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ABSTRACT

Consider the problem of estimating the Shannon entropy of a distribution

over k elements from n independent samples. We obtain the minimax mean-

square error within universal multiplicative constant factors if n exceeds a

constant factor of k/log(k); otherwise there exists no consistent estimator.

This refines the recent result of Valiant and Valiant (2011) that the mini-

mal sample size for consistent entropy estimation scales. The apparatus of

best polynomial approximation plays a key role in both the construction of

optimal estimators and, via a duality argument, the minimax lower bound.
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CHAPTER 1

INTRODUCTION

1.1 Property estimation on large alphabet

Learning complicated objects is difficult and sometimes requires intolerably

many resources: In a data center network, learning the entire network traffic

consisting of billions of flows is impossible in substance. However, in many

cases, we are not most interested in the object per se but certain properties

thereof, which is more tractable: In a complicated network, the most impor-

tant performance measures are the throughput and the latency, which are

mostly impacted by only a tiny number of large flows.

For various purposes, properties are the key evaluation criterion: In card

games in a casino, fairness is partly contributed to by the uniformity of the

card sequence, and the number of card shuffles needed is referred to as the

mixing time; in the study of the human genome, the amount of unknown

variations is connected to the total number distinct genes (both known and

unknown), i.e., its support size; in the design of large scale networks, connec-

tivity is often characterized by the graph expansion property; in the storage

of big files, compressibility is measured by the randomness of the data, which

is often quantified by the entropy. Understanding those properties is the key

to precise evaluation.

Property estimation is one major subject studied by statisticians for hun-

dreds of years. In classical applications the objects are often simple. Learn-

ing their properties is naturally accomplished by first estimating the objects

themselves very well and then extracting the desired properties. In modern

tasks this intuitive approach often fails due to the complication of objects:

the estimation of the entire object is often highly inaccurate. The complica-

tion in the problem of estimating properties of a distribution, such as entropy

and support size, is mainly reflected by the large alphabet. For example, in
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the study of the human genome, sample collection is difficult and expensive,

where samples are insufficient to capture the whole alphabet: the genes.

Those new tasks on large alphabet urge new and fast algorithms, and also

demand new theory to quantify what is the best we can do.

The main focus of this thesis is the estimation of the Shannon entropy.

Analogous techniques have subsequently been used in [1] to obtain sharp

minimax risk for estimating the power sum, and used in [2] to obtain the

sharp sample complexity for estimating the support size (number of distinct

elements).

1.2 Entropy estimation

Entropy estimation has found numerous applications across various fields,

such as neuroscience [3], physics [4], telecommunication [5], biomedical re-

search [6], etc. Furthermore, it serves as the building block for estimating

other information measures expressible in terms of entropy, such as mutual

information and directed information, which are instrumental in machine

learning applications such as learning graphical models [7, 8, 9, 10].

Let P be a distribution over an alphabet of cardinality k. Let X1, . . . , Xn

be independently and identically distributed (i.i.d.) samples drawn from

P . Without loss of generality, we shall assume that the alphabet is [k] ≜
{1, . . . , k}. To perform statistical inference on the unknown distribution

P or any functional thereof, a sufficient statistic is the histogram N ≜
(N1, . . . , Nk), where

Nj =
n∑

i=1

1{Xi=j}

records the number of occurrences of j ∈ [k] in the sample. Then N ∼
Multinomial(n, P ). The problem of focus is to estimate the Shannon entropy

of the distribution P :

H(P ) =
k∑

i=1

pi log
1

pi
.

From a statistical standpoint, the problem of entropy estimation falls un-

der the category of functional estimation, where we are not interested in

directly estimating the high-dimensional parameter (the distribution P ) per

se, but rather a function thereof (the entropy H(P )). Estimating a scalar
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functional has been intensively studied in nonparametric statistics, e.g., es-

timate a scalar function of a regression function such as linear functional

[11, 12], quadratic functional [13], Lq norm [14], etc. To estimate a function,

perhaps the most natural idea is the “plug-in” approach, namely, first esti-

mate the parameter and then substitute into the function. This leads to the

commonly used plug-in estimator, i.e., the empirical entropy,

Ĥplug-in = H(P̂ ), (1.1)

where P̂ = (p̂1, . . . , p̂k) denotes the empirical distribution with p̂i =
Ni

n
. As

frequently observed in functional estimation problems, the plug-in estimator

can suffer from severe bias (see [15, 16] and the references therein). Indeed, al-

though Ĥplug-in is asymptotically efficient and minimax (cf., e.g., [17, Sections

8.7 and 8.9]), in the “fixed-k-large-n” regime, it can be highly suboptimal

in high dimensions, where, due to the large alphabet size and resource con-

straints, we are constantly contending with the difficulty of undersampling

in applications such as

• corpus linguistics: about half of the words in the Shakespearean canon

only appeared once [18];

• network traffic analysis: many customers or website users are only seen

a small number of times [19];

• analyzing neural spike trains: natural stimuli generate neural responses

of high timing precision resulting in a massive space of meaningful

responses [20, 21, 22].

Statistical inference on large alphabets with insufficient samples has a rich

history in information theory, statistics and computer science, with early

contributions dating back to Fisher [23], Good and Turing [24], Efron and

Thisted [18] and recent renewed interest in compression, prediction, classifi-

cation and estimation aspects for large-alphabet sources [25, 26, 27, 28, 29].

However, none of the current results allow a general understanding of the

fundamental limits of estimating information quantities of distributions on

large alphabets. The particularly interesting case is when the sample size

scales sublinearly with the alphabet size.
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To investigate the decision-theoretic fundamental limit, we consider the

minimax quadratic risk of entropy estimation:

R∗(k, n) ≜ inf
Ĥ

sup
P∈Mk

EP [(Ĥ(N)−H(P ))2], (1.2)

where Mk denotes the set of probability distributions on [k]. The goal is

a) to provide a constant-factor approximation of the minimax risk R∗(k, n),

b) to devise a linear-time estimator that provably attains R∗(k, n) within

universal constant factors. Our main result is the characterization of the

minimax risk within universal constant factors:

Theorem 1. If n ≳ k
log k

,1 then

R∗(k, n) ≍
(

k

n log k

)2

+
log2 k

n
. (1.3)

If n ≲ k
log k

, there exists no consistent estimators, i.e., R∗(k, n) ≳ 1.

To interpret the minimax rate in Equation (1.3), we note that the second

term corresponds to the classical “parametric” term inversely proportional

to 1
n
, which is governed by the variance and the central limit theorem (CLT).

The first term corresponds to the squared bias, which is the main culprit

in the regime of insufficient samples. Note that R∗(k, n) ≍ ( k
n log k

)2 if and

only if n ≲ k2

log4 k
, where the bias dominates. As a consequence, the minimax

rate in Theorem 1 implies that to estimate the entropy within ϵ bits with

probability, say 0.9, the minimal sample size is given by

n ≍ log2 k

ϵ2
∨ k

ϵ log k
. (1.4)

Next we evaluate the performance of plug-in estimator in terms of its

worst-case mean-square error

Rplug-in(k, n) ≜ sup
P∈Mk

EP [(Ĥplug-in(N)−H(P ))2]. (1.5)

Analogous to Theorem 1 which applies to the optimal estimator, the risk of

1For any sequences {an} and {bn} of positive numbers, we write an ≳ bn or bn ≲ an
when an ≥ cbn for some absolute constant c. Finally, we write an ≍ bn when both an ≳ bn
and an ≲ bn hold.
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the plug-in estimator admits a similar characterization (see Section 5.1 for

details):

Proposition 1. If n ≳ k, then

Rplug-in(k, n) ≍
(
k

n

)2

+
log2 k

n
. (1.6)

If n ≲ k, then Ĥplug-in is inconsistent, i.e., Rplug-in(k, n) ≳ 1.

Note that the first and second terms in the risk in Equation (1.6) again

correspond to the squared bias and variance respectively. While it is known

that the bias can be as large as k
n
[30], the variance of the plug-in estimator

is at most a constant factor of log2 n
n

, regardless of the alphabet size (see, e.g.,

[31, Remark (iv), p. 168]). This variance bound can in fact be improved to
log2(k∧n)

n
by a more careful application of Steele’s inequality [32], and hence the

mean-square error (MSE) is upper bounded by
(
k
n

)2
+ log2(k∧n)

n
≍
(
k
n

)2
+ log2 k

n
,

which turns out to be the sharp characterization.

Comparing Equation (1.3) and Equation (1.6), we reach the following ver-

dict on the plug-in estimator: Empirical entropy is rate-optimal, i.e., achiev-

ing a constant factor of the minimax risk, if and only if we are in the “data-

rich” regime n = Ω( k2

log2 k
). In the “data-starved” regime of n = o

(
k2

log2 k

)
,

empirical entropy is strictly rate-suboptimal.

1.3 Previous results on entropy estimation

Below we give a concise overview of the previous results on entropy estima-

tion. There also exists a vast amount of literature on estimating (differential)

entropy on continuous alphabets which is outside the present focus (see the

survey [33] and the references therein).

Fixed alphabet For fixed distribution P and n → ∞, Antos and Kon-

toyiannis [31] showed that the plug-in estimator is always consistent and the

asymptotic variance of the plug-in estimator is obtained in [34]. However,

the convergence rate of the bias can be arbitrarily slow on a possibly infinite
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alphabet. The asymptotic expansion of the bias is obtained in, e.g., [35, 36]:

E[Ĥplug-in(N)] = H(P )− S(P )− 1

2n
+

1

12n2

(
1−

k∑
i=1

1

pi

)
+O(n−3), (1.7)

where S(P ) =
∑

i 1{pi>0} denote the support size. This inspired various

types of bias reduction to the plug-in estimator, such as the Miller-Madow

estimator [35]:

ĤMM = Ĥplug-in +
Ŝ − 1

2n
, (1.8)

where Ŝ is the number of observed distinct symbols.

Large alphabet It is well-known that to estimate the distribution P itself,

say, with total variation loss at most a small constant, we need at least

Θ(k) samples (see, e.g., [37]). However, to estimate the entropy H(P ) which

is a scalar function, it is unclear from first principles whether n = Θ(k)

is necessary. This intuition and the inadequacy of plug-in estimator have

already been noted by Dobrushin [38], who wrote:

...This method (empirical entropy) is very laborious if m, the

number of values of the random variable is large, since in this

case most of the probabilities pi are small and to determine each

of them we need a large sample of length N , which leads to a lot of

work. However, it is natural to expect that in principle the prob-

lem of calculating the single characteristic H of the distribution

(p1, . . . , pm) is simpler than calculating the m-dimensional vector

(p1, . . . , pm), and that therefore one ought to seek a solution of the

problem by a method which does not require reducing the first and

simpler problem to the second and more complicated problem.

Using non-constructive arguments, Paninski first proved that it is possible

to consistently estimate the entropy using sublinear sample size, i.e., there

exists nk = o(k), such that R∗(k, nk) → 0 as k → ∞ [39]. Valiant proved that

no consistent estimator exists, i.e., R∗(k, nk) ≳ 1 if n ≲ k
exp(

√
log k)

[40]. The

sharp scaling of the minimal sample size of consistent estimation is shown to

be k
log k

in the breakthrough results of Valiant and Valiant [41, 42]. However,

the optimal sample size as a function of alphabet size k and estimation error

ϵ has not been completely resolved. Indeed, an estimator based on linear
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programming is shown to achieve an additive error of ϵ using k
ϵ2 log k

samples

[29, Theorem 1], while k
ϵ log k

samples are shown to be necessary [41, Corollary

10]. This gap is partially amended in [43] by a different estimator, which

requires k
ϵ log k

samples but only valid when ϵ > k−0.03. Theorem 1 generalizes

their result by characterizing the full minimax rate and the sharp sample

complexity is given by Equation (1.4).

We briefly discuss the difference between the lower bound strategy of [41]

and ours. Since the entropy is a permutation-invariant functional of the

distribution, a sufficient statistic for entropy estimation is the histogram of

the histogram N :

hi =
k∑

j=1

1{Nj=i}, i ∈ [n], (1.9)

also known as histogram order statistics [30], profile [25], or fingerprint [41],

which is the number of symbols that appear exactly i times in the sample.

A canonical approach to obtain minimax lower bounds for functional esti-

mation is Le Cam’s two-point argument [44, Chapter 2], i.e., finding two

distributions which have very different entropy but induce almost the same

distribution for the sufficient statistics, in this case, the histogram Nk
1 or the

fingerprints hn
1 , both of which have non-product distributions. A frequently

used technique to reduce dependence is Poisson sampling (see Chapter 3),

where we relax the fixed sample size to a Poisson random variable with mean

n. This does not change the statistical nature of the problem due to the ex-

ponential concentration of the Poisson distribution near its mean. Under the

Poisson sampling model, the sufficient statistics N1, . . . , Nk are independent

Poissons with mean npi; however, the entries of the fingerprint remain highly

dependent. To contend with the difficulty of computing statistical distance

between high-dimensional distributions with dependent entries, the major

tool in [41] is a new CLT for approximating the fingerprint distribution by

quantized Gaussian distribution, which is parameterized by the mean and

covariance matrices and hence more tractable. This turns out to improve the

lower bound in [40] obtained using Poisson approximation.

In contrast, we shall not deal with the fingerprint directly, but rather use

the original sufficient statistics Nk
1 due to their independence endowed by

the Poissonized sampling. Our lower bound relies on choosing two random

distributions (priors) with almost i.i.d. entries which effectively reduces the
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problem to one dimension, thus circumventing the hurdle of dealing with

high-dimensional non-product distributions. The main intuition is that a

random vector with i.i.d. entries drawn from a positive unit-mean distribu-

tion is not exactly but sufficiently close to a probability vector due to the law

of large numbers, so that effectively it can be used as a prior in the minimax

lower bound.

While the focus of this thesis is estimating the entropy under the additive

error criterion, approximating the entropy multiplicatively has been consid-

ered in [45]. It is clear that in general approximating the entropy within a

constant factor is impossible with any finite sample size (consider Bernoulli

distributions with parameter 1 and 1−2−n, which are not distinguishable with

n samples); nevertheless, when the entropy is large enough, i.e., H(P ) ≳ γ/η,

it is possible to approximate the entropy within a multiplicative factor of γ

using n ≲ k(1+η)/γ2
log k number of samples ([45, Theorem 2]).
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CHAPTER 2

BEST POLYNOMIAL APPROXIMATION

The theory of approximation has a long history. It represents one logic

of mathematical analysis that pursues the simplification of more complex

objects. Taylor’s expansion is one approximation of abstract differentiable

functions by polynomials. It also has profound and extensive impact in sci-

entific and engineering fields. Truncated Fourier series is one approximation

of periodic functions by trigonometrics which is extended to Fourier trans-

form laying a foundation of signal processing. Closely related discrete cosine

transform (DCT) after quantization is used in JPEG files we view every day.

With little perceptible loss of quality, it saves a lot of storage space. More

generally, the theory of approximation deals with the projection of a complex

space to a simpler subspace, often a finite-dimensional subspace. A funda-

mental theorem is that in linear normed space, the best approximation by

finite linearly independent elements does exist. Further, in Hilbert space,

the best approximation has a nice geometric interpretation characterized by

orthogonal principle.

The proof of both the upper and the lower bound in Theorem 1 relies on

the apparatus of best polynomial approximation. Our inspiration comes from

previous work on functional estimation in Gaussian mean models [14, 46].

Nemirovski (credited in [47]) pioneered the use of polynomial approximation

in functional estimation and showed that unbiased estimators for the trun-

cated Taylor series of the smooth functionals is asymptotically efficient. This

strategy is generalized to non-smooth functionals in [14] using best polyno-

mial approximation and in [46] for estimating the ℓ1-norm in Gaussian mean

model.
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2.1 Estimator design via polynomial approximation

On the constructive side, the main idea is to trade bias with variance. Under

the i.i.d. sampling model, it is easy to show (see, e.g., [30, Proposition 8]) that

to estimate a functional f(P ) using n samples, an unbiased estimator exists

if and only if f(P ) is a polynomial in P of degree at most n. Similarly, under

Poisson sample model, f(P ) admits an unbiased estimator if and only if f is

real analytic. Consequently, there exists no unbiased entropy estimator with

or without Poissonized sampling. Therefore, a natural idea is to approximate

the entropy functional by polynomials which enjoy unbiased estimation, and

reduce the bias to at most the uniform approximation error. The choice of

the degree aims to strike a good bias-variance balance.

In fact, the use of polynomial approximation in entropy estimation is not

new. In [4], the authors considered a truncated Taylor expansion of log x at

x = 1 which admits an unbiased estimator, and proposed to estimate the

remainder term using Bayesian techniques; however, no risk bound is given

for this scheme. Paninski also studied how to use approximation by Bernstein

polynomials to reduce the bias of the plug-in estimators [30], which forms

the basis for proving the existence of consistent estimators with sublinear

sample complexity in [39].

Shortly before we posted our result to arXiv, we learned that Jiao et al. [1]

independently used the idea of best polynomial approximation in the upper

bound of estimating Shannon entropy and power sums with a slightly differ-

ent estimator which also achieves the minimax rate. For more recent results

on estimating Shannon entropy, support size, Rényi entropy and other distri-

butional functionals on large alphabets, see [48, 49, 2, 50, 51]. In particular,

[51] sharpened Theorem 1 by giving a constant-factor characterization of the

minimax risk in the regime of n ≲ k
log k

using similar techniques.

2.2 Moment matching and best polynomial

approximation

While the use of best polynomial approximation on the constructive side is

admittedly natural, the fact that it also arises in the optimal lower bound

is perhaps surprising. As carried out in [14, 46], the strategy is to choose
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two priors with matching moments up to a certain degree, which ensures the

impossibility to test. The minimax lower bound is then given by the maximal

separation in the expected functional values subject to the moment matching

condition. This problem is the dual of best polynomial approximation in the

optimization sense. For entropy estimation, this approach yields the optimal

minimax lower bound, although the argument is considerably more involved

due to the extra constraint imposed by probability vectors.

In the remainder of this section we discuss the relationship between mo-

ment matching and best polynomial approximation and, in particular, pro-

vide a short proof that they are dual of each other. Denote by PL the set of

polynomials of degree L and let g be a continuous function on the interval

[a, b]. Abbreviate by Ê∗ the best uniform approximation error

Ê∗ ≜ EL(g, [a, b]) ≜ inf
p∈PL

sup
x∈[a,b]

|g(x)− p(x)| .

Let SL = {(X,X ′) ∈ [a, b]2 : E [Xj] = E [X ′j] , j = 1, . . . , L}. For any poly-

nomial p ∈ PL, we have

E∗ ≜ sup
(X,X′)∈SL

E [g(X)]− E [g(X ′)]

= sup
(X,X′)∈SL

E [g(X)− p(X)]− E [g(X ′)− p(X ′)],

and therefore by triangle inequality

E∗ = inf
p∈PL

sup
(X,X′)∈SL

E [g(X)− p(X)]− E [g(X ′)− p(X ′)]

≤ 2 inf
p∈PL

sup
x∈[a,b]

|g(x)− p(x)| = 2EL(g, [a, b]).

For the achievability part, Chebyshev alternating theorem [52, Theorem

1.6] states that there exists a (unique) polynomial p∗ ∈ PL and at least

L + 2 points a ≤ x1 < · · · < xL+2 ≤ b and α ∈ {0, 1} such that g(xi) −
p∗(xi) = (−1)i+αÊ∗. Fix any l = 0, 1, . . . , L, define a Lagrange interpolation

polynomial

fl(x) ≜
L+2∑
j=1

xl
j

∏
v ̸=j(x− xv)∏
v ̸=j(xj − xv)

satisfying that fl(xj) = xl
j for j = 1, . . . , L + 2. Since fl has degree L + 1,
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it must be that fl(x) = xl. Note that the coefficient of xL+1 of polynomial

fl is 0, i.e.,
∑

i x
l
ibi = 0 where bi ≜ (

∏
v ̸=i(xi − xv))

−1. Define wi =
2bi∑
j |bj |

,

then
∑

i |wi| = 2. When l = 0 then
∑

i bi = 0 so
∑

i wi = 0. Note that wi

change signs alternatively. Construct discrete random variables X,X ′ with

distributions P [X = xi] = |wi| for i odd and P [X ′ = xi] = |wi| for i even.

Then (X,X ′) ∈ SL. The property of those L+2 points that g(xi)− p∗(xi) =

(−1)i+αÊ∗ yields that |E [g(X)− p∗(X)]− E [g(X ′)− p∗(X ′)]| = 2Ê∗.

Remark 1. Alternatively, the achievability part can be argued from an op-

timization perspective (zero duality gap, see [53, Exercise 8.8.7, p. 236]), or

using the Riesz representation of linear operators as in [54], which has been

used in [14] and [46].

2.3 Best polynomial approximation of the logarithm

function

As a concrete example of best polynomial approximation, we consider the

approximation of logarithmic function. In particular we provide a proof

that, for some universal positive constants c, c′, L0 such that for any L ≥ L0,

E⌊cL⌋(log, [L
−2, 1]) ≥ c′, (2.1)

which will be useful in the proof of our minimax lower bound.

For definiteness let Em(f) ≜ Em(f, [−1, 1]). In the sequel we shall slightly

abuse the notation by assuming that cL ∈ N, for otherwise the desired state-

ment holds with c replaced by c/2. Through simple linear transformation we

see that EcL(log, [L
−2, 1]) = EcL(fL) where

fL(x) = − log

(
1 + x

2
+

1− x

2L2

)
.

The difficulty in proving the desired

EcL(fL) ≳ 1 (2.2)

lies in the fact that the approximand fL changes with the degree L. In fact,

the following asymptotic result has been shown in [55, Section 7.5.3, p. 445]:
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EL(log(a − x)) = 1+o(1)

L
√
a2−1(a+

√
a2−1)L

for fixed a > 1 and L → ∞. In our

case EcL(fL) = EcL(log(a− x)) with a = 1+L−2

1−L−2 . The desired Equation (2.2)

would follow if one substituted this a into the asymptotic expansion of the

approximation error, which, of course, is not a rigorous approach. To prove

Equation (2.2), we need non-asymptotic lower and upper bounds on the

approximation error. There exist many characterizations of approximation

error, such as Jackson’s theorem, in term of various moduli of continuity of

the approximand. Let ∆m(x) = 1
m

√
1− x2 + 1

m2 and define the following

modulus of continuity for f (see, e.g., [52, Section 3.4]):

τ1(f,∆m) = sup{|f(x)− f(y)| : x, y ∈ [−1, 1], |x− y| ≤ ∆m(x)}.

We first state the following bounds on τ1 for fL:

Lemma 1 (Direct bound).

τ1(fL,∆m) ≤ log

(
2L2

m2

)
, ∀m ≤ 0.1L. (2.3)

Lemma 2 (Converse bound).

τ1(fL,∆L) ≥ 1,∀L ≥ 10. (2.4)

From [52, Theorem 3.13, Lemma 3.1] we know that Em(fL) ≤ 100τ1(fL,∆m).

Therefore, for all c ≤ 10−7 < 0.1, the direct bound in Lemma 1 gives us

1

L

cL∑
m=1

Em(fL) ≤
100

L

cL∑
m=1

log

(
2L2

m2

)
= 100c log 2 +

200

L
log

LcL

(cL)!

<
1

400
− 100

L
log(2πcL), (2.5)

where the last inequality follows from Stirling’s approximation n! >
√
2πn(n

e
)n.

We apply the converse result for approximation in [52, Theorem 3.14] that

τ1(fL,∆L) ≤
100

L

L∑
m=0

Em(fL), (2.6)

where E0(fL) = logL. Assembling Equation (2.4)–Equation (2.6), we obtain

13



that, for all c ≤ 10−7 and L > 10 ∨
(
100× 400 log 1

2πc

)
,

1

L

L∑
m=cL+1

Em(fL) ≥
1

100
−

(
1

L
E0(fL) +

1

L

cL∑
m=1

Em(fL)

)

≥ 1

100
−
(

1

400
+

100 log 1
2πc

L

)
>

1

200
.

By definition, the approximation error Em(fL) is a decreasing function of the

degree m. Therefore for all c ≤ 10−7 and L > 4× 104 log 1
2πc

,

EcL(fL) ≥
1

L− cL

L∑
m=cL+1

Em(fL) ≥
1

L

L∑
m=cL+1

Em(fL) ≥
1

200
.

Remark 2. From the direct bound Lemma 1 we know that EcL(log, [1/L
2, 1]) ≲

1. Therefore the bound Equation (2.1) is in fact tight: EcL(log, [1/L
2, 1]) ≍ 1.

Proof of Lemmas 1 and 2. First we show Equation (2.3). Note that

τ1(fL,∆m) = sup
x∈[−1,1]

sup
y:|x−y|≤∆m(x)

|fL(x)− fL(y)|.

For fixed x ∈ [−1, 1], to decide the optimal choice of y we need to consider

whether ξ1(x) ≜ x−∆m(x) ≥ −1 and whether ξ2(x) ≜ x+∆m(x) ≤ 1. Since

ξ1 is convex, ξ1(−1) < −1 and ξ1(1) > −1, then ξ1(x) > −1 if and only if

x > xm, where xm is the unique solution to ξ1(x) = −1, given by

xm =
m2 −m4 +

√
−m2 + 3m4

m2 +m4
. (2.7)

Note that ∆m is an even function and thus ξ2(x) = −ξ1(−x). Then ξ2(x) < 1

if and only if x < −xm.

Since fL is strictly decreasing and convex, for fixed x and d > 0 we have

fL(x−d)−fL(x) > fL(x)−fL(x+d) > 0 as long as −1 < x−d < x+d < 1.

If m ≥ 2 since ξ1(0) > −1 then xm < 0 and −xm > 0. Therefore,

τ1(fL,∆m) = sup
x<xm

{fL(x)− fL(ξ2(x))} ∨ sup
x<xm

{fL(−1)− fL(x)}

∨ sup
x≥xm

{fL(ξ1(x))− fL(x)} .

Note that the second term in the last inequality is dominated by the third
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term since fL(ξ1(xm)) − fL(xm) = fL(−1) − fL(xm) > fL(−1) − fL(x) for

any x < xm. Hence,

τ1(fL,∆m) = sup
x∈[−1,xm)

{fL(x)− fL(ξ2(x))} ∨ sup
x∈[xm,1]

{fL(ξ1(x))− fL(x)}

= sup
x∈[−1,xm)

{log (1 + βL(x))} ∨ sup
x∈[xm,1]

{− log (1− βL(x))} , (2.8)

where βL(x) ≜ ∆m(x)

x+L2+1
L2−1

. If m = 1 then x1 > 0 and −x1 < 0 by Equation (2.7)

and

τ1(fL,∆m) = sup
x<xm

{fL(x)− fL(ξ2(x) ∧ 1)} ∨ sup
x<xm

{fL(−1)− fL(x)}

∨ sup
x≥xm

{fL(ξ1(x))− fL(x)} .

Since fL(ξ2(x) ∧ 1) ≥ fL(ξ2(x)), by the same argument, Equation (2.8) re-

mains a valid upper bound of τ1(fL,∆1). Next we will show separately that

the two terms in Equation (2.8) both satisfy the desired upper bound.

For the first term in Equation (2.8), note that

βL(x) =
1
m

√
1− x2 + 1

m2

x+ 1 + 2
L2−1

≤ 1

m2

L
√
1− x2 + 1

(x+ 1) + 2
L2

=
L2

m2

√
1− x2 + 1

L

L (x+ 1) + 2
L

.

One can verify that
√
1− x2 + 1

L
≤ L (x+ 1)+ 2

L
for any x ∈ [−1, 1]. There-

fore,

log (1 + βL(x)) ≤ log

(
1 +

L2

m2

)
, ∀x ∈ [−1, 1]

and, consequently,

sup
x∈[−1,xm)

{log (1 + βL(x))} ≤ log

(
2L2

m2

)
, ∀m ≤ L. (2.9)

For the second term in Equation (2.8), it follows from the derivative of

βL(x) that it is decreasing when x > 1−L2

1+L2 . From Equation (2.7) we have

xm > 1−m2

1+m2 and hence xm > 1−L2

1+L2 when m ≤ L. So the supremum is achieved

exactly at the left end of [xm, 1], that is:

sup
x∈[xm,1]

{− log (1− βL(x))} = − log (1− βL(xm)) = log

(
1 + xm

2
L2 +

1− xm

2

)
.
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From Equation (2.7) we know that xm ≥ −1 and xm < −1 + 3.8
m2 . Therefore

1−xm

2
≤ 1 and xm+1

2
< 1.9

m2 . For m ≤ 0.1L, we have

sup
x∈[xm,1]

{− log (1− βL(x))} ≤ log

(
1 +

1.9L2

m2

)
≤ log

(
2L2

m2

)
. (2.10)

Plugging Equation (2.9) and Equation (2.10) into Equation (2.8), we com-

plete the proof of Lemma 1.

Next we prove Equation (2.4). Recall that xL −∆L(xL) = −1. By defini-

tion,

τ1(fL,∆L) ≥ fL(xL −∆L(xL))− fL(xL) = log

(
1 + xL

2
L2 +

1− xL

2

)
≥ log

(
2L2 +

√
−L2 + 3L4

2(L2 + 1)
+

2L4 −
√
−L2 + 3L4

2(L2 + L4)

)
≥ 1

when L ≥ 10, where we used the close-form expression of xL in Equa-

tion (2.7).
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CHAPTER 3

POISSON SAMPLING

The multinomial distribution of the sufficient statistic N = (N1, . . . , Nk) is

difficult to analyze because of the dependency. A commonly used technique is

the so-called Poisson sampling, where we relax the sample size n from being

deterministic to a Poisson random variable n′ with mean n. Under this

model, we first draw the sample size n′ ∼ Poi(n), then draw n′ i.i.d. samples

from the distribution P . The main benefit is that now the sufficient statistics

Ni
ind∼ Poi(npi) are independent, which significantly simplifies the analysis.

In view of the marginal distribution of histogram, this is the commonly used

Poisson approximation for binomial distribution: the histogram under fixed

samples size Ni ∼ Binomial(n, pi) is approximated by Ni ∼ Poi(npi).

Analogous to the minimax risk Equation (1.2), we define its counterpart

under the Poisson sampling model:

R̃∗(k, n) ≜ inf
Ĥ

sup
P∈Mk

E(Ĥ(N)−H(P ))2, (3.1)

where Ni
ind∼ Poi(npi) for i = 1, . . . , k. In view of the exponential tail of

Poisson distributions, the Poissonized sample size is concentrated near its

mean n with high probability, which guarantees that the minimax risk under

Poisson sampling is provably close to that with fixed sample size. Indeed,

the have the following inequalities which allow us to focus on the risk of the

Poisson model:

Proposition 2. For any α > 0,

R∗(k, n) ≥ R̃∗(k, (1 + α)n)− exp (−n(α− log(1 + α))) log2 k

Proof. Fix an arbitrary distribution P . Let N = (N1, N2, . . .)
ind∼ Poi((1 +

α)npi) and let n′ =
∑

Ni ∼ Poi((1+α)n). Let Ĥn(·) be the optimal estimator
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of Shannon entropy for fixed sample size n, i.e.,

E(Ĥn(N)−H(P ))2 ≤ R∗(k, n), ∀ P ∈ Mk.

We construct an estimator for the Poisson sampling model by H̃(N) =

Ĥn′(N). We observe that conditioned on n′ = m, N ∼ Multinomial(m,P ).

Therefore,

E(H̃(N)−H(P ))2 =
∞∑

m=0

E

[(
Ĥn′(N)−H (P )

)2 ∣∣∣∣∣n′ = m

]
P[n′ = m]

≤
∞∑

m=0

R∗(k,m)P [n′ = m] .

Note that for fixed k, the minimax risk n 7→ R∗(k, n) is decreasing and

0 ≤ R∗(k, n) ≤ log2 k. Then,

R̃∗(k, (1 + α)n) ≤
∑
m≥n

R∗(k,m)P[n′ = m] + log2 kP[Poi((1 + α)n) < n]

≤ R∗(k, n) + exp(−n(α− log(1 + α))) log2 k,

where in the last inequality we used the Chernoff bound (see, e.g., [56, The-

orem 5.4]). The conclusion follows.

Proposition 3. For any 0 < β < 1,

R∗(k, n) ≤ R̃∗(k, (1− β)n)

1− exp(−nβ2/2)

Proof. This inequality is slightly more involved. First, by the minimax the-

orem (cf. e.g. [57, Theorem 46.5]),

R∗(k, n) = sup
π

inf
Ĥn

E[(Ĥn −H(P ))2], (3.2)

where π ranges over all probability distributions (priors) on the simplex Mk

and the expectation is over P ∼ π and X1, . . .
i.i.d.∼ P conditioned on P .

To this end, it is convenient to express the estimator as a function of the

original samples instead of the sufficient statistic (histogram). Consequently,

under the Poisson sampling model we have a sequence of estimators {Ĥm}.
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The Bayesian risk is a lower bound of the minimax risk, so, for any β < 1,

R̃∗(k, (1− β)n) ≥ sup
π

inf
{Ĥm}

E[(Ĥn′ −H(P ))2], (3.3)

where n′ ∼ Poi((1− β)). For any sequence of estimators {Ĥm},

E[(Ĥn′ −H(P ))2] =
∑
m≥0

E[(Ĥm −H(P ))2]P[n′ = m]

≥
n∑

m≥0

E[(Ĥm −H(P ))2]P[n′ = m].

Taking infimum on both sides, we obtain that

inf
{Ĥm}

E[(Ĥn′ −H(P ))2] ≥ inf
{Ĥm}

n∑
m≥0

E[(Ĥm −H(P ))2]P[n′ = m]

≥
n∑

m≥0

inf
Ĥm

E[(Ĥm −H(P ))2]P[n′ = m].

Note that the Bayesian risk infĤm
E[(Ĥm −H(P ))2] is monotonic decreasing

in the sample size m. Therefore,

inf
{Ĥm}

E[(Ĥn′ −H(P ))2] ≥ inf
Ĥn

E[(Ĥn −H(P ))2]P[n′ ≤ n]

≥ inf
Ĥn

E[(Ĥn −H(P ))2](1− exp(n(β + log(1− β))))

≥ inf
Ĥn

E[(Ĥn −H(P ))2](1− exp(−nβ2/2)), (3.4)

where we used Chernoff bound (see, e.g., [56, Theorem 5.4]) and the fact

that log(1 − x) ≤ −x − x2/2. Taking supremum over π on both sides of

Equation (3.4), the conclusion follows from Equation (3.3) and minimax

theorem Equation (3.2).

19



CHAPTER 4

MINIMAX LOWER BOUND

In this chapter we give converse results for entropy estimation and prove the

lower bound part of Theorem 1. It suffices to show that the minimax risk is

lower bounded by the two terms in Equation (1.3) separately, i.e.,

R∗(k, n) ≳ log2 k

n
,

and

R∗(k, n) ≳
(

k

n log k

)2

.

4.1 Le Cam’s two-point method

Our first lower bound follows from a simple application of Le Cam’s two-point

method : If two input distributions P and Q are sufficiently close such that

it is impossible to reliably distinguish between them using n samples with

error probability less than, say, 1
2
, then any estimator suffers a quadratic risk

proportional to the separation of the functional values |H(P )−H(Q)|2.

Proposition 4. For all k, n ∈ N,

R∗(k, n) ≳ log2 k

n
. (4.1)

Proof. For any pair of distributions P and Q, Le Cam’s two-point method

(see, e.g., [58, Section 2.4.2]) yields

R∗(k, n) ≥ 1

4
(H(P )−H(Q))2 exp(−nD(P∥Q)). (4.2)
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Therefore it boils down to solving the optimization problem:

sup{H(P )−H(Q) : D(P∥Q) ≤ 1/n}. (4.3)

Without loss of generality, assume that k ≥ 2. Fix an ϵ ∈ (0, 1) to be

specified. Let

P =

(
1

3(k − 1)
, . . . ,

1

3(k − 1)
,
2

3

)
,

Q =

(
1 + ϵ

3(k − 1)
, . . . ,

1 + ϵ

3(k − 1)
,
2− ϵ

3

)
.

(4.4)

Direct computation yields that

D(P∥Q) =
2

3
log

2

2− ϵ
+

1

3
log

1

ϵ+ 1
≤ ϵ2

and

H(Q)−H(P ) =
1

3

(
ϵ log(k − 1) + log 4 + (2− ϵ) log

1

2− ϵ
+ (1 + ϵ) log

1

ϵ+ 1

)
≥ 1

3
log(2(k − 1))ϵ− ϵ2.

Choosing ϵ = 1√
n
and applying Equation (4.2), we obtain the desired Equa-

tion (4.1).

Remark 3. In view of the Pinsker inequality D(P∥Q) ≥ 2TV2(P,Q) [59,

p. 58] as well as the continuity property of entropy with respect to the total

variation distance, |H(P )−H(Q)| ≤ TV(P,Q) log k
TV(P,Q)

for TV(P,Q) ≤ 1
4

[59, Lemma 2.7], we conclude that the best lower bound given by the two-

point method, i.e., the supremum in Equation (4.3), is on the order of log k√
n
.

Therefore the choice of the pair Equation (4.4) is optimal.

4.2 Le Cam’s method involving composite hypotheses

This section is devoted to outlining the broad strokes for proving the lower

bound by the first term of Equation (1.3). Since it can be shown that the

best lower bound provided by the two-point method is log2 k
n

(see Remark 3),

proving Equation (4.11) requires more powerful techniques. To this end,

we use a generalized version of Le Cam’s method involving two composite
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hypotheses (also known as fuzzy hypothesis testing in [58]):

H0 : H(P ) ≤ t versus H1 : H(P ) ≥ t+ d, (4.5)

which is more general than the two-point argument using only simple hy-

pothesis testing. Similarly, if we can establish that no test can distinguish

Equation (4.5) reliably, then we obtain a lower bound for the quadratic risk

on the order of d2. By the minimax theorem, the optimal probability of er-

ror for the composite hypotheses test is given by the Bayesian version with

respect to the least favorable priors. For Equation (4.5) we need to choose a

pair of priors, which, in this case, are distributions on the probability simplex

Mk, to ensure that the entropy values are separated.

4.2.1 Construction of the priors

The main idea for constructing the priors is as follows: First of all, the

symmetry of the entropy functional implies that the least favorable prior

must be permutation-invariant. This inspires us to use the following i.i.d.

construction. For concision, we focus on the case of n ≍ k
log k

for now and

our goal is to obtain an Ω(1) lower bound. Let U be a R+-valued random

variable with unit mean. Consider the random vector

P =
1

k
(U1, . . . , Uk),

consisting of i.i.d. copies of U . Note that P itself is not a probability dis-

tribution; however, the key observation is that, since E[U ] = 1, as long as

the variance of U is not too large, the weak law of large numbers ensures

that P is approximately a probability vector. Using a conditioning argument

we can show that the distribution of P can effectively serve as a prior. To

gain more insight, note that, for example, a deterministic U = 1 generates

a uniform distribution over [k], while a binary U ∼ 1
2
(δ0 + δ2) generates a

uniform distribution over roughly half the alphabet with the support set uni-

formly chosen at random. From this viewpoint, the cumulative distribution

function (CDF) of the random variable U
k
plays the role of the histogram of

the distribution P, which is the central object in the Valiant-Valiant lower

bound construction (see [41, Definition 3]).
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Next we outline the main ingredients in implementing Le Cam’s method:

1. Functional value separation: Define ϕ(x) ≜ x log 1
x
. Note that

H(P) =
k∑

i=1

ϕ

(
Ui

k

)
=

1

k

k∑
i=1

ϕ(Ui) +
log k

k

k∑
i=1

Ui, (4.6)

which concentrates near its mean E [H(P)] = E [ϕ(U)] + E [U ] log k by

law of large numbers. Therefore, given another random variable U ′ with

unit mean, we can obtain P′ similarly using i.i.d. copies of U ′. Then

with high probability, H(P) and H(P′) are separated by the difference

of their mean values, namely,

E [H(P)]− E [H(P′)] = E [ϕ(U)]− E [ϕ(U ′)] , (4.7)

which we aim to maximize.

2. Indistinguishability : Note that given P , the sufficient statistics satisfy

Ni
ind∼ Poi(npi). Therefore, if P is drawn from the distribution of P,

then N = (N1, . . . , Nk) are i.i.d. distributed according the Poisson

mixture E[Poi(nU/k)]. Similarly, if P is drawn from the prior of P′,

then N is distributed according to (E[Poi(nU ′/k)])⊗k. To establish the

impossibility of testing, we need the total variation distance between

the two k-fold product distributions to be strictly bounded away from

one, for which a sufficient condition is

TV(E[Poi(nU/k)],E[Poi(nU ′/k)]) ≤ c/k (4.8)

for some c < 1.

To conclude, we see that the i.i.d. construction fully exploits the inde-

pendence blessed by the Poisson sampling, thereby reducing the problem to

one dimension. This allows us to sidestep the difficulty encountered in [41]

when dealing with fingerprints which are high-dimensional random vectors

with dependent entries.

What remains is the following scalar problem: choose U,U ′ to maximize

|E [ϕ(U)] − E [ϕ(U ′)] | subject to the constraint in Equation (4.8). A com-

monly used proxy for bounding the total variation distance is moment match-

ing, i.e., E [U j] = E [U ′j] for all j = 1, . . . , L. Together with L∞-norm con-
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straints, a sufficiently large degree L ensures the total variation bound in

Equation (4.8). Combining the above steps, our lower bound is proportional

to the value of the following convex optimization problem (in fact, infinite-

dimensional linear programming over probability measures):

FL(λ) ≜ sup E [ϕ(U)]− E [ϕ(U ′)]

s.t. E[U ] = E[U ′] = 1

E[U j] = E[U ′j], j = 1, . . . , L,

U, U ′ ∈ [0, λ]

(4.9)

for some appropriately chosen L ∈ N and λ > 1 depending on n and k.

Finally, we connect the optimization problem in Equation (4.9) to the

machinery of best polynomial approximation: We prove that

FL(λ) ≥ 2EL(log, [1/λ, 1]). (4.10)

Due to the singularity of the logarithm at zero, the approximation error can

be made bounded away from zero if λ grows quadratically with the degree

L (see Section 2.3). Choosing L ≍ log k and λ ≍ log2 k leads to the im-

possibility of consistent estimation for n ≍ k
log k

. For n ≫ k
log k

, the lower

bound for the quadratic risk follows from relaxing the unit-mean constraint

in Equation (4.9) to E[U ] = E[U ′] ≤ 1 and a simple scaling argument. We

refer to the proofs in Section 4.2.2 for details.

Applying the steps described above, we have the following proposition:

Proposition 5. For all k, n ∈ N,

R∗(k, n) ≳
(

k

n log k

)2

∨ 1. (4.11)

4.2.2 Proof of Proposition 5

For 0 < ϵ < 1, define the set of approximate probability vectors by

Mk(ν) ≜
{
P ∈ Rk

+ :

∣∣∣∣∣
k∑

i=1

pi − 1

∣∣∣∣∣ ≤ ν

}
, (4.12)

which reduces to the probability simplex Mk if ν = 0.
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Generalizing the minimax quadratic risk in Equation (3.1) for Poisson

sampling, we define

R̃∗(k, n, ν) ≜ inf
Ĥ′

sup
P∈Mk(ν)

E(Ĥ ′(N)−H(P ))2, (4.13)

where N = (N1, . . . , Nk) and Ni
ind∼ Poi(npi) for i = 1, . . . , k. Since P

is not necessarily normalized, H(P ) may not carry the meaning of entropy.

Nevertheless, H is still valid a functional. The risk defined above is connected

to the risk Equation (1.2) for multinomial sampling by the following lemma,

which is an extension of Proposition 2.

Lemma 3. For any 0 ≤ ν ≤ 1 and any α > 0,

R∗(k, n) ≥ R̃∗
(
k,

1 + α

1− ν
n, ν

)
− exp (−n(α− log(1 + α))) log2 k

− ν(2 + ν)(log k + 1 + ν) log2 k.

To establish a lower bound of R̃∗(k, n, ν), we apply generalized Le Cam’s

method involving two composite hypotheses as in Equation (4.5), which en-

tails choosing two priors such that the entropy values are separated with

probability one. It turns out that this can be relaxed to separation on

average, if we can show that the entropy values are concentrated at their

respective means. This step is made precise in the next lemma:

Lemma 4. Let U and U ′ be random variables such that U,U ′ ∈ [0, λ] where

λ < k/e. Let E [U ] = E [U ′] ≤ 1 and |E [ϕ(U)]− E [ϕ(U ′)]| ≥ d. Then, for

any β < 1/2,

R̃∗(k, n, ν) ≥ (1− 2β)2d2

4

(
1− kTV(E [Poi (nU/k)] ,E [Poi (nU ′/k)])

− 2λ2

kν2
−

2λ2 log2 k
λ

kβ2d2

)
.

The following result gives a sufficient condition for Poisson mixtures to be

indistinguishable in terms of moment matching. Analogous results for Gaus-

sian mixtures have been obtained in [14, Section 4.3] using Taylor expansion

of the KL divergence and orthogonal basis expansion of χ2-divergence in [46,

Proof of Theorem 3]. For Poisson mixtures we directly deal with the total
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variation as the ℓ1-distance between the mixture probability mass functions.

The following lemma used the dual problem of moment matching, i.e., best

polynomial approximation, and the approximation-theoretical properties of

the Poisson distribution functions x 7→ e−xxj

j!
. We refer to Section 4.3 for

details.

Lemma 5. Let V and V ′ be random variables taking values on [0,Λ]. If

E[V j] = E[V ′j], j = 1, . . . , L, then

TV(E[Poi(V )],E[Poi(V ′)]) ≤ (Λ/2)L+1

(L+ 1)!

(
2 + 2Λ/2−L + 2Λ/(2 log 2)−L

)
. (4.14)

In particular,

TV(E[Poi(V )],E[Poi(V ′)]) ≤
(
eΛ

2L

)L

.

Also, if L > e
2
Λ then TV(E[Poi(V )],E[Poi(V ′)]) ≤ 2(Λ/2)L+1

(L+1)!
(1 + o(1)).

To apply Lemma 4 and Lemma 5 we need to construct two random vari-

ables, namely U and U ′, that have matching moments of order 1, . . . , L,

and large discrepancy in the mean functional value |E [ϕ(U)]− E [ϕ(U ′)]|, as
described in Section 4.2.1 and formulated in Equation (4.9). As shown in

Section 2.2, we can obtain U,U ′ with matching moments from the dual of

the best polynomial approximation of ϕ; however, we have little control over

the value of the common mean E[U ] = E[U ′] and it is unclear whether it is

less than one as required by Lemma 5. Of course we can normalize U,U ′ by

their common mean which preserves moments matching; however, the mean

value separation |E [ϕ(U)]− E [ϕ(U ′)]| also shrinks by the same factor, which

results in a suboptimal lower bound.

To circumvent this issue, we first consider auxiliary random variablesX,X ′

supported on an interval bounded away from 0; leveraging the property that

their “zeroth moments” are one, we then construct the desired random vari-

ables U,U ′ via a change of measure. To be precise, given η ∈ (0, 1) and any

random variables X,X ′ ∈ [η, 1] that have matching moments up to the Lth

order, we can construct U,U ′ from X,X ′ with the following distributions:

PU(du) =
(
1− E

[ η
X

])
δ0(du) +

α

u
PαX/η(du),

PU ′(du) =
(
1− E

[ η

X ′

])
δ0(du) +

α

u
PαX′/η(du),

(4.15)
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for some fixed α ∈ (0, 1). Since X,X ′ ∈ [η, 1] and thus E
[
η
X

]
,E
[

η
X′

]
≤ 1,

these distributions are well-defined and supported on [0, αη−1]. Furthermore,

Lemma 6. E [ϕ(U)] − E [ϕ(U ′)] = α(E[log 1
X
] − E[log 1

X′ ]) and E [U j] =

E [U ′j] , j = 1, . . . , L+ 1. In particular, E [U ] = E [U ′] = α.

Proof of Lemma 6. Note that

E [ϕ(U)] =

∫ (
u log

1

u

)
α

u
PαX/η(du) = αE

[
log

η

αX

]
and, analogously, E [ϕ(U ′)] = αE

[
log η

αX′

]
. Therefore, E [ϕ(U)]−E [ϕ(U ′)] =

α(E
[
log 1

X

]
− E

[
log 1

X′

]
). Moreover, for any j ∈ [L+ 1],

E
[
U j
]
=

∫
ujα

u
PαX/η(du) = E

[
(αX/η)j−1α

]
,

which coincides with E [U ′j] = E [(αX ′/η)j−1α], in view of the moment

matching condition of X and X ′ in Equation (4.16). In particular, E [U ] =

E [U ′] = α follows immediately.

To choose the best X,X ′, we consider the following auxiliary optimization

problem over random variables X and X ′ (or equivalently, the distributions

thereof):

E∗ = max E
[
log

1

X

]
− E

[
log

1

X ′

]
s.t. E

[
Xj
]
= E

[
X ′j] , j = 1, . . . , L,

X,X ′ ∈ [η, 1],

(4.16)

where 0 < η < 1. Note that Equation (4.16) is an infinite-dimensional linear

programming problem with finitely many constraints. Therefore it is natural

to turn to its dual. In Section 2.2 we show that the maximum E∗ exists and

coincides with twice the best L∞ approximation error of the log over the

interval [η, 1] by polynomials of degree L:

E∗ = 2EL(log, [η, 1]). (4.17)

By definition, this approximation error is decreasing in the degree L when

η is fixed; on the other hand, since the logarithm function blows up near

zero, for fixed degree L the approximation error also diverges as η vanishes.
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As shown in Equation (2.1), in order for the error to be bounded away from

zero which is needed in the lower bound, it turns out that the necessary and

sufficient condition is when η decays according to L−2.

Now we are ready to prove our main lower bound in Proposition 5.

Proof of Proposition 5. Let X and X ′ be the maximizer of Equation (4.16).

Now we construct U and U ′ from X and X ′ according to the recipe Equa-

tion (4.15). By Lemma 6, the first L+ 1 moments of U and U ′ are matched

with means equal to α which is less than one; moreover,

E [ϕ(U)]− E [ϕ(U ′)] = αE∗. (4.18)

Recall the universal constants c and c′ defined in Equation (2.1). Let L =

⌊c log k⌋ ≥ c log k
2

and η = log−2 k and then we have E∗ ≥ 2c′. Let α = c1k
n log k

and λ = αη−1 = c1k log k
n

. Using Equation (4.15) and Equation (4.18), we can

construct two random variables U,U ′ ∈ [0, λ] such that E[U ] = E[U ′] = α,

E[U j] = E[U ′j], for all j ∈ [L], and E [ϕ(U)] − E [ϕ(U ′)] = αE∗ ≥ 2c′α.

Picking c1 satisfying c1 < c/e and c
2
log c

ec1
> 2, then by Lemma 5 we have

TV(E [Poi (nU/k)] ,E [Poi (nU ′/k)]) ≤ 2k−2. Applying Lemma 4 with d =

2c′α and β = 1/4, ν = 4λ/
√
k we conclude that R̃∗(k, n, 4λ√

k
) ≳ α2 ≍ ( k

n log k
)2.

Finally applying Lemma 3 yields that R∗(k, n) ≳ ( k
n log k

)2 when n ≥ k
log k

.

For n ≤ k
log k

by monotonicity, R∗(k, n) ≥ R∗(k, k
log k

) ≳ 1.

Remark 4 (Structure of the least favorable priors). From the proof of Equa-

tion (4.17) in Section 2.2, we conclude that X,X ′ are in fact discrete random

variables with disjoint support each of which has L+2 ≍ log k atoms. There-

fore U,U ′ are also finitely-valued; however, our proof does not rely on this

fact. Nevertheless, it is instructive to discuss the structure of the prior. Ex-

cept for possibly a fixed large mass, the masses of random distributions P

and P′ are drawn from the distribution U and U ′ respectively, which lie in

the interval [0, log k
n

]. Therefore, although P and P′ are distributions over k

elements, they only have log k distinct masses and the locations are randomly

permuted. Moreover, the entropy of P and P′ constructed based on U and

U ′ (see Equation (4.23)) are concentrated near the respective mean values,

both of which are close to log k but differ by a constant factor of k
n log k

.
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4.2.3 Proof of lemmas

Proof of Lemma 3. This is an extension of the lower bound of R∗(k, n) in

Proposition 2 where R̃∗(k, n) = R̃∗(k, n, 0).

Fix an arbitrary vector P = (p1, . . . , pk) ∈ Mk(ν). LetN = (N1, N2, . . .)
ind∼

Poi(n(1+α)
1−v

pi) and let n′ =
∑

Ni ∼ Poi(n(1+α)
1−v

∑
pi) ≥s.t. Poi((1 + α)n). Let

Ĥn(·) be the optimal estimator of Shannon entropy for fixed sample size n,

i.e.,

E(Ĥn(N)−H(P ))2 ≤ R∗(k, n), ∀ P ∈ Mk.

We construct an estimator for the Poisson sampling model by H̃(N) =

Ĥn′(N). We observe that conditioned on n′ = m, N ∼ Multinomial(m,P ′),

where P ′ = P∑
pi

is the normalized P .

The functional H(P ) is related to the entropy of normalized P by

H(P ′) = log
(∑

pi

)
+

H(P )∑
pi

,

which is differed at most by

|H(P )−H(P ′)| ≤
∣∣∣(∑ pi − 1

)
H(P ′)

∣∣∣+ ∣∣∣(∑ pi

)
log
(∑

pi

)∣∣∣
≤ ν log k + (1 + ν) log(1 + ν) ≤ ν(log k + 1 + ν). (4.19)

Since E(Ĥn(N)−H(P ′))2 ≤ R∗(k, n) ≤ log2 k then

|E(Ĥn(N)−H(P ′))| ≤ log k. (4.20)

Therefore, by Equation (4.19) and Equation (4.20),

E(H̃(N)−H(P ))2

=
∞∑

m=0

E
[
(Ĥn′(N)−H(P ′) +H(P ′)−H(P ))2|n′ = m

]
P[n′ = m]

≤
∞∑

m=0

R∗(k,m)P [n′ = m] + ν2(log k + 1 + ν)2 + 2ν(log k + 1 + ν) log k.
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Then

R̃∗
(
k,

1 + α

1− ν
n

)
≤

∞∑
m=0

R∗(k,m)P [n′ = m] + ν(2 + ν)(log k + 1 + ν)2.

(4.21)

Note that for fixed k, the minimax risk n 7→ R∗(k, n) is decreasing and

0 ≤ R∗(k, n) ≤ log2 k. Then,

∞∑
m=0

R∗(k,m)P [n′ = m] ≤
∑
m≥n

R∗(k,m)P[n′ = m] + log2 kP[n′ < n]

≤ R∗(k, n) + log2 kP[Poi((1 + α)n) < n]

≤ R∗(k, n) + exp(−n(α− log(1 + α))) log2 k,

(4.22)

where in the last inequality we used the Chernoff bound (see, e.g., [56, The-

orem 5.4]). Combining Equation (4.21) and Equation (4.22), the conclusion

follows.

Proof of Lemma 4. Let α denote the common mean of U and U ′, which is

less than one. Define two random vectors

P =

(
U1

k
, . . . ,

Uk

k
, 1− α

)
, P′ =

(
U ′
1

k
, . . . ,

U ′
k

k
, 1− α

)
, (4.23)

where Ui and U ′
i are i.i.d. copies of U and U ′, respectively. Conditioned

on P and P′ respectively, the corresponding histogram N = (N1, . . . , Nk)
ind∼

Poi(nUi/k) and N ′ = (N ′
1, . . . , N

′
k)

ind∼ Poi(nU ′
i/k). Define the following

concentration events, for β < 1/2,

E ≜
{∣∣∣∣∑i Ui

k
− α

∣∣∣∣ ≤ ν, |H(P)− E [H(P)]| ≤ βd

}
,

E ′ ≜
{∣∣∣∣∑i U

′
i

k
− α

∣∣∣∣ ≤ ν, |H(P′)− E [H(P′)]| ≤ βd

}
.

Now we define two priors on the set Mk(ν) by the following conditional

distributions:

π = PP|E, π′ = PP′|E′ .

First we consider the separation of the support sizes under π and π′. It
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follows from H(P) = 1
k

∑
i ϕ(Ui) +

log k
k

∑
i Ui + ϕ(1 − α) that E [H(P)] =

E [ϕ(U)]+E [U ] log k+ϕ(1−α). Similarly, E [H(P′)] = E [ϕ(U ′)]+E [U ′] log k+

ϕ(1− α). Therefore,

E [H(P)]− E [H(P′)] = E [ϕ(U)]− E [ϕ(U ′)] .

By the definition of the events E,E ′ and the triangle inequality, we obtain

that under π and π′, both P,P′ ∈ Mk(ν) and

|H(P)−H(P′)| ≥ (1− 2β)d. (4.24)

Now we consider the total variation distance of the distributions of the

histogram under the priors π and π′. By the triangle inequality and the fact

that total variation of product distribution can be upper bounded by the

summation of individual one,

TV(PN |E, PN ′|E′) ≤ TV(PN |E, PN) + TV(PN , PN ′) + TV(PN ′ , PN ′|E′)

= P[Ec] + TV
(
(E[Poi(nU/k)])⊗k, (E[Poi(nU ′/k)])⊗k

)
+ P[E ′c]

≤ P[Ec] + P[E ′c] + kTV(E[Poi(nU/k)],E[Poi(nU ′/k)]).

(4.25)

By the Chebyshev’s inequality and the union bound, both

P[Ec],P[E ′c] ≤ P

[∣∣∣∣∣∑
i

Ui

k
− α

∣∣∣∣∣ > ν

]
+ P [|H(P)− E [H(P)]| > βd]

≤
∑

i var[Ui]

(kν)2
+

∑
i var[ϕ(Ui/k)]

(βd)2
≤ λ2

kν2
+

kϕ2(λ/k)

β2d2
, (4.26)

where the last inequality follows from the fact that var[ϕ(U/k)] ≤ E(ϕ(U/k))2 ≤
ϕ2(λ/k) when λ/k < e−1 by assumption.

Plugging Equation (4.26) into Equation (4.25), we obtain that

TV(PN |E, PN ′|E′) ≤ 2λ2

kν2
+
2λ2 log2(k/λ)

kβ2d2
+kTV(E[Poi(nU/k)],E[Poi(nU ′/k)]).

(4.27)

Applying Le Cam’s lemma [44], the conclusion follows from Equation (4.24)

and Equation (4.27).
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4.3 Total variation distance between Poisson mixtures

In this section we prove Lemma 5, which provides a sufficient condition for the

indistinguishability between two Poisson mixtures. The proof again relates

the problem of moment matching to best polynomial approximation, and

then applies Chebyshev polynomial approximation to obtain an achievable

approximation error.

Proof of Lemma 5. Let

fj(x) ≜
e−xxj

j!
(4.28)

and SL = {(V, V ′) ∈ [0,Λ]2 : E[V i] = E[V ′i], i = 1, . . . , L}. Then

TV(E[Poi(V )],E[Poi(V ′)]) =
1

2

∞∑
j=0

|Efj(V )− Efj(V ′)|

≤ 1

2

∞∑
j=0

sup
(V,V ′)∈SL

|Efj(V )− Efj(V ′)| =
∞∑
j=0

EL(fj, [0,Λ]) (4.29)

in view of the relation of moment matching and best polynomial approxima-

tion in Section 2.2.

A useful upper bound on the degree-L best polynomial approximation error

of a function f is via the Chebyshev interpolation polynomial, whose uniform

approximation error can be bounded using its Lth derivative. Specifically, we

have (cf. e.g., [60, Lecture 20])

EL(f, [0,Λ]) ≤ max
x∈[0,Λ]

|fj(x)−QL(f ;x)|

≤ 1

2L(L+ 1)!

(
Λ

2

)L+1

max
x∈[0,Λ]

∣∣f (L+1)(x)
∣∣ , (4.30)

whereQL(f ;x) denotes the degree-L interpolating polynomial for f on Cheby-

shev nodes (roots of Chebyshev polynomial). To apply Equation (4.30) to

f = fj defined in Equation (4.28), note that f
(L+1)
j (x) can be conveniently

expressed in terms of Laguerre polynomials: Denote the degree-n general-

ized Laguerre polynomial by L
(k)
n (x) and the simple Laguerre polynomial by

Ln(x) = L
(0)
n (x). The Rodrigues representation is

L(k)
n (x) =

x−kex

n!

dn

dxn
(e−xxn+k) = (−1)k

dx

dkx
Ln+k(x), k ∈ N.
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If j ≤ L+ 1,

f
(L+1)
j (x) =

dL+1−j

dxL+1−j

(
dj

dxj

e−xxj

j!

)
=

dL+1−j

dxL+1−j
(Lj(x)e

−x).

Note that Lj is a degree-j polynomial, whose derivative of order higher than

j is zero. Applying general Leibniz rule for derivatives yields that

f
(L+1)
j (x) =

(L+1−j)∧j∑
m=0

(
L+ 1− j

m

)(
dmLj(x)

dxm

)
e−x(−1)L+1−j−m

= (−1)L+1−je−x

(L+1−j)∧j∑
m=0

(
L+ 1− j

m

)
L
(m)
j−m(x). (4.31)

Applying |L(k)
n (x)| ≤

(
n+k
n

)
ex/2 [61, 22.14.13] when x ≥ 0 and k ∈ N, we

obtain that

∣∣∣f (L+1)
j (x)

∣∣∣ ≤ e−x

(L+1−j)∧j∑
m=0

(
L+ 1− j

m

)(
j

j −m

)
ex/2 = e−x/2

(
L+ 1

j

)
.

Therefore maxx∈[0,Λ] |f (L+1)
j (x)| ≤

(
L+1
j

)
. Observing from Equation (4.31)

that |f (L+1)
j (0)| =

∑
m

(
L+1−j

m

)(
j

j−m

)
=
(
L+1
j

)
, we conclude that

max
x∈[0,Λ]

|f (L+1)
j (x)| =

(
L+ 1

j

)
, j ≤ L+ 1.

Then, applying Equation (4.30),

L+1∑
j=0

EL(fj, [0,Λ]) ≤
L+1∑
j=0

(
L+1
j

)
(Λ/2)L+1

2L(L+ 1)!
=

2(Λ/2)L+1

(L+ 1)!
. (4.32)

If j ≥ L+ 2, the derivatives of fj is connected to Laguerre polynomial by

f
(L+1)
j (x) =

(L+ 1)!

j!
xj−L−1e−xL

(j−L−1)
L+1 (x).

Again applying |L(k)
n (x)| ≤

(
n+k
n

)
ex/2 [61, 22.14.13] when x ≥ 0 and k ∈ N,

we obtain that∣∣∣f (L+1)
j (x)

∣∣∣ ≤ (L+ 1)!

j!
xj−L−1e−x

(
j

L+ 1

)
ex/2 =

1

(j − L− 1)!
e−x/2xj−L−1,
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where the maximum of right-hand side occurs at x = (2(j − L − 1)) ∧ Λ.

Therefore we obtain an upper bound of maxx∈[0,Λ] |fj(x)| that

max
x∈[0,Λ]

|fj(x)| ≤

 1
(j−L−1)!

(
2(j−L−1)

e

)j−L−1

, L+ 1 ≤ j ≤ L+ 1 + Λ/2,

1
(j−L−1)!

e−Λ/2Λj−L−1, j ≥ L+ 1 + Λ/2.

Then, applying Equation (4.30) and Stirling’s approximation that ( j−L−1
e

)j−L−1 <
(j−L−1)!√
2π(j−L−1)

,

∑
j≥L+2

j<L+1+Λ/2

EL(fj, [0,Λ]) ≤
(Λ/2)L+1

2L(L+ 1)!

∑
j≥L+2

j<L+1+Λ/2

2j−L−1√
2π(j − L− 1)

≤ (Λ/2)L+12Λ/2

2L(L+ 1)!
,

(4.33)∑
j≥L+1+Λ/2

EL(fj, [0,Λ]) ≤
(Λ/2)L+1e−Λ/2

2L(L+ 1)!

∑
j≥L+1+Λ/2

Λj−L−1

(j − L− 1)!
≤ (Λ/2)L+1eΛ/2

2L(L+ 1)!
.

(4.34)

Assembling three ranges Equation (4.32) – Equation (4.34) in the total vari-

ation bound Equation (4.29), we obtain that

TV(E[Poi(V )],E[Poi(V ′)]) ≤ (Λ/2)L+1

(L+ 1)!

(
2 + 2Λ/2−L + 2Λ/(2 log 2)−L

)
.

Applying Stirling’s approximation that (L+1)! >
√

2π(L+ 1)(L+1
e
)L+1 we

conclude that TV(E[Poi(V )],E[Poi(V ′)]) ≤ ( eΛ
2L
)L. If L > e

2
Λ > Λ

2 log 2
> Λ

2
,

then 2Λ/2−L + 2Λ/(2 log 2)−L = o(1).

Remark 5. Recall that in the analysis we conclude that maxx∈[0,Λ] |f (L+1)
j (x)| =(

L+1
j

)
when j ≤ L+ 1, then

(Λ/2)L+1

2L(L+ 1)!

L+1∑
j=0

max
x∈[0,Λ]

∣∣∣f (L+1)
j (x)

∣∣∣ = 2(Λ/2)L+1

(L+ 1)!
.

This is the best possible upper bound if we use Equation (4.30) to upper

bound the uniform approximation error EL(fj, [0,Λ]) when j ≤ L+ 1.
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CHAPTER 5

OPTIMAL ESTIMATOR VIA BEST
POLYNOMIAL APPROXIMATION

In this chapter we prove the achievability of Theorem 1. We first prove the

worst-case MSE of plug-in estimator and relate it to the Bernstein polyno-

mial approximation error. Then the estimator based on the best polynomial

approximation is proposed and analyzed.

5.1 Plug-in estimator and Bernstein polynomial

approximation

To estimate a functional the most natural idea is the plug-in approach, i.e.,

the empirical entropy. It is known that the empirical entropy is always un-

derbiased. Using n i.i.d. samples, the bias is

k∑
i=1

(ϕ(pi)− E[ϕ(Ni/n)]) =
k∑

i=1

(
ϕ(pi)−

n∑
j=0

ϕ(j/n)

(
n

j

)
pji (1− pi)

n−j

)

=
k∑

i=1

(ϕ(pi)−Bn(pi)) , (5.1)

where Bn is the degree-n Bernstein polynomial to approximate the function

ϕ given by the following formula:

Bn(x) ≜
n∑

j=0

(
n

j

)
xj(1− x)n−jf(j/n).

Bernstein polynomial approximation error converges to zero uniformly and

hence the bias vanishes as n → ∞. However, in the focus of this thesis, the

sublinear regime, sample size does not necessarily far exceed the alphabet

size. In this case, given a degree, the Bernstein polynomial is often far

from the optimal polynomial. Figure 5.1 shows the degree-6 polynomial
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approximation of the entropy function ϕ using Bernstein polynomial versus

the best polynomial.
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Figure 5.1: Bernstein polynomial and best polynomial to approximate the
function x 7→ x log 1

x
.

Indeed, as in the statement of Proposition 1 the risk of empirical entropy

is: If n ≳ k, then

Rplug-in(k, n) ≍
(
k

n

)2

+
log2 k

n
. (5.2)

If n ≲ k, then Ĥplug-in is inconsistent, i.e., Rplug-in(k, n) ≳ 1.

Proof of Proposition 1. Recall the worst-case quadratic risk of the plug-in

estimator Rplug-in(k, n) defined in Equation (1.5). We show that for any

k ≥ 2 and n ≥ 2,(
k

n
∧ 1

)2

+
log2 k

n
≲ Rplug-in(k, n) ≲

(
k

n

)2

+
log2(k ∧ n)

n
. (5.3)

The second term of the lower bound follows from the minimax lower bound

Proposition 4 which applies to all k and n. To prove the first term of the lower

bound, we take P as uniform distribution. We consider its bias here since

squared bias is a lower bound for MSE. We denote the empirical distribution

as P̂ = N
n
. Applying Pinsker’s inequality and Cauchy-Schwarz inequality, we
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obtain

E(Ĥplug-in(N)−H) = −E[D(P̂ ||P )] ≤ −2E[(TV(P̂ , P ))2]

≤ −2(E[TV(P̂ , P )])2 = −2

(
k

2n
E
∣∣∣N1 −

n

k

∣∣∣)2

,

whereN1 ∼ Binomial
(
n, 1

k

)
. From [62, Theorem 1], we know that E

∣∣N1 − n
k

∣∣ =
2n
k

(
1− 1

k

)n
when n < k and E

∣∣N1 − n
k

∣∣ ≥√ n
2k

(
1− 1

k

)
when n ≥ k. There-

fore,

− E(Ĥplug-in(N)−H) ≥ 2

(
1− 1

k

)2n

≳ 1, n < k,

− E(Ĥplug-in(N)−H) ≥ k

4n

(
1− 1

k

)
≳ k

n
, n ≥ k.

Consequently,

E[(Ĥplug-in(N)−H)2] ≥ [E(Ĥplug-in(N)−H)]2 ≳
(
k

n
∧ 1

)2

.

The upper bound of MSE follows from the upper bounds of bias and vari-

ance. The squared bias can be upper bounded by (k−1
n
)2 according to [30,

Proposition 1]. For the variance we apply Steele’s inequality [63]:

var[Ĥplug-in] ≤
n

2
E(Ĥplug-in(N)− Ĥplug-in(N

′))2, (5.4)

where N ′ is the histogram of (X1, . . . , Xn−1, X
′
n) and X ′

n is an independent

copy of Xn. Let Ñ = (Ñ1, . . . , Ñk) be the histogram of Xn−1
1 , then Ñ ∼

Multinomial(n − 1, P ) independently of Xn, X
′
n. Hence, applying triangle
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inequality,

E(Ĥplug-in(N)− Ĥplug-in(N
′))2

= E

(
ϕ

(
ÑXn + 1

n

)
− ϕ

(
ÑXn

n

)
+ ϕ

(
ÑX′

n

n

)
− ϕ

(
ÑX′

n
+ 1

n

))2

≤ 4
k∑

j=1

E

(
ϕ

(
Ñj + 1

n

)
− ϕ

(
Ñj

n

))2

pj

=
4

n2

k∑
j=1

E

(Ñj log(1 + Ñ−1
j ) + log

Ñj + 1

n

)2
 pj

≤ 8

n2
+

8

n2

k∑
j=1

E

[
log2

Ñj + 1

n

]
pj, (5.5)

where the last step follows from 0 ≤ x log(1 + x−1) ≤ 1 for all x > 0.

Now we rewrite and upper bound the last expectation:

E

[
log2

Ñj + 1

n

]

= E

[
log2

n

Ñj + 1
1{

Ñj≤
(n−1)pj

2

}
]
+ E

[
log2

n

Ñj + 1
1{

Ñj>
(n−1)pj

2

}
]

≤ (log2 n)P
[
Ñj ≤

(n− 1)p

2

]
+ log2

2n

(n− 1)pj
. (5.6)

Applying Chernoff bound for Binomial tail [56, Theorem 4.5] and plugging

into Equation (5.5) then Equation (5.4), we obtain

varĤplug-in ≲ 1

n
+

1

n

k∑
j=1

pj(log
2 pj + log2 n exp(−(n− 1)pj/8))

≲ log2 k

n
+

log2 n

n

k

n
=

log2 k

n

(
1 +

k log2 n

n log2 k

)
,

where we have used
∑k

i=1 pi log
2 pi ≲ log2 k and supx>0 x exp(−(n−1)x/8) =

8
(n−1)e

. We know that k log2 n
n log2 k

≲ 1 when n ≥ k and thus varĤplug-in ≲ log2 k
n

.

From [31, Remark (iv), p. 168] we also know that varĤplug-in(N) ≲ log2 n
n

for

all n and consequently varĤplug-in(N) ≲ log2(k∧n)
n

.
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5.2 Unbiased estimator for the best polynomial

As observed in various previous results as well as suggested by the minimax

lower bound in Chapter 4, the major difficulty of entropy estimation lies

in the bias due to insufficient samples. Recall that the entropy is given by

H(P ) =
∑

ϕ(pi), where ϕ(x) = x log 1
x
. It is easy to see that the expectation

of any estimator T : [k]n → R+ is a polynomial of the underlying distribu-

tion P and, consequently, no unbiased estimator for the entropy exists (see,

e.g., [30, Proposition 8]). This observation inspired us to approximate ϕ by

a polynomial of degree L, say gL, for which we pay a price in bias as the

approximation error but yield the benefit of zero bias. While the approxi-

mation error clearly decreases with the degree L, it is not unexpected that

the variance of the unbiased estimator for gL(pi) increases with L as well as

the corresponding mass pi. Therefore we only apply the polynomial approx-

imation scheme to small pi and directly use the plug-in estimator for large

pi, since the signal-to-noise ratio is sufficiently large.

Next we describe the estimator in detail. In view of the relationship in

Proposition 3 between the risks with fixed and Poisson sample size, we shall

assume the Poisson sampling model to simplify the analysis, where we first

draw n′ ∼ Poi(2n) and then draw n′ i.i.d. samples X = (X1, . . . , Xn′) from

P . We split the samples equally and use the first half for selecting to use

either the polynomial estimator or the plug-in estimator and the second half

for estimation. Specifically, for each sample Xi we draw an independent fair

coin Bi
i.i.d.∼ Bern

(
1
2

)
. We split the samples X according to the value of B into

two sets and count the samples in each set separately. That is, we define

N = (N1, . . . , Nk) and N ′ = (N ′
1, . . . , N

′
k) by

Ni =
n′∑
j=1

1{Xj=i}1{Bj=0}, N ′
i =

n′∑
j=1

1{Xj=i}1{Bj=1}.

Then N and N ′ are independent, where Ni, N
′
i
i.i.d.∼ Poi (npi).

Let c0, c1, c2 > 0 be constants to be specified. Let L = ⌊c0 log k⌋. Denote

the best polynomial of degree L to uniformly approximate x log 1
x
on [0, 1] by

pL(x) =
L∑

m=0

amx
m. (5.7)
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Through a change of variables, we see that the best polynomial of degree L

to approximate x log 1
x
on [0, c1 log k

n
] is

PL(x) ≜
L∑

m=0

amn
m−1

(c1 log k)
m−1x

m +

(
log

n

c1 log k

)
x.

Define the factorial moment by (x)m ≜ x!
(x−m)!

, which gives an unbiased

estimator for the monomials of the Poisson mean: E[(X)m] = λm where

X ∼ Poi(λ). Consequently, the polynomial of degree L,

gL(Ni) ≜
1

n

(
L∑

m=0

am

(c1 log k)
m−1 (Ni)m +

(
log

n

c1 log k

)
Ni

)
, (5.8)

is an unbiased estimator for PL(pi).

Define a preliminary estimator of entropy H(P ) =
∑k

i=1 ϕ(pi) by

H̃ ≜
k∑

i=1

(
gL(Ni)1{N ′

i≤c2 log k} +

(
ϕ

(
Ni

n

)
+

1

2n

)
1{N ′

i>c2 log k}

)
, (5.9)

where we apply the estimator from polynomial approximation if N ′
i ≤ c2 log k

or the bias-corrected plug-in estimator otherwise (cf. the asymptotic expan-

sion Equation (1.7) of the bias under the original sampling model). In view

of the fact that 0 ≤ H(P ) ≤ log k for any distribution P with alphabet size

k, we define our final estimator by:

Ĥ = (H̃ ∨ 0) ∧ log k.

Since Equation (5.9) can be expressed in terms of a linear combination of

the fingerprints Equation (1.9) of the second sample and the coefficients can

be pre-computed using fast best polynomial approximation algorithms (e.g.,

the Remez algorithm), it is clear that the estimator Ĥ can be computed in

linear time in n.

The next result gives an upper bound on the above estimator under the

Poisson sampling model, which, in view of the inequality in Proposition 3

and Proposition 1, implies the upper bound on the minimax risk R∗(n, k) in

Theorem 1.

Proposition 6. Assume that log n ≤ C log k for some constant C > 0. Then
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there exists c0, c1, c2 depending on C only, such that

sup
P∈Mk

E[(H(P )− Ĥ(N))2] ≲
(

k

n log k

)2

+
log2 k

n
,

where N = (N1, . . . , Nk)
ind∼ Poi(npi).

Proof of Proposition 6. Given that N ′
i is above (resp. below) the threshold

c2 log k, we can conclude with high confidence that pi is above (resp. below)

a constant factor of log k
n

. Define two events by

E1 ≜
k∩

i=1

{
N ′

i ≤ c2 log k ⇒ pi ≤
c1 log k

n

}
,

E2 ≜
k∩

i=1

{
N ′

i > c2 log k ⇒ pi >
c3 log k

n

}
,

where c1 > c2 > c3. Applying the union bound and the Chernoff bound for

Poissons ([56, Theorem 5.4]) yields that

P [Ec
1] = P

[
k∪

i=1

{
N ′

i ≤ c2 log k, pi >
c1 log k

n

}]
≤ kP [Poi(c1 log k) ≤ c2 log k] ≤

1

k
c1−c2 log

ec1
c2

−1
.

Define an event E ≜ E1 ∩ E2 and then by union bound

P [Ec] ≤ P [Ec
1] + P [Ec

2] ≤
1

k
c1−c2 log

ec1
c2

−1
+

1

k
c3+c2 log

ec2
c3

−1
. (5.10)

By construction Ĥ = (H̃ ∨ 0)∧ log k, the fact H(P ) ∈ [0, log k] yields that

|H(P ) − Ĥ| ≤ |H(P ) − H̃| and |H(P ) − Ĥ| ≤ log k. So the MSE can be

decomposed and upper bounded by

E(H(P )− Ĥ)2 = E[(H(P )− Ĥ)21E] + E[(H(P )− Ĥ)21Ec ]

≤ E[(H(P )− H̃)21E] + (log k)2P[Ec]. (5.11)

Define

E1 ≜
∑
i∈I1

ϕ(pi)− gL(Ni), E2 ≜
∑
i∈I2

(
ϕ(pi)− ϕ

(
Ni

n

)
− 1

2n

)
,
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where the (random) index sets defined by

I1 ≜
{
i : N ′

i ≤ c2 log k, pi ≤
c1 log k

n

}
, I2 ≜

{
i : N ′

i > c2 log k, pi >
c3 log k

n

}
are independent of N due to the independence of N and N ′. The implications

in the event E yield that

(H(P )− H̃)1E = E11E + E21E. (5.12)

Combining Equations (5.11) and (5.12) and applying triangle inequality we

obtain that

E(H(P )− Ĥ)2 ≤ 2E[E2
1 ] + 2E[E2

2 ] + (log k)2P[Ec]. (5.13)

Next we proceed to consider the error terms E1 and E2 separately.

Case 1: Polynomial estimator It is known that (see, e.g., [55, Section

7.5.4]) the optimal uniform approximation error of ϕ by degree-L polyno-

mials on [0, 1] satisfies L2EL (ϕ, [0, 1]) → c > 0 as L → ∞. Therefore

EL (ϕ, [0, 1]) ≲ L−2. By a change of variables, it is easy to show that

EL

(
ϕ,

[
0,

c1 log k

n

])
=

c1 log k

n
EL (ϕ, [0, 1]) ≲

1

n log k
.

By definition, I1 ⊆ {i : pi ≤ c1 log k
n

}. Since gL(Ni) is an unbiased estimator of

PL(pi), the bias can be bounded by the uniform approximation error almost

surely as

|E[E1|I1]| =

∣∣∣∣∣∑
i∈I1

pi log
1

pi
− PL(pi)

∣∣∣∣∣ ≤ kEL

(
ϕ,

[
0,

c1 log k

n

])
≲ k

n log k
.

(5.14)

Next we consider the conditional variance of E1. In view of the fact that

the standard deviation of sum of random variables is at most the sum of
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individual standard deviations, we obtain that

var [E1|I1] =
∑
i∈I1

var[gL(Ni)]

=
∑
i∈I1

var

[∑
m̸=1

am

(c1 log k)
m−1

(Ni)m
n

+

(
a1 + log

n

c1 log k

)
Ni

n

]

≤ 1

n2

∑
i:pi≤

c1 log k
n

(∑
m̸=1

|am|
√

var(Ni)m

(c1 log k)
m−1 +

∣∣∣∣a1 + log
n

c1 log k

∣∣∣∣√var(Ni)

)2

.

Since 0 ≤ ϕ(x) ≤ e−1 on [0, 1] then sup0≤x≤1 |pL(x)− ϕ(x)| = EL(ϕ, [0, 1]) ≤
e−1. Therefore sup0≤x≤1 |pL(x)| ≤ 2e−1. From the proof of [46, Lemma 2,

p. 1035] we know that the polynomial coefficients can by upper bounded

by |am| ≤ 2e−123L. Since log n ≤ C log k, we have
∣∣∣a1 + log n

c1 log k

∣∣∣ ≲ 23L.

Therefore all polynomial coefficients can be upper bounded by a constant

factor of 23L. We also need the following lemma to upper bound the variance

of (Ni)m:

Lemma 7. Suppose X ∼ Poi(λ) and (x)m = x!
(x−m)!

. Then var(X)m is

increasing in λ and

var(X)m = λmm!
m−1∑
k=0

(
m

k

)
λk

k!
≤ (λm)m

(
(2e)2

√
λm

π
√
λm

∨ 1

)
.

Proof of Lemma 7. First we compute E(X)2m:

E(X)2m =
∞∑
x=0

e−λλx

x!

x!2

(x−m)!2
=

∞∑
j=0

e−λλj+m

j!

(j +m)!

j!
= λmm!E

(
X +m

X

)

= λmm!E

[
m∑
k=0

(
m

k

)(
X

X − k

)]
= λmm!

m∑
k=0

(
m

k

)
E(X)k
k!

= λmm!
m∑
k=0

(
m

k

)
λk

k!
, (5.15)

where we have used E(X)k = λk. Therefore the variance of (X)m is

var(X)m = λmm!
m∑
k=0

(
m

k

)
λk

k!
−λ2m = λmm!

m−1∑
k=0

(
m

k

)
λk

k!
≤ λmm!

m−1∑
k=0

(λm)k

(k!)2
.
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The monotonicity of λ 7→ var(X)m follows from the equality part immedi-

ately. Since the maximal term in the summation is attained at k∗ = ⌊
√
λm⌋,

we have

var(X)m ≤ λmm!m
(λm)k

∗

(k∗!)2
≤ (λm)m

(λm)k
∗

(k∗!)2
.

If λm < 1 then k∗ = 0 and (λm)k
∗

(k∗!)2
= 1; otherwise λm ≥ 1 and hence

√
λm
2

< k∗ ≤
√
λm. Applying k∗! >

√
2πk∗

(
k∗

e

)k∗
yields

(λm)k
∗

(k∗!)2
≤ (λm)k

∗

2π
√
λm
2

(
λm
4e2

)k∗ =
(2e)2

√
λm

π
√
λm

.

Remark 6. Note that the right-hand side of Equation (5.15) coincides with

λmm!Lm(−λ), where Lm denotes the Laguerre polynomial of degree m. The

term e
√
λm agrees with the sharp asymptotics of the Laguerre polynomial on

the negative axis [64, Theorem 8.22.3].

Recall that L = c0 log k. Let c0 ≤ c1. The monotonicity in Lemma 7 yields

that var(Ni)m ≤ var(Ñ)m, where Ñ ∼ Poi(c1 log k) whenever pi ≤ c1 log k
n

.

Applying the upper bound in Lemma 7 and in view of the relation that m ≤
c0 log k ≤ c1 log k, the conditional variance can be further upper bounded by

the following:

var [E1|I1] ≲
k

n2

(
L∑

m=0

23L

(c1 log k)
m−1

√
((c1 log k)(c1 log k))m(2e)

2
√

(c0 log k)(c1 log k)

)2

=
k

n2

(
L∑

m=0

k(c0 log 8+
√
c0c1 log(2e))c1 log k

)2

≲(log k)4

n2
k1+2(c0 log 8+

√
c0c1 log(2e)). (5.16)

From Equation (5.14)–Equation (5.16) we conclude that

E[E2
1 ] = E

[
E[E1|I1]2 + var(E1|I1)

]
≲
(

k

n log k

)2

(5.17)

as long as

c0 log 8 +
√
c0c1 log(2e) <

1

4
. (5.18)
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Case 2: Bias-corrected plug-in estimator First note that E2 can be

written as

E2 =
∑
i∈I2

(
(pi − p̂i) log

1

pi
+ p̂i log

p̂i
pi

− 1

2n

)
, (5.19)

where p̂i = Ni

n
is an unbiased estimator of pi since Ni ∼ Poi(npi). The

first term is thus unbiased conditioned on I2. Note the following elementary

bounds on the function x log x:

Lemma 8. For any x > 0,

0 ≤ x log x− (x− 1)− 1

2
(x− 1)2 +

1

6
(x− 1)3 ≤ (x− 1)4

3
.

Proof of Lemma 8. It follows from Taylor’s expansion of x 7→ x log x at x = 1

that

x log x = (x− 1) +
1

2
(x− 1)2 − 1

6
(x− 1)3 +

1

3

∫ x

1

(x
t
− 1
)3

dt.

Hence it suffices to show 0 ≤
∫ x

1

(
x
t
− 1
)3

dt ≤ (x−1)4 for all x > 0. If x > 1,

the conclusion is obvious since the integrand is always positive and no greater

than (x − 1)3. If x < 1, we rewrite the integral as
∫ 1

x

(
1− x

t

)3
dt. Then the

conclusion follows from the same reason that the integrand is always positive

and at most (1− x)3.

Applying the above facts to x = p̂i
pi
, we obtain that

∑
i∈I2

pi
p̂i
pi

log
p̂i
pi

≥
∑
i∈I2

(p̂i − pi) +
(p̂i − pi)

2

2pi
− (p̂i − pi)

3

6p2i
,

∑
i∈I2

pi
p̂i
pi

log
p̂i
pi

≤
∑
i∈I2

(p̂i − pi) +
(p̂i − pi)

2

2pi
− (p̂i − pi)

3

6p2i
+

(p̂i − pi)
4

3p3i
.

Plugging the inequalities above into Equation (5.19) and taking expectation

on both sides conditioned on I2, using the central moments of Poisson distri-

bution that E(X−E[X])2 = λ,E(X−E[X])3 = λ,E(X−E[X])4 = λ(1+3λ)

when X ∼ Poi(λ), we obtain that

−
∑
i∈I2

1

6n2pi
≤ E [E2|I2] ≤

∑
i∈I2

1 + 3npi
3n3p2i

− 1

6n2pi
.
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By definition, I2 ⊆ {i : pi > c3 log k
n

} and |I2| ≤ k. Hence, almost surely,

|E [E2|I2]| ≲
∑
i∈I2

1

n2pi
+
∑
i∈I2

1

n3p2i
≲ k

n log k
. (5.20)

It remains to bound the variance of the plug-in estimator. Note that

var [E2|I2] ≤
∑

i:pi>
c3 log k

n

var [ϕ(pi)− ϕ(p̂i)] ≤
∑

i:pi>
c3 log k

n

E (ϕ(pi)− ϕ(p̂i))
2 .

(5.21)

In view of the fact that log x ≤ x− 1 and x log x ≥ x− 1 for any x > 0, we

have

p̂i−pi = pi

(
p̂i
pi

− 1

)
≤ pi

p̂i
pi

log
p̂i
pi

= p̂i log
p̂i
pi

≤ p̂i

(
p̂i
pi

− 1

)
= p̂i−pi+

(p̂i − pi)
2

pi
.

Recall that ϕ(pi) − ϕ(p̂i) = (pi − p̂i) log
1
pi

+ p̂i log
p̂i
pi
. Then, by triangle

inequality,

(ϕ(pi)− ϕ(p̂i))
2 ≤ 2(pi − p̂i)

2 log2
1

pi
+ 2

(
p̂i log

p̂i
pi

)2

≤ 2(pi − p̂i)
2 log2

1

pi
+ 4(p̂i − pi)

2 +
4(p̂i − pi)

4

p2i
.

Taking expectation on both sides yields that

E(ϕ(pi)− ϕ(p̂i))
2 ≤ 2pi

n

(
log

1

pi

)2

+
4pi
n

+
12

n2
+

4

n3pi
.

Plugging the above into Equation (5.21) and summing over i such that pi ≥
c3 log k

n
, we have

var[E2|I2] ≲
(log k)2

n
+

k

n2
, (5.22)

where we used the fact that supP∈Mk

∑k
i=1 pi log

2 1
pi

≲ log2 k. Assembling

Equation (5.20)–Equation (5.22) yields that

EE2
2 ≲

(
k

n log k

)2

+
log2 k

n
. (5.23)

By assumption, log n ≤ C log k for some constant C. Choose c1 > c2 >
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c3 > 0 such that c1 − c2 log
ec1
c2

− 1 > C and c3 + c2 log
ec2
c3

− 1 > C hold

simultaneously, e.g., c1 = 4(C + 1), c2 = e−1c1, c3 = e−2c1, and c0 ≤ c1

satisfying the condition Equation (5.18), e.g., c0 =
1

300c1
∧ c1∧0.01. Plugging

Equation (5.17), Equation (5.23), Equation (5.10) into Equation (5.13), we

complete the proof.

Remark 7. The estimator Equation (5.9) uses the polynomial approxima-

tion of x 7→ x log 1
x
for those masses below log k

n
and the bias-corrected plug-in

estimator otherwise. In view of the fact that the lower bound in Proposi-

tion 5 is based on a pair of randomized distributions whose masses are below
log k
n

(except for possibly a fixed large mass at the last element), this suggests

that the main difficulty of entropy estimation lies in those probabilities in

the interval [0, log k
n

], which are individually small but collectively contribute

significantly to the entropy. See Remark 4 and the proof of Proposition 5 for

details.

Remark 8. The estimator in Equation (5.9) depends on the alphabet size

k only through its logarithm; therefore the dependence on the alphabet size

is rather insensitive. In many applications such as neuroscience the discrete

data are obtained from quantizing an analog source and k is naturally de-

termined by the quantization level [22]. Nevertheless, it is also desirable to

obtain an optimal estimator that is adaptive to k. To this end, we can replace

all log k by log n and define the final estimator by H̃ ∨ 0. Moreover, we need

to set gL(0) = 0 since the number of unseen symbols is unknown. Following

[1], we can simply let the constant term a0 of the approximating polynomial

Equation (5.7) go to zero and obtain the corresponding unbiased estimator

Equation (5.8) through factorial moments, which satisfies gL(0) = 0 by con-

struction.1 The bias upper bound becomes
∑

i(PL(pi)−ϕ(pi)−PL(0)) which

is at most twice original upper bound since PL(0) ≤ ∥PL − ϕ∥∞. The mini-

max rate in Proposition 6 continues to hold in the regime of k
log k

≲ n ≲ k2

log2 k
,

where the plug-in estimator fails to attain the minimax rate. In fact, PL(0)

is always strictly positive and coincides with the uniform approximation er-

ror (see Section 5.2.1 for a short proof). Therefore, removing the constant

term leads to gL(Ni) which is always underbiased as shown in Figure 5.2. A

1Alternatively, we can directly set gL(0) = 0 and use the original gL(j) in Equation (5.8)
when j ≥ 1. Then the bias becomes

∑
i(PL(pi) − ϕ(pi) − P [Ni = 0]PL(0)). In sublinear

regime that n = o(k), we have
∑

i P [Ni = 0] = Θ(k); therefore this modified estimator
also achieves the minimax rate.
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Figure 5.2: Bias of the degree-6 polynomial estimator with and without the
constant term.

better choice for adaptive estimation is to find the best polynomial satisfying

pL(0) = 0 that uniformly approximates ϕ.

5.2.1 Approximation error at the end points

We prove the claim in Remark 8. By Chebyshev alternating theorem [52,

Theorem 1.6], the error function g(x) ≜ PL(x) − ϕ(x) attains uniform ap-

proximation error (namely, ±EL(ϕ)) on at least L+2 points with alternative

change of signs; moreover, these points must be stationary points or end-

points. Taking derivatives, g′(x) = P ′
L(x) + log(ex) and g′′(x) =

xP ′′
L (x)+1

x
.

Since g′′ has at most L− 1 roots in (0, 1) and hence g′ has at most L− 1 sta-

tionary points, the number of roots of g′ and hence the number of stationary

points of g in (0, 1) are at most L. Therefore the error at the ends points

must be maximal, i.e., |g(0)| = |g(1)| = EL(ϕ). To determine the sign, note

that g′(0) = −∞ then g(0) must be positive for otherwise the value of g at

the first stationary point is below −EL(ϕ) which is a contradiction. Hence

a0 = g(0) = EL(ϕ).
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CHAPTER 6

NUMERICAL EXPERIMENTS

In this chapter we compare the performance of our estimator described in

Chapter 5 to other estimators using synthetic data.1 Note that the coeffi-

cients of best polynomial to approximate ϕ on [0, 1] are independent of data

so they can be pre-computed and tabulated to facilitate the computation

in our estimation. It is very efficient to apply the Remez algorithm which

provably has linear convergence for all continuous functions to obtain those

coefficients (see, e.g., [52, Theorem 1.10]). Considering that the choice of the

polynomial degree is logarithmic in the alphabet size, we pre-compute the

coefficients up to degree 400 which suffices for practically all purposes. In

the implementation of our estimator we replace N ′
i by Ni in Equation (5.9)

without conducting sample splitting. Though in the proof of theorems we

are conservative about the constant parameters c0, c1, c2, in experiments we

observe that the performance of our estimator is in fact not sensitive to

their value within the reasonable range. In the subsequent experiments the

parameters are fixed to be c0 = c2 = 1.6, c1 = 3.5.

We generate data from four types of distributions over an alphabet of

k = 105 elements, namely, the uniform distribution with pi =
1
k
, Zipf distri-

butions with pi ∝ i−α and α being either 1 or 0.5, and an “even mixture” of

geometric distribution and Zipf distribution where for the first half of the al-

phabet pi ∝ 1/i and for the second half pi+k/2 ∝ (1− 2
k
)i−1, 1 ≤ i ≤ k

2
. Using

parameters mentioned above, the approximating polynomial has degree 18,

the parameter determining the approximation interval is c1 log k = 40, and

the threshold to decide which estimator to use in Equation (5.9) is 18; namely,

we apply the polynomial estimator gL if a symbol appeared at most 18 times

and the bias-corrected plug-in estimator otherwise. After obtaining the pre-

1The C++ implementation of our estimator is available at https://github.com/

Albuso0/entropy.
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liminary estimate H̃ in Equation (5.9), our final output is H̃ ∨ 0.2 Since the

plug-in estimator suffers from severe bias when samples are scarce, we forgo

the comparison with it to save space in the figures and instead compare with

its bias-corrected version, i.e., the Miller-Madow estimator Equation (1.8).

We also compare the performance with the linear programming estimator in

[29], the best upper bound (BUB) estimator [30], and the estimator based

on similar polynomial approximation techniques3 proposed by [1] using their

implementations with default parameters. Our estimator is implemented in

C++ which is much faster than those from [29, 1, 30] implemented in MAT-

LAB so the running time comparison is ignored. We notice that the linear

programming in [29] is much slower than the polynomial estimator in [1],

especially when the sample size becomes larger.

We compute the root mean squared error (RMSE) for each estimator over

50 trials. The full performance comparison is shown in Figure 6.1 where the

sample size ranges from one percent to 300 folds of the alphabet size. In

Figure 6.2 we further zoom into the more interesting regime of fewer samples

with the sample size ranging from one to five percent of the alphabet size. In

this regime our estimator, as well as those from [29, 1, 30], outperforms the

classical Miller-Madow estimator significantly; furthermore, our estimator

performs better than those in [1, 30] in most cases tested and comparably

with that in [29].

When the samples are abundant all estimators achieve very small error;

however, it has been empirically observed in [1] that the performance of linear

programming starts to deteriorate when the sample size is very large, which

is also observed in our experiments, see Figure 6.3. By Equation (5.9), for

large sample size our estimator tends to the Miller-Madow estimator when

every symbol is observed many times.

2We can, as in Proposition 6, output (H̃ ∨0)∧ log k, which yields a better performance.
We elect not to do so for a stricter comparison.

3The estimator in [1] uses a smooth cutoff function in lieu of the indicator function in
Equation (5.9); this seems to improve neither the theoretical error bound nor the empirical
performance.
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Figure 6.1: Performance comparison with sample size n ranging from 103 to
3× 107.
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Figure 6.2: Performance comparison when sample size n ranges from 1000
to 5000.
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