) +R

]
Φ (5.2.3)

where M(θ) =

 µ1
. . .

µn

 , and S−1RS is the error term in Proposition 5.2.2.

To integrate this initial value problem, we employ the following strategy:
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Consider the solution Φ0 to the initial value problem

Φ0(0) = I,
dΦ0

ds
= t

1
nM(θ)Φ0.

Hence Φ0(s) =


est

1
b µ1

est
1
b µ2

. . .

est
1
b µn

 . Instead of solving for Φ asymptotically, we solve for (Φ0)−1Φ.

Note that (Φ0)−1Φ solves the initial value problem

(Φ0)−1Φ(0) = I,
d((Φ0)−1Φ)

ds
= (Φ0)−1RΦ0 · (Φ0)−1Φ. (5.2.4)

This can be seen by using the product rule

d((Φ0)−1Φ)

ds
=

dΦ0

ds
Φ + (Φ0)−1 dΦ

ds

= −(Φ0)−1 dΦ0

ds
(Φ0)−1Φ + (Φ0)−1 dΦ

ds

= −(Φ0)−1t
1
bM(θ)Φ + (Φ0)−1(t

1
bM(θ) +R)Φ

= (Φ0)−1RΦ

= (Φ0)−1RΦ0 · (Φ0)−1Φ.

For the initial value problem (5.2.4), we will show (Φ0)−1RΦ0 is o(1), and that (Φ0)−1Φ is Id+ o(1); hence

Φ = Φ0(Id+ o(1)).

Before doing this, we need a more in-depth understanding of the error term.

The estimate of the error term for the ODE relies mainly on the error estimate of the u
j

’s and v
j

’s. For

the n-cyclic case, we introduce the following notation for the error term for u
j

coming from Theorem 5.1.1

ũ
j

= u
j

− ln |tqn|
n+1−2j

n .

Similarly for the (n− 1)-cyclic case set

ṽ
j

=


v
j

− ln |tqn−1| j = 1

v
j

− ln |2tqn−1|
n+1−2j
n−1 otherwise
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For the n-cyclic case, writing the error term R for the ODE (5.2.3) in terms of ũ
j

gives

S−1

e
iθ


ũ

1

z

ũ
2

z
. . .

−ũ1

z

+ t
1
n e−iθ


0 eũ

1
−ũ

2

− 1
. . .

. . .

0 eũ
1
−ũ

2

− 1

e−2ũ
1

− 1 0



S (5.2.5)

which we will write as R = B1
n

+ t
1
nB2

n
. In a similar fashion, the error term for the (n− 1)-cyclic case is

S−1

e
iθ



ṽ
1

z

ṽ
2

z
. . .

−ṽ2

z

−ṽ1

z



+(2t)
1

n−1 e−iθ



1√
2
(eṽ

1
−ṽ

2

− 1)

eṽ
2
−ṽ

3

− 1
. . .

eṽ
2
−ṽ

3

− 1

1√
2
(e−ṽ

1
−ṽ

2

− 1) 1√
2
(eṽ

1
−ṽ

2

− 1)

1√
2
(e−ṽ

1
−ṽ

2

− 1)




S (5.2.6)

5.2.1 The n-cyclic case

The following theorem concerning estimates of the errors will be crucial.

Theorem 5.2.3. Let d(p) be the minimum distance from a point p to the zeros of qn. Then for any d < d(p),

as t→ +∞, the (k, l)-entry of R satisfies

Rkl(p) = O

(
t−

1
2n e−2|1−ζk−l

n
|t

1
n d

)
.

Assuming Theorem 5.2.3, we can now prove the main theorem concerning the asymptotics of the parallel

transport operator with an extra condition on the path.

Theorem 5.2.4. Suppose P, P ′ and the path γ(s) are as above. If P ′ has the property that for every s,

s < d(γ(s)) := min{d(γ(s), z0)| for all zeros z0 of qn},
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then there exists a constant unitary matrix S, not depending on the pair (P, P ′), so that as t→∞,

TP,P ′(t) =
(
Id+O

(
t−

1
2n

))
S


e−Lt

1
n µ1

e−Lt
1
n µ2

. . .

e−Lt
1
n µn

S−1

where µj = 2cos
(
θ + 2π(j−1)

n

)
.

Remark 5.2.5. The extra condition on the path is necessary for our method of proof, as the distance

from the zeros of the holomorphic differential qn controls the decay rate of the error terms. However, for

sufficiently short paths, the extra condition is automatically satisfied. Thus, for each point z away from

the zeros of qn, there is a neighborhood U for which all |qn|
2
n -geodesics in U satisfy the extra condition.

Furthermore, if, for all zeros z0 of qn, the angle <z0 (P, P ′) is less than π/3, then the |qn|
2
n -geodesic from P

to P ′ satisfies the condition.

When P and P ′ both project to the same point in Σ, the projected path is a loop. In this case, the above

asymptotics correspond to the values of the associated family of representations on the homotopy class of

the loop.

Proof. By Theorem 5.2.3, the (k, l)-entry of the error term (Φb0)−1RΦb0 is

Rk,l(γ(s))e(µk−µl)st
1
n = O

(
t−

1
2n e−2|1−ζk−l

n
|t

1
n d(γ(s))e(µk−µl)st

1
n

)
.

Observe that

|µk − µl| =

∣∣∣∣2 cos

(
θ +

2π(k − 1)

n

)
− 2 cos

(
θ +

2π(l − 1)

n

)∣∣∣∣
=

∣∣∣∣4 sin

(
π(k − l)

n

)
sin

(
θ +

π(k + l − 2)

n

)∣∣∣∣
≤

∣∣∣∣4 sin

(
π(k − l)

n

)∣∣∣∣
= 2|1− ζk−l

n
|.

Hence, the (k, l)-entry of (Φb0)−1RΦb0 is O

(
t−

1
2n e2|1−ζk−l

n
|t

1
n (s−d(γ(s)))

)
. Since γ(s) satisfies the condition

that for every s, s < d(γ(s)), we obtain (Φb0)−1RΦb0 = O
(
t−

1
2n

)
.

We make use of the following classical theorem in ODE theory, for a nice proof, see appendix B of [DW14].
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Lemma 5.2.6. Let A : [a, b]→gln(R) be a continuous function. For the equation F ′(s) = F (s)A(s) on an

interval [a, b] ⊂ R, there exists C, δ0 > 0 such that if ‖A(t)‖ < δ < δ0 for all s ∈ [a, b], then the solution F

with F (a) = I satisfies |F (s)− I| < Cδ for all s ∈ [a, b].

Applying Lemma 5.2.6 and (Φb0)−1RΦb0 = O
(
t−

1
2n

)
to the ODE

(Φb0)−1Φb(0) = I,
d((Φb0)−1Φb)

ds
= (Φb0)−1RΦb0 · (Φb0)−1Φb,

we obtain

(Φb0)−1Φb = Id+O
(
t−

1
2n

)
.

Therefore Φb = Φb0

(
Id+O

(
t−

1
2n

))
.

5.2.2 The (n− 1)-cyclic case

For the (n− 1)-cyclic case, the crucial error estimate theorem is the following.

Theorem 5.2.7. Let d(p) be the minimum distance from a point p to the zeros of qn−1. Then for any

d < d(p), as t→ +∞, the (k, l)-entry of R satisfies

Rkl(p) =



O

(
t−

1
2(n−1) e

−2|1−ζk−l
n−1
|(2t)

1
n−1 d

)
k, l ≥ 2

0 k = l = 1

O

(
t−

1
2(n−1) e−2(2t)

1
n−1 d

)
otherwise

As with the n-cyclic case, we will assume Theorem 5.2.7 for now and prove the main theorem concerning

the asymptotic of the parallel transport operator with an extra condition on the path.

Theorem 5.2.8. Suppose P, P ′ and the path γ(s) are as above. If P ′ has the property that for every s

s < d(γ(s)) := min{d(γ(s), z0)| for all zeros z0 of qn−1},

then there exists a constant unitary matrix S, not depending on the pair P and P ′, so that as t→∞,

TP,P ′(t) =
(
Id+O

(
t−

1
2(n−1)

))
S


e−Lt

1
n−1 µ1

e−Lt
1

n−1 µ2

. . .

e−Lt
1

n−1 µn

S−1
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where µ1 = 0, for j ≥ 2, µj = 2cos
(
θ + 2π(j−2)

n−1

)
.

Remark 5.2.9. The extra condition on the path is necessary for our method of proof, as the distance from

the zeros of the holomorphic differential qn controls the decay rate of error terms. However, for sufficiently

short paths, the extra condition is automatically satisfied. Thus, for each point z away from the zeros of qn,

there is a neighborhood U for which all |qn|
2
n -geodesics in U satisfy the extra condition. Furthermore, if the

angle <z0 (P, P ′) satisfies <z0 (P, P ′) < π/3 for all zeros z0 of qn−1, then the |qn−1|
2

n−1 -geodesic from P to

P ′ satisfies the extra condition in Theorem 5.2.8.

When P and P ′ both project to the same point in Σ, the projected path is a loop. In this case, the above

asymptotics correspond to the values of the associated family of representations on the homotopy class of

the loop.

Proof. By Theorem 5.2.7, we have the (k, l)-entry of the error term (Φb0)−1RΦb0 is

Rk,l(γ(s))e(µk−µl)st
1
n .

For k, l ≥ 2, similar to the proof of Theorem 5.2.4, |µk−µl| ≤ 2|1− ζk−l
n−1
|. Hence for k, l ≥ 2, the (k, l)-entry

of (Φb0)−1RΦb0 is O

(
t−

1
2(n−1) e2|1−ζk−l

n
|(2t)

1
n−1 (s−d(γ(s))

)
.

For k = l = 1, we have µ1 = 0, hence the (1, 1)-entry of (Φb0)−1RΦb0 is O
(
t−

1
2(n−1)

)
. If k = 1 and l 6= 1,

then

|µk − µl| = |0− 2 cos(θ +
2π(l − 1)

n− 1
)| ≤ 2.

Also, if l = 1 and k 6= 1, we have |µk−µl| = |2 cos(θ+ 2π(k−1)
n−1 )−0| ≤ 2. Thus for k = 1, l 6= 1 or l = 1, k 6= 1,

the (k, l)-entry of (Φb0)−1RΦb0 is

O

(
t−

1
2(n−1) e2(2t)

1
n−1 (s−d(γ(s)))

)
.

Since γ(s) satisfies the condition that for every s, s < d(γ(s)), we obtain that (Φb0)−1RΦb0 = O
(
t−

1
2(n−1)

)
.

As in the n-cyclic case, we apply Lemma 5.2.6 and obtain (Φb0)−1Φb0 = Id+O
(
t−

1
2(n−1)

)
, and thus

Φb = Φb0

(
Id+O

(
t−

1
2(n−1)

))
.
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5.3 Harmonic maps into symmetric spaces

We continue to work in the universal cover Σ̃ of Σ, all objects should be pulled back from the surface. As in

previous sections, we will use a subscript b to work with the two cases φ = ẽ1 +qnen−1 and φ = ẽ1 +qn−1en−2

simultaneously.

A Hermitian metric h on a flat bundle E gives rise to an equivariant map to the symmetric space

SL(n,C)/SU(n). To see this, fix a positively oriented unitary frame {xi(P )} over a base point P ∈ Σ̃. With

respect to the flat connection, parallel transport of the frame {xi(P )} gives a global frame {xi}. Define a

π1(Σ)-equivariant map by,

f : Σ̃ −→ SL(n,C)/SU(n)

P ′ 7−→ {h(xi(P
′), xj(P

′))}.

By Corlette’s Theorem [Cor88], the family of harmonic metrics ht considered above, gives a family of ρt-

equivariant harmonic maps

ft : Σ̃→ SL(n,C)/SU(n).

Remark 5.3.1. The image of the family ft lies in a copy of the real symmetric space

SL(n,R)/SO(n,R) ⊂ SL(n,C)/SU(n).

This is because the family of representations ρt has image in the real group SL(n,R).

Pick a base point P ∈ Σ̃ away from zeros of the differential qb. Recall that UP is a local coordinate such

that qb = dzb, and Fb = F = (σ1, . . . , σn2 , σ
∗
n
2
, . . . , σ∗1) is a rescaled holomorphic frame (5.2.1). By Remark

5.2.1, we can choose a unitary and orthogonal (with respect to the orthogonal structure Q) basis N(P ) at

P so that

F (P ) = N(P )(1 +O(t−
2
b )).

Using the flat connection, parallel transport the unitary basis N(P ) to obtain a frame N. Note that N is

not a unitary frame since the flat connection does not have holonomy in SU(n); however, it retains its SL(n,R)

symmetry. As a result, the image of ft is contained in a copy of SL(n,R)/SO(n,R) ↪→ SL(n,C)/SU(n). The

inclusion is determined by the inclusion of SO(n,R) ⊂ SU(n) given by Q-orthogonal unitary matrices, and

the intersection of Q-symmetric matrices with determinant 1 Hermitian matrices.

At a point P ′, denote the jth column of N by N j(P ′). Recall from equation (5.2.2), that the parallel
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transport of the rescaled holomorphic frame F at P has been denoted by G, and

G(P ′) = N(P ′)(1 +O(t−
2
b )).

If we denote the jth column of G(P ′) by Gj(P ′), we have

ft(P
′) = {ht(P ′)(N i(P ′), N j(P ′))}

= {ht(P ′)
(
Gi(P ′), Gj(P ′)

)
(1 +O(t−

2
b ))}.

By Proposition 5.2.2, we understand ht(P
′) in the frame F, thus, we change coordinates Ψt(P

′)G(P ′) =

F (P ′). In terms of columns, we have

Gi(P ′) = Ψ−1
t (P ′)ikF

k(P ′).

Thus ft(P
′) is given by

ft(P
′) = { ht(P ′)

(
Ψ−1
t (P ′)ikF

k(P ′) , Ψ−1
t (P ′)jlF

l(P ′)
)

(1 +O(t−
2
b )) }.

In the frame F, the metric ht is diagonal, thus

ft(P
′) = Ψ−1

t (P ′)T hFt Ψ−1
t (P ′) (1 +O(t−

2
b ))

where hFt denotes the metric in the rescaled holomorphic frame F. Now, using Theorem 5.1.1 and Remark

5.2.1, we have

ft(P
′) = Ψ−1

t (P ′)T · (1 +O(t−
2
b )) ·Ψ−1

t (P ′) .

Therefore, by applying estimates for Ψ(L) in Theorems 5.2.4 and 5.2.8, for any P ′ = Leiθ = γ(L) with

the property that, for all s, s < d(γ(s)) := min{d(γ(s), z0)| for all zeros z0 of qn}, as t→∞

ft(P
′) =

(
Id+O

(
t−

1
2b

))
S


e−2Lt

1
b µ1

e−2Lt
1
b µ2

. . .

e−2Lt
1
b µn

ST
(
Id+O

(
t−

1
2b

))
. (5.3.1)

Here S and the {µj}’s satisfy the same conditions as in Theorems 5.2.4 and 5.2.8. By Remark 5.2.5, the
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above equation can be interpreted as saying that for all such P, there exists a neighborhood UP , so that the

ρt-equivariant maps ft : Σ̃→SL(n,R)/SO(n,R) send UP asymptotically into a flat of the symmetric space.

Given two points P, P ′ in the symmetric space SL(n,R)/SO(n,R), the vector distance between them is

defined by
→
d (P, P ′) = P − P ′, where the difference is taken in a positive Weyl chamber of a flat (isometric

to An−1) containing both points. One can show
→
d (P, P ′) is independent of the choice of flat. For example,

in the standard flat of SL(n,R)/SO(n,R) consisting of all diagonal matrices of determinant 1, the vector

distance is defined by

→
d


 1

. . .

1

 ,

 eλ1

. . .

eλn


 = (λi1 , · · · , λin)

where λi1 ≥ λi2 ≥ · · · ≥ λin . Since all flats in SL(n,R)/SO(n,R) are conjugate to the standard flat, the

vector distance can be defined in a similar way.

The asymptotic expression (5.3.1) for ft, together with the definition of vector distance, gives the following

theorem.

Theorem 5.3.2. With the same assumptions as the parallel transport asymptotitcs Theorem 5.2.4, for a

path γ satisfying

s < d(γ(s)) := min{d(γ(s), z0)| for all zeros z0 of qn} (5.3.2)

we have lim
t→∞

1

t
1
n

→
d (ft(γ(0)), ft(γ(1))) = (λ1, · · · , λn) where λ1 ≥ · · · ≥ λn is a reordering of

(
−2L cos (θ) ,−2L cos

(
θ +

2π

n

)
, . . . ,−2L cos

(
θ +

2π(n− 1)

n

))
for φ = ẽ1 + qnen−1,

(
0,−2L cos (θ) ,−2L cos

(
θ +

2π

n− 1

)
, . . . ,−2L cos

(
θ +

2π(n− 2)

n− 1

))
for φ = ẽ1 + qn−1en−2.

With algebraic techniques generalizing methods of Morgan-Shalen [MS84], Parreau [Par12] provided a

compactification of the Hitchin component. In this paper we pursue a more geometric approach to the com-

pactification of the Hitchin component. Our main motivation is Wolf’s [Wol89] harmonic map interpretation

of Thurston’s compactification [FLP12] of Teichmüller space with measured foliations.

Roughly, Thurston’s compactification works as follows: Let S denote the space of isotopy classes of simple

closed curves and denote the projectivation of the space of nonnegative functions on S by PRS+. The map

which assigns the projectived length spectrum of each hyperbolic metric is an embedding of Teichmüller

space inside PRS+. The image is homeomorphic to an open ball of dimension 6g − 6, and the boundary

corresponds to projective classes of measured foliations. Furthermore, the action of the mapping class group

extends to the boundary. This compactification was further extended to the character variety for SL(2,C)
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(see [Bes88] and [DDW00]).

Fix a Riemann surface structure Σ on S. To each hyperbolic metric h on S, the Hopf differential of the

unique harmonic map f : Σ→(S, h) isotopic to the identity associates a holomophic quadratic differential to

h. Wolf showed that this procedure provides a homeomorphism between Teichmüller space and the vector

space of holomorphic quadratic differentials H0(K2). Adjoing points at ∞ to rays in H0(K2) provides a

compactification of Teichmüller space. Let q2 be a holomorphic quadratic differential, away from the zeros

of q2 choose a coordinate z such that q2 = dz2. In such coordinates we have local measured foliations

(F , µ) = ({Re(z) = const}, |dRe(z)|), which piece together to form the vertical measured foliation F(q2)

of q2. For t > 0, consider the ray tq2 ∈ H0(K2), and let ht be the corresponding family of hyperbolic

metrics and ft : Σ→(S, ht) be the corresponding family of harmonic maps. The key step in showing the

harmonic map compactification agrees with Thurston’s measured foliations compactification is to show the

length spectrum of ht is asymptotically the same as the length spectrum of the vertical measured foliation

of tq2. That is, for any closed curve γ on Σ, as t→∞,

l(ft(γ)) = lγ(ht) ∼ i(F(tq2), γ). (5.3.3)

Here, i(F(tq2), γ) is the intersection number of γ with the measured foliation F(tq2).

Hitchin’s parameterization generalizes the parameterization of Teichmüller space by holomorphic quadratic

differentials. By Corlette’s Theorem [Cor88], for each representation ρ ∈ Hit(PSL(n,R)), there is a unique

ρ-equivariant harmonic map from the universal cover Σ̃ to the symmetric space SL(n,R)/SO(n,R). In this pa-

per, we study the families of Hitchin representations parameterized by rays (0, · · · , tqn) and (0, · · · , tqn−1, 0),

and relate the asymptotics of the corresponding harmonic maps with the geometry of the holomorphic dif-

ferentials qn and qn−1. This is formulated in terms of the following generalizations of measured foliations

and length spectrum:

• For qn ∈ H0(Kn) choose a local coordinate (away from the zeros of qn) so that qn = dzn. In this

coordinate, we have n foliations F1(qn), · · · ,Fn(qn) with signed measure defined by

Fk(qn) =
(
{Re(e

2(k−1)πi
n z = const}, dRe(e

2(k−1)πi
n z)

)
.

Unlike the rank 2 case, these local foliations do not piece together to define global foliations.

• Any two points P and P ′ in the symmetric space SL(n,R)/SO(n,R), are contained in a flat isometric

to the Euclidean space Rn−1. The vector distance
→
d (P, P ′) is then defined as the vector from P to P ′
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in the flat. This is independent of the choice of flat.

For qn ∈ H0(Kn), let ρt and ft be the family of representations and ρt-equvariant harmonic maps associated

to the ray (0, · · · , tqn) in the Hitchin component. As a generalization of the asymptotic length formula

(5.3.3), from Theorem 5.3.2 we deduce:

Theorem 5.3.3. Let Σ̃ be the universal cover of Σ. For a path γ ⊂ Σ̃ which does not pass through the

zeros of qn, choose a local coordinate so that qn = dzn, and denote the local foliations associated to tqn by

F1, · · · ,Fn. If γ satisfies the regularity condition (5.3.2), then as t→∞,

→
d (ft(γ(0)), ft(γ(1))) ∼ (i(F1, γ), i(F2, γ), · · · , i(Fn, γ)).

For SL(3,R) the picture is

F1

γ

µ1

F2
γµ2 F3

γ

µ3

In [KNPS15] the following asymptotic question (called the complex WKB problem by the authors) is

studied: Fix a representation ρ ∈ X (π1,SL(n,C)) and let (E ,∇) be the corresponding flat holomorphic

vector bundle. If θ is a holomorphic (with respect to the flat connection ∇) section of End(E)⊗K then

∇t = ∇+ tθ (5.3.4)

is a family of flat holomorphic connections. The asymptotics of the family ∇t is called the complex WKB

problem. The asymptotic problem studied in this paper (called the Hitchin WKB problem in [KNPS15]) is

significantly different than the complex WKB problem. In particular, in the complex WKB problem there

is no PDE to solve. Also, the (0, 1) part of the family of flat connections in (5.3.4) is constant while the

(0, 1) part of the family of flat connections

∇t = ∇ht + tφ+ tφ∗ht (5.3.5)

is ∇0,1
ht

+ tφ∗ht and thus varies with the solution metric ht. Despite these differences, in [KNPS15] it is

conjectured that the asymptotics of these two families are similar.

More precisely, given a family of representations δt, any fixed metric h defines a family of∇+tθ equivariant
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maps

ft : Σ̃−→SL(n,C)/SU(n).

For the family of flat connections ∇t = ∇ + tθ in the complex WKB problem, Katzarkov et al prove that,

for any fixed metric h and any ‘noncritical path’ γ : [0, L]→Σ the family of equivariant maps satisfies

1

t

→
d (ft(γ(0)), ft(γ(L))) ∼

 L∫
0

Reγ∗ξ1, · · · ,
L∫

0

Reγ∗ξn

 . (5.3.6)

Here ξ1, · · · , ξn are the local eigenvalues of the spectral curve associated the Higgs bundle (E , θ) such that

the entries of the vector are decreasing. They conjecture that the family of equivariant harmonic maps

associated to the family of flat connections ∇t = ∇ht + tθ + tθ∗ht satisfies the same asymptotics.

In a local coordinate z with qn = dzn, the spectral curve associated to the Higgs field φ = ẽ1 + en−1qn

has local eigenvalues

{ξ1, · · · , ξn} = {1dz, e 2πi
n dz, e

2·2πi
n dz, · · · , e

2(n−1)πi
n dz}.

Similarly in a local coordinate z with qn−1 = dzn−1, the spectral curve associated to the Higgs field φ =

ẽ1 + en−2qn−1 has local eigenvalues

{ξ1, · · · , ξn} = {0, 1dz, e
2πi
n−1 dz, e

2·2πi
n−1 dz, · · · , e

2(n−2)πi
n−1 dz}.

Thus, for a path γ : [0, L]→Σ the expression

(
L∫
0

Reγ∗ξ1, · · · ,
L∫
0

Reγ∗ξn

)
is given by

(
−2L cos (θ) ,−2L cos

(
θ +

2π

n

)
, . . . ,−2L cos

(
θ +

2π(n− 1)

n

))
for φ = ẽ1 + qnen−1,

(
0,−2L cos (θ) ,−2L cos

(
θ +

2π

n− 1

)
, . . . ,−2L cos

(
θ +

2π(n− 2)

n− 1

))
for φ = ẽ1 + qn−1en−2.

Hence, Theorem 5.3.2 proves the conjecture that the asymptotics of (5.3.6) for the Hitchin WKB problem and

the complex WKB problem are the same for the Higgs bundles in the Hitchin component with φ = ẽ1+qnen−1

and φ = ẽ1 + qn−1en−2. After this joint work with Q. Li, the conjecture was proven in general by Mochizuki

[Moc15].

To close, we briefly discuss the behavior of the ‘limit map’ f∞ associated to the family ft, studied

extensively in [KNPS15]. To obtain better information about the behavior of the maps ft as t→∞, we
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rescale the metric on the symmetric space and consider the family of maps

ft : Σ̃→
(
SL(n,R)/SO(n,R),

1

t
1
b

d

)
.

The limit of
(
SL(n,R)/SO(n,R), 1

t
1
b
d
)

as t→∞ is not well defined, however, by the work of Kleiner-Leeb

[KL97] and Parreau [Par12], a Gromov limit of
(
SL(n,R)/SO(n,R), 1

t
1
b
d
)

is an affine building modeled on

An−1. The limit construction depends on the choice of ultrafilter ω on R with countable support; with this

choice, the limit is called the asymptotic cone and is denoted Coneω. In [Par12], Parreau showed that, given

a diverging family of representations ρt, the limit of the vector length spectra of ρt arises from the length

spectrum of a limit action ρω on Coneω. This gives a harmonic map

fω : Σ̃→ Coneω,

which is equivariant for the limiting action ρω of π1(S) on Coneω.

In this language, the asymptotic expression (5.3.1) of ft implies that for the families of rays

(Σ, 0, · · · , 0, tqn), (Σ, 0, · · · , tqn−1, 0) ∈ Hit(SL(n,R))

and for any P away from the zeros of qn and qn−1, there exists a neighborhood UP so that the ρω-equivariant

map

fω : Σ̃→ Coneω

sends UP into a single apartment of the building Coneω.
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Chapter 6

Cyclic surfaces and maximal
PSp(4,R) = SO0(2, 3)-Higgs bundles

For a simple split real group G, recall that, for each Riemann surface structure Σ on S, the Hitchin

component Hit(G) ⊂ X (G) is parameterized by the following vector space of holomorphic differentials

Hit(G) ∼=
rk(G)⊕
j=1

H0(Σ,Kmj+1) where {mj} are the exponents of G [Hit92]. Furthermore, for each ρ ∈ Hit(G)

the quadratic differential in this parameterization corresponding to ρ is a constant multiple of the Hopf dif-

ferential of the unique ρ-equivariant harmonic map hρ : Σ̃→G/H. Representations in the Hitchin component

are deformations discrete and faithful representations into PSL(2,R). Furthermore, Labourie has shown

[Lab06] that Hitchin representations are examples of Anosov representations. As a result, every Hitchin

representation is discrete and faithful and the mapping class group Mod(S) acts properly discontinuously on

Hit(G). Since Hitchin’s parameterization by holomorphic differentials depends on fixing a conformal struc-

ture, it breaks the Mod(S)-symmetry. Labourie conjectured that for each ρ ∈ Hit(G), there exists a unique

preferred conformal structure:

Conjecture 6.0.1. (Labourie [Lab06]) For each ρ ∈ Hit(G) there exists a unique conformal structure

(S, Jρ) = Σρ in which hρ : Σ̃ρ→G/H is a branched minimal immersion.

Since the quadratic differential in Hitchin’s parameterization is a constant multiple of the Hopf differential

of hρ and the Hopf differential of hρ vanishes if and only if hρ is a branched minimal immersion, a positive

answer to this conjecture together with Hitchin’s parameterization would provide a Mod(S)-invariant pa-

rameterization of Hit(G) as a vector bundle over Teichmüller space π : E→Teich(S), wher the fiber over a

Riemann surface Σ ∈ Teich(S) is given by π−1(Σ) =
rk(G)⊕
j=2

H0(Σ,Kmj+1), note the sum starts at j = 2.

In general, Conjecture 6.0.1 is an important open question in higher Teichmüller theory. It has however

been established for some low rank groups. For G = PSL(3,R) Loftin [Lof07] and Labourie [Lab07] inde-

pendently proved the conjecture using the geometry of convex foliated RP2-structures and affine spheres. In

[Lab14] Labourie proved the conjecture for all G of rank 2, that is G = PSL(3,R),PSp(4,R),G2.

Fix a representation ρ ∈ X (π1,G), and for each conformal structure denote the corresponding harmonic
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metric by hρ. Consider the following energy function Eρ on the Teichmüller space Teich(S)

Eρ(J) = EJ(hρ) =
1

2

∫
S

|dhρ|2dvol : Teich(S)−→R (6.0.1)

Remark 6.0.2. By [SU82, SY79], critical points of EJ(hρ) are a branched minimal immersions, or equiva-

lently, weakly conformal maps. Note that the harmonic map hρ, the norm |dhρ|2 and the volume element

all depend of J .

In [Lab08], Labourie proved the following theorem:

Theorem 6.0.3. ([Lab08]) If ρ is an Anosov representation then the energy function Eρ : Teich(S)→R is

smooth and proper.

Since Eρ is proper and bounded below by zero, Eρ attains a minimum. This gives

Corollary 6.0.4. For all Anosov representations ρ there exists a conformal structure in which hρ is a

branched minimal immersion. In particular, the existence part of Conjecture 6.0.1 holds.

For the groups SO0(2, 3) ∼= PSp(4,R) and Sp(4,R) we will study the class of Anosov representations

called maximal representations. There are 4g − 3 special connected components of maximal PSp(4,R) rep-

resentations, which we call the Gothen components. This class of representations include PSp(4,R)-Hitchin

representations. Using existence of a conformal structure in which hρ is a branched minimal immersion,

we will show that this conformal structure is unique for all Gothen representations. Using a Higgs bundle

parameterization of the Gothen components, we obtain a mapping class group invariant parameterization

of all Gothen components. In the final section, we show that the Gothen components are not an PSp(2n,R)

phenomenon but rather an SO0(n, n+ 1) phenomenon. In particular we prove:

Theorem 6.4.1. For each 0 < d ≤ n(2g − 2) there is a connected component Md(SO0(n, n + 1)) ⊂

M(SO0(n, n+1)) which is smooth and parameterized by FdΣ×
n−1⊕
j=1

H0(Σ,K2j) where FdΣ→Sym−d+n(2n−2)(Σ)

is a vector bundle of rank d+ (2n− 1)(g − 1). Moreover, Mn(2g−2)(SO0(n, n+ 1)) = Hit(SO0(n, n+ 1)).

Other than Theorem 6.4.1, most of the contents of this chapter have been published in [Col15]. However,

for the results on maximal representations and minimal surfaces, the results in [Col15] only concern Sp(4,R)

and not PSp(4,R). Also, the parameterizations given in Theorem 6.3.6 and Theorem 6.2.21 are simpler than

those in [Col15].
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6.1 G-Cyclic surfaces

The surfaces we will be interested are solutions to certain Pfaffian systems in the spaces of Cartan triples

and Hitchin triples. The cyclic surfaces defined below are more general than [Lab14], yet, we show that

deformations of the below cyclic surfaces have many similarities with deformations of Labourie’s cyclic

surfaces.

6.1.1 Cartan triples and Hitchin triples

We now define the main reductive homogeneous spaces we will study. The spaces we will be interested in

are G/T and G/T0 where G is a complex simple Lie group and T is a maximal compact torus of G and T0

is the maximal compact torus of a split real form of G0 ⊂ G. We start by considering a more geometric set

of objects.

Definition 6.1.1. A Cartan triple is a triple (c,∆+, θ) where

• c ⊂ g is a Cartan subalgebra

• ∆+ ⊂ c∗ is a choice of positive roots

• θ is a c-Cartan involution

Let T ⊂ G be a maximal compact torus, Proposition 2.1.2 and Lemma 2.1.10 imply the following

proposition.

Proposition 6.1.2. The space of Cartan triples is isomorphic to G/T

Note that we could equivalently define (c,∆+, θ) to be a Cartan triple where θ is Cartan involution, and

(c,∆+) a Cartan subalgebra with positive root system and c is preserved by θ. There are natural projection

maps

G/C G/T
π1oo

π2��
G/K

where π1(c,∆+, θ) = (c,∆+) and π2(c,∆+, θ) = θ.

Definition 6.1.3. A Hitchin triple is a triple (∆+ ⊂ c∗, θ, λ) where

• c is a Cartan subalgebra

• ∆+ ⊂ ∆(g, c) ⊂ c∗ is a choice of positive roots
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• θ is a c-Cartan involution which globally preserves a PTDS s which contains x = 1
2

∑
α∈∆+

Hα.

• λ is a split real form which commutes with θ, globally preserves c, globally preserves a PTDS s which

contains x = 1
2

∑
α∈∆+

Hα and satisfies λ(Hµ) = −Hµ.

Proposition 6.1.4. Let G be a complex simple Lie group, and G0 be a split real form of G. The space of

Hitchin triple is diffeomorphic to G/T0 where T0 is the maximal compact torus of G0.

Proof. We first show that the G acts transitively on the space of Hitchin triple. Let (∆+
1 ⊂ c∗1, θ1, λ1) and

(∆+
2 ⊂ c∗2, θ2, λ2) be two such Hitchin triples. By Remark 2.1.8, we can conjugate (∆+

2 ⊂ c∗2) to (∆+
1 ⊂ c∗1).

Thus we may assume (∆+
1 ⊂ c∗1) = (∆+

2 ⊂ c∗2). Let x = 1
2

∑
α∈∆+

1

Hα, and suppose θ1 stabilizes an c-PTDS s1

and θ2 stabilizes an c-PTDS s2 with x ∈ s1 and x ∈ s2. By Theorem 4.2 of [Kos59] (q.f. Theorem 2.1.37),

the PTDSs s1 and s2 are conjugate via an element of C. Thus we may assume s1 = s2. Since θ1 and θ2 are

both c-Cartan involutions, θ1|c = θ2|c. Furthermore, θ1 and θ2 are both c ∩ s-Cartan involutions of s, by

Proposition 6.1.2, θ2|s can be conjugated to θ1|s by an element of the subgroup C′ ⊂ C with Lie algebra

c ∩ s. Observe that conjugating by C′ preserves (∆+
1 ⊂ c∗1, s1). Furthermore, g is generated by c + s, thus

after conjugating by such an element of C′, we obtain θ1 = θ2. Since θ1 = θ2 and s1 = s2, by uniqueness of

the involution σ, the splits real forms λ1 and λ2 are equal.

The stabilizer of (∆+ ⊂ c, ) is a maximal torus C, and the stabilizer of a c-Cartan involution is C ∩ K.

The stabilizer of the split real form λ is the corresponding split real group G0 ⊂ G. Thus the stabilizer of a

Hitchin triple (∆+ ⊂ c, θ, λ) is T0 = G0 ∩ K ∩ C.

Remark 6.1.5. A real form G0 is called a group of Hodge type if the maximal compact torus T0 ⊂ G0 is

a maximal compact torus of the complex group G. For split real forms, only SL(n,R), SO0(2n+ 1, 2n+ 1),

and the split real form of E6 are not of Hodge type. When a split real form G0 is of Hodge type, the space

of Cartan triples and the space of Hitchin triples are the same. In this case, the involution σ determined by

a c-PTDS containing x = 1
2

∑
α∈∆+

Hα acts as +Id on c, and c = t⊕ it.

Let M be the space of Cartan triples of Definition 6.1.1, then M ∼= G/T where T is the maximal compact

torus of G. If (c,∆+, θ) is a Cartan triple, let t = cθ, then t is the Lie algebra of T. We have the following

AdT invariant decompositions

g = t⊕ it⊕
⊕

α∈∆(g,c)

gα and g = k⊕ ik.
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Thus, the Lie algebra bundle [g] = g→G/T has corresponding compatible ∇c-parallel decompositions

g = [t]⊕ [it]⊕
⊕

α∈∆(g,c)

[gα] and g = [k]⊕ [ik].

Recall that TG/T ∼= [it]⊕
⊕

α∈∆(g,c)

[gα], thus the Maurer-Cartan form vanishes of [t], i.e. ω|[t] ≡ 0.

If ` = rank(g), then a set simple roots gives a Z`-grading of g called the root space decomposition

g = c⊕
⊕

α∈∆(g,c)

gα.

Since this decomposition is AdT-invariant and [gα, gβ ] ⊂ gα+β , the zero curvature equations decomposes as



F∇c +
∑

α∈∆+(g,c)

[ωα, ω−α]t = 0 t− part

d∇
c

ωit +
∑

α∈∆+(g,c)

[ωα, ω−α]it = 0 it− part

d∇
c

ωα + [ωit, ωα] +
∑

β,γ∈∆(g,c)
α=β+γ

[ωβ , ωγ ] = 0 mα − part

(6.1.1)

Recall that if {αi} is the collection of simple roots, then every root α can be written uniquely as α =∑
niαi, and the integer `(α) =

∑
ni is called the height of α. From equation (2.1.9), the grading element

x from the PTDS s gives a Z-grading on g

g = g−m` ⊕ · · · ⊕ g−1 ⊕⊕c⊕ g1 ⊕ · · · ⊕ gm`

where gj =
⊕

l(α)=j

gα. Since, [gj , gk] ⊂ gj+k, in terms of the height decomposition, the flatness equations

decompose as 
F∇c + d∇

c

ω0 +
∑
j>0

[ωj , ω−j ] = 0 c− part

d∇
c

ωj +
1

2

∑
k

[ωk, ωj−k] = 0 gj − part
(6.1.2)

Set g+ = exp( 2πi·x
m`+1 ), and consider the autormorphism Adg+ : g→g. Since ad(x) acts on gj with eigenvalue j,

the automorphism Adg+
acts on gj with eigenvalue ζj

m`+1
= e

2πi·j
m`+1 . Note that, by construction, Adg+

(X) = X

if and only if X ∈ c. An eigenspace decomposition of Adg gives a Z/(m` + 1)Z-grading on g:

g =
⊕

j∈Z/(m`+1)Z

ĝj
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where ĝj =
⊕

k=j mod m`+1

gk. The Maurer Cartan form decomposes as

ω =
∑

j∈Z/(m`+1)Z

ω̂j (6.1.3)

and the flatness equations decompose as


F∇c + d∇

c

ω̂0 +
∑
j>0

[ω̂j , ω̂−j ] = 0 ĝ0 = c− part

d∇
c

ω̂j +
1

2

∑
k

[ω̂k, ω̂j−k] = 0 ĝj − part
(6.1.4)

Remark 6.1.6. This grading will be essential for our definition of cyclic surfaces. The automorphism Adg+

makes the space G/T into a (m` + 1)-symmetric space. It will be important that the subspaces ĝ±1 are

ĝ1 = g1 ⊕ g−m` = gα1
⊕ · · · ⊕ gα` ⊕ g−µ and ĝ−1 = g−1 ⊕ gm` = g−α1

⊕ · · · ⊕ g−α` ⊕ gµ (6.1.5)

where {αi} is the set of simple roots and µ is the highest root. Furthermore, the compact involution θ maps

ĝ1 to ĝ−1.

For the space of Hitchin triples G/T0, the Cartan subalgebra decomposes as c = t0 ⊕ it ⊕ a ⊕ ia. The

tangent bundle is given by

TG/T0 = [it0]⊕ [a]⊕ [ia]⊕
⊕

α∈∆(g,c)

[gα]

and Maurer Cartan form vanishes on [t0]. The decompositions (6.1.1), (6.1.2), and (6.1.4) of the flatness

equations still hold.

Lemma 6.1.7. Let t0 ⊕m = g be the reductive decomposition corresponding to a Hitchin triple. The trivial

Lie algebra bundle g→G/T has the following data

• ω ∈ Ω1(G/T, [m] ⊂ g) the Maurer Cartan form

• the canonical connection ∇c with flat differentiation given by d = ∇c + adω

• [c] ⊂ g which decomposes as [c] = [t0]⊕ [it0]⊕ [a]

• ∇c-parallel subbundles [n+] ⊂ g and [n−] ⊂ g with [n−]⊕ [c]⊕ [n+] = g.

• ∇c-parallel conjugate linear involution Θ : g→g and Λ : g→g with fixed point set [k] and [g0].

• A ∇c-parallel complex linear involution σ = Θ ◦ Λ with eigenbundle decomposition g = [hC] ⊕ [mC],

where [h] ⊂ [g0] is the fixed point set of Θ|[g0].
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• A ∇c-parallel order (m` + 1) automorphism X+ : g→g with eigenbundles [ĝj ] and [c] the identity

eigenbundle.

Proof. The splitting of g into root space is AdT0
invariant, thus we have ∇c-parallel subbundles

[n+] =
⊕

α∈∆+

[gα] and [n−] =
⊕

α∈∆−
[gα] .

The fiber of [n+] over a Hitchin triple (∆+ ⊂ c∗, θ, λ) is
⊕

α∈∆+

gα. For X ∈ g, the conjugate linear involutions

Θ and Λ are defined by

Θ((∆+ ⊂ c∗, θ, λ), X)) = ((∆+ ⊂ c∗, θ, λ), θ(X)) and Λ((∆+ ⊂ c∗, θ, λ), X)) = ((∆+ ⊂ c∗, θ, λ), λ(X)) .

The subbundle [t0] is defined by

[t0] = {X ∈ [c] | Λ(X) = X = Θ(X)}.

By definition, the conjugate linear involutions Θ and Λ commute. Thus, we also obtain a complex linear

involution σ which is the complex linear extension of a Cartan involution of the split real form g0. If g0 = h⊕m

is the corresponding Cartan decomposition, then the eigenbundle splitting of g is given by

σ = Θ ◦ Λ : [hC]⊕ [mC].

Recall that for x = 1
2

∑
α∈∆+

Hα, and if the highest root has height m` then we defined g+ = exp( 2πix
m`+1 ). The

∇c-parallel automorphism X+ is defined by

X+((∆+ ⊂ c∗, θ, λ), X)) = ((∆+ ⊂ c∗, θ, λ), g+(X)).

Recall from Proposition 2.1.3, the symmetric space G/K is the space of Cartan involutions. The following

lemma will be important for our defintion of cyclic surfaces.

Lemma 6.1.8. Let g = [k] ⊕ [m] denote the trivializable Lie algebra bundle over M = G/K the symmetric

space of Cartan involutions of g. There is a canonical automorphism Θ : g−→g given by

Θ(θ,X) = (θ, θ(X)).
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Furthermore, the invariant metric on g induced by the Killing form is given by BΘ(X,Y ) = −Bg(X,Θ(Y )),

and is parallel with respect to the canonical connection, ∇cBΘ = 0.

Remark 6.1.9. The automorphism Θ has a natural extension to complex forms valued in g. If α ∈

Ω∗(G/K, g) is of the form α = A · a where A ∈ Ω∗(G/K) and a is a section of g, then Θ(α) = A ·Θ(a).

Proposition 6.1.10. Let N be a simply connected manifold and (g̃, D̃) be a flat g-bundle. Suppose

• Θ̃ : g̃→g̃ be a smoothly varying Cartan involution with g̃ = k̃ ⊕ m̃ the corresponding eigenbundle

decomposition.

• ∇̃ a connection with ∇̃Θ̃ = 0

• ω̃ ∈ Ω1(N, m̃) with D̃ = ∇̃+ adω̃.

Then there exists a map f : N→G/K, unique up to postcomposition by an element of G so that

f∗( g , Θ , ∇c , ω ) = ( g̃ , Θ̃ , ∇̃ , ω̃ ).

Proof. Since N is simply connected, choose a trivialization (g̃, D̃) = (N × g, d). In this trivialization, the

gauge transformation Θ̃ defines the map f : N→G/K with (f∗g, f∗Θ) = (g̃, Θ̃). Another trivialization

produces a map which differs from f by postcomposition by an element of G.

Thus, Θ̃ is parallel with respect to f∗∇c and ∇̃. Since the stabilizer of a Cartan involution is K, we

have f∗∇c − ∇̃ ∈ Ω(N, k̃), and thus f∗ω − ω̃ ∈ Ω1(N, k̃). But f∗ω − ω̃ ∈ Ω1(N, m̃), thus f∗∇c = ∇̃ and

f∗ω = ω̃.

The following proposition and corollary are proven in section 4 of [Lab14], the proofs are analogous to

Proposition 6.1.10.

Proposition 6.1.11. Let N be a smooth simply connected manifold and g be a complex simple Lie algebra.

Let (g̃, D̃)→N be a flat g-Lie algebra bundle with the following

• A smoothly varying Hitchin triple (̃c, ñ+, Θ̃, Λ̃) with corresponding decompositions

g̃ = t̃0 ⊕ ĩt⊕ ã⊕ ñ+ ⊕ ñ− = t̃0 ⊕ m̃

• ∇̃ a connection so that (̃c, ñ+, Θ̃, Λ̃) is parallel.

• ω̃ ∈ Ω1(N, m̃) with ∇̃+ adω̃ = D̃.
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Then there is a map f : N→G/T0, unique up to post composition by an element of G, so that

(g̃, ∇̃, ω̃, c̃, ñ+, Θ̃, Λ̃) = f∗(g, ∇c, ω, [c], [n+], Θ, Λ).

Corollary 6.1.12. Let N be a smooth manifold and g̃→N be a flat g-Lie algebra bundle equipped with the

structure of Proposition 6.1.11, then there exists

1. A representation ρ : π1(N)→G unique up to conjugation

2. A ρ-equivariant map f from the universal cover Ñ of N to the space of Hitchin triples G/T0 satisfying

the conclusion of Proposition 6.1.11.

Remark 6.1.13. Lemma 6.1.7, Proposition 6.1.11 and Corollary 6.1.12 all have analogous versions for the

space of Cartan triples.

6.1.2 Cyclic Pfaffian systems and cyclic surfaces

The general Pfaffian system definitions in this section come from section 7 of [Lab14].

Definition 6.1.14. Let E→N be a vector bundle over a smooth manifold N, and (η1, · · · , ηn) be a collection

of differential forms on N valued in E. A submanifold L ⊂ N is called a solution to the Pfaffian system

defined by (η1, · · · , ηn) if ηj |L ≡ 0 for all j.

The Pfaffian systems we will be interested are defined as follows:

Definition 6.1.15. Let ω ∈ Ω1(G/T, g) be the Maurer Cartan form of the space of Cartan triples G/T. A

G-cyclic Pfaffian system is defined by the vanishing of the following g-valued forms

((ω̂0, ω̂2, · · · , ω̂m`−1) , [ω̂−1, ω̂−1] , ω̂−1 + Θ(ω̂1))

where ω =
∑
ω̂j is the decomposition of (6.1.3).

For the space of Hitchin triples, we define a G0-cyclic Pfaffian system as follows.

Definition 6.1.16. Let ω ∈ Ω1(G/T0, g) be the Maurer-Cartan form of the space of Hitchin triples G/T0.

The G0-cyclic Pfaffian system is defined by the vanishing of the following g-valued forms

((ω̂0, ω̂2, · · · , ω̂m`−1) , [ω̂−1, ω̂−1] , ω̂ + Θ(ω̂) , Λ(ω)− ω)

where ω =
∑
ω̂j is the decomposition of (6.1.3).
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The above definition are related to the τ -primitive maps consider for compact groups G in [BPW95]. In

the context of representations of surface groups, we are interested in maps from a Riemann surface Σ to the

spaces of Cartan triples and Hitchin triples.

Definition 6.1.17. Let Σ be a Riemann surface (not necessarily compact), a map f : Σ→G/T is a G-cyclic

surface if it is a G-cyclic Pfaffian system and f∗ω̂−1 is a (1, 0)-form. Similarly, a map f : Σ→G/T0 is a

G0-cyclic surface if it is a G0-cyclic Pfaffian system and f∗ω̂−1 is a (1, 0)-form.

Remark 6.1.18. The reality condition f∗(Λ(ω)) = f∗(ω) for a G0-cyclic surface implies f(Σ) lies in a G0

orbit. If G0 is a split real form of Hodge type, then T0 = T, and the G0-cyclic condition is just an extra

symmetry a G-cyclic map must satisfy.

The following theorem relates equivariant cyclic surfaces and Higgs bundles that are fixed points of〈
ζm`

〉
⊂ U(1).

Theorem 6.1.19. Let G be a complex simple Lie group of rank at least 2, and ρ ∈ X (G). If g→G/T is the as-

sociated Lie algebra bundle and f : Σ̃→G/T be a ρ-equivariant G-cyclic surface, then (f∗g, (f∗∇c)01, f∗ω̂−1)

is a G-Higgs bundle that is a fixed point of the
〈
ζm`+1

〉
-action. Furthermore, f∗BΘ solves the Hitchin

equations which simplify to

Ff∗∇c +
∑̀
i=1

[f∗ωαi , f
∗ω−αi ] + [f∗ωµ, f

∗ω−µ] = 0.

Proof. To prove that (f∗g, (f∗∇c)01, f∗ω̂−1) is a G-Higgs bundle we just need to show f∗ω̂−1 is holomorphic.

By equations (6.1.3), the flatness equations for ∇c + ω we have

d∇ω̂−1 +

m∑̀
j=0

[ω̂j , ω̂−j−1] = 0.

By the cyclic assumption, f∗ω̂j = 0 for j 6= ±1, thus, pulling back the flatness equations, we have

df
∗∇(f∗ω̂−1) = 0.

Since f∗ω̂−1 is a (1, 0)-form, we conclude that (df
∗∇)01f∗ω−1 = 0.

To see that it is a fixed point of
〈
ζm`+1

〉
, recall from Lemma 6.1.7 that there is an automorphism

X+ : g→g, of order (m` + 1), which acts as ζ−1
m`+1 on [ĝ−1]. Thus f∗(X+)−1 is a gauge transformation of f∗g

which acts as ζm`+1 on the Higgs field f∗ω̂−1.
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Recall that by definition of a G-cyclic surface, we have f∗(−Θ(ω̂−1)) = f∗ω̂1, thus the adjoint of the

Higgs field f∗ω̂−1 is given by f∗(−Θ(ω̂−1)) = f∗ω̂1. Using the decompositions of (6.1.5) we have

ω̂1 =
∑̀
i=1

ωαi + ω−µ ω̂−1 =
∑̀
i=1

ω−αi + ωµ .

The assumption that f∗ω0 = 0, and the flatness equations of (6.1.3) imply

Ff∗∇c +
∑̀
i=1

[f∗ωαi , f
∗ω−αi ] + [f∗ωµ, f

∗ω−µ] = 0.

Since f∗∇c is a metric connection for the hermitian metric f∗BΘ, and the holomorphic structure is on f∗g

is defined to be (f∗∇c)01, we conclude that f∗BΘ solves the Hitchin equations.

Corollary 6.1.20. Let G be a complex simple Lie group with rank at least 2, ρ ∈ X (G), and f : Σ̃→G/T be

an ρ-equivariant G-cyclic surface, then the associated equivariant harmonic map hρ,J = f ◦ π : Σ̃→G/H is a

minimal surface.

Proof. Since the Higgs bundle admits a solution to the Hitchin equations, it is polystable. Since it is a fixed

point of 〈ζm`+1〉 and rank(g) ≥ 2, the quadratic differential is the image of the Hitchin fibration vanishes,

thus the Hopf differential of the harmonic map is zero and we conclude the harmonic map is a branched

minimal immersion.

Similarly, for G0-cyclic surfaces we have the following theorem.

Theorem 6.1.21. Let G be a complex simple Lie group of rank at least 2, and ρ ∈ X (G). If g→G/T0 is the as-

sociated Lie algebra bundle and f : Σ̃→G/T0 be a ρ-equivariant G0-cyclic surface, then (f∗[hC], (f∗∇c)01, f∗ω̂−1)

is a G0-Higgs bundle that is a fixed point of the
〈
ζ
m`+1

〉
-action. Furthermore, f∗BΘ solves the Hitchin equa-

tions which simplify to

Ff∗∇c +
∑̀
i=1

[f∗ω−αi , f
∗ωαi ] + [f∗ωµ, f

∗ω−µ] = 0.

Remark 6.1.22. In this case, the representation ρ ∈ X (G) is actually in X (G0).

Proof. Recall from Lemma 6.1.7, that the Lie algebra bundle g→G/T0 has a complex linear involution

σ = Θ ◦ Λ which has eigenbundle decomposition g = [hC] ⊕ [mC] where g0 = h ⊕ m is the corresponding

Cartan decomposition. To show that (f∗[hC], (f∗∇c)01, f∗ω̂−1) is a G0-Higgs bundle, we must show that

f∗ω̂−1 ∈ Ω10(Σ, f∗[mC]). Recall from Remark 2.1.39, the involution σ preserves the height grading

g−m` ⊕ · · · g−1 ⊕ c⊕ g1 ⊕ · · · ⊕ gm` ,
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and thus, σ preserves both ĝ1 and ĝ−1. By the definition of a G0-cyclic surface 6.1.17, f∗ω = f∗ω̂−1 + f∗ω̂1

and

f∗Θ(f∗ω̂−1 + f∗ω̂1) = −f∗ω̂1 − f∗ω̂−1 f∗Λ(f∗ω̂−1 + f∗ω̂1) = f∗ω̂−1 + f∗ω̂1 .

Hence, σ(f∗ω̂−1 + f∗ω̂1) = −(f∗ω̂−1 + f∗ω̂1), and, furthermore, since σ preserves [ĝ−1],

σ(ω̂−1) = −ω̂−1.

This proves that f∗ω̂−1 ∈ Ω10(Σ, f∗[mC]).

We also need to check that the gauge transformation f∗X+ is an f∗[hC]-gauge transformation. Recall

that the grading element x of the PTDS is in the +1-eigenspace of σ (see Remark 2.1.39). Since X+ is

obtained from exponentiating x, it follows that f∗X+ is an [hC]-gauge transformation. The proof of the rest

of the theorem is identical to the proof of Theorem 6.1.19.

6.1.3 Deformations of cyclic Pfaffian systems and cyclic surfaces

Definition 6.1.23. Let F = (ft) : L→N be a one parameter family with f0 being the inclusion and set

ξ =
d

dt

∣∣∣∣
t=0

ft.

Then ξ ∈ Ω0(L, f∗0TN) is a vector field along L in N called the tangent vector field to the family F. A family

F = (ft) is a first order deformation of the Pfaffian system L defined by (η1, · · · , ηn) if, for all j,

d

dt

∣∣∣∣
t=0

f∗t ηi = 0.

In the above definition, we have chosen a connection to identify f∗t E and f∗0E, this choice does not effect

the definition.

Definition 6.1.24. A vector field ξ along a solution L of a Pfaffian system given by η = (η1, · · · , ηn) is an

infinitesimal variation of the Pfaffian system if, for any connection ∇, and all j,

ιξd
∇ηj

∣∣
L

= −d∇(ιξηj)
∣∣
L
.

The relation between first order deformations and variations is given by Proposition 7.1.4 of [Lab14]:

Proposition 6.1.25. Let ξ be a tangent vector to a family of first order deformations of a Pfaffian system
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η = (η1, · · · , ηn), then ξ is an infinitesimal variation of the Pfaffian system.

Proof. See Proposition 7.1.4 of [Lab14].

Definition 6.1.26. An infinitesimal variation of a G-cyclic surface is an infinitesimal variation of a G-cyclic

Pfaffian system. An infinitesimal variation of a G0-cyclic surface is an infinitesimal variation ξ of a G0-cyclic

Pfaffian system such that Λ(ξ) = ξ.

Definition 6.1.27. Let ρ : π1(S)→G be a representation and f : Σ̃→G/T be a ρ-equivariant G-cyclic surface.

If ξ is an infinitesimal variation of a G-cyclic surface, then ξ is an infinitesimal variation of the equivariant

G-cyclic surface if it is ρ-equivariant. Similarly for an equivariant G0-cyclic surface.

The signs in the following lemma will be crucial.

Lemma 6.1.28. Let Σ be a compact Riemann surface and f a G-cyclic surface or a G/T0-cyclic surface.

Let α ∈ Ω10(Σ, f∗g) and β ∈ Ω01(Σ, f∗g) then

−i
∫
Σ

Bg(α,Θα) ≥ 0 and i
∫
Σ

Bg(β,Θβ) ≥ 0 .

Also, if α, β ∈ Ω1(Σ, f∗g) and γ ∈ Ω0(Σ, f∗g), then

Bg(γ, [β, α]) = Bg([γ, α], β). (6.1.6)

Proof. It is suffices to check the sign on a form α = A · a where a is a section of f∗g and A ∈ Ω10(Σ). By

Remark 6.1.9, Θ(α) = A ·Θ(a) and hence, since −Bg(·,Θ·) is positive definite,

−i
∫
Σ

Bg(α,Θα) = −i
∫
Σ

A ∧A ·Bg(a,Θa) ≥ 0.

Equation (6.1.6) follows from a calculation using invariance of the Killing form.

Let f : Σ→G/T be a G-cyclic surface, we will use the following notation

ω̂−1|f(Σ) = Φ = Φ−1 + Φm` and ω̂1|f(Σ) = Φ∗ = Φ∗1 + Φ∗−m` .

Let ξ is an infinitesimal variation of f , and denote the contraction with ω by

ζ = ιξ(ω).
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Using the various decompositions of the Maurer Cartan form ω, we have the following decompositions

ζ = ζ0 +
∑

α∈∆(c,g)

ζα , ζ =
m∑̀

j=−m`
ζj , ζ =

∑
j∈Z/(m`+1)Z

ζ̂j . (6.1.7)

The following notation will also be useful

ζ = ζ̂−1 + ζ̂0 + ζ̂1 + ζ̂Y , (6.1.8)

where ζ̂Y =
∑

j 6=0,1,−1

ζ̂j .

Using the decomposition of the flatness equations (6.1.2) we have

d∇
c

ωj +

m∑̀
k=−m`

[ωk, ωj−k] = 0.

By Definition 6.1.24, on the surface f(Σ), we have ιξ(d
∇cωj) = −d∇c(ζj) for j 6= −m`,−1, 1,m`. Contracting

the wedge product is given by

ιξ[ωj , ωj−k] = [ζj , ωj−k]− [ωj , ζj−k] = [ζj , ωj−k] + [ζj−k, ωj ].

Thus, contracting the flatness equations with ξ yields

d∇
c

(ζj) =

m∑̀
k=−m`

([ζk, ωj−k] + [ζj−k, ωk]) j 6= −m`,−1, 1,m` (6.1.9)

The assumption on a cyclic surface that f∗ω̂j = 0 for j 6= ±1 and the fact that Φ is a (1, 0)-form and Φ∗ is

a (0, 1)-form allows us to simplify the equations. For 1 < j < m` we have

∂∇
c

(ζj) = 2([ζj+1,Φ−1] + [ζj−m` ,Φm`)] and ∂̄∇
c

(ζj) = 2[ζj−1,Φ
∗
1] (6.1.10)

and for −m` < j < −1 we have

∂∇
c

(ζj) = 2[ζj+1,Φ−1] and ∂̄∇
c

(ζj) = 2([ζj−1,Φ
∗
1] + [ζj+m` ,Φ

∗
−m` ]) (6.1.11)

Let πY denote the projection onto the Y component of equation (6.1.8), then equations (6.1.10) and (6.1.11)
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can be written compactly as:

∂∇
c

ζ̂Y = 2πY

(
[Φ, (ζ̂Y + ζ̂−1)]

)
and ∂̄∇

c

ζ̂Y = 2πY

(
[Φ∗, (ζ̂Y + ζ̂1)]

)
(6.1.12)

For j = −1, 1 even though ιξ (d∇
c

ω̂j)
∣∣
Σ
6= −d∇c ζ̂j , by equations (6.1.4) we have

ιξ(∂
∇c ω̂−1)

∣∣
Σ

= −2[ζ0,Φ] and ιξ(∂̄
∇c ω̂1)

∣∣
Σ

= −2[ζ0,Φ
∗] (6.1.13)

Similarly,

ιξ(∂̄
∇cω−1)

∣∣
Σ

= −2([ζ−2,Φ
∗
1] + [ζ−1+m` ,Φ

∗
−m` ]) , ιξ(∂

∇cω1)
∣∣
Σ

= −2([ζ2,Φ−1] + [ζ−1−m` ,Φm` ]) ,

ιξ(∂̄
∇cωm`)

∣∣
Σ

= −2[ζm`−1,Φ
∗
1] , ιξ(∂

∇cω−m`)
∣∣
Σ

= −2[ζ−m`+1,Φ−1] .

(6.1.14)

Proposition 6.1.29. The second derivatives are given by

∂̄∇
c

(∂∇
c

ζ̂Y ) = 4πY

([[
ζ̂Y ,Φ

∗
]
,Φ
])

, ∂∇
c

(∂̄∇
c

ζ̂Y ) = 4πY

([[
ζ̂Y ,Φ

]
,Φ∗

])
, (6.1.15)

∂̄∇
c

(∂∇
c

ζ̂0) = 4πit

([[
ζ̂0,Φ

∗
]
,Φ
])

, ∂∇
c

(∂̄∇
c

ζ̂0) = 4πit

([[
ζ̂0,Φ

]
,Φ∗

])
. (6.1.16)

Proof. Recall that on a G-cyclic surface we have ∂∇
c

Φ = ∂̄∇
c

Φ = ∂∇
c

Φ∗ = ∂̄∇
c

Φ∗ = 0. We will first show

equation (6.1.15). Using equations (6.1.10) and (6.1.11), a direct computation shows



∂̄∇
c

(∂∇
c

ζj) = 4
(
[[ζj ,Φ

∗
1] ,Φ−1] + [[ζj−m`−1,Φ

∗
1] ,Φm` ] +

[[
ζj ,Φ

∗
−m`

]
,Φm`

])
1 < j < m` − 1

∂̄∇
c

(∂∇
c

ζj) = 4
(
[[ζj ,Φ

∗
1] ,Φ−1] +

[[
ζj+1+m` ,Φ

∗
−m`

]
,Φ−1

])
−m` < j < −2

∂∇
c

(∂̄∇
c

ζj) = 4 ([[ζj ,Φ−1] ,Φ∗1] + [[ζj−1−m` ,Φm` ] ,Φ
∗
1]) 2 < j < m`

∂∇
c

(∂̄∇
c

ζj) = 4
(
[[ζj ,Φ−1] ,Φ∗1] +

[
[ζj+m`+1,Φ−1] ,Φ∗−m`

]
+
[
[ζj ,Φm`] ,Φ

∗
−m`

])
−m` + 1 < j < −1

The remaining cases are given by

∂̄∇
c

(∂∇
c

ζm`−1) = 2
([
∂̄∇

c

ζm` ,Φ−1

]
+
[
∂̄∇

c

ζ−1,Φm`
])

, ∂̄∇
c

(∂∇
c

ζ−2) = 2[∂̄∇
c

ζ−1,Φ−1] ,

∂∇
c

(∂̄∇
c

ζ−m`+1) = 2
([
∂∇

c

ζ−m` ,Φ
∗
1

]
+
[
∂∇

c

ζ1,Φ
∗
−m`

])
, ∂∇

c

(∂̄∇
c

ζ2) = 2[∂∇
c

ζ1,Φ
∗
1] .

We will compute the first two cases, the remaining two cases follow by a symmetric argument. Recall that
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∂∇
c

Φ = ∂̄∇
c

Φ = ∂∇
c

Φ∗ = ∂̄∇
c

Φ∗ = 0 on a cyclic surface, thus

∂̄∇
c

(ιξ[ωm` , ω−1]) = [∂̄∇
c

ζm` ,Φ−1] + [∂̄∇
c

ζ−1,Φm` ] , ∂̄∇
c

(ιξ[ω−1, ω−1]) = 2[∂̄∇
c

ζ−1,Φ−1] (6.1.17)

However, since [ω1, ω1] = [ω1, ω−m` ] = [ω−1, ω−1] = [ω−1, ωm` ] = 0 on a cyclic surface, we have


∂̄∇

c

(ιξ [ωm` , ω−1]) = −
[
ιξ(∂̄

∇cωm`)
∣∣∣
Σ
,Φ−1

]
−
[
ιξ(∂̄

∇cω−1)
∣∣∣
Σ
,Φm`

]
∂̄∇

c

(ιξ [ω−1, ω−1]) = −2
[
ιξ(∂̄

∇cω−1)
∣∣∣
Σ
,Φ−1

] (6.1.18)

Using equations (6.1.14) and (6.1.17), we have the desired result:

2([∂̄∇
c

ζm` ,Φ−1] + [∂̄∇
c

ζ−1,Φm` ]) = 4
(
[[ζm`−1,Φ

∗
1] ,Φ−1] + [[ζ−2,Φ

∗
2] ,Φm` ] +

[[
ζ−1+m` ,Φ

∗
−m`

]
,Φm`

])
and

2
[
∂̄∇

c

ζ−1,Φ−1

]
= 4

(
[[ζ−2,Φ

∗
1] ,Φ−1] +

[[
ζ−1+m` ,Φ

∗
−m`

]
,Φ−1

])
.

Thus, we obtain the desired formula:

∂̄∇
c

(∂∇
c

ζ̂Y ) = 4πY

([[
ζ̂Y ,Φ

∗
]
,Φ
])

and ∂∇
c

(∂̄∇
c

ζ̂Y ) = 4πY

([[
ζ̂Y ,Φ

]
,Φ∗

])

We now prove formula (6.1.16), for ∂̄∇
c

∂∇
c

ζ̂0 and ∂∇
c

∂̄∇
c

ζ̂0. Since ω̂0 vanishes along a G-cyclic surface,

by the flatness equations (6.1.9), we have

∂∇
c

ζ̂0 = 2[ζ̂1,Φ] and ∂̄∇
c

ζ̂0 = 2[ζ̂−1,Φ
∗].

Recall that ζ̂0 vanishes along the subbundle [t], that is, πitζ̂0 = ζ̂0. Thus, the second derivatives are

∂̄∇
c

∂∇
c

ζ̂0 = 2[∂̄∇
c

ζ̂1,Φ] = 2πit

(
[∂̄∇

c

ζ̂1,Φ]
)
, ∂∇

c

∂̄∇
c

ζ̂0 = 2[∂∇
c

ζ̂−1,Φ
∗] = 2πit

(
[∂∇

c

ζ̂−1,Φ
∗]
)
.

(6.1.19)

Since ω̂1 = −Θ(ω̂−1) on a G-cyclic surface, it follows that πit([ω̂1, ω̂−1]) = 0 along a G-cyclic surface. Thus,

ιξd
∇cπit([ω̂1, ω̂−1])

∣∣∣
Σ

= −d∇
c

(ιξπit([ω̂1, ω̂−1])|Σ).

107



The subbundle [it] is parallel with respect to ∇c, thus

πit

(
ιξd
∇c([ω̂1, ω̂−1])

∣∣∣
Σ

)
= −πit

(
d∇

c

(ιξ([ω̂1, ω̂−1])|Σ)
)
.

For the (1,0) part, we have

πit

(
ιξ∂
∇c([ω̂1, ω̂−1])

∣∣∣
Σ

)
= πit

(
[ (∂∇

c

ω̂1)
∣∣∣
Σ
,Φ] + [(∂∇

c

ω̂−1)
∣∣∣
Σ
,Φ∗]

)
= πit

(
(∂∇

c

ω̂−1)
∣∣∣
Σ
,Φ∗])

)
.

The term [∂∇
c

ζ̂1,Φ] vanishes since it is a (2, 0)-form. A similar calculations for the (0,1) part gives

πit
(
ιξ
(
∂̄∇

c

([ω̂1, ω̂−1])
)∣∣

Σ

)
= πit

(
[∂̄∇

c

ζ̂1,Φ]
)
.

Thus, by equations (6.1.19),

∂̄∇
c

∂∇
c

ζ̂0 = 2πit
(
ιξ
(
∂̄∇

c

([ω̂1, ω̂−1])
)∣∣

Σ

)
and ∂∇

c

∂̄∇
c

ζ̂0 = 2πit

(
ιξ∂
∇c([ω̂1, ω̂−1])

∣∣∣
Σ

)

The term −πit
(
d∇

c

(ιξ([ω̂1, ω̂−1])|Σ)
)

is computed using equation (6.1.13):

−πit
(
∂∇

c

(ιξ([ω̂1, ω̂−1])|Σ)
)

= −πit
(

[
(
∂∇

c

ιξω̂1

)∣∣∣
Σ
,Φ] + [

(
∂∇

c

ιξω̂−1

)∣∣∣
Σ
,Φ∗]

)
= 2πit

(
[[ζ̂0,Φ],Φ∗]

)
.

A similar computation shows

−πit
(
∂̄∇

c

(ιξ([ω̂1, ω̂−1])|Σ)
)

= 2πit

(
[[ζ̂0,Φ

∗],Φ]
)
.

Thus, on a G-cyclic surface,

∂∇
c

∂̄∇
c

ζ̂0 = 4πit

(
[[ζ̂0,Φ],Φ∗]

)
and ∂̄∇

c

∂∇
c

ζ̂0 = 4πit

(
[[ζ̂0,Φ

∗],Φ]
)
.

Proposition 6.1.30. Let ρ : π1(S)→G and f : Σ̃→G/T be a ρ-equivariant G-cyclic surface. Let ζ̂Y , ζ̂0, Φ

and Φ∗ be as above, then

∂∇
c

ζ̂Y = 0 , ∂̄∇
c

ζ̂Y = 0 , [Φ, ζ̂Y ] = 0 , [Φ∗, ζ̂Y ] = 0
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and

∂∇
c

ζ̂0 = 0 , ∂̄∇
c

ζ̂0 = 0 , [Φ, ζ̂0] = 0 , [Φ∗, ζ̂0] = 0 .

Proof. Recall from Lemma 6.1.28 that

0 ≤ −i
∫
Σ

Bg

(
∂∇

c

ζ̂Y ,Θ
(
∂∇

c

ζ̂Y

))
.

Since the canonical connection is a metric connection, we have

d
(
−Bg

(
ζ̂Y ,Θ

(
∂∇

c

ζ̂Y

)))
= −Bg

(
∂∇

c

ζ̂Y ,Θ
(
∂∇

c

ζ̂Y

))
−Bg

(
ζ̂Y ,Θ

(
∂̄∇

c

∂∇
c

ζ̂Y

))
.

Integrating over Σ gives

0 ≤ −i
∫
Σ

Bg

(
∂∇

c

ζ̂Y ,Θ
(
∂∇

c

ζ̂Y

))
= i

∫
Σ

Bg

(
ζ̂Y ,Θ

(
∂̄∇

c

∂∇
c

ζ̂Y

))
.

Recall that [ĝY ] =
⊕

j 6=−1,0,1

[ĝj ] and Θ ([ĝj ]) ⊂ [ĝ−j ]. Also, if i + j 6= 0 mod (m` + 1) then ĝj and ĝi are

orthogonal with respect to BΘ. Thus, the bundles [ĝj ] and [ĝi] are orthogonal. Thus, using equations

(6.1.15) we have

0 ≤ 4i

∫
Σ

Bg

(
ζ̂Y ,Θ

(
πY

([[
ζ̂Y ,Φ

∗
]
,Φ
])))

= 4i

∫
Σ

Bg

(
ζ̂Y ,Θ

([[
ζ̂Y ,Φ

∗
]
,Φ
]))

.

Lemma 6.1.28 and the cyclic surface assumption Φ = −Θ (Φ∗) yield

0 ≤ −i
∫
Σ

Bg

(
∂∇

c

ζ̂Y ,Θ
(
∂∇

c

ζ̂Y

))
= −4i

∫
Σ

Bg

([
ζ̂Y ,Φ

∗
]
,Θ
([
ζ̂Y ,Φ

∗
]))
≤ 0.

Thus

∂∇
c

ζ̂Y = 0 and [Φ∗, ζ̂Y ] = 0 (6.1.20)

By a symmetric argument, we obtain

∂̄∇
c

ζ̂Y = 0 and [Φ, ζ̂Y ] = 0 (6.1.21)
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For ζ̂0, consider the following integral:

0 ≤ −i
∫

Σ

Bg

(
∂∇

c

ζ̂0,Θ(∂∇
c

ζ̂0)
)

= i

∫
Σ

Bg

(
ζ̂0,Θ(∂̄∇

c

∂∇
c

ζ̂0)
)

Using equations (6.1.16), the fact that it⊕ t is is orthogonal, Lemma 6.1.28 and Θ(Φ∗) = −Φ we have

0 ≤ 4i

∫
Σ

Bg

(
ζ̂0,Θ([[ζ̂0,Φ

∗],Φ])
)

= −4i

∫
Σ

Bg

(
[ζ̂0,Φ

∗],Θ
(

[ζ̂0,Φ
∗]
))
≤ 0.

Thus,

∂∇
c

ζ̂0 = 0 and [Φ∗, ζ̂0] = 0 .

A symmetric argument shows

∂̄∇
c

ζ̂0 = 0 and [Φ, ζ̂0] = 0 .

The same calculations show that the analogous proposition for equivariant G0-cyclic surfaces is also true.

Corollary 6.1.31. Let ρ : π1(S)→G and f : Σ̃→G/T0 be a ρ-equivariant G0-cyclic surface. Let ζ̂Y , Φ and

Φ∗ be as above, then

∂∇
c

ζ̂Y = 0 , ∂̄∇
c

ζ̂Y = 0 , [Φ, ζ̂Y ] = 0 , [Φ∗, ζ̂Y ] = 0 ,

∂∇
c

ζ̂0 = 0 , ∂̄∇
c

ζ̂0 = 0 , [Φ, ζ̂0] = 0 , [Φ∗, ζ̂0] = 0 .

Furthermore, if c = t ⊕ it ⊕ a ⊕ ia is the decomposition of the Cartan subalgebra, then ζ̂0 vanishes along

it⊕ ia. In particular, if G0 is of Hodge type then ζ̂0 = 0

Proof. The first part is an immediate corollary of the proof of Proposition 6.1.30. The variation ζ̂0 is along

it⊕ a⊕ ia, where Λ acts as +1 on a and −1 on it⊕ ia. But, by the reality condition of variations of G0-cyclic

surfaces, Λ(ζ̂0) = ζ̂0; thus, ζ̂0 vanishes along it ⊕ ia. Recall that a G0 is of Hodge type then the a = {0},

thus, in this case ζ̂0 = 0.

If ρ : π1(S)→G is representation and f : Σ̃→G/T is a G-cyclic surface, then Proposition 6.1.30 says that

ζ̂0 and ζ̂Y are covariantly constant with respect to the flat connection f∗∇c + Φ + Φ∗. Thus, if either ζ̂0 or

ζ̂Y is non zero, then they are in the centralizer of the representation ρ. However, if ρ is a smooth point, then
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the centralizing subalgebra is zero by Proposition 3.1.6; thus we have the following proposition.

Proposition 6.1.32. Let G be a complex simple Lie group, and ρ : π1(S)→G be an irreducible representation.

If f : Σ̃→G/T be a ρ-equivariant cyclic surface, then for any variation ξ, we have

ιξ(f
∗ω̂0) = ζ̂0 = 0 and ιξ(f

∗ω̂Y ) = ζ̂Y = 0 .

6.1.4 Special cyclic surfaces

In this subsection we consider equivariant cyclic surfaces with extra conditions on f∗ω−1 and show that for

these special equivariant cyclic surfaces are rigid.

Proposition 6.1.33. Let (S, J) = Σ be a compact Riemann surface, G be a complex simple Lie group of

rank at least 2 and not SL(3,C). Let ρ : π1(S)→G be an irreducible representation and f : Σ̃→G/T0 be a

ρ-equivariant G0-cyclic surface so that f∗ω−αi 6= 0 for all simple roots αi. If ξ is an infinitesimal variation

with the property that there exists a simple root α with ιξω−α ≡ 0, then

ιξω ≡ 0.

Remark 6.1.34. The analogous statement follows for G-cyclic surfaces if one assumes that there are simple

roots α and β so that ιξω−α ≡ 0 ≡ ιξω+β . For G0-cyclic surfaces, if ιξω−α ≡ 0, the reality condition Λξ = ξ

on an infinitesimal variation implies that ιξωΛ(−α) ≡ 0. Furthermore, since Θ flips positive simple roots and

negative simple roots, σ preserves the set of positive simple roots and Λ = Θ ◦ σ, it follows that Λ(−α) is a

positive simple root. If G0 is of Hodge type, then Λ(−α) = α.

Proof. Let ξ be a variation of the ρ-equivariant G0-cyclic surface f : Σ̃→G/T0, and ζ = ιξω. Using the

decompositions of (6.1.7) and (6.1.8), by Corollary 6.1.31,

ζ̂0 = 0 and ζ̂Y = 0 .

It remains to show ζ̂1 = 0 = ζ̂−1. Recall that G 6= SL(3,C), thus, ĝY 6= {0}, in particular g±2 6= {0}.

A infinitesimal variation ξ of a G0-cyclic surface satisfies the reality condition Λξ = ξ. By Lemma 2.1.10,

Θ(gα) = g−α for all roots, and by Proposition 2.1.41, the involution σ sends roots simple root spaces to

simple root spaces. Since there is a simple root α so that ζ−α ≡ 0 and Λζ = ζ, it follows that there is a

simple root −Λ(α) so that ζ−Λα ≡ 0.
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By equation (6.1.12), we have

0 = ∂∇
c

(ζ−2) = 2[ζ−1,Φ−1] and 0 = ∂̄∇
c

(ζ2) = 2[ζ1,Φ
∗
1] .

Thus for each pair of simple roots αi, αj so that αi + αj is a root, we have

[ζ−αi ,Φ−αj ] + [ζ−αj ,Φ−αi ] = 0 and [ζαi ,Φ
∗
αj ] + [ζαj ,Φ

∗
αi ] = 0 .

Since Φ−αi = f∗ω−αi , by assumption Φ−αi is a nonzero holomorphic section. By the definition of a G0-cyclic

surface,

f∗Θ(Φαi) = f∗(Θω−αi) = −f∗(ωαi) = −Φ∗αi .

Thus, Φ∗αi is also nonzero for all simple roots.

The group G is simple, thus the Dynkin diagram is connected and we conclude that ζ±αi = 0 for all

simple roots. It remains to show that for the highest root µ, we have ζ±m` = ζ±µ = 0. By equations (6.1.12),

we have

0 = ∂̄∇
c

(ζm`−1) = 2[ζm` ,Φ
∗
1] and 0 = ∂∇

c

(ζ−m`+1) = 2[ζm` ,Φ−1] .

Since G 6= SL(3,C), we have g±1 6= g±(m`−1) 6= {0}. Thus, for each roots γ = µ − αi ∈ gm`−1 we have

0 = [ζµ,Φ−αi ]. Hence ζµ = 0, and similarly, ζ−µ = 0.

Remark 6.1.35. Proposition 6.1.33 is also true when G = SL(3,C), see Proposition 7.7.4 of [Lab14].

In [Lab14], Labourie considers maps f : S→G/T0 from the surface S, without a conformal structure, to the

space of Hitchin Triples G/T0 that satisfy f∗ω̂j = 0 for j 6= ±1, f∗(Θ(ω̂−1)) = −f∗(ω̂1), f∗([ω̂−1, ω̂−1]) = 0,

f∗(Λω) = f∗ω and satisfy the extra assumption that for all simple roots αi,

f∗ω−αi is nowhere vanishing.

It is then proven that there is a unique conformal structure on S so that f∗ω̂−1 is a (1, 0)-form.

Proposition 6.1.36. Let rank(G) ≥ 2, a map f : S→G/T satisfies: f∗ω̂j = 0 for j 6= ±1 and

f∗(Θ(ω̂−1)) = −f∗(ω̂1) , f∗([ω̂−1, ω̂−1]) = 0 , f∗(Λω) = f∗ω.
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Suppose that f∗ωαi has discrete zeros for all simple roots αi and that there exists a simple root β so that

f∗ω−β is nowhere vanishing.

Then there exists a unique conformal structure (S, J) = Σ, so that f : Σ→G/T is a cyclic surface.

Thus, Definition 6.1.17 and the cyclic surfaces in Proposition 6.1.33 are generalizations of the cyclic

surfaces in [Lab14]. The cyclic surfaces related to maximal Sp(4,R) representations are more special than

those considered in Proposition 6.1.33 and more general than Labourie’s. Namely, we only require that there

exists a simple root αi so that f∗ω−αi is nowhere vanishing.

Proof. Let β ∈ ∆+(g, c) be a simple roots for which f∗ω−β is nowhere vanishing. Since f∗ω is nowhere

vanishing, df : TS→[g−β ] is an isomorphism. Thus, there is a unique complex structure (S, J) = Σ so that

f∗ω−β is a (1, 0)-form.

Since f∗([ω̂−1, ω̂−1]) = 0, decomposing this in terms of root spaces we have for all simple roots α and γ

[f∗ω−α, f
∗ω−γ ] = 0 and [f∗ω−α, f

∗ωµ] = 0 .

Recall that g is simple, so there is a simple root α so that −β − α is a root, in particular,

[[g−α], [g−β ]] 6= 0.

By [f∗ω−α, f
∗ω−β ] = 0, it follows that f∗ω−α is a (1, 0)-form. Using the fact that g is simple and that

f∗ω−α has discrete zeros, we conclude that for all simple roots α, the form f∗ω−α is a (1, 0)-form. Similarly,

there is there is a simple root α so that µ−α is a root. We again conclude that f∗ωµ is a (1, 0)-form, proving

f∗ω̂−1 is a (1, 0)-form.

Putting everything together, we obtain the following theorem which is the analogue to the transversality

of the Hitchin map in [Lab14].

Theorem 6.1.37. Let G be a complex simple Lie group of rank at least 2, ρ : π1(S)→G an irreducible

representation, and (S, J) = Σ be a conformal structure. Suppose f : Σ̃→G/T0 a ρ-equivariant G0-cyclic

surface such that there exists a simple root α so that f∗ω−α is nowhere vanishing and, for all simple roots

αi, the form f∗ω−αi is nonzero. Let (ρt, Jt) is a one parameter family with (ρ0, J0) = (ρ, J) and ft :

(̃S, Jt)→G/T0 be a family of ρt-equivariant G0-cyclic surfaces with f0 = f . If [ ddt
∣∣
t=0

ρt] = 0, then d
dt

∣∣
t=0

Jt =

0.
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Proof. Let ρ ∈ X (G) be an irreducible representation and let (S, J) = Σ be a conformal structure. Let

f : Σ̃→G/T0 be a ρ-equivariant G0-cyclic surface so that there is a simple root α with f∗ω−α nowhere

vanishing and, for all simple roots αi, the form f∗ω−αi 6= 0. Suppose (ρt, Jt) is a one parameter family and

ft : (̃S, Jt)→G/T0 is a family of ρt-equivariant G0-cyclic surfaces with f0 = f , that is for all γ ∈ π1(S),

ft(γ(s)) = ρt(γ) · ft(s).

If [ ddt
∣∣
t=0

ρt] = [ρ], then the tangent space at ρ is given by TρX (G) = H1
ρ(S, g) since ρ is irreducible (see

(3.1.3)). Thus, after conjugating the family ρt by a family of elements of G, and preforming a similar

transformation for ft, for all γ ∈ π1(S) we have

d

dt

∣∣∣∣
t=0

ft(γ(s)) = ρ(γ) · d
dt

∣∣∣∣
t=0

ft(s).

In particular, ξ(s) = d
dt

∣∣
t=0

ft(s) is an ρ-equivariant infinitesimal deformation of f. Since f∗ω−α is nowhere

vanishing, f∗ω−α : TΣ→[g−α] is a bijection. Let X be the vector field along Σ so that ιω−αξ = f∗ω−α(X),

then df(X) is an infinitesimal variation of f. By construction, ξ − df(X) is an equivariant infinitesimal

variation of f which vanishes along the simple root space [gα]. Thus, by Proposition 6.1.33, ξ − df(X) = 0.

To see that d
dt

∣∣
t=0

Jt = 0, we employ an argument of Marco Spinaci [Spi]. We have

ξ =
∂ft
∂t

∣∣∣∣
t=0

= df(X),

thus

ζ = ω(df0(X)) = Φ(X) + Φ∗(X).

In particular, ζ is self adjoint and hence lives in the subbundle [ik]. Also, ζ̂−1 = Φ(X) is holomorphic and

ζ̂1 = Φ∗(X) is antiholomorphic.

Let Ψt = f∗t ω = Φt + Φt, by definition, for all tangent vectors, we have

Ψt(Jtv) = iΦt(v)− iΦ∗t (v) =
(
iπĝ−1

− iπĝ1

)
Ψt(v). (6.1.22)

Recall that, for vector fields Y and Y ′ on G/T0, we have

ω(d∇Y Y
′) = ω(d∇Y ′Y ) + ω([Y, Y ′]) + ω(T (Y, Y ′)) (6.1.23)
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where T (Y, Y ′) is the torsion tensor given by Lemma 2.2.4. Differentiating equation (6.1.22) yields

d
f∗t ∇

c

∂
∂t

(f∗t ω(Jtv))
∣∣∣
t=0

=
(
iπĝ−1

− iπĝ1

)
d
f∗t ∇

c

∂
∂t

(f∗t ω(v))
∣∣∣
t=0

.

Using the pullback of equation (6.1.23) by ft, the left hand side of the above equations is given by

(
d
f∗t ∇

c

Jtv

(
f∗t ω

(
∂

∂t

))
+ f∗t ω

[
∂

∂t
, Jtv

]
+ f∗t ω

(
T

(
∂

∂t
, Jtv

)))∣∣∣∣
t=0

.

The expression for the torsion in Lemma 2.2.4 and the decomposition g = t0⊕m imply the above expression

can be rewritten as

(
d
f∗t ∇

c

Jtv

(
ω

(
∂ft
∂t

))
+ ω

(
dft

(
∂Jt
∂t

v

))
+ π[m]

([
f∗t ω

(
∂

∂t

)
, f∗t ω(Jtv)

]))∣∣∣∣
t=0

.

Using Ψ0 = f∗0ω and ζ = ∂ft
∂t

∣∣∣
0
, evaluating at t = 0 yields

d
f∗0∇

c

J0v
(ζ) + Ψ0

(
∂Jt
∂t

∣∣∣∣
0

v

)
+ π[m] (Ψ0(J0v), ζ) .

Since
[
∂
∂t , v

]
= 0, a similar computation shows that the left hand side of equation (6.1.22) is

d
f∗0∇

c

v (ζ) + π[m] (Ψ0(v), ζ) .

Thus, we have

d
f∗0∇

c

J0v
(ζ) + Ψ0

(
∂Jt
∂t

∣∣∣∣
0

v

)
+ π[m] (Ψ0(J0v), ζ) =

(
iπĝ−1

− iπĝ1

) (
d
f∗0∇

c

v (ζ) + π[m] (Ψ0(v), ζ)
)

(6.1.24)

Recall ζ = ω
(
∂ft
∂t

∣∣∣
0

)
is in ω(df(TΣ)) ⊂ [ik]. Also, π[m] and

(
iπĝ−1

− iπĝ1

)
commute with the Cartan

involution Θ. Thus, we can consider the [ik] part of equation (6.1.24). This yields

d
f∗0∇

c

J0v
(ζ) + Ψ0

(
∂Jt
∂t

∣∣∣∣
0

v

)
=
(
iπĝ−1

− iπĝ1

) (
d
f∗0∇

c

v (ζ)
)
. (6.1.25)

Rearranging the equations and using the fact that ζ̂−1 is holomorphic and ζ̂1 is antiholomorphic gives

Ψ0

(
∂Jt
∂t

∣∣∣∣
0

v

)
= 2i(∂̄ζ̂−1 − ∂ζ̂1) = 0.
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Since Ψ is injective, it follows that
∂Jt
∂t

∣∣∣∣
t=0

= 0, as desired.

6.2 Maximal Sp(4,R) & SO0(2, 3) representations and Higgs

bundles

We will now apply the theory and results of cyclic surfaces to special components of maximal Sp(4,R) and

SO0(2, 3) ∼= PSp(4,R)-Higgs bundles which we will call Gothen representations. For the Sp(4,R) Gothen

components (or equivalently the PSp(4,R)-Gothen representations which lift to Sp(4,R)) the below results

were published in [Col15].

For G = Sp(4,R), the complexification of the maximal compact subgroup is HC = GL(2,C). For a Sp(4,R)-

Higgs bundle (V, β, γ), τ = deg(V ) ∈ Z defines an integer invariant called the Toledo invariant. Given two

Sp(4,R)-Higgs bundles (V, β, γ) and (V ′, β′, γ′), if deg(V ) 6= deg(V ′) then (V, β, γ) and (V ′, β′, γ′) are in

different connected components. This gives a decomposition

MJ(Sp(4,R)) =
⊔
τ∈Z
MJ,τ (Sp(4,R)).

The map sending (V, β, γ) to (V ∗, γ, β) gives an isomorphism MJ,τ (Sp(4,R)) ∼= MJ,−τ (Sp(4,R)). The

invariant τ satisfies a Milnor-Wood inequality |τ | ≤ 2g − 2 and

MJ(Sp(4,R)) =
⊔

−2g+2≤τ≤2g−2

MJ,τ (Sp(4,R)).

We will show that Milnor-Wood inequality for PSp(4,R) = SO0(2, 3)-Higgs bundles, below. Gothen [Got01]

showed that, for τ = 0,MJ,τ (Sp(4,R)) is connected, and, for |τ | = 2g− 2, the moduli spaceMJ,τ (Sp(4,R))

has 32g + 2g− 4 connected components. In [GPMiR04], it is shown thatMJ,τ (Sp(4,R)) is connected for all

other values of the Toledo invariant. This gives 1 + 2(2g − 1) + 2(32g + 2g − 4) total connected components

for MJ(Sp(4,R)).

SO0(2, 3)-Higgs bundles

To use vector bundles for the group PSp(4,R) we will make use of the low dimensional isomorphism

SO0(2, 3) ∼= PSp(4,R). This works as follows, let W be a 4 dimensional vector space with a symplectic

form Ω ∈ Λ2W. The 6 dimensional vector space Λ2W has a natural orthogonal structure of signature

(3, 3). Since Ω ∈ Λ2W , the orthogonal complement of the 1-dimensional subspace spanned by Ω defines a
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5 dimensional vector space with an orthogonal structure of signature (2, 3). This defines a surjective map

Sp(4,R)→SO0(2, 3). Furthermore, since we are taking the second exterior product, the kernel of this map

is ±Id, giving an isomorphism

Sp(4,R)/{±Id} = PSp(4,R) ∼= SO0(2, 3).

An SO0(2, 3)-Higgs bundle is determined by a holomorphic SO(2,C) bundle (L⊕ L−1,

(
0 1
1 0

)
), a holo-

morphic SO(3,C)-bundle (W,QW ) and two holomorphic bundle maps β and γ where

β : L−1→W ⊗K γ : L→W ⊗K.

There are two types of topological invariants, the degree of L and the second Stiefel-Whitney class of (W,QW )

which we will denote by

τ = deg(L) ∈ Z w2 ∈ Z/2Z.

The associated SL(5,C)-Higgs bundle associated to a quadruple (L,W, β, γ) is (L ⊕W ⊕ L−1, φ) where φ

consists of the maps γ and β along with the induced maps γT : W→L−1K and βT : W→LK which are

defined by γT = γ∗ ◦QW and βT = β∗ ◦QW :

W
QW // W ∗

γ∗ // L−1K W
QW // W ∗

β∗ // LK .

We will represent these pictorially by

L
γ
66 W

βT

ww

γT
44 L
−1

β
uu

where we have suppressed the twisting by K from the notation. The bound |τ | ≤ 2g − 2 on the Toledo

invariant can be see by considering the following compositions

LK−1
γ

// W
QW

// W ∗
γ∗
// L−1K

L−1K−1

β
// W

QW

// W ∗
β∗
// LK

.

If deg(L) > 0 then by Remark 6.2.5, γ 6= 0 and thus deg(L) ≤ 2g − 2. Similarly, if deg(L) < 0 then β 6= 0,

and thus deg(L) ≥ −2g + 2.

IfMτ,w2(SO0(2, 3)) denotes the moduli space with invariants τ and w2, then, since the deg(L) is bounded,
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we obtain the following decomposition of the moduli space of Higgs bundles and the character variety

M(SO0(2, 3)) =
⊔

|τ |≤2g−2
w2∈Z/2Z

Mτ,w2(SO0(2, 3)) ∼=
⊔

|τ |≤2g−2
w2∈Z/2Z

X τ,w2(SO0(2, 3)) = X (SO0(2, 3)).

The Higgs bundles and representation in the components with maximal Toledo invariant are called maximal.

Proposition 6.2.1. Given an Sp(4,R)-Higgs (V, β, γ) the associated SO0(2, 3)-Higgs bundle is

(L,W, β, γ) = (Λ2V, S2V ∗ ⊗ Λ2V, β, γ)

Proof. Given an Sp(4,R)-Higgs bundle (V, β, γ), the corresponding SO0(2, 3)-Higgs bundle is determined by

the map Sp(4,C)→SO(5,C). For the bundle, one takes the second exterior product

Λ2(V ⊕ V ∗) ∼= Λ2(V )⊕ V ⊗ V ∗ ⊕ Λ2(V ∗) = Λ2V ⊕ Λ2(V ∗)⊕Hom(V, V ) (6.2.1)

The orthogonal structure on this bundle is given by

0 1

1 0

 on Λ2(V ) ⊕ Λ2(V ∗) and the Killing form on

Hom(V, V ) (i.e. 〈A,B〉 = Tr(AB)). The symplectic structure Ω =

 0 Id

−Id 0

 ∈ Λ2(V ∗ ⊕ V ) corresponds

to Id ∈ Hom(V, V ). If Hom0(V, V ) is the space of traceless homomorphisms, then

〈Ω〉⊥ ⊂ Λ2V ⊕Hom(V, V )⊕ Λ2V ∗ = Λ2V ⊕Hom0(V, V )⊕ Λ2V ∗.

If V is the standard representation of GL(2,C) then it is straight forward to check that Hom0(V,V) is the

representation S2V ⊗ Λ2V∗ ∼= S2V∗ ⊗ Λ2V. Thus, Hom0(V, V ) = S2V ⊗ Λ2V ∗ ∼= S2(V ∗)⊗ Λ2V . This gives

L = Λ2V and W = S2V ⊗Λ2V ∗ ∼= S2(V ∗)⊗Λ2V . Finally, note that γ ∈ H0(S2V ∗⊗K) = H0(L−1⊗W⊗K)

and β ∈ H0(S2V ⊗K) = H0(L⊗W ⊗K).

Using this correspondence and the Milnor wood in equality for SO0(2, 3)-Higgs bundles one obtains the

Milnor inequality for Sp(4,R)-Higgs bundles.

Proposition 6.2.2. Let ρ ∈ X τ,w2(SO0(2, 3)) then ρ lifts to ρ̃ ∈ X τ (Sp(4,R)) if and only if w2+τ = 0 mod 2.

Proof. By a similar procedure as above, the groups complex groups SO(5,C) and PSp(4,C) are isomorphic.

Since the cover Sp(4,C)→SO(5,C) is 2 : 1, we have Sp(4,C) ∼= Spin(5,C). Thus, the representations ρ :

π1→SO0(2, 3) will lift if and only if the second Stiefel class of the SO(5,C) bundle (L ⊕ L−1 ⊕W ) is zero.
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Since the first Stiefel-Whitney class of the bundle L ⊕ L−1 and (W,QW ) is zero, if w is the total Stiefel-

Whitney class then we have:

w(L⊕ L−1 ⊕W ) = (1 + w2(L⊕ L−1)) ^ (1 + w2(W,QW )) = 1 + w2(L⊕ L−1 + w2(W,QW ).

Thus w2(L⊕L−1⊕W ) = degL mod 2+w2(W,QW ), which is 0 if and only if w2(W,QW )+τ = 0 mod 2.

Remark 6.2.3. For maximal SO0(2, 3)-Higgs bundles, the corresponding representations will lift to Sp(4,R)

if and only if w2 = 0.

6.2.1 Maximal components for Sp(4,R) & SO0(2, 3)

Higgs bundles (V, β, γ) with |deg(V )| = |τ | = 2g − 2 are called maximal. When τ = 2g − 2, polystablility

forces the holomorphic map γ : V→V ∗ ⊗K to be an isomorphism [Got01]. Using this fact, to a maximal

Sp(4,R)-Higgs bundle (V, β, γ) one associates a GL(2,R) K2-twisted Higgs bundle (W,ϕ) (i.e. a GL(2,R)-

Higgs bundle where the Higgs field is twisted by K2 instead of K), called its Cayley partner. The Cartan

decomposition of gl(2,R) is o(2,R)⊕ sym(R2), and, complexifying, we have

gl(2,C) = o(2,C)⊕ sym(C2).

Thus, a K2-twisted GL(2,R)-Higgs bundle is a triple (W,QW , ϕ) where (W,QW ) is a O(2,C) bundle and

ϕ ∈ H0(End(W )⊗K2) satisfying ϕTQW = QWϕ.

The characteristic classes of the Cayley partner help to distinguish connected components ofM2g−2
J (Sp(4,R)).

We will recall how this works for Sp(4,R) [Got01, BGPG12], for a general development of the theory of Cay-

ley partners see [RN12]. Fix a square root of the canonical bundle K
1
2 and set W = V ∗ ⊗K 1

2 . Using the

fact that γ : V→V ∗ ⊗K is an isomorphism, define an orthogonal structure QW : W ∗→W by

QW = γ ⊗ Id
K−

1
2

: V ⊗K− 1
2 −→ V ∗ ⊗K ⊗K− 1

2 . (6.2.2)

For the Cayley partner, the Higgs field ϕ : W→W ⊗K2 is given by ϕ = (γ ⊗ Id
K⊗K

1
2

) ◦ (β ⊗K 1
2 ), i.e.

W = V ∗ ⊗K 1
2

β⊗Id // V ⊗K ⊗K 1
2

γ⊗Id // V ∗ ⊗K ⊗K ⊗K 1
2 = W ⊗K2.

The map ϕ is QW -symmetric, thus (W,QW , ϕ) defines a K2-twisted GL(2,R)-Higgs bundle.
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The O(2,C) bundle (W,QW ) has a first and second Stiefel-Whitney class

w1(W,QW ) ∈ H1(Σ,Z/2Z) = (Z/2Z)
2g

and w2(W,QW ) ∈ H2(Σ,Z/2Z) = Z/2Z .

There are 2·22g−2 possible values for (w1(W,QW ), w2(W,QW )) with w1(W,QW ) 6= 0.When w1(W,QW ) = 0,

the structure group of the O(2,C)-bundle lifts to SO(2,C), in this case, we have a Chern class, and Proposition

3.20 of [BGPG12].

Proposition 6.2.4. Let (V, β, γ) be a maximal Sp(4,R)-Higgs bundle with Cayley partner (W,QW ) and

w1(W,QW ) = 0, then there is a line bundle N→Σ so that V = N⊕N−1K. With respect to this decomposition,

β =

(
ν q2
q2 µ

)
: N−1 ⊕NK−1→NK ⊕N−1K2 and γ =

(
0 1
1 0

)
: N ⊕N−1K→N−1K ⊕N.

The line bundle N satisfies a degree bound, g− 1 ≤ deg(N) ≤ 3g− 3; for g− 1 < deg(N), the line bundle N

is unique and when deg(N) = g − 1, the line bundle N is unique up to a multiple of a square root of O.

The proof of this proposition makes extensive use of Mumford’s classification of rank 2 holomorphic

orthogonal bundles [Mum71]. The degree of N provides 2g− 1 extra invariants; set d = deg(N), and denote

the corresponding moduli space byMd
J(Sp(4,R)). For deg(N) = 3g− 3, stability forces N2 = K3, and there

are at least 22g connected components corresponding to choices of square roots of K. Thus, there are

2 · 22g − 2 + 2g − 2 + 2g = 3 · 22g + 2g − 4

invariants for Sp(4,R)-Higgs bundles with deg(V ) = 2g − 2, and we have

M2g−2(Sp(4,R)) =
⊔
w1 6=0

M2g−2
w1,w2

(Sp(4,R))
⊔

g−1≤d<3g−3

M2g−2
d (Sp(4,R))

⊔
L2=K

M2g−2
L (Sp(4,R)). (6.2.3)

In [Got01], it is shown that each of the above moduli space is nonempty and connected. For deg(N) = 3g−3,

the 22g connected components are the Hitchin components. When g−1 ≤ d < 3g−3, we call the components

Md
J(Sp(4,R)) the Gothen components.

Remark 6.2.5. By Proposition 6.2.4, the SL(4,C)-Higgs bundle associated to a Higgs bundle (V, β, γ) ∈

Md
J(Sp(4,R)) is of the form

(E, φ) =

N ⊕N−1K ⊕N−1 ⊕NK1,

 ν q2

q2 µ
0 1
1 0


 (6.2.4)
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If µ = 0, then N ⊕ NK−1 is an invariant subbundle of E with of degree 2d − 2g + 2. Thus, for g − 1 < d

stability forces µ 6= 0. Furthermore, by Proposition 3.24 of [BGPG12], for g− 1 < d, all isomorphism classes

in Md
J(Sp(4,R)) are stable and simple. When d = g − 1, the Higgs bundle is stable if and only if µ 6= 0. It

follows that Md
J(Sp(4,R)), and hence X 2g−2

d (Sp(4,R)), is smooth if and only if g − 1 < d ≤ 3g − 3.

Let X 2g−2
d (Sp(4,R)) be the component of Gothen representations which corresponds toM2g−2

d (Sp(4,R)).

Using the description of the possible Zariski closures of maximal Sp(4,R) representations of [BIW10], Brad-

low, Garcia-Prada, and Gothen showed [BGPG12], if g− 1 < d < 3g− 3 and ρ ∈ X 2g−2
d (Sp(4,R)), then ρ is

Zariski dense. Furthermore, by Remark 6.2.5, the Gothen components X 2g−2
d (Sp(4,R)) for g−1 < d < 3g−3

are smooth.

Maximal SO0(2, 3)-Higgs bundles

Maximal SO0(2, 3)-Higgs bundles satisfy the following important extra symmetry.

Proposition 6.2.6. If (L,W, β, γ) be a maximal SO0(2, 3)-Higgs bundle with τ = 2g − 2 then the map

γ : L→W ⊗K is nowhere vanishing.

Proof. Note that γ cannot be zero by stability. Consider the composition

LK−1 γ // W
Q // W ∗

γ∗ // L−1K

Then γ ◦Q ◦ γ∗ ∈ H0(L−2K2) is a nonzero section. But since deg(L) = 2g − 2 we must have L−2K2 = O

and γ ◦Q ◦ γ∗ nowhere vanishing, proving γ is injective.

Proposition 6.2.7. If (L,W, β, γ) be a maximal SO0(2, 3)-Higgs bundle with τ = 2g−2 then (LK−1)2 = O

is an O(1,C) bundle and W decomposes holomorphically and orthogonally as an W = LK−1⊕(V,QV ) where

(V,QV ) is a O(2,C)-bundle.

Proof. By the previous proposition, (LK−1)2 = O, thus LK−1 is an O(1,C)-bundle and W decomposes as

the image of γ : LK−1→W and its orthogonal complement which is an O(2,C)-bundle.

For maximal Higgs bundles, the decomposition (W,QW ) = (LK−1, q)⊕ (V,QV ) gives finner topological

invariants. Namely the first Stiefel-Whitney class of (LK−1, q) and (V,QV ) and the second Stiefel-Whitney

class of (V,QV ). However we have

w(W,QW ) = (1 + w2(W,QW ) = (1 + w1(LK−1) ^ (1 + w1(V,QV ) + w2(W,QW )
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= 1 + w1(LK−1, q) + w1(V,QV ) + w1(LK−1, q) ^ w1(V,QV ) + w2(W,QW )

Thus, w1(LK−1, q) = w1(V,QV ) and thus w2(V,QV ) = w2(W,QW ). Let M2g−2,w2
w1

(SO0(2, 3) be the space

of maximal polystable SO0(2, 3)-Higgs bundles with w1(V,QV ) = w1(L−1K) = w1 and w2(V,QV ) =

w2(W,QW ) = w2.

Proposition 6.2.8. An SO0(2, 3)-Higgs bundle inM2g−2,w2
w1

(SO0(2, 3)) is determined by a triple ((V,QV ), β′, q2)

where

• (V,QV ) is an orthogonal bundle with first and second Steifel-Whitney classes w1 and w2.

• q2 ∈ H0(K2) and βV ∈ H0(V ⊗LK) where L−1K is the O(1,C)-bundle with Stiefel-Whitney class w1.

Proof. Let (L,W, β, γ) be a polystable SO0(2, 3)-Higgs bundle. By Proposition 6.2.7, if the isomorphism class

of (L,W, β, γ) is in M2g−2,w2
w1

(SO0(2, 3)) then (W,QW ) = LK−1 ⊕ (V,QV ). Here (V,QV ) is a holomorphic

O(2,C) bundle with w1(V,QV ) = w1 and w2(V,QV ) = w2 and L−1K is a holomorphic O(1,C)-bundle with

w1(L−1K) = w1. Since the holomorphic splitting of W was determined by the image of γ, we have

(γ, β) =


1

0

 ,

 q2

βV


 : L⊕ L−1 −→ (LK−1 ⊕ V )⊗K

where q2 ∈ H0(K2) and βV ∈ H0(V ⊗ LK).

Proposition 6.2.9. An SO0(2, 3)-Higgs bundle inM2g−2,w2

0 (SO0(2, 3)) is determined by a quadruple (M,µ, ν, q2)

where M is a holomorphic line bundle with 0 ≤ deg(M) ≤ 4g − 4, µ ∈ H0(M−1K2), ν ∈ H0(MK2) and

q2 ∈ H0(K2). Furthermore, if d > 0 then µ 6= 0 and if d = 0 then µ = 0 = ν or µ 6= 0 6= ν.

Proof. Let (L,W, β, γ) be a polystable SO0(2, 3)-Higgs bundle. By Proposition 6.2.8, if the isomorphism

class of (L,W, β, γ) is in M2g−2,w2

0 (SO0(2, 3)) then (L,W, β, γ) is determined by a triple ((V,QV ), βV , q2)

where w1(V ) = 0 and L−1K = O. Thus (V,QV ) reduces to an SO(2,C) bundle and there is an holomorphic

line bundle M so that (V,QV ) =

M ⊕M−1,

0 1

1 0


. The map βV is given by

βV :=

ν
µ

 : K−1→M ⊕M−1
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where ν ∈ H0(MK2) and µ ∈ H0(M−1K2). The associated SL(5,C) Higgs bundle is

M
µ
// K

1
// O

1
//

q2
||

K−1
µ
//

q2

{{
ν

tt
M−1

ν

tt
. (6.2.5)

Furthermore, if deg(M) > 0 then the holomorphic section µ ∈ H0(M−1K2) must be nonzero or else M

would be a positive invariant subbundle. If deg(M) > 4g − 4 then the holomorphic section µ must be

0, thus deg(M) ≤ 4g − 4. A similar analysis shows that if deg(M) < 0 then −4g + 4 ≤ deg(M) and

ν ∈ H0 = (MK2) \ {0}. Note that the determinant 1 orthogonal gauge transformations

g1 =

−1 0

0 −1

 : K ⊕K−1→ K ⊕K−1 and g2 =


−1 0 0

0 0 1

0 1 0

 : O ⊕M ⊕M−1

send the Higgs bundle determined by tuple (M,µ, ν, q2) to the one determined by (M−1,−ν,−µ, q2). So

the Higgs bundles associated to (M,µ, ν, q2) and (M−1,−ν,−µ, q2) define the same isomorphism class and

we may assume deg(M) ≥ 0. If d = 0 and µ = 0 then the corresponding SL(5,C)-Higgs bundles will be

polystable if and only if ν = 0. Similarly, when ν = 0, polystability forces µ = 0.

The extra invariants for maximal SO0(2, 3)-Higgs bundles given the following decomposition:

M2g−2(SO0(2, 3)) =
⊔
w1 6=0

M2g−2
w1,w2

(SO0(2, 3))
⊔

0≤d≤4g−4

M2g−2
d (SO0(2, 3)). (6.2.6)

Remark 6.2.10. The second Stiefel-Whitney class of bundles in M2g−2
d (SO0(2, 3)) is d mod 2, thus when

d is even, the corresponding representations will lift to Sp(4,R). The component M2g−2
4g−4(SO0(2, 3)) is the

SO0(2, 3)-Hitchin component Hit(SO0(2, 3)) (this will be explained below).

The relation between the invariants of maximal SO0(2, 3)-Higgs bundles which lift to Sp(4,R) is as follows.

Proposition 6.2.11. If (L,W, β, γ) ∈M2g−2(SO0(2, 3)) with w2(W,QW ) = 0, then the first Stiefel-Whitney

class of LK−1 is the same as the first Stiefel-Whitney class invariant associated to the corresponding maximal

Sp(4,R)-Higgs bundle (V, β̃, γ̃). Moreover, if w1 = 0 and (L,W, β, γ) ∈ M2g−2
2j (SO0(2, 3)) then (V, β, γ) ∈

M2g−2
j+g−1(Sp(4,R)).

Proof. Let (L,W, β, γ) is a maximal SO0(2, 3)-Higgs bundle with w2(W ) = 0. If (V, β̃, γ̃) is a maximal

Sp(4,R)-Higgs bundle lifting (L,W, β, γ) then L = Λ2V . Recall that from the maximal Sp(4,R)-Higgs

bundle (V, β̃, γ̃), one constructs a O(2,C) bundle V ⊗K− 1
2 (see equation (6.2.2)). The first Stiefel-Whitney
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class of V ⊗K− 1
2 is the same as the first Stiefel-Whitney class of the determinant bundle Λ2(V ⊗K− 1

2 ) =

(Λ2V )⊗K−1. But the first Stiefel-Whitney class invariant of the maximal SO0(2, 3) bundle is the w1(LK−1),

and Λ2V = L. Thus, if the maximal SO0(2, 3)-Higgs bundle (L,W, β, γ) lies in M2g−2
w1,w2=0(SO0(2, 3)), then

the lifts (V, β̃, γ̃) lie in M2g−2
w1,w2=0(Sp(4,R)) tM2g−2

w1,w2=1(Sp(4,R)).

If w1(LK−1) = 0 then L = K and W = O ⊕M ⊕M−1 with deg(M) = 2j since w2(W ) = 0. The lift of

(L,W, β, γ) is a maximal Sp(4,R)-Higgs bundle (V, β̃, γ̃) with first Stiefel-Whitney class invariant vanishing.

Thus, it is given by a V ⊕ V ∗ = N ⊕ N−1K ⊕ N−1 ⊕ NK−1 with symplectic form Ω =

(
0 Id
−Id 0

)
and deg(N) = d for some d ∈ [g − 1, 3g − 3]. To see that the degree of N is j, we need to calculate

the SO(3,C) bundle W which arises from this Sp(4, R)-Higgs bundle. The corresponding SO(3,C) bundle is

given by taking the orthogonal complement of the symplectic form Ω inside V ⊗V ∗. Using the decomposition

V = N ⊕N−1K we have

V ⊗ V ∗ = N2K−1 ⊕O ⊕O ⊕N−2K.

Moreover, the symplectic form defines a trivial subbundle of the O ⊕O. Thus M = N2K−1 and deg(M) =

2deg(N)− 2g + 2, proving the result.

To determine the smooth points of M2g−2,sw2(SO0(2, 3)) we need a more refined notion of stability for

SO0(2, 3)-Higgs bundles. This is made precise in [Arr09] and [ACGP+16].

Definition 6.2.12. An SO0(2, 3)-Higgs bundle (L, (W,QW ), β, γ) with deg(L) 6= 0 is stable if, whenever

N ⊂W is an isotropic subbundle, one of the following holds

• if γ(L) ⊂ N and βT (N) = {0} then deg(L) + deg(N) < 0,

• if β(L−1) ⊂ N and γT (N) = {0} then −deg(L) + deg(N) < 0,

• if N 6= {0}, γT (N) = {0} and βT (N) = {0} then deg(N) < 0.

In [Arr09] it is shown that the isomorphism class of an SO0(2, 3) Higgs bundle defines a smooth point of

M(SO0(2, 3)) if and only if it is stable an simple.

Proposition 6.2.13. For d ∈ (0, 4g − 4], the space M2g−2
d (SO0(2, 3)) is smooth and an isomorphism class

[(M,µ, ν, q2)] ∈M2g−2
0 (SO0(2, 3)) is smooth if and only if

• M �M−1 and µ 6= 0 6= ν or

• M ∼= M−1, µ 6= 0 6= ν and µ 6= λν for all λ ∈ C∗.
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Proof. By Proposition 6.2.9, a polystable SO0(2, 3)-Higgs bundle whose isomorphism defines a point in

M2g−2
d (SO0(2, 3)) is determined by a tuple (M,µ, ν, q2), the associated SL(5,C) Higgs bundle (E , φ) is given

by (6.2.5). Consider holomorphic orthogonal gauge transformations

g1 =

eλ 0

0 e−λ

 : K ⊕K−1→K ⊕K−1 and g2 =


a b c

d e f

g h j

 : M ⊕M−1 ⊕O→M ⊕M−1 ⊕O.

The action of (g1, g2) on the Higgs field (β, γ) is by

(g1, g2) · (β, γ) = (g2βe
λ, g2γe

−λ).

A straight forward calculation shows

g2γe
λ = g2


0

0

1

 eλ =


0

0

1


if and only if g = h = 0 and eλj = 1. Using g = h = 0, another calculation shows g∗2QW g2 = QW implies

c = 0 f = 0 ad = 0 be = 0 j2 = 1 ae+ bd = 1 .

Since det(g2) = 1, we must have

(g1, g2) =


1 0

0 1

 ,


eλ 0 0

0 e−λ 0

0 0 1


 or (g1, g2) =


−1 0

0 −1

 ,


0 eλ 0

e−λ 0 0

0 0 −1


 . (6.2.7)

The first type of gauge transformation acts on βT = (µ, ν, q2) by (eλµ, e−λν, q2). If (M,µ, ν, q2) is a stable

Higgs bundle then µ 6= 0 and the first type of gauge transformation acts trivially if and only if it is the

identity.

The second type of gauge transformation in (6.2.7) will be holomorphic if and only if M ∼= M−1 and can

only occur when d = 0. It acts on βT = (µ, ν, q2) by (−eλν,−e−λµ, q2). Thus, by Proposition 6.2.9, when

M ∼= M−1 and µ = −eλν 6= 0 the Higgs bundle associated to (M,µ, ν, q2) is stable and not simple.

Since the moduli spaces M2g−2
d (SO0(2, 3)) generalize the Sp(4,R)-Gothen components, we will also call
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them Gothen representations.

Definition 6.2.14. The components M2g−2
d (SO0(2, 3)) with d > 0 are called the Gothen components and

maximal representations in the corresponding components X 2g−2
d (π,SO0(2, 3)) are called Gothen represen-

tations.

Proposition 6.2.15. For 0 < d ≤ 4g − 4 the Gothen components M2g−2
d (SO0(2, 3)) are connected and

parameterized by tuples (M,µ, ν, q2) where M is a holomorphic line bundle of degree d so that M−1K2 has a

nonzero holomorphic section, µ ∈ H0(M−1K2) \ {0}, ν ∈ H0(MK2) and q2 ∈ H0(K2). Up to the C∗ action

(M,µ, ν, q2)−→(M,λµ, λ−1ν, q2) a tuples (M,µ, ν, q2) parameterize points in M2g−2
d (SO0(2, 3)).

Proof. By Proposition 6.2.11 a Higgs bundle in a Gothen component M2g−2
d (SO0(2, 3)) is determined by a

tuple (M,µ, ν, q2) ∈ Picd(Σ)×(H0(M−1K)\{0})×H0(MK2)×H0(K2). The corresponding SO0(2, 3)-Higgs

bundle is given by

(L,W, β, γ) = (K,O ⊕M ⊕M−1,

(
q2
ν
µ

)
,

 1
0
0

)

We will show that there is only a 1-parameter gauge symmetry of (L,W, β, γ) which sends (M,µ, ν, q2) to

another point in Picd(Σ)× (H0(M−1K) \ {0})×H0(MK2)×H0(K2). Denote the orthogonal structures on

K⊕K−1 and O⊕M ⊕M−1, recall that if g1 ∈ GSO(2,C)(K⊕K−1, Q1) and g2 ∈ GSO(3,C)(O⊕M ⊕M−1, Q2)

then

(g1, g2) ·

(
βT

γT

)
) = g−1

1

(
βT

γT

)
g2

where

(
βT

γT

)
= ηT : O⊕M ⊕M−1→K2 ⊕O. If the bundles are of the form K ⊕K−1 and O⊕M ⊕M−1

then the gauge transformations must preserve the orthogonal structure, a computation shows

g1 =

(
a 0
0 a−1

)
and g2 =

 1 0 −λ−1b
b λ 0
0 0 λ−1


where a, λ ∈ C∗, and b ∈ H0(M). By definition of γT and βT we have

g−1
1

(
βT

γT

)
g2 =

(
a 0
0 a−1

)(
q2 µ ν
1 0 0

) 1 0 −λ−1b
b λ 0
0 0 λ−1

 =

(
µb+ aq2 aλµ νaλ−1 − λ−1baq2

a−1 0 −bλ−1a−1

)

Thus a = 1 and b = 0 and there is a 1-parameter gauge symmetry gλ acting as

gλ · (M,µ, ν, q2) = (M,λµ, λ−1ν, q2)
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Up to this symmetry, every point in M2g−2
d (SO0(2, 3)) is determined uniquely by a tuple (M,µ, ν, q2).

Putting everything discussed above together, it is not hard to prove the following.

Theorem 6.2.16. The moduli space M2g−2
d (SO0(2, 3)) is diffeomorphic to FdΣ × H0(K2) where FdΣ is a

rank d+ 3g − 3 vector bundle over the symmetric product Sym−d+4g−4(Σ).

Proof. The set of divisors of degree −d+ 4g − 4 on a Σ is parameterized by Sym−d+4g−4(Σ). A projective

classes of µ ∈ H0(M−1K2) \ {0} is in one-to-one correspondence with divisors of degree −d+ 4g − 4. Since

the line bundle M can be recovered from such a divisor by inverting and tensoring with K2, the data (M, [µ])

is one one-to-one correspondence with divisors D of degree −d+ 4g − 4. Since a point in M2g−2
d (SO0(2, 3))

is determined by a tuple (M,µ, ν, q2) with µ 6= 0 and (M,µ, ν, q2) ∼= (M,λµ, λ−1ν, q2) for all λ ∈ C∗, the

moduli space is given by a vector bundle of rank h0(Σ,MK2) = d+ 3g − 3 over Sym−d+4g−4(Σ) times the

space H0(K2).

When d = 4g − 4, we recover Hitchin’s parameterization of the Hitchin component.

Corollary 6.2.17. The Hitchin component Hit(SO0(2, 3)) =M2g−2
4g−4(SO0(2, 3)) is diffeomorphic to a vector

space H0(K2)⊕H0(K4). Also, for d = 4g − 3 the space FdΣ is a vector bundle over the surface Σ.

Corollary 6.2.18. Since the M2g−2
d (SO0(2, 3)) deformation retracts onto Sym−d+4g−4(Σ), there is a ho-

motopy equivalence between M2g−2
d (SO0(2, 3)) and Sym−d+4g−4(Σ). In particular, there is a cohomology

isomorphism H∗(M2g−2
d (SO0(2, 3))) ∼= H∗(Sym−d+4g−4(Σ)); the cohomology ring H∗(Sym−d+4g−4(Σ)) was

computed by McDonald [Mac62].

Remark 6.2.19. The parameterization of Sp(4,R) Gothen components in [BGPG12] and [Col15] is equiv-

alent to Theorem 6.2.16 but more complicated and less explicit. In particular, it is not clear what the

cohomology of these spaces is.

Corollary 6.2.20. For 0 < d < 4g−4, the spacesMd(SO0(2, 3)) are smooth and contain only Zariski dense

representations.

Proof. By Proposition 6.2.13, the components are all smooth. Moreover, generalizations of the proof

that M2g−2
d (Sp(4,R)) contains only Zariski dense representations for g − 1 < d < 3g − 3 imply that

M2g−2
d (SO0(2, 3)) contains only Zariski dense representations for 0 < d < 4g − 4.

For Gothen components of Sp(4,R), one obtains a similar parameterization. Recall that a Sp(4,R)-

Higgs bundle in the Gothen component M2g−2
d (Sp(4,R)) is determined by a tuple (N,µ, ν, q2) where

N ∈ Picd(Σ) and g − 1 < d ≤ 3g − 3. Moreover, up to a 1-parameter family of isomorphisms acting by
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(N,µ, ν, q2)−→(N,λµ, λ−1ν, q2) such a tuple uniquely determines a point in M2g−2
d (Sp(4,R)). By Propo-

sition 6.2.11 the corresponding SO0(2, 3)-Gothen Higgs bundle is given by (M,µ, ν, q2) with M = N2K−1.

Define the space

F̃dΣ = {(N,µ, ν)|N ∈ Pic(Σ) with h0(N−2K3) 6= 0, µ ∈ H0(N−2K3) \ {0} ν ∈ H0(N2K)}/C∗

where the C∗ action is given as above. Using the results above for SO0(2, 3) ∼= PSp(4,R) we have the

following parameterizations of M2g−2
d (Sp(4,R)).

Theorem 6.2.21. Let g − 1 < d ≤ 3g − 3 then the Gothen component M2g−2
d (Sp(4,R)) is diffeomorphic

the space F̃dΣ ×H0(K2). Moreover, the 2 : 1 map π : Sp(4,R)→SO0(2, 3) gives rise to a 22g : 1 map

π̃ : F̃dΣ ×H0(K2)−→F2d−2g+2
Σ ×H0(K2) ∼=M2g−2

2d−2g+2(SO0(2, 3))

which has fiber π̃−1(M,µ, ν, q2) corresponding to the 22g square roots of O.

Proof. Given an Higgs bundle (N,µ, nu, q2) ∈ M2g−2
d (Sp(4,R)), the corresponding SO0(2, 3)-Higgs bundle

is given by (N2K−1, µ, ν, q2) ∈ M2g−2
2d−2g+2(SO0(2, 3)). Thus, for each of the 22g line bundles L satisfying

L2 = O the Sp(4,R)-Higgs bundles associated to (N,µ, ν, q2) and (N ⊗L, µ, ν, q2) map to the same point in

M2g−2
2d−2g+2(SO0(2, 3)). Thus the space F̃2

Σ is a vector bundle over the symmetric Sym2d−2g+2(Σ)/(Z/22gZ)

where two divisors (N2K−1, µ) is equivalent to (LN)2K−1 for each of the 22g square roots of the trivial

bundle.

6.3 Gothen components and unique minimal immersions

In this section we will do everything for the groups SO0(2, 3) ∼= PSp(4,R), when one restricts to the maximal

SO0(2, 3)-Higgs bundles which have vanishing w2 then all the statements hold for maximal Sp(4,R). Recall

that 0 ≤ deg(M) ≤ 4g − 4, the SL(5,C)-Higgs bundle (6.2.4) is determined by the quadruple (M,µ, ν, q2).

The bundle E = K ⊕K−1 ⊕O ⊕M ⊕M−1 has orthogonal structure Q and Higgs field φ given by:

Q =


0 1
1 0

1
0 1
1 0

 : E−→E∗ φ =


q2 µ ν
1 0 0

1 q2

0 ν
0 µ

 : E−→E ⊗K. (6.3.1)

Note that the Higgs field satisfies which φTQ + Qφ = 0, thus, (6.2.4)is in fact an SO(5,C)-Higgs bundle.

For the group SO(5,C), the polynomial ring C[so(5,C)]SO(5,C) has two homogeneous generators (p1, p2) of
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degree two and four. One choice of generators is

p1 = Tr(X2) and p2 = Tr(X4) .

For any other basis (p′1, p
′
2), there are constants A,B,C so that

p′1 = Ap1 and p′2 = Bp2
1 + Cp2 .

Thus, for any choice of basis of the invariant polynomials, the holomorphic quadratic and quartic differentials

associate the (E, φ) via the Hitchin fibration are

ATr(φ2) = 4Aq2 and BTr(φ2) + CTr(φ4) = 16Bq2 ⊗ q2 + C4µ⊗ ν .

Lemma 6.3.1. Let ρ ∈ X 2g−2
d (SO0(2, 3)) and fix a conformal structure Σ = (S, J). If the harmonic ρ-

equivariant map hρ is a branched minimal immersion, then the corresponding Higgs bundle is given by

(M,µ, ν, 0) (6.3.2)

Furthermore, up to a constant, the associated holomorphic quartic differential in the Hitchin base is given

by q4 = µ⊗ ν.

Proof. Let ρ ∈ X 2g−2
d (SO0(2, 3)) and fix a conformal structure (S, J) = Σ. By Proposition 6.2.9, the

SO0(2, 3)-Higgs bundle corresponding to ρ is given by (6.3.1). By Remark 3.3.3, hρ is a branched mini-

mal immersion if and only if

Tr(φ2) = 4q2 = 0.

In this case, any choice of basis for C[sp(4,C)]Sp(4,C) gives q4 = p2(φ) = CTr(φ4) = 4Cµ⊗ ν.

Lemma 6.3.2. Let ρ ∈ X 2g−2
d (SO0(2, 3)) and choose a conformal structure J so that the corresponding

ρ-equivariant harmonic map hρ is a branched minimal immersion, then hρ is a minimal immersion.

Proof. By Lemma 6.3.1, in the conformal structure J, the SO0(2, 3)-Higgs bundle (L,W, β, γ) associated to

ρ is given by (6.3.2). By Remark 3.3.3 Higgs field represents the (1, 0) part of dhρ. Since γ is injective, the

Higgs field is nowhere vanishing, by Remark 3.2.13, the branched minimal immersion hρ is branch point

free.

For maximal representations ρ ∈ X 2g−2
d (SO0(2, 3)) with 0 ≤ d ≤ 4g− 4 we obtain local uniqueness of the
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conformal structures Jρ in which the ρ-equivariant harmonic map is minimal.

Theorem 6.3.3. Let ρ ∈ X 2g−2
d (SO0(2, 3)) for 0 < d ≤ 4g− 4 or ρ ∈ X0(SO0(2, 3)) and ρ irreducible. Then

the collection of conformal structures {Jρ} so that the ρ-equivariant harmonic mapping Σ̃→SO0(2, 3)/(SO(2)×

SO(3)) is a minimal immersion is nonempty and discrete.

Proof. Fix a representation ρ ∈ X 2g−2
d (SO0(2, 3)) and let (S, J) be a conformal structure in which the

harmonic map is minimal. By Lemma 6.3.1, the Higgs bundle corresponding to ρ in this conformal structure

is given by a tuple (M,µ, ν, 0) with µ 6= 0. We will show that this defines a SO0(2, 3)-cyclic surface satisfying

the hypothesis of Theorem 6.1.37. Consider the SO(5,C)-Higgs bundle (E , Q, φ) from (6.3.1) associated to

(M,µ, ν, 0), if we rearrange the holomorphic bundle E to be M ⊕K ⊕O⊕K−1 ⊕M−1 then the Higgs field

is given by

φ =


0 0 0 ν 0
µ 0 0 0 ν
0 1 0 0 0
0 0 1 0 0
0 0 0 µ 0

 : M ⊕K ⊕O ⊕K−1 ⊕M−1−→MK ⊕K2 ⊕K ⊕O ⊕M−1K (6.3.3)

A computation shows that the gauge transformation

g = diag(−1, i, 1,−i,−1) : M ⊕K ⊕O ⊕K−1 ⊕M−1→M ⊕K ⊕O ⊕K−1 ⊕M−1

acts as g−1φg = iφ. Furthermore, the gauge transformation g is in the gauge group fro SO(2,C)× SO(3,C).

Thus, such a Higgs bundle is a fixed point of 4th-roots of unity action in M(SO0(2, 3)). The unique

equivariant harmonic metric hρ : Σ̃→SO(5,C)/SO(5) lifts to the space of Hitchin triples SO0(5,C)/(SO(2)×

SO(2)). Recall for so(5,C), there are two simple roots α1, α2 and the set of positive roots is given by

{α1, α2, α1α2, α1 + 2α2}. The SO(5,C)-adjoint bundle of M ⊕K ⊕O ⊕K−1 ⊕M−1 is given by

(M−1K−1 ⊗ g−α1−2α2
)⊕ (M ⊗ g−α1−α2

)⊕ (K−1 ⊗ g−α2
)⊕M−1K ⊗ g−α1

)⊕ (O ⊗ c)

⊕(MK−1 ⊗ gα1
)⊕ (K ⊗ (gα2

)⊕ (M−1 ⊗ gα1+α2
)⊕ (MK ⊗ gα1+2α2

)

and the Higgs field is given by φ = 1⊗ g−α2
+ µ⊗ g−α1

⊕ ν ⊗ gα1+2α2
. Since the Higgs field φ is no where

vanishing along the simple root space g−α2 ⊗ K and is not identically zero along the simple root space

g−α1
⊗K, the Higgs bundle defines a SO0(2, 3)-cyclic surface satisfying the hypothesis of Theorem 6.1.37,

proving local uniqueness.
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To go from local uniqueness to global uniqueness we will follow Labourie’s general differential geometric

arguments in section 8 of [Lab14].

Theorem 6.3.4. (Theorem 8.1.1 [Lab14])Let π : P→M be a smooth fiber bundle with connected fibers and

F : P→R be a positive smooth function. Define

N = {x ∈ P | dx(F |Pπ(x)
) = 0}.

and assume for all m ∈M the function F |Pm is proper and that N is connected and everywhere transverse

to the fibers. Then π is a diffeomeorphism from N onto M and F |Pm has a unique critical point which is

an absolute minimum.

Theorem 6.3.5. If S be a closed surface of genus at least 2 and ρ ∈ X 2g−2
d (SO0(2, 3)) for 0 < d ≤ 4g − 4,

then there exists a unique conformal structure (S, Jρ) = Σ so that the ρ-equivariant harmonic map

hρ : Σ̃→SO0(2, 3)/(SO(2)× SO(3))

is a minimal immersion.

Proof. Existence is covered by Corollary 6.0.4 of Labourie’s theorem and Lemma 6.3.2, and local uniqueness

is covered by Theorem 6.3.3. By Proposition 6.2.13, the space X 2g−2
d (SO0(2, 3)) is smooth if and only if

0 < d ≤ 4g − 4. Consider the fiber bundle π : Teich(S) × X 2g−2
d (SO0(2, 3))→X 2g−2

d (SO0(2, 3)). Define a

positive function F by

F ((J, ρ)) = Eρ(J) = EJ(hρ) =
1

2

∫
S

|dhρ|2dvolJ .

By [Lab08], the map F |ρ is proper and smooth, furthermore, the critical points of F |Pρ are minimal surfaces.

Set

N = {(J, ρ) ∈ P | dx(F |Pρ) = 0}.

By Theorem 6.3.3, N is everywhere transverse to the fibers. Applying Theorem 6.3.4, when 0 < d ≤ 4g− 4,

for each ρ ∈ X 2g−2
d (SO0(2, 3)) there is a unique conformal structure (S, Jρ) = Σ in which the ρ-equivariant

harmonic map

hρ : Σ̃→SO0(2, 3)/(SO(2)× SO(3))

is a minimal immersion.

131



6.3.1 Parameterizations of SO0(2, 3) and Sp(4,R) Gothen components

Recall that Higgs bundles in the Gothen componentM2g−2
d (SO0(2, 3)) are given by tuples (M,µ, ν, q2) with

deg(M) = d and µ 6= 0. This only describes representatives of the isomorphism classes of Higgs bundles, and

by Theorem 6.2.15, there is only a 1-parameter family of gauge symmetries to account for which acts by:

(M,µ, q2, ν)
gλ // (M,λ2µ, q2, λ

−2ν) . (6.3.4)

Since the C∗-action of (6.3.4) acts trivially on the holomorphic quadratic differential, the spaceM2g−2
d (SO0(2, 3))

is parameterized by a rank d + 3g − 3 vector bundle FΣ
d →Sym−d+4g−4(Σ) times the space of holomorphic

quadratic differentials as in Theorem 6.2.16.

Theorem 6.3.6. For 0 < d ≤ 4g − 4, let X 2g−2
d (SO0(2, 3)) be the component of the maximal SO0(2, 3)

representation variety corresponding to the Higgs bundle component M2g−2
d (SO0(2, 3)). If π : Fd→Teich(S)

is the fiber bundle over Teichmüller space with π−1([Σ]) = FdΣ is the vector bundle over Sym−d+4g−4(Σ)

from Theorem 6.2.16, then there is a mapping class group equivariant diffeomorphism

Ψ : Fd−→X 2g−2
d (SO0(2, 3)).

Proof. Let ρΣ,M,µ,ν ∈ X 2g−2
d (SO0(2, 3)) be the representation associated to the SO0(2, 3))-Higgs bundle

(M,µ, ν, 0) ∈M2g−2
d (SO0(2, 3)) over the Riemann surface Σ. The map Ψ is defined by

Fd Ψ // X 2g−2
d (SO0(2, 3))

(Σ, [M,µ, ν]) � // ρΣ,M,µ,ν

The inverse of Ψ is defined by Theorem 6.3.5,

X 2g−2
d (SO0(2, 3))

Ψ−1
// Fd

ρ � // (Σρ, [M,µ, ν])

Moreover, this bijection is an immersion by Theorems 6.1.37 and 6.3.5.

Since the mapping class group Mod(S) acts properly discontinuously on X 2g−2(SO0(2, 3)) we can take

the quotient.

Corollary 6.3.7. The space X 2g−2(SO0(2, 3))/Mod(S) has at least 4g − 4 connected components and the

spaces X 2g−2
d (SO0(2, 3))/Mod(S) are fiber bundles over the moduli of curves Mg.
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Remark 6.3.8. For the Hitchin component, F3g−3
Σ = H0(K4) and we recover Labourie’s mapping class

group invariant parameterization of the Hitchin component as a vector bundle over Teichmüller space.

For the group Sp(4,R), using Theorem 6.2.21, we have

Theorem 6.3.9. There is a mapping class group invariant diffeomorphism X 2g−2
d with a bundle π :

F̃d→Teich(S) with fiber π−1(Σ) = F̃dΣ. The 2 : 1 map π : Sp(4,R)→SO0(2, 3) gives rise to a 22g : 1

map $ : X 2g−2
d (Sp(4,R))−→X 2g−2

2d−2g+2(SO0(2, 3)). In terms of the parameterizations X 2g−2
d (Sp(4,R)) ∼=

F̃d
π̃ // Teich(S) and X 2g−2

2d−2g+2(SO0(2, 3)) ∼= F2d−2g+2
π // Teich(S) , F̃d is a 22g cover:

F̃d
$ //

π̃

44F2d−2g+2
π // Teich(S)

6.4 Connected components of M(SO0(n, n+ 1)) and higher rank

Gothen representations

Since the group PSp(2n,R) is a group of Hermitian type, one can talk about maximal representations. As

we have seen, the collection of maximal PSp(4,R)-representations is especially rich. In particular, there are

2(22g − 1) + 4g − 3 connected components of maximal representations and the 4g − 4 Gothen components

have a very nice description as bundles over Teich(S). For the group Sp(2n,R) however there are only 3 · 22g

connected components [GPGMiR13], for PSp(2n,R) there are 3 connected components when n ≥ 3 is odd

and at least 22g + 2 connected components when n ≥ 3 and even [GW10]. Furthermore, none of these

components behave like the Gothen components for PSp(4,R) [GW10].

In this section we show that Higgs bundle parameterization of the PSp(4,R) = SO0(2, 3)-Gothen compo-

nents generalizes to the split real group SO0(n, n+ 1). Unlike PSp(2n,R), the group SO0(n, n+ 1) is not a

group of Hermitian type for n ≥ 3, so there is no notion of maximality. We will prove the following theorem

and corollaries.

Theorem 6.4.1. For each 0 < d ≤ n(2g − 2) there is a smooth connected component Xd(SO0(n, n+ 1)) of

X (SO0(n, n+ 1)) and for each Riemann surface structure

Xd(SO0(n, n+ 1)) ∼= FdΣ ×
n−1⊕
j=1

H0(Σ,K2j)

where FdΣ→Sym−d+n(2n−2)(Σ) is a vector bundle of rank d+(2n−1)(g−1). Moreover, Xn(2g−2)(SO0(n, n+

1)) = Hit(SO0(n, n+ 1)).
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In particular, using the isomorphism SO0(1, 2) ∼= PSL(2,R), we recover Hitchin’s [Hit87a] parameteriza-

tion of all connected components of X (PSL(2,R)) with positive Toledo invariant.

Corollary 6.4.2. For each integer 0 < d ≤ 2g − 2, there is a connected component of X (PSL(2,R)) which

is parameterized by a rank d+ 2g − 2 vector bundle over Sym−d+2g−2(Σ).

This result is proven by showing the existence of components Md(SO0(n, n + 1)) in the Higgs bundle

moduli space M(SO0(n, n+ 1)).

Corollary 6.4.3. Each of the spaces Md(SO0(n, n+ 1)) deformation retracts onto the Sym−d+n(2g−2)(Σ).

Thus there is an isomorphism H∗(Md(SO0(n, n+ 1))) ∼= H∗(Sym−d+n(2g−2)(Σ)).

The topological invariants of an SO0(n, n+1)-Higgs bundle (V,W, η) are the second Stiefel Whitney classes

of the orthogonal bundles V and W . Since none of these Higgs field in the components Md(SO0(n, n+ 1))

can be deformed to zero, we obtain a lower bound on the number of connected components.

Corollary 6.4.4. The moduli spaceM(SO0(n, n+1)) and hence X (π1,SO0(n, n+1)) has at least n(2g−2)+4

connected components.

The starting point is the fixed points of the C∗ action on M(SO0(n, n + 1)) discovered in [Arr09].

Namely, it is proven that, for each 0 < d ≤ n(2g − 2) there exists smooth minima of the Hitchin function in

M(SO0(n, n+ 1)) parameterized by:

M
µ // Kn−1 1 // Kn−2 1 // · · · 1 // K

1 //// O 1 // K−1 1 // · · · 1 // K1−n µ // M−1

(6.4.1)

In terms of an SO0(n, n+ 1)-Higgs bundle (V,QV ,W,QW , η : V→W ⊗K) this is given by

Kn−1 ⊕Kn−3 ⊕ · · · ⊕K1−n,

 1

. .
.

1

 ,M ⊕Kn−2 ⊕ · · · ⊕K2−n ⊕M−1,

 1

. .
.

1

 ,


0
1 0
. . .

. . .

1 0
µ


.

Since the bundle reduces to a direct sum of line bundles, we can write the Higgs field as a section of

adjoint bundle and a collection of roots. Fix a Cartan involution θ giving so(n, n + 1) = h ⊕ m and a

maximally compact Cartan subalgebra t. Recall that the real form SO0(n, n + 1) of SO(2n + 1,C) is both

of Hodge type and split. Thus, the Cartan subalgebra has no noncompact part, t ⊂ h, and we can choose a

set of simple roots {α1, · · · , αn} so that they are all noncompact imaginary, i.e. (gC)αj ∈ mC for all j. With

134



respect to these choices, the Vogan diagram of so(n, n+ 1) has all roots painted (see Proposition 2.1.43):

•
α1

•
α2

· · · • //
αn−1

•
αn

With these choices, the height grading gC =
2n⊕

j=−2n

(gC)j with (gC)j ⊂ hC if and only if j is even. Using

the Vogan diagram above, we can see the decomposition so(2n + 1,C) = hC ⊕ mC in terms of root spaces,

namely the root poset is given by

(mC)2n−1 •

(hC)2n−3 ◦

(mC)2n−4 • •
...

...

...
...

(mC)3 • • · · · • •

(hC)2 ◦ ◦ · · · ◦ ◦

(mC)1 • • • · · · • • // •

For so(3, 4) the root poset is given by

•
◦

• •
◦ ◦

• • // •

A positive roots α =
∑
niαi has n1 6= 0 if and only if it is farthest to the left in one of the rows of the root

poset. Note also that if we remove the simple root α1 then the simple roots α2, · · · , αn span an embedded

so(2n − 1,C) ⊂ so(2n + 1,C) with all simple roots noncompact imaginary, thus giving an embedding of

so(n− 1, n) ⊂ so(n, n+ 1).

Denote the SO(2n + 1,C) bundle associated to (V ⊕W,QV ⊕ QW ) above by E . Since E reduces holo-

morphically to the maximal torus, the adjoint bundle E(so(2n,C)) decomposes holomorphically as a di-

rect of sum of root spaces E(so(2n,C)) = O ⊗ tC ⊕
⊕
α∈∆

(Lα ⊗ gα) for some line bundles Lα. For bundle

M ⊕Kn−1 ⊕ · · · ⊕K1−n ⊕M−1 above the line bundles for the negative simple root spaces are given by:

L−α1
= M−1Kn−1 L−α2

= K−1 L−α3
= K−1 · · · L−αn = K−1 .
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The Higgs field φ =

(
ηT

η

)
∈ H0(Σ, E(so(2n+ 1)⊗K) from (6.4.1) is defined by

φ = µ⊗ g−α1 +

n∑
j=2

1⊗ g−αj .

Let (V ′⊕W ′, φ′) denote a Higgs bundle in the SO0(n−1, n)-Hitchin component, recall that the Higgs field

is defined by φ′ = ẽ1 +
n−1∑
j=1

q2j ⊗ ej . Let (M,µ, ν) be a tuple of a line bundle M of degree 0 < d ≤ n(2g− 2),

µ ∈ H0(M−1Kn) \ {0} and ν ∈ H0(MKn). Denote the embedding of so(n − 1, n) in so(n, n + 1) given by

taking the span of {α2, · · · , αn} by ι : so(n− 1, n)−→so(n, n+ 1). For each such tuple (M,µ, ν) define the

SO0(n, n+ 1)-Higgs bundle (V ⊕W,φ) by

V ⊕W = W ′ ⊕ (M ⊕ V ′ ⊕M−1) and φ = µ⊗ g−α1
+ i(φ′) + ν ⊗ gα1+2α2+···+2αn

The space of Higgs bundles obtained this way is determined by the tuples (M,µ, ν, q2, q4, · · · , q2n−2), and

setting the parameters (ν, q2, · · · , q2n−2) all equal to zero gives rise to the minima of the Hitchin function

described in (6.4.1).

Remark 6.4.5. For the case SO0(2, 3) the above construction gives the SO0(2, 3)-Gothen representations.

This can be seen in terms of vector bundles as follows: start with a SO0(1, 2)-Hitchin component Higgs

bundle (i.e. a Fuchsian one) (V ′,W ′) = (O,K ⊕K−1) with Higgs field φ = ẽ1 + q2⊗ e1 = 1⊗ g−β + q2⊗ gβ ,

here β is a choice of positive root in SO(3,C). We can represent such an object as the twisted endomorphism

φ =

 0 q2 0
1 0 q2

0 1 0

 : K ⊕O ⊕K−1−→(K ⊕O ⊕K−1)⊗K.

To obtain the SO0(2, 3)-Gothen component Higgs bundles one adds M ⊕M−1 to the SO(1,C) bundle O

in SO0(1, 2)-Hitchin component Higgs bundle. That is, the SO0(2, 3)-Gothen component Higgs bundles are

given by

(V,W, φ) = (K ⊕K−1,M ⊕O ⊕M−1, µ⊗ g−α1
+ 1⊗ gα2

+ q2 ⊗ gα2
+ ν ⊗ gα1+2α2

)
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which we can represent as the twisted endomorphism

φ =


0 0 0 ν 0
µ 0 q2 0 ν
0 1 0 q2 0
0 0 1 0 0
0 0 0 µ 0

 : M ⊕K ⊕O ⊕K−1 ⊕M−1−→(M ⊕K ⊕O ⊕K−1 ⊕M−1)⊗K

If we start with a point in SO0(2, 3)-Hitchin component given by

φ′ =


0 3q2 0 q4 0
1 0 q2 0 q4

0 1 0 q2 0
0 0 1 0 3q2

0 0 0 1 0

 : K2 ⊕K ⊕O ⊕K−1 ⊕K−2−→(K2 ⊕K ⊕O ⊕K−1 ⊕K−2)⊗K

Then given a tuple (M,µ, ν), the corresponding SO0(3, 4)-Higgs bundle obtained from is given by:

φ =



0 0 0 0 0 ν 0
µ 0 3q2 0 q4 0 ν
0 1 0 q2 0 q4 0
0 0 1 0 q2 0 0
0 0 0 1 0 3q2 0
0 0 0 0 1 0 0
0 0 0 0 0 µ 0


: M ⊕K2 ⊕K ⊕O ⊕K−1 ⊕K−2 ⊕M−1−→(M ⊕K2 ⊕K ⊕O ⊕K−1 ⊕K−2 ⊕M−1)⊗K

(6.4.2)

Proposition 6.4.6. The parameters (M,µ, ν, q2, · · · , q2n−2) define a unique isomorphism class of Higgs

bundles up to the symmetry (M,µ, ν, q2, · · · , q2n−2) ∼= (M,λµ, λ−1ν, q2, · · · , q2n−2) for all λ ∈ C∗.

Proof. Let ξ = α1 + 2α2 + · · ·+ 2αn be the highest root of so(2n+ 1,C) and

φ = µ⊗ gα1
+ ι(φ′) + ν ⊗ gξ = µ⊗ gα1

+

n−1∑
j=1

q2j ⊗ ι(ej) + ν ⊗ gξ

be a Higgs field as above. In particular, for any root α =
n∑
j=1

njαj with n1 = 1, we have φα = 0, where φα

be the component of φ along a root α. To prove the proposition, we need to show that for any SO(n,C) ×

SO(n+1,C) gauge transformation g with Adgφ = µ′+
n−1∑
j=1

q′2j⊗ ι(ej)+ν′⊗gξ must act by µ′ = λµ, q′2j = q2j

and ν′ = λ−1ν for λ ∈ C∗. It is sufficient to show any holomorphic orthogonal bundle automorphism g of

M ⊕Kn−1 ⊕ · · · ⊕K ⊕O ⊕K−1 ⊕ · · · ⊕K1−n ⊕M−1 (6.4.3)

which doesn’t act by (λµ, λ−1ν, q2, · · · , q2n−2) is necessarily the identity. Thinking of the holomorphic gauge
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transformation g as a (2n+1)×(2n+1) matrix (gij) with respect to the splitting (6.4.3), it has the property:

gij = 0 if i+ j is odd or i = 1 and j = 2n+ 1

gij = 0 if j − i < −1 for i 6= 1 or j 6= 2n+ 1

(6.4.4)

The first two properties follow from the splitting so(2n+ 1,C) = hC⊕mC and the last property follows from

the holomorphicity of g. In this splitting, the Higgs field φ is expressed as a matrix with

φij = 0 for j − i < −1 and i+ j = even

φij = 0 for i = 1 and j 6= 2n

φij = 0 for j = 2n+ 1 and i 6= 2

φ2,1 = φ2n+1,2n = µ and φi,i+1 = 1 for 2 < i < 2n+ 1

(6.4.5)

(see (6.4.2) above for the case SO0(3, 4)).

Claim 6.4.7. Suppose (Adgφ)i,i−1 = 1 for 2 < i < 2n + 1 and (Adgφ)1,2j = 0 and (Adgφ)2n+1,2j = 0 for

all j < n then

• for λ ∈ C∗, g1,1 = λ, g2n+1,2n+1 = λ−1, and gi,i = 1 for 1 < i < 2n+ 1

• g1,2j+1 = 0, g2j+1,2n+1 = 0, g2j+1,1 = 0 and g2n+1,2j+1 = 0 for all j < n.

Proof. (of Claim) Since g preserves the orthogonal structure Q on M ⊕ Kn−1 ⊕ · · · ⊕ K1−n ⊕M−1, we

have gTQg = Q. Thus g−1 = QgTQ, and (g−1)ij = g2n+2−j,2n+2−i. Using (6.4.4), a calculation shows

(Adgφ)i,i−1 = gi,iφi,i−1(g−1)i−1,i−1. When 2 < i < 2n, using (6.4.5), the condition Adgφi,i−1 = 1 implies

gi,i = gi−1,i−1 for all 2 < i < 2n. Since g2n+2−i,2n+2−i = 1
gi,i

, we have gi,i = 1 for all 2 ≤ i ≤ 2n. This proves

the first statement.

The second statement will be proven by induction. First we show that g1,3 = g2n+1,3 = 0. Since

(g−1)ij = 0 for j − i < −1 with i 6= 1 or j 6= 2n + 1, a simple calculation shows (Adgφ)1,2 = g1,3(g−1)2,2.

Since (g)−1
2,2 = 1 and we are assuming (Adgφ)1,2 = 0 it follows that g1,3 = 0. Another calculation shows

(Adgφ)2n,1 = g2n,2n(g−1)2n−1,1, now orthogonality of g implies g2n+1,3 = 0.

For the induction step, assume g1,2j+1 = 0 for all 1 ≤ j < k < n. We are assuming (Adgφ)1,2k = 0. By

the induction hypothesis, a computation shows (Adgφ)1,2k = g1,2k+1(g−1)2k,2k. Thus g1,2j+1 = 0 for all j.

Similarly, assume g2n+1,2j+1 = 0 for 1 ≤ j < k < n, by orthogonality, (g−1)2(n−j)+3,1 = 0 for 1 ≤ j < k ≤ n.

Since (Adgφ)2(n−k+1),1 = 0, another computation shows (Adgφ)2(n−k+1),1 = g2(n−k),2(n−k)(g
−1)2(n−k+1),1.

Hence (g−1)2(n−j)+3,1 = g2n+1,2j+1 = 0 for all j. To complete the proof note that, g1,2j+1 = 0 = g2n+1,2j−1 =

0 for all 1 ≤ j ≤ n and gTQg = Q imply that g2j+1,1 = 0 = g2j−1,2n+1 for all 1 ≤ j ≤ n.
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By the claim we can write

gλ =

 λ
g′

λ−1

 : M ⊕ (Kn−1 ⊕ · · ·K1−n)⊕M−1 (6.4.6)

where g′ is an SO0(n− 1, n) gauge transformation which acts on the SO0(n− 1, n)-Hitchin component. But

by Hitchin’s parameterization [Hit92] of the Hitchin component we have g′ = Id. Furthermore, the gauge

transformation gλ in (6.4.6) with g′ = Id acts on the data (M,µ, ν, q2, q4, · · · , q2n−2) as

(M,µ, ν, q2, q4, · · · , q2n−2)
gλ // (M,λµ, λ−1ν, q2, q4, · · · , q2n−2) .

Thus up to this C∗ action, the tuple (M,µ, ν, q2, q4, · · · , q2n−2) determines a point inM(SO0(n, n+ 1)).

Proposition 6.4.8. The dimension of the space of Higgs bundles parameterized by (M,µ, ν, q2, · · · , q2n−2)

is maximal.

Proof. Like the SO0(2, 3) Gothen components, the space of (M,µ, ν) (where (M,µ, ν) ∼= (M,λµ, λ−1ν)) is

parameterized by a rank d+ n(2g − 2) vector bundle over over Sym−d+n(2g−2)(Σ). This space has complex

dimension g− 1− d+ n(2g− 2) + d+ n(2g− 2) = (2n+ 1)(3g− 3). Thus the space parameterized by tuples

(M,µ, ν, q2, · · · , q2n−2) has complex dimension

(3g − 3) + (7g − 7) + · · · (2n+ 1)(g − 1) = maxdim(M(SO0(n, n+ 1)).

Remark 6.4.9. So far we have described an open set around the minima which is the same dimension as

the moduli space. To prove that this defines a connected component, we will show that it is also closed.

Lemma 6.4.10. The open set parameterized by (M,µ, ν, q2, · · · , q2n−2) is closed in M(SO0(n, n+ 1)).

Proof. Since for all λ ∈ C∗ the tuples (M,µ, ν, q2, · · · , q2n−2) and (M,λµ, λ−1ν, q2, · · · , q2n−2) are isomor-

phic, we can normalize the norm of the nonzero section µ. Let (M,µt, νt, qt2, · · · , qt2n−2) be a diverging family

in the parameters with the norm of µt normalized to 1. We claim that the family of Higgs bundles (E , φt)

corresponding to this family diverges in the moduli spaceM(SO0(n, n+ 1)). Indeed, since the Hitchin fibra-

tion is proper, if the norms of any of the parameters νt, qt2, · · · , qt2n−2 go to infinity then the corresponding

point in the Hitchin base associated to φt also goes to infinity. Thus the family (E , φt) diverges.
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Putting together Proposition 6.4.6, Proposition 6.4.8 and Lemma 6.4.10 we obtain Theorem 6.4.1.

Namely, there is a for each 0 < d ≤ n(2g− 2) there is a smooth connected componentMd(SO0(n, n+ 1)) of

M(SO0(n, n+1)) which is smooth and parameterized by FdΣ×
n−1⊕
j=1

H0(Σ,K2j) where FdΣ→Sym−d+n(2n−2)(Σ)

is a vector bundle of rank d+ (2n− 1)(g − 1). Moreover, Mn(2g−2)(SO0(n, n+ 1)) = Hit(SO0(n, n+ 1)).
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4 (1971), 181–192. MR 0292836 (45 #1918)

[Oni04] Arkady L. Onishchik, Lectures on real semisimple Lie algebras and their representations, ESI
Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2004.
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