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Abstract

We study the C* action on the moduli space of G-Higgs bundles. Focus is especially put on Higgs bundle
which are not fixed points of the whole action but are fixed by a roots of unity subgroup of C*. When G
is a complex simple Lie group, we classify these “cyclic Higgs bundles”. One main property of cyclic Higgs
bundles is that the corresponding equivariant harmonic map to the symmetric space of G admits a canonical
harmonic (in fact minimal) lift to a homogeneous space fibering over the symmetric space. In terms of the
hermitian metric solving the Hitchin equations, such a lift implies extra symmetries of the solution metric.
Such properties were first studied by Baraglia [Bar10] for Higgs bundles in the Hitchin component which are

th roots of unity action. The extra symmetries of the metric are used to study the asymptotics

fixed by an n
of Higgs bundles in the Hitchin component along certain rays. This analysis allows us to partially understand
the asymptotic holonomy of certain families of Hitchin representations.

For G a complex simple Lie group and m, the length of the longest root of the Lie algebra g of G, the lifted
harmonic maps associated to a fixed point of the (my+ 1)-roots of unity are study in detail. When such fixed
points which arise from a Gyp-Higgs bundle, where Gy is the split real form of G, these lifted maps satisfy an
additional “reality” symmetry. For these equivariant harmonic maps we prove a rigidity result generalizing
Labourie’s work in [Labl14]. We build on the work of [BGP(G12] to parameterize the connected components
of maximal PSp(4,R) = SOy (2, 3)-Higgs bundles which contain fixed points of the 4*"-roots of unity action as
the product of a vector bundle over a symmetric product of the surface with the vector space of holomorphic
quadratic differentials. Generalizing Labourie’s work [Labl4] on the Hitchin component, the rigidity results
above yield a unique “preferred” Riemann surface structure to each maximal SOg(2, 3)-representation. As a
consequence, we obtain a mapping class group invariant parameterization of the 4g—3-connected components
(which we call Gothen components) of maximal SOg(2, 3)-representations which contain fixed points. Finally,
we generalize our parameterization of the Gothen components to provide n(2g —2) connected components of
the SOg(n,n + 1)-Higgs bundle moduli space which generalize the SOg(n, n + 1)-Hitchin component. When
n > 3, this is the first example of non-maximal and non-Hitchin connected components which are not labeled

by a topological invariant in 71 (G).
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Chapter 1

Overview and statement of results

For a closed surface S with genus at least two, the nonabelian Hodge correspondence asserts that, for each
Riemann surface structure ¥ on S, there is a homeomorphism between the moduli space M(G) of G-Higgs
bundles on ¥ and the moduli space X (71(S),G) of reductive representations of the fundamental group of
S in G. As illuminated by Hitchin [Hit87a, Hit87b], Simpson [Sim88], and others, the rich geometric and
algebraic structures on the Higgs bundle moduli space provide a distinctive set of tools for studying the
topology of M(G), and thus, through the nonabelian Hodge correspondence, the topology of X(m1(S),G).
One such geometric aspect is the natural C*-action on M(G) defined by scaling the Higgs field. The fixed
points of this action correspond to critical points of a Morse function on M(G), and a proper analysis of
these fixed points yields information on the cohomology of M(G). This thesis is dedicated to the study of
Higgs bundles which have nontrivial stabilizer for the C* action, i.e. fixed points of roots of unity subgroups
(¢,) c C*.

Since Higgs bundles were introduced in 1987 [Hit87a], they have found application in parameterizing con-
nected components of surface group representations. In particular, Hitchin gave an explicit parameterization
of all but one of the connected components of X'(m1(S),PSL(2,R)) (these are the components with nonzero
Toledo invariant), as vector bundles over symmetric products of a Riemann surface. After this ground
breaking work, Hitchin showed that, for G a split real form such as PSL(n,R), PSp(2n,R), or SO¢(n,n + 1),
there is a connected component of X'(m, G) which directly generalizes Teichmiiller space [Hit92]. More-
over, Hitchin gave an explicit parameterization of this connected component, now called the Hitchin or
Hitchin-Teichmiiller component. More precisely, he showed that for each Riemann surface structure on the
topological surface S, the Hitchin component Hit(G) is parameterized by a vector space of holomorphic dif-
ferentials which generalizes Wolf’s parameterization of Teichmiiller space by Hopf differentials of harmonic
maps [Wol89].

The effective tools of Higgs bundles however come at a cost: since they require fixing a Riemann surface
structure, they break the mapping class group action on X (m(S5), G). Using the properties we establish for

finite order fixed points, we use Higgs bundles to provide a mapping class group invariant parameterization



of certain connected components of maximal PSp(4,RR) representations as fiber bundles over Teichmiiller
space. Generalizing this to higher rank, we also give a Higgs bundle parameterization of n(2g — 2) smooth
connected components of X (m1(5),SOg(n,n + 1)), one of which is Hit(SOg(n,n + 1)). For n = 1, we recover
Hitchin’s parameterization for SOg(1,2) = PSL(2,R), for n = 2 these are the maximal PSp(4, R) = SO¢(2, 3)
components discussed above, and for n > 3, these provides n(2g — 2) — 1 new connected components.

Since the techniques and results that follow concern the interplay between Lie theory, Higgs bundles,
harmonic map theory, and surface group representations, we have devoted Chapter 2 and 3 to a lengthy
introduction to the relevant background. We hope this is beneficial to anyone interested in learning the
subject. For a complex Lie group G a Higgs bundle consists of a pair (£, ) where £—X is a holomorphic
principal G-bundle and ¢ is a holomorphic section of the adjoint bundle twisted by the canonical bundle K of
¥, ie ¢ € HY((€ xgg) ® K). The natural C*-action on the space of Higgs bundles is defined (€, 0)—(E, Ap).
In chapter 4, for complex group simple groups G, we classify the Higgs bundles which are fixed by a root of
unity subgroup of C* in terms of labellings of the extended Dynkin diagram of the Lie algebra g (Theorem
4.2.2). For the group SL(n,C) this was done by Simpson in [Sim09], however we will see that generalizing
this work to groups that are not of type A is subtle and requires some care. One key observation which
lead to this classification was a reinterpretation of the well known classification of fixed points of the whole
C*-action as coming from Z-gradings on the Lie algebra g. As is the case of C*-fixed points, a Higgs bundle
(€, ) which is fixed by a roots of unity action admits a holomorphic reduction of £ to a subgroup Go.
However, unlike fixed points of the C* action, when G # SL(n,C), the subgroup Gy need not be the Levi
factor of a parabolic subgroup of G.

Using the standard representation of SL(n, C) on C", an SL(n,C) Higgs bundle over a Riemann surface
Y is equivalent to a pair (£, ¢) where £—YX is a holomorphic rank n vector bundle with det(£) = O and
¢ is a traceless holomorphic section of End(€) ® K. One direction of the nonabelian Hodge correspondence
is provided by the relation of stability of Higgs bundles and solutions to the gauge theoretic Higgs bundle
equations. For SL(n,C) this works as follows: if (£, ¢) is a stable Higgs bundle then there exists a unique

hermitian metric A (with Chern connection Ap) on & so that

Fa, +[¢,0™] =0, (1.0.1)

here ¢*» denotes the hermitian adjoint of ¢. Given a solution to (1.0.1), the connection A, + ¢ + ¢*» is a
flat SL(n, C)-connection whose holonomy representation is reductive. The other direction of the correspon-

dence concerns harmonic metrics on flat G bundles, and is provided Corlette’s Theorem [Cor88]. Given a



representations p : m1(S)—G, any metric on the flat G-bundle S X, G (i.e. reduction of structure group to
the maximal compact subgroup H C G) is equivalent to a p-equivariant map S—G /H. If the conjugacy class
of p defines a point in X(7;(5), G), then Corlette proved that, for each Riemann surface structure ¥ on S,
there is a metric h, : f]—)G/H which is a harmonic map.

The rest of chapter 4 is devoted to studying the consequences of a G-Higgs bundle being a fixed point of
a root of unity action. The first such application is that the metric solving the Hitchin equations for stable
and simple G-Higgs bundles is compatible the holomorphic reduction to Gg. In other words, we have the

following commuting diagram of reductions of structure:

G/Go =— G/Ho

b

where Hy = G N H. In section 4.3, polystable G-Higgs bundles which are fixed by (¢, ) are interpreted in
terms of harmonic maps f : Y6 /Ho which satisfy certain symmetries (see Theorem 4.3.4). This analysis
is used to prove Theorem 4.3.7 which answers a question of Toledo on G-variations of Hodge structures.
For SL(n,C) the group Gy is always a Levi factor of a parabolic subgroup of SL(n,C). If (£,¢) is an
SL(n, C)-Higgs bundle fixed by the k" roots of unity, then, in terms of vector bundles, the rank n holomorphic
vector bundle &£ splits holomorphically as £ = £ & - -- @ &,. Moreover, with respect to the metric solving
the Higgs bundle equations, this holomorphic splitting is also orthogonal, i.e. the metric h is a direct sum
h=hy @---hg. If we decompose the Higgs field ¢ : E-E ® K in terms of the above holomorphic splitting,
then, by Theorem 4.1.6, the only components which are nonzero are ¢; : £;—=Ej41 mod k- In this case, the

Higgs bundle equations simplify into a fully coupled system of simpler equations:
Fa,, +¢j-1Noj_1 + 5 A ¢ =0. (1.0.2)

If G is a real group and (&, ¢) is a G-Higgs bundle which is fixed by a k" roots of unity action and with
the propert that the corresponding G¢ Higgs bundle is stable, then the simplification the Hitchin equations
(1.0.2) for the complex group G¢ has extra symmetries which reflect the real form G. Chapter 5 is based
on a joint work with Q. Li [CL14]. In this work, the extra symmetries of the metric for fixed points of the
n" and (n — 1)* roots of unity actions in the SL(n,R)-Hitchin component are exploited to solve the Higgs
bundle equations asymptotically. This analysis also allows us to analyze the asymptotic holonomy of the

corresponding family of representations of m(S).



To describe this, we recall that the SL(n,R)-Hitchin component Hit(SL(n,R)) is parameterized by the

vector space @ H°(X, K7) of holomorphic differentials, and the Higgs bundle (£, ¢) associated to a tuple
j=2
(g2 - -, qn) of differentials is

5:]{"771@]{"773@...@]{*"773@[{*"51
and

0 @ g . u-1 @n

%71 0 q2 ... Q4n—2 gn—1

¢ = . . & —EQRK.

q2 q3

0

n=-1

Such a ¢ will be denoted by é; + goe1 + qzea + - - - + gnen—_1. Moreover, (€, ¢) is a fixed point of the k" roots

of unity if and only if ¢ = é1+ >  gjej_1 (see Propositiond.2.7). Using the SL(n, R)-symmetry the
7=0 mod k
following key corollary can be deduced:

Corollary 4.2.8. Fork =n and k =n — 1 the harmonic metric splits as h1 ®ha @ ---® hy ' @ hi' on the

n—1
2 .

line bundles K= o K= @ --- o K "5 9 K~

For k = n, this was proven by Baraglia [Barl5], and was used to study, amongst other things, the
relation between the Hitchin equations and the affine Toda equations. We first obtain estimates for the
solution metric h; of the Hitchin equations as t—oo by repeatedly using the maximum principle and a

standard “telescope” trick.

Theorem 5.1.1. For every point p € X away from the zeros of g, or qn—1, as t—o0

n41-2j

1. For (¥, é1 + tgnen—1) € Hit(SL(n,R)), the metric h;(t) on K admits the expansion

n41-—2j
n

hj(t) = (tlanl)~ (1 +0 (t’%» for all j

n+1—2j5 . .
admits the expansion

2. For (3, é1 +tqn—1€n—2) € Hit(SL(n,R)), the metric h;(t) on K

nt+1—25

(t|gn-1])" =1 (1+O(t_%>) forj=1 and j=n

(2t gn_a]) T (1 +o (t*%)) fori<j<n

hj(t) =

Using the asymptotic estimates of the solution metric and error estimates, we integrate the ODE defined



by the flat connection. This yields an estimate of the parallel transport matrices Tp p/(t) as t—oo. For
(2,(0,...,0,tq,)) € Hit(SL(n,R)), let P € ¥ be a point at which g, does not vanish. Choose a neighborhood
U, centered at P, with coordinate z, so that ¢, = dz". Any P’ € U, may be written in polar coordinate as
P' = Le'. Suppose 7(s) is a |qn\%—geodesic from P to P’ parametrized by arc length s. With some work
and an extra condition on the path, we obtain the entire set of eigenvalues of the parallel transport operator

along the path asymptotically.

Theorem 5.3.2. Suppose P, P’ and the path y(s) are as above. If P' has the property that for every s,

s < d(y(s)) :== min{d(v(s), z0)| for all zeros zy of gn},

then there exists a constant unitary matriz S, not depending on the pair (P, P"), so that as t—o0,

1
e Ltmm

Tp i (1) = <Id+0 (f*)) S 51

1
e_Lt" Hn

where u; = 2cos (9 + W)

Remark 1.0.4. For (3,(0,---,0,t¢,—1,0)) € Hit(SL(n,R)), we have similar results in Theorem 5.2.8. In
particular, in this case, p; = 0 and for j > 1, u; = 2cos (9 + %) When P and P’ both project to the
same point in ¥, the projected path is a loop. In this case, the above asymptotics correspond to the values

of the associated family of representations on the homotopy class of the loop.

By studying the geometry of the family of harmonic equivariant maps h; : ©—SL(n, R)/SO(n) corre-
sponding to the family of Higgs fields ¢, = é; + tq,e,—1 we also obtain a geometric interpretation of the
‘boundary point’ (see Theorem 5.3.2). In particular, with the proper interpretation, this proves a conjecture
of Katzarkov, Noll, Pandit, and Simpson [KNPS15] on the Hitchin-WKB problem in a special case.

For a simple complex Lie group G let m, be the height of the highest root of the Lie algebra. Stable
G-Higgs bundles which are fixed points of the (my + 1)-roots of unity action always correspond compatible
reduction of structure diagrams given by

G/C=—G/T

t 7

where C is a maximal complex torus and T is a maximal compact torus. In Chapter 6 we define a special



class of equivariant harmonic maps to the space G/T. For the split real form Gy C G, the Go-Higgs bundles
fixed by (m¢ + 1)-roots of unity give rise to such maps which satisfy additional symmetries. Specifying a bit
more, we introduce the notion of a cyclic surface which generalize those defined by Labourie [Labl4]. For
this special class of maps we prove a rigidity result (Theorem 6.1.37). This analysis allows us to use Higgs
bundles to understand the mapping class group action on certain connected components of X (71, PSp(4,R)),
which we now describe.

For a group of hermitian type such as PSp(2n,R), the set of maximal representations and maximal Higgs
bundles are an especially interesting class of objects. In particular, these representations are all discrete
and faithful and the mapping class group Mod(S) acts properly discontinuously on maximal representations
[BILWO05]. Later in chapter 5, we analyze fixed points of 4*" roots of unity on the space of maximal
PSp(4,R) Higgs bundles. Generalizing the work of Bradlow, Garcia-Prada, and Gothen [BGPG12] for
maximal Sp(4,R)-Higgs bundles, we describe all maximal PSp(4,R)-Higgs bundles by exploiting the low
dimensional isomorphism PSp(4,R) = SOq(2,3). Denote the set of maximal SOg(2,3)-Higgs bundles by
M?2972(S0¢(2, 3)), we prove:

Theorem 6.2.16. For each d € (0,4g — 4], there is a smooth connected component Mig_2(500(2,3)) of

M?972(S0¢(2,3)) and a diffeomorphism
MZI73(S00(2,3)) = Fé x HO(K?)

where fg is a rank d + 3g — 3 vector bundle over the symmetric product Sym~4+49-4(%).

Corollary 6.2.18. M>?7%(S0¢(2,3)) deformation retracts onto Sym~4t49=4(). In particular, there is

an isomorphism of cohomology rings
H*(MZ2(S00(2,3))) 2 H* (Sym~*H1974(%)).

Remark 1.0.7. Since the connected components M>?~%(SO(2, 3)) generalize those discovered for Sp(4, R)
by Gothen [Got01], we will call these Gothen components. For d = 4g — 4, the space f-gg_4 = H°(K*) and
we recover the SO¢(2, 3)-Hitchin component. For 0 < d < 4g — 4, it clear from the above theorem that
MZQ_Q(SOO(Q, 3)) is noncontractible. Furthermore, we show that, if Goth;(SOg(2,3)) is the connected com-
ponent of X (71,50¢(2,3)) corresponding to /\/139_2(500(27 3)), then all representations p € Goth;(SO¢(2, 3))

are Zariski dense, again generalizing what is known for Sp(4,R) [BGPG12].

Applying the cyclic surface analysis mentioned above to the Gothen components we prove:



Theorem 6.3.5. For each p € Gothy(SO0(2,3)) there exists a unique Riemann surface structure 3, in

which the harmonic map h, : ip—>SOO(2, 3)/(SO(2) x SO(3)) is a minimal immersion.

It is not hard to show that, in Theorem 6.2.16, the quadratic differential in the parameterization is a con-
stant multiple of the Hopf differential of the corresponding equivariant harmonic map h : 5—50(2,3)/(SO(2) x
SO(3)). As a result, we obtain a mapping class group invariant parameterization of Gothq(S50¢(2,3)) as a

fiber bundle over Teichmiiller space.

Theorem 6.3.6. There is a Mod(S)-invariant diffeomorphism between Gothy(SO¢(2,3)) and the fiber
bundle F4—Teich(S) with fiber F from Theorem 6.2.16 over a Riemann surface ¥ € Teich(S).

Remark 1.0.10. When d = 4g — 4, Theorems 6.3.5 and 6.3.6 recover results of Labourie which describes
the PSp(4, R)-Hitchin component as the vector bundle of holomorphic quartic differentials over Teichmiiller

space [Lab14].

In the final section of the thesis we discuss generalizations of the Gothen components to higher rank
groups. For n > 3, the space of maximal PSp(2n,R) representations is not as rich as the space of maximal
PSp(4,R) representations. For instance, for n > 3 there are 3 - 229 connected components of maximal
Sp(2n,R)-Higgs bundles, and since every connected component of maximal Sp(2n,R) representations can
be deformed to either a Hitchin representations or a ‘twisted product representation’ [GW10], none of these
components behave like the Gothen components. For these reasons, it was believed that the diversity of
Sp(4,R)-maximal representations and Higgs bundles was an anomaly of low dimensions. However, motivated
by the isomorphism PSp(4,R) 2 SO((2,3), we show that the Gothen components should be thought of as

an SOg(n,n + 1) phenomenon.

Theorem 6.4.1. For each 0 < d < n(2g —2) there is a smooth connected component Mq(SOg(n,n+1)) C
n—1
M(SO¢(n,n+1)) which is smooth and parameterized by F&x @ H°(Z, K*) where F&—Sym~4tn(2n=2)(3)

Jj=1

is a vector bundle of rank d + (2n — 1)(g — 1). Moreover, My, (24—2)(SOo(n,n + 1)) = Hit(SOq(n,n + 1)).

In particular, using SOg(1,2) 2 PSL(2,R), we recover Hitchin’s [Hit87a] parameterization of all connected

components of M(PSL(2,R)) with positive Toledo invariant mentioned earlier.

Corollary 6.4.2. For 0 < d < 2g — 2, there is a connected component of M(PSL(2,R)) which is parame-

terized by a rank d + 2g — 2 vector bundle over Sym~4+29=2(%).

Remark 1.0.13. The group SOg(n,n+1) is not a group of hermitian type for n > 2, thus there is no notion

of maximality. As a result, the geometry of the corresponding representations is completely unexplored.



Corollary 6.4.3. FEach of the spaces My(SOq(n,n + 1)) is homotopy equivalent to Sym~+"29-2)(%). In

particular, there is an isomorphism H*(M4(SOg(n,n + 1))) = H*(Sym~4+(29-2)(%)).

Corollary 6.4.4. The moduli space M(SOq(n,n + 1)), and hence X(m1,S0¢(n,n + 1)), has at least

n(2g — 2) + 4 connected components.



Chapter 2

Lie theory and homogeneous space
background

2.1 Lie Theory for real reductive Lie groups and Lie algebras

For most Lie theory facts we follow [Kna02], [Oni04] and [Vin94]. Let g be a Lie algebra, and let Aut(g)

denote the group of Lie algebra automorphisms. The adjoint representation is given by

ad : g— End(g)
X+——uadx =[X, -]

The group of inner automorphisms Inn(g) C Aut(g) is defined to be the subgroup generated by exp(adx) for

all X € g. The group Inn(g) is a normal subgroup and the quotient Out(g) is the group of outer automorphism:

1 Inn(g) Aut(g) —— Out(g) ——1.

The Killing form By : g x g—R is defined by

By(X,Y) = Tr(ad(X) o ad(Y));

it is symmetric and Inn(g)-invariant, i.e. By([X, Z],Y) = By(X,[Y, Z]).

Definition 2.1.1. A Lie algebra g is called simple if it has no nontrivial ideals, and semisimple if it is a
direct sum of simple Lie algebras. A Lie algebra g is is called reductive if g = 3(g) © g°° where 3(g) is an

abelian subalgebra and g°° is semisimple.

We will mostly deal with semisimple Lie algebras, but on occasion we will need to work with a reductive
Lie algebra. Cartan showed that the Killing form By is nondegenerate if and only if By is semisimple. In

particular, semisimple Lie algebras have trivial center:

3(9) ={X € g | adx =0} = {0}.



If H is a Lie group with Lie algebra b, then H is compact if and only if the Killing form By is negative
semidefinite (Corollary 4.36 [Kna02]). Let o : g—g be an involutary Lie algebra isomorphism with +1

eigenspace decomposition g = h @ m, then
[b,bl CH, [p,m] Cm, [m,m] Ch. (2.L.1)
Hence, b C g is a Lie subalgebra, and the splitting g = h @ m is ady-invariant. If G is a Lie group with Lie

algebra g and H C G is a Lie subgroup with Lie algebra §, then the splitting h @ m is Ady-invariant.

Definition 2.1.2. Let g be a real semisimple Lie algebra, an involution ¢ : g—g so that
B,(X.Y) = —By(X,o(Y))

is a symmetric positive definite bilinear form is called a Cartan involution.

For a Cartan involution, it follows that the splitting g = h @ m is orthogonal and that By is positive
definite on m and negative definite on h. Thus, b is the Lie algebra of a maximal compact subgroup H C G. If
gc = g ®r C is the complexification of g, then an involution o : g—g extends to a complex linear involution
of gc, and the splitting gc = be @ mc is Adn.-invariant.

Cartan involutions exist and are unique up to conjugation. Furthermore, under the conjugation action,

the stabilizer of a Cartan involution 6 is the group Hgy. Thus we obtain:

Proposition 2.1.3. Let G be a real simple Lie group with mazimal compact H then
G/H={0:9g—g | 0 a Cartan involution}.

Example 2.1.4. Let SL(n,C) be the Lie group of determinant 1 complex valued n x n matrices, its Lie
algebra sl(n, C) consists of all n x n traceless matrices. The involution X — ~X" is a Cartan involution

with Cartan decomposition
sl(n,C) = su(n) @ isu(n) = su(n) ® hermo(n),

where su(n) consists of all skew adjoint matrices and hermg(n) consists of all traceless hermitian matrices.

Example 2.1.5. Let SL(n,R) be the Lie group of determinant 1 real valued n x n matrices, its Lie algebra

sl(n,R) consists of all n x n traceless matrices. The involution X +— —X7T is a Cartan involution with
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Cartan decomposition

sl(n,R) = so(n) & symo(n)
where s0(n) consists of all skew symmetric matrices and symg(n) consists of all traceless symmetric matrices.

Definition 2.1.6. Let g be a complex Lie algebra, a subalgebra gy C g is a real form of g if go ® C = g.
Equivalently, go is a real form if it is the +1-eigenspace of a conjugate linear involution A : g—g. The

+1-eigenspace decomposition of g with respect to A is given by g = go @ igo.

A complex Lie algebra g is semisimple if and only if g = ¢ ® C for a semisimple compact Lie algebra
¢ (Theorem 6.11 [Kna02]). In particular, complex semisimple Lie algebras always have compact real forms

t C g. We will always denote the involution associated to a compact real form by 6.

Proposition 2.1.7. (Ch 2, Prop 1 [Oni0}]) Let Ao and A1 be two real forms of a complex Lie algebra g. If
g and g are the corresponding +1-eigenspaces then g0 = gt if and only if there is an automorphism

g € Aut(g) so that \g = gh1g~ 1.

Fix a real form A, given any other real form 7, the composition Ao 7 : g—g is a complex linear automor-
phism. The map A7 is an involution if and only if A7 = 7. In this case, the real form 7 is invariant under
the involutions A and A7. If 4 is a fixed compact real form, then Cartan proved that for any other real form

1

A there exists an inner automorphism g so that ghg™" commutes with 6. In this way, one can study real

forms in terms of complex linear involutions that commute with a fixed compact real form.

2.1.1 Roots and parabolics for complex Lie algebras

The root theory reviewed here will be used throughout the thesis. In particular, the Z-gradings play a vital
role in describing fixed points of the C* action on the Higgs bundle moduli space and the Z/kZ-gradings are
an essential part of the classification theorem (Theorem 4.2.2) of fixed points of roots of unity actions.

A maximal abelian subalgebra ¢ C g consisting of semisimple elements is called a be a Cartan subalgebra.
Cartan subalgebras exist and are unique up to conjugation. The dimension of ¢ is called the rank of g and

the restriction of the Killing form Byl is nondegenerate. An element o € ¢* is called a root if & # 0 and

0o ={X €g|[H X]=a(H)X for all H € ¢} # {0}.

Denote the set of roots by A(g, ¢) C ¢*. If e is a root, the space g, is called the root space of «; the dimension

of a root space g, is always 1. Given two roots «a, 8 € A(g, ¢), a simple calculation shows [gq, 838] C ga+3-

11



Note that if « is a root, then —a is also a root. This allows us to choose a subset AT C A(g, ¢) of positive

roots such that o € AT if and only if —« ¢ A™. A choice of positivity defines a set of simple roots
IT= {0417"’ ,OZZ} C A(Qac) C C*a

¢

where o € AT implies & = Y njo; with nj; € N and «; € IL. The integer I(«) = > n; is called the height or
Jj=1 J

length of the root . Let my be the maximum height, then, since g is simple, there is a unique root p with

I(n) = my called the highest root.

Let C C Inn(g) be the maximal torus (with Lie algebra ¢). Any inner automorphism A is conjugate to
an element on C and moreover, two elements of C are conjugate if and only if they are equivalent under
the action of the Weyl group N(C)/C where N(C) is the normalizer of C. Although the Weyl group action

preserves a Cartan subalgebra, if one fixes a notion of positivity we have the following:
Proposition 2.1.8. The group G acts transitively on the space of a Cartan subalgebra with a choice of
simple roots, and the stabilizer of a point is the corresponding Lie group C C G with Lie algebra ¢; thus

G/C={(c,AT) | ¢ C g a Cartan subalgebra , A* C ¢*a positive root system}. (2.1.2)

If c(R) ={H €¢| a(H) € R forall @ € A(g,c)}, then ¢(R) is a real form of ¢. The Killing form By is

real and positive definite on ¢(R) and ¢(R)* = Span{A(g, ¢)}. Furthermore, the Killing form satisfies
By(X,Y)=0 for X €ga, Y €gs with o+ #0. (2.1.3)

Thus ¢ and the vector subspaces (g, @ g—n) of g are pairwise orthogonal.

Since the Killing form restricted to ¢ is nondegenerate, define the coroot H, € ¢ of a root a by duality

_ 2By (B, )
B Bg* (OZ,OZ) )

B(Ha)
By construction, a(H,) =2, H, € ¢(R) and {H,, }!_, is a basis for ¢(R). A collection {X,}nea satisfying
o (X, X o]=H,
] [XO”XQ] = Na,ﬂ Xa-l—,ﬁ with Naﬁ = 7N_a,_[3 € N and Nm,g =0 if a + B is not a root.

is called a Chevalley basis; Chevalley bases exist (Theorem 6.6 [Kna02]).

Definition 2.1.9. A Cartan involution which globally preserves a Cartan subalgebra ¢ is called a ¢-Cartan
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involution.
Lemma 2.1.10. A c-Cartan involution 0 takes a root space go to §9_o and 6(H,) = —H,.

Proof. Since 6 is an isomorphism and «a(Hpg) real, for all X € g,, we have 6([Hg, X]) = a(Hg)0(X). So 6
takes root spaces to roots spaces. Recall that for oo + 3 # 0, the root spaces g, and gg are orthogonal. By
definitinion of a Cartan involution, —By(-, #-) is positive definite. Thus 6 takes g, to g_o. Let Xiq € g+a

with [X4, X_o] = Ha, then
Q(Ha) = [Q(Xa)vg(X*Oé)] = [AleavAQXa] = - H,.

Since, 6 is an involution, By(Hq, Hy) > 0 and —By(H,,0(H,) > 0 we conclude §(H,) = —H,. O

The existence of a Chevalley basis gives the existence of two real forms, the split real form and the

compact real form. The Lie subalgebra

0
o = PRH., & P RX, (2.1.4)
i=1 aEA

is a split real form (Corollary 6.10 [Kna02]). In terms of the Chevalley basis, g’ is the fixed point set of the
conjugate linear involution A defined by A\(X,) = X_, and A(H,,) = H,,. The subalgebra

¢
t=PRiH,, & P RXo—X_o)®Ri(Xo+X_0)

i=1 a€A(g,0)
is a compact real form of g (Theorem 6.11 [[Kna02]). In terms of the Chevalley basis, £ is the fixed point set

the conjugate linear Cartan involution defined by
0(Xo) = —X_o and 0(H,) = —H, . (2.1.5)

Complex simple Lie algebras are classified by a diagram associated to a set of simple roots II C A called
its Dynkin diagram. Fix a Cartan subalgebra ¢ C g and a set of simple roots I = {ay, - , s} C A. With
this choice, the Dynkin diagram has exactly one vertex for each simple root «; and an edge is drawn between

each nonorthogonal pair of vectors. The edge is undirected and single if the root vectors make an angle of

2w

2m 3w
3

1> and a directed triple edge the root

it is a directed double edge the root vectors make an angle of

vectors make an angle of %’r. If directed, the edge points towards the shorter root.

Example 2.1.11. The classical Lie algebras have the following Dynkin Diagrams
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e For g = sl(n+1,C) there are n simple roots a; - - - , o, with ; orthogonal to o if and only if j # i+1.

Furthermore, the angle between all nonorthogonal roots is 2{7 thus the Dynkin diagram is

(5} a2 Qp—1 Qpy

e For g = s0(2n + 1,C) there are n simple roots i --- ,a, with a; orthogonal to «; if and only if

j # i+ 1. Furthermore, for ¢ < n — 1, the angle between a; and ;41 is %ﬂ and the angle between a,, 1

and «, is ?ﬂf with a,, being the shorter root, thus the Dynkin diagram is

o ce —=——0
[e51 [e3) Qn—1 Qn

e For g = sp(2n,C) there are again n simple roots which satisfy the same orthogonality conditions and

angle conditions as s0(2n + 1,C) but with «,,_; shorter than «,,, thus the Dynkin Diagram is

o . —=—0
[e5} @2 An—1 Qnp
e For g = s0(2n,C) there are n simple roots as,--- ,a, with a; orthogonal to a; if i < n —1 and

j #1i+1 and «,, is orthogonal to all roots except «,_s. Furthermore all angles are %’T, hence the

Dynkin diagram is given by

o o O/%én—l
a1 Qg Omfz\o
Qn

Example 2.1.12. For g = s0(7,C), the rank of g is 3 and if IT = {1, as, a3} is a set of simple roots, the

positive roots is given by
AT ={a1,qs, a3, a1 +as, as +ag, o1 +as + a3, as +2a3, oy + as +2a3, @+ 2as + 203}
The highest root p = a1 + 22 + 2ai3 has height 5. This can be depicted in the root poset of so(7,C) :

(o]

e

O/ \O
s
WAWAN

O
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Parabolics and Z-gradings on g

There are many equivalent definitions of parabolic subgroups P C G, for instance, a subgroup P with G/P
compact. If we fix a root system with a notion of positivity, then the standard classification says parabolic

subalgebras p C g are in one-to-one correspondence with subsets of simple roots.

Definition 2.1.13. Let IT C A(g,¢) be a set of simple roots. For a positive root system and for a subset

A CITI, define the set R4 = {f > mj o ; € A(g,c)lm; > 0for a; € A}. The parabolic subalgebra associated
a;ell
to A C II is defined by

pa=c® P ga-

aERA
Note that for the two extremes A =1l and A = ) we have pp =c¢® €@ g and py = g. Given a

a€EAT(g,c)
parabolic p4 denote the connected Lie subgroup with Lie algebra p4 by P4 C G.

Definition 2.1.14. Given a subset A C II define RY = {8 = > mja; € A(g,¢)|m; = 0 for all o; € A}.

ajell
The subalgebras of the parabolic p4 given by
Aa=cd P 9o us= @ ga
a€RY a€RA\RY

are respectively called the Levi and unipotent radical subalgebra, and pa =4 D u4.

Recall that if « € ¢* is a root, then the coroot H, € ¢ was defined by duality with respect to the Killing
form. Denote the root lattice of g by @ C ¢(R)*. Consider the map ¢—C defined by = — exp(2miz), the
kernel of this map is the lattice P dual to Q. The lattice P is generated by the fundamental weights {m;}
defined previously, and if Q C ¢ is the coroot lattice, then @ C P. The fundamental group m;(Inn(g)) is
canonically isomorphic to P / Q.

The set of simple coroots generate define the set of fundamental weights {m;} € ¢* as the dual basis:
7j(Ha,) = bij.
It is not hard to show that center of p 4 is the same as the center of [4 and that

3(pa) =3(la) = [ Ker(m,). (2.1.6)
o €I\ A

The set of characters of an arbitrary complex Lie algebra consists of the the set of maps g—C which

factor through g/[g, g, i.e. they are given by elements of the dual of the center 3*(g). Any character y of a
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parabolic p4 can be written as x = > n;m; for n; € R. For a semisimple Lie algebra the only character
o €A
is the constant map. Characters of parabolic subalgebras will play an important role in the definition of

stability for Higgs bundles.

Definition 2.1.15. An (anti)dominant character of a parabolic p4 is an element of 3(I4) of the form

X = > n;m with n; >0, (n; <0), if the inequality is strict for all o; € A the character is called strictly
aj; €A

(anti)dominant.

Given a parabolic p 4 the strictly dominant character x = Y m; defines a Z grading on g called the height

grading of the parabolic p4

§=90-%x0 DI 1D DI D - Dok (2.1.7)
If i # 0, g; consists of the root spaces g, where & = ) mnja; with Y n; = ¢ and go = [4. Since
a; €Il a; €I\ A

[9i,0;] C 8i+j, the decomposition (2.1.7) is a splitting as [4-modules with respect to which g, is the dual
representation of g_;.

A Z-grading g = € g, is equivalent to a homomorphism 7 : C*—Aut(g) and such an object is defined
by any element h € gjii that dvy(1) = ad(h), i.e. exp(2miad(h)) = id. For a fixed Cartan subalgebra ¢ with
simple roots II, we can act by inner automorphisms to arrange h € ¢ and «a;(h) > 0 for all o; € IL. If we
set p; = «j(h), then the vector subspace g,, consists of root spaces g, with « = > nja; and Y n,p; = n.
Given a Z-grading, let A = {a; € II | p; # 0} then the Lie algebra ps = GB g;jigr; parabolic subalgebra,
furthermore, 7 is a dominant character of p 4. =0
Remark 2.1.16. From the above discussion, we see that Z-gradings are in one-to-one correspondence with
labelings of the Dynkin diagram with integers. For any Z-grading, the Lie subalgebra g is always a Levi

factor of a parabolic. Moreover, the height grading corresponding to a parabolic p4 C g is determined by a

Z-grading with only 1’s and 0’s.

Example 2.1.17. Recall from example 2.1.12, g = s0(7, C) has simple roots {1, aa, a3} and the highest root

is given by u = ay + 2az + 2a3. The labeling of the s0(7,C) Dynkin diagram ¢ s0==-9

6
defines the parabolic p4 with A = {2, a3} and gives the follow Z-grading g = € g, where
j=—6

900 =¢Dga, Dg—oy g1 = Bas 92 = Bas D Bartan 93 = Gas+astas D Jas+as
94 = Bos+2as ¥ Jai+as+2as g5 = {0} 96 = Bo1+2a2+20a3

Moreover, the height grading of the parabolic p 4 is defined by labeling the Dynkin diagram by ¢ Ho==——0
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7/ kZ-gradings

A Z/kZ-grading g = € g; is equivalent to defining a homomorphism v : Z/kZ—Aut(g). Unlike Z-
gradings, the image of]'jzz/kZZ/ kZ—Aut(g) does not necessarily land in Inn(g) since Z/kZ is not connected.
However, we will only discuss Z/k/Z-gradings which arise from homomorphisms Z/kZ—Inn(g). Such an
object arises from an element o € Inn(g) with ¢™ = id. A good reference for this subsection is Chapter 3

of [Vin94]. Just as Z-gradings correspond to integer labelings of the Dynkin diagram, Z/kZ-gradings with

o € Inn(g) correspond to certain labelings of the extended Dynkin diagram of g.

Let ¢ C g be a Cartan subalgebra with IT = {1, -+ ,a¢} C ¢* a set of simple roots. Denote the unique
[ ~
highest root by = 3" nja; and set o = —p. The extended system of simple roots IT = {ag, o1, -+ , e}
j=1

is an admissible system of vectors. Its metric properties are described by the so-called extended Dynkin
diagram (see Chapter 1 [Vin94]). If ng = 1 then the elements of the system II satisfy the linear relation that
ZL]:O njo; = 0. Any automorphism of the system II can be extended to an automorphism of IT is such a way
;(_) that Aut(II) is a subgroup of Aut(II), and the fundamental group of the adjoint group m; (Inn(G)) = P/Q
is naturally identified with a subgroup of Aut(ﬁ) which acts simply transitively on the set of roots «; € Il

Example 2.1.18. For the classical Lie algebras the extended Dynkin diagrams are given by:

e For g =5l(n+1,C)if IT = {as, - ,a,} is the set of simple roots then ap = > —c; and the extended
i=1
Dynkin diagram is given by

© © © q 1 1 9

where the labels on second diagram correspond to {n;}.

n
e For g =50(2n+1,C) if Il = {o, - - , an } is the set of simple roots then oy = > —nja; where n; =2
j=1
for j > 2 and n; = 1. The extended Dynkin Diagram is given by

[©) O.

OZN 1\o cee O—=—-0
o o 1/ 2 2 2

O

where the labels on second diagram correspond to {n;}.
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e For g =5p(2n,C) if I = {1, - , @, } is the set of simple roots then ag = > —nj;a; where n; = 2 for
j=1
j <n-—1and n, =1. The extended Dynkin Diagram is given by

O——=——0 . e —=—"0 O—=— “e. )—=—10

where the labels on second diagram correspond to {n;}.

e For g =50(2n,C) if IT = {av1, - - - , v, } is the set of simple roots then ag = > —nj;a; where n; =1 for
j=1
j=1,n—1,n and n; = 2 otherwise. The extended Dynkin Diagram is given by

O. o] O. O
aNO o/ 1\0 o o/1
o/ \o 0/2 2\0
1 1
where the labels on second diagram correspond to {n;}.
Let ¢ be a Cartan subalgebra with simple roots IT = {a1,--- ,ay} and highest root p. For any element
x € ¢ define the coordinates (zg,- -+ ,x¢) by
xo=1— p(z) 1 = ai(x) T2 = az(x) xp = ay(x) .

We will make extensive use of the following theorem.

Theorem 2.1.19. (Theorem 3.11 [Vin9/]) Let G be a complex simple Lie group with Lie algebra g. Let
¢ be a Cartan subalgebra with simple roots II = {aq, -+ ,ap} and highest root . Any inner semisimple
automorphism of g is conjugate to an automorphism of the form exp(2miz), where x € ¢ and Re(z;) > 0 for
all j and if Re(xz;) = 0 then Im(x;) > 0. Moreover, two automorphisms exp(2miz) and exp(2miz’) of such a

form are conjugate if and only if the the coordinates (xg,--- ,x¢) can be taken to (z(,--- ,x}) by an element

of mi(Inn(g)).

Note, that by ignoring the group m1(Inn(g)) we obtain a classification of semisimple elements of the

simply connected Lie group G with Lie algebra G. If 7 (Inn(g)) is replaced by Aut(II) then we obtain an
classification of inner semisimple automorphisms up to conjugacy in Aut(g).
Using this theorem, for any inner automorphism o we may assume that o = exp(2miz) where = € ¢ has
coordinates (g, - ,x,) satisfying the hypotheses of Theorem 2.1.19. If 0¥ = Id then we have T = % for
¢

p; € N such that Y n;jp; = k. Thus, a Z/kZ-grading arising from an inner automorphism can be defined
§=0
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‘
by a labeling of the extended Dynkin diagram by non negative integers p; satisfying > n;p; = k. Two such
j=0
7 /kZ-gradings can be taken to one another via an automorphism if and only if the labeled extended Dynkin

diagrams can be taken to each other by a diagram automorphism.

Example 2.1.20. e Given a Z grading g = € g, on can obtain a Z/kZ-grading g = & g, by
j=—n JEL/KT
setting g; = @  gi- One particular instance of such a grading which will be important later is
i=j mod k

¢ ¢
the following: Let = ) nja; be the highest root and set k = 1+ > n;. The Z-grading given by
Jj=1 j=1

k—1
labeling the Dynkin diagram with a 1 on each simple root is given by g = € g,, in particular
j=—k+1
go = ¢. The associated Z/kZ grading g = €@ ¢, hasgo = cand g; = g; ®g_r+;. The labeling of the
JELIKL

extended Dynkin diagram has a 1 on each vertex. For example, for s0(7,C), k = 8 and the labeling of
the extended Dynkin diagram is

O.
1

\
_— 9

(@]

1

e Unlike Z-gradings, the identity eigenspace gg does not need to be the Levi factor of a parabolic
subalgebra. For example, the Z/4Z-grading of so(7,C) associated to the extended Dynkin diagram
O.
1T~
labeling O/%Iol is isomorphic to sl(2, C) @ sl(2,C) & sl(2,C) @ C which is not the Levi factor
1

any parabolic of so(7,C).

Remark 2.1.21. Note that is g = sl(n,C) then for any Z/kZ-grading the Lie subalgebra gy is the Levi

factor of a parabolic subalgebra.

The identity eigenspace go of a finite order automorphism o € Inn(g) is a reductive Lie subgroup of g
and its type can be determined by the labeling of the extended Dynkin diagram. The simple roots labeled
with a 0 define a root system for gy, thus one simply removes all vertices without a 0 label to obtain the

Dynkin diagram of go.

Remark 2.1.22. Let g; = @ @Y be the decomposition of g; into irreducible gy representations. If there are
roots labeled with a 0, then the irreducible representations which appear are in one-to-one correspondence
with the connected components which contain a root labeled with a 1 of the Dynkin diagram which results
from removing the roots labeled with a 0 from the extended Dynkin diagram. If there are no roots labeled

with a 0 then go = ¢ and the root space of each root labeled with a 1 defines an irreducible representations.
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2.1.2 Maximally compact Cartan subalgebras and roots for real Lie algebras

The interaction between the root theory of a complex simple Lie algebra and its real forms will be important
for the definition of Hitchin triples and the notion of a cyclic surface introduced in Chapter 6. The main
reference for this subsection is Chapter 6 sections 6-10 of [Kna02]. For this subsection fix go a real form of
a complex simple Lie algebra g with Cartan involution 0 : go—g¢ and corresponding Cartan decomposition

go=hom

Definition 2.1.23. A #-stable Cartan subalgebra of go is a maximal abelian subalgebra ¢y C go such that
¢ ® C C g is a Cartan subalgebra and 6(cy) = c¢o. This gives a decomposition of ¢y into compact and

noncompact parts: ¢g =tg P ag C hHm.

Definition 2.1.24. Let ¢ = to @ a9 C h ® m be a Cartan subalgebra. If dim(ty) maximal amongst all
Cartan subalgebras then cq is called maximally compact and if dim(ag) is maximal then cq is called mazimally

noncompact.

For a fixed real simple Lie algebra gy with Cartan involution 8, a Cartan subalgebras ¢y C go compatible
with € is not unique up to conjugation. If ¢y and c{, are two such Cartan subalgebras with different compact
dimensions then they are clearly not conjugate; even if they have the same compact dimension, they are not
necessarily conjugate. However, for maximally compact and maximally noncompact Cartan subalgebras we

have:

Proposition 2.1.25. If¢yg = tg @ ag C h & m is a mazimally compact or mazximally noncompact Cartan

subalgebra then ¢y is unique up to conjugation.

Definition 2.1.26. If ¢y C g is a maximally noncompact Cartan with t; = {0} the real Lie algebra g
is the split real form of g. The split real forms of sl(n,C), so(2n + 1,C), sp(2n,C) and so(2n,C) are

sl(n,R),s0(n,n + 1),sp(2n,R) and so(n,n) respectively.

Remark 2.1.27. We will give an equivalent definition of split real forms in terms of maximally compact
Cartan subalgebras in Proposition 2.1.43. The Lie algebra gy C g is a compact real form if and only if

ag = {0} for any Cartan subalgebra.

Let ¢g C go = h @ m be a Cartan subalgebra. If ¢ = ¢y ® C then we have a decomposition ¢ = t@ a where
t=1, ®C and a = ap ® C. Denote the complex linear extension of the Cartan ivolution to g* by 6 also, the
set of roots A C ¢* is preserved by the involution 6. Furthermore, since the Killing form is positive definite

on the set roots, A lives in the noncompact part of ¢*, i.e.

A C ity P ag.
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This leads to the notion of real, imaginary and complex roots:

Definition 2.1.28. A root a € (it* @ a*) is called real if af;y = 0, imaginary if ol = 0 and complex
otherwise. By construction, if « is real then 6(«a) = —a, if « is imaginary then 6(a) = « and if « is complex

then 0(«) is a root different than «.

For a root a, the Cartan involution satisfies 0(go) = (o). Thus, if « is real then 0(g.) = g_o and if
« is imaginary then 6(g,) = go. Since the root space g, is one dimensional for an imaginary root « either

ga C bC or go C mg.
Definition 2.1.29. An imaginary root « is called compact if g, C bhc, and noncompact if g, C me.

The number of each type of roots depends on the dimension of the compact part of a Cartan subalgebra,

for maximal compact and maximal noncompact Cartan subalgebras we have the following classification.

Proposition 2.1.30. A Cartan subalgebra ¢y C go is mazimally compact if and only if there are no real

roots and a maximally noncompact if and only if there are no noncompact imaginary roots.

For any choice of positive roots, if a complex root « is simple then 6(«) is also simple and 6(«) is the
image of o under a nontrivial automorphism of the Dynkin diagram. In particular, when the Dynkin diagram
has no nontrivial automorphism, there are never complex roots.

One way to classify real forms of a complex simple Lie algebra gc is the notion of Vogan diagrams. This

is a done by decorating the Dynkin diagram of g¢ to encode the data of the real form.

Definition 2.1.31. (Vogan Diagram see Chapter 6.8 [Kna02]) Let gy C g be a real form with Cartan
involution # and choose a maximally compact 6-stable Cartan subalgebra ¢ = t ® a and choose a notion of
positivity AT for the corresponding roots. The Vogan diagram of the triple (go, ¢, A™) is Dynkin diagram
of A" where the order 2 orbits of # have been labeled and the order 1 orbits of 8 are painted if and only if

they correspond to noncompact imaginary roots.

Theorem 2.1.32. (Theorem 6.7/ in [Kna02]) Let (go,c, AT) C g and (gj, ¢, (A1)) C g be two real forms
with fixed mazimally compact Cartan subalgebra and choice of positivity. If the correspond Vogan diagrams

are the same, then go = g;.

Thus, non-isomorphic real forms always give different Vogan diagrams. An abstract Vogan diagram is

defined as a choice of painting of the Dynkin diagram.

Theorem 2.1.33. (Theorem 6.88 in [Kna02]) For any abstract Vogan diagram, there is a real form go C g
with Cartan involution 0, mazimally compact Cartan subalgebra ¢ = t D a and notion of positivity A+ with

this Vogan diagram.
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Example 2.1.34. Here are some examples of Vogan diagrams

o g=sl F P S,
e g=s0(n,n+1): e . o——o
° g:gp(4,8): o ° o o

e g =s50(10):

O

Given a real form gy C g, the form of the corresponding Vogan diagram depends on the choice of positive
roots. Due to this redundancy, Vogan diagrams do not classify real forms of g. However, we have the following

classification.

Theorem 2.1.35. (Theorem 6.96 in [Kna02]) For every real form go C g with Cartan involution 6 and
mazximally compact 0-stable Cartan subalgebra ¢ =t @ a, there exists a unique choice of simple roots so that

the Vogan diagram has exactly one painted root.

Putting this all together, there is a one-to-one correspondence between real forms of a complex simple
Lie algebra g and Vogan diagrams with exactly one painted root. With respect to such a choice of positivity,
all but at most one simple root is complex or compact. This is not the notion of positivity we want to use

for the Higgs bundles considered later.

2.1.3 Principal three dimensional subalgebras

The definition and properties of the principal three dimensional subalgebra developed below play a crucial
role throughout the thesis. In particular, it is needed to define the Hitchin component, it is necessary for the
notion of the cyclic surfaces of Chapter 6 and is important for the generalizations of Hitchin representations
of Theorem 6.4.1.

Following Kostant [Kos59], we define the principal three dimensional subalgebra (PTDS) with respect to
the Chevalley basis {Hq,, X14o}. If {m, -, 7} is the set of fundamental weights (i.e. the basis of ¢ dual

to the simple roots), set

14 4
r=Y m = % > H, = %ZrmH&i. (2.1.8)
=1 1=1

acAt
By construction of z, if X € g, and I(«) is the height of the root «, then [z, X] = I(a)X. The eigenspace

decomposition of g with respect to ad, gives a Z-grading on g called the height decomposition:

I=0-m, P BI 10D DU DD Gm, (2.1.9)
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[ ¢
e1 = /Ta; Xa, and €1=) VT, X—a,; -
i=1 j
By construction s = (€1, , ;1) satisfies the bracket relations
[$7el] =e€e1, [l‘,el] = —€1, [617é1] =T,

and thus s = sl(2, C).
The adjoint action of s on g decomposes into a direct sum of irreducible sl(2, C)-representations g = @ V;.

Kostant [Kos59] showed that there are exactly £ = rank(g) irreducible summands

=DV, (2.1.10)

Jj=1

Furthermore, dim(V;) = 2m; + 1 and the integers {m;} are independent of all the choices. The numbers
{m1,--- ,my} are called the exponents of g and always satisfy m; = 1 and my = I(u) where u is the highest

root. A three dimensional subalgebra with this property is unique up to conjugation [[Kos59].

Definition 2.1.36. Any subalgebra s’ conjugate to s is called a principal three dimensional subalgebra

(PTDS), if s’ N ¢ # {0} the PTDS is called a ¢-PTDS.

Theorem 2.1.37. (Theorem 4.2 [Ko0s59]) Let s C g be PTDS and x € s be a semisimple element with
centeralizer g,. Then any other PTDS s’ C g containing x is conjugate to s by an element in Lie group G,

with Lie algebra g, = Ker(ady).

Let e; € V; be the highest weight vector, by definition, [e1, e;] = 0. Since [z, e;] = mye,, one can always
take e, = X,,, where p is the highest root. The decomposition (2.1.10) allows us to define an involution
o :g—g by

ole;) = —e; o(é1) = —&1 (2.1.11)

and extended by the bracket relations.

Proposition 2.1.38. ([Ko0s59]) The involution o commutes with the c-Cartan involution 0 defined by

0(Xo) = —X_4. Furthermore, the resulting real form A = 0 o o is a split real form.

Remark 2.1.39. The involution o can be represented pictorial using the theory of irreducible represen-

tations of s[(2,C). For instance, when g = s[(4,C) the exponents (my, ma,m3) = (1,2,3). The irreducible
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representations of equation (2.1.10) have dimensions (3,5, 7) and the involution ¢ is defined by:

-3 -2 —1 0 1 2 3 (2.1.12)
Vi 7 . A
—1 1 —1
adé1 (e2) es
Vs ° ° ° ° °
—1 1 —1 1 —1
adf, (e3) )
V3 ° ’ ° ° ° ° ° <
—1 1 —1 1 —1 1 —1

where the £1 below each bullet is the value of the involution ¢, and the top row represents the height grading
of (2.1.9). By construction, the involution ¢ is complex linear and preserves the height grading of (2.1.9).
In particular, it preserves the middle column which is the Cartan subalgebra ¢. Thus {adémlj e;} generate the

. m
¢, and whenever m; is odd, o(ad; ’e;) = 1.

Recall that we may take e,,, = X,, where y is the highest root. Since o0 commutes with 0,
o(X_p) =0(c(0(X-p))) = —X_p,

and thus, o(H,) = o([X,, X_,]) = H,. Following Labourie [Lab14], we note that the involution o is unique.

Proposition 2.1.40. (Proposition 2.5.6 [Labl/]) Let ¢ be a Cartan subalgebra with a positive root system
and p the highest root. If o is an involution which preserves globally preserves ¢ and a ¢-PTDS s with

o(H,) = H,, then o is unique.

The involutions 6 and ¢ give eigenspace decompositions
g=g"@ig’ g=9"®g "

Since the compact form @ and the involution ¢ commute, the restriction of o to the split real form gg = g*

is a Cartan involution for go :

go=hom=(g"Ng?) & (ig" Ng™7).
Since both @ and o globally preserve ¢, we may write ¢* = ¢y = t ® a where t C h and a C m,

c=tcPac.

Recall that the coroots {H,} C ¢ are in the (—1)-eigenspace of the compact real form . In terms of the

decomposition ¢ = t¢ @ ag, the (—1)-eigenspace of 6 is it @ a.
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By definition, the Cartan involution |4, preserves the set of positive roots, so there are no real roots.
Thus, the Cartan subalgebra ¢ is a maximally compact Cartan subalgebra. Furthermore, since o(e1) = —ey,

by definition of ey, it follows that there are no imaginary compact simple roots. Thus, we have proven:

Proposition 2.1.41. The Cartan subalgebra c¢g C go is a mazimally compact Cartan subalgebra and, with
respect to the Cartan involution o on g, all simple roots are noncompact imaginary or complex. Furthermore,

the subgroup T C G with Lie algebra t is a maximal compact torus of Gyg.

oof

Remark 2.1.42. It is important to note that the split real form gg = g is very different than the split
real form g’ of equation (2.1.4). For gg, the Cartan subalgebra ¢ is maximally compact, and for g’, the

Cartan subalgebra ¢ is maximally noncompact. Thus

cNENgo=t#0 and cNeng =0.

This gives the following formulation of a split real form, although this must certainly be know by Lie

theory experts, to my knowledge, it does not appear in the literature.

Proposition 2.1.43. Let g be a split real simple Lie algebra fix a Cartan involution o with Cartan decom-
position g = h & m, and let ¢ C g be a maximally compact Cartan subalgebra. There exists a set of simple
0018

{ag, - ,ap} C ¢

such that, for all i, «; is either complex or compact imaginary.

Remark 2.1.44. The converse of Proposition 2.1.43 holds for complex simple Lie algebras g whose Dynkin
diagram has no automorphisms, or equivalently, when there are no complex roots. Namely, for a real
form go of such a g, there is a choice of simple roots such that no simple root is compact imaginary
(equivalently all simple roots are noncompact imaginary) if and only if go is a split real form. When g has
outer automorphisms, then there is a choice of simple roots such that no simple root is compact imaginary
if and only if g¢ is a quasi-split real form. For the classical Lie algebras sl(2n, C), sl(2n+ 1,C) and so(2n, C)

the quasi split real forms which are not split are su(n,n), su(n,n + 1) and so(n,n + 2) respectively.

Remark 2.1.45. Complex roots only appear in types A and E, thus, for the split real forms of types
B,C, D, F and G, all simple roots are noncompact imaginary. For types B, C, D, G the involution o preserves

the all roots, and is defined on the Chevalley basis {eq }aec+n by

o(en) = —€q-
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For type Agy,1 all simple roots are complex, thus the simple roots come in pairs {«, o(«)} the involution o

is defined on the Chevalley bases {e4 }ac+m by

U(ea) = —€5(a)-

For type Asg, there is one noncompact imaginary simple root & and the rest are complex. Thus o is defined

on the Chevalley bases {eq }ac+m by

o(ea) = —€oa) QFa

olea) = —ea
2.2 Homogeneous spaces and reductions of structure

The geometry of reductive homogeneous spaces will also be essential for the rest of the thesis, a good reference
for this is [BR90]. Let X be a manifold with a smooth transitive action of G. If we fix a base point z¢ € X

and define H = Stabg(z0), then, since the action is transitive, we have a principal H-bundle

H—G— =X

gH——">g" %o

Thus, the tangent bundle is given by TX = G x g g/b.

2.2.1 The geometry of reductive homogeneous spaces

We will mostly be interested in reductive homogeneous spaces.

Definition 2.2.1. A homogeneous space X is called reductive if the Lie algebra g has a decomposition

g=bhdm as Ady-modules.

If W is a linear representation of H we will denote the associated bundle by G xy W = [W]. Thus,
[m] & TX. Since m is an Ady-invariant subspace of g, we have [m] C [g]. The action of H on g is the

restriction of the G action, hence [g] is trivializable

G[g]<—:>X><g

9, ) ——— (7 (9), Ad,¢)

Example 2.2.2. When G is a complex simple Lie group with maximal compact K, the symmetric space
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G/K is a reductive homogeneous space. Furthermore, since ¢ ® C = g, we have
T(G/K)@C=[t] & [it] = [g] = G/H x g.

Using [m] & TX, we have TX C [g] & X x g. This inclusions can be interpreted as an H-equivariant

1-form on X valued in g.

Definition 2.2.3. The equivariant g-valued 1-form w € Q(X, g) is called the Maurer Cartan form of the

homogeneous space X.

We will view a reductive homogeneous space as coming equipped with a fixed summand m C g. Let
we € QY(G, g)¢ be the left Maurer-Cartan form of G, it is G-equivariant. Since g = h ® m, we may split wg
in terms of its projections onto h and m

we = wg Dwe.

This an Ady-invariant splitting since g = h @ m is Ady-invariant, thus
w e QNG HT  and WP € QNG m)".

The form wg is a connection on the principal H-bundle G— X which we call the canonical connection. For any

H-representation V', the canonical connection induces a covariant derivative V¢ on any associated bundle
[V]. By construction, if s € C*(X,[V]) is G-equivariant, then V°s = 0. The form wg is an equivariant
horizontal 1-form, i.e. it vanishes along vector fields induced by the action. Thus, wg descends to a 1-form
on X valued in [m] which is the Maurer Cartan form w.

When V is the restriction of a representation of G, [V] is trivializable, in which case, there is a simple
relationship between flat differentiation on X x V' and covariant differentiation by the canonical connection.

This will be important for our later considerations of cyclic surfaces and the Hitchin equations.

Lemma 2.2.4. (see chapter 1 [BRIO]) Let f : X—X x V be a smooth section, then df = V°¢f +w - f.
If V = g is the adjoint representation, then V¢ = d — ad,, and the torsion of the canonical connection on

TX = [m] is given by Tye = —%[w,w]m.
Remark 2.2.5. If [, ]™ and [, ]° denote the projections onto [m] and [p], then the flatness of d can be
written in terms of V¢ and w as

1
Fvc—|—§[w,w}h20 h — part

c 1
dV w+ §[w,w]m =0 m—part
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Moreover, if we decompose m = @) m; into irreducible H-representations then
J

TX = EDG Xpm; = @[mj].

J J

This gives a decomposition of the trivial bundle [g]—X as a direct sum of V¢-parallel vector bundles
(o] = [b] & Pm;].
J

Furthermore, the Maurer Cartan form decomposes w = ) wj;, and the zero curvature equations are
J

1
Fvc+§Zk[Wj,Wk]b =0 h — part
” (2.2.1)

c 1
¥ wj + 5 ;[wk,wz]mj =0  my; —part

Example 2.2.6. A homogeneous space X is called a symmetric space if there is an involution o : G—G with
(G%)o C H C G°. In this case, h = g7, m = g~ and by equation (2.1.1) [m,m] C h. When G is a semisimple
Lie group, with K C G a maximal compact, any G-invariant metric on G/K is a G-equivariant section of an
associated bundle. Thus, the canonical connection V¢ is a metric connection. Since [m, m] C ¢, by Lemma
2.2.4, the torsion of the canonical connection vanishes. Hence, for a symmetric space G/K, the canonical
connection is the Levi Civita connection of any G-invariant metric. Furthermore, the flatness equations

decompose as

1
Fye + —[w,w] =0 €— part
2 (2.2.2)

dV'w=0 m — part
2.2.2 Reductions of structure group

Let M be a manifold, G be a semisimple Lie group and i : H—G be a subgroup so that g = h @ m is Ady
invariant. An important example of this is when M is a closed surface, and G is a noncompact semisimple
Lie group (for example SL(n,R) or SL(n,C)) and H is the maximal compact subgroup of G (for example
SO(n) C SL(n,R) or SU(n) C SL(n,C)). Given a be a principal G-bundle Egc—M, and a manifold X with

a G-action, denote the associated fiber bundle by Eg[X] = F¢g x¢ X.

Definition 2.2.7. A reduction of structure of E from G to H is a principal H-subbundle Ey < FEg so that
EH[G} =~ Fg.
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Reductions of structure are in one to one correspondence with sections (we will always work in the smooth

category) of the associated G/H fiber bundle Eg[G/H]— M. To see this, the following diagram is very helpful:

| |

Ec Eg

| Vol

M " Fg/H~<—> Eg[G/H —— G/H

Given a section o € C*(M; Eg[G/H]), we can pullback E¢—Eg/H to a H bundle 0*Eg over M which

naturally includes, H-equivariantly, in Eg—M

H G H
S |
U*EGHEG EG
S |
M <" — Eg[G/H| —— G/H
~_ 7

ag

Remark 2.2.8. Sections of the associated bundle Eg[G/H] are equivalent to G-equivariant maps Pe—G/H.

It will be useful to sometimes think of reductions as G-equivariant maps.

Reductions and connections

Given a principal bundle G — Eg —= M we get a exact sequence of tangent bundles

dm

0 — ker(dm) TEg ™™ 0

the bundle ker(dr) is the vertical bundle Vg— FEg.

Recall that a connection on a principal bundle is given by a 1-form B € Q!(Eg, g) satisfying:

1. (Vertical) For all X € g let Xp be the vector field determined by the G action, then B(Xp) = X.

2. (Equivariance) If R, : Eg—Fg is the diffeomorphism of Eg given by the right action of G then we require
(RyB)(Y) = Ady-1 B(Y) for all g € G and Y € C*(Eg; T'Eg).

~

Such a B defines an equivariant projection T'Eg—Vs and thus gives an equivariant splitting TFEg =
Ve @ ker(B), with ker(B) = TM. The subbundle ker(B) is called the horizontal distribution associated to
B and will be denoted Hp.
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Recall that a section of Q*(Eg, g) is called horizontal if it vanishes on vertical vector fields. Equivariant
horizontal sections of a principal bundle are called basic and are in one-to-one correspondence with sections
of Eglg| =M, i.e. Q*(Eg, 8)pasic = Q*(M, Eglg]).

Now fix a connection B € Q'(Eg, g), and consider the following diagram

(EGvB)

PN

M<;7TE(;/H

If pry : g—h denotes the projection then set BY = pry o B. Since B" € Q!(Eg,b) is H equivariant and
BY(Xp) = X for all X € b, the 1-form BY defines connection on Eg— FEg/H.
We will write

B:Bthu

where p € Q' (Eg, m)H. Tt is straight forward to check that p is a basic form and hence descends to
i€ QY (Eg/H, Eg x,, m).
Note that the vertical bundle ker(dr) C TEg/H is isomorphic to Eg %, m so fi defines a projection
f: TEG/H=Vg/h.
Given a reduction of structure o : M—FEg/H we get a principal H bundle

(0*Eg,5*B) 2 (Eg, B)

TN

M <~——FEg/H
\/f

g

Definition 2.2.9. Given a reduction of structure o : M—Eg/H we define the vertical derivative of o, with

respect to the connection B, to be D, o = ji o do. That is

TM 22 TEq/H L~ Vg = Eg x, m

Dgo

Here D, o € COO(M;T*M@)O'*VG/H) = Ql(M, o*bBg X, m).
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We can pull back B by & to 6*B € Q'(0*Eg, g), since the map & is H equivariant, we get the decompo-
sition

6*B=6"B" +6*p.

We will use the following notation
A =56*BY € Q1(6*Eg,b) and W, =" e Q5" Eg,m) .

As before, A_ defines a connection on ¢*Eg and v, is a basic 1-form valued in m which we identify with
a section ¢, € Q' (M, 0*Eg x,, m).

Proposition 2.2.10. With the set up abowve, 77/;(, can be identified with vertical derivative D ,o.

Proof. With the above set up, the proof is straight forward. We defined ¢, by ¥, = ¢*u and saw that

both p and v were basic forms so descend to sections i and zﬁ of the appropriate bundles. We have that

P, = o*fi, thus for a vector field X € C*(M;TM)

¥, (X) = (") (X) = ji(do(X)) = Dy (0)(X)

by definition of the vertical derivative. O

31



Chapter 3

Background on nonabelian Hodge
correspondence

3.1 Character varieties

A good reference for the basics of character varieties discussed below is [Gol84]. Let G be a real reductive
Lie group and M be a smooth manifold with fundamental group 7; acting on the universal cover M by deck

transformations.
Definition 3.1.1. The G-representation variety of 7y is the space of group homomorphisms Hom(7y, G).

The space Hom(, G) is a real analytic variety which is algebraic if G is algebraic. The groups Aut(m)
and G both act on Hom(71, G) by pre and post composition: if (f,g) € Aut(m) x G and p € Hom(7q, G) then

for all v € my

((f:9) - P)(7) = Ady(p(f(7)))-

Denote the composition Ad o p : m—G—Aut(g) by Ad,. The tangent space to a representation p €
Hom(71, G) is the set of Ad,-twisted group homomorphisms 7 —Aut(g) or equivalently the space Z} (71, g)
of twisted 1-cocycles valued in g,

T,Hom(m,G) = {u : mi—Aut(g)|u(vd) = u(y) + Ady(y) o u(d)} = Z;(ﬂ'l,g).

This can be seen by differentiating at t = 0 any family p; = exp(tu + O(t?)) - p, the fact that p is group
homomorphism implies the cocycle condition. When M is a closed surface of genus g we have the following

result.

Proposition 3.1.2. (/Gol84]) Let S be a closed surface of genus g and p € Hom(m,G). If Z(p) is the
centralizer of p(m1) then

dim(Z;(m,g)) = (29 — 1)dim/(G) + dim(Z(p)). (3.1.1)

In particular, T,Hom(my, G) is of minimal dimension if and only if dim(Z(p)/Z(G)) = 0.
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One is usually only interested in representations up to the conjugation action of G. To calculate the
tangent space of the orbit G, through p, note that any family p; in the or bit G, is defined by p; = g, Lpgy
for some family g; in G. Writing g; = exp(tuo+O(t?)) and differentiating implies the cocycle u corresponding
to p; satisfies u(y) = Ad,(yuo — uo). In other words, u is the coboundary dug, and the space B}) (m,9) of

coboundaries is isomorphic to the vector space g/3(p) where 3(p) is the Lie algebra of Z(p). Thus,
dim(G,) = dim(B;(ﬂ, 9)) = dim(G) — dim(Z(p)). (3.1.2)

Definition 3.1.3. A representation p € Hom(my, G) is completely reducible if the composition Adg o p :

m1—GL(g) is completely reducible.

Definition 3.1.4. Denote the set of completely reducible representations by Hom™ (71, G). The G-character
variety X (71, G) is defined by Hom™ (7, G)/G. This is equivalent to taking the GIT-quotient: X (m1,G) =

Hom(71,G)//G when G is a reductive complex algebraic group.

To simplify notation, we will usually denote a conjugacy class [p] € X (w1, G) by p. By the above discussion,

the tangent space to p € X(m1, G) is defined by the twisted cohomology group H ; (m1,9) :
T,X(m,9) = Z,(m1,9)/B,(m1,8) = H) (71, 9). (3.1.3)

So the dimension of the tangent space T,X (71, g) is |x(S)| - dim(G) + 2dim(Z(p)).

Definition 3.1.5. A point X(m,G) is called infinitesimally simple if the tangent space T,X(m,G) has

minimal dimension. By equations (3.1.2) and (3.1.1) this is equivalent to dim(Z(p)/Z(G)) = 0.

Proposition 3.1.6. A point p € X (w1, G) is smooth if and only if Z(p) = Z(G), in particular, such a p is

irreducible and infinitesimally simple.

The group Aut(m) acts on the character variety as above. An inner automorphisms is defined by

conjugating by a fixed element § € 7. If p € X'(m1, G) then for all v € 7y :

§-p(y) =p(d-7-871) = p(8)p(7)p(8) "

Since p is conjugate to J - p, they define the same point in X (71, G). This gives rise to a well defined action

of the outer automorphisms Out(m) = Aut(rry)/Inn(71) on the character variety X (7, G).

Remark 3.1.7. The mapping class group Mod(M) of M is the group of isotopy classes of orientation-

preserving homeomorphisms of M. There is always a map Mod(M)—Out(m ), so the mapping class group
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acts on the character variety. We will mostly be interested in the case where the manifold M is a closed
surface of genus g > 2 which we will denote by S. In this case the group Mod(.S) are isomorphic to an index

two subgroup of Out(7)1) by the Dehn-Nielsen-Baer Theorem (see Chapter 8 of [FM12]).

Example 3.1.8. For a closed surface S define the set of Fuchsian representations by
Fuch(S) = {p € X(m1,PSL(2,R)) | p is discrete and faithful}.

Using the isomorphism of PSL(2,R) with the orientation preserving isometries of the hyperbolic plane H?,
if p € Fuch(S) then S/p = H2/p(m) = S and the hyperbolic metric descends to the surface S. In fact,
Fuch(S) defines two connected component of X' (m1, PSL(2,R)) [Gol88] and is homeomorphic to two copies
of Teichmdiller space Teich(S) of isotopy classes of marked hyperbolic structures on S. The two components
come from a choice of orientation on S. In particular, by a classical result of Fricke, the mapping class group

Mod(S) acts properly discontinuously on Fuch(.S).

Recall from Proposition 2.1.38, Kostant’s principal three dimensional subalgebra defines an irreducible

representations of PSL(2,R) into any split real form G which we denote by i : PSL(2,R) — G.

Definition 3.1.9. Let G be a split real form. The Hitchin component Hit(G) C X (w1, G) is the connected

component containing ¢(Fuch(.S)).

The Hitchin component is a natural object to consider since it is the deformation space of Fuch(S).

However, to understand this component, we will need Higgs bundles.

3.1.1 Flat connections and the Riemann-Hilbert correspondence
The universal cover M of a manifold defines a principal m1-bundle over M.

Definition 3.1.10. A principal G-bundle E— M is flat if the transition functions can be chosen to be locally

constant.

In particular, M—M is a flat bundle since 71 is discrete. Given a representation p € Hom(m, G) the

associated bundle M x »G— M inherits a flat structure from M—M. Furthermore, if p’ = gpg ™"

is conjugate
to p then the flat bundles associated to p and p’ are isomorphic. Thus, there is a map from the G-character

variety to the set of flat structures on G-bundles over M

X (71, G) —— {flat G-structures on M}/Iso .
[o] [M x, G]
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The Riemann-Hilbert correspondence asserts that the above map is an isomorphism onto the space of
reductive flat connections. Establishing this correspondence involves the standard exercise of showing that a
principal G-bundle E is flat if and only if there exists a flat connection, i.e. a connection 1-form B € Q!(E, g)
with curvature Fg = 0.

Any connection B on a principal G-bundle defines a parallel transport operator form the path groupoid to
the category of G torsors Transp : II(M)—G-tors. The map Transp descends to the fundamental groupoid
IT; (M) if and only if the connection B is flat. Restricting to the space of smooth based loops Q.. (M) defines
a holonomy map

Holp : Q. (M)—G.

Denote the space of flat connections on G bundles over M by B(M). Holonomy defines a map:

Hol : B(M)—Hom(my, G).

However, the space of connections is an infinite dimensional affine space modeled on the vector space

QY(E, g)© of equivariant 1-forms. Fortunately, the natural group of isomorphism is also infinite dimensional.

Definition 3.1.11. Let E—M be a principal G-bundle, then the gauge group Gg is the group of smooth

bundle isomorphisms.

As with the character variety, the action of Gg on the space of flat connections does not in general admit
a Hausdorff quotient. However, if we restrict to a subset of flat connections a Hausdorff quotient can be

defined.

Definition 3.1.12. A flat connection B is called reductive if the holonomy map Holg : w1 —G is a completely

reducible representation in the sense of Definition 3.1.3.

Theorem 3.1.13. (Riemann-Hilbert correspondence) The space of isomorphism classes of reductive flat
G-connections B"4(M)/Gg is homeomorphic to the character variety X (71, G). Furthermore the homeomor-

phism is analytic

Remark 3.1.14. When G is algebraic, both B"4(M)/Gg and X (7, G) are algebraic varieties. However,
since the holonomy map involves exponentiating, the homeomorphism in the Riemann-Hilbert correspon-

dence is not algebraic.
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3.2 Harmonic maps and Corlette’s Theorem

3.2.1 Harmonic map basics

A good source for this subsection is Chapter 8 of [Jos08]. Let (M, g) and (N, h) be Riemannian manifolds

with M compact, denote their Levi-Civita connections by V’ and v They are given by Kozul’s formula
29(VxY, Z) = X(9(Y, 2) + Y (9(Z, X)) = Z(9(X,Y)) + 9([X, Y], Z) — g([Y, Z], X) — 9([X, Z), Y).

With respect to coordinates {z1,...,z,,} on M and {y1,...,y,} on N, we have

g o _ 1k _8 h 9 _ 1Y _0
V%j 50 = Lijoay and V% By = Lap dyy
where
k _ 1 klf 0 .. 9 ., _ O .. Y _ 1lp~y86(_0 9 9
Pij =39 (ng]l + szgzl Bz gz]) and PaB = 2h7 (By; hﬂ& + Bys has dys haB)

Let f: M—N be a smooth map, the differential df is a section of the bundle T*M ® f*T'N. The bundle
T*M ® f*IT'N has metric g* ® f*h and connection Vg* ® f*V". The Christoffel symbols for Vg* are given
by

o . .
V 5 dz; = Ffjd:ck = ffgkdzk
sz

We can view df in a slightly manor, namely df € Q'(M, f*TN). The covariant derivative f*Vh induces an

exterior differential operator

b
dY L QF (M, f*TN)=Q* Y (M, f*TN)
e h og*
here d/*V' is the skew symmetrization of V' ° ® f*V".

Definition 3.2.1. Let (M,g) and (N,h) be Riemannian manifolds with M compact, the energy of a C!
map f: (M, g)—(N,h) is given by

1

g(f) = 5 /M<df’ df>T*M®f*TNdVOl]W

i j *(z Bz
Locally we have |df (z)]? = %g’ihaﬁ(f(z))agx(i )8J;x(j )

Definition 3.2.2. A C! map f : (M,g)—(N,h) is called harmonic if it is a critical point of the energy

function £.
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Euler Lagrange equations for the energy

We want to find the Euler Lagrange Equations for harmonic maps. To do this, we start with a map
f: M—N and consider a variation £ of f. By a variation we mean a vector field along f, that is, a section

Ee(M, f*TN). Given £ € I'(M, f*T'N) consider the one parameter family
Fe(z,t) = expya)(€(x)t) : M X [—€,e] TN

The critical points of £ are the maps f so that, for all £, %(S(Fg)) =0.

I}
Theorem 3.2.3. The Euler Lagrange Equations for the energy functional are (d'"V )*(df) = 0 or equiva-
lently, Trg(Vg* ® f*Vh)(df) =0.

Locally the Euler Lagrange equations for a map f : (M, g)—(N, h) are given by

G P O i, OfPOp
t df) = g¥ _ it 2 L e zJ
race(Vdf) =g 0x;0x; g7 gk Oxy, + B 0z
The first part is the Laplace Beltrami operator
1 0 L Of¢ . O f i Of¢
A = — det =) =g" —g¥vT
uf=—= ) 0w, (Vdet(g)g axj) 9 5w, 9 Vit g,

So the Euler Lagrange equations become A, f + gingvg—Jj gi = 0, or equivalently
i Cj

8 a @ B 8 ﬁ@
\/ditw(axl( det(g)glj(a‘é.j)+gljrg7(f($)) f ﬁ:o

0z x;

Remark 3.2.4. Since the Cristoffel symbols for R with the Euclidean metric are zero, we see that a function

f: (M, g)—R is harmonic if and only if Ay f = 0; recovering the standard notion.

Harmonic maps from a Riemann Surface

For maps with a closed surface domain, the harmonic map equations simplify and only depend on the

conformal class of the domain metric.

Definition 3.2.5. Let ¥ be a Riemann surface, a Riemannian metric g on X is called conformal if, in local

coordinates, it can be written as p?(2)dz ® dz for p a positive real valued function:

0G5 %) =0 3) =0 ad  g(g5) =)
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In real coordinates z = x + 4y this means

@‘@

92, L) =g(L. 2) =) and 9(553y) =0

Form now on, (¥, g) will be a Riemann surface with a conformal metric.
ors . : : of ofy _
Definition 3.2.6. A C' map f : (3, g)—(N, h) is called conformal if h(5L,%5%) = 0.
Proposition 3.2.7. The energy of a map f : X—(N, h) is conformally invariant.

Proof. The energy of f is given by

1
() =3 /E (AF,df) ey AV Ol
writing the integrand locally and remembering the metric on 73 has conformal factor % we have

4 of* 9fF V-1 ,

2@y (82 82) 5 p°(2)dz Ndz

<df, df>T*M®f*TN dVoly =

Thus the energy is given by the conformally invariant expression:

:ﬁ/ of*off 91" 12 A dz

79, 0z

4 9?2

Lemma 3.2.8. The Laplace-Beltrami operator for (X, g) is given by A = — A Ac
p? 020z

2
0
Proof. We compute, the metric is given by ( pO ) )
p

With this we have the following form of the harmonic map equations
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Lemma 3.2.9. The harmonic map equations for f : (X,9)—(N,h) are (dvf*h)mdl’of = 0 locally the

harmonic map equations are

< Of 0 02 fo _ af* of
AV (Hde)) (on) = —e—dz AdzE — TG, S~ 2 —dz Adz =0
(@ (G ) G7) = ~gaaz B N~ U6 5 5z :
Proof. The harmonic map equations are A f+ g”l“g“7 %’; gi ~=0. By the previous lemma and after converting

everything to complex coordinates we may rewrite them as:

4 9*fe off ofy
(55 T, 550 =
p? 020z 0z 0z

O

Corollary 3.2.10. The harmonic map equations for maps (X, g)—(N,h) only depend on the conformal of

Y. and not on the actual metric g.

The Hopf differential and Minimal surfaces

Definition 3.2.11. The Hopf differential ¢y of a map f : (X, g)—(N,h) is the quadratic differential ¢y =

(f*h)%° € Q°(Z, K?), in real coordinates z = = + iy the Hopf differential is given by

of of of of of of
e (L) - (2.2 - (2.1 )

Lemma 3.2.12. If f: (3, g9)—(N,h) is harmonic then the Hopf differential q5 is holomorphic.

Proof. We calculate 5qf. By Lemma 3.2.9, locally d*°f = of

of of _ N1 0f Of
da; 8h<a a) 2h<(v ol az)dz 0.

O

Remark 3.2.13. Since any conformal metric on 3 has tensor type dz ® dz, the Hopf differential measures
the failure of a harmonic map to be conformal. A harmonic map f is weakly conformal (i.e. conformal
away from singularities) if and only if the Hopf differential gy vanishes. This is equivalent to f being a
branched minimal immersion [SU82, SY79]. From equation (3.2.1) it is clear that the differential df of a
weakly conformal map is always of rank 2 or 0. Thus, if f is a weakly conformal map with nowhere vanishing

differential, then f is a conformal immersion, or equivalently, a minimal immersion.
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Example 3.2.14. Fix a Riemann surface structure ¥ on S. Recall from example 3.1.8 that the Teichmiiller
space Teich(S) of hyperbolic metrics on S is equivalent to the set of Fuchsian representations. By classical
results of Eels-Sampson [ES64], for each hyperbolic surface (S, g) € Teich(S), there is a unique harmonic

map fy : (S5, g) which is isotopic to the identity. The Hopf differential of f, gives a map

Teich(S) ———— HY(K?)
(S, 9) ———— (f;9)*°

In [Wol89], Wolf showed that, for each Riemann surface structure X, this map gives a diffeomorphism of

Teich(S) 225 H°(K?) using harmonic map techniques.

3.2.2 Corlette’s Theorem

Given a flat G-bundle, a metric is defined by a reduction of structure group from G to the maximal compact
subgroup H C G. Since there is a homotopy equivalence between G and its maximal compact subgroup H,
such reductions of structure always exist. Unless the corresponding representation has Zariski closure in H,
this reduction will not be a flat bundle.

As discussed above, if E— M is a principal G-bundle then a reduction of structure group to H is defined by
an G-equivariant map E—G/H. If E is flat than it arises via a representation p € Hom(m, G) and extension
of structure group from the principal 7;-bundle M—M. Thus, for a flat bundle, a reduction of structure is

equivalent to a p-equivariant map from the universal cover to symmetric space
O, M—G /H.

Recall from 2.2.4 and Example 2.2.6, in terms of the canonical connection and the Maurer-Cartan form, flat
differentiation on the trivial [g]—=G/H is given by d = V¢ 4 w. Pulling back the H bundle G—G/H and the
trivial bundle [g]+G/H by o, gives a principal H-bundle 0;G and an m-bundle o[m] over M. Moreover,
pulling back the canonical connection and the Maurer-Cartan form defines a connection v A =0,V on
0,G and a form 1; € Ql(ﬁ, oy [m]) which descend to an H-bundle Ey—M with connection V4 and 1 €

QY(M, Ex[m]) on M. These objects satisfy the flatness equations
Fa+ [, ¢]=0 and dVae = 0. (3.2.2)

on the Lie algebra bundle Ey[g]— M.
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7 s S dop w
Remark 3.2.15. By definition, ¢ = ojw : T¥—[m] is defined by T TG/H [m] . Thus, the

tensor v is identified with the derivative of o,.

Recall that the canonical connection on G—G/H induces the Levi-Civita connection V¢ on [m] = T'G/H.
The equivariant map o, is a harmonic map if and only if (dV4)*3p = 0. For a harmonic equivariant map O,

the flatness equations (3.2.2) satisfy an extra equation
Fa+ipol=0  ,  d%%  and  (d¥4) =0 (3.2.3)

Now let M be a closed surface of genus at least 2 and fix a Riemann surface structure ¥ on M. If we
complexify everything we obtain a metric connection V4 on Hg-bundle Ey. (which is holomorphic with

respect to V;O’l)) and ¢ = (10 @O € Q02 By [mc]) @ QO (Z, By [mc]) which satisfy:
Fa+ [0 40 =0 : dVa(0:0(10) — and dVa (1000 — 0. (3.2.4)

This leads to Corlette’s Theorem:

Theorem 3.2.16. (Corlette [Cor88]) Let M be compact and p € X(mw1(M),G) then for each Riemannian
metric g on M, there exists a p-equivariant map h, : §—>G/H which is harmonic. Moreover, h, is unique

up to the centralizer of p.
Remark 3.2.17. We will call such an equivariant harmonic map a harmonic metric.

If we restrict M = S a closed surface of genus at least 2, then we have seen that harmonicity depends
only on a conformal class of a metric. Thus, fix a Riemann surface structure ¥ on S, then a p-equivariant
map o, is a harmonic map if and only if da,gl’o) is holomorphic, that is dV "1 (4194 ,) = 0. By Remark

3.2.15, 0, is harmonic if and only if (dV4)©(1:0) = 0. Thus equations (3.2.4) are given by
Fa + [p00 0] =0 and (dV4) 0D (10 = (3.2.5)

Remark 3.2.18. If 0, : §~]—>G/H is harmonic, then, since the metric on G/H is induced from the Killing

form on g, the Hopf differential of o, is a constant multiple of Tr(ad(y'?) ® ad(y'?)).
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3.3 Higgs bundles

Higgs bundles over a Riemann surface were introduced by Hitchin in [Hit87a] and studied in detail for the
groups SL(2,C) and SL(2,R). Simpson [Sim92] studied Higgs bundles for general G over compact Kéhler
manifolds. For our purposes, we will focus on G-Higgs bundles over compact Riemann surfaces.

Let ¥ be a closed Riemann surface of genus g > 2 and K = T%(19Y be the canonical bundle. Let G
be a real reductive Lie group with maximal compact H and fix a Cartan involution o : g—g with Cartan

decomposition g = h & m.

Definition 3.3.1. A G-Higgs bundle over X is a pair (£, @) where
e £—Y is a holomorphic principal Hc-bundle
e o€ H(X,E[me] ® K) (the Higgs field)

Remark 3.3.2. By Corlette’s Theorem, for every representation p € X (71(5), G) there is a corresponding
Higgs bundle. The construction works as follows: Let h, : ¥—G /H be a harmonic metric, the Higgs bundle

L.0) Here we are pulling back the H bundle (with total space G)

associated to p is given by (h;G[Hc], (hwnc)
and extending the structure group to obtain a holomorphic He-bundle, and pulling back the complexification

of the Maurer-Cartan form and taking its (1,0) part to obtain a holomorphic section of (h}G[mc]) ® K.

Remark 3.3.3. Under the correspondence between harmonic metrics and Higgs bundles, the Higgs field ¢
is identified with d(l’o)hp. In particular, the Hopf differential of h, is a constant multiple of the holomorphic

quadratic differential T'r(¢?).
We start with some examples:

Example 3.3.4. G-compact: When the group is compact, then hc = gc and me¢ = {0}. In this case, a

G-Higgs bundle is just a holomorphic G¢ bundle over 3.

Example 3.3.5. G-complex: If G is a complex Lie group, then hc = g and m¢ = g. Thus, a G-Higgs bundle
is given by a holomorphic G-bundle £ over ¥ together with a holomorphic section of the adjoint bundle
twisted by K, ¢ € H°(X,€[g] ® K). When G = SL(n,C) this data is equivalent to a holomorphic vector

bundle £ of rank n with fixed determinant together with a traceless holomorphic section of End(€) @ K.

Example 3.3.6. G = SL(n,R) : For the group SL(n, R), the maximal compact subgroup is SO(n) C SL(n, R).
The Cartan decomposition of sl(n,R) is given by so(n) @ symo(R™), thus mc is the space of complex traceless

symmetric n x n matrices symo(C™). An SL(n, R)-Higgs bundle consists of a holomorphic SO(n, C)-bundle £
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over X together with a holomorphic section of p € H°(E[symo(C™)]® K). Using the standard representation

of SO(n,C) on C™, this data is equivalent to a triple (£, Q), ¢) where:

e (£,Q) is a holomorphic bundle rank n with det(£) = O and an orthogonal structure, which we will

think of as a symmetric holomorphic isomorphism @ : E—-&E*.
e ¢ is a traceless holomorphic section ¢ of End(£) that is symmetric, i.e. Qo7 Q = ¢.
The associated SL(n,C) Higgs bundle is given by forgetting the orthogonal structure (&, ¢).

Example 3.3.7. G = Sp(2n, R) : The maximal compact subgroup of Sp(2n,R) is H 2 U(n), and, if Sym?(V)
is the second symmetric tensor product of the standard representation of GL(n,C), the complexification of

the Cartan decomposition is given by
sp(2n,C) = he ® me = gl(n, C) & (Sym*(V) & Sym*(V")).
Thus a Sp(2n, R) Higgs bundle is given a holomorphic GL(n, C)-bundle £ together with a holomorphic section
o € HY (X, E[Sym?(V) & Sym?(V*]) ® K). This data is equivalent to a triple (V, 3,7) where:
e )V is a holomorphic rank n vector bundle
e 3 HYX, Sym?*(V*) @ K) and v € HY(Z, Sym?(V) ® K)

The associated SL(2n, C) bundle is given by

(€.0) = (1@\2*,(%)).

Example 3.3.8. G = SO(p, ¢) : The maximal compact of SOg(p, ¢) is H = SO(p) xSO(q). If V and W denote
the standard representations of SO(p, C) and SO(g, C) respectively then complexified Cartan decomposition

of so(p, q) is given by
50(p + Q7(C) = b(C Sme = (ﬁﬂ(p, (C) @ﬁﬂ(q, C)) D (V* ® W)
Thus a SO(p, ¢) Higgs bundle is given a holomorphic SO(p, C) x SO(g, C)-bundle £ together with a holomor-
phic section ¢ € HO(Z, £[(V* ® W)] ® K). This data is equivalent to the data (V,Qy, W, Qw,n) where:
e (V,Qy) and W, Q) are holomorphic orthogonal bundles of rank p and ¢ respectively.

e nE H' (S, V*@W® K).
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If n* : W*—V* ® K is the induced on the duals, then define n? = (Qy ® Idx)on* o Qw : W=V @ K :

W T g g Py ek

The SL(p + ¢, C)-Higgs bundle associated to the data (V, Qy, W, Qyy,n) is given by

(. ¢) = (V@W,(O”T>>.
n 0

We will sometimes need the more general notion of a L-twisted Higgs pair.

Definition 3.3.9. Let H¢ be a complex reductive Lie group and p : Hc—GL(V') be a linear representation. If
L is holomorphic line bundle then an L-twisted Higgs pair over ¥ is a pair (£, ¢) where £—¥ is a holomorphic

principal He bundle and ¢ is a holomorphic section of (£ x, V) ® L.

Remark 3.3.10. We will only consider K-twisted Higgs pairs. Note that if V' = m¢ and the representation
p: Hc—GL(gc) is the restriction of the adjoint action of G¢ on g¢ then we recover the definition of a Higgs

bundle.

3.3.1 Stability and moduli spaces

The moduli space of G-Higgs bundles consists of isomorphism classes of semistable G-Higgs bundles. The
notion of stability for SL(n, C)-Higgs bundles is a straight forward slope condition on invariant subbundles,

however, for general G it is significantly more subtle. We start with the definition of the degree.

Definition 3.3.11. Let P be a complex Lie group, £—3 be a holomorphic P bundle, and let x be a character
of P. Define the degree deg(€, x) to be the degree of the associated C* bundle £ x, C*

deg(€, x) = deg(€ x, C*).

Remark 3.3.12. If we have a character of x : p—C of the Lie algebra such that exp(ny) : P—C* defines a
character of the group, then we can define the degree of £ by normalizing the degree of the associated line
bundle.

deg(€,exp(ny)) = %deg(é’ xy C).

For P C Hc a parabolic subgroup and x an antidominant character of p, let s, € p be the element
corresponding to x € p*. Define the subset (mg ), C mc to be the set of v € m¢ so that Ad,:s, v is bounded

as t—oo and define (m), C mc to be the set of v € m¢ so that Ad,es, v = v.
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Given a P bundle Ep and an anti dominant character y, denote the associated (mg ),-bundle by E, [m].
If L C P is the Levi factor of P and F is an L-bundle, denote the corresponding (mg ), bundle by by F [m2].
To form a moduli space, we need to discuss the appropriate notion of stability, for this general set up,

the reference is [GGMiR09)].
Definition 3.3.13. A G-Higgs bundle (£, ¢) is:

e semistable if, for any parabolic subgroup P C H¢, any strictly antidominant character x of p and any

holomorphic reduction o € H(E(Hc/P)) such that ¢ € H(0*E, [m:| @ K), we have deg(E)(o, x) < 0.
e stable if the inequality is always strict, deg(F)(c, x) < 0.

e polystable if it is semistable and for any parabolic subgroup P C Hg, any strictly antidominant character
x of p and any holomorphic reduction o € H°(E(Hc/P)) such that ¢ € H(0*E[mg] ® K) with
deg(E)(0,x) = 0, there is a further holomorphic reduction of structure group o of the P-bundle o*&y

to L. Furthermore, with respect to this reduction, ¢ € H%(0} &, [ml] ® K).

Recall that the Hc-gauge group Gy, is the group of smooth bundle automorphisms of a Hc bundle Ey...
A gauge transformation g € Gu. acts on a Higgs field ¢ by g - ¢ = Ady¢ where Ad, denotes the restriction

of the adjoint action of g on E[hc ® m¢] ® K.

Definition 3.3.14. The moduli space of G-Higgs bundles M (G) is defined to the set of isomorphism classes

of polystable G-Higgs bundles.

Remark 3.3.15. The set M(G) described above can be given the structure of a quasi-projective complex
variety as in [Hit87a, Sim92]. When the group G is complex semisimple the moduli space M(G) has a

hyperKahler structure [Hit87a, Sim92].
For most cases we will consider, SL(n, C)-stability will be sufficient.

Definition 3.3.16. (SL(n,C)-stability) An SL(n,C)-Higgs bundle (FE,¢) is semistable if all ¢-invariant
subbundles F' C E satisfy deg(F) < 0 and stable all ¢ invariant subbundles F' satisfy deg(F) < 0. A

semistable Higgs bundle (E, ¢) is polystable if it decomposes as a direct sum of stable Higgs bundles (F, ¢) =

D(E;. 9)).

J

Definition 3.3.17. Given a Higgs bundle (£, ¢) define the automorphism group by

Aut(€,0) = {g € Guclg - (€,9) = (€,9)}
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and the infinitesimal automorphism group by
aut(€,¢) = {s € H*(E[hc])|adsp = 0}
Define a Higgs bundle (€, ¢) to be infinitesimally simple if
aut(€,¢) = H°(E[3(hc) N Ker(Ad : He—me)]).

Being infinitesimally simple is equivalent to the dimension of Aut(&, ¢) being the same as Z(H¢) N Ker(Ad :

H(c—>mc).
Definition 3.3.18. A Higgs bundle (€, ¢) is simple if Z(E,¢$) = Z(He) N Ker(Ad : Hc—me).

Proposition 3.3.19. (See section 3 of [GGMiR09]) If (€, ¢) be a stable and simple G-Higgs bundle that is

stable as a G Higgs bundle, then the isomorphism class of (€, ¢) in M(G) is a smooth point.

3.3.2 Hitchin fibration and Hitchin component

For G a complex semisimple Lie group of rank ¢, let p1,--- ,py be a basis of the G-invariant polynomials
Clg]®. If {m;} are the exponents of g then deg(p;) = m; + 1. Since the polynomials are Adg-invariant, they
can be evaluated on the Higgs field of a G-Higgs bundle (&, ), and p;(¢) € HO(K™i ).

‘
Definition 3.3.20. The map H : M(G)— @ H°(K™i*!) obtain by applying (p1,---,pe¢) is called the
j=1

¢
Hitchin fibration. The space @ H®(K™iT1!) is called the Hitchin base.
j=1

In [Hit87Db], Hitchin proved that the map H is proper and has abelian varieties as generic fibers. More-
over, Hitchin proved that H : M(G)— é HO(K™iT1) defines a completely integrable system. While the
integrable system aspects of the Hitchin jﬁ:blration are extremely important, they will not play a role in the
rest of the thesis.

In [Hit92], Hitchin showed that there is a section of the above fibration whose image naturally generalizes

the Teichmiiller component of Example 3.3.21. The definition of this section relies on Kostant’s principal

three dimensional subalgebra and works as follows.

Example 3.3.21. Consider SL(2, R)-Higgs bundles given by (K% Kz, < (1) q02 >) where K2 is a fixed
square root of K and gz € HY(K?) is a holomorphic quadratic differential. Up to scaling, there is only one
invariant polynomial for SL(2, C) given by p1(X) = %TT(X 2). Applying the invariant polynomial to ¢ above

gives p1(¢) = g2. This gives the Hitchin section for SL(2, C).
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Let g be a complex simple Lie algebra and s C g be the PTDS. Recall from (2.1.8) that the grading element
x of the PTDS gives the height Z-grading g = , % g; of g, here my is the height of the highest root of g. The
inclusion z—g defines an inclusion of C = 50(2jj(1'_)mé bc C g, where b is the complexification of the maximal
compact Lie algebra of the split real form of g. If G is the adjoint group of g and Hc is the complexification
of the maximal compact of the split real form of G then we have an inclusion ¢ : SO(2,C)—H¢ C G. Denote
the principal SO(2, C)-bundle from Example 3.3.21 by £, extending the structure group gives a holomorphic
Hc bundle Py, = & x; Hg. Moreover, the g-bundle £ x; g decomposes in terms of the Z-grading defined by

Z:
me

Exig= P g 0K (3.3.1)

J=—my

It also decomposes into line bundles in terms of the irreducible representation é V; of ad : s—gl(g) from
(2.1.10). Recall from section 2.1.3 that the irreducible representations V; havej :dlimension 2m; + 1 where
{m;} are the exponents of g. The highest weight vector e; of each V; has height m;. If g = hc & m¢ is the
complexified Cartan decomposition of the split real form, then e; € mg by (2.1.11).

my
FOr (G 1, Gmat1s " > Gme+1) € D HO(K™i+1), define the Higgs field ¢ € HO(P x; m¢ ® K) by
j=1

my
p=E1+ Y €D qm, 11 (3.3.2)
j=1
Adg

Recall that Kostant [Kos59] showed that there is a basis (p1,--- ,p¢) of the invariant polynomials C[g]

my
with the property that for all elements in g of the form é; + ) yje;
j=1

my
P+ yies) = yj-
j=1

Thus we obtain:

my
Proposition 3.3.22. The map sy : @ HO(K™it1)—M(G) given by
j=1

myg
SH(Gma+15 7 s Gmet1) = (€ X3 G, €1 +Z€j ® Gm;+1)
=1

is a section of the Hitchin fibration. Moreover, if Go C G is the split real form then all Higgs bundles in the

image of sy are actually Go-Higgs bundles.

Using the above set up, Hitchin proved that the section sy is onto a connected component of Gy Higgs
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bundles.

Theorem 3.3.23. (Hitchin [Hit92]) Let Go be a split real form of a simple complex Lie group. There exists

my
a connected component of M(Gq) which is diffeomorphic to the Hitchin base @ H°(K™it1).
j=1

The Hitchin component will be the central focus of Chapter 5 and in Chapter 6 we will focus on certain

generalizations of the Hitchin component.

3.3.3 Hitchin equations

To go from an isomorphism class of polystable Higgs bundles to a representations, one must produce a
harmonic metric out of a Higgs bundle. This is the role of the Hitchin equations. Let (€, ) be a G-Higgs
bundle. A reduction of structure group o : ¥—&/H gives an H-bundle ¢*€ C £ and also a splitting of the
adjoint bundle & xp. (hc ® mc) = o*Ee xy (h @ ih & m & im). Moreover, if ¢ € HY(Z,[mc] ® K) and a

compact real form 7 is fixed on g¢ with o7 giving the real form g, then the 1-form ¢ — 7(y) satisfies:

T(p = 7(p)) = —(¢ — 7(9))- (3.3.3)

Thus ¢ — 7 takes values in ¢*€ xy m. Given a metric connection A, the connection A 4+ ¢ — 7 is a G-
connection on 0*€ xy G. Moreover, —7(y) is the Hermitian adjoint of ¢ with respect to the metric induced
by the Killing form.

Given a holomorphic He-bundle &y, and a reduction of structure &y C &y, (i.e. a metric), there is a
unique connection A (called the Chern connection) that is compatible with both the holomorphic structure
and the metric reduction. In other words, there is a unique connection A on £y such that the (0,1) part of
A induces the holomorphic structure on .. For holomorphic vector bundles, this is classical, for instance

see [Kob87]. For the general set up see [MiR00].

Theorem 3.3.24. Let (€, ) be a polystable G-Higgs bundle and fix a Cartan involution T on gc, then there

ezists a reduction of structure of £ from Hc to H which solves the following equations
_ (01, _
Fa+p.—7(p)] =0 and Val¢=0 (3.3.4)

where A is the Chern connection of the reduction. Moreover, if (€, ) is stable, then the metric reduction o

1S UNIqUE.

(0,1)
A

Note that, by definition of the Chern connection, the equation V @ = 0 just says ¢ is holomorphic.
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This theorem was originally proven by Hitchin [Hit87a] for G = SL(2,C) and extended to all complex groups

by Simpson [Sim92]. The form stated above can be found in [BGPMiR03, GGMiR09)].

Remark 3.3.25. From a solution to Hitchin’s equations we obtain a flat G-connection D = A+¢—7(¢), thus
giving a map from the Higgs bundle moduli space to the G-character variety. Since the Hitchin equations are
the same as the interpretation of the harmonic metric equations in (3.2.5) with ¢ = (19 and —7(¢) = (1),
the induced reduction of structure of the flat G-bundle given by ¢ can be interpreted as an equivariant
harmonic map hp : EHG/ H. This gives an equivalence between harmonic metrics on flat G-bundles and

polystable G-Higgs bundles.

Theorem 3.3.24 completes the correspondence between the moduli space of G-Higgs bundles and the

G-character variety. In fact, the bijection M(G) +— X(m1, G) defines a homeomorphism [Sim92].

Remark 3.3.26. For the group SL(n,C), Theorem 3.3.24 says that given a stable Higgs bundle (E, @),
there exists a unique metric hermitian metric H (with Chern connection A) on E which solves the equation

Example 3.3.27. Recall that Higgs bundles in the SL(2, R)-Hitchin component are given by a choice of
square root of K and a holomorphic quadratic differential g € H°(K?). The corresponding SL(2, C)-Higgs
bundle is defined by

(&¢%4K§@K’%(?%)y

A metric H on K2 & K% which solves Fu+[¢,¢*] = 0 splits as H = h @& h™~! since it comes from a metric

on a SO(2,C)-bundle. The adjoint of ¢ is given by

w(hAh)<@l>(hh1><W%h4>

and the Hitchin equations are given by
Fa, + W@ ANG—h™? =0. (3.3.5)

In [Hit87a], Hitchin showed that solving for the metric h on K 3 is equivalent to finding a metric on ¥ with
constant negative curvature. Moreover, if g = 0 then the corresponding hyperbolic metric is the which
uniformizes the surface ¥. In this way, for each Riemann surface structure ¥ on S, Hitchin parameterized
Teich(S) by H(K?). Since Tr(¢?) = 2qq, this is equivalent to the Hopf differential parameterization of

Teich(S) by Wolf [Wol89)].
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Remark 3.3.28. Note that if G C SL(NV,C) is a real form a subgroup of SL(N,C) then the inclusion
induces a map gives a map between the moduli spaces M(G)—=M(SL(N,C)). In particular, a G-Higgs
bundle is polystable if and only if the corresponding SL(N, C) Higgs bundle is polystable. Equivalently, if
the corresponding SL(N, C)-Higgs bundle is unstable, then the G-Higgs bundle is also unstable. Thus, when
determining whether or not the isomorphism class of a G-Higgs bundle defines a point in the moduli space,

we can use the simpler version of stability for SL(N, C)-Higgs bundles.

We will also need a slightly more general theorem concerning K-twisted Higgs pairs (see Definition 3.3.9).
These objects are an instance of the more general notion of an augmented bundle. Through the work of
many authors, including Bradlow, Garcia-Prada, King, and Mundet, the notions of stability have appropriate
generalizations to the setting of augmented bundles. For this more general set up, the analog of Theorem

3.3.24 also holds, see [BGPMiR03, GGMiR09].

Theorem 3.3.29. Let (£, ) be a polystable K -twisted Higgs pair, then there exists a reduction of structure

of €& from Hc to H which solves the following equations
*] __ (071) —
Fa+lp,¢*]=0 and vile =0 (3.3.6)

where A is the Chern connection on E(V') induced by the reduction and ¢* is the hermitian adjoint with

respect to the metric reduction.
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Chapter 4

Fixed points

The Higgs bundle moduli space M(G) has a natural action of C* defined by scaling the Higgs field. For
A € C*, the action is given by A - (&€, ) = (€, Ap). The fixed points of this action are the critical points of

the function on M(G) defined by taking the L2-norm of the Higgs field with respect to the harmonic metric:

H(E.p) = / el

This function is a Morse-Bott function and is usually called the Hitchin function [Hit87a, Sim92]. Thus,
studying the fixed points of the C*-action gives information on the topology of the Higgs bundles mod-
uli space. This has been successfully carried out by many authors, for instance [Hit92, Sim92, Got01,
GPGMiR13, BGPGO03].

In this chapter we study the Higgs bundles which are fixed by a root of unity subgroup ({x) C C*. For
complex simple Lie groups, we classify the Higgs bundles fixed by this action. We start by recalling the work
of Simpson [Sim09] for SL(n,C) and discuss how the Hitchin equations for these fixed points simplify to a
version of K-twisted quiver bundle equations considered in [—\ CGP03]. This relation will be important for
the asymptotics considered in Chapter 5. After relating Higgs bundles fixed by the C* action to Z-gradings
gradings on Lie algebras we classify the fixed points of (¢, ) C C* in M(G) for a complex simple Lie group G.
Finally, we discuss the relation between these fixed points and the equivariant harmonic map from Corlette’s

Theorem, this analysis will be crucial for Chapter 6.

4.1 SL(n,C) and relation with quiver bundles

Recall that an SL(n, C)-Higgs bundle is given by a pair (£, ¢) where £ is a holomorphic vector bundle with
trivial determinant and ¢ € H°(X, Endo(£) ® K) is a traceless twisted endomorphism. The fixed points we

will study are special types of twisted quiver bundles developed by [:/\CGP()S].

Definition 4.1.1. A K-twisted quiver bundle is a collection of holomorphic vector bundles {&; }2?:1 together
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with a collection of holomorphic K-twisted bundle maps ®;; : &—&; @ K.

For quiver bundles, there is a stability condition which has a parameter developed in [A(Z‘Gl’().'i]. When
the stability parameter is 0, there is a close relation between quiver bundles and Higgs bundles; we will

discuss this case below. This stability condition is used to prove the following theorem.

Theorem 4.1.2. Given a 0-stable K -twisted quiver bundle ({5j}§:1, {®;;}) with det(P E;) = O, there is a

unique collection of metrics {h;}¥_, on the bundles {€;}5_, which solve the quiver bundle equations:

Fi, + > @4y APy + Bji A0S =0.
ik

Here @, : £;—¢; ® K is the adjoint defined with respect to the metrics h; and h;.

k
Remark 4.1.3. Given a K-twisted quiver bundle ({&;}%_,,{®;;}) the holomorphic bundle €& = @ &; to-

i=1 D
gether with {®;;} define an GL(3_; rank(&;), C)-Higgs bundle. Moreover, the stability condition of [?\CGPOIi]
has the property that the quiver bundle ({€;}5_,,{®;}) is stable if and only if the corresponding Higgs bun-
dle is stable. In this case there are two special metrics on &, the quiver bundle metric and the Higgs bundle
metric. In general, if the holomorphic bundle £ admits a holomorphic decomposition, such a splitting is not

orthogonal with respect to the Higgs bundle metric. We will show that, for fixed points, the holomorphic

splitting is indeed orthogonal, and hence the quiver bundle metric and the Higgs bundle metric agree.
The fixed points of the C* correspond to special K-twisted quiver bundles called holomorphic chains.
Definition 4.1.4. A K-twisted holomorphic chain is a K-twisted quiver bundle ({&; };?:1, {®;;}) with ®;; =

0if i +1# j. Set ®; ;41 = ¢;, we will represent K-twisted holomorphic chains by

& 1 & @2 Pr—2 Ex Pr—1 &k (4'1.1)

where the twisting has been suppressed from he notation.
The relation between fixed points of C* action and holomorphic chains is straight forward.

Proposition 4.1.5. Let (£,¢) be a polystable SL(n,C)-Higgs bundle with (€,¢) = (€, @) for all A € C*
then (€, ) is a K-twisted holomorphic chain with k > 1. If (£, ¢) is stable then each ®; ;11 # 0.

The proof of this proposition is very similar to classifying fixed points of roots of unity actions given

below. The fact that (£, ¢) stable implies that each Higgs field components ¢, # 0 follows from the fact that
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if some ¢; is zero then (€, ¢) has an invariant subbundle with an invariant compliment, and it is strictly

polystable. Given a K-twisted holomorphic chain as in (4.1.2) the quiver bundle equations simplify to:

Frhy + 31 A1 =0 (4.1.2)
Fy, + ¢r—1 /\(;52_1 =0

27i
k

For SL(n,C), Higgs bundles which are fixed by a root of unity subgroup <€7> = (¢,) € C* but not
necessarily all of C* were first studied and classified by Simpson in [Sim09]. We will give a very explicit

proof of this classification.

Theorem 4.1.6. Let (£, ¢) be a stable SL(n,C)-Higgs bundle, (€,) is a fized point of (C,.) if and only if
either (€, ¢) is fized by all of C* or (€, ¢) is a K-twisted quiver bundle ({€;}5_1,{®:;}) with ®;; # 0 if and

j:lv

only if i +1 = j mod k. Setting ®; ;11 = ¢;, such fized points are given by:

Pk

& 1 & P2 Pr—2 € Pr—1 Ex (413)

Proof. Clearly if (€,4) is a fixed point of the C* action then it is a fixed point of the k'"-roots of unity
action, so let (£, @) be of the second type above. To see that a Higgs bundle of the form (4.1.3) is fixed by

(¢,.), consider the following gauge transformation of & @& - - - & &:

Id51 ng,k
IdSz erLkC]i

J k=1
Idgk nk>k

It is straight forward to check that Ady¢ = (i¢, furthermore, j can be chosen so that det(g) = 1.
Now assume that (£,¢) = (£, ¢) and (€,¢) is stable, then there is a SL(n,C) holomorphic gauge
transformation g : €= so that Ady¢ = (, ¢ and gk = CZIdg for some integer j. Thus the eigenbundles

l

of g can have eigenvalues Cflk(,i for 0 < ¢ < k — 1. Let {Cikczi} be the distinct eigenvalues of g, and

i=1

E=E D - P& be the g-eigenbundle decomposition of £. In this splitting ¢ is given by

Id51 erzk l?l

Ide, ¢, ¢
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Write ¢ = {¢;;} in terms of the eigenbundle decomposition £ = & @ --- @ &;. The action of Ad, on ¢;; is

given by Ady(¢i;) = (' “ ¢4j. By assumption, Ad,¢ = (}¢, so
aifajgélmodk — (ﬁ”:O

Thus, there are at most | nonzero ¢;;’s (at most 1 nonzero ¢;; per row and at most 1 nonzero ¢;; per
column). Stability of (£, ¢) implies there must be at least [ — 1 nonzero ¢;;’s, otherwise there would be a
¢ invariant destabilizing bundle. If there are exactly [ — 1 nonzero ¢;;’s then (£, ¢) is a holomorphic chain,
and thus a fixed point of the C* action. If (£, ¢) is not a fixed point of the C* action then there are exactly
[ nonzero ¢;;’s. Finally, if there are exactly [ nonzero ¢;;’s then we have a collection of ! distinct numbers
{a1,...,a;} from the set {0,...,k — 1} with exactly | pairwise differences equal to 1 mod k. This implies
l =k, and proves £ = & B E b --- @ &E. If &; is the eigenbundle with eigenvalue Cikcli, then the Higgs

bundle is of the form of equation (4.1.3). O

Remark 4.1.7. The two cases in Theorem 4.1.6 are not disjoint. For instance, if a = (qzﬁl O) and

0 . . 1 P2 . AT
b= , the holomorphic chain E; —— E; —— FE3 can also be written as F; ® E3 — E» .

b2

As a corollary, we have the following description of polystable fixed points.

1
Corollary 4.1.8. Let (£,¢) = @ (&, ¢;) be strictly polystable with each (€5, ¢;) stable. Then (€,¢) is a

Jj=1

fized point of ((,) if and only if each (&;, ¢;) is fixed by (,) for some d which divides k.

The quiver bundle equations associated to Higgs bundles fixed by ((,) and not C* are:

Frn, + 1 N1+ o Ao, =0 (4.1.4)
F, + &5 Néj+¢j-1A¢5_1 =0 2<j<k-1
Fry, + 05 N+ dr—1 Npj_y =0

For fixed points, the holomorphic splitting is orthogonal with respect to the Higgs bundle metric. Thus,

the Higgs bundle metric is the same as the quiver bundle metric for fixed points.

Theorem 4.1.9. Let (€,¢) be a polystable Higgs bundle that is fized by (C.), then the holomorphic decom-
position of € in Theorem 4.1.6 is orthogonal with respect to the Higgs bundle metric. Moreover, the Higgs

bundle equations simplify to the quiver bundle equations.

This extra symmetry condition on the Higgs bundle metric is the starting point for all applications

considered later. We will provide two proofs of Theorem 4.1.9, one which is direct and another which uses
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the quiver bundle results. Denote the Dolbeault operator associated to the holomorphic structure on &£ by
Jg. Given a stable Higgs bundle (O, ¢) there is a unique metric H solving the Higgs bundle equations.
For any SL(n, C)-gauge transformation g, the pair (¢§~'9rg, g~ ¢g) also has a unique metric H’ solving the
Higgs bundle equations. The metrics H and H' are related by H' = Hg*"g. This follows from general gauge

theoretic arguments, for example see section 3 of [Bra90)].

Proof. Let (€, ¢) be a stable Higgs bundle that is a fixed point of the (¢, }-action that is not fixed by C*, and
let H be the metric on £ solves the Higgs bundle equations. To see that the metric H splits, we will show
the holomorphic gauge transformation g : E—€ which acts as g~'¢g = (, ¢ is unitary, that is g*# g = Id.
Since the triple (Jg, ¢, H) solves the Higgs bundle equations, the triple (¢~ 10cg, 9~ g, Hg g) also solves
the Higgs bundle equations. Since g is holomorphic (¢~ 10eg, g~ ¢g) = (¢, (, ¢), and thus (J¢, ¢, ¢, Hg*" g)
solves the Higgs bundle equations as well. Now, using the fact that the U(1)-action preserves the metric,
the triple (Jg, ¢, Hg*¥ g) solves the equations. By uniqueness of the metric, we conclude g*# g = Id. Recall
that the splitting & @ --- ® & is an eigenbundle splitting for g, since g is both unitary and preserves the

eigenbundle splitting & & - - - ® &, the metric H splits as H = h; © -+ - D hy. O

Proof. (Quiver bundle proof) The proof for fixed points of C* and (¢, ) are very similar, assume (&, ¢) is a
stable fixed point of (¢, ) which is not fixed by C*. The holomorphic bundle decomposes as £ = €1 & --- D Ey
with ¢ as in Theorem 4.1.6. By [ACGP03], there is a collection of metrics on {h;} on {&;} which solve the
quiver bundle equations (4.1.4). With respect the metric H = hy @ --- @ h; on &£ the adjoint of the Higgs is
o = H g H

W61 by

4 —T
hk_ll(bk—l hk
1T
hk1¢k hl
Since h;ld)jthrl = ¢7, the bracket [¢,¢*#] is given by
Ok N df + T N 1
[6,¢"11] = h

Pk—1 NP1 + O A i

Thus, the quiver bundle metric H solves the Higgs bundle equations Fy + [¢, ¢*#] = 0, and we conclude the

Higgs bundle metric on £ is diagonal with respect to the holomorphic splitting & @ - - - ® E. O
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4.2 Fixed points of the ((,) C C*-action on M(G)

4.2.1 G-complex

Recall that a Z-grading associated to the height grading of a parabolic subalgebra corresponds to a labeling
of the Dynkin diagram with only 1’s and 0’s (see Chapter 2.1.1, in particular Example 2.1.17). Let G be a
complex simple Lie group, we first phrase the classification of fixed points of the C*-action on Mg in terms
of Z-gradings.

Let P C G be a parabolic subgroup with Levi factor L and denote the corresponding Z-grading of g by
g = @ g;. Let ¢ be a Cartan subalgebra, IT = {a, -, a4} a set of simple roots and A C II the subset
Whicljlegives the parabolic P4 conjugate to P. Recall that the corresponding Z-grading arises from a one
parameter family of elements g¢ € Inn(g) where g; = exp(2mitz) for an element = € 3(I4); this implies g; is
in the center of L4.

Recall from Definition 3.3.9 that an K-twisted (L4, g1) Higgs pair consists of a holomorphic L 4-bundle
&1 —Y and a holomorphic section of the g;-associated bundle o € H(E[g1] ® K). Denote the moduli space

of such objects by M(L4,g1). We have

|| M(La.g1) = | | M(Go, g1)
ACII Dynkin Diagram labelings w/ 1’s and 0’s
Theorem 4.2.1. Let G be a complex simple Lie group and denote the subvariety consisting of fixed points

of the C* action by F(G). Then there is a map F(G) ——= || M(La,g1) and extension of structure
AcCII

group gives a surjective map || M(La,g1) — F(G) . Moreover, if g1 = @ gy is the decomposition of
AcCIl
g1 into irreducible representations of L4 then the objects which map to smooth fized points consist of (L, g1)

K -twisted Higgs pairs (€, ¢) with ¢¥ # 0 for all v.

Proof. Given a polystable (L4, g1) K-twisted Higgs bundle (&, ¢) extending the structure group to G defines
a G-Higgs bundles (€g,¢). This will be a polystable Higgs bundle since the reduction of structure from
Theorem 3.3.29 which solves the (L4, g1)-Higgs bundle equations also solves the G-Higgs bundle equations.
To see that this extended object is a fixed point of the C*-action, note that there is an element x € 3(14)
so that ad, defines the Z-grading. In particular, the ad,(y) = y for all y € g;. Exponentiating gives a
1-parameter family of g, = exp(2witz) in the center of L 4. This family defines a family of holomorphic gauge
transformations of the bundle £ which acts of the Higgs field ¢ by g; - ¢ = €2 ¢. This makes the extended
object a fixed point of the C*-action.

Given a polystable G-Higgs bundle (£,¢) which is a point of the C* action, there is a 1-parameter
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family of holomorphic gauge transformations g; with Adg,,¢ = €*™¢. This family gives a Z-grading on
the fibers of the adjoint bundle £[g]. Moreover, for each ¢, the coefficients of the characteristic polynomial
of Adg, are holomorphic functions on X, thus the eigenvalues of Ad,, are constant. Hence the family of
g+ of gauge transformations gives a Z-grading of the adjoint bundle £([g]) = EB 9, with ¢ € g . The Lie
algebra gg is a Levi factor of a parabolic, let Gy C G be the corresponding Cojrffected subgroup. The Lie
subalgebra bundle g, C E(g) defines a reduction of structure group Eg,of £ from G to Gy. This defines the
map F(G)— || M(La,g1) proves surjectivity of the map || M(La,g1)—F(G).

The bund?ecsngj are given by associated bundles &g, [gj].A '%Eus each 9, decomposes into a direct sum of
irreducible Gy representations. In particular, £g,[g1] = €D g%, where each gV is a generalized root space of
the parabolic with Levi factor go. The Higgs field ¢ € £g,[g1] also decomposes as ¢ = P ¢”. If ¢, = 0 for
some v, then there is an extension of structure group of &g, to a Levi factor of a larger parabolic for which

¢ is in the Levi subalgebra of the larger parabolic. This implies that the Higgs bundle (£, ¢) is strictly

polystable. O

Fixed points of the C*-action have been understood for awhile, however they are not usually phrased in
terms of Z-gradings. With this set up, generalizing from fixed points of the C*-action to k*"-roots of unity
(¢,) € U(1) is more straight forward. For each Z/kZ-grading g = €D @, arising from a labeling of the
extended Dynkin diagram, let Gy C G denote the connected Lie grojlfg/xﬁlzith Lie algebra gy and denote the

moduli space of K-twisted (Go, g1)-Higgs pairs by M(Gg,g1). Define the sets:

e B the set of all Z/kZ-gradings on the Lie algebra g which arise from labeling the extended Dynkin

diagram of g.

e B’ C B the set of all Z/kZ-gradings on the Lie algebra g which arise from labeling the extended
Dynkin diagram with only 1s and Os on simple roots a; with n; # 1. Here the longest root p is defined

by > nja; (see section 2.1.1).

e B” C B’ the set of all Z/kZ-gradings on the Lie algebra g which arise from labeling the extended

Dynkin diagram with only 1s and 0Os.
Denote the subvariety of fixed points of the C*-action and the (¢, )-action on M(G) by F and Fj, respectively.

Theorem 4.2.2. Let G be a complex simple Lie group, extension of structure group gives a map

LI M(Go, §1) —— Fi .
B
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If F°™ and F™ denote the smooth fized points and B' and B" are as above, then there are maps

Flrsmyrom

LI M(Go,g1)

sm f i~ sm sm
Fi™t == I M(Go, 1) Fim\F
B/ B//

Furthermore, if g1 = @Y is the decomposition of g1 into irreducible representations of Go, then the fized

points of (C,) which are not fized by all of C* satisfy the extra condition that ¢¥ # 0 for all v.

Remark 4.2.3. This gives a one-to-one correspondence between polystable (Gg,g1) K-twisted Higgs pairs
(€, ¢) which arise from Z/kZ-gradings corresponding to labeling the extended Dynkin diagram with only
1’s and 0’s and which satisfy ¢” # 0 for all v and stable simple fixed points of (¢, ) in M(G) which are not

fixed by all of C*.

Proof. Let g = @ @, be a Z/kZ-grading which arises from a labeling of the extended Dynkin diagram
with 1’s and 0’;.ezf/{zzcall that this grading arises from an inner automorphism g € Inn(g) with ¢¥ = Id.
Moreover, if G| C Inn(g) is the connected subgroup of Inn(g) with Lie algebra go, then g lies in the center of
Gi. Let Gy C G be the connected Lie group with Lie algebra go. To get an element of G we must choose a
lift of g € Inn(g), we will denote this lift by g also. Note that g is a central element of Gy and g* is a central
element of G.

Given a polystable (G, g1) K-twisted Higgs bundle (&g, , ¢) extending the structure group to G defines a
G-Higgs bundles (Eg, ¢). This will be a polystable Higgs bundle since the reduction of structure which solves
the (Gg, g1)-Higgs bundle equations will also solve the G-Higgs bundle equations. To see that this extended
object is a fixed point of the roots of unity-action (¢, ) C U(1), note that the central element g € Z(Go)
which defines the Z/kZ-grading gives a well defined holomorphic gauge transformation gldg,, of &g, which
acts on ¢ by multiplication by (.

Now assume (&, ¢) is a stable and simple G-Higgs bundle with (£,¢) = (£,(,¢). Let g € Gg be a
holomorphic gauge transformation which acts as Ady¢ = ¢, ¢. Thus Adgxd = ¢ and g* is in the center of G
since. The Ady-eigenbundle decomposition of the adjoint bundle £[g] defines a Z/kZ-grading £[g]l = P 7.

jez/kn
with ¢ € H O(E,Ql ® K). The Lie algebra subbundle Qo C &[g] defines a reduction of structure group &g,

=}

of £ from G to Gy, and the bundle ﬁJ are associated bundles &g, [g;]. Thus, a stable and simple fixed point
determines a (G, g1) K-twisted Higgs pair.

Recall that Gg is not necessarily a Levi factor of a parabolic of G, thus polystability of the (Gg,g1) K-
twisted Higgs pair does not follow automatically from polystability of (€, ¢). However, since (£, ¢) is stable
and simple, the metric which solves the G-Higgs bundle equations is unique. Denote the Chern connection

of the metric solving the Higgs bundle equations by V 4, since it solves the equations for both ¢ and ¢, ¢, the
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gauge transformation g is covariantly constant, V49 = 0. Therefore, V 4 preserves the eigenbundles of Ad,,
which implies the connection 1-form A takes values in the bundle identity eigenbundle QO. But the bundle
§0 is the adjoint bundle of £, thus the metric connection A solves the K-twisted (Go,g1)-Higgs bundle
equations. This proves polystability of the K-twisted (Gg, g1) Higgs pair associated to a stable and simple
fixed point of ((,).

The Z/kZ-grading g = @@, came from an inner automorphism, it corresponds to a labeling of the

extended Dynkin diagram. Thus, we get a map f : f,?m—>|§|M(Go,§1). Let I = {ap, a1, ,as} be the
extended simple roots, recall that ay = z@) —nja; is the lowest root. Suppose the labeling of the extended
Dynkin diagram has a nonzero label oilzthe root «j. If n; # 1 then consider the Z/n;Z grading on g
corresponding to labeling the extended Dynkin Diagram with a 1 on «; and 0’s on all other roots. Denote
the this gradingby g = @ ), then go C g and g1 C gj- The element g’ which gives this second grading
acts trivially on the Higg %)/Srjfﬂe (€, @) but is not in the center of G. This contradicts the simplicity of (€, ¢),
and proves that the image of the map f : Fr—| | M(Gg,g1) lies in [_! M(Go, 1) If nj = 1, then, after acting
by an automorphism of the extended Dynkin (fiagram, we may asiume o = ap. In this case, we obtain a
Z-grading on g with ¢ at height 1, thus (&, ¢) is fixed by all of C*. Thus, the image of the restriction of the
map f to the space Fg™ \ F*™ lies in |—,|, M(Go, g1)-

Let g1 = P g” be the decompositiin of g into irreducible representations of Gg. The Higgs field ¢ €
HO(X,E[g1] ® K) decomposes as ¢ = Y. ¢”. To prove the last part of the theorem, recall from Remark
2.1.22 there are two case to consider. First, assume that the Z/kZ-grading under consideration has no roots
labeled with a 0, then all roots have are labeled with a 1. Assume that ¢” = 0 for a root {a;} in the Dynkin
diagram. As above, if n; # 1, then consider the Z/n;Z-grading associated to labeling the root a; with a 1
and labeling all other roots in II with a 0. Such a Higgs bundle is not simple since, by assumption, the Higgs
field is in the identity eigenspace of this grading and there is a gauge transformation acting trivially on the
Higgs bundle that is not in the center of G. If n; = 1 then we can assume a; = ag and (£, ¢) is a fixed
point of the C*-action. If there is a root with 0 label, then let g§' be the irreducible representations with
" = 0. There are again two cases, g} is one dimensional and corresponds to a root space ga; With ny =1
or not. In the first case, as before, we can assume «; = oo and the Higgs bundle (€, ¢) will be fixed by all
of C*. For the second case, in the finite order grading corresponding to labeling all roots in the irreducible

representations gj with a 1 and all other roots 0, the Higgs field will lie in the identity eigenspace, and the

Higgs bundle (£, ¢) will not be simple. O
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4.2.2 G-real

For real groups G the classification of stable simple fixed points is more subtle. For instance one needs to
understand how a finite a finite order element of Inn(hc) acts on the isotropy subspace m¢. Fixed points

of (¢,) in M(G) will correspond to polystable (Ho,n/fcl)—Higgs pairs where gc = ﬁfc and each ﬁfc
JELIKT,

decomposes as g/ = BEj @ mg’ .

For some groups however, there is a way around this subtlety by using results on simplifications of
stability. In [GPGMiR13], it is shown that if (V,5,7) is a stable and simple Sp(2n, R)-Higgs bundle with
V 2 V* then the associated SL(n,C)-Higgs bundle | V & V*, 0 g is stable. Also, a stable simple
SL(n,R)-Higgs bundle (£,Q, ¢) the corresponding SL(n, C)-Higgs bundle is also stable and simple. Using
Simpson’s classification of fixed points of (¢, ) for SL(n,C)-Higgs bundles (Theorem 4.1.6), we have the

following classification of stable simple fixed points for Sp(2n, R).

Theorem 4.2.4. Let (V,53,7) be a stable simple Sp(2n,R)-Higgs bundle with V. 22 V*. If (V,8,v) =
(V, (.7, ¢.B) and is not fized by all of C*, then k is even and V =V, @ Vo @ --- @ Vg with V; = V§+17j.
Morever, if Bij : V=V ® K and ;5 : V;=V;" ® K then BZ:’; = Bji, %?[jf = i and Bi; # 0 if and only if

(i+j):2m0d§ and v;; = 0 if and only if (i+j) =1 mod g

Proof. The SL(2n,C) Higgs bundle <V eV o= <2g )> is stable. Since (V,3,7) = (V,(,3,(.7), there
is a gauge transformation g : V—V with the properties gyg = ¢,y and g*B¢* = (, 3, thus ¢g* = £Idy. Let
G = g®g* be the corresponding gauge transformation of V& V™, note that Adz¢p = ¢, ¢ and (V&V*, ¢) is not
fixed by all of C*. Thus, by theorem 4.1.6, V®V™* decomposes as £ DED- - - BE, with ¢ : £,-ERK equal 0
if and only if j—i = —1 mod k. Since ¢ = < 3 g ) we must have k even and V = jEBdEj =VioVd-- .@Vg
and V* = } ?@n & = Vg <) V§_1 @ --- @ V. The form of § and v follow from rearranging the splitting

S d&EasVieVad--- Ve VDV
2 2
O

For stable and simple SL(n, R)-Higgs bundles (£, Q, ¢) we have the following classification theorem.

Theorem 4.2.5. Let (€,Q, ¢) be a stable and simple SL(n,R)-Higgs bundle. If (€,Q, ¢) = (€,Q,(, ) then
E=E1PE D &, and either Q;; : £;—E&; is 0 if (i + j) # 1 mod k and an isomorphism otherwise, or n
is even and Q;; =0 if (1 + j) # 2 mod k and an isomorphism otherwise. Furthermore, if ¢;; : £;—E @ K
then ¢;; = 0 if and only if (i + j) = 1 mod k and ¢T Q¢ = Q.

Proof. Recall that the orthogonal structure @ is a symmetric isomorphism E—E&*. Since (€, Q, ¢) = (£, Q, (, ¢)

and ((€,Q, ¢) is stable and simple, there is a SO(n, C) gauge transformation g for which Ad,¢ = ¢, with g*
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a central element of SO(n, C). There are 2 cases to consider, g = Id gy and gk = —1Id¢ ) (the second
case is only possible if n is even).

Suppose g¥ = Id and let £ = & @ - - - ® & be the eigenbundle decomposition of £ with gle; = Idg, Ci_l.
Denote the decomposition of the orthogonal structure @) : E=E* by @;;. The gauge transformation g acts
on Q;; by (g’lg‘z_*lQij. Since g*Qg = Q, we must have Q;; = 0 for (j +¢) # 2 mod k and Q;; : £;—E; an
isomorphism for (j + i) = 2 mod k. Now suppose n is even and g~ = —Idg gy, let E=E @ -+ E be the
corresponding decomposition with gle, = Cf}f —1. The gauge transformation acts trivially on the orthogonal
structure @ and as (212 1Q;; = (VTIQyy, thus Qi = 0 if i + j # 1 mod k and is an isomorphism
otherwise. In both cases, the properties of the Higgs field follow from the definition of SL(n,R) Higgs bundles
and the fact that (£, ¢) is a stable SL(n,C) Higgs bundle fixed by (¢, ). O

Remark 4.2.6. When k is even and the gauge transformation g satisfies g* = I d(g,q) then there are two self
dual bundles & and £ kg, and if g* = —Id then there are no self dual bundles. When k-odd is odd, there
is always only one self dual bundle &;. Also, when n is odd and k is odd, after rearranging the eigenbundles

of g, the orthogonal structure can be made to be of the form Q;; = 0 if and only if ¢ + j = 1 mod k.

4.2.3 Fixed points in the Hitchin component for all simple split real forms

For the Hitchin component the fixed points of ((,) are easy to classify. For classical groups, we will use
the extra symmetries of SL(n,R), SO(n,n+1), SO(n,n), Sp(2n,R)-Higgs bundles, we will deduce stronger

metric splitting properties or equivalently, more symmetries in the quiver bundle equations.

I
Proposition 4.2.7. Let (£,$) be a Higgs bundle in the G-Hitchin component with ¢ = €1 + ) €; ® qm;,
i=1

then (€, ¢) = (€,(,¢) if and only if ’

p=é1+ E €j ® Gm;+1-
m;+1=0
mod k

Proof. The Hitchin component is the image of a section s; of the Hitchin fibration

P10 5Pe

Mg
Hit@G) /

and p;(€,\p) = )\’”J'Hpj(é’,q&) for all A € C*. Thus if (£,¢) = (£,(,¢) then p;(E,¢) = p;(€,¢,¢), for
¢

‘
@ HO(E, K™
j=1

j=1,---,£ But by definition of the Higgs fields in the Hitchin component if ¢ = &, + }_ €; ® ¢y, 41 then
j=1
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p;(o) = Gm;+1, and p;(C, @) = C,Tjﬂqmjﬂ. Thus if (£, ¢) is a fixed point of (¢, ) then
Pj(#) = gm;+1 =0 for m; + 1 # 0 mod k.

Conversely if p =€+ > €j®¢m;+1 and 2® Id € tc ® O C € x g, hc is the grading element of the
i+1=0
mri']lod k
principal three dimensional subalgebra from which the Higgs bundle in the Hitchin component are derived,

then

ad,(¢) = —é1 + Z m;e; & G, +1-
m;+1=0
mod k

-
Exponentiating, we have g, = exp ( zzx) € Gn.(€) and Adg, ¢ = 'er+ Y (Mej @ gmy41 = (1o
m;+1=0
mod k
Thus Adg;uzﬁ = (, ¢ as desired. The subbundle V' C € x g (hc @ m¢) fixed by Adg, is P 9,0 K.
7=0 mod k

The Lie algebra subbundle W C £ x g, hc given by W = @ h; ® K7 yields a corresponding reduction
7=0 mod k

of structure of £ compatible with the metric solving the Higgs bundle equations. O

The following corollaries of Theorem 4.2.7 was the starting point to prove the asymptotic results of

Chapter 5.

Corollary 4.2.8. For (€,¢) a fized point of ((,) in the SL(n,R)-Hitchin component, the splitting

EZK"TA@K"T%@...@K*"T%@K*HTA:51@...@gk

—itl g K5

n—1

with gj =Kz

—i+l=k g K" it1=2k gy ... s unitary with respect to the metric solving the

Higgs bundle equations.

Corollary 4.2.9. For (€,¢) a fived point of (¢,_,) in the SL(n,R)-Hitchin component, the line bundle

splitting

n—1
2

E=KT oK7T o - oK "= oK

is unitary with respect to the metric H solving the Higgs bundle equations. Moreover, the metric is given by
H=h @&hy® --hy' ®hi"

n—3

Proof. By the previous corollary the splitting (K oK T JOK =

O OK~ T is unitary with respect

n

to the metric solving the Higgs bundle equations. But K= @K~ "% isan SO(2, C) bundle thus the metric

n—1

is splits as hy @ hy " on K2

@ K~"7 . The form of the metric follows from the compatibility of the metric

with the orthogonal structure. O
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4.3 Harmonic maps, fixed points and G-variations of Hodge
structure

We now discuss the harmonic maps of fixed points of roots of unity actions. Let G is a complex simple Lie

group. By Theorem 4.2.2, if (£, ¢) is a stable, simple G-Higgs bundle which is a fixed point of (¢, ) C C*, then

it arises from a K-twisted (Go, g1) Higgs pair where g = € g, is a Z/kZ-grading and Gy is the connected
JELIKT

Lie subgroup with Lie algebra go. This gives rise to a commuting diagram of compatible reductions of

structure group, equivalently equivariant maps

G/Gy <— G/Hg (4.3.1)
t 27
D — G/H
where the map h is the harmonic metric and Hy = Gy N H is the maximal compact subgroup of Gg.

We want to rephrase the condition of being fixed by ({,) in terms of harmonic maps. Before doing
this, we need to develop a little geometry of homogeneous spaces. Recall from Theorem 3.2.3 that a map
f: M—N between Riemannian manifolds is harmonic if and only if (d/"V£¢)*(df) = 0 where V¢ denotes
the Levi Civita connection on N. Recall also (see section 2.2.1) that every reductive homogeneous space
has a canonical connection, but the canonical connection is the Levi Civita connection for an G-invariant
metric if and only if the homogeneous space is a symmetric space. In general translating the harmonic map
equations into equations with respect to the canonical connection is a little complicated. Fortunately, for

some special homogeneous spaces this is not complicated.
Definition 4.3.1. A homogeneous space G/Q is a naturally reductive homogeneous space there exists a
G-invariant Riemannian metric (-, ) and an Adq invariant splitting g = q & m so that

<[X7Y]m7Z> + <K [sz]m> =0

for all X,Y,Z € m where [, ], denotes the projection onto m.
We will use the following proposition, see [Woo03].
Proposition 4.3.2. Let G/Q be a naturally reductive homogeneous space with canonical connection V... Let
M be a Riemannian manifold, a smooth map f: M—G/Q is harmonic if and only if
(d"Ve)*(df) = 0.
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If M is a Riemann surface then harmonicity is equivalent to d0 f being holomorphic with respect f*V..,

that is (V)00 (@10 f) = 0.
The space we are interested in is a naturally reductive homogeneous space.

Lemma 4.3.3. The reductive homogeneous space G/Hg is a naturally reductive homogeneous space with the

metric induced by the Riemannian metric (X,Y) = —Bg(X,0(Y)).

¢
Proof. Recall that if p = > nja; is the highest root of g, then a Z/kZ-grading g = @ @, is equivalent
j=1 JEL/KL

¢
to a labeling of the extended Dynkin diagram with integers {ao,--- ,as} so that ag + > nja; = k. Every
j=1

‘
root o can be written as & = —mopu + > mjo; with mg = 0 if « is a positive root and mg = —1 for o a
i=1
R ¢
negative root. Each summand g; is a direct sum of root spaces g, with > a;m; = j mod k. In particular,
=0
R R R R k=1 N
a € g; if and only if —a € g_;. Thus, by (2.1.3) the splitting (go N H) ® (Go Nih) & P g; = (ho) B m is
j=1

orthogonal with respect to the inner product (X,Y) = —By(X,6(Y)). Hence, for all X,Y,Z € m
0= <[X, Y]7Z> + <Yv [Xv Z]> = <[X7 Y]m7 Z> + <Y, [Xv Z]m> + <[X7Y]hoﬂ Z> + <Y7 [Xv Z]h0>

= (X, Y]m, Z) + (Y, [X, Z]w)
O

Recall that we have the Cartan decomposition g = h@m and complexifying gives gc = hc®mc (since g is
complex both h¢ and mg are isomorphic to g). The complexified tangent bundle of G/H is TcG/H = G xpymg.

Given a Z/kZ-grading g = € §;, recall that the Cartan involution € acts on this splitting as
JEL/KL

0(g;) =95

This gives the splitting g = ho @ mo & € g;. Thus the tangent bundle of G/Hq is G xn, (mg ® @ ;). The
70 70
complexified tangent bundle is

TeG/Ho = G xp, (m%@@ﬁ?@@c): @ GxHoﬁg@@G Xho H5.
J#0 JEZ/KT j#0
With respect to this splitting, the map dr : TcG/Ho—TcG/H is given by
d’lT:(Id,O)I @ GXHOﬁ;C@@GXHOE]\?—)GXHmc.
jen/kz 70
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Theorem 4.3.4. Let (£, ) be a stable and simple G-Higgs bundle. If (€, ) is a fized point of the ((,) then

the map equivariant map f : 2—G/Hy is harmonic and df (T*%) C G x¢, ME. Conversely, let p € X(m,G)

and g = @ §; be a Z/kZ-grading with Gy and Hy as before, if f : §—>G/H0 18 an equivariant harmonic
JEL/KL

map with df(Tl’Ofl) C Gxg,m{ then the Higgs bundle (f*G xu, G, d™0 f) is a polystable Higgs bundle which

is a fized point of (C,) .

Proof. If (€, ) is a stable and simple fixed point of (¢,) C C* then, by Theorem 4.2.2, there is a Z/kZ-

grading g = €@ g, with Gy C G the connected Lie group with Lie algebra go so that (€, ) arises from a
JEL/KE

polystable K-twisted (G, g1) Higgs pair (&, ) via extension of structure group. This gives the following

commuting diagram of reductions of structures (equivalently equivariant maps)

G/Go <=— G/Hg
17
¥ —> G/H
where Hy = Gg N H be the maximal compact subgroup of Gg. Since the Higgs field p € H°(Ey xn, g1 ® K) is
identified with the (1,0) part of the derivative of the map f and §; = m$, we have df (T+°%) C G x¢, mF.
Moreover, since G/Hg is a naturally reductive homogeneous space, holomorphicity of @ implies the map f is
harmonic.
Now suppose p € X(m1,G) and let g = & §; be a Z/kZ-grading with Gy and Hy as before. Let
i€Z/kZ
f: §—>G/H0 be a p-equivariant harmonic rr:ap /with df(Tl’OfJ) C G xg, m§. Pulling back the Hy bundle
G—G/Hy and extending the structure group to Go gives a holomorphic Gy bundle £g,—X. Since the f is
harmonic, df (T*%) C G xg, m$ and G/Hy is a naturally reductive homogeneous space, dX0f = & €
HO(Eg, xn, M @ K). Thus (f*G xp, Go,d0 f) = (Eg,, P) defines a (Go,g1) K-twisted Higgs Higgs pair,

and extension of structure group to G defines a polystable G-Higgs bundle which is a fixed point of (¢,). O

4.3.1 G-variations of Hodge structure and harmonic maps

Let G be a real reductive Lie group with the property that G has a maximal torus T which is compact, such
a G is called a group of Hodge type. This is equivalent to the Lie algebra g having no complex roots with
respect to a maximally compact Cartan subalgebra (see 2.1.2). The classical nonexamples are any complex
reductive Lie group (thought of as real), SL(n,R), and SO(p, ¢) with p,q both odd; there are also two real
forms of E6 which are not of Hodge type. If H C G is a maximal compact subgroup then the condition that

a Lie group be of Hodge type is equivalent to rank(Gc) = rank(Hc). For example, for G = Sp(2n,R), we
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have G¢ = Sp(2n,C), He = GL(n,C) and rank(Sp(2n,C)) = n = rank(GL(n,C)) while for G = SL(2n,R),
we have G¢ = SL(2n,C), Hc = SO(2n, C) and

rank(SL(2n,C)) =2n — 1 and rank(S0(2n,C)) = n.

The following comes from [Sim88], although we will follow the set up of [GRT13]. Let G be simple and
of Hodge type, fix a maximal compact H C G and corresponding Cartan involution ©® : G—G. Let T C H
be the maximal torus, T" C T a subtorus and let V = Zg(T’) be the centralizer of T’ in G. The inclusions
T CV CHCG give a fibration
H/V - G/V—=G/H

over the symmetric space; G/V is called a flag domain. On the Lie algebra level we have t CtC v ChCyg
with Cartan involution 0 : g—g giving g = h @ m. This splitting to be orthogonal with respect to the Killing
form. Note that the complexification V¢ C Gg is the Levi factor of a parabolic subgroup.

Note that the roots of g¢ with respect to the Cartan subalgebra t¢ satisfy A(gc, tc) C #t*. Since 0|y = +1,
for all o € A(gc,tc) we have () = a. Recall from 2.1.2 that a root « is called compact if the root space

ga C be and noncompact if g, C mg, and that
e if o, f compact then o + 8 compact
e if o,  noncompact then o + 8 compact
e if o compact and 8 noncompact then « + 8 noncompact.

For s C gc define A(s) = {a € Alg, C s}. If [tc,s] Cs wehave s = (s Ntc) @ P go. In particular,
a€A(s)

be=tc® @D 0o he=tc® @D 0o mc= @D ga
a€A(vg) a€A(bhe) a€A(me)
Picking a positive root system (or equivalently, a Borel subalgebra), gives us simple roots II C AT (g¢, tc)-
Fix a set of positive simple roots II C A*(gc, t¢) with II = {ay, ..., o}, and let {¢;} be the basis for tc dual
to {a;}. Define

Y= Z ™+ Z 2m;

mi€A(me) m; €A(he)\A(ve)

where {7;} are the fundamental weights (i.e. a;(m;) = d;;). Since ¢ € t¢ is semisimple, the Lie algebra gc
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decomposes as a direct sum of eigenspaces of 1,

Ic=09rDgr—1D-- - Dg—k+1 Dg—k (4.3.2)

where g, = {{ € gclady(§) = m&}, since all roots are integer combinations of simple roots, the eigenvalues

of ady are integers.

Remark 4.3.5. This is the Z-grading which arises from labeling all noncompact imaginary roots in the

Vogan diagram with a 1 and all compact imaginary roots in the Vogan diagram with a 2.

The space gy consists of all noncompact root spaces of height 1, since G is assumed to be noncompact,

we have dim(gy,) > 1. Moreover, since the roots are purely imaginary, we have

Om = 0-m

™ = g,,, wWe recover a real, weight zero Hodge structure on g;

for the compact conjugation. Setting gg~
since g = h @ m, the Hodge structure is polarized by the Killing form (see [Sim8&8]).
The element v is the grading element for the parabolic subalgebra p = go ® g1 & --- @ gx of gc. Since

the decomposition of a compact root into a linear combination of simple roots must have an even number

of noncompact contributions, we have

tc Coc = go h(C = fYeven = @g2m mc = godd = @92m+1
m m
Decompose gc into positive and negative eigenspaces

gc=0-DPgo Do+ =h_DBhoBh Bm_Smy

and let g, = g N (g © g—m), then g =0 O q1 O --- O qp,.

k
The real tangent space of G/V is given by T(G/V) = @ G xv q;. Complex structures on G/V are given
j=1

by specifying Tc(G/V) = TH0G/V & T°1G/V with
T'9G/V=Gxyg. and T%'G/V=Gxyag,

Thus each choice of positive roots gives a complex structure. Since the splitting (4.3.2) is V-invariant the
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complexified tangent bundle decomposes as

TGN = P Gxvg;

0<lj|<k

—k
with T19G/V = @ G xvy g;. We are now ready to define a G-variation of Hodge structure.
j=—1

Definition 4.3.6. Let X be a compact Riemann surface, a G-variation of Hodge structure is a triple
(p,G/V, F) where p : m(2)—G is a representation, G/V is a flag domain for G, and F : ¥—G/V is an

p-equivariant holomorphic map with dF(T0%) € G xy g_; C THOG/V.

A G-variation of Hodge structure (p, G/V, F) gives rise to a G-Higgs bundle (£, ¢) = (F*Gxy Hc, dM9 F);
here we are pulling back the V-bundle with total space G and extending the structure group to H¢ and pulling
back the Maurer-Cartan form (identified with dF') and taking its (1,0)-part. Moreover, since the grading
element ¢ is in the center of v, exponentiating exp(A)) gives a one parameter family of holomorphic gauge
transformation which acts on the Higgs field by e~*. Thus the Higgs bundle (&, ¢) associated to a G-variation
of Hodge structure is a fixed point of the C*-action. In [Sim88], Simpson proved that if (£, ¢) is a G-Higgs
bundle that is a fixed point of the C* action, then it gives rise to a G-variation of Hodge structure.

The correspondence between G-variations of Hodge structure and fixed points of the C* action in M(G)
relies on the holomorphicity of the map F' in Definition 4.3.6. In [Tol13], Toledo asked whether this condition
is equivalent to a harmonic condition on F'. We now show that this is not the case, and if one only requires

the map F' in Definition 4.3.6 to be harmonic, then one is naturally lead to finite order fixed points.

Theorem 4.3.7. Let G/V be a flag domain with gog—1 the highest nonzero summand in the corresponding
Z-grading. Let ¥ be a closed Riemann surface and p : 7 (X)—G be a representations. If F : i—)G/V
is a p-equivariant harmonic map with dF(TMOY) € G xy (g_1 ® gox—1) that is not holomorphic then
(F*G xy Hc, dFM9) is a polystable G-Higgs bundle fized by (C,,) and not by all of C*.

Proof. We first show that G/V is a naturally reductive homogeneous space (see Definition 4.3.1). Recall
that the Killing form satisfies the identity Bgy([X,Y],Z) + By(Y,[X,Z]) = 0 for all X,Y,Z € g. The Ady
splitting g = v @ m is orthogonal with respect to the Riemannian metric (X,Y) = —By(X,6(Y)) by (2.1.3).
Thus for all X,Y,Z € m we have

0=([X,Y],2) + (Y, [X, Z]) = ([X, V]m, Z) + (Y, [X, Z]m) + ([X, Y]1, 2) + (Y, [X, Z]1)

= <[X,Y]m,Z> + <Y, [Xa Z}m>
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Thus, G/V is a naturally reductive homogeneous space and harmonicity of map F is equivalent to holomor-
phicity of d9 F with respect to the canonical connection.

The bundle &y, = F*GxyHc is a holomorphic He bundle and the Higgs field is dAOF ¢ (2170(5HC XHeME).
Moreover, since F' is harmonic, by the above discussion, ¢ = d*% F is holomorphic with respect the pullback
of the canonical connection on G/V. The Higgs bundle (€, ¢) is polystable since the pullback of the flatness
equations (2.2.1) by F' and the holomorphicity of d9 F with respect to the pull back of the canonical
connection solve the Higgs bundle equations.

Finally, recall that the grading element i) € 3(v) defines a Z grading gc = @ g; with go;41 C mg
and go; C he with gog—1 the highest nonzero summand in m¢. By assumption, thzaelz-liggs field is given by
dVOF € F*G xy (g1 ® gor—1) ® K. Thus, gop = ezp(%zw) defines a holomorphic gauge transformation
of En. which acts as Ad,,, » = (,, . Moreover, F is holomorphic if and only if dM9 F C F*G xy @D 9K
Hence, the harmonic map F is not holomorphic if and only if the component of d(%9) F in goj_; ]1$< Zonzero,

this is equivalent to the Higgs bundle (€., ¢) being fixed by (¢,, ) but not all of C*. O

Remark 4.3.8. Note that for a variation of Hodge structure, the condition dF(T(l’O)i) C Gxyg_is
an extra condition on the holomorphic map. That is, any map which satisfies dF(T(l’O)i) C GXvg_
is automatically holomorphic. This is not the case for the harmonic maps considered in Theorem 4.3.7.
Namely, maps which satisfy dF(T(l’O)i) C G Xy (g-1 @ gar—1) are not automatically harmonic. There are

however, many examples of such maps (see Chapter 6).
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Chapter 5

Asymptotics of fixed points in the
Hitchin component

In this chapter we summarize the joint work with Q. Li in [CL14]. We include this work here since it is
an application of finite order fixed points on M(G). Most details and proofs have been omitted, we direct

the interested reader to [CL14]. For fixed points of (¢,) and ({,_, ) in the SL(n, R)-Hitchin components, we

no1
investigate the asymptotics of the nonabelian Hodge correspondence. More precisely, by Proposition 4.2.7,
in terms of the holomorphic differential paramenterization of the Hitchin component, these fixed points
are given by (0,---,¢n—1,0) and (0,---,0,q,), and along the rays (0,--- ,tg,—1,0) and (0,---,0,tg,) in
the Hitchin component, we study the asymptotics of the metric h; solving the Higgs bundle equations, the
harmonic maps f; : §—>SL(n,R) /SO(n) and the parallel transport holonomy. This analysis leads to a proof

of a conjecture by Katzarkov, Pandit, Noll, and Simpson [KNPS15] on the Hitchin WKB-problem.

5.1 Equations, flat connections and metric asymptotics

In this section, the metric splitting property of fixed points will be used to write the Hitchin equations
as a system of || fully coupled nonlinear elliptic equations, and to give an explicit description of the
corresponding flat connections. There are slight differences when n is even compared to when n is odd.
We will always work in the even case and mention what the differences are for the odd case. One obvious
difference in the odd case is the middle line bundle of E is a trivial bundle; for both ¢ = é; + g,e,_1 and

¢ = €1 + qn_1€n_2, the metric on the trivial line bundle is the standard one on C.
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5.1.1 Equations

Since the metric splits as h = hy © ho © --- @ hy ' @ hy*, the adjoints of the Higgs fields ¢ = é; + gnen_1

and ¢ = €1 + ¢n_1€e,—2 are respectively

0 hth, O 0 h7'h, 0
hth, hyth,
9" = ' 9" =
0 0 h'h, Ry haGn—1 0 h'h,
h2q, 0 0 0 hhyGn 0

We are interested in the corresponding family of flat connections as the differentials ¢, and ¢,_; are
scaled by a real parameter t. Using the simplification of the Hitchin equations for fixed points, the Hitchin

equations for n-cyclic Higgs field ¢ = €; + tg,e,_1 become:

2,2 _ -1
FA1+t hlqn/\qn—h1 h, =0

Fy +hihh —h7th, =0 1<j<3 (5.1.1)

-1 -2 _
Fy, +ht hy —hg® =0

n
2

Here all the metrics, and hence, all the curvature forms depend on ¢. We will suppress the ¢ dependence

from the notation. When n is odd, the last equation is changed to F, LT /”Fl1 h, ,— hl, =o.
) - =

n n—
1

2 2 2

To understand the flat connection we choose a local coordinate z on . Such a choice gives a local

holomorphic frame (s1, s2,...,s5,s}) for E, where s; = dz 521 is the local frame of K™= induced by

the coordinate z. With respect to this choice of coordinates, the Higgs field is locally given by

where ¢, = f,dz", for some function f .

With respect to this frame, locally represent the metric h; by e_Xj, here the j is a superscript and not
an exponent. Recall that in a holomorphic frame, the Chern connection has connection 1-form A = H '0H
and curvature 2-form given by Fa4 = O(H '0H). Since h; is a metric on a line bundle, the expressions
simplify to

Aj=-Xdz and F, =X _dzAdz
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The equations may be rewritten as:

2

1 1
/\;4_752672)\ an\Q—e)‘ -2 _p

j =1 j iy
)\zg-i-eA NN

(5.1.2)

Similarly for (n — 1)-cylcic Higgs field ¢ = €1 + tq,—1€,—2, we may rewrite the Hitchin equations as

1 2 1 2
/\; 4 2eN A |qn_1‘2 _er N
S S L I S P L
A+t |gn—1]"+€ —e =0
; G-l NS n
N_+ed TN e =0 2<j<y
N 3
A+t T P =0
n—1 nT—171 n;l n;l
Again, in the odd case, the last equation is changed to )\z; +e —A — et = 0.
5.1.2 Flat connections
The flat connection is given by D = Aj, + ¢ + ¢*. If, in the holomorphic frame (si,...,sz, 5%,

have

qn = f,dz" and g,-1 = fn—ldznila

then the flat connection for the n-cyclic ¢ = é; + tqne,—_1 is given by

—A\.dz
1

tfn 0 6)\1 _)\2
2 2 3
-, dz 0 0 et X
. . n ’
1 )\idz 0 e)‘l_>‘2
1 Aldz te f. 0
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(5.1.3)

*

.., 87), we

(5.1.4)

(5.1.5)



and the flat connection for the (n — 1)-cyclic ¢ = €1 + tgn_1€n_2, is

—)\;dz tf.., O 0 e A
2 3
1 —\dz tf, 0 0 er A
D= 0 1 —Adz +
)\1 )\2‘]‘_- )\1 )\2
te™" 7 [, et
1 2 _

1 Adz 0 te™ A f | 0

(5.1.6)

We want to calculate the behavior of the flat connection in the limit t—o00. To do so, we need to
understand the asymptotics of the \'’s and the asymptotics of their first derivatives )\JZ In order to use the
maximum principle, we will make a change of variables. Let ,, C ¥ be a compact set away from the zeros

of g, and fix a background metric g, on 3 with the following properties:

9, = |QH|% on (2,
‘2 (5.1.7)

(|(Jn)n <1 on X
g’!l

Using this metric, we make the following change of variables:

s _ontl-2

=X\ - .
u 5 (9..)
For ¢ = €1 + gn—1€n—2, we define the analogous compact set {2,,_; and background metric g, , with the
property
2

91 = l@n-1|""T on Qn_q

2 (5.1.8)
Lﬂ_l <1 on X
(g,-0)"

Using g, _,, we make the change of variables

j n+172jln

5 (90_1)-

Recall that the Laplace-Beltrami operator of a conformal metric g on a Riemann surface is given by

Ay = éaz% and the scalar curvature is



With respect to uj, the equations for ¢ = é; + tg,e,_1 become

(w + 2= L In(g,)).. +t2e~20 ~(r=Dn(@)|g 12 _ pu'—u’+in(a,) g
j 1—29 j—1 J J j+1
(u4 + %ln(gn))z2 4 et —u” +In(g,,) _ oY U +ln(g,,) — 0 1<j< % (519)

—1

n 1 n n
(W + Sin(g, ). e’ o) et ) g

wf3

Using our knowledge of K, and A, , we rewrite the equations as

1 ! n—1 2|qn)? 1 12
A u = — e—2u et U
4 9n 4 9n gn
1 1—9; L D
ZAgnuJ _ 7TL+ . ]Kgn + euj 7uJ o eujfu] 1 <] < g (5110)
1o 3 1 $1_% L%
——A,u’ ==K, +e' v e
479 47 In
We will show
lim e =t 1 <Jj< n
t—o00 - - 2

Similarly, in terms of the v ’s, the equations for ¢ = € + tq,_1€,—2 become

1 n—1 t2lg, 112 12 12
n— n— g,
1 . n—1 2a. 112 12 12 2 3
JE— gn7102 [ Kgn,1 ‘q:_11| e~V v +6v v U v
4 4 97 (5.1.11)
1 j n+1-2j I o T n
—38, v =K, —e 2<j<3
1 n 1 -1 5 3
_ = v =_= 4 eV v 621)
4" 9n—1 In—1
In this case, it will be shown that
1
lim e’ =t
t—o0
. 1).7' n+1—2j . n
= n— < Z
tlggoe (2t) 1 1<j< 5

5.1.3 Estimates on asymptotics of XN and )\i

In order to understand the asymptotics of the family of flat connections above, we need to understand the

asymptotics of the metric and its first derivative. For the metric, we have the following theorem.

Theorem 5.1.1. For every point p € ¥ away from the zeros of g, or g,_1, as t—o0
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1. For (X, é +tqnen—1) € Hit,(S), the metric hj(t) on K™% admits the expansion

n4+1-2j
n

hj(t) = (tlgnl)™ (1 +0 (t—%)) for all j

n+1—2j5 . .
2 admits the expansion

2. For (¥, é1 +tqn—1€n—2) € Hit,(S), the metric hj(t) on K

n4+1—2j

(tlgn-1])" =1 (1 +0 (f%>) forj=1 and j=n

h;(t) = o,

(2t gy |)~ (1 +0 (t_%)) forl<j<n

In terms of the u’’s and v’ 's, Theorem 5.1.1 says the asymptotics of the metric solving the Hitchin

equations on €2, are

R (1 L0 (f%)) 1<j< %7

and for ¢ = €; + tq,_1€,_2, the asymptotics of the metric solving the Hitchin equations on §2,_1 are

v = (2t) 1" (1 +0 (f%)) 1<j< g

1 2
o Zi(1r0(m)).
Using our understanding of the o ’s, the v ’s, and their Laplacians, we gain control of their first derivatives.

Proposition 5.1.2. Let z be a local coordinate so that q, = dz", then there is a constant C,, = Cp, (X, ¢n, Q)
so that

| < Cut ™ .

Similarly, let z be a local coordinate so that q,_1 = dz"~1, then there is a constant Cp,_1 = Cp—1(Z, gn—1, Vn_1)
so that

0] < Gyt ™77

5.2 Parallel transport asymptotics

In this section, the parallel transport ODE we wish to integrate is setup. To avoid some redundancy, we
will sometimes use a subscript or superscript b will be used to denote objects corresponding to the b-cyclic
Higgs field ¢, = €1 + tqpep—1 for b = n,n — 1. We will also work in the universal cover ¥ of 3, all objects

should be pulled back to the universal cover.

(0]



Let P € ¥ be away from the zeros of the differential g5, and choose a neighborhood U, centered at P,
with coordinate z, so that ¢, = dz’. Note that for this to make sense, Up must be disjoint from the zero set
of gp. In this neighborhood, W =N forb=nandv =X forb=n—1.

As before, the choice of local coordinate z defines a local holomorphic frame (s1,...,sz, s%, ..., 87) for

E=K%" aK'T ¢ -oK T,

5 In this frame, the connection 1-form of the corresponding flat connection is given by

where s5; = dz
(5.1.5) and (5.1.6). By our choice of coordinates, the f, in (5.1.4) is identically 1.

Using our estimates from Theorem 5.1.1 and Proposition 5.1.2, we will solve for the transport matrix
Tp p/(t) along paths starting at P and ending at a point P’ in the neighborhood U,.. In fact, Tp p/(t) will

be calculated along geodesics of the background metric g, = \dz|% which start at P and end at P’. Since the

connection is flat, the value of Tp p/(t) is path independent in U,,.

We rescale the holomorphic frame (s1,---,$%) so that it stays bounded away from 0 and co as t—oo.
For ¢ = €1 + tgnen—1, the rescaled frame is given by F,, = (o1,...,07) where
oy =t s, of =t sl (5.2.1)

Remark 5.2.1. By Theorem 5.1.1, in the rescaled frame, the metric h = Id (1 + 0 (t’%)) . To see this,

consider
h(siys;) =0t 7 (1 +0 (t’g))
thus
n+1-—2i n+1-—2j5 n+1—(i+j)
B(oi, ) = h(t37 s, 755 ) = €557 h(siys) = 85 (140 (7).
For ¢ = é1 + tgn_1€n—2, the rescaled frame is denote by F,,_1 = (01,...,07), it is given by

1 * -1 «
o1 =128 o =1"25]

n+1—2j5 _ n+1-—2j5
oj =20 Ts;  oi=(20) U8t j=2,...,

|3

As in the previous case, the harmonic metric in this frame is h = Id (1 + 0 (t_%>) .
If we denote the flat connection by Dy, = Uydz 4+ V,dZz, then, by the estimates from Theorem 5.1.1 and

Proposition 5.1.2; the matrices in the connection 1-form are given by:
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1. For QS =é1 + qnén—1,

S
I
I
-+
E
+
Q
—
|
3l

1 2
1
Tnet TU 1

where O (t_%) is uniform as t—o0 for all points in £2,,.
2. For ¢ =¢€1 + qn_1€n_2,

1 n—3 1
27 2(n=1)¢tn—-1

-,
_ _n—3 1 2 _ _n—3 1
2 2(n—1)tn—1 —v, 2 2(n—1)tn—1
1 1
Up—1= 2n=T{n-1
__n=3 1 1
2 2(n—1)tn—1 v,
1
V2
1 1
1 V2 V2 1
= (Qt)n—l 1 +0 (t n71>
1
V2
1 2 n—23 1
eV ~V 22(n=D) ¢ n—1
V _ =
n-1 102 n—3  2n-3 12 n—3 1
eV TV 22(n—1) ¢t n— eV TV 22n-D ¢t n-1
1 2 n—3 2n—3
eV TV 22(n-1) ¢t n—1
1
V2
1
1 1
= (2t) n—1 + O (t n—l)
1 1
V2 V2
1
V2

7

3=



where O (t7ﬁ> is uniform as t—o0 for all points in ,_.

As noted above, we will integrate the initial value problem along geodesics of the metric \qb|% which
avoid the zeros of q,. Any P’ € U,,, can be expressed in polar coordinates P’ = Le®; the geodesic 7 of the

metric |gy|? which starts at P and ends at P’ is the straight line
v(s) = se' for s € [0, L].

To avoid an overload of notation, when there is no confusion, the b will be dropped from the notation.
We start at P with the initial rescaled holomorphic frame F'(P). For a fixed ¢, parallel transportation along
the geodesic 7(s) : [0, L] — % with respect to the flat connection yields a family of frames G(y(s))(t) along
~ given by

G(V())(t) = Teqs)(O)(F(P))  with  Tpy)(t) = Id.

For each ¢, consider the family of matrices ¥, (s) satisfying
Vi(0)=1Id and  Wi(s)G(v(s))(t) = F(v(s)).

Since G(y(s))(t) is parallel along -, rewriting VSQF(’Y(S)) in terms of G(v(s))(t) yields

Vo F((s) = TG0 (5))(0).
Also,
Vo F3(5)) = (€70 + e OV)F(5(5)) = (€0 + V)86 ()0,
hence,
% = (U + V) 0,

Rewriting T'p ()(t) in terms of ¥; gives

Tpy(s) () (F(P)) = G(y(3))(t) = i (v(s)) " F(7(s))- (5.2.2)

Thus Tp(5)(t) = ¥, (7(s)) !, and we obtain the following proposition.

Proposition 5.2.2. With respect to the frame (o1, ..., a%,a%, ..., 07), parallel transport along the geodesic

from P to P’ for the flat connection is given by W,(L)~! (1 +0 (t_%)> , where U, solves the initial value
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problem

W, (0) =1 d—t = (U +e V) ¥,
S
Explicitly, we have
1. For ¢ = él + then—17
0 e 0 e
619 0 6719
d¥ . .
Ay _ e S 3 +o(t %) | v,
ds
0 619 0 6—19
e~ e 0
2. For ¢ = €1 +tqn_1€n—2,
[ 0 %e‘w %ew 0 ]
%eiﬁ 0 6719 %eie
dV, 1 " - 1
— = | (2t)n—1 . : 0] (t nfl) 7
o ( ) + t
%671‘0 eiG 0 %671‘9
0 %e—zﬂ %ezﬂ 0

In the above expressions, the matrix inside the bracket may be diagonalized by a constant unitary matrix

S, and thus can be written as
M1
S E s—1
Hn

where the set {u;} is the set of roots of the characteristic polynomial det(ul — (U +e~"V)). More precisely,

1. For the case ¢ = €1 + gnen—1, it; = 2cos(0 + 2%])

2. For the case ¢ = &1 + gp_1n—2, 1 =0, and for j > 2, u; = 2cos(0 + 2 ).

n—1

To compute W(L), we compute ® = S~1¥S

d®
®(0) = I, E—:Pﬂﬂm+ﬂ¢ (5.2.3)
s
M1
where M (6) = , and ST!RS is the error term in Proposition 5.2.2.

Hn
To integrate this initial value problem, we employ the following strategy:
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Consider the solution ®( to the initial value problem

do
B (0) = 1, —2 — % M(6)®,.
ds
1
estt
1
est b Lo
Hence ®(s) = . Instead of solving for ® asymptotically, we solve for (®q)~1®.
1
eStP pn
Note that (®¢) 1@ solves the initial value problem
_ d((®o)~ 1@ _ _
(@)1 ®(0) = 1, % = (Bo) L RDy - () 1 P. (5.2.4)
This can be seen by using the product rule
d((®g) @) d®g _,d®
SWF) ) 20 4 (e o=
ds ds +(®o) ds
d®g dd
= —(Pg) I —=(P) 1D + (Bg) 1 —
(®o) dS(O) + (@) ds

= (o) T M(0)® + (Do) (t* M(0) + R)®
= (®g) 'R®

= (®0) 'RPg - (D).
For the initial value problem (5.2.4), we will show (®0) "1 R®y is o(1), and that (®q)~® is Id + o(1); hence
& = Py(Id + o(1)).

Before doing this, we need a more in-depth understanding of the error term.
The estimate of the error term for the ODE relies mainly on the error estimate of the u’’s and v’ ’s. For

the n-cyclic case, we introduce the following notation for the error term for v’ coming from Theorem 5.1.1

i : +1-2j
@ =u —ln|tqn|n O

Similarly for the (n — 1)-cyclic case set

v —In [tqn—1] ji=1

j n41—25 )
v —In|2tg,—1| "~  otherwise
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For the n-cyclic case, writing the error term R for the ODE (5.2.3) in terms of i gives

U 1

S : ttwe ¥ - - S (5.2.5)

v,
2
U,
571 6
_17;
1
-7,
e -
6772_77 1
1 . t.
+(2t)7Te~ R S (5.2.6)
1 12 1 -2
ﬁ(e v v 71) %(et v 1)
12
e -

5.2.1 The n-cyclic case

The following theorem concerning estimates of the errors will be crucial.

Theorem 5.2.3. Let d(p) be the minimum distance from a point p to the zeros of q,. Then for any d < d(p),

as t — 4o0, the (k,1)-entry of R satisfies
Ry(p) = O <t21n(32|1<:—l|t$ d> ‘

Assuming Theorem 5.2.3, we can now prove the main theorem concerning the asymptotics of the parallel

transport operator with an extra condition on the path.

Theorem 5.2.4. Suppose P, P’ and the path v(s) are as above. If P’ has the property that for every s,

s < d(y(8)) := min{d(v(s), z0)| for all zeros zo of qn},
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then there exists a constant unitary matriz S, not depending on the pair (P, P'), so that as t—o0,
1
e—Lt ™1
1 e~ Ltnpe .
Tp,p/(t): (Id+0(t 2"))5 S

1
e_Lt n Hn

where j1; = 2cos (9 + w>

Remark 5.2.5. The extra condition on the path is necessary for our method of proof, as the distance
from the zeros of the holomorphic differential ¢, controls the decay rate of the error terms. However, for
sufficiently short paths, the extra condition is automatically satisfied. Thus, for each point z away from
the zeros of g,, there is a neighborhood U for which all |qn|%—geodesics in U satisfy the extra condition.
Furthermore, if, for all zeros zq of g, the angle <., (P, P’) is less than 7/3, then the \qn|%—geodesic from P

to P’ satisfies the condition.

When P and P’ both project to the same point in 3, the projected path is a loop. In this case, the above
asymptotics correspond to the values of the associated family of representations on the homotopy class of

the loop.

Proof. By Theorem 5.2.3, the (k,[)-entry of the error term (®4)~'R®} is
kaygngw—m»ﬁlzc)c—ﬁeﬂu—qlniawg%mvwnmi>_

Observe that
le — | = |2cos <9+ 2m(k - 1)> — 2cos <0—|— 2(1_1)>‘
n n
= 4$n( ) < k+l%)
n
4 sin ( )‘

2/1 - ¢F™ l|.

IA

o1, L
Hence, the (k,[)-entry of (®§)"1R®} is O (tz’lnemgi e (Sd('Y(S)))>. Since v(s) satisfies the condition
that for every s, s < d(v(s)), we obtain (®}) 1 R®} = O (t_i).

We make use of the following classical theorem in ODE theory, for a nice proof, see appendix B of [DW14].

82



Lemma 5.2.6. Let A : [a,b]—gl,(R) be a continuous function. For the equation F'(s) = F(s)A(s) on an
interval [a,b] C R, there exists C,0¢ > 0 such that if ||A(t)]] < d < o for all s € [a,b], then the solution F

with F(a) = I satisfies |F(s) —I| < C§ for all s € [a, ).

Applying Lemma 5.2.6 and (®})"'R®} = O (t‘ﬁ) to the ODE

d((®5)~'2")

(#)"18(0) = 1, o

= (94) "' RO - (B5) '@,
we obtain
(@0)~19" = 1d+ O (t—ﬁ) .

Therefore ®° = ®f (Id—!— 0 (tfﬁ)). O

5.2.2 The (n — 1)-cyclic case

For the (n — 1)-cyclic case, the crucial error estimate theorem is the following.

Theorem 5.2.7. Let d(p) be the minimum distance from a point p to the zeros of q,—1. Then for any

d < d(p), as t — +oo, the (k,1)-entry of R satisfies

o) (twf—nemﬁi'(m)nild) k,1>2
Rpi(p) =40 Sl

_1
10) <t2<nll>e2(2t)"l d) otherwise

As with the n-cyclic case, we will assume Theorem 5.2.7 for now and prove the main theorem concerning

the asymptotic of the parallel transport operator with an extra condition on the path.

Theorem 5.2.8. Suppose P, P’ and the path v(s) are as above. If P’ has the property that for every s

s < d(vy(s)) :=min{d(v(s), z0)| for all zeros zy of Gn-1},

then there exists a constant unitary matriz S, not depending on the pair P and P’, so that as t—o0,

e*Ltﬁﬂl
L e—Ltﬁuz
Tpp(t) = (Id+ 0 (t e >)) S

1
e~ Lt tun
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where p1 =0, for j > 2, u; = 2cos (9 + 2”(3 2))

Remark 5.2.9. The extra condition on the path is necessary for our method of proof, as the distance from
the zeros of the holomorphic differential ¢, controls the decay rate of error terms. However, for sufficiently
short paths, the extra condition is automatically satisfied. Thus, for each point z away from the zeros of ¢,,
there is a neighborhood U for which all \qn|%—geodesics in U satisfy the extra condition. Furthermore, if the
angle <,, (P, P’) satisfies <., (P, P’") < w/3 for all zeros zg of ¢,—_1, then the \qn_1|%—geodesic from P to

P’ satisfies the extra condition in Theorem 5.2.8.

When P and P’ both project to the same point in 3, the projected path is a loop. In this case, the above
asymptotics correspond to the values of the associated family of representations on the homotopy class of

the loop.

Proof. By Theorem 5.2.7, we have the (k,[)-entry of the error term (®%)~'R®} is
1
Rkvl(’Y(S))e(”’“*M)stn '

For k,l > 2, similar to the proof of Theorem 5.2.4, | — ] < 2[1— 571 Hence for k,1 > 2, the (k,)-entry
of (B4)~1R®Y is O (t 7 2114720 7T (s-aia( >>).
For k =1 = 1, we have 1 = 0, hence the (1, 1)-entry of (®§)~*R®} is O (t_ 2<"1*1>). Ifk=1and !l #1,

then

2m(l — 1))| <9

= gl =10 = 2c0s(0 + ) <

Also, if I =1 and k # 1, we have |u, — | = \2005(9+2ﬂ(k 1)) 0] <2.Thusfork=1,l#1orl=1k+#1,
the (k,1)-entry of (®§) " 'R®} is
0 (t—mez(zwnll(s—d(v(s»)) .

Since 7(s) satisfies the condition that for every s, s < d(7(s)), we obtain that (®§)"*R®} = O (t_ 20*1*1)).

As in the n-cyclic case, we apply Lemma 5.2.6 and obtain (®%)~1®} = Id + O (t_ 2<“1*1)) , and thus

o' = af (1a+0 (™ )).
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5.3 Harmonic maps into symmetric spaces

We continue to work in the universal cover ¥ of Y., all objects should be pulled back from the surface. As in
previous sections, we will use a subscript b to work with the two cases ¢ = é1+qne,_1 and ¢ = €1 +qn_16n_2
simultaneously.

A Hermitian metric h on a flat bundle E gives rise to an equivariant map to the symmetric space
SL(n,C)/SU(n). To see this, fix a positively oriented unitary frame {x;(P)} over a base point P € . With
respect to the flat connection, parallel transport of the frame {x;(P)} gives a global frame {x;}. Define a

71 (X)-equivariant map by,

f:¥ — SL(n,C)/SU(n)

P —  {h(zi(P),z;(P)}.

By Corlette’s Theorem [Cor88], the family of harmonic metrics h; considered above, gives a family of p;-

equivariant harmonic maps

fi: 3 = SL(n,C)/SU(n).

Remark 5.3.1. The image of the family f; lies in a copy of the real symmetric space
SL(n,R)/SO(n,R) C SL(n,C)/SU(n).

This is because the family of representations p; has image in the real group SL(n,R).

Pick a base point P € » away from zeros of the differential g;. Recall that Up is a local coordinate such
that g, = dz°, and F, = F = (04, ... ,U%,O’%, ...,07) is a rescaled holomorphic frame (5.2.1). By Remark
5.2.1, we can choose a unitary and orthogonal (with respect to the orthogonal structure Q) basis N(P) at
P so that

F(P) = N(P)(1+ O(t™ ).

Using the flat connection, parallel transport the unitary basis N(P) to obtain a frame N. Note that N is
not a unitary frame since the flat connection does not have holonomy in SU(n); however, it retains its SL(n, R)
symmetry. As a result, the image of f; is contained in a copy of SL(n,R)/SO(n,R) < SL(n,C)/SU(n). The
inclusion is determined by the inclusion of SO(n,R) C SU(n) given by @-orthogonal unitary matrices, and
the intersection of @-symmetric matrices with determinant 1 Hermitian matrices.

At a point P’, denote the j** column of N by N7(P’). Recall from equation (5.2.2), that the parallel
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transport of the rescaled holomorphic frame F' at P has been denoted by G, and
G(P') = N(P)(1+O(t™#)).
If we denote the j** column of G(P') by G’(P'), we have
fe(P") = {he(P")(N'(P"), N7 (P"))}

= {h(P") (G'(P'), G (P")) (1 + Ot ))}.

By Proposition 5.2.2, we understand h;(P’) in the frame F, thus, we change coordinates ¥;(P")G(P’) =

F(P’). In terms of columns, we have
GY(P') = U7 (P F*(P).
Thus f;(P’) is given by
Fo(P') = { he(P') (U (P FH(PY) . W (P FY(PY)) (L+ 07 7)) }.
In the frame F, the metric h; is diagonal, thus
Je(P) = w7 (P B W) (L4 O H))

where h{" denotes the metric in the rescaled holomorphic frame F. Now, using Theorem 5.1.1 and Remark

5.2.1, we have

f(P) = U7Y(P)T -1+ 07 F)) - w7 (P

Therefore, by applying estimates for ¥(L) in Theorems 5.2.4 and 5.2.8, for any P’ = Le'® = ~(L) with

the property that, for all s, s < d(v(s)) := min{d(y(s), z0)| for all zeros zy of g,}, as t — oo

o—2Lth
f(P) = <1d+0 (f%)) 5 eTRi . ST (Id+ @) (t*ﬁ» . (5.3.1)

1
e—2Ltb pp

Here S and the {x;}’s satisfy the same conditions as in Theorems 5.2.4 and 5.2.8. By Remark 5.2.5, the
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above equation can be interpreted as saying that for all such P, there exists a neighborhood Up, so that the
pe-equivariant maps fy : i—)SL(n, R)/SO(n,R) send Up asymptotically into a flat of the symmetric space.
Given two points P, P’ in the symmetric space SL(n,R)/SO(n,R), the vector distance between them is
defined by g(R P’) = P — P’, where the difference is taken in a positive Weyl chamber of a flat (isometric
to A"~1) containing both points. One can show :i)(P, P’) is independent of the choice of flat. For example,
in the standard flat of SL(n,R)/SO(n,R) consisting of all diagonal matrices of determinant 1, the vector

distance is defined by

SHA

= ()\il’ . 7)\”)
1 A

where \;; > A, > -+ > A;,. Since all flats in SL(n,R)/SO(n,R) are conjugate to the standard flat, the
vector distance can be defined in a similar way.
The asymptotic expression (5.3.1) for f;, together with the definition of vector distance, gives the following

theorem.

Theorem 5.3.2. With the same assumptions as the parallel transport asymptotitcs Theorem 5.2.4, for a
path v satisfying
s < d(y(s)) := min{d(~(s), z0)| for all zeros zo of qn} (5.3.2)

—
we have lim - d (f(v(0)), f:(v(1))) = (A1, -+, \n) where Ay > --- >\, is a reordering of

t—oo t

2 2 -1
(—2L cos (0), —2L cos (0 + ;LT) y...,—2L cos (0 + 7T(T;))> for  d=¢é1+ qren—1,
2 2 -2
<O, —2L cos (0),—2L cos (0 + - jl) ,o..,—2Lcos <0 + 7Tr(zn—1)>> for  d=¢é1 4+ gn_1€n_2-

With algebraic techniques generalizing methods of Morgan-Shalen [MS84], Parreau [Par12] provided a
compactification of the Hitchin component. In this paper we pursue a more geometric approach to the com-
pactification of the Hitchin component. Our main motivation is Wolf’s [Wol89] harmonic map interpretation
of Thurston’s compactification [FLP12] of Teichmiiller space with measured foliations.

Roughly, Thurston’s compactification works as follows: Let S denote the space of isotopy classes of simple
closed curves and denote the projectivation of the space of nonnegative functions on S by ]P’Rf_. The map
which assigns the projectived length spectrum of each hyperbolic metric is an embedding of Teichmiiller
space inside ]P’Rf_. The image is homeomorphic to an open ball of dimension 6g — 6, and the boundary
corresponds to projective classes of measured foliations. Furthermore, the action of the mapping class group

extends to the boundary. This compactification was further extended to the character variety for SL(2,C)
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(see [Bes88] and [DDWO0]).

Fix a Riemann surface structure X on S. To each hyperbolic metric h on .S, the Hopf differential of the
unique harmonic map f : ¥— (.5, h) isotopic to the identity associates a holomophic quadratic differential to
h. Wolf showed that this procedure provides a homeomorphism between Teichmiiller space and the vector
space of holomorphic quadratic differentials H°(K?). Adjoing points at co to rays in H°(K?) provides a
compactification of Teichmiiller space. Let g2 be a holomorphic quadratic differential, away from the zeros
of ¢2 choose a coordinate z such that ¢» = dz2. In such coordinates we have local measured foliations
(F,p) = ({Re(z) = const},|dRe(z)|), which piece together to form the vertical measured foliation F(gz)
of go. For t > 0, consider the ray tgo € H°(K?), and let h; be the corresponding family of hyperbolic
metrics and f; : ¥—(S, ht) be the corresponding family of harmonic maps. The key step in showing the
harmonic map compactification agrees with Thurston’s measured foliations compactification is to show the
length spectrum of h; is asymptotically the same as the length spectrum of the vertical measured foliation

of tqa. That is, for any closed curve v on 3, as t — oo,

L(fe(7) = Ly (he) ~ i(F(tg2), 7). (5.3.3)

Here, i(F(tq2), ) is the intersection number of v with the measured foliation F(tgs).

Hitchin’s parameterization generalizes the parameterization of Teichmiiller space by holomorphic quadratic
differentials. By Corlette’s Theorem [Cor88], for each representation p € Hit(PSL(n,R)), there is a unique
p-equivariant harmonic map from the universal cover ¥ to the symmetric space SL(n, R)/SO(n, R). In this pa-
per, we study the families of Hitchin representations parameterized by rays (0, - - - , tg,) and (0, - ,tg,—1,0),
and relate the asymptotics of the corresponding harmonic maps with the geometry of the holomorphic dif-
ferentials ¢, and ¢,_;. This is formulated in terms of the following generalizations of measured foliations

and length spectrum:

e For g, € H°(K™) choose a local coordinate (away from the zeros of ¢,) so that ¢, = dz". In this

coordinate, we have n foliations Fi(qyn), -+ , Fn(¢n) with signed measure defined by
Frlan) = ({Re(em?mz = const}, dRe(ez(kllmz)) .

Unlike the rank 2 case, these local foliations do not piece together to define global foliations.

e Any two points P and P’ in the symmetric space SL(n,R)/SO(n,R), are contained in a flat isometric

N
to the Euclidean space R"~1. The vector distance d (P, P') is then defined as the vector from P to P’
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in the flat. This is independent of the choice of flat.

For g, € H°(K™), let p; and f; be the family of representations and p;-equvariant harmonic maps associated
to the ray (0,---,tg,) in the Hitchin component. As a generalization of the asymptotic length formula

(5.3.3), from Theorem 5.3.2 we deduce:

Theorem 5.3.3. Let & be the universal cover of . For a path v C Y which does not pass through the
zeros of qn, choose a local coordinate so that g, = dz"™, and denote the local foliations associated to tq, by

Fi,+  Fn. If v satisfies the reqularity condition (5.3.2), then as t — oo,

g(ft('}/(o))vft(’y(l))) ~ (i(]:laly)’i(]:%'Y)’ e 7i(~7-n”7))'

For SL(3,R) the picture is

i e

In [KNPS15] the following asymptotic question (called the complex WKB problem by the authors) is
studied: Fix a representation p € X(m1,SL(n,C)) and let (£,V) be the corresponding flat holomorphic

vector bundle. If 6 is a holomorphic (with respect to the flat connection V) section of End(€) ® K then
V=V +1tb (5.3.4)

is a family of flat holomorphic connections. The asymptotics of the family V., is called the complex WKB
problem. The asymptotic problem studied in this paper (called the Hitchin WKB problem in [KNPS15]) is
significantly different than the complex WKB problem. In particular, in the complex WKB problem there
is no PDE to solve. Also, the (0,1) part of the family of flat connections in (5.3.4) is constant while the

(0,1) part of the family of flat connections
Vi =V, +top+top™m (5.3.5)

is Vg;l + t¢*+ and thus varies with the solution metric h;. Despite these differences, in [KNPS15] it is
conjectured that the asymptotics of these two families are similar.

More precisely, given a family of representations d;, any fixed metric i defines a family of V-+t60 equivariant
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maps

fi : ©—SL(n,C)/SU(n).

For the family of flat connections V; = V + t6 in the complex WKB problem, Katzarkov et al prove that,

for any fixed metric h and any ‘noncritical path’ v : [0, L] =X the family of equivariant maps satisfies

L L
1— ) .
GO 6@ ~ | [Beara, [Reve ). (536)
0 0
Here &, -+, &, are the local eigenvalues of the spectral curve associated the Higgs bundle (£, 6) such that

the entries of the vector are decreasing. They conjecture that the family of equivariant harmonic maps
associated to the family of flat connections V, = Vy,, + t0 + t0*"+ satisfies the same asymptotics.
In a local coordinate z with ¢, = dz™, the spectral curve associated to the Higgs field ¢ = €1 + e,,_1qn
has local eigenvalues
{&,-+ &} ={1ldz, 6%dz, e%dz, i ,ewdz}.
Similarly in a local coordinate z with ¢,_1 = dz™ !, the spectral curve associated to the Higgs field ¢ =

€1 + en—_2qn—1 has local eigenvalues

27i 2(n—2)mi

{&, -+, &} =10, 1dz, e%dz, eznjdz, ceeye 1 dz)

L L
Thus, for a path v : [0, L] =X the expression <f Revy*&y, -+ ,fRe’y*fn> is given by
0 0

2 2 -1
(—2L cos (0), —2L cos <9 + ;) ,...,—2Lcos (9 + ﬂ(?l))) for ¢ =¢é +agnen—1,
n
2 2 -2
(0,—2LCOS(9),—2LCOS <9—|— nﬂl) yo..,—2L cos (9—&—%)) for ¢=¢€1+ gn_16n—2-

Hence, Theorem 5.3.2 proves the conjecture that the asymptotics of (5.3.6) for the Hitchin WKB problem and
the complex WKB problem are the same for the Higgs bundles in the Hitchin component with ¢ = é1+¢gpe,—1
and ¢ = €1 + qn_1€,_2. After this joint work with Q. Li, the conjecture was proven in general by Mochizuki
[Moc15].

To close, we briefly discuss the behavior of the ‘limit map’ f., associated to the family f;, studied

extensively in [KKNPS15]. To obtain better information about the behavior of the maps f; as t—oo, we
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rescale the metric on the symmetric space and consider the family of maps
= 1
fr:X— (SL(n,R)/SO(n,R), tld> .
b

The limit of (SL(n7 R)/SO(n,R), ti%d) as t—o0 is not well defined, however, by the work of Kleiner-Leeb
[KL97] and Parreau [Par12], a Gromov limit of (SL(n,R)/SO(n,R), ti%d) is an affine building modeled on
A" 1. The limit construction depends on the choice of ultrafilter w on R with countable support; with this
choice, the limit is called the asymptotic cone and is denoted Cone,,. In [Par12], Parreau showed that, given
a diverging family of representations p;, the limit of the vector length spectra of p; arises from the length

spectrum of a limit action p,, on Cone,. This gives a harmonic map
fw: I Cone,,,

which is equivariant for the limiting action p,, of 71(S) on Cone,,.

In this language, the asymptotic expression (5.3.1) of f; implies that for the families of rays
(3,0,--+,0,tqn), (2,0, ,tqn—1,0) € Hit(SL(n,R))

and for any P away from the zeros of ¢, and ¢, _1, there exists a neighborhood Up so that the p,-equivariant
map

fo: Y Cone,,

sends Up into a single apartment of the building Cone,,.
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Chapter 6

Cyclic surfaces and maximal
PSp(4,R) = SOq(2, 3)-Higgs bundles

For a simple split real group G, recall that, for each Riemann surface structure ¥ on S, the Hitchin
component Hit(G) C X(G) is parameterized by the following vector space of holomorphic differentials
Hit(G) = HgBG) HO(Z, K™i™1) where {m;} are the exponents of G [Hit92]. Furthermore, for each p € Hit(G)
the quadr%th:i:: differential in this parameterization corresponding to p is a constant multiple of the Hopf dif-
ferential of the unique p-equivariant harmonic map h,, : ¥ -G /H. Representations in the Hitchin component
are deformations discrete and faithful representations into PSL(2,R). Furthermore, Labourie has shown
[Lab06] that Hitchin representations are examples of Anosov representations. As a result, every Hitchin
representation is discrete and faithful and the mapping class group Mod(S) acts properly discontinuously on
Hit(G). Since Hitchin’s parameterization by holomorphic differentials depends on fixing a conformal struc-

ture, it breaks the Mod(S)-symmetry. Labourie conjectured that for each p € Hit(G), there exists a unique

preferred conformal structure:

Conjecture 6.0.1. (Labourie [Lab06]) For each p € Hit(G) there exists a unique conformal structure

(S,J,) =%, in which hy, : f]p—>G/H is a branched minimal immersion.

Since the quadratic differential in Hitchin’s parameterization is a constant multiple of the Hopf differential
of h, and the Hopf differential of h, vanishes if and only if h, is a branched minimal immersion, a positive
answer to this conjecture together with Hitchin’s parameterization would provide a Mod(S)-invariant pa-
rameterization of Hit(G) as a vector bundle over Teichmiiller space 7 : E—Teich(S), wher the fiber over a

rk(G)

@ HO(X, K™Th), note the sum starts at j = 2.
=2

Riemann surface 3 € Teich(S) is given by 7=1(%)

In general, Conjecture 6.0.1 is an important open question in higher Teichmiiller theory. It has however
been established for some low rank groups. For G = PSL(3,R) Loftin [Lof07] and Labourie [Lab07] inde-
pendently proved the conjecture using the geometry of convex foliated RIP?-structures and affine spheres. In
[Lab14] Labourie proved the conjecture for all G of rank 2, that is G = PSL(3,R), PSp(4, R), Ga.

Fix a representation p € X(m1,G), and for each conformal structure denote the corresponding harmonic
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metric by h,. Consider the following energy function &, on the Teichmiiller space Teich(.S)

EJ)=Es(h,) = %/\dh,ﬁdvol . Teich(S)—R (6.0.1)

s
Remark 6.0.2. By [SU82, SY79], critical points of £;(h,) are a branched minimal immersions, or equiva-
lently, weakly conformal maps. Note that the harmonic map h,, the norm |dh,|? and the volume element

all depend of J.
In [Lab0g], Labourie proved the following theorem:

Theorem 6.0.3. ([Lab08]) If p is an Anosov representation then the energy function &, : Teich(S)—=R is

smooth and proper.
Since &, is proper and bounded below by zero, £, attains a minimum. This gives

Corollary 6.0.4. For all Anosov representations p there exists a conformal structure in which h, is a

branched minimal immersion. In particular, the existence part of Conjecture 6.0.1 holds.

For the groups SOy(2,3) = PSp(4,R) and Sp(4,R) we will study the class of Anosov representations
called maximal representations. There are 4g — 3 special connected components of maximal PSp(4, R) rep-
resentations, which we call the Gothen components. This class of representations include PSp(4, R)-Hitchin
representations. Using existence of a conformal structure in which h, is a branched minimal immersion,
we will show that this conformal structure is unique for all Gothen representations. Using a Higgs bundle
parameterization of the Gothen components, we obtain a mapping class group invariant parameterization
of all Gothen components. In the final section, we show that the Gothen components are not an PSp(2n, R)

phenomenon but rather an SOg(n,n + 1) phenomenon. In particular we prove:

Theorem 6.4.1. For each 0 < d < n(2g — 2) there is a connected component My(SOg(n,n + 1)) C
n—1
M(SO¢(n,n+1)) which is smooth and parameterized by F&x @ H°(X, K*) where F&—Sym~4tn(n=2)(3)

=1

J
is a vector bundle of rank d + (2n — 1)(g — 1). Moreover, M, (24—2)(SOq(n,n + 1)) = Hit(SOo(n,n + 1)).

Other than Theorem 6.4.1, most of the contents of this chapter have been published in [Col15]. However,
for the results on maximal representations and minimal surfaces, the results in [Col15] only concern Sp(4, R)
and not PSp(4,R). Also, the parameterizations given in Theorem 6.3.6 and Theorem 6.2.21 are simpler than

those in [Col15].
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6.1 G-Cyclic surfaces

The surfaces we will be interested are solutions to certain Pfaffian systems in the spaces of Cartan triples
and Hitchin triples. The cyclic surfaces defined below are more general than [Labl4], yet, we show that
deformations of the below cyclic surfaces have many similarities with deformations of Labourie’s cyclic

surfaces.

6.1.1 Cartan triples and Hitchin triples

We now define the main reductive homogeneous spaces we will study. The spaces we will be interested in
are G/T and G/T(y where G is a complex simple Lie group and T is a maximal compact torus of G and Ty
is the maximal compact torus of a split real form of Gy C G. We start by considering a more geometric set

of objects.

Definition 6.1.1. A Cartan triple is a triple (¢, AT, 0) where
e ¢ C g is a Cartan subalgebra
e At C ¢* is a choice of positive roots
e 0 is a c-Cartan involution

Let T C G be a maximal compact torus, Proposition 2.1.2 and Lemma 2.1.10 imply the following

proposition.
Proposition 6.1.2. The space of Cartan triples is isomorphic to G/T

Note that we could equivalently define (¢, A*, ) to be a Cartan triple where 6 is Cartan involution, and
(¢, A1) a Cartan subalgebra with positive root system and ¢ is preserved by 6. There are natural projection
maps

G/C<-G/T
b
G/K
where 71 (¢, AT,0) = (¢, AT) and ma(c, AT,0) = 6.
Definition 6.1.3. A Hitchin triple is a triple (AT C ¢*,0, \) where

e ¢ is a Cartan subalgebra

e AT C A(g,c) C¢* is a choice of positive roots
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e 0 is a c-Cartan involution which globally preserves a PTDS s which contains z = 5 3 Ha.

e ) is a split real form which commutes with 6, globally preserves ¢, globally preserves a PTDS s which

contains z = 3 Y H, and satisfies A\(H,,) = —H,,.
aEAT

Proposition 6.1.4. Let G be a complex simple Lie group, and Gg be a split real form of G. The space of

Hitchin triple is diffeomorphic to G/Ty where Ty is the mazimal compact torus of Gg.

Proof. We first show that the G acts transitively on the space of Hitchin triple. Let (A] C ¢%,60;,);) and
(AF C 5,09, \2) be two such Hitchin triples. By Remark 2.1.8, we can conjugate (A C ¢3) to (A] C cf).
Thus we may assume (Af C ¢}) = (AF C¢3). Let z =3 Z+ H,, and suppose 6; stabilizes an ¢-PTDS s,
and 60, stabilizes an ¢-PTDS s, with z € s; and = € s3. ]g}el%fheorem 4.2 of [Kosh9] (q.f. Theorem 2.1.37),
the PTDSs 57 and sy are conjugate via an element of C. Thus we may assume s; = s5. Since 0, and 05 are
both ¢-Cartan involutions, 61|. = 6s|.. Furthermore, 6; and 65 are both ¢ N s-Cartan involutions of s, by
Proposition 6.1.2, 65| can be conjugated to 0;|s by an element of the subgroup C' C C with Lie algebra
¢ N s. Observe that conjugating by C' preserves (A;r C ¢},s1). Furthermore, g is generated by ¢ + s, thus
after conjugating by such an element of C’, we obtain §; = 5. Since 67 = 05 and s; = s, by uniqueness of
the involution o, the splits real forms A; and Ao are equal.

The stabilizer of (A" C ¢,) is a maximal torus C, and the stabilizer of a ¢-Cartan involution is C N K.

The stabilizer of the split real form A is the corresponding split real group Gy C G. Thus the stabilizer of a
Hitchin triple (AT C¢,0,)) is Tg = GoNKNC. O

Remark 6.1.5. A real form G is called a group of Hodge type if the maximal compact torus Ty C Gq is
a maximal compact torus of the complex group G. For split real forms, only SL(n,R), SO¢(2n + 1,2n + 1),
and the split real form of Eg are not of Hodge type. When a split real form G is of Hodge type, the space
of Cartan triples and the space of Hitchin triples are the same. In this case, the involution o determined by

a ¢-PTDS containing = = % > H, actsas +Id on ¢, and ¢ = t @ it.
aceAt

Let M be the space of Cartan triples of Definition 6.1.1, then M = G/T where T is the maximal compact
torus of G. If (¢, A*,6) is a Cartan triple, let t = ¢?, then t is the Lie algebra of T. We have the following

Adt invariant decompositions

g=toitd @ ga and g=Etqit.
a€A(g,c)
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Thus, the Lie algebra bundle [g] = g—G/T has corresponding compatible V¢-parallel decompositions

g=[lolite D |94 and g =[] © [t].
a€A(g,c)

Recall that TG/T =2 [it] @ @ [ga], thus the Maurer-Cartan form vanishes of [t], i.e. w|;g = 0.
a€A(g,c)
If ¢ = rank(g), then a set simple roots gives a Z‘-grading of g called the root space decomposition

g=c¢d @ Ja-

a€A(g.0)

Since this decomposition is Adr-invariant and [ga, 93] C ga+s, the zero curvature equations decomposes as

Foe + Z [Wa,w_a]t =0 t — part
aeAt(g,c)
ve it _ o
dY wig + Z [War, W—o] 0 it — part (6.1.1)
aEAT(g,c)

AV wWe + [wie, Wa] + Z [wg,wy] =0 m, — part

B,y€EA(g;c)
a=f+y

Recall that if {«;} is the collection of simple roots, then every root « can be written uniquely as a =
> n;a;, and the integer £(a) = > n; is called the height of a. From equation (2.1.9), the grading element

x from the PTDS s gives a Z-grading on g
g:g—mz ®"'@9—1@@C€B91@"'@97w

where g; = @ ga- Since, [g;,9%] C gj+k, in terms of the height decomposition, the flatness equations
l(e)=7
decompose as
Fye +dY wo + Z[wj,w_j] =0 c¢—part

>0 (6.1.2)

c 1
dav wj + 3 ;[wk,wj_k] =0 g; — part

2mi-x
me+1

Set g1+ = exp( ), and consider the autormorphism Ad,, : g—g. Since ad(x) acts on g; with eigenvalue j,
. 27i-g
the automorphism Ad,, acts on g; with eigenvalue CfneH — emeFT_Note that, by construction, Ady, (X) =X

if and only if X € ¢. An eigenspace decomposition of Ad, gives a Z/(my + 1)Z-grading on g:

s= P §

JEL)(me+1)Z
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where g; = &b gr. The Maurer Cartan form decomposes as
k=j mod me+1

w= Y @ (6.1.3)

JEL/(me+1)Z

and the flatness equations decompose as
Fye +d¥ G+ Y [@;,0,]=0 Bo=c—part
§>0

. (6.1.4)
dv (Dj + 5 Ek:[@k,@j,k] =0 /g\j - part

Remark 6.1.6. This grading will be essential for our definition of cyclic surfaces. The automorphism Ad,,

makes the space G/T into a (my + 1)-symmetric space. It will be important that the subspaces g1 are

O =01P0-m =00, D DPo, B9 and F1=0 1D gm, =0, & Do, Do (6.15)
where {«;} is the set of simple roots and p is the highest root. Furthermore, the compact involution § maps
/9\1 to /g\_l.

For the space of Hitchin triples G/Ty, the Cartan subalgebra decomposes as ¢ = to @ it ® a @ ia. The
tangent bundle is given by

TG/To = lit)) ® [a] ® [ia] & D [ga]
a€A(g,c)

and Maurer Cartan form vanishes on [tg]. The decompositions (6.1.1), (6.1.2), and (6.1.4) of the flatness

equations still hold.

Lemma 6.1.7. Let to & m = g be the reductive decomposition corresponding to a Hitchin triple. The trivial

Lie algebra bundle g—G/T has the following data

e we QYG/T,[m] C g) the Maurer Cartan form

the canonical connection V¢ with flat differentiation given by d = V¢ + ad,

[c] C g which decomposes as [¢] = [to] @ [ito] & [a]

Ve-parallel subbundles [n*] C g and [n~] C g with [n"] @ [c] ® n*] = g.

Ve-parallel conjugate linear involution © : g—g and A : g—g with fived point set [€] and [go].

A Ve-parallel complex linear involution ¢ = © o A with eigenbundle decomposition g = [hc] & [mc],

where [h] C [go] is the fized point set of Ojg,)-
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o A VC-parallel order (my + 1) automorphism X, : g—g with eigenbundles [g;] and [c] the identity

etgenbundle.

Proof. The splitting of g into root space is Ady, invariant, thus we have V°-parallel subbundles

= & (8] and = @ loal-

aceAt aEA~

The fiber of [n*] over a Hitchin triple (AT C ¢*,0,X)is @ gq- For X € g, the conjugate linear involutions
aeAt

© and A are defined by

O((AT € ¢*,0,0), X)) = (AT C ¢*,0,0),0(X)) and  A((A* C ¢*,0,)), X)) = (A+ C ¢*,0,\), \(X)) .

The subbundle [to] is defined by

[to] = {X €[] | A(X) = X = O(X)}.

By definition, the conjugate linear involutions © and A commute. Thus, we also obtain a complex linear
involution ¢ which is the complex linear extension of a Cartan involution of the split real form gg. If gg = hdm

is the corresponding Cartan decomposition, then the eigenbundle splitting of g is given by

o =060A:[hc|® [mc]

Recall that for x = 7 > H,, and if the highest root has height m, then we defined g4 = exp( 7317;-?1 ). The

aeAt
Ve-parallel automorphism X+ is defined by

XT((AT C¢*,0,0),X)) = (AT Cc*,0,)),94(X)).

O

Recall from Proposition 2.1.3, the symmetric space G/K is the space of Cartan involutions. The following

lemma will be important for our defintion of cyclic surfaces.
Lemma 6.1.8. Let g = [¢] © [m] denote the trivializable Lie algebra bundle over M = G/K the symmetric
space of Cartan involutions of g. There is a canonical automorphism © : g—g given by

0(0,X) = (0,6(X)).
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Furthermore, the invariant metric on g induced by the Killing form is given by Be(X,Y) = =By (X, 0(Y)),

and is parallel with respect to the canonical connection, V°Bg = 0.

Remark 6.1.9. The automorphism © has a natural extension to complex forms valued in g. If a €

Q*(G/K, g) is of the form o = A - a where A € Q*(G/K) and a is a section of g, then O(a) = A - O(a).

Proposition 6.1.10. Let N be a simply connected manifold and (g, D) be a flat g-bundle. Suppose

e O : g—3 be a smoothly varying Cartan involution with § = €& m the corresponding eigenbundle

decomposition.
e V a connection with VO =0
o &€ QY(N, @) with D =V + adg.

Then there exists a map f: N—G/K, unique up to postcomposition by an element of G so that

f(g,0,V,w)=(3,06,V,0).

Proof. Since N is simply connected, choose a trivialization (g, D) = (N X g,d). In this trivialization, the
gauge transformation © defines the map f : N—=G/K with (f*g, [*©) = (ﬁ,é) Another trivialization
produces a map which differs from f by postcomposition by an element of G.

Thus, O is parallel with respect to f*V¢ and V. Since the stabilizer of a Cartan involution is K, we
have f*V¢ —V € Q(N,¥), and thus f*w — & € QY(N,¥). But f*w —& € QY(N, @), thus f*V° = V and
ffw=0w. O

The following proposition and corollary are proven in section 4 of [Labl14], the proofs are analogous to

Proposition 6.1.10.

Proposition 6.1.11. Let N be a smooth simply connected manifold and g be a complex simple Lie algebra.

Let (g, D)—N be a flat g-Lie algebra bundle with the following

e A smoothly varying Hitchin triple (E,nNJr , (:), 1~\) with corresponding decompositions
g=thoditeaenten = toem
e V a connection so that (571;:, é, K) is parallel.

o &€ QY(N, @) with V + adg = D.
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Then there is a map f: N—G/Ty, unique up to post composition by an element of G, so that

(a’ V’ w? FE’ ,ﬁ+7 é? K) :f*(g’ VC? w’ [c]’ [n+]7 @7 A)'

Corollary 6.1.12. Let N be a smooth manifold and g—N be a flat g-Lie algebra bundle equipped with the

structure of Proposition 6.1.11, then there exists
1. A representation p : w1 (N)—G unique up to conjugation

2. A p-equivariant map f from the universal cover N of N to the space of Hitchin triples G/Tq satisfying

the conclusion of Proposition 6.1.11.

Remark 6.1.13. Lemma 6.1.7, Proposition 6.1.11 and Corollary 6.1.12 all have analogous versions for the

space of Cartan triples.

6.1.2 Cyclic Pfaffian systems and cyclic surfaces
The general Pfaffian system definitions in this section come from section 7 of [Labl4].

Definition 6.1.14. Let E—N be a vector bundle over a smooth manifold N, and (1, -+ ,7,) be a collection
of differential forms on N valued in E. A submanifold L. C N is called a solution to the Pfaffian system

defined by (n1,- - ,nyn) if ;| =0 for all j.
The Pfaffian systems we will be interested are defined as follows:

Definition 6.1.15. Let w € Q*(G/T,g) be the Maurer Cartan form of the space of Cartan triples G/T. A

G-cyclic Pfaffian system is defined by the vanishing of the following g-valued forms

where w = ) @; is the decomposition of (6.1.3).
For the space of Hitchin triples, we define a Gg-cyclic Pfaffian system as follows.

Definition 6.1.16. Let w € Q!(G/Ty,g) be the Maurer-Cartan form of the space of Hitchin triples G/T.

The Go-cyclic Pfaffian system is defined by the vanishing of the following g-valued forms

o~

(@0, 02, s Wm, 1) [01, 0], @4+ 0(@), Alw) —w)

where w = )" &; is the decomposition of (6.1.3).
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The above definition are related to the 7-primitive maps consider for compact groups G in [BPW95]. In
the context of representations of surface groups, we are interested in maps from a Riemann surface 3 to the

spaces of Cartan triples and Hitchin triples.

Definition 6.1.17. Let X be a Riemann surface (not necessarily compact), a map f : ¥—G/T is a G-cyclic
surface if it is a G-cyclic Pfaffian system and f*@_; is a (1,0)-form. Similarly, a map f : ¥—G/Tg is a

Go-cyclic surface if it is a Go-cyclic Pfaffian system and f*w_; is a (1, 0)-form.

Remark 6.1.18. The reality condition f*(A(w)) = f*(w) for a Gy-cyclic surface implies f(X) lies in a Gy
orbit. If Gy is a split real form of Hodge type, then Ty = T, and the Gg-cyclic condition is just an extra

symmetry a G-cyclic map must satisfy.

The following theorem relates equivariant cyclic surfaces and Higgs bundles that are fixed points of
<ng> c u().

Theorem 6.1.19. Let G be a complex simple Lie group of rank at least 2, and p € X(G). If g—G/T is the as-
sociated Lie algebra bundle and [ : i%G/T be a p-equivariant G-cyclic surface, then (f*g, (F*V)OL 5 4)
is a G-Higgs bundle that is a fixed point of the <Cm£+1>—action. Furthermore, f*Bg solves the Hitchin

equations which simplify to

l
Frege + 3 [ Wars f*woau] + [f @y frwop] = 0.
=1

Proof. To prove that (f*g, (f*V)°L f*G_1) is a G-Higgs bundle we just need to show f*@_; is holomorphic.

By equations (6.1.3), the flatness equations for V¢ + w we have

By the cyclic assumption, f*&; = 0 for j # =1, thus, pulling back the flatness equations, we have
dN(fG,) =0.

Since f*@_; is a (1,0)-form, we conclude that (df V)% f*w_; = 0.
To see that it is a fixed point of <§m£ +1>, recall from Lemma 6.1.7 that there is an automorphism
X, : g—g, of order (my + 1), which acts as C;JH on [§_1]. Thus f*(X, )~ is a gauge transformation of [ g

which acts as (,,+1 on the Higgs field f*&_;.
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Recall that by definition of a G-cyclic surface, we have f*(—O(@_1)) = f*@&;, thus the adjoint of the

Higgs field f*@_, is given by f*(—©(W-1)) = f*@;. Using the decompositions of (6.1.5) we have

)
M~

U1 =Y Wa;, +w_p W_1 =
i=1 i

W_q; + Wy -
1

The assumption that f*wg = 0, and the flatness equations of (6.1.3) imply

¢
Ff*vc + Z[f*wocuf*w—aqz] + [f*wuﬂ f*w—ﬂ] = 0.

i=1

Since f*V°€ is a metric connection for the hermitian metric f*Bg, and the holomorphic structure is on f*g

is defined to be (f*V¢)°! we conclude that f*Bg solves the Hitchin equations. O

Corollary 6.1.20. Let G be a complex simple Lie group with rank at least 2, p € X(G), and f : i—>G/T be
an p-equivariant G-cyclic surface, then the associated equivariant harmonic map h, ;y = fom: i—)G/H s a

minimal surface.

Proof. Since the Higgs bundle admits a solution to the Hitchin equations, it is polystable. Since it is a fixed
point of ((m,+1) and rank(g) > 2, the quadratic differential is the image of the Hitchin fibration vanishes,
thus the Hopf differential of the harmonic map is zero and we conclude the harmonic map is a branched

minimal immersion. O
Similarly, for Gy-cyclic surfaces we have the following theorem.

Theorem 6.1.21. Let G be a complex simple Lie group of rank at least 2, and p € X (G). If g—G /Ty is the as-
sociated Lie algebra bundle and f : S—G /T be a p-equivariant Go-cyclic surface, then (f* [be], (F*V)OL, f*o_q)
is a Go-Higgs bundle that is a fized point of the <Cm£+1>-action. Furthermore, f*Bg solves the Hitchin equa-

tions which simplify to

4
Froge + Y [f* @ ay, [rwa,] + [f*wu, ffw_u] = 0.
i=1

Remark 6.1.22. In this case, the representation p € X(G) is actually in X' (Gg).

Proof. Recall from Lemma 6.1.7, that the Lie algebra bundle g—G/Ty has a complex linear involution
o = © o A which has eigenbundle decomposition g = [hc] @ [mc] where go = h @ m is the corresponding
Cartan decomposition. To show that (f*[hc], (f*V¢)°, f*@_1) is a Go-Higgs bundle, we must show that

fro_1 € Q(%, f*[mc]). Recall from Remark 2.1.39, the involution o preserves the height grading

g_mz@"'9_1@C@91@"‘®9mp
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and thus, o preserves both g; and g_;. By the definition of a Gg-cyclic surface 6.1.17, f*w = f*@w_1 + f*©,

and
[rO(f* w1+ frwn) = —frl — ffl SIA(ff O+ fro) = ffwog + frlr
Hence, o(f*&_1 + f*@1) = —(f*@W-1 + f*@1), and, furthermore, since o preserves [g_1],
o(@_1) =—w_;.

This proves that f*&_; € Q02 f*[mc]).

We also need to check that the gauge transformation f*X, is an f*[hc]|-gauge transformation. Recall
that the grading element x of the PTDS is in the +1-eigenspace of o (see Remark 2.1.39). Since X is
obtained from exponentiating z, it follows that f*X’; is an [hc]-gauge transformation. The proof of the rest

of the theorem is identical to the proof of Theorem 6.1.19. O

6.1.3 Deformations of cyclic Pfaffian systems and cyclic surfaces

Definition 6.1.23. Let F' = (f;) : L—N be a one parameter family with fy being the inclusion and set

E==| f

t=0

Then & € QY(L, fiTN) is a vector field along L in N called the tangent vector field to the family F. A family
F = (f;) is a first order deformation of the Pfaffian system L defined by (n1,--- ,ny) if, for all j,

d

— Fn; = 0.
dt Iin

t=0

In the above definition, we have chosen a connection to identify f;"E and fj E, this choice does not effect

the definition.

Definition 6.1.24. A vector field £ along a solution L of a Pfaffian system given by n = (91, ,7,) is an

infinitesimal variation of the Pfaffian system if, for any connection V, and all j,

edvm;|, = —d¥ (teny)], -

The relation between first order deformations and variations is given by Proposition 7.1.4 of [Lab14]:

Proposition 6.1.25. Let £ be a tangent vector to a family of first order deformations of a Pfaffian system
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n= (N, M), then £ is an infinitesimal variation of the Pfaffian system.
Proof. See Proposition 7.1.4 of [Labl4]. O

Definition 6.1.26. An infinitesimal variation of a G-cyclic surface is an infinitesimal variation of a G-cyclic
Pfaffian system. An infinitesimal variation of a Go-cyclic surface is an infinitesimal variation £ of a Gy-cyclic

Pfaffian system such that A(§) = &.

Definition 6.1.27. Let p : 71 (S)—G be a representation and f : §—>G/T be a p-equivariant G-cyclic surface.
If £ is an infinitesimal variation of a G-cyclic surface, then £ is an infinitesimal variation of the equivariant

G-cyclic surface if it is p-equivariant. Similarly for an equivariant Gy-cyclic surface.
The signs in the following lemma will be crucial.

Lemma 6.1.28. Let X be a compact Riemann surface and f a G-cyclic surface or a G/Tg-cyclic surface.

Let o € QY(3, f*g) and 8 € QU (3, f*g) then

—i [ Bg(a,©a) >0 and i [ By(B8,08) > 0.
) 5

Also, if a, f € Q1(X, f*g) and v € Q°(Z, f*g), then

By(7,[8,0]) = By([v.al, 8). (6.1.6)

Proof. 1t is suffices to check the sign on a form a = A - a where a is a section of f*g and A € Q10(x). By
Remark 6.1.9, ©(a) = A - O(a) and hence, since —By(+, ©-) is positive definite,

—i/Bg(a,@a) = —i/A/\Z-Bg(a,@a) > 0.
D D)

Equation (6.1.6) follows from a calculation using invariance of the Killing form. O

Let f: ¥—=G/T be a G-cyclic surface, we will use the following notation

(3_1|f(2) =0=0_; + P, and (31|f(2) = 0" = o7 + P*

T
Let ¢ is an infinitesimal variation of f, and denote the contraction with w by

¢ = tg(w).
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Using the various decompositions of the Maurer Cartan form w, we have the following decompositions

=G+ Y G, =3 ¢G. <= % G (6.1.7)

a€A(c,g) Jj=—my JEL)(me+1)Z

The following notation will also be useful
(=Ca+C+G+y, (6.1.8)

where &y = Y0 Zj
§#0,1,—1
Using the decomposition of the flatness equations (6.1.2) we have

mye
dvco.)j + Z [wk,wj,k] = 0.

k=—my

By Definition 6.1.24, on the surface f(X), we have t¢(dY w;) = —dV" (¢;) for j # —my, —1,1,m,. Contracting

the wedge product is given by
velwj,wj—k] =[Gy wjmk] = Wi, G-k =[Gy wjmk] + [Gi—k> wj]-

Thus, contracting the flatness equations with £ yields

me

AV () = Y ([Ceswi—k] + [k wi]) J#F—me,—1,1,my (6.1.9)

k=—my

The assumption on a cyclic surface that f*&; = 0 for j # £1 and the fact that ® is a (1,0)-form and ®* is

a (0,1)-form allows us to simplify the equations. For 1 < j < my we have
OV () = 2([¢Gj+15 @—1] + [Gj—mes P )] and OV () = 2[Gj-1, @] (6.1.10)

and for —my < j < —1 we have

OV (¢5) = 2[¢jr1, 1] and 0V (¢) = 2([Gj—1, B5] + [Gjme s o, ]) (6.1.11)

Let my denote the projection onto the Y component of equation (6.1.8), then equations (6.1.10) and (6.1.11)
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can be written compactly as:
0V Gy = 2my ([@, (G +C ) and 9% &y =2my ([07, (& + Q) (6.1.12)

For j = —1,1 even though ¢ (dvcaj)|Z # —dVCEj, by equations (6.1.4) we have

1e(0V G 1) |y = —2[Co, D] and 1e(0V°@1) | = —2[Co, ®*] (6.1.13)
Similarly,
L§(5vcw*1)|z = _2([ *Z’qyﬂ + [C*lerev(I)img]) ) Lﬁ(avcw1)|z = _2([C27@71] + [C*lfmea (I)me]) ’
Lg(gvcwmg)|z = _2[Cm571,q)ﬂ ) LE(avcwfmg)‘g = _Q[Cfmmtlaq)fl] .
(6.1.14)

Proposition 6.1.29. The second derivatives are given by

VOV Gy) = dmy (HZY#I’*} 7‘1’}) ; V(Y Cy) = dny (HZXG‘P} 7‘I>*D ) (6.1.15)

8V (9 (o) = Ay (Hiocﬁ] ,@D : AV (9" (o) = 4mi (HZO’@} ,@*D . (6.1.16)

Proof. Recall that on a G-cyclic surface we have 9V °® = 9V ® = 9V ®* = 9V &* = 0. We will first show

equation (6.1.15). Using equations (6.1.10) and (6.1.11), a direct computation shows

5VC (8VCCj) =4 ([[C]v Q)’H 7(1)—1] + [[Cj—me—l’ q)»{] 74)7”4] + ngv q)*—mg] 7(I)mz}) I<j<me—1
OV (0V ¢) =4 (G, @11, Pa] + [[Garames @, ] Po1]) —my < j < =2

avc(5VCCj) =4 ([[CJ? ‘I)—l] ’ (I)T] + [[Cj—l—mw (I)mz] 7¢T]) 2<)<my

avc (5VC<]') =4 ([[CJ? @71] 7(I)T] + [[Cj+me+1v @71] ) @tm[] + [[ij (I)ml] 7@*7?77,[}) —my + 1< J <-1

The remaining cases are given by

OV OV mp—1) = 2([0V Gy @1] + [0V C1, B, ]) OV (V" () = 2[0V (1,0 4]
OV (Y Cmer1) = 2 ([0V Comy, 1] + [0V G127, ]) OV (V' (2) =20V 1, @] -

—my

We will compute the first two cases, the remaining two cases follow by a symmetric argument. Recall that
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VP =0V'd =9V d* =9V ®* =0 on a cyclic surface, thus

évc (dem[,wfl]) = [5V6Cm[, (I)fl] + [5VCC71, (I)m[] 5 5VC (Lg[wfl,wfl]) = 2[5VC<,1, (I),l} (6117)
However, since (w1, w1] = [w1,W_m,] = [w_1,w_1] = [w_1,wm,] = 0 on a cyclic surface, we have
5VC (LE [wm/sz—l]) = - {Lé(gvcwme) - 7‘1)—1} - [%(évcw—l)’z 7(I>mz:|

(6.1.18)
8V (1 w1, 0_1]) = —2 [Lg(év“w_l)lz ,<1>_1]

Using equations (6.1.14) and (6.1.17), we have the desired result:
2([gvcgme,q)71] + [5VC<717 @mg}) =4 ([[Cmgfla qfﬂ ,@71] + [[C*Q» éy 7q)mg} + [[€71+m57 q)tm@] 7q>mg:|)

and

2 [5VCC—1, @—1} =4 ([[C=2, @], 2] + [[¢-1me, @74, ] @1 ]) -

Thus, we obtain the desired formula:
8V (V" Cy) = Ay (HZy, @*} ,cI>D and OV (9V"Cy) = dmy (ny, <1>] ,@*])

We now prove formula (6.1.16), for 5V08VCZO and 6VC(§VCEO. Since Wy vanishes along a G-cyclic surface,

by the flatness equations (6.1.9), we have
OV o = 2[C1, @] and aV o = 2[C1, 9.

Recall that 20 vanishes along the subbundle [t], that is, 7Tit2() = ZO- Thus, the second derivatives are

VOV Gy = 2[0V°C, @] = 2mi ([5“@, <I>]) , AV IV Gy = 20V C_1, &) = 2y ([aV“’E,l, @*]) .
(6.1.19)
Since &1 = —O(W_1) on a G-cyclic surface, it follows that m;¢([01,0_1]) = 0 along a G-cyclic surface. Thus,
ted” mie([Br, ©-1]) .= —d¥" (gmie([@1,0-1])]y,)-
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The subbundle [#{] is parallel with respect to V¢, thus

c

it (Lgdvc([al,a,l])}z) — (dV (LE([al,@,l})|E)) .

For the (1,0) part, we have
it (bgav ([@17@—1])‘2) = i ([(awal)‘z,@] + (0" a_l)'z ,@*}) = mit ((aV a_l)‘z,qﬁ])) .
The term [0V (1, ®] vanishes since it is a (2,0)-form. A similar calculations for the (0,1) part gives
e (16 (BV([@1,8-1]) ) = mie (107G, @) -
Thus, by equations (6.1.19),

0V 0 o = 2mi (1 (07 (B 0a))]y)  and  9VOVG = 2m (10 ([B1,8a])] )

c

The term —m;¢ (dV° (1g([@1,D-1])|5)) is computed using equation (6.1.13):

c c

o (av (Lg([al,a,lmz)) —— ([ (av Lgal)‘z D] + [(avlga,l)‘z,@*]) . ([[@,@],@*]) .

A similar computation shows

c

—mic (07 (tel(@1,0-1])1)) = 2ma ([1Co, 271, 1)

Thus, on a G-cyclic surface,

0V 0" (o = dmi ([[607 P], ‘b*]) and VOV Gy = dmy (HZO, 7], @]) :
O

Proposition 6.1.30. Let p : m1(S)—=G and f : i—>G/T be a p-equivariant G-cyclic surface. Let Ey, o, @

and ®* be as above, then

~

8VCZY =0 9 5VCZY =0 ) [(I)7CY] =0 3 [q)*aé\Y] =0
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and

o~

GVCZOZO 5 gvcé\O:O ) [@740]:0 5 [®*7E0]:O

Proof. Recall from Lemma 6.1.28 that

0< —i/Bg (avcfy,@ (avcfy)) .

b

Since the canonical connection is a metric connection, we have
(50 (60 (176))) = (750 (176)) - (5.0 (7075,

Integrating over X gives

0<—i [ B, (0G0 (075 )) =i [ By (6.0 (5707E)).
2 b

Recall that [gy] = @ [g;] and O ([g;]) C [g—,]. Also, if i + j # 0 mod (mg+ 1) then g; and g; are
§#£-1,0,1
orthogonal with respect to Bg. Thus, the bundles [g;] and [g;] are orthogonal. Thus, using equations

(6.1.15) we have

o<t 5,60 (o ([o0] ) =t [ 5 G0 (607 )

P =

Lemma 6.1.28 and the cyclic surface assumption ® = —O (®*) yield

0< —i/Bg (aVCZy,G (aVCZy)) - —4@'/15g ([Zy,qﬂ e ([ZY@*D) <0.

z P

Thus
9V Gy =0 and [@*,Cy] =0 (6.1.20)

By a symmetric argument, we obtain

Ve =0 and [®,(y] =0 (6.1.21)
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For 207 consider the following integral:
0< i [ By (056,007 %) =i [ By (G 0@ 07 G)
b b
Using equations (6.1.16), the fact that it @ t is is orthogonal, Lemma 6.1.28 and ©(®*) = —® we have

0< 41'/23g (60,@([[ZO,<I>*},<I>})) - _4@'/23g ([Zo,qﬁ],@ ([&@*])) <0.
Thus,
V=0 and [®*,Co] = 0.

A symmetric argument shows
VG =0 and [@,00) =0 .

O
The same calculations show that the analogous proposition for equivariant Gg-cyclic surfaces is also true.

Corollary 6.1.31. Let p: m(S)—G and f : i]—>G/T0 be a p-equivariant Go-cyclic surface. Let Ey, P and

®* be as above, then

o~ ~

avcz—\yzo’ 5V CY:O7 [¢7CY]:Oa [(I)*7ZY}207

BVCZOZO 5 gvcé\ozo ) [¢7ZO]:O 3 [®*7E0]:O
Furthermore, if ¢ = t @ it B a & ia is the decomposition of the Cartan subalgebra, then ZO vanishes along

it ®ia. In particular, if Go is of Hodge type then ZO =0

Proof. The first part is an immediate corollary of the proof of Proposition 6.1.30. The variation ZO is along
it®adia, where A acts as +1 on a and —1 on it @ ¢a. But, by the reality condition of variations of Gg-cyclic
surfaces, A(ZO) = (o; thus, (o vanishes along it @ ia. Recall that a Gq is of Hodge type then the a = {0},

thus, in this case QA“O =0. O

If p: m1(S)—G is representation and f : f)—)G/T is a G-cyclic surface, then Proposition 6.1.30 says that
50 and Ey are covariantly constant with respect to the flat connection f*V¢+ ® 4+ ®&*. Thus, if either EO or

Ey is non zero, then they are in the centralizer of the representation p. However, if p is a smooth point, then
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the centralizing subalgebra is zero by Proposition 3.1.6; thus we have the following proposition.

Proposition 6.1.32. Let G be a complex simple Lie group, and p : w1(S)—G be an irreducible representation.

If f: EHG/T be a p-equivariant cyclic surface, then for any variation £, we have
Li(f*ao) = ZO =0 and Lf(f*&\]y) = EY =0.

6.1.4 Special cyclic surfaces

In this subsection we consider equivariant cyclic surfaces with extra conditions on f*w_; and show that for

these special equivariant cyclic surfaces are rigid.

Proposition 6.1.33. Let (S,J) = X be a compact Riemann surface, G be a complex simple Lie group of
rank at least 2 and not SL(3,C). Let p : m1(S)—=G be an irreducible representation and f : —G/Tq be a
p-equivariant Go-cyclic surface so that f*w_q, # 0 for all simple roots o;. If € is an infinitesimal variation

with the property that there exists a simple root o with tew_o =0, then
tew = 0.

Remark 6.1.34. The analogous statement follows for G-cyclic surfaces if one assumes that there are simple
roots o and 3 so that tew_o = 0 = w4 5. For Go-cyclic surfaces, if tew_ = 0, the reality condition A = ¢
on an infinitesimal variation implies that tewp(—q) = 0. Furthermore, since © flips positive simple roots and
negative simple roots, o preserves the set of positive simple roots and A = © o o, it follows that A(—a) is a

positive simple root. If Gy is of Hodge type, then A(—a) = a.

Proof. Let & be a variation of the p-equivariant Gg-cyclic surface f : i—>G/T0, and ¢ = t¢w. Using the
decompositions of (6.1.7) and (6.1.8), by Corollary 6.1.31,

~

It remains to show {; = 0 = (_1. Recall that G # SL(3,C), thus, gy # {0}, in particular g1o # {0}.
A infinitesimal variation & of a Gg-cyclic surface satisfies the reality condition A( = £. By Lemma 2.1.10,
O(ga) = g-q for all roots, and by Proposition 2.1.41, the involution o sends roots simple root spaces to
simple root spaces. Since there is a simple root « so that (_, = 0 and A = (, it follows that there is a

simple root —A(«) so that (_x, =0.

111



By equation (6.1.12), we have

0=0%" ((-2) =2[¢-1,®_1]  and  0=0""(C) = 2[C1. ¥] .

Thus for each pair of simple roots o, a; so that o; + a; is a root, we have

K—awq)—aj] + [C:_Olj’ P _,,]=0 and [Caw(sz] + [Caj’ (I)ZL] =0.

Since ®_,, = f*w_q,, by assumption ®_,, is a nonzero holomorphic section. By the definition of a Gy-cyclic
surface,

f*@(q)al) = f*(gw*ai) = _f*(wai) = —‘I’Zi-

Thus, @7, is also nonzero for all simple roots.

The group G is simple, thus the Dynkin diagram is connected and we conclude that (1., = 0 for all
simple roots. It remains to show that for the highest root u, we have (4, = ¢+, = 0. By equations (6.1.12),
we have

0= 5VC(<TW—1) = Q[sz,(b’ﬂ and 0= 8VC(C—7M+1) = Q[CWM’(I)—l] :

Since G # SL(3,C), we have g+1 # §+(m,—1) 7# {0}. Thus, for each roots v = p — a; € gm,—1 we have
0=[¢,, ®_q,]. Hence ¢, =0, and similarly, (_, = 0. O

Remark 6.1.35. Proposition 6.1.33 is also true when G = SL(3, C), see Proposition 7.7.4 of [Lab14].

In [Labl14], Labourie considers maps f : S—G/T from the surface S, without a conformal structure, to the
space of Hitchin Triples G/Ty that satisfy f*@; = 0 for j # £1, f*(©(0_1)) = —f*(©1), f*([0-1,@-1]) =0,

f*(Aw) = f*w and satisfy the extra assumption that for all simple roots «;,

ffw_q, is nowhere vanishing.

It is then proven that there is a unique conformal structure on S so that f*w_; is a (1, 0)-form.

Proposition 6.1.36. Let rank(G) > 2, a map f : S—G/T satisfies: f*0; =0 for j # £1 and

[(O@-1)) = —f*(@) , [ ([@-1,64]) =0, fr(Aw) = frw.

112



Suppose that f*wa, has discrete zeros for all simple roots «; and that there exists a simple root B so that
ffw_g is nowhere vanishing.

Then there exists a unique conformal structure (S, J) = 3, so that f: X—G/T is a cyclic surface.

Thus, Definition 6.1.17 and the cyclic surfaces in Proposition 6.1.33 are generalizations of the cyclic
surfaces in [Labl4]. The cyclic surfaces related to maximal Sp(4,R) representations are more special than
those considered in Proposition 6.1.33 and more general than Labourie’s. Namely, we only require that there

exists a simple root «; so that f*w_,, is nowhere vanishing.

Proof. Let 8 € AT(g,c) be a simple roots for which f*w_z is nowhere vanishing. Since f*w is nowhere
vanishing, df : TS—[g_p] is an isomorphism. Thus, there is a unique complex structure (S, J) = X so that
ffw_g is a (1,0)-form.

Since f*([W-1,0-1]) =0, decomposing this in terms of root spaces we have for all simple roots « and =y

Frwoafwos)=0  and  [fwafw]=0.

Recall that g is simple, so there is a simple root « so that —3 — « is a root, in particular,

(9o, [g-5]] # 0.

By [f*w—a, ffw_g] = 0, it follows that f*w_, is a (1,0)-form. Using the fact that g is simple and that
f*w_q has discrete zeros, we conclude that for all simple roots a, the form f*w_, is a (1,0)-form. Similarly,

there is there is a simple root « so that ;1 —«v is a root. We again conclude that f*w, is a (1,0)-form, proving

f*w_1 is a (1,0)-form. O

Putting everything together, we obtain the following theorem which is the analogue to the transversality

of the Hitchin map in [Lab14].

Theorem 6.1.37. Let G be a complex simple Lie group of rank at least 2, p : m(S)—G an irreducible
representation, and (S,J) = ¥ be a conformal structure. Suppose f : §~]—>G/T0 a p-equivariant Go-cyclic
surface such that there exists a simple root o so that f*w_, is nowhere vanishing and, for all simple roots

a;, the form f*w_,, is nonzero. Let (p,J;) is a one parameter family with (po, Jo) = (p,J) and f; :

(S, J1)—=G/ Ty be a family of pi-equivariant Go-cyclic surfaces with fo = f. If| % |t:0 pt] =0, then %|t20 Jy =
0.
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Proof. Let p € X(G) be an irreducible representation and let (S,J) = ¥ be a conformal structure. Let
f: i—)G/TO be a p-equivariant Go-cyclic surface so that there is a simple root a with f*w_, nowhere
vanishing and, for all simple roots «;, the form f*w_,, # 0. Suppose (p¢, J;) is a one parameter family and

—_~—

fe: (S, J1)—=G/Ty is a family of p;-equivariant Go-cyclic surfaces with fo = f, that is for all v € 71(.9),

fi(v(8)) = pe(7) - fe(s).

If [%‘t:O pi] = [p], then the tangent space at p is given by T,X(G) = H} (S, g) since p is irreducible (see
(3.1.3)). Thus, after conjugating the family p; by a family of elements of G, and preforming a similar

transformation for f, for all v € 71(S) we have

In particular, {(s) = %! 1o ft(s) is an p-equivariant infinitesimal deformation of f. Since f*w_, is nowhere
vanishing, f*w_q : TY—[g_] is a bijection. Let X be the vector field along X so that v,_,§ = ffw_q(x),
then df(X) is an infinitesimal variation of f. By construction, £ — df(X) is an equivariant infinitesimal

variation of f which vanishes along the simple root space [g,]. Thus, by Proposition 6.1.33, £ — df (X) = 0.

To see that %L::o Ji = 0, we employ an argument of Marco Spinaci [Spi]. We have
Oft
thus

¢ = w(dfo(X)) = 2(X) + 27 (X).
In particular, ¢ is self adjoint and hence lives in the subbundle [i€]. Also, 6_1 = ®(X) is holomorphic and
G = ®*(X) is antiholomorphic.
Let ¥; = ffw = &, + @, by definition, for all tangent vectors, we have
Uy (Jyv) = i®y(v) — i®f (v) = (img_, — img, ) Ve (v). (6.1.22)

Recall that, for vector fields Y and Y’ on G/Tg, we have

w(dyY') = w(dy,Y) +w([Y,Y']) + w(T(Y,Y")) (6.1.23)
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where T(Y,Y”) is the torsion tensor given by Lemma 2.2.4. Differentiating equation (6.1.22) yields

d " (fjw(Jw))

= (img, —img Dl (fww)

t=0

Using the pullback of equation (6.1.23) by f, the left hand side of the above equations is given by

(o5 (s (@) ) - g s 30 (7 (o))

The expression for the torsion in Lemma 2.2.4 and the decomposition g = to ®m imply the above expression

t=0

can be rewritten as

(o5 (4 (5)) + (0 () omm ([0 (3) 0]

Using Wo = fiw and ¢ = 9| |
0

t=0

evaluating at ¢t = 0 yields

fgve 9J;
dJOU (g) + \IJO ( 8t

o) i (W0(00). ).
Since [%, v] = 0, a similar computation shows that the left hand side of equation (6.1.22) is
ge
d1f10 (C)-i—ﬂ'[m] (\IIO(U),C).

Thus, we have

fov 0Jy
dJOU (C) + Wy <€?7§

) + i) (Ro(Jov), €) = (img_, — img,) (¥ (Q) + 7wy (Ro(0), Q) (61.24)

0

Recall ( = w (%

0) is in w(df(TX)) C [it]. Also, 7y and (img , — img,) commute with the Cartan

involution ©. Thus, we can consider the [i€] part of equation (6.1.24). This yields

e aJ,
dJO'U (C) + \IJO < 8t

> = (img, —img,) (Y (0). (6.1.25)

Rearranging the equations and using the fact that Z—l is holomorphic and Zl is antiholomorphic gives

0J:
Yo ( ot

) = 2i(JC_1 — 9C1) =
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aJ,
Since ¥ is injective, it follows that =t

=0, as desired. O
ot

t=0

6.2 Maximal Sp(4,R) & SOy(2,3) representations and Higgs

bundles

We will now apply the theory and results of cyclic surfaces to special components of maximal Sp(4,R) and
S00(2,3) = PSp(4,R)-Higgs bundles which we will call Gothen representations. For the Sp(4,R) Gothen
components (or equivalently the PSp(4, R)-Gothen representations which lift to Sp(4,R)) the below results

were published in [Col15].

For G = Sp(4,R), the complexification of the maximal compact subgroup is Hc = GL(2, C). For a Sp(4, R)-
Higgs bundle (V, 8,7), 7 = deg(V') € Z defines an integer invariant called the Toledo invariant. Given two
Sp(4, R)-Higgs bundles (V,3,7) and (V',3',7'), if deg(V) # deg(V") then (V,3,7) and (V',',7') are in

different connected components. This gives a decomposition

M;(Sp(4,R)) = | | M- (Sp(4,R)).

TEZL

The map sending (V. 3,v) to (V*,7,5) gives an isomorphism M ;,(Sp(4,R)) = M _,(Sp(4,R)). The

invariant 7 satisfies a Milnor-Wood inequality |7| < 2¢g — 2 and

M ;(Sp(4,R)) = | ] M- (Sp(4,R)).

—29+2<7<2g—2

We will show that Milnor-Wood inequality for PSp(4, R) = SO¢(2, 3)-Higgs bundles, below. Gothen [Got01]
showed that, for 7 = 0, M -(Sp(4,R)) is connected, and, for |7| = 2¢g — 2, the moduli space M -(Sp(4,R))
has 3%9 4+ 2g — 4 connected components. In [GPMiR04], it is shown that M, (Sp(4,R)) is connected for all
other values of the Toledo invariant. This gives 1+ 2(2g — 1) + 2(3%9 + 2g — 4) total connected components
for M ;(Sp(4,R)).

SOy (2, 3)-Higgs bundles

To use vector bundles for the group PSp(4,R) we will make use of the low dimensional isomorphism
S00(2,3) = PSp(4,R). This works as follows, let W be a 4 dimensional vector space with a symplectic
form Q € A2W. The 6 dimensional vector space A2W has a natural orthogonal structure of signature

(3,3). Since Q € A2W, the orthogonal complement of the 1-dimensional subspace spanned by € defines a
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5 dimensional vector space with an orthogonal structure of signature (2,3). This defines a surjective map
Sp(4,R)—S0¢(2,3). Furthermore, since we are taking the second exterior product, the kernel of this map

is £1d, giving an isomorphism

An SO¢(2, 3)-Higgs bundle is determined by a holomorphic SO(2, C) bundle (L & L™1, ( (1) (1) )), a holo-

morphic SO(3, C)-bundle (W, Qw ) and two holomorphic bundle maps 8 and v where
B:L WK v: LW QK.

There are two types of topological invariants, the degree of L and the second Stiefel-Whitney class of (W, Qw )
which we will denote by

T=deg(L) €Z wy € Z/27.

The associated SL(5,C)-Higgs bundle associated to a quadruple (L, W, 3,~) is (L ® W & L1, ¢) where ¢
consists of the maps v and § along with the induced maps 77 : W—L"'K and 87 : W—LK which are

defined by v = v* o Quw and 87 = * o Quw:
WﬂW*AL‘lK W%W*gLK

We will represent these pictorially by

BT B
Ve
LS ~w L1
~_ = ~—
Y 'YT

where we have suppressed the twisting by K from the notation. The bound |7| < 2¢g — 2 on the Toledo

invariant can be see by considering the following compositions

LK1 w w LK.
v Qw y*

-1y —1 *
LK™ e W W5 — > LK

If deg(L) > 0 then by Remark 6.2.5, v # 0 and thus deg(L) < 2g — 2. Similarly, if deg(L) < 0 then 8 # 0,
and thus deg(L) > —2g + 2.

If M™%2(50¢(2, 3)) denotes the moduli space with invariants 7 and ws, then, since the deg(L) is bounded,
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we obtain the following decomposition of the moduli space of Higgs bundles and the character variety

M(S00(2,3)) = [ | M72(S0p(2,3))= | | AT2(S00(2,3)) = X(SO0(2.3))-

|7|<2g—2 |7|<2g—2
wo €Z/27 wo €727

The Higgs bundles and representation in the components with maximal Toledo invariant are called maximal.

Proposition 6.2.1. Given an Sp(4,R)-Higgs (V, 8,7) the associated SO (2,3)-Higgs bundle is
(L, W, B,7) = (A?V, S*V* @ AV, B,7)

Proof. Given an Sp(4,R)-Higgs bundle (V, 8,~), the corresponding SO¢(2, 3)-Higgs bundle is determined by

the map Sp(4, C)—SO(5,C). For the bundle, one takes the second exterior product
NVoVH2AV)a VeV o A2(VY) = AV e A2 (V)@ Hom(V,V) (6.2.1)

0 1
The orthogonal structure on this bundle is given by on A%(V) @ A%(V*) and the Killing form on

10

0 Id
Hom(V,V) (i.e. (A, B) =Tr(AB)). The symplectic structure Q2 = € A2(V* @ V) corresponds

—Id 0
to Id € Hom(V,V). If Homo(V, V) is the space of traceless homomorphisms, then

()t c A2V @ Hom(V,V) @ A2°V* = A>V @ Homo(V,V) @ A2V*.

If V is the standard representation of GL(2,C) then it is straight forward to check that Homgy(V,V) is the
representation S?V ® A2V* =2 S2V* @ A2V. Thus, Homg(V,V) = S?2V @ A2V* = §2(V*) ® A2V. This gives
L=AVand W = S2V@A2V* = S2(V*)®A%V. Finally, note that v € H(S?V*®K) = H(L"'@W oK)
and f € HY(S?V@ K)=H'(L®W ® K). O

Using this correspondence and the Milnor wood in equality for SOg(2, 3)-Higgs bundles one obtains the

Milnor inequality for Sp(4, R)-Higgs bundles.
Proposition 6.2.2. Let p € X7*2(S0¢(2,3)) then p lifts to p € X7 (Sp(4,R)) if and only if wa+7 = 0 mod 2.

Proof. By a similar procedure as above, the groups complex groups SO(5,C) and PSp(4, C) are isomorphic.
Since the cover Sp(4,C)—S0O(5,C) is 2 : 1, we have Sp(4,C) = Spin(5,C). Thus, the representations p :
m1—S500(2,3) will lift if and only if the second Stiefel class of the SO(5,C) bundle (L & L™t & W) is zero.
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Since the first Stiefel-Whitney class of the bundle L & L~! and (W, Qw) is zero, if w is the total Stiefel-

Whitney class then we have:
wLOL P OW) =14+ w (L@ L) — (1+w(W,Qw)) =1+ w(L &L +wa (W, Quw).

Thus we(L® L™t ®W) = degL mod 2+ ws(W, Qw ), which is 0 if and only if wo (W, Qw)+7 = 0 mod 2. O

Remark 6.2.3. For maximal SO¢ (2, 3)-Higgs bundles, the corresponding representations will lift to Sp(4, R)

if and only if wy = 0.

6.2.1 Maximal components for Sp(4,R) & SOy(2, 3)

Higgs bundles (V, 8,~) with |deg(V)| = |r| = 29 — 2 are called maximal. When 7 = 2¢g — 2, polystablility
forces the holomorphic map v : V—=V* ® K to be an isomorphism [Got01]. Using this fact, to a maximal
Sp(4,R)-Higgs bundle (V, 3,7) one associates a GL(2,R) K2-twisted Higgs bundle (W, ) (i.e. a GL(2,R)-
Higgs bundle where the Higgs field is twisted by K? instead of K), called its Cayley partner. The Cartan

decomposition of gl(2,R) is 0(2,R) @& sym(R?), and, complexifying, we have
gl(2,C) = 0(2,C) @ sym(C?).

Thus, a K2-twisted GL(2,R)-Higgs bundle is a triple (W, Qw, ) where (W,Qw ) is a O(2,C) bundle and
o € HY(End(W) ® K?) satisfying o7 Qw = Qw .
The characteristic classes of the Cayley partner help to distinguish connected components of /\/lig -2 (Sp(4,R)).
We will recall how this works for Sp(4, R) [Got01, BGPG12], for a general development of the theory of Cay-
ley partners see [RN12]. Fix a square root of the canonical bundle K z and set W =V* @ K2. Using the

fact that v : V—=V* ® K is an isomorphism, define an orthogonal structure Qw : W*—W by
Qw=70Id_,:VaK? V' @KaK 2. (6.2.2)

For the Cayley partner, the Higgs field ¢ : W—W ® K? is given by ¢ = (y® Id B® K%), ie.

Ko ol

1

W=1veokt 2 vekekt 2 v egKeKeoK} =W o K2

The map ¢ is Qu-symmetric, thus (W, Qw, ¢) defines a K2-twisted GL(2,R)-Higgs bundle.
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The O(2,C) bundle (W, Qw ) has a first and second Stiefel-Whitney class
wi (W, Qw) € H\(S,2/22) = (Z/22)% and we (W, Qw) € H2(S,Z/2L) = 1,27 .

There are 2-229—2 possible values for (w1 (W, Qw ), w2 (W, Qw)) with wi (W, Qw ) # 0. When wy (W, Qw) = 0,
the structure group of the O(2, C)-bundle lifts to SO(2, C), in this case, we have a Chern class, and Proposition
3.20 of [BGPG12).

Proposition 6.2.4. Let (V,(5,v) be a mazimal Sp(4,R)-Higgs bundle with Cayley partner (W,Qw) and
w1 (W, Qw) = 0, then there is a line bundle N—Y so that V. = N&N ~LK. With respect to this decomposition,

ﬁ:(éf):N—l@NK—MNK@N—lKQ and 7:(?(1)):N@N_1K—>N_1K@N.

The line bundle N satisfies a degree bound, g —1 < deg(N) < 3g —3; for g — 1 < deg(N), the line bundle N

is unique and when deg(N) = g — 1, the line bundle N is unique up to a multiple of a square root of O.

The proof of this proposition makes extensive use of Mumford’s classification of rank 2 holomorphic
orthogonal bundles [Mum71]. The degree of N provides 2g — 1 extra invariants; set d = deg(N), and denote
the corresponding moduli space by M%(Sp(4,R)). For deg(N) = 3g — 3, stability forces N2 = K3, and there

are at least 229 connected components corresponding to choices of square roots of K. Thus, there are
2.2% —2429-2+29 = 3.2%9 1294
invariants for Sp(4,R)-Higgs bundles with deg(V) = 2¢g — 2, and we have

MPI2(Sp(4,R)) = | | M2 (Sp(4,R)) || MPTP(Sp(4R) | | MPT(Sp(4,R)). (6.2.3)

wi,w2
w1 #0 g—1<d<3g—3 L2=K

In [Got01], it is shown that each of the above moduli space is nonempty and connected. For deg(N) = 3g—3,
the 229 connected components are the Hitchin components. When g—1 < d < 3g—3, we call the components

M%(Sp(4,R)) the Gothen components.

Remark 6.2.5. By Proposition 6.2.4, the SL(4,C)-Higgs bundle associated to a Higgs bundle (V, 3,v) €
M%(Sp(4,R)) is of the form

vV q
(E,¢)= | Ne N'K& N'a NK!, e (6.2.4)

_ O
O =
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If £ =0, then N @ NK~! is an invariant subbundle of E with of degree 2d — 2g + 2. Thus, for g — 1 < d
stability forces p # 0. Furthermore, by Proposition 3.24 of [BGPG12], for g — 1 < d, all isomorphism classes
in M%(Sp(4,R)) are stable and simple. When d = g — 1, the Higgs bundle is stable if and only if u # 0. It
follows that M%(Sp(4,R)), and hence X3972(Sp(4,R)), is smooth if and only if g — 1 < d < 3g — 3.

Let Xdzg*Q(Sp(Zl, R)) be the component of Gothen representations which corresponds to Mjgfz(Sp(él, R)).
Using the description of the possible Zariski closures of maximal Sp(4, R) representations of [BIW10], Brad-
low, Garcia-Prada, and Gothen showed [BGPG12],if g—1<d <3g—3 and p € X(12972(Sp(4, R)), then p is
Zariski dense. Furthermore, by Remark 6.2.5, the Gothen components Xng_Q(Sp(él, R))forg—1<d<3g-3

are smooth.

Maximal SO(2, 3)-Higgs bundles

Maximal SO¢(2, 3)-Higgs bundles satisfy the following important extra symmetry.

Proposition 6.2.6. If (L, W,3,v) be a maximal SO¢(2,3)-Higgs bundle with 7 = 2g — 2 then the map

~v: L—-W ® K is nowhere vanishing.

Proof. Note that v cannot be zero by stability. Consider the composition

’YWQw*v*

LKt LK

Then yo0 Q oy* € H'(L72K?) is a nonzero section. But since deg(L) = 2g — 2 we must have L72K? = O

and v o @ o v* nowhere vanishing, proving « is injective. O

Proposition 6.2.7. If (L, W, 3,7) be a mazimal SOq (2, 3)-Higgs bundle with 7 = 2g —2 then (LK ~1)? = O
is an O(1, C) bundle and W decomposes holomorphically and orthogonally as an W = LK 1@ (V, Qv) where
(V,Qv) is a O(2,C)-bundle.

Proof. By the previous proposition, (LK ~!)? = O, thus LK ! is an O(1,C)-bundle and W decomposes as

the image of v : LK ~!—W and its orthogonal complement which is an O(2, C)-bundle. O

For maximal Higgs bundles, the decomposition (W, Qw) = (LK ~!,q) @ (V,Qy) gives finner topological
invariants. Namely the first Stiefel-Whitney class of (LK1, ¢) and (V, Q) and the second Stiefel-Whitney

class of (V, Qv ). However we have

wW,Qw) = (1 + w2 (W,Qw) = (L+wi (LK) — (1 +wi(V,Qv) + we (W, Qw)
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=1+w (LK™ q) +wi(V,Qv) +wi (LK™, q) — wi(V,Qv) + wa (W, Qw)

Thus, w1 (LK1, q) = wi1(V,Qy) and thus w(V, Qv) = wa(W, Qw ). Let M29-%%2(S0(2,3) be the space
of maximal polystable SOq(2,3)-Higgs bundles with wy(V,Qv) = wi(L7'K) = w; and we(V,Qy) =

wa (W, Qw) = wa.
Proposition 6.2.8. An SO (2, 3)-Higgs bundle in Mﬁ;"l_zw"‘ (SO0(2,3)) is determined by a triple (V, Qv ), ', ¢2)
where

e (V,Qv) is an orthogonal bundle with first and second Steifel-Whitney classes wi and w.

e g € H'(K?) and By € H°(V ® LK) where LK is the O(1,C)-bundle with Stiefel-Whitney class w;.

Proof. Let (L, W, 3,7) be a polystable SO¢(2, 3)-Higgs bundle. By Proposition 6.2.7, if the isomorphism class
of (L,W,8,7) is in ./\/1121]91_2”“2(500(2,3)) then (W,Qw) = LK~ & (V,Qv). Here (V,Qy) is a holomorphic
0(2,C) bundle with w;(V,Qy) = w; and wz(V,Qv) = we and L™K is a holomorphic O(1,C)-bundle with

w1 (L7rK) = w;. Since the holomorphic splitting of W was determined by the image of v, we have

1 72 ~1 —1
(v,8) = , Lol — (LK aV)®K
0 Bv
where g2 € H°(K?) and By € H(V ® LK). O

Proposition 6.2.9. An SOy (2,3)-Higgs bundle in /\/lﬁg*z"’“ (SO0(2, 3)) is determined by a quadruple (M, 1, v, q2)
where M is a holomorphic line bundle with 0 < deg(M) < 49 — 4, p € H'(M~'K?), v € H'(MK?) and
q2 € H°(K?). Furthermore, ifd > 0 then u# 0 and if d =0 then pu=0=v or u # 0 # v.

Proof. Let (L,W,(3,7) be a polystable SO¢(2, 3)-Higgs bundle. By Proposition 6.2.8, if the isomorphism
class of (L, W, ,7) is in Mg?~>"*(S00(2,3)) then (L, W, B,7) is determined by a triple ((V,Qv), Bv, ¢2)
where wy (V) =0 and L=1K = O. Thus (V, Qv) reduces to an SO(2,C) bundle and there is an holomorphic

0 1
line bundle M so that (V,Qy) = | M & M1, . The map By is given by
1 0

By = K 'sMae M
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where v € HO(MK?) and p € H*(M~1K?). The associated SL(5,C) Higgs bundle is

v q2 q2 v
/?Q\
M K o K1 M1, (6.2.5)
I 1 1 I

Furthermore, if deg(M) > 0 then the holomorphic section u € H°(M~'K?) must be nonzero or else M
would be a positive invariant subbundle. If deg(M) > 4g — 4 then the holomorphic section g must be
0, thus deg(M) < 4g — 4. A similar analysis shows that if deg(M) < 0 then —4g + 4 < deg(M) and

v € H® = (MK?)\ {0}. Note that the determinant 1 orthogonal gauge transformations

-1.0 0
-1 0
g1 = KoK ' KoK and go=|0 0 1|:0eMaeM!
0 -1
0 1 0

send the Higgs bundle determined by tuple (M, u, v, g2) to the one determined by (M ™! —v, —u, g2). So
the Higgs bundles associated to (M, u, v, g2) and (M1, —v, —pu, q2) define the same isomorphism class and
we may assume deg(M) > 0. If d = 0 and p = 0 then the corresponding SL(5,C)-Higgs bundles will be

polystable if and only if » = 0. Similarly, when v = 0, polystability forces pu = 0. O

The extra invariants for maximal SOg(2, 3)-Higgs bundles given the following decomposition:

MP972(S00(2,3)) = | | M2.2,(S00(2,3)) || MZ*(S00(2,3)). (6.2.6)
w1#0 0<d<4g—4
Remark 6.2.10. The second Stiefel-Whitney class of bundles in M?lgfz(SOo(Q, 3)) is d mod 2, thus when
d is even, the corresponding representations will lift to Sp(4,R). The component Mig:i(500(2,3)) is the
SOy(2, 3)-Hitchin component Hit(SOy(2,3)) (this will be explained below).

The relation between the invariants of maximal SOg(2, 3)-Higgs bundles which lift to Sp(4, R) is as follows.

Proposition 6.2.11. If (L, W, 3,7) € M?972(S0¢(2, 3)) with wa(W, Qw) = 0, then the first Stiefel-Whitney
class of LK1 is the same as the first Stiefel- Whitney class invariant associated to the corresponding mazimal
Sp(4,R)-Higgs bundle (V,3,7). Moreover, if wy = 0 and (L,W,5,7) € Mg?72(500(2,3)) then (V,8,7) €
M3T,2 1 (Sp(4,R).

Proof. Let (L,W,,~) is a maximal SO¢(2, 3)-Higgs bundle with wo(W) = 0. If (V, B,’y) is a maximal
Sp(4,R)-Higgs bundle lifting (L, W, 3,7) then L = A?V. Recall that from the maximal Sp(4,R)-Higgs
bundle (V, 3,7), one constructs a O(2,C) bundle V ® K2 (see equation (6.2.2)). The first Stiefel-Whitney
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class of V @ K2 is the same as the first Stiefel-Whitney class of the determinant bundle A2(V @ K~ 2) =
(A2V)® K. But the first Stiefel-Whitney class invariant of the maximal SO¢(2, 3) bundle is the wq (LK 1),
and A2V = L. Thus, if the maximal SO¢(2, 3)-Higgs bundle (L, W, 3,~) lies in M?UQIT£2ZO(SOO(2,3))7 then
the lifts (V, 3,7) lie in M2/ "2 _(Sp(4,R)) UM~ 2 _ (Sp(4,R)).

If wi (LK™ ')=0then L=K and W = O ® M & M~ with deg(M) = 25 since wo(W) = 0. The lift of
(L, W, B,7) is a maximal Sp(4, R)-Higgs bundle (V, 8, %) with first Stiefel-Whitney class invariant vanishing.
Thus, it is given by a V @ V* = N@ N7'K & N~! @ NK~! with symplectic form Q = (—(}d Iod>
and deg(N) = d for some d € [¢g — 1,39 — 3]. To see that the degree of N is j, we need to calculate
the SO(3,C) bundle W which arises from this Sp(4, R)-Higgs bundle. The corresponding SO(3, C) bundle is
given by taking the orthogonal complement of the symplectic form € inside V ® V*. Using the decomposition
V =N & N'K we have

VoV =N’K'a0a0a N K.

Moreover, the symplectic form defines a trivial subbundle of the O ® O. Thus M = N2K ! and deg(M) =

2deg(N) — 2g + 2, proving the result. O

To determine the smooth points of M?29-25%2(S0q(2, 3)) we need a more refined notion of stability for

SO¢(2, 3)-Higgs bundles. This is made precise in [Arr09] and [ACGPT16].

Definition 6.2.12. An SOq(2,3)-Higgs bundle (L, (W, Qw), 3,7v) with deg(L) # 0 is stable if, whenever

N C W is an isotropic subbundle, one of the following holds
e ify(L) C N and BT (N) = {0} then deg(L) + deg(N) < 0,
e if B(L7Y) C N and vT(N) = {0} then —deg(L) + deg(N) < 0,
o if N # {0}, vI'(N) = {0} and BT(N) = {0} then deg(N) < 0.

In [Arr09] it is shown that the isomorphism class of an SO (2, 3) Higgs bundle defines a smooth point of
M(SO¢(2,3)) if and only if it is stable an simple.

Proposition 6.2.13. For d € (0,4g — 4], the space M>?"*(S0¢(2,3)) is smooth and an isomorphism class

(M, i, v, q2)] € MZT72(S00(2,3)) is smooth if and only if
o MM Yandpu#0+#v or

o M=M=t yu#0%#v and u# v for all A\ € C*.
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Proof. By Proposition 6.2.9, a polystable SO¢(2, 3)-Higgs bundle whose isomorphism defines a point in
M2972(S0¢(2,3)) is determined by a tuple (M, u, v, g2), the associated SL(5, C) Higgs bundle (£, ¢) is given

by (6.2.5). Consider holomorphic orthogonal gauge transformations

a b c
et 0 1 1 1 1
g1 = KO K "—-K® K™ and go=\|d e fl|:MOoM ©O0O-MoM  &O.
0 e
g h j

The action of (g1, g2) on the Higgs field (3,~) is by

(g1,92) - (B,7) = (928>, gave ™).

A straight forward calculation shows

0 0
eyt =g loler=10
1 1

if and only if g = h =0 and e*j = 1. Using g = h = 0, another calculation shows g3Qw g2 = Qw implies

c=0 f=0 ad =0 be =0 j2=1 ac+bd=1.

Since det(g2) = 1, we must have

e 0 0 0 e 0
10 -1 0
(91,92) = o e o or  (g1,92) = e 0 0 . (6.2.7)
0 1 0 -1
0 0 1 0 0 -1

The first type of gauge transformation acts on 87 = (u, v, q2) by (e*u, e v, q2). If (M, u, v, q2) is a stable
Higgs bundle then p # 0 and the first type of gauge transformation acts trivially if and only if it is the
identity.

The second type of gauge transformation in (6.2.7) will be holomorphic if and only if M =2 M ~! and can
only occur when d = 0. It acts on 87 = (u, v, q2) by (—e v, —e ™ u, q2). Thus, by Proposition 6.2.9, when

M = M~" and p = —e v # 0 the Higgs bundle associated to (M, u, v, g2) is stable and not simple. O

Since the moduli spaces Mig 72(500(2, 3)) generalize the Sp(4, R)-Gothen components, we will also call
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them Gothen representations.

Definition 6.2.14. The components Mzgd(SOo(Q, 3)) with d > 0 are called the Gothen components and
maximal representations in the corresponding components & ; g 72(7r, S00(2,3)) are called Gothen represen-

tations.

Proposition 6.2.15. For 0 < d < 4g — 4 the Gothen components Mzg_2(500(2,3)) are connected and
parameterized by tuples (M, i, v, q2) where M is a holomorphic line bundle of degree d so that M~*K? has a
nonzero holomorphic section, p € H*(M~1K?)\ {0}, v € H(MK?) and g2 € H°(K?). Up to the C* action

(M, p, v, go)— (M, A, N v, o) a tuples (M, i, v, q2) parameterize points in M39_2(500(2,3)).

Proof. By Proposition 6.2.11 a Higgs bundle in a Gothen component /\/l?lg_Q(SOO(27 3)) is determined by a
tuple (M, i, v, g2) € Pict(X)x (HO(M~*K)\{0}) x H*(M K?)x H°(K?). The corresponding SOy (2, 3)-Higgs

bundle is given by

q2 1
(L,Wﬁ,v)(K,O@MGBMl,(V), 01])
H 0

We will show that there is only a 1-parameter gauge symmetry of (L, W, 3,~) which sends (M, u,v,gz2) to
another point in Pic?(X) x (H(M 1K)\ {0}) x H*(MK?) x H°(K?). Denote the orthogonal structures on

K&K 'and O M@ M~ recall that if g1 € Gso,0) (K@K, Q1) and g2 € Gsos,0) (OB M B M1, Qs)

(91,92) - <§T>):91_1 <§T>92
T

where ﬁT =T : 0@ MeM '=K?®O0.If the bundles are of the foom K @ K 'and O M @ M~!
Y

then

then the gauge transformations must preserve the orthogonal structure, a computation shows

-2t

N 10
91=<0 1> and ga=1[5sN 0
a -1

00

A

where a, A\ € C*, and b € H°(M). By definition of 47 and 87 we have

BT 0
it (0 ) (5.2) (% 4%)

Thus a =1 and b = 0 and there is a 1-parameter gauge symmetry g acting as

—1
A7 _ ( ub 4+ ags adp vad—t — A" tbage )

0
g\ )\9 a~t 0 —bA"1la!

1

gx - (Mvﬂa v, QQ) = (Mv )‘/J?)‘ilya CI2)
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Up to this symmetry, every point in /\/@972(500 (2,3)) is determined uniquely by a tuple (M, u,v,q2). O
Putting everything discussed above together, it is not hard to prove the following.

Theorem 6.2.16. The moduli space M297%(S00(2,3)) is diffeomorphic to F& x HO(K?) where F& is a

rank d + 3g — 3 vector bundle over the symmetric product Sym~4+49-4(%).

Proof. The set of divisors of degree —d + 4g — 4 on a ¥ is parameterized by Sym~9t49=4(3). A projective
classes of € HO(M~1K?)\ {0} is in one-to-one correspondence with divisors of degree —d + 4g — 4. Since
the line bundle M can be recovered from such a divisor by inverting and tensoring with K2, the data (M, [u])
is one one-to-one correspondence with divisors D of degree —d + 4g — 4. Since a point in /\/13“7_2(500(27 3))
is determined by a tuple (M, u,v,q2) with p # 0 and (M, p, v, q2) = (M, A\, \"tv, qo) for all X € C*, the
moduli space is given by a vector bundle of rank h°(X, MK?) = d + 3g — 3 over Sym~9T4974(%) times the

space HO(K?). O
When d = 4g — 4, we recover Hitchin’s parameterization of the Hitchin component.

Corollary 6.2.17. The Hitchin component Hit(SO¢(2,3)) = Mig:i(SOO(Q,?))) is diffeomorphic to a vector
space HO(K?) @ H°(K*). Also, for d = 4g — 3 the space F& is a vector bundle over the surface 3.

Corollary 6.2.18. Since the M2972(SOy(2,3)) deformation retracts onto Sym~9+49=4(%), there is a ho-
motopy equivalence between Migfz(SOO(Q,?))) and Sym~49=4(). In particular, there is a cohomology
isomorphism H*(MZQiQ(SOO(Q, 3))) = H*(Sym~4t49=4(X)); the cohomology ring H* (Sym~4t49=4(2)) was

computed by McDonald [Mac62).

Remark 6.2.19. The parameterization of Sp(4, R) Gothen components in [BGPG12] and [Coll5] is equiv-
alent to Theorem 6.2.16 but more complicated and less explicit. In particular, it is not clear what the

cohomology of these spaces is.

Corollary 6.2.20. For 0 < d < 4g—4, the spaces M4(SO0(2,3)) are smooth and contain only Zariski dense

representations.

Proof. By Proposition 6.2.13, the components are all smooth. Moreover, generalizations of the proof
that Mflg*?(Sp(él,R)) contains only Zariski dense representations for g — 1 < d < 3¢g — 3 imply that

Migfz(SOO(Q, 3)) contains only Zariski dense representations for 0 < d < 4g — 4. O

For Gothen components of Sp(4,R), one obtains a similar parameterization. Recall that a Sp(4,R)-
Higgs bundle in the Gothen component Mig_Q(Sp(él,R)) is determined by a tuple (IV,p,v,q2) where

N € PicY(¥) and g — 1 < d < 3g — 3. Moreover, up to a l-parameter family of isomorphisms acting by
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(N, i, v, q2)— (N, A, A=, q2) such a tuple uniquely determines a point in M3972(Sp(4,R)). By Propo-
sition 6.2.11 the corresponding SOg(2, 3)-Gothen Higgs bundle is given by (M, u,v,q) with M = N2K~1.

Define the space
Fe = {(N,u,v)|N € Pic($) with hO(N"2K?) £0, p e H'(N"2K%)\ {0} v € HO(N?K)}/C*

where the C* action is given as above. Using the results above for SOg(2,3) = PSp(4,R) we have the

following parameterizations of M>?~%(Sp(4,R)).

Theorem 6.2.21. Let g — 1 < d < 3g — 3 then the Gothen component Mflg_z(Sp(él,R)) is diffeomorphic
the space fg x H°(K?). Moreover, the 2 : 1 map m : Sp(4,R)—S0¢(2,3) gives rise to a 229 : 1 map

7o Fd x HO(K?) s F2=2%2 o [O(K?) M§§:§g+2(500(2,3))

which has fiber @ 1(M, p, v, q2) corresponding to the 229 square roots of O.

Proof. Given an Higgs bundle (N, y, nu,qs) € M3972(Sp(4,R)), the corresponding SOg(2, 3)-Higgs bundle
is given by (N?2K Y, u,v,q2) € Mgg:ggH(SOO(Q,?))). Thus, for each of the 229 line bundles L satisfying
L? = O the Sp(4, R)-Higgs bundles associated to (N, u, v, g2) and (N ® L, i1, v, g2) map to the same point in
M§§:§g+2(soo (2,3)). Thus the space F2 is a vector bundle over the symmetric Sym?24—29+2(%) /(Z/2297)
where two divisors (N2K ™1, ) is equivalent to (LN)?K ! for each of the 229 square roots of the trivial

bundle. O

6.3 Gothen components and unique minimal immersions

In this section we will do everything for the groups SO¢(2,3) = PSp(4, R), when one restricts to the maximal
SOp(2, 3)-Higgs bundles which have vanishing ws then all the statements hold for maximal Sp(4,R). Recall
that 0 < deg(M) < 4g — 4, the SL(5, C)-Higgs bundle (6.2.4) is determined by the quadruple (M, u, v, g2).

The bundle E =K @ K~ ' ® O ® M © M~! has orthogonal structure Q and Higgs field ¢ given by:

1

)
O =

q2 @ v
00

Q= 1 :E—E ¢ = q

V)

L EERK. (6.3.1)

= O
O =
S O =

v
i
Note that the Higgs field satisfies which ¢7'Q + Q¢ = 0, thus, (6.2.4)is in fact an SO(5, C)-Higgs bundle.

For the group SO(5,C), the polynomial ring C[so(5,C)]5°®C) has two homogeneous generators (p1,pz) of
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degree two and four. One choice of generators is

p1 = Tr(X?) and po = Tr(X?).
For any other basis (p], p}), there are constants A, B, C' so that

Py = Ap and ph = Bpi +Cpa .

Thus, for any choice of basis of the invariant polynomials, the holomorphic quadratic and quartic differentials

associate the (F, ¢) via the Hitchin fibration are
ATr(¢?) = 4Aq and BTr(¢?) + CTr(¢*) =16Bga @ g2 + Cdp @ v .

Lemma 6.3.1. Let p € X39_2(SOO(2,3)) and fix a conformal structure ¥ = (S,J). If the harmonic p-

equivariant map h, is a branched minimal immersion, then the corresponding Higgs bundle is given by
(M, p,v,0) (6.3.2)

Furthermore, up to a constant, the associated holomorphic quartic differential in the Hitchin base is given
by ga = p@v.

Proof. Let p € X797*(S00(2,3)) and fix a conformal structure (S,J) = X. By Proposition 6.2.9, the
SO¢(2, 3)-Higgs bundle corresponding to p is given by (6.3.1). By Remark 3.3.3, h, is a branched mini-

mal immersion if and only if

Tr(¢?) = 4q2 = 0.
In this case, any choice of basis for C[sp(4, C)]>P(4©) gives g4 = pa(¢) = CTr(¢?*) = 4Cpu @ v. O

Lemma 6.3.2. Let p € X;g_2(500(2,3)) and choose a conformal structure J so that the corresponding

p-equivariant harmonic map h, is a branched minimal immersion, then h, is a minimal immersion.

Proof. By Lemma 6.3.1, in the conformal structure J, the SO (2, 3)-Higgs bundle (L, W, 3, ) associated to
p is given by (6.3.2). By Remark 3.3.3 Higgs field represents the (1,0) part of dh,. Since « is injective, the
Higgs field is nowhere vanishing, by Remark 3.2.13, the branched minimal immersion h, is branch point

free. O

For maximal representations p € X9~ %(S0g(2,3)) with 0 < d < 4g — 4 we obtain local uniqueness of the
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conformal structures J, in which the p-equivariant harmonic map is minimal.

Theorem 6.3.3. Let p € Xd2972(500(2, 3)) for0 < d <4g—4 or p € &y(S00(2,3)) and p irreducible. Then
the collection of conformal structures {J,} so that the p-equivariant harmonic mapping 5—500(2,3)/(S0(2) x

SO(3)) is a minimal immersion is nonempty and discrete.

Proof. Fix a representation p € X39_2(500(2,3)) and let (S,J) be a conformal structure in which the
harmonic map is minimal. By Lemma 6.3.1, the Higgs bundle corresponding to p in this conformal structure
is given by a tuple (M, u, v, 0) with g # 0. We will show that this defines a SO¢(2, 3)-cyclic surface satisfying
the hypothesis of Theorem 6.1.37. Consider the SO(5, C)-Higgs bundle (£, Q, ¢) from (6.3.1) associated to

(M, p,v,0), if we rearrange the holomorphic bundle £ to be M & K ® O @ K~! @& M ~! then the Higgs field

is given by
000wv0
©p000 v
p=]101000 | MOK®OoK 'oM ' - MKOoK’ 9 KO M 'K (6.3.3)
00100
0000

A computation shows that the gauge transformation
g = diag(—1,i,1,—i,-1) MO KOO K 'o M '-MoKoOaoK 'oM!

acts as g~ 1¢g = i¢. Furthermore, the gauge transformation g is in the gauge group fro SO(2,C) x SO(3, C).
Thus, such a Higgs bundle is a fixed point of 4**-roots of unity action in M (SO¢(2,3)). The unique
equivariant harmonic metric h,, : £—S0(5,C)/SO(5) lifts to the space of Hitchin triples SOy (5, C)/(SO(2) x
SO(2)). Recall for so0(5,C), there are two simple roots aj, a2 and the set of positive roots is given by

{a1, a2, a109, a1 + 2a3}. The SO(5, C)-adjoint bundle of M & K @ O & K~ @ M~ is given by
(MK ©8-a1-202) @ (M @ 0-01-0) ® (K1 ®0-0,) SM 'K ©g-0,) © (0@ 0)

SME ™ ®ga,) ® (K @ (gay) ® (M ™' @ gay1as) ® (MK @ ga,+24,)

and the Higgs field is given by ¢ = 1 @ g_q, + L @ g—0ay PV ® ga,+2a,- Oince the Higgs field ¢ is no where
vanishing along the simple root space g_,, ® K and is not identically zero along the simple root space
g—a, ® K, the Higgs bundle defines a SO¢(2, 3)-cyclic surface satisfying the hypothesis of Theorem 6.1.37,

proving local uniqueness. O
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To go from local uniqueness to global uniqueness we will follow Labourie’s general differential geometric

arguments in section 8 of [Labl4].

Theorem 6.3.4. (Theorem 8.1.1 [Lab1/[])Let m : P—M be a smooth fiber bundle with connected fibers and

F : P—R be a positive smooth function. Define

N={zeP| d(F|, )=0}

()

and assume for all m € M the function F\Pm is proper and that N is connected and everywhere transverse
to the fibers. Then 7 is a diffeomeorphism from N onto M and F|Pm has a unique critical point which is

an absolute minimum.

Theorem 6.3.5. If S be a closed surface of genus at least 2 and p € X3972(SOO(2, 3)) for 0 < d < 4g — 4,

then there exists a unique conformal structure (S,J,) =X so that the p-equivariant harmonic map
h, : £—=500(2,3)/(S0(2) x SO(3))

18 a minimal immersion.

Proof. Existence is covered by Corollary 6.0.4 of Labourie’s theorem and Lemma 6.3.2, and local uniqueness
is covered by Theorem 6.3.3. By Proposition 6.2.13, the space ng_Q(SOO (2,3)) is smooth if and only if
0 < d < 4g — 4. Consider the fiber bundle 7 : Teich(S) x X797%(S00(2,3))—=X297?(S0y(2,3)). Define a
positive function F by

F((J,p) = E,(J) = E5(h,) = %/|dhp|2dvolJ.
S

By [Lab08], the map F| , 1s proper and smooth, furthermore, the critical points of F | p, are minimal surfaces.
Set
N={(Jp)€P| du(Flp)=0}.

By Theorem 6.3.3, N is everywhere transverse to the fibers. Applying Theorem 6.3.4, when 0 < d < 4g — 4,
for each p € X;gfz(SOO(Q, 3)) there is a unique conformal structure (S, J,) = £ in which the p-equivariant

harmonic map

h, : £—=500(2,3)/(S0(2) x SO(3))

is a minimal immersion.
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6.3.1 Parameterizations of SO((2,3) and Sp(4,R) Gothen components

Recall that Higgs bundles in the Gothen component /\/139_2(500(27 3)) are given by tuples (M, u, v, g2) with
deg(M) = d and p # 0. This only describes representatives of the isomorphism classes of Higgs bundles, and

by Theorem 6.2.15, there is only a 1-parameter family of gauge symmetries to account for which acts by:
(M, 1, q2,v) =2 (M, X211, g2, A~ 20) . (6.3.4)

Since the C*-action of (6.3.4) acts trivially on the holomorphic quadratic differential, the space M>?~%(SOg(2, 3))
is parameterized by a rank d + 3g — 3 vector bundle Fy —Sym~4+49=4(X) times the space of holomorphic

quadratic differentials as in Theorem 6.2.16.

Theorem 6.3.6. For 0 < d < 4g — 4, let X797 *(S00(2,3)) be the component of the mazimal SOg(2,3)
representation variety corresponding to the Higgs bundle component M39_2(500(2,3)). If 7 : Fé—=Teich(9)
is the fiber bundle over Teichmiiller space with m—1([S]) = F& is the vector bundle over Sym~a+49-4(x)

from Theorem 6.2.16, then there is a mapping class group equivariant diffeomorphism
U F s X797%(S00(2,3)).

Proof. Let ps ampuv € Xng*z(SOO(Q,?))) be the representation associated to the SOg(2,3))-Higgs bundle

(M, p1,v,0) € M>?7%(SOy(2,3)) over the Riemann surface 3. The map W is defined by

F s X2(500(2,3))
(Ea [M7 Hy V]) I P, M, v
The inverse of ¥ is defined by Theorem 6.3.5,
397(304(2,3) —= Fi
p (3p, [M, 1, v])
Moreover, this bijection is an immersion by Theorems 6.1.37 and 6.3.5. O

Since the mapping class group Mod(S) acts properly discontinuously on X2972(S0q(2,3)) we can take

the quotient.

Corollary 6.3.7. The space X?972(S00(2,3))/Mod(S) has at least 4g — 4 connected components and the
spaces X3972(500(2, 3))/Mod(S) are fiber bundles over the moduli of curves M.
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Remark 6.3.8. For the Hitchin component, }'%(FS = H°(K*) and we recover Labourie’s mapping class

group invariant parameterization of the Hitchin component as a vector bundle over Teichmiiller space.
For the group Sp(4,R), using Theorem 6.2.21, we have

Theorem 6.3.9. There is a mapping class group invariant diffeomorphism Xng_Q with a bundle 7 :
Fa—Teich(S) with fiber 71(2) = .7?% The 2 : 1 map m : Sp(4,R)—S0(2,3) gives rise to a 229 : 1
map w : ng_Q(Sp(ll,R))—>X225:229+2(500(2,3)). In terms of the parameterizations X9 *(Sp(4,R)) =

Fy 7 Teich(S) and ng:ng(SOo(Z, 3)) =2 Fod—2g+2 —" = Teich(S) , Fuis a 229 cover:

—%d .7:2d729+2 u Teich(S)

T

6.4 Connected components of M(SOy(n,n + 1)) and higher rank
Gothen representations

Since the group PSp(2n,R) is a group of Hermitian type, one can talk about maximal representations. As
we have seen, the collection of maximal PSp(4, R)-representations is especially rich. In particular, there are
2(229 — 1) 4 4g — 3 connected components of maximal representations and the 4g — 4 Gothen components
have a very nice description as bundles over Teich(S). For the group Sp(2n,R) however there are only 3 - 229
connected components [GPGMiR13], for PSp(2n,R) there are 3 connected components when n > 3 is odd
and at least 229 + 2 connected components when n > 3 and even [GW10]. Furthermore, none of these
components behave like the Gothen components for PSp(4, R) [GW10].

In this section we show that Higgs bundle parameterization of the PSp(4,R) = SO¢(2, 3)-Gothen compo-
nents generalizes to the split real group SOg(n,n + 1). Unlike PSp(2n,R), the group SOg(n,n + 1) is not a
group of Hermitian type for n > 3, so there is no notion of maximality. We will prove the following theorem

and corollaries.

Theorem 6.4.1. For each 0 < d < n(2g — 2) there is a smooth connected component Xq(SO¢(n,n + 1)) of

X(SO¢(n,n + 1)) and for each Riemann surface structure
n—1 )
Xd(SOO(nan + 1)) = fg X @HO(Z’KQJ)
j=1

where Fe—Sym=+72n=2)(%)) is a vector bundle of rank d+(2n—1)(g—1). Moreover, X (29—2)(SO0(n, n+
1)) = Hit(SO¢(n,n + 1)).
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In particular, using the isomorphism SOg(1,2) = PSL(2,R), we recover Hitchin’s [Hit87a] parameteriza-

tion of all connected components of X(PSL(2,R)) with positive Toledo invariant.

Corollary 6.4.2. For each integer 0 < d < 2g — 2, there is a connected component of X(PSL(2,R)) which

is parameterized by a rank d + 2g — 2 vector bundle over Sym~4+29-2(%).

This result is proven by showing the existence of components My(SOg(n,n + 1)) in the Higgs bundle
moduli space M(SOq(n,n + 1)).

Corollary 6.4.3. Each of the spaces My(SOq(n,n + 1)) deformation retracts onto the Sym~4+™(29=2)(%).

Thus there is an isomorphism H*(M4(SOg(n,n + 1))) = H*(Sym~d+"(29-2)(%))).

The topological invariants of an SOg(n, n+1)-Higgs bundle (V, W, n) are the second Stiefel Whitney classes
of the orthogonal bundles V' and W. Since none of these Higgs field in the components M4(SOq(n,n + 1))

can be deformed to zero, we obtain a lower bound on the number of connected components.

Corollary 6.4.4. The moduli space M(SOg(n,n+1)) and hence X (71,S0¢(n,n+1)) has at least n(2g—2)+4

connected components.

The starting point is the fixed points of the C* action on M(SOg(n,n + 1)) discovered in [Arr09].
Namely, it is proven that, for each 0 < d < n(2g — 2) there exists smooth minima of the Hitchin function in

M(SOqg(n,n + 1)) parameterized by:

M 12 Kn_l 1 Kn_Q 1 L 1 K 1 1) 1 K_l 1 . 1 Kl_n 12 M_1
(6.4.1)
In terms of an SOy (n,n + 1)-Higgs bundle (V,Qv, W, Qw,n : V=W ® K) this is given by
0
1 1 10
K"*I@KﬂfS@...@KI*n, ’M®K71,72@“.@K27n@]\4717 ’ .
1 1 10

Since the bundle reduces to a direct sum of line bundles, we can write the Higgs field as a section of
adjoint bundle and a collection of roots. Fix a Cartan involution 6 giving so(n,n + 1) = h @ m and a
maximally compact Cartan subalgebra t. Recall that the real form SOg(n,n + 1) of SO(2n + 1,C) is both
of Hodge type and split. Thus, the Cartan subalgebra has no noncompact part, t C h, and we can choose a

set of simple roots {a1,---,a;,} so that they are all noncompact imaginary, i.e. (gc)a, € mc for all j. With
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respect to these choices, the Vogan diagram of so(n,n + 1) has all roots painted (see Proposition 2.1.43):

.o 0—=——"60
aq (e 3] Qn—1 (e 7%

2n
With these choices, the height grading gc = € (gc¢); with (gc); C be if and only if j is even. Using
j=—2n
the Vogan diagram above, we can see the decomposition so(2n 4+ 1,C) = ho @ me in terms of root spaces,

namely the root poset is given by

(mC)2n71 b4

(bC)2n73

"
(Mmc)2n—a '/ \

(mc)3

AN NN
SVAVAVAAVAVAY

For s0(3,4) the root poset is given by

e

./ \.
SN\
./ \./I\\.

A positive roots a = > n;a; has ny # 0 if and only if it is farthest to the left in one of the rows of the root
poset. Note also that if we remove the simple root « then the simple roots as, - -+ , a, span an embedded
s0(2n — 1,C) C so0(2n + 1,C) with all simple roots noncompact imaginary, thus giving an embedding of
so(n —1,n) C so(n,n+1).

Denote the SO(2n + 1, C) bundle associated to (V & W, Qv @ Qw) above by £. Since £ reduces holo-
morphically to the maximal torus, the adjoint bundle £(so(2n,C)) decomposes holomorphically as a di-
rect of sum of root spaces £(s0(2n,C)) = O @ tc ® P (Lo ® go) for some line bundles L,. For bundle

acA
MaeKr1la...¢ K@ M~ above the line bundles for the negative simple root spaces are given by:

Lo, =M K" Loy =K Logy=K" Log, =K.
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T
The Higgs field ¢ = ( " ) € H°(X,E(so(2n + 1) ® K) from (6.4.1) is defined by
n

G=pRFa, + Y 1®g .
j=2
Let (V'@W’, ¢') denote a Higgs bundle in the SOg(n—1, n)-Hitchin component, recall that the Higgs field
is defined by ¢’ = é; + nil g2; ® e;. Let (M, p,v) be a tuple of a line bundle M of degree 0 < d < n(2g —2),
p€ HOMIK™)\ {O}]ZIlld v € H°(MK™). Denote the embedding of so(n — 1,n) in so(n,n + 1) given by
taking the span of {ag, -+ ,a,} by ¢ : s0(n — 1,n)—so(n,n + 1). For each such tuple (M, u,v) define the
SO (n,n + 1)-Higgs bundle (V & W, ¢) by

Vew=waoMaeV oM and ¢=n®g—a, +i(¢) +V® gay+205++2a,

The space of Higgs bundles obtained this way is determined by the tuples (M, u, v, q2, s, - - - , gan—2), and
setting the parameters (v, gz, - ,qan—2) all equal to zero gives rise to the minima of the Hitchin function

described in (6.4.1).

Remark 6.4.5. For the case SOy(2,3) the above construction gives the SOy(2, 3)-Gothen representations.
This can be seen in terms of vector bundles as follows: start with a SOg(1,2)-Hitchin component Higgs
bundle (i.e. a Fuchsian one) (V/,W') = (O, K ® K~ ') with Higgs field ¢ = &1+ g2 ®e1 = 1@ g_p + 2 @ g,

here f is a choice of positive root in SO(3,C). We can represent such an object as the twisted endomorphism

(=)

2 0
e | KeOaK ' —w(KeOadK ') ®K.
0

¢ =

o= O
= O

To obtain the SOg(2, 3)-Gothen component Higgs bundles one adds M & M~ to the SO(1,C) bundle O
in SOy(1, 2)-Hitchin component Higgs bundle. That is, the SO¢(2, 3)-Gothen component Higgs bundles are

given by

(VW) =(KOK ' MeOdM ', 1®@g 0, +1® gay + ¢ ® Gay + ¥ @ a1 +2a,)
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which we can represent as the twisted endomorphism

" MoKoOsK'oM' ' (MaeKeOaK ' 'aeM HYeK

<

Il
cooxw o
cor~r oo
o~of o
T o ovx
coco v o

If we start with a point in SOg(2, 3)-Hitchin component given by

0 |K’eKeO0OaK 'K ?* »(K°eKaOaK 'aK *)®K

Then given a tuple (M, u,v), the corresponding SOg(3, 4)-Higgs bundle obtained from is given by:

00 0 00 v O

03¢ 0 gs 0 v

01 0 q2 0 qa 0
6=]1001 0¢g 00 |:MoK?’0K0OdK oK oM ' (MoK’ KO K oK oM )oK

00 0 1 03¢0

00 0 01 0O

000 00 p O
(6.4.2)
Proposition 6.4.6. The parameters (M, p,v,qa," - ,Gan—2) define a unique isomorphism class of Higgs

bundles up to the symmetry (M, p,v, g2, , Gan—2) = (M, \u, \" v, qa, - -+, gan_2) for all A € C*.

Proof. Let £ = a1 + 2as + - - - + 2a, be the highest root of so(2n + 1,C) and

n—1

¢ =@ ga, + 1)+ VD = 1D ga, + D 12 D1(e;) + v O ge
j=1

be a Higgs field as above. In particular, for any root a = zn: njo; with ny = 1, we have ¢, = 0, where ¢,
be the component of ¢ along a root a. To prove the prop(;s:i‘iion7 we need to show that for any SO(n,C) x
SO(n+1,C) gauge transformation g with Ady¢ = u’—i—nil 05 @1(ej) +v' ®@ge must act by ' = A\, g5 = qo;
and v/ = A\~!v for A € C*. It is sufficient to show any ﬁleomorphic orthogonal bundle automorphism g of

MoK 'e --oKoOoK 'eo oK ™oM! (6.4.3)

which doesn’t act by (A, A1, g2, - -+ , q2n_2) is necessarily the identity. Thinking of the holomorphic gauge
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transformation g as a (2n+1) x (2n+1) matrix (g;;) with respect to the splitting (6.4.3), it has the property:

gij=0ifi+jisoddori=1and j=2n+1 (6.4.4)
gij=0ifj—i<—1fori#1lorj#2n+1

The first two properties follow from the splitting s0(2n + 1, C) = hc @ m¢ and the last property follows from

the holomorphicity of g. In this splitting, the Higgs field ¢ is expressed as a matrix with

¢ij=0forj—i<—-landi+j= even (6.4.5)
¢ij =0fori=1and j#2n
¢ij=0for j=2n+1and i# 2
$2,1 = Pant12n = pand @41 =1 for 2 <i <2n+1

(see (6.4.2) above for the case SOg(3,4)).

Claim 6.4.7. Suppose (Adg)ii—1 =1 for 2 <i < 2n+1 and (Adgd)1,2; = 0 and (Adg¢)on+1,2; = 0 for

all j < n then
o for A€ C*, gi11 =X, Gont1,2n+1 = AL, and gii=1forl<i<2n+1

® 91241 =0, 925112041 =0, g2j41,1 = 0 and gopq1,2541 = 0 for all j < n.

Proof. (of Claim) Since g preserves the orthogonal structure @ on M @ K" 1 @ ... @ K'™" @& M~ we
have ¢7Qg = Q. Thus g7! = Qg¢7Q, and (¢7')ij = gont2—j2nt2—i- Using (6.4.4), a calculation shows
(Adg®)iic1 = gi,iii—1(97 )i—1,i—1. When 2 < i < 2n, using (6.4.5), the condition Ad,¢;;—1 = 1 implies
Gii = gi—1,i—1 for all 2 < 7 < 2n. Since gopt2-4i,2n+2—i = g%i’ we have g; ; = 1 for all 2 <4 < 2n. This proves
the first statement.

The second statement will be proven by induction. First we show that g1 3 = gant1,3 = 0. Since
(g71)ij =0for j —i < —1 with i # 1 or j # 2n + 1, a simple calculation shows (Ady¢)12 = g1,3(97")2,2.
Since (g),, 5 = 1 and we are assuming (Ady¢)12 = 0 it follows that g; 3 = 0. Another calculation shows
(Ady®)2n1 = gon,2n(g7")2n—11, now orthogonality of g implies ga,41,3 = 0.

For the induction step, assume g1 241 = 0 for all 1 < j < k < n. We are assuming (Ady¢)1 2 = 0. By
the induction hypothesis, a computation shows (Ady¢)1,2k = g172k+1(g_1)2k72k. Thus g1,2;41 = 0 for all j.
Similarly, assume gay, 41,2541 = 0 for 1 < j < k < n, by orthogonality, (9_1)2(n7j)+3,1 =0forl1 <j<k<n.
Since (Ady®)a(n—r+1),1 = 0, another computation shows (Adyd)an—r+1),1 = gz(n,k)’Q(n,k)(g_l)g(n,k+1)’1.
Hence (g_l)z(n,j)Jrg‘l = gon+1,2j+1 = O for all 5. To complete the proof note that, g1 2541 = 0 = gony1,2j—1 =

0forall 1 <j<nandg¢g’Qg=Q imply that 92j41,1 = 0= g2j_12n41 forall 1 < j < n.
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By the claim we can write

gy = g Mo (K"*l @ - .Klfn) oM (6.4.6)
)\71

where ¢’ is an SOg(n — 1,n) gauge transformation which acts on the SOq(n — 1, n)-Hitchin component. But
by Hitchin’s parameterization [Hit92] of the Hitchin component we have ¢’ = Id. Furthermore, the gauge

transformation g, in (6.4.6) with ¢’ = Id acts on the data (M, u,v,q2,q4, "+ ,gon—2) as

(M,/,L,I/, 42,44, ;q2'n72) —g)\> <M7 )\/j/a )‘_1V7 42,44, ;q2n72) .

Thus up to this C* action, the tuple (M, u, v, q2,q4," - ,qan—2) determines a point in M(SO¢(n,n+1)). O

Proposition 6.4.8. The dimension of the space of Higgs bundles parameterized by (M, p,v,q2, -+ ,Gan—2)

is maximal.

Proof. Like the SOg(2,3) Gothen components, the space of (M, u,v) (where (M, u,v) = (M, A\, \"1v)) is
parameterized by a rank d + n(2g — 2) vector bundle over over Sym~%t7(29-2) (). This space has complex
dimension g — 1 —d+n(2g —2) + d+ n(2g — 2) = (2n+ 1)(3g — 3). Thus the space parameterized by tuples

(M, p,v,q2, -+, qan—2) has complex dimension
Bg—3)+(7g—=7)+---(2n+1)(g — 1) = maxdim(M(SO¢(n,n + 1)).

O

Remark 6.4.9. So far we have described an open set around the minima which is the same dimension as

the moduli space. To prove that this defines a connected component, we will show that it is also closed.
Lemma 6.4.10. The open set parameterized by (M, p, v, qa, -+ ,qan—2) is closed in M(SOg(n,n + 1)).

Proof. Since for all A € C* the tuples (M, u,v, g2, ,Gon_2) and (M, A\, A" v, qa, -+, qan_2) are isomor-
phic, we can normalize the norm of the nonzero section p. Let (M, ut, v, L, -+, qb,,_5) be a diverging family
in the parameters with the norm of ! normalized to 1. We claim that the family of Higgs bundles (&, ¢)
corresponding to this family diverges in the moduli space M (SOq(n,n+1)). Indeed, since the Hitchin fibra-
tion is proper, if the norms of any of the parameters v', g5, -+ , ¢, _5 go to infinity then the corresponding

point in the Hitchin base associated to ¢; also goes to infinity. Thus the family (£, ¢;) diverges. O
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Putting together Proposition 6.4.6, Proposition 6.4.8 and Lemma 6.4.10 we obtain Theorem 6.4.1.

Namely, there is a for each 0 < d < n(2g — 2) there is a smooth connected component M 4(SOg(n,n+ 1)) of
n—1

M(SO¢(n,n+1)) which is smooth and parameterized by F&x @ H°(X, K%) where F&—Sym~4tn(2n=2)(3)

Jj=1
is a vector bundle of rank d + (2n — 1)(g — 1). Moreover, M,,(24—2)(SO¢(n,n + 1)) = Hit(SOg(n,n + 1)).
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