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ABSTRACT 

We study a continuous-time game with imperfect monitoring in which a large player faces 

a continuum of infinitely-lived small players. We extend Faingold and Sannikov (2011) to a 

framework in which the support of the prior belief of the small players contains any finite number 

of commitment types. In this setting, we show the existence of a unique Markov equilibrium, we 

characterize a partial differential equation (PDE) for the equilibrium payoff, and we derive an 

optimality condition for the equilibrium actions. Also, we provide a stochastic representation of 

the Markov equilibrium payoffs, which is the solution to the PDE. Finally, we show that the 

equilibrium action of the sufficiently patient large player follows a non-stationary process that is 

determined by the small players’ posterior beliefs. 
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CHAPTER 1: INTRODUCTION

There is nothing so practical

as a good theory.

- Kurt Lewin

Many real-world situations involve the repeated interaction of a large player and a popula-

tion of small players. For instance, a monopolist (large player) chooses the quality of a product

sold to a large population of customers (small players). By selling a high-quality product, the

monopolist may be able to increase its profits in the long-run by building reputation of being a

good-quality type. This strategy is specially attractive for a large player that is patient and not

only cares about today’s payoff, but also about its long-run payoff.1 The question of whether or

not a large-player can build reputation of being of a certain type when facing a large population

of small players has attracted attention of economists for several decades. Since the classic

work of Kreps and Wilson (1982) and Milgrom and Roberts (1982), the question of reputa-

tion building has been explored in different settings such as discrete-time repeated games with

perfect monitoring (Fudenberg and Levine, 1989), discrete-time repeated games with imperfect

monitoring (Fudenberg and Levine, 1992), and continuous-time games with imperfect monitor-

ing (Faingold and Sannikov, 2011). For most of their analysis, Faingold and Sannikov (2011)

assume that the support of the prior belief of the small players contain only two possible types:

a normal type, a player that is fully strategic, and a commitment type, a type who is committed

to playing a stationary strategy. The contribution of this paper is to extend the framework of

Faingold and Sannikov (2011) by allowing the support of prior belief of the small players to

contain a finite number of multiple commitment types.

The literature on discrete-time repeated games has emphasized the relevance of the support

1Other examples of the role of reputations include government’s monetary policies (Barro (1986)) or time-
inconsistent government policies (Celentani and Pesendorfer (1996)).
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of the prior belief of the small players in the ability of the large player to build reputation.

Consider, for example, this quote in Fudenberg and Levine (1992): “The power of reputation

effects depends on which reputations are a priori feasible and this depends on which types

have positive prior probability.” In their setting, they do not restrict to a single commitment

type and, in fact, some of their results are derived for prior beliefs with full support on all the

possible commitment types. Ely and Välimäki (2003) show that when the prior belief of the

small players does not include the Stackelberg type in its support, even with rational learning

after observing long enough histories, the large player cannot build reputation. In their example,

the rational large player does not have an incentive to mimic a bad commitment type because

building reputation would give a lower long-run payoff. Ely, Fudenberg, and Levine (2008)

show that by extending the type space so that the Stackelberg type is included in the support of

the prior belief of the small players, the long-run player can build reputation even in the presence

of bad types. Thus, apart from adding realism to the model, allowing for multiple commitment

types delivers results that diverge from what can be achieved with a single commitment type.

To the best of my knowledge, this paper is the first attempt to study reputation dynamics in a

continuous-time game with imperfect monitoring with multiple commitment types.

The continuous-time framework, however, permits to fully characterize the equilibrium pay-

offs by using differential equations. In contrast, discrete-time characterization only provides

lower and upper bounds on equilibrium payoffs. Faingold and Sannikov (2011) show the exis-

tence of a unique Markov equilibrium, characterize ordinary differential equation that must be

satisfied by the equilibrium payoff, and show that when the large player is sufficiently patient,

the equilibrium action converges to the commitment action. In other words, they show that

reputation effects exist in the continuous-time framework when there is a single commitment

on the Stackelberg action. With multiple commitment types, Faingold and Sannikov (2011)

provide the diffusion dynamics of the equilibrium belief process and a result on transitory rep-

utation effects, which are analogous results to the ones proven in the discrete-time framework
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by Cripps, Mailath, and Samuelson (2004).

We extend the existence result in Faingold and Sannikov (2011) by allowing small players to

hold a prior belief with support on multiple commitment types of the large player. We also show

the existence of a unique Markov equilibrium payoff to the normal type large player. Moreover,

we fully characterize the partial differential equation to which the equilibrium payoff function

is the unique solution. In addition, we provide a stochastic representation of the equilibrium

payoff, which has not been shown yet in literature on continuous-time with a single commitment

type. We also establish that, when the large player is patient enough, the equilibrium action is

close to a weighted average of the actions of all commitment types. We also characterize a

sufficient condition on public signals under which reputation effects do not hold even when the

large player is patient enough.

Our main result (Theorem 1) shows that the Markov equilibrium payoff to the rational large

player exists and uniquely determined when there is an arbitrary finite number of commitment

types in the support of an initial prior. Proposition 5 derives a partial differential optimality

equation and an optimality condition that the equilibrium payoff and the equilibrium action

should satisfy respectively. The optimality equation and optimality condition reduce to the

result of Faingold and Sannikov (2011) when there is a single commitment type.2 Proposition

6 implies that a problem with multiple commitment types cannot be reduced to a problem of a

single commitment type because even Bayesian learning cannot eliminate any commitment type

that is in the support of the prior. Therefore, it is meaningful to study the case of multiple types

separately from the case of a single type, which contrasts with the discrete-time literature’s focus

on reputation bounds. Similar to Faingold and Sannikov (2011), we also derive the equilibrium

degeneracy in a complete information game where the large player is certainly believed to be

either a rational type or a specific commitment type.

2In this sense, our Theorem 1 is a generalization of Theorem 4 in Faingold and Sannikov (2011).
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A second contribution of the paper is to provide a stochastic representation of equilibrium

payoffs. Past literature has concentrated on the lower and upper bounds of equilibrium pay-

offs through reputation building. Even in continuous-time with a type space, the literature has

only characterized the optimality equation and the optimal condition, not deriving expressions

for equilibrium payoffs. By using the property that equilibrium beliefs do not arrive at the

boundary of the whole belief space (Proposition 6), Theorem 2 expresses equilibrium payoffs

as an expectation of a discounted sum of flow payoffs up to some moment when the reputation

arrives at where some specific type is believed almost surely to be the large player. Since it

is well-known that, using Monte Carlo methods, the values represented in such a way can be

numerically calculated, this result broadens the application of reputation games to more realis-

tic situations. Furthermore, when there is a single commitment type, we show the opponents’

belief are certainly expected to converge close to the rational type before arriving at being a

commitment type, strengthening the result in Faingold and Sannikov (2011).

Finally, Theorem 3 provides an example showing that, at the behavioral level, the suffi-

ciently patient large player cannot raise the equilibrium payoff to the level of the Stackelberg

payoff by reputation building. In other words, reputation effects do not hold. In the example, the

rational large player’s equilibrium action always stays away from any commitment type’s action

by a non-trivial distance even as the large player grows arbitrarily patient. This result is based

on some conditions on public signals given by Condition 5 that requires, for each commitment

type, a barrier on the belief for public signals not to work properly. Proposition 11 generalizes

Theorem 5 in Faingold and Sannikov (2011) with multiple commitment types, proving that the

large player’s equilibrium action converges to some weighted average of all commitment types’

action as the discount rate goes to zero. However, contrary to the case of a single commitment

type, this result does not tell us that the limit action should be a specific commitment type’s

action because other commitment types are also possible. Faingold and Sannikov (2011) men-
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tion3 that, if such a barrier on reputation exists then, when the posterior touches the barrier,

there would be no changes in reputation and equilibrium actions from that point on. However,

we show that the belief process and the corresponding equilibrium action profiles are almost

surely believed not to hit the barrier. Therefore, even there is a barrier on each belief about

commitment types, we can also expect rich dynamics of Markov equilibria.

1.1 RELATED LITERATURE

This work builds on a rich literature that studies repeated interactions between agents.

Asymmetric patience between agents plays a key role in standard reputation games. The lit-

erature on reputation games can be roughly divided based on the monitoring technology of

long-run/large player’s action and the patience of short-run/small opponents. Some literature

like Celentani and Pesendorfer (1996) study a model between a long-run large player and a

continuum of long-run small opponents. Each small player in a continuum is strategically my-

opic because she can not change public signals individually. Contrast to the small opponents,

they call a large player if he can affect public signals. Hence, a model with a long-run large

player and a continuum of long-run small opponents is equivalent to the canonical reputation

games with public monitoring in Fudenberg and Levine (1992) between a long-run player and

a sequence of short-run players in the sense that opponents, who are either long-run small or

short-run, myopically behave.

Following Fudenberg and Levine (1989) and Fudenberg and Levine (1992), several papers

have studied reputation effects in a discrete-time setting. Celentani and Pesendorfer (1996)

show that reputation effects hold in a sufficiently long finitely-truncated dynamic game. With

public monitoring, Cripps, Mailath, and Samuelson (2004) prove that, for any fixed level of a

discount factor, reputation eventually disappears when the commitment strategy is not a Nash

3See p. 798 in Faingold and Sannikov (2011).
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equilibrium. Even when the opponents’ beliefs are private, Cripps, Mailath, and Samuelson

(2007)4 also show the impermanent reputation. These results imply that changing types is

necessary for a permanent reputation.

Other papers relax the standard assumptions of reputation games. One such category is

a reputation game with non-myopic opponents. When the opponents are also long-lived, the

Stackelberg strategy is no longer the best commitment strategy. Nonetheless, Schmidt (1993)

show that the reputation effects also hold when the repeated game features “conflicting inter-

ests”.5 Cripps, Schmidt, and Thomas (1996) study the tight lower bounds, which was shown

to be generally lower than that for canonical reputation games by generalizing Schmidt (1993)

to non-conflicting interests. Celetani, Fudenberg, Levine, and Pesendorfer (1996) also prove

reputation effects by introducing imperfect monitoring about an intended action of less patient

long-lived opponents and a bounded recall to Cripps, Schmidt, and Thomas (1996).

Another category of relaxed reputation games is a model with changing types. When the

type is not stationary,6 Phelan (2006) study cyclic reputation, while Ekmekci, Gossner, and

Wilson (2012) study permanent reputation by using the relative entropy7 introduced by Goss-

ner (2011). Using the relative entropy, Gossner (2011) easily replicate the results of classic

reputation games in Fudenberg and Levine (1992). On the other hand, Watson (1993) and Bat-

tigalli and Watson (1997) study the case of heterogeneous opponents’ beliefs. When the long-

run player could estimate a bounded set where all the heterogeneous beliefs are believed to be

included by some finite time, both showed that reputation effects still hold. Ely and Välimäki

(2003) and Ely, Fudenberg, and Levine (2008) study a separating reputation by introducing a

“bad” commitment type. Finally, Mailath and Samuelson (2006) is a well-written introduction

4Cripps, Mailath, and Samuelson (2007) study a model with the long-lived opponents.
5We call a game with “conflicting interests” when the commitment strategy of the long-run/large player always

makes the opponents to choose an action that achieves their minimax payoff.
6With changing types, it is no longer possible to use “grain of truth” that plays a main role in literature. See

p. 164 in Ekmekci, Gossner, and Wilson (2012).
7Relative entropy is a kind of measure of the difference between any two different absolutely continuous

probability distributions. For an introduction to the concept, see Cover and Thomas (2012).
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to reputation games in discrete-time. Mailath and Samuelson (2013) provide a survey of more

recent works in this field.

In contrast to the literature, Faingold and Sannikov (2011) study reputation games in con-

tinuous time. By using Brownian diffusion in continuous-time, they showed the equilibrium

degeneracy in complete information games, which contrasts with the result in Fudenberg and

Levine (1994) that the set of equilibrium payoffs includes a value that is not generated by static

payoffs. Based on methods in Faingold and Sannikov (2011), Bohren (2016) show that a non-

trivial incentive is possible in dynamic games even without introducing any type. Bohren (2016)

posit that the reputation plays a role as a state variable that follows a diffusion process and has

persistent effects on the game. These kinds of continuous-time games build on the influential

works of Sannikov (2007) and Sannikov (2008). By using techniques in stochastic calculus,

Sannikov (2007) and Sannikov (2008) open a new way to the study of the dynamic game and

the principal-agent problem respectively in a rigorous yet more tractable way. Thereafter, many

previous works in discrete-time repeated games have been revisited in continuous-time setting.

Both Bernard and Frei (2016) and Staudigl (2015) extend Sannikov (2007) by allowing for mul-

tiple players. In terms of method, Staudigl (2015) use stochastic viability theory, which we also

apply to our setting.

Reputation games are also related to literature on the Folk Theorem because, by introducing

reputation building in repeated games, the equilibrium payoff in the long-run relationship has

a lower bound that generally exceeds the static Nash equilibrium payoff. Fudenberg, Levine,

and Maskin (1994) study a standard Folk Theorem in long-run relationships between two long-

lived players. With myopic opponents, Fudenberg, Kreps, and Maskin (1990) also show that,

because of lack of possible punishments on the opponents that is useful to the long-run player,

inefficiency exists. Also, Fudenberg and Levine (2007) and Fudenberg and Levine (2009) study

efficiency in the continuous-time limit when the time interval shrinks.
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Another related literature is on Bayesian learning.8 In the standard reputation games, oppo-

nents update beliefs after observing public histories and reputation effects are heavily dependent

on this learning process. Kalai and Lehrer (1993) show that, by Bayesian learning, long-run

player accurately predict the future play of an infinitely repeated game. Lehrer and Smorodin-

sky (1997) and Kalai and Lehrer (1993) provide an example that absolutely continuity9 is not

necessary for weak learning,10 which plays a key role in reputation games with myopic players.

Lehrer and Smorodinsky (1996) introduce almost weak learning11 that is also sufficient for rep-

utation effects to hold with myopic opponents. Sorin (1999) study the merging of probabilities.

They provided the reputation bounds shown by Fudenberg and Levine (1992) using the merging

techniques.

The next subchapter 1.2 introduces a simple example explaining the extension to multiple

commitment types is important in reputation games. Subchapter 1.3 describes notations and

preliminary results based on the set-up in Faingold and Sannikov (2011). Chapter 2 extends

the model to case of the multiple commitment types and establishes the existence of a unique

Markov equilibrium. In chapter 3, the stochastic representation of the equilibrium payoff is

derived. Chapter 4 presents the reputation effects at the behavioral level and establishes a con-

dition under which reputation effects fail. All the proofs are in the Appendix.

1.2 AN EXAMPLE

Consider a game between a large player and a continuum of small players whose individual

action cannot affect the payoffs. Both the large and the small players are long-lived. Before the

8We also use “rational” learning when players update their belief by Bayesian rule. See Kalai and Lehrer
(1993).

9This is less strict than the “grain of truth” assumption in the merging of probabilities.
10“Weak” is used in the sense that players accurately predict only the next stage.
11“Almost weak learning” implies that weak learning holds only except for zero density of periods. Lehrer and

Smorodinsky (1996) show a diffused belief from the true belief is sufficient for “almost weak learning”.

8



start of each t-stage game, the small players learn all of the actions taken previously by all the

small players, but they only observe noisy public signals of the action taken by the large player.

Next, the large player chooses an action at ∈ A = {U,M,D} and each small player i chooses

an action bi
t ∈ B = {L,C,R}, simultaneously. Then, the stage game payoffs are realized. The

payoff matrix of the static game is shown in Figure 1.

L C R
U (3, 2) (1, 1) (2, 1)
M (2, 2) (4, 3) (3, 1)
D (1, 1) (5, 2) (2, 3)

Figure 1: Static Payoff

The small players do not know the type of the large player, which is in the type space

T =
{

T0,TU ,TM,TD
}

. T0 is the large player’s type who behaves strategically. Tk, k ∈ {U,M,D},

is called a commitment type and corresponds to the type who is believed to choose action k every

period regardless of the small players’ action.12 In this example, if the small players’ prior belief

about a commitment type TM is low, they do not have incentives to choose C. However, when

they believe that large player is a type TM with sufficiently high probability through learning

from public signals, they will choose C instead of L. Knowing this, the large player can build

reputation of being type TM when he is patient enough by choosing M every period.

For simplicity, suppose that all the small players choose the same action at each time and

the aggregate distribution of bi
t denoted by b̄t is centered on either L, C, or R. The unique Nash

equilibrium strategy in the static game is (U,L). Suppose that the small players are certain

that the large player is a type T0 who behaves fully strategically. With a prior on T0 only, the

equilibrium strategy would be the repetition of (U,L) that yields an equilibrium payoff of 3 at

every stage. This implies that the large player cannot build any other reputation. However, if we

introduce another fixed type of the large player to the support of small players’ prior belief, it

12FS(2011) calls is behavioral type.
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has been known that this result changes. With a non-trivial prior about types of the large player,

small players update their beliefs after observing public signals. Knowing this learning process

of small players, the large player exploits the commitment power, which generates non-trivial

incentives.

For each large player’s action a ∈ A, denote B(a) as a set of best responses chosen by

small players corresponding to an observationally equivalent13 action to a. For any large

player’s static game payoff, g(a, b̄), the generalized Stackelberg payoff is defined by ḡs =

maxa′∈A maxb̄′∈B(a′) g(a′, b̄′) and the Stackelberg action is defined as the action that achieves

ḡs. In this example, the Stackelberg action for the long-run player is M that yields the gen-

eralized Stackelberg payoff of 4. In other words, it is the greatest payoff that a large player

could get with commitment power. This exceeds the payoff of 3 from Nash equilibrium strat-

egy (U,L). Past literature on reputation games with imperfect monitoring has focused on the

fact that, when small players have any positive belief on the large player being a type TM
14, the

large player could raise lower bounds of the equilibrium payoff by playing like the type TM.

Moreover, when he is sufficiently patient, the equilibrium payoff would be close enough to the

Stackelberg payoff.

However, these results heavily depend on the assumption that small players have positive

beliefs on the Stackelberg type when the game starts. If small players’ prior does not include the

Stackelberg type in its support, then no matter how long the large type mimics the type, there is

no way for small players to raise his belief that the large player would choose the Stackelberg

action M. For example, suppose that the small players’ prior has a support T 1 = {T0,TD}. In

other words, there is only one commitment type TD on the type space. In this case, the large

player cannot build a reputation of type TM no matter how enough the large player is patient. To

make matters worse, the large player get a payoff of 2 using the commitment power on D, which

13Because of imperfect monitoring, we focus on all the observationally equivalent actions to each action a ∈ A
and the generalized Stackelberg payoff. See p. 785 in Faingold and Sannikov (2011) for definition.

14We call such a commitment type the Stackelberg type.
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is the only possible reputation to build, that is even less than the Nash equilibrium stage payoff

of 3. Theorem 5 in Faingold and Sannikov (2011) demonstrates that only15 when the type space

is T 2 = {T0,TM}, the rational large player’s equilibrium action and payoff converge to M and 4,

respectively, as he becomes sufficiently patient. However, if the type space is T 1 instead of T 2,

by using the same logic in their proof, the rational large player’s equilibrium action and payoff

converge to D and 2, respectively.

On the other hand, this paper allows a type space of T with multiple commitment types so

that the Stackelberg type can be included in the support of the small players’ prior. With the

type space T , Propositon 11 proves that the rational large player’s equilibrium action converges

to some point in co{U,M,D}. Moreover, Theorem 3 in our work shows that the rational large

player’s limit action is bounded away from either U , M, or D, which is dependent on the small

players’ belief.

1.3 NOTATIONS AND PRELIMINARY RESULTS

As in Faingold and Sannikov (2011) (Henceforce, FS(2011)), a large player lives in in-

finitely periods, who faces a continuum of infinitely lived small players. At each time t ∈ [0,∞),

the large player chooses an action at ∈ A and each small player i ∈ [0,1] chooses bi
t ∈ B where

both A and B are compact subsets of Euclidean space. Let b̄t ∈ ∆(B) be the aggregate distribu-

tion of small players’ actions {bi}i∈[0,1] where ∆(B) is the space of distributions on B. Every

player observes public signals which are distorted by a Brownian motion.

Definition 1 (FS(2011)) The Public signal
{

Xt
}

t≥0 is represented by the diffusion process

dXt = µ(at , b̄t)dt +σ(b̄t)dZt (1)

15Faingold and Sannikov (2011) state Theorem 5 under the assumption that the single commitment type is the
Stackelberg type. However, their proof of Theorem 5 can be applied to a game with any single commitment type.
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where
{

Zt
}

t≥0 is d-dimensional Brownian motions and both µ(at , b̄t) ∈Rd and σ(b̄t) ∈Rd×d

are Lipschitz continuous functions on A×∆(B) and ∆(B), respectively.

Let
{
Ft
}

t≥0 be the augmented filtration generated by public signals
{

Xt
}

t≥0. In other

words, Ft = σ
{

Xs | 0≤ s < t
}
∪Fφ where σ

{
Xs | 0≤ s < t

}
is the smallest σ−field generated

by
{

Xs | 0 ≤ s < t
}

and Fφ is the null-set. Each Ft contains all the information known from

observations of public signals up to time t ≥ 0. The following assumption implies σ(b̄) 6= 0.

Hence, we are considering a repeated game with imperfect monitoring as in FS(2011).

Assumption 1 For the diffusion term of public signals σ(b̄), we have
∣∣σ(b̄t)y

∣∣≥ c
∣∣y ∣∣, ∀t > 0,

for any y ∈Rd and some c > 0.

Each small player could not affect the signals and the large player is believed to affect only

the drift term µ(·, ·) through action choices. In general, when we suppose that the large player

could affect the diffusion term, small players could estimate at chosen by the large player after

observing enough history by calculating the quadratic variation of public signals.

Definition 2 (FS(2011)) Each small player i has the payoff function

∫
∞

0
re−rth(at ,bi

t , b̄t)dt, (2)

where h : A×B×∆B 7→ R is a continuous function. These information is common knowledge

to all players.

A large player’s payoffs are given by

∫
∞

0
re−rtg(at , b̄t)dt, (3)

where g : A×∆B 7→R is positive, Lipschitz continuous and uniformly bounded.
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The large and small players share the same discount rate r > 0.16 Small players are uncertain

about the payoff function of the large player, believing that the large player is a type Ti ∈{
T0,T1, ...,TK

}
for some K ≥ 1. Type T0 is the normal type who chooses an action profile{

at
}

t≥0 to maximize (3). Type Ti for each i ∈
{

1, ...,K
}

is a commitment type who chooses a

fixed action a∗i ∈ A, independent of t, regardless of the aggregate distribution of actions chosen

by small players.

At the begining of the game, small players hold a common prior belief over the large player’s

types denoted by, θ̃0 =
(
θ0,0,θ1,0, ...,θK,0

)
with ∑

K
i=0 θi,0 = 1, where θi,0 ∈ [0,1] is the proba-

bility that each small player assigns that the large player is of type Ti. Let

∆
K−1 =

{(
θ1,t , ...,θK,t

)
∈RK ∣∣ K

∑
k=1

θi,t < 1 and θi,t ∈ (0,1) , i = 1, ...,K, for every t ≥ 0
}

be the set of belief process about the commitment types. Therefore, the belief about the normal

type for each time t, θ0,t , is given by 1−∑
K
i=1 θi,0. From now on, denote θt =

(
θ1,t , ...,θK,t

)
∈

∆K−1 with 0 < ∑
K
i=1 θi,t < 1 and θ0,t = 1−∑

K
i=1 θi,t . Hence, this θt ∈ ∆K−1, which is a vector-

valued belief about commitment types, gives all the information about the belief of being the

normal type, θ0,t . Via Bayesian updating, FS(2011) derive a diffusion process that the posterior

should follow after observing public signals
{

Xt
}

t≥0, which is given by Proposition 1.

Proposition 1 (Proposition 5 in FS(2011)) Fix a prior17 p ∈ ∆K−1. A belief process
{

θt
}

t≥0 ={
(θ1,t , ...,θK,t)

}
t≥0 with ∑

K
i=1 θi,t = 1−θ0 for each t is consistent with a strategy profile (at , b̄t)t≥0

if and only if

16In the standard reputation game, it has been usually assumed that the large player is more patient than the
opposite player. For example, Fudenberg and Levine (1989), Fudenberg and Levine (1992), Cripps, Mailath, and
Samuelson (2004), and Gossner (2011) deal with the case of a long-run player and a sequence of short-run players.

17Faingold and Sannikov (2011) define the prior in (K +1)-dimensional space, ∆K , including the belief about
the normal type. Instead, for our partial differential equation model, we change the belief space to (K − 1)-
dimensional space, ∆K−1, where only the beliefs about commitment types live. Since θ0,t = 1−∑

K
i=1 θk,t and

dθ0,t =−∑
K
i=1 dθi,t , it is enough to consider beliefs only about commitment types,

{
θi,t
}

1≤i≤K , for each time t ≥ 0
on ∆K−1.
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(a) (θ1,0, ...,θK,0) = p,

(b) for each k ∈ {0,1, ...,K} and t ∈ [0,∞)

dθk,t = γk(at , b̄t ,θt) ·σ−1(b̄t)
(
dXt−µ

θt (at , b̄t)dt
)

(4)

where θ k =
{

θk,t
}

t≥0 is the probability assigned by small players on a type Tk large player, and

γ0(at , b̄t ,θt)≡ θ0,tσ
−1(b̄t)

(
µ(at , b̄t)−µ

θt (at , b̄t)
)

γk(at , b̄t ,θt)≡ θk,tσ
−1(b̄t)

(
µ(a∗k , b̄t)−µ

θt (at , b̄t)
)

µ
θt (at , b̄t) = θ0,t µ(at , b̄t)+

K

∑
k=1

θk,t µ(a∗k , b̄t)

We use ∆K−1 as our domain on which the Markov equilibrium payoff is defined. Next, we

define the expected payoffs to the normal type large player at time t > 0 when the large player

and small players follow a given strategy profile.

Definition 3 (FS(2011)) The continuation value of the normal type at time t ≥ 0 is given by:

Wt(S) = Et

{∫
∞

t
re−r(s−t)g(as, b̄s)ds

∣∣ T0

}
(5)

where S =
{
(as, b̄s)

}
s≥0 is a strategy profile.

Let L be the space of all progressively measurable processes α =
{

αt
}

t≥0, such that

E
[∫ T

0 |αs|2ds
]
< ∞ for every 0 < T < ∞.18 FS(2011) characterize a diffusion process of the

continuation value, Wt , by using Martingale representation theorem.19.

18A stochastic process X : Ω×R+→Rd is progressively measurable if X is (P,BRd )-measurable where BRd

is the Borel set in Rd .
19This result was also shown in Sannikov (2007) in the general two long-run players game.
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Proposition 2 (Proposition 2 in FS(2011)) A bounded process
{

Wt
}

t≥0 is the process of con-

tinuation values of the normal type under a public strategy profile S =
{
(as, b̄s)

}
s≥0 if and only

if for some β =
{

βt
}

t≥0 ∈L such that

dWt = r
(
Wt−g(at , b̄t)

)
dt + rβt ·

(
dXt−µ(at , b̄t)dt

)
(6)

A public strategy of the normal type is a stochastic process that is progressively measurable

with respect to the augmented filtration
{
Ft
}

t≥0 generated by public signals. FS(2011) also

define a public sequential equilibrium in the case of multiple commitment types.

Definition 4 (FS(2011)) A public sequential equilibrium consists of a public strategy
{
(as,bi

s)
}

t≥0

for each small player i ∈ [0,1], and a belief process
{

θt
}

t≥0 such that at every times t ≥ 0 and

after all histories,

(a) The strategy a =
{

at
}

t≥0 of the normal type large player maximizes his expected payoff:

Et

[∫
∞

0 re−rsg(as, b̄s)ds
∣∣ T0

]
(b) For each i ∈ [0,1], bi

t maximizes each small player i’s expected payoff:

∑
K
j=0 θi,tEt

[∫
∞

0 re−rsh(as,bi
s, b̄s)ds

∣∣ Ti

]
(c) Given the common prior

(
θ1,0, ...,θK,0

)
= p ∈ ∆K−1, the belief process

{
θt
}

t≥0 is deter-

mined by the Bayes’ rule.

In the diffusion process of public signals (1), note that each small player can not affect

public signals. Hence, even in the dynamic game, each choice variable, bi
t , is a maximizer of

the static expected payoff at each time t to a small player i. In this sense, we call them a small

player who is strategically myopic even though they are long-lived. The following proposition

characterizes a sequentially rational public strategy profile.
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Proposition 3 (Proposition 3 in FS(2011)) A public strategy profile
{
(at , b̄t)

}
t≥0 is sequen-

tially rational with respect to a belief process
{

θt
}

t≥0 if and only if there exist
{

βt
}

t≥0 in L

and a bounded process
{

Wt
}

t≥0 satisfying (6), such that for all t ≥ 0, and after all public

histories,

at ∈ argmax
a′∈A

g(a′, b̄t)+βt ·µ(a′, b̄t) (7)

bt ∈ argmax
b∈B

θ0,th(at ,b, b̄t)+
K

∑
i=1

θi,th(a∗i ,b, b̄t), ∀bt ∈ supp b̄t (8)

Finally, in continuous-time with multiple commitment types, FS(2011) characterize a se-

quential equilibrium as below:

Proposition 4 (Theorem 7 in FS(2011)) Fix the prior p ∈ ∆K−1. A public strategy profile{
(at , b̄t)

}
t≥0 and a belief process

{
θt
}

t≥0 form a sequential equilibrium with continuation val-

ues
{

Wt
}

t≥0 for the normal type if and only if there exists a random process
{

βt
}

t≥0 in L such

that the following conditions hold:

(a)
{

θt
}

t≥0 satisfies equation (4) with initial condition θ0 = p.

(b)
{

Wt
}

t≥0 is a bounded process satisfying equation (6), given
{

βt
}

t≥0

(c)
{
(at , b̄t)

}
t≥0 satisfy the incentive constraint (7) and (8), given

{
βt
}

t≥0 and
{

θt
}

t≥0.

The following condition implies that the drift term in public signals by the normal type large

player cannot be represented by any convex combination of all drift terms from commitment

types’ action.

Condition 1 (FS(2011)) For each θt ∈ ∆K and each static Bayesian Nash equilibrium
(
at , b̄t

)
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of the game with prior p ∈ ∆K−1, we have:

µ(a, b̄) /∈ co
{

µ(a∗i , b̄)
∣∣ i ∈ {1, ...,K}

}

With multiple commitment types, under Condition 1, FS(2011) show that the belief process

is believed to eventually converge to where the large player is a normal type from the perspective

of the normal type large player. In other words, in every public sequential equilibrium20,

P
{

lim
t→∞

θ0,t = 1
}
= 1 under the normal type (9)

In a discrete-time setting, this impermanent reputation result is also shown by Cripps,

Mailath, and Samuelson (2004) and Cripps, Mailath, and Samuelson (2007).

20This is Theorem 8 in Faingold and Sannikov (2011).
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CHAPTER 2: EXTENSION TO MULTIPLE

COMMITMENT TYPES

In this chapter, we construct the optimal equation and the optimality condition when there

are multiple commitment types. With the optimal equation, we show that there exists a unique

equilibrium that is Markovian in the small players’ beliefs. The first step is to represent the

belief process from the perspective of the normal type large player. The following result is

easily derived from Proposition 1. All proofs are in the Appendix.

Corollary 1 For the equilibrium belief process
{

θt
}

t≥0 and each k ∈ {0,1, ...,K},

dθk,t =
γk · γ0

θ0,t
dt + γk ·dZn

t (10)

where γk = γk(a∗t , b̄t ,θ) for each k ∈ {1, ...,K}, γ0 = γ0(at , b̄t ,θ) and Zn
t is a Brownian motion

from the perspective of the normal type large player given by:

dZn
t = σ

−1(b̄t)
(
dXt−µ(at , b̄t)dt

)

In contrast to the set-up in FS(2011) that consider a single commitment type, when there

are multiple commitment types, we cannot guarantee that the drift term γk·γ0
θ0

of each belief

process about type Tk is positive unless k = 0. This implies that the only possibility is that

θ 0 =
{

θ0,t
}

t≥0 is a supermartingale21, while θ k =
{

θk,t
}

t≥0 for k 6= 0 is a submartingale only

when an angle between deviated drift terms from the weighted drift, µθt , of type Tk and the

normal type is greater than the acute. When the angle is larger than the acute, every component

of the deviated drift by type Tk is in the opposite direction to the deviated drift by the normal

21θ is a submartingale when θt ≤ E
[
θs
∣∣Ft

]
for t ≤ s. When θt ≥ E

[
θs
∣∣Ft

]
, θ is called a supermartingale.
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type. Hence, the expected increment of belief about a type Tk is negative as time goes.22

Moreover, γk is the volatility of belief θ k, which can be understood as a speed of the be-

lief process about type k. The further the deviation from the weighted drift is, the higher the

volatility of belief about type Tk is. When small players believe that the drift of Tk is same as

the weighted drift, for the type Tk, γk = 0 and θ k does not change and remains at the level. In

this case, the type Tk is removed from the support of small players’ belief.

For the value function U(·) : ∆K−1 → R which is twice continuously differentiable and

Markovian in the small player’s belief θt about commitment types, let Wt = U(θt) where θt =(
θ1,t , ...,θK,t

)
, 0 < θk,t < 1, k ∈ {1, ...,K}, and ∑

K
k=1 θk,t + θ0,t = 1 for each time t ≥ 0. In

other words, the continuation value of the normal type large player following a given public

sequential strategy is Markovian in the small players’ belief θt . By using the Ito’s formula, we

can easily represent the following diffusion equation of the continuation payoff W to the normal

type large player. For θt =
(
θ1,t ,θ2,t , ...,θK,t

)
∈ ∆K−1,

dU(θt) =

{ K

∑
k=1

∂

∂θk,t
U(θt)

γ0 · γk

θ0,t
+

1
2

K

∑
j,k=1

∂ 2

∂θ j,tθk,t
U(θt)γ j · γk

}
dt +

K

∑
j=1

∂

∂θ j,t
U(θt)γ j ·dZn

t ,

which is a second-order stochastic differential equation. By using the above equations and (6),

we can derive the optimality equation and the optimality condition that equilibrium Markov

payoff should satisfy.

Proposition 5 Let U(·) be a bounded function on ∆K−1, which is the solution of the following

second-order partial differential equation: for some r > 0,

22For example, suppose d = 1. In this case, µ ∈ R is a scalar. If µ0 = µ(a, b̄) of the normal type and µk =
µ(a∗k , b̄) of k-the commitment type lie in the same side from µθ , that is, either ”µ0 < µθ and µk < µθ ” or ”µ0 > µθ

and µk > µθ ”, then γk·γ0
θ0

> 0. However, γk·γ0
θ0

< 0 with µ0 and µ0 lying in the different sides from µθ , that is, either
”µk < µθ < µ0” or ”µ0 < µθ < µk”.
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1
2

K

∑
i, j=1

γi · γ jUθi,tθ j,t (θt)+
K

∑
i=1

γ0 · γi

θ0
Uθi,t (θt)− rU(θt) =−rg

(
at(θt), b̄t(θt)

)
(11)

where
(
at(θt), b̄t(θt)

)
is a public strategy at time t ≥ 0 that is consistent with the equilibrium

belief process θ .

Furthermore, this U(·) satisfies the following condition:

rβt = σ
−1(b̄t)

K

∑
j=1

∂

∂θ j,t
U(θt)γ j (12)

where βt is given by Proposition 2.

Let’s say that the equation (11) is the optimality equation and the equation (12) is the opti-

mality condition. We can easily check that, when there is a single commitment type (K = 1),

the above optimality equation (11) and the optimality condition (12) are defined by:

1
2

γ1 · γ1Uθ1,tθ1,t (θt)+
γ0 · γ1

θ0
Uθ1,t (θt)− rU(θt) =−rg

(
a0,t(θt), b̄(θt)

)
rβt = σ

−1(b̄t)
d

dθt
U(θt)γ1

Since θ0,t +θ1,t = 1 with K = 1, it is clear that Uθ1,t =−Uθ0,t , Uθ1,tθ1,t =Uθ0,tθ0,t , and γ1−γ0 =

θ1,t(1− θ0,t)σ
−1(b̄)(µ1− µ0). Therefore, the above optimality partial differential equations

(11) and the optimality condition (12) with K = 1 is exactly same as the case in FS(2011).

In order to characterize the optimality equation (11), let Γ ≡ (γi · γ j)
K
i, j=1 be the K ×K

matrix whose (i, j)-element is γi · γ j for each i, j ∈ {1, ...,K}. The following technical condition

is weaker than that µ0 is not included in the linear space generated by
{

µi
∣∣ i ∈ {1, ...,K}

}
.

Therefore, Condition 1 in FS(2011) does not imply Condition 2. Furthermore, we can check

that the following Condition 2 also does not imply Condition 1 when every µi is different from
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each other. When there is a single commitment type (K = 1), however, Condition 2 is exactly

same as Condition 1 in FS(2011).

Condition 2 For each belief process θ =
{

θt
}

t≥0 where θt ∈ ∆K−1, ∀t ∈ [0,∞) and each static

Bayesian Nash equilibrium (a, b̄) of the game with prior p = (θ1,0, ...,θK,0) ∈ ∆K−1,

K

∑
i=1

{
θ 2

i,t

∑
K
i=1 θ 2

i,t
−θi,t

}
µi 6= θ0,t µ0

When there is a single commitment type, Condition 2 means that µ1 6= µ0
23. Condition 2

is not so restrictive because if µ0 can not be represented as a linear combination of all µi for

i= 1, ...,K, then Condition 2 holds. Since we can generally construct µ j, j = 0,1, ...,K such that

µ0 is not a linear combination of all µi for i = 1, ...,K, Condition 2 is a general condition. First,

let d =K+1 and µ0 be a d-dimensional vector with first element of a> 0. For i= 1, ...,K, let µi

be a d-dimensional vector with first element of 0. Since d = K +1, we can pick µi, i = 1, ...,K

that are linearly independent. Since a > 0, µ0 can not be represented as a linear combination

of all µi for i = 1, ...,K. For such µ j, j = 0,1, ...,K, Condition 2 holds. Therefore, there are

uncountably many ways to construct such µ j for d = K+1. Since d is arbitrary, for any d > K,

we can construct such µ j, j = 0,1, ...,K satisfying Condition 2.

Lemma 1 explains why Condition 2 needs to be imposed on Γ to study the optimality equa-

tion (11). Nonetheless, it does not guarantee the uniform ellipticity of Γ on ∆K−1 because Γ

become degenerate on the boundary of ∆K−1.

Lemma 1 The K×K matrix Γ is a real symmetric, positive semi-definite with Γii =
∣∣γi
∣∣2 ≥ 0.

Under the Condition 2, Γ is positive definite on ∆K−1.

This lemma implies that the optimality equation (11) is a second-order degenerate partial
23It can be easily shown that the set of θ ∈Rn satisfying both Condition 1 and Condition 2 is not empty.
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differential equation. Let M = ∆K−1 be the closure of ∆K−1 and

∂M =

{
θt ∈RK ∣∣ θ0,t = 0

}
∪
{

θi,t = 0 for some i ∈ {1, ...,K}
}

be the boundary of M. Intuitively, the boundary of the belief space is the set of beliefs that small

players are certain that the large player is neither the normal type or a specific commitment

type. Under Condition 2, by Lemma 1, the optimality equation (11) is degenerate only on the

boundary.24

Denote the second order differential operator L : C(M)→C(M) which is corresponding to

the belief process
{

θt
}

t≥0 defined by Corollary 1 where C(M) is the space of all continuous

functions defined on M. For θt ∈ ∆K−1 that follows the diffusion process (10), it is well-known

that: for f ∈C(M),

L f (θt) =
1
2

K

∑
i, j=1

γi · γ j fθi,tθ j,t +
K

∑
i=1

γ0 · γi

θ0,t
fθi,t .

On a general open domain in RK , the elliptic operator L that is defined above is known as

the infinitesimal generator that is corresponding to a diffusion process that lives on the domain.

Even with Condition 2 on ∆K−1, however, since L might be degenerate on ∂M, we need to

classify each point on ∂M based on the criteria that if small players’ belief process θ is expected

to arrive at that point at some time. Freidlin (1985) define the fisrt category of points on ∂M.

Definition 5 (ε-regular point) A point θ ∗ ∈ ∂M is said to be ε-regular for the operator L (that

is, with corresponding process (θ ,Pθ )), in the domain ∆K−1, if for any ε > 0,

lim
θ∈∆K−1,θ→θ∗

Pθ

{
τ∆K > ε

}
= 0

24In other words, xT Γ(θt)x = 0 for and θt ∈ ∂M and ∀x 6= 0.
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where τ∆K−1 = inf
{

t ≥ 0 : θt /∈ ∆K−1} and Pθ is the solution to the Martingale problem corre-

sponding to the optimality equation (11) for any process θ .

When we say θ ∗ is a ε-regular point, it means that in any neighborhood of θ ∗, small players’

belief θ is certainly expected to arrive at θ ∗ immediately. Let ∂∆ε ⊂ ∂M be the set of all ε-

regular points included in ∂M. Following Friedman (1974), define a non-attainable set, which

is denoted by Ψ, as below.

Definition 6 (Non-attainable set) A set Ψ⊂ ∂M that is closed subset in RK , is said to be non-

attainable for the operator L (that is, with corresponding process
(
θ ,Pθ

)
), in the domain ∆K−1,

if for any consistent belief process θ ,

Pθ

{
θt ∈Ψ for some t > 0

}
= 0

A non-attainable set means that the belief process of small players is certainly not expected

to touch any point included in the set at any time. Therefore, from the view of normal type

large player, small players’ belief is not expected to arrive at the point in the non-attainable

set. Hence, we do not need to consider those points in the equilibrium from the perspective of

normal type large player. In the next proposition, we show that every point in the boundary ∂M

is included in the non-attainable set. In other words, there is no ε-regular point on ∂M.

Proposition 6 For any ε > 0 and prior p ∈ ∆K−1,

∂M = Ψ, and ∂∆
ε = /0

with probability 1 from the perspective of the normal type large player.

This proposition separates the problem with multiple commitment types from the problem
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Figure 2: A belief trajectory when K = 2

with a single commitment type problem that was studied in FS(2011). It means that, from

the perspective of the normal type large player, the K-commitment types problem cannot be

even reduced to the (K− 1)-commitment types problem. Therefore, when there are multiple

commitment types, the normal type large player is almost sure that every commitment type and

normal type always have positive probability in the small players’ belief no matter how long

they observe public signals.

Figure 2 shows a belief trajectory of small players in ∆1 with the initial prior p when there

are only two commitment types, (K = 2). The belief process represented by a irregular line

lives only in the interior of ∆1 and does not touch any point on the boundary ∂∆1 because the

boundary is a non-attainable set. This implies that we could not directly deal with the multiple

commitment types problem using techniques in FS(2011) that was applied to the case of a single

commitment type. Instead, we should consider reputation games separately for each K-number

of commitment type(s), which is much different from reputation games in discrete time. Past

literature on reputation games has focused on the lower bound of the equilibrium payoff to the

normal type. Therefore, even when there are multiple commitment types, the normal type large

player could raise the lower bound by sending signals of the Stackelberg type. This result holds
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regardless of the number of commitment types as long as the Stackelberg type has a positive

probability in the small players’ prior. However, in continuous time reputation games, we are

focusing on the exact characterization of equilibrium payoff to the normal type large player

that is Markovian in small players’ belief. Since even a sufficiently small belief about some

commitment type might affect the equilibrium payoff, we could not ignore any belief when we

study the Markovian payoff in continuous time as long as it is positive.

We define the following correspondence that gives out sequential equilibrium strategy pro-

files for the given level of belief and the discount rate r > 0.

Definition 7 Let N : ∆K−1×R⇒ A×∆(B) be a correspondence defined by:

N (θt ,r) =
{
(at , b̄t) : a ∈ argmaxa′∈Ag(a′, b̄)+

(
σ(b̄) ·σ(b̄)T)−1 · zT ·


µ1−µθt

...

µK−µθt

µ(a′, b̄)

b ∈ argmaxb′∈B

K

∑
i=0

θih(ai,b′, b̄) ∀b ∈ supp b̄
}

where zT = 1
r

(
θ1,tUθ1,t , ...,θK,tUθK,t

)
.

In general, the correspondence N (·, ·) defined above is not continuous because we cannot

guarantee that it is lower-hemicontinuous. However, the following assumption makes every-

thing more easy.

Assumption 2 For each (θt ,r), the correspondence N is a singleton. Furthermore, for each

belief process θ =
{

θt
}

t≥0 with θt ∈∆K−1, the aggregate distribution b̄(θt) is a mass-distribution.

If N (θt ,r) is upper-hemicontinuous, Assumption 2 guarantees the N (·, ·) is a continuous

function in (θ ,r). In other words, the equilibrium action profile
(
a(θ), b̄(θ)

)
is continuous in

(θ ,r). By applying the Maximum theorem, the following proposition is easily shown.
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Proposition 7 The correspondence N (·, ·) is non-empty, compact-valued and upper hemicon-

tinuous. Specifically, under Assumption 2, N (·, ·) is continuous in (θ ,r).

We show the equilibrium degeneracy in the continuous-time dynamic game with complete

information regardless of r > 0 as is shown in FS(2011) in the case of a single commitment

type. Therefore, the result of equilibrium degeneracy is invariant with respect to the number of

commitment types. From now on, denote Ur(θt) as the Markov equilibrium payoff at time t for

any fixed discount rate r > 0.

Proposition 8 Let θ ∗ = (0, ...,0) or (0, ...,0,1,0, ...,0) ∈ M where small players are certain

that the large player is a normal type or some commitment type Ti for any i ∈ {1, ...,K}. Then,

for any r > 0,

Ur(θ
∗) ∈ g

(
N (z∗,r)

)
where z∗ = 0 or

(
0, ...,0, 1

r
∂U(θt)

∂θi,t

∣∣
θi,t=1,0, ...,0

)
for any i ∈ {1, ...,K}.

This proposition means that when there is no uncertainty about type of large player, the

equilibrium payoff to the normal type large player is determined by static payoff at the equilib-

rium action without any consideration of reputational incentive characterized by the value of z.

With z∗ = 0 or
(
0, ...,0, 1

r
∂U(θt)

∂θi,t

∣∣
θi,t=1,0, ...,0

)
for any i ∈ {1, ...,K}, the reputational incentive

part,
(
σ(b̄) ·σ(b̄)T)−1 · zT ·


µ1−µθt

...

µK−µθt

µ(a′, b̄) is always zero.

Next, we show that there exists a unique Markov equilibrium payoff function that satisfies

the optimality equation (11) and the optimality condition (12). For any domain D ∈ RK , let
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W 2(D) be the Sobolev space25 of all Borel functions h : D→ R that are square integrable on

D. In other words, for any multi-index α and weak-derivatives Dα :

W 2(D) =

{
h : D→R

∣∣∣∣ ‖h‖W 2(D) < ∞

}

where ‖h‖2
W 2(D)

= ∑|α|≤2
∫

D |Dαh(x)|2ds. Denote W 2
loc(D) be the space of all Borel functions

h : D→R that belong to W 2(D′) for any open subset D′ such that its closure D′ is also included

in D. The following theorem is our first main result, which is an extension of Theorem 4 in

Faingold and Sannikov (2011) to the case of multiple commitment types.

Theorem 1 Under Condition 2 and Assumption 2, for any given discount rate r > 0, there

exists a unique Markov equilibrium payoff function Ur(·) defined on the space of belief process,

M, satisfying the optimality equation:

1
2

K

∑
i, j=1

γi · γ j(Ur)θi,tθ j,t (θt)+
K

∑
i=1

γ0 · γi

θ0,t
(Ur)θi,t (θt)− rUr(θt) =−rg

(
at(θt), b̄t(θt)

)
(13)

where
(
at(θt), b̄t(θt)

)
∈N (θt ,r)26 is a public strategy at time t ≥ 0 and Ur(θt) =Wt .

Furthermore, for any static payoff function g(·, ·) that is continuous on M27, the equilibrium

payoff Ur(·) that is the solution to the equation (13) is also continuous on M and belongs to

W 2
loc(∆

K−1).

The main difference from the case of a single commitment type that is studied in FS(2011)

is the characterization of equilibrium payoff, Ur(θt), when θt is on the boundary of ∆K−1. In

the case of a single commitment type, the equilibrium payoff converges to the static payoff as

small players’ belief converges to the boundary where the large player is certainly believed as

25In the Sobolev space, the derivative is defined in the sense of distributions.
26This implies that Ur also satisfies the optimality condition (12).
27Since N is continuous under Assumption 2, this holds with g(·, ·) that is continuous in

(
a, b̄
)
.
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either the normal type or the commitment type. This is because the boundary in the case of a

single commitment type is where small players are certain about the large player’s type. On

the other hand, on the boundary of ∆K−1 with multiple commitment types, small players are

only sure that the large player is not a specific commitment type. Hence, it is ambiguous to

determine what the equilibrium payoff is for such a belief at which other commitment types are

still possible. Furthermore, it is generally required to define the equilibrium payoff function on

every boundary to determine a solution to a partial differential equation.

Fortunately, by Proposition 6, every boundary point is included in a non-attainable set,

which make our problem to show the existence of equilibrium payoff tractable. Although we

do not know the value of equilibrium payoff on the whole boundary, we are certain that there

is a Markov equilibrium payoff that is characterized as the unique solution to the optimality

equation and the optimality condition.
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CHAPTER 3: STOCHASTIC REPRESENTATION OF

MARKOV EQUILIBRIUM PAYOFF

Although we show that there is a unique Markov equilibrium with multiple commitment

types, Theorem 1 does not give any information about a specific form of Markov equilibrium

payoff function. It just shows an existence of the equilibrium payoff. Proposition 6 implies that,

in small players’ belief, every commitment type has positive probability even after observing

sufficiently long history, which means that there is no need to consider boundary values of

equilibrium payoff. This is the “punch-line” to show a unique existence of Markov equilibrium

payoff.

However, according to Proposition 8, we already know that the equilibrium payoff should

be determined as the value of static payoff at all vertices of the belief space, M, where small

players absolutely believe that the large player is either some specific commitment type or

the normal type. By using this degeneracy of equilibrium, we can impose some regularity

restrictions on the equilibrium payoff. In this section, we find a stochastic representation28 of

the Markov equilibrium payoff. This kind of representation has not been shown yet in past

literature on reputation games even in a continuous-time set-up. Moreover, it is well-known

that we can solve numerically the optimality equation when the solution is represented by this

kind of expression. Hence, from an applied perspective, Theorem 2 opens the way to calculate

values of the Markov equilibrium payoffs in a specific reputation game by using Monte Carlo

methods.

First, instead of the original problem, we consider a reduced problem on a restricted belief

domain. For each sufficiently small δ > 0, construct Dδ ⊂ ∆K−1 that is a convex and connected

28We adopt the expression of “stochastic representation” by following Feehan and Pop (2015)
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Figure 3: A construction of Dδ when K = 2

open subset with boundary29 ∂Dδ = ∂Dδ 30 such that

(a) ∪δ>0 Dδ = ∆
K−1 and Dδ1 ⊂ Dδ2 for any δ1 > δ2

(b) ∂Dδ
∣∣
Ωδ

= ∂M
∣∣
Ωδ

(c) ∂Dδ\Ωδ ⊂ ∪i∈{0,1,..,K}
{

θi > 1−δ
}

where Ωδ is a subset of ∂M such that δ < θi < 1− δ for some i ∈ {0,1, ...,K} and θ j = 0

for some j 6= i. In the construction of Dδ , (a) means that
{

Dδ
}

is an increasing sequence of

restricted domains converging to ∆K−1 as δ goes to 0. (b) implies that Dδ shares Ωδ with

∆K−1 as a part of their boundary. Finally, (c) means that the remaining part of boundary of

Dδ except for Ωδ is where some specific commitment type has sufficiently high probability in

small players’ belief.

Figure 3 describes a construction of Dδ when there are only 2 commitment types. The

dashed line represents Ωδ which is included in ∂M where belief process are not expected to

29Actually, it is enough to find Dδ having some part of C3-boundary in ∂Dδ .
30Here, the boundary of an open set is defined as the boundary of the closure.
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touch. The dashed curves correspond to ∂Dδ\Ωδ . These curves make up the boundary of Dδ

where some commitment type has sufficiently high probability in small players’ belief because

they are included in the δ -neighborhood from a vertex of ∆K−1. The following lemma shows

that these parts of boundary represented by blue dashed curves are included in a set of ε-regular

points where we should impose some boundary condition.

Lemma 2 Under Condition 2, for any sufficiently small δ ∈ (0,1), Ωδ is an non-attainable set

and ∂Dδ\Ωδ is a set of ε-regular points in ∂Dδ .

By Lemma 2, for any δ ∈ (0,1), Ωδ is still a non-attainable set that is included in the

boundary of ∆K−1. However, ∂Dδ\Ωδ is included in the neighborhoods of each vertex of ∆K−1

where belief process is expected to touch immediately. Denote ∂∆ε

δ
= ∂Dδ\Ωδ , which is the

ε-regular part of ∂Dδ , where, because of the equilibrium degeneracy at the vertices of M shown

by Proposition 8, we expect equilibrium payoff is sufficiently close to the static payoff. For

each δ > 0 and any given r > 0, we consider the following reduced problem on the restricted

domain Dδ :

LUδ (θt)− rUδ (θt) =−rg
(
at(θt), b̄t(θt)

)
on Dδ

Uδ (θt) = g
(
at(θt), b̄t(θt)

)
on ∂∆

ε

δ

Figure 4 depicts a reduced problem on the restricted domain when there are two commitment

types. The dashed curves represent ∂∆ε

δ
where we should impose boundary conditions. Since

those parts are included in δ -neighborhood from some vertex of ∆K−1, it is reasonable to impose

the large player’s static payoff g(·, ·) on the parts for small enough δ . Let Uδ (θ) be the solution

to the above second-order partial differential equation defined on the restricted domain Dδ . This

is the equilibrium payoff to the normal type large player that is Markovian in small players’

belief θ ∈ Dδ when we restrict small players’ belief space to Dδ instead of ∆K−1. Let τδ =
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Figure 4: An reduced problem when K = 2

inf
{

t > 0
∣∣ θt /∈Dδ

}
be the first hitting time when small players’ belief arrives at some boundary

of Dδ . Since Ωδ is included in a non-attainable set, we certainly expect that, at τδ , small

players’ belief process θ
τδ would touch some ε-regular point that is included in ∂∆ε

δ
.

Proposition 9 Under the Condition 2 and Assumption 2, when we restrict on Dδ for some

δ ∈ (0,1), there exist a unique Markov equilibrium payoff Uδ (θ) that satisfies the optimality

equation (11), which is bounded, measurable and continuous almost everywhere on Dδ . The

payoff Uδ (θ) has the following form: for any θ ∈ Dδ and 0 < r < ∞,

Uδ (θ) = Eθ

[
g
(
a(θ

τδ ), b̄(θτδ )
)

exp{−rτ
δ}
]
+ rEθ

∫
τδ

0
g
(
a0(θs), b̄(θs)

)
exp{−rs}ds (14)

Furthermore, the equilibrium payoff satisfies the following boundary conditions near each ver-

tex of ∆K−1 : for any θ
τδ ∈ ∂∆ε

δ
,

Uδ (θ
τδ ) = g

(
a(θ

τδ ), b̄(θτδ )
)

Proposition 9 provides a stochastic representation of the Markov equilibrium payoff when
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we are restricted to the small belief domain Dδ for some sufficiently small δ ∈ (0,1). This

representation looks similar to the Feynman-Kac representation of the solution to a second-

order parabolic partial differential equation. In order to derive the same form of representation

of the equilibrium payoff on the original belief space, we need to find, for each θ , the limit

of
{

Uδ (θ)
}

, each of which is given by (14), when δ goes to zero. For this purpose, pick a

decreasing sequence
{

δi
}

i∈N such that limi→∞ δi = 0. Corresponding to the sequence
{

δi
}

i∈N,

construct an increasing sequence of restricted domains {Dδi}i∈N that is convergent to ∆K−1

and each Dδi satisfies above (a), (b), and (c). Let τ = limi→∞ τδi be the limit of a sequence

of corresponding hitting times. Since limi→∞ Dδi = ∆K−1 and θt is a continuous process with

probability 1, it is trivial that τ = τ∆K−1 =
{

t ≥ 0 : θt /∈ ∆K−1}. Let V (A) be the set of all

vertices of A. The following theorem shows the stochastic representation of Markov equilibrium

payoff of the original problem.

Theorem 2 Under Condition 1, 2, and Assumption 2, there exists a unique Markov equilibrium

payoff function U(·) that is an approximate31 solution to the optimality equation (12) on ∆K−1.

This is a bounded and measurable function on ∆K−1 with the following boundary condition at

all the vertices of ∆K−1: for any θ ∗ ∈ V (∆K−1),

lim
θ→θ∗

U(θ) = g
(
a(θ ∗), b̄(θ ∗)

)

Furthermore, the Markov equilibrium payoff U(θ) is given by: for any given θ ∈ ∆K−1 and

0 < r < ∞,

U(θ) = Eθ

[
g
(
a(θτ), b̄(θτ)

)
exp{−rτ}

]
+ rEθ

∫
τ

0
g
(
a0(θs), b̄(θs)

)
exp{−rs}ds (15)

31Actually, this is an approximate equilibrium payoff on ∆K−1 because it is a pointwise limit of {Uδi(θ)} for
each θ as i→ ∞. Each Uδi in the sequence is defined for θ ∈ Dδi .
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Sketch of Proof. For each given δi > 0, consider Dδi where a belief trajectory lives on.

While we could not assign any boundary condition on ∂M, by Lemma 2, each ∂Dδi has the

ε-regular boundaries that is near of each vertex of ∆K−1. Only on those regular boundaries, we

could assign boundary values that equilibrium payoff should satisfy. Since Dδi\Ωδi is included

in where some of commitment type has sufficiently high probability that is greater than 1−

δi, it is reasonable to expect that the equilibrium values at those point are included in some

neighborhood of the value of static payoff by the degeneracy result shown by Proposition 8.

With this boundary condition on ∂∆ε

δ
, we could apply the Dynkin’s formula to the second-order

partial differential equation. The result is shown by Proposition 9.32 Finally, we show that,

when the sequence
{

δi
}

converges to zero, the sequence of equilibrium payoffs
{

Uδi(θ)
}

on the

reduced domain Dδi has a pointwise limit for each θ ∈ Dδi . Since the belief trajectory
{

θt
}

t≥0

is continuous in probability 1, the sequence of stopping times
{

τδi
}

when the belief touch the ε-

regular boundary Dδi\Ωδi is an increasing sequence in decreasing
{

δi
}

. Furthermore, Condition

1 guarantees that the belief process is certainly expected to touch this regular boundary for any

prior, which means that both term of equilibrium payoff in (14) on the reduced domain Dδi

are expectations of uniformly integrable random variables. Therefore, for each θ ∈ Dδi , the

sequence of equilibrium payoffs on reduced domains has a pointwise limit as δi → 0. This

pointwise limit approximates the equilibrium payoff on the whole belief space ∆K−1. Hence,

this limit is a stochastic representation of Markov equilibrium payoff on ∆K−1 with multiple

commitment types. �

In past literature on reputation games, to the best of my knowledge, there has been no result

about a representation of equilibrium payoff. Even in FS(2011) with a single commitment

type, only the characterization of ordinary differential equation and the optimality condition

that Markov equilibrium payoff should satisfy were provided without any mention about forms

32This is also guaranteed by Theorem 5.2 in Stroock and Varadhan (1972). It is well-known that, when we
deal with a degenerate partial differential equation, the boundary condition should be assigned only on parts of
boundary that is regular in a strong sense.

34



of the equilibrium payoff. Therefore, this stochastic representation in Theorem 2, which is

derived via Feynman-Kac type formula, sheds light on the application of reputation games into

more real world problem. By applying Monte Carlo methods to the representation, it is already

well-known that we can calculate the equilibrium payoff function numerically. Therefore, in a

specific example, it is possible to evaluate the value of equilibrium utilities of normal type large

player with respect to the reputation of small players.

3.1. When d = 1 and K = 1

In this subchapter, suppose that d = 1 and there is a single commitment type (K = 1). Hence,

the drift term µi, the diffusion term γi, and σ(b̄) are scalar-valued. Moreover, the public signals{
Xt
}

t≥0 are one-dimensional diffusion process. When we restrict on Dδ =
{

θ1 ∈ (δ ,1− δ )
}

for some δ > 0, without loss of generality, we can assume that δ < θ0,t < 1− δ for all t ≥ 0

because Dδ is away from every vertex of ∆0 by some distance that is characterized by δ and

θ0,t +θ1,t = 1 for each t ≥ 0. Denote Iδ = (δ ,1− δ ) be the space of beliefs about the normal

type large player. Let Tδ = inf
{

t > 0
∣∣ θ0,t = δ

}
and T1−δ = inf

{
t > 0

∣∣ θ0,t = 1− δ
}

be the

first hitting times for each boundary point of Iδ . Define τδ = Tδ ∧T1−δ is the first hitting time

when θt arrived at any boundary of Iδ . The following proposition show that, for each δ ∈ (0,1),

the belief about the normal type large player is certainly expected to touch θ0,τ = δ first before

it arrives at 1−δ .

Proposition 10 Under Condition 2, for any prior θ0 ∈ Iδ ,

lim
δ→0

Pθ0

{
inf

0≤t<τδ

θ0,t > δ

}
= lim

δ→0
Pθ0

{
θ0,τδ

= 1−δ

}
= 1

from the perspective of the normal type large player.
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This result is similar to the conclusion (9) that is shown by FS(2011) under Condition 1.

However, Proposition 10 is a more strong result in the sense that it shows that the first exit time

of θ0,t in Iδ always take place where θ0,t is sufficiently close to 1 before it arrives at some point

where θ0,t is sufficiently small. With this conclusion, we further characterize the stochastic

representation shown by Theorem 2 when d = 1 and K = 1.

Corollary 2 Assume that d = 1 and there is a single commitment type. Under Condition 1, 2,

and Assumption 2, the equilibrium Markov payoff is given by: for any given θ ∈ ∆0,

U(θ) = g(a∗, b̄∗)Eθ

[
exp{−rτ}

]
+ rEθ

∫
τ

0
g
(
a0(θs), b̄(θs)

)
exp{−rs}ds (16)

where

(a∗, b̄∗) ∈
{
(a, b̄) : a ∈ argmaxa′∈Ag(a′, b̄), and b ∈ argmaxb′∈Bh(a,b′, b̄) ∀b ∈ supp b̄

}
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CHAPTER 4: A FAIL OF REPUTATION EFFECTS AT

THE BEHAVIORAL LEVEL

Past literature on reputation games has shown that the normal type large player’s equilibrium

payoff converges to the Stackelberg payoff by choosing the corresponding Stackelberg action

as the large player becomes sufficiently patient. FS(2011) show a similar result at the behav-

ioral level that the normal type’s equilibrium action also converges to the Stackelberg action as

the discount rate goes to zero.33 In this chapter, we show that although large player becomes

sufficiently patient, the normal type’s equilibrium action need not converge to an action of any

commitment type when the prior is given at some specific level. First, we introduce the follow-

ing condition under which the normal type’s equilibrium action converges to some point in the

sub-manifold generated by every commitment type’s fixed action.

Condition 3 For any prior p ∈ ∆K−1, an equilibrium strategy
{

a0,t(θt), b̄t(θt)
}

t≥0, and a con-

sistent belief process
{

θt
}

t≥0 that is corresponding to
{

a0,t(θt), b̄t(θt)
}

t≥0:

(a) There exists a C1 > 0 such that ∂U(θt)
∂θi,t

>C1 for every i ∈ {1, ...,K}.

(b) There exists a C2 > 0 such that

∣∣µ(a0,t(θt), b̄t(θt))−µ
θt (θt)

∣∣≥C2

∣∣∣∣a0,t(θt)−
K

∑
i=1

θi,ta∗i (θt)−θ0,ta0,t(θt)

∣∣∣∣
Condition 3(a) implies every commitment type is a “good” type. In other words, the normal

type large player’s equilibrium payoff increases with respect to the belief about any commitment

type. Hence, reputation about any commitment type has positive value to the normal type large

33In this case, the commitment type should be the Stackelberg type. Because small players are uncertain
about payoff-related types about the large player, it is unnatural to assume that small players recognize the exact
Stackelberg action of the large player as the only commitment type.
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player. If the static payoff function g(θt) = g
(
at(θ), b̄t(θ)

)
has this property, then Condition

3(a) also holds. Condition 3(b) means that if the normal type’s equilibrium action is different

from the weighted average of actions chosen by every types, then the drift term from the normal

type and the average of drift terms by every types are also different. When the drift term of

public signals, µ
(
at(θt), b̄t(θt)

)
, is quasi-linear in the action profile a(θ), then Condition 3(b)

is also satisfied under the following condition:

Condition 4 34 For any prior p ∈ ∆K−1, an equilibrium strategy
{

a0,t(θt), b̄t(θt)
}

t≥0, and a

consistent belief process
{

θt
}

t≥0 corresponding to
{

a0,t(θt), b̄t(θt)
}

t≥0:

(b)* There exists a C2 > 0 such that

∣∣µ(a0,t(θt), b̄t(θt)
)
−µ

(
a′(θt), b̄t(θt)

)∣∣≥C2
∣∣a0,t(θt)−a′(θt)

∣∣
Condition 4 implies that different actions chosen by large player are expected to have differ-

ent effects on public signals from the view of the normal type. Under Condition 3, we show that

the normal type’s equilibrium action converges to a convex combination of actions of all com-

mitment type’s as discount rate goes to zero. When there is a single commitment type (K = 1),

this result is consistent with Theorem 5 in FS(2011).

Proposition 11 Under Condition 2 and 3, and Assumption 2, for any given belief θt , the equi-

librium action of the normal type large player converges to a convex combination of every

commitment type’s action as the large player becomes sufficiently patient. In other words, as

r→ 0,

a0,t(θt) −→
K

∑
i=1

θi,t

1−θ0,t
a∗i

34This condition is same as Condition 3(a) in Faingold and Sannikov (2011).
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a∗1(θt)

a∗2(θt)

a∗3(θt)

a0(θt)•

Figure 5: Convergence when K = 3

Denote A∗(θt) =∑
K
i=1

θi,t
1−θ0,t

a∗i be the limit action that is a convex combination of every com-

mitment type’s action for any given θt ∈ ∆K−1. Proposition 11 implies that a0,t(θt) converges

to A∗(θt) as r goes to 0. Therefore, the normal type’s equilibrium action might converge to any

commitment type Ti’s action when the belief process converges to where θi,t = 1 after observing

enough history. In FS(2011), because there is a single commitment type, the sub-manifold gen-

erated by the commitment type’s action is a singleton. Therefore, the normal type large player’s

equilibrium action always converges to the commitment type’s action as the large player be-

comes patient. Figure 5 describes the result of Proposition 11 when there are 3 commitment

types.

However, under the following condition, with multiple commitment types, this limit action

stays away from any commitment type action because the equilibrium belief process is trapped

in some specific area in the belief space. This is a main difference between the case of a single

commitment type and the case of multiple commitment types.

Condition 5 For each i ∈ {1, ...,K}, there exists only one βi ∈ (0,1) such that:
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Figure 6: Condition 5 when K = 2

(a) 0 < ∑
K
i=1 βi < 1

(b) µ
(
a∗i (θ

βi
t ), b̄t(θ

βi
t )
)
= ∑

K
j 6=i

θ j,t
1−βi

µ
(
a∗j(θ

βi
t ), b̄t(θ

βi
t )
)
+

θ0,t
1−βi

µ
(
a0,t(θ

βi
t ), b̄(θ βi

t )
)

for any θ
βi
t =

(
θ1,t , ...,θi−1,t ,βi,θi+1,t , ...,θK,t

)
∈ ∆K−1 with ∑

K
j 6=i θ j,t +θ0,t = 1−βi.

Condition 5(a) guarantees that the belief β lies in ∆K−1. At the belief β =
(
β1, ...,βK

)
∈

∆K−1, Condition 5(b) implies that µ
(
a0,t(β ), b̄t(β )

)
= µ

(
a∗1(β ), b̄t(β )

)
= · · · = µ

(
a∗K(β ), b̄t(β )

)
.

In other words, all drift terms in public signals by every commitment type and the normal type

are same at the belief β ∈ ∆K−1. If all drift terms in public signals are same across all the com-

mitment types and the normal type, then Condition 5(b) also holds and the posterior remains as

same as the prior no matter how long small players observe public signals. Condition 5 is not

necessary but a sufficient condition for Theorem 3.35

Under the following condition, at θ
βi
t 6= β , Condition 5(b) does not imply that all drift terms

in public signals are same. This is possible because each drift term from a commitment type is

affected by the aggregate distribution of small players’ actions as well as a commitment action,

which are also dependent on the level of small players’ belief.
35We can find other conditions that are sufficient for Theorem 3 to hold by characterizing an invariant set where

the belief process lives in different ways.
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Condition 6 Let θ
βi
t 6= β . For each i, j ∈ {0,1, ...,K}, there exist C3 > 0 such that:

∣∣µ(a∗i (θ βi
t ), b̄t(θ

βi
t ))−µ(a∗j(θ

βi
t ), b̄t(θ

βi
t ))
∣∣≥C3

∣∣a∗i (θ βi
t )−a∗j(θ

βi
t )
∣∣

where a∗0
(
θ

βi
t
)
= a0

(
θ

βi
t
)

is the normal type large player’s equilibrium action at the belief θ
βi
t .

Figure 6 describes the effects of Condition 5 on the equilibrium belief process when there are

two commitment types. Since each βi plays a role of a barrier on the equilibrium belief about

each commitment type Ti, even after observing long enough public signals, the equilibrium

belief trajectory, which is represented by blue irregular line, is trapped in the gray area. This

gray area is an invariant set. In other words, the posterior of small players with prior in the area

keeps staying in the area with probability 1. Note that Condition 5(b) only requires that for each

commitment type, there is only one level of belief 0 < βi < 1. Therefore, we do not require that

on the whole belief space, every drift term should be represented by convex combinations of

drift terms by other types. Let Ḟ =

{
θt ∈ ∆K−1

∣∣ βi < θi,t < 1 for every i ∈
{

1, ...,K
}}

be an

open subset in ∆K−1, which is characterized by β ∈ ∆K−1.

Theorem 3 Suppose that Condition 2 holds for θt ∈ Ḟ . Under Condition 3 and 5 in Ḟ, the limit

action is uniformly away from each commitment action. In other words, there exists a α > 0

such that

∣∣A∗(θt)−a∗i
∣∣≥ α

for any i ∈ {1, ...,K},

Sketch of Proof. By Proposition 11, we know that, for any θt , the limit action A∗(θt) is in

the sub-manifold generated by
{

a∗1, ...,a
∗
K
}

. By Condition 5, we set up a barrier to each θi,t that

prevents θi,t from decreasing below βi. Since Ḟ is an invariant set, there is also a unique Markov
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Figure 7: Convergence when K = 3

equilibrium payoff, UḞ(θ), when we restrict the original problem on Ḟ . Therefore, with a prior

in Ḟ , the equilibrium belief process is certainly believed to live in Ḟ . With Condition 3 imposed

on this UḞ , the limit action A∗(θt) for θt ∈ Ḟ stays away from every vertex of ∆K−1 �

Theorem 3 means that although the large player becomes patient enough, the normal type’s

equilibrium action is always different from any commitment action by some non-trivial distance.

Therefore, reputation effects do not hold in this case at the behavioral level. In other words,

large player could not fix his equilibrium payoff at the level of the Stackelberg payoff in spite

that one of the multiple commitment types is the Stackelberg type. Figure 7 describes Theorem

3 when there are 3 commitment types. Each commitment type’s action consists of vertex of a

tetrahedron. The gray area represents the invariant set F that is characterized by Condition 5.

When the prior about commitment types lives in this gray area, then the equilibrium posterior

also lives in this area. Therefore, the normal type large player’s equilibrium action a0 converges

to some point in the gray area, which is away from every vertex of ∆K−1.
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CHAPTER 5: CONCLUSION

We study a continuous-time reputation game when there are multiple commitment types.

Theorem 1 shows that there exists a unique equilibrium payoff to the normal type large player

that is Markovian in small players’ beliefs. In Theorem 2, we find a stochastic representation of

the equilibrium payoff. Theorem 3 provides an example that, under some conditions on public

signals, the equilibrium action of the normal type does not converge to any commitment type

action even though the large player is sufficiently patient. In other words, reputation effects do

not hold. Although we focus only on the reputation games, these results we have derived could

be easily adjusted to more general continuous-time games that study a Markov equilibrium

payoff with respect to belief processes.

Although this is a partial extension of FS(2011) by allowing multiple commitment types,

there is still an open question about what if the best response correspondence N (θ ,r) is not a

singleton. When N (θ ,r) is a singleton as we assume in this paper, it is a continuous function

in (θ ,r). However, when N (θ ,r) yields multiple equilibrium action profiles for each given

(θ ,r), it is no longer guaranteed to be lower-hemicontinuous. Hence, we are not sure that equi-

librium action profiles
(
a(θ), b̄(θ)

)
∈N (θ ,r) is continuous in (θ ,r). FS(2011) deal with such

a case by using the techniques in differential inclusions and the concept of viscosity solutions36

when there is a single commitment type. With multiple commitment types, it might be more

technically difficult to show the existence of the Markov equilibrium payoff function. However,

one possible approach to the difficulty is an imposing a condition on a set N (θ ,r) under which

each player choose an action among all best responses. We leave this open question as a future

research.

Furthermore, we assume that the large player acts against a continuum of opponents. There-

36This is a kind of solution to a differential equation in a more generalized sense because it may be assumed to
be non-differentiable. For an introduction to concepts and related properties of viscosity solutions, see Crandall,
Ishii, and Lions (1992).
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fore, although the opponents are long-lived players with a same discount rate as the large player,

each of them do not have any power on the progress of the game. In this sense, we call the op-

ponents small compared to the large player who can affect the public signals by himself. This

implies that each small player plays myopically as is living only once. However, when there

are finite number of opponents who are against the large player, things are absolutely different.

Each of the opponents is no longer a small player because their choice could change the game

through affecting public signals directly. We expect that, in this case, the reputation effects are

hard to hold relative to the case of small players. Although there has been lots of literature on

reputation games with non-myopic opponent players, it is also an interesting future research

question to study whether the result of reputation games with finite number of opponents con-

verges to the result of games with a continuum of small players when the number of opponents

increases.
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APPENDIX: PROOFS

Proof of Corollary 1

Proof. First, by the definition of µθt (at , b̄t),

dXt−µ
θt (at , b̄t)dt =

{
dXt−µ(at , b̄t)dt

}
+

{
µ(at , b̄t)−µ

θt (at , b̄t)

}
dt

Since dZn
t = σ−1(b̄t)

(
dXt−µ(at , b̄t)dt

)
, for each k ∈ {1, ...,K},

γk(at , b̄t ,θt) ·σ−1(b̄t)
(
dXt−µ(at , b̄t)dt

)
= γk(at , b̄t ,θt) ·dZn

t (17)

Furthermore, since γ0(at , b̄t ,θt) = θ0σ−1(b̄t)
(
µ(at , b̄t)−µθt (at , b̄t)

)
,

σ
−1(b̄t)

{
µ(at , b̄t)−µ

θ (at , b̄t)

}
dt =

γ0(at , b̄t ,θt)

θ0
dt (18)

Therefore,

γk(at , b̄t ,θt) ·σ−1(b̄t)

{
µ(at , b̄t)−µ

θt (at , b̄t)

}
dt =

γk(at , b̄t ,θt) · γ0(at , b̄t ,θt)

θ0
dt (19)

By (18) and (20),

dθk,t =
γk · γ0

x0
dt + γk ·dZn

t
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Proof of Proposition 5

Proof. By the definition of U(θt) =Wt , dU(θt) = dW . From the drift terms,

r
(
U(θt)−g(ao, b̄)

)
=

1
2

K

∑
i, j=1

γi · γ j
∂ 2U(θt)

∂θi,t∂θ j,t
+

K

∑
i=1

γ0 · γi

θ0,t

∂U(θt)

∂θi,t

, hence the optimality equation is derived. From the dispersion terms,

rβt = σ
−1(b̄t)

K

∑
j=1

∂U(θt)

∂θi,t
γ j.

Proof of Lemma 1

Proof. Let θt = (θ1,t ,θ2,t , ...,θK,t) ∈ ∆K−1 and Γ = (Γi j) = (γi · γ j) be a K×K matrix.

θ
T
t ·Γ ·θt = θ

T
t



γ1 · γ1 γ1 · γ2 · · · γ1 · γK

γ2 · γ1 γ2 · γ2 · · · γ2 · γK

...
... . . . ...

γK · γ1 γK · γ2 · · · γK · γK





θ1,t

θ2,t

...

θK,t



= (θ1,t ,θ2,t , ...,θK,t)



γ1 ·∑i=1 γiθi,t

γ2 ·∑i=1 γiθi,t

...

γK ·∑i=1 γiθi,t


= θt ·



γ1 ·∏

γ2 ·∏
...

γK ·∏


= θ1,tγ1 ·∏+ · · ·+θK,tγK ·∏

= ∏ ·∏≥ 0
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where ∏ = ∑
K
i=1 γiθi,t .

Furthermore, when µθt = µ0,

K

∑
i=1

γi =
K

∑
k=1

θk,t µ(a∗k , b̄)−
K

∑
k=1

θk,t µ
θt

= σ
−1(b̄)

(
µ

θt −θ0,t µ0−µ
θt (1−θ0,t)

)
= σ

−1(b̄)θ0,t
(
µ

θt −µ0
)
= 0

, which implies that ∏= 0 with θt =
(1−θ0,t

K , ...,
1−θ0,t

K

)
∈∆K−1 because θ0,t µ0+

1−θ0,t
K ∑

K
k=1 µk =

µ0, that is, 1
K ∑

K
k=1 µk = µ0. Therefore

(1−θ0,t
K , ...,

1−θ0,t
K

)
·Γ ·

(1−θ0,t
K , ...,

1−θ0,t
K

)
= ∏

2 ≥ 0 and

hence Γ is a positive semi-definite matrix.

By the definition of γi,

K

∑
i=1

θi,tγi =
K

∑
i=1

θ
2
i,t

µi−µθt

σ
=

1
σ

{ K

∑
i=1

θ
2
i,t µi−µ

θt
K

∑
i=1

θ
2
i,t

}
= 0

⇔
K

∑
i=1

θ
2
i,t µi = µ

θt
K

∑
i=1

θ
2
i,t

⇔
K

∑
i=1

{
θ 2

i,t

∑
K
i=1 θ 2

i,t
−θi,t

}
µi = θ0,t µ0

Define Ai = 1
θ0,t

{
θ 2

i,t

∑
K
i=1 θ 2

i,t
−θi,t

}
. Since ∑

K
i=1 Ai = 1

θ0,t

(
1−∑

K
i=1 θi,t

)
= 1

θ0,t

{
1− (1−θ0,t)

}
= 1,

∏ = 0 is implied by that µ0 is represented by a linear combination of {µ1, ...,µK} with weight

of
{

A1, ...,AK}.

We can check that A1 < 0 when θ0 = 1
5 ,θ1 = 1

10 ,θ2 = 1
2 ,θ3 = 1

5 , and θ j = 0 for j ≥ 4.

Therefore, θ T
t ·Γ ·θt = ∏ ·∏ > 0 under the Condition 2, which implies that Γ is positive definite

in ∆K−1.
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Proof of Proposition 6

It is enough to show that M = ∆K−1 ∪ ∂M is invariant, which is defined below, for the

diffusion process
{

θt
}

t≥0 with a prior p ∈ ∆K−1:

Definition 8 We say a set M ∈Rn is invariant for the diffusion process
{

Xx
t
}

t≥0 if and only if

X0 = x ∈M implies Xx
t ∈M, Px−a.s. for all t ≥ 0

Let M = ∆K−1. Since M is a compact set with a piecewise smooth boundary, to show the

invariance of S, we follow Cannarsa, Da Prato, and Frankowska (2010)37. Denote Mi =
{

x ∈

RK : xi ≥ 0
}

for some i ∈ {1, ...,K} and M0 =
{

x ∈ RK : ∑
K
i=1 xi ≤ 1

}
. It is trivial that every

M j for j ∈ {0,1, ...,K} is a closed set of class C2,1.38 Each M j is where, from the view of the

normal type, small players certainly believe that the large player is not the type Tj. For any

K ∈N, we can represent the belief space with an intersection of closed domain as below:

M = ∆K−1 = ∩K
j=0M j

Let d∂M j(θ) be the Euclidean distant to M j from θ ∈ RK . The oriented distance function

δM j(θ) to M j from θ ∈RK is defined as below:

δM j(θ) =

 d∂M j(θ), if x ∈M j;

−d∂M j(θ), if x ∈Mc
j .

37See Theorem 3.2. in Cannarsa, Da Prato, and Frankowska (2010)
38In other words, it is a closed connected subset such that, for all point x ∈M j, there exist r > 0 and a function

φ : B(x,r)→R which is twice differentiable on B(x,r) with bounded Lipschitz second derivatives such that ∂M j∩
B(x,r) =

{
y∈ B(x,r) : φ(y) = 0

}
. For each M j, ∂M j is a (K−1)-dimensional hyperplane in K-dimensional space,

it can be represented with a linear function φ j. Therefore, for each j ∈ {0,1, ...,K}, ∂M j is smooth.
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By the definition, it is also clear that ∇δM j(θ) = −νM j(θ̄) where νM j(θ̄) is the outward

normal to M j at θ̄ ∈ ∂M j such that δM j(θ) =
∣∣θ − θ̄

∣∣. For each j ∈ {0,1, ...,K}, let N j
ε ={

x ∈ RK :
∣∣δM j

∣∣ < ε

}
. Then, since every boundary of M is included in a hyperplane that is

belong to some M j, for any j, there exists ε1 > 0 such that

proj∂M j
(θ) ∈ ∂M

for all θ ∈ ∆K−1∩Mε1
j where proj∂M j

(θ) is the projection of θ to ∂M j.

Fix i ∈ {1, ...,K}. For any θ ∈ ∆K−1, the distant function to Mi from θ ∈ ∆K−1 is defined

by δMi(θ) = θi. Therefore, on ∂Mi ∩M, the outward normal vector, ν is defined as νT =

(ν1, ...,νi, ...,νK) = (0, ...,0,1,0, ...,0) = ∇δMi(θ)
∣∣
θ∈∂Mi

. For j = 0, the outward normal vector

νT = (1, ...,1) = ∇δM0(θ)
∣∣
θ∈∂M0

. Therefore, for each j ∈ {0,1, ...,K}, 0 6= ∇δM0(θ)
∣∣
θ∈∂M j

Every θ ∈ ∂M belongs to ∂M j for at most one j ∈ {0,1, ...,K}. Fix k ∈ {1, ...,K}. For such

a θ ∈ ∂Mk, γk(θ) = 0 because θk = 0. Therefore,

〈
Γ∇δMk(θ)

∣∣
θ∈∂Mk

, ∇δMk(θ)
∣∣
θ∈∂Mk

〉
=

K

∑
i, j=1

γi(θ)γ j(θ)ν
k
i (θ)ν

k
j (θ) = γ

2
k (θ) = 0.

where
〈
·, ·
〉

is the inner product defined on RK ×RK and νk is the outward normal to ∂Mk at

θ . Furthermore, for θ ∈ ∂Mi,

1
2

K

∑
i, j=1

γi(θ)γ j(θ)
∂ 2δMk(θ)

∂θi∂θ j

∣∣∣∣
θ∈∂Mk

+
K

∑
i=1

γi(θ)γ0(θ)

θ0

∂δMk(θ)

∂θi

∣∣∣∣
θ∈∂Mk

=
K

∑
i=1

γi(θ)γ0(θ)

θ0

∂δMk(θ)

∂θi

∣∣∣∣
θ∈∂Mk

=
γk(θ)γ0(θ)

θ0

= 0.
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For j = 0 and θ ∈ ∂M0,

〈
Γ∇δM0(θ)

∣∣
θ∈∂M0

, ∇δM0(θ)
∣∣
θ∈∂M0

〉
=

K

∑
i, j=1

γi(θ)γ j(θ)ν
0
i (θ)ν

0
j (θ)

=

{ K

∑
i=1

γi(θ)

}2

= γ0(θ)
2 = 0

because γ0(θ) = 0 for θ ∈ ∂M0. In the similar way,

1
2

K

∑
i, j=1

γi(θ)γ j(θ)
∂ 2δM0(θ)

∂θi∂θ j

∣∣∣∣
θ∈∂M0

+
K

∑
i=1

γi(θ)γ0(θ)

θ0

∂δM0(θ)

∂θi

∣∣∣∣
θ∈∂M0

=
K

∑
i=1

γi(θ)γ0(θ)

θ0

∂δM0(θ)

∂θi

∣∣∣∣
θ∈∂M0

=
K

∑
i=1

γi(θ)γ0(θ)

θ0

= 0.

Therefore, M is an inaccessible set. Since ∂M =∪K
i=0
{

∂Mi∩M
}

, we conclude that ∂∆K−1 =

Ψ is a non-attainable set and the ε-regular boundary set ∂∆ε = /0 is empty.

Proof of Proposition 7

We use the Berg’s Maximum theorem. First, note that both A and B are compact sets. Under

Assumption 2, b̄ ∈ ∆(B) is mass-distribution39, ∆(B) is also a compact set. Note the definition

39In other words, it is centered on each b ∈ B.
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of N (·, ·),

N (θ ,r) =
{
(a, b̄) : a ∈ argmaxa′∈Ag(a′, b̄)+

(
σ(b̄) ·σ(b̄)T)−1 · zT ·


µ1−µθt

...

µK−µθt

µ(a′, b̄)

b ∈ argmaxb′∈B

K

∑
i=0

θih(ai,b′, b̄) ∀b ∈ supp b̄
}

where zT = 1
r

(
θ1,tUθ1,t , ...,θK,tUθK,t

)
.

For any given (θ ,r), it is trivial that g(a′, b̄)+
(
σ(b̄) ·σ(b̄)T)−1 ·zT ·


µ1−µθt

...

µK−µθt

µ(a′, b̄)

is continuous in (θ ,r) because it is a linear in r and is quadratic in θ . Also, ∑
K
i=0 θi,th(ai,b′, b̄) is

continuous in (θ ,r) because it is linear in θ . Furthermore, for each (θ ,r), there is no restriction

on available (a, b̄).

Then, by the Berge’s Maximum Theorem, we conclude that both g(a′, b̄)+
(
σ(b̄)·σ(b̄)T)−1 ·

zT ·


µ1−µθt

...

µK−µθt

µ(a′, b̄) and ∑
K
i=0 θi,th(ai,b′, b̄) are continuous in (θ ,r). Moreover, N (θ ,r)

is non-empty, compact-valued, and upper-hemicontinuous. Under Assumption 2, since N is

single-valued, it is trivial that the upper-hemicontinuous correspondence N is continuous in

(θ ,r).
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Proof of Proposition 8

For θ ∗ = (0, ...,0), z∗ = 0, and hence

N (z∗,r) =
{
(a, b̄) : a ∈ argmaxa′∈Ag(a′, b̄)

b ∈ argmaxb′∈Bh(a,b′, b̄) ∀b ∈ supp b̄
}

For θ ∗ = (θ1, ...,θK) = (0, ...,0,1,0, ...,0) ∈ ∆K−1 where θi = 1 for some i ∈ {1, ...,K}, the

reputation parameter z∗ =
(
0, ...,0, 1

r
∂U(θ)

∂θi

∣∣
θi=1,0, ...,0

)
. By the definition of N (·, ·),

N (z∗,r) =
{
(a, b̄) : a ∈ argmaxa′∈Ag(a′, b̄)

b ∈ argmaxb′∈Bh(a∗i ,b
′, b̄) ∀b ∈ supp b̄

}

Therefore,

Ur(θ
∗) ∈ g

(
N (z∗,r)

)

Proof of Theorem 140

Proposition 6 shows that M = ∆K−1 is invariant for
{

θt ∈ ∆K−1}
t≥0. Since the Markov

equilibrium payoff function should satisfy the optimality equation (14), it is sufficient to show

that there exists an unique solution to the equation (14). By Proposition 8, we do not need

to assign any boundary condition. Under Condition 2, for any compact subset K ⊂ ∆K−1, the

40This proof is based on the proof of Theorem 4.4 in Cannarsa, Da Prato, and Frankowska (2010)
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second-order operator L is uniformly elliptic. In other words,

det Γ(θ)> 0 for any θ ∈ K

This is equivalent with that Γ(·) is positive definite on ∆K−1, which was guaranteed by Condition

2. Denote f (θ) = rg
(
a0(θ), b̄(θ)

)
. For any θ ∈M and given f ,

U f
r (θ) =

∫
∞

0
e−rsPs f (θ)ds

where Pt is the transition semigroup such that Ps f (θ) = E
[

f (θ p
s )
]

with a initial prior θ0 =

p ∈M and a continuous function f (θ) defined on M.

It is well-known41 that

L = lim
h→0+

Ph− I
h

By the Hille-Yosida theorem42, it is known that U f
r (θ) satisfies the following:

LU f
r (θ)− rU f

r (θ) =− f

in M and U f
r (θ) ∈ D(L) where D(L) =

{
h ∈C(M) : h ∈ W 2

loc(∆
K−1), and Lh ∈C(M)

}
with

C(M) is the space of continuous function defined on M.

Next, check the regularity. Since M is a compact set of class C2,1, there is a sequence of

compact domains
{

Mi}
i∈N of class C2,1 such that

Mi ⊂ Ṁi+1 and ∪∞
i=1 Mi = ∆

K−1

41See Cannarsa, Da Prato, and Frankowska (2010).
42See Evans (2010).
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where Ȧ is the interior of A. For a sufficiently large i ∈ N, define

U f
r,i =

∫
∞

0
e−rsP i

s f (θ)ds

for θ ∈ Mi and a stopped transition semigroup P i
s such that: for τi(p) = inf

{
t > 0 : θ

p
t ∈

∂Mi and θ
p
0 = p

}
,

P i
s f (θ) = E

[
f (θ p

s )χ{t≤τi(p)}

]

Since Ps f (θ)=E
[

f (θ p
s )χ{t≤τ}

]
where τ = inf

{
t > 0 : θ

p
t ∈ ∂M and θ

p
0 = p

}
, for any bounded

and continuous function f on M,

lim
s→∞

P i
s f (θ) = Ps f (θ)

Therefore, for any θ ∈ ∆K−1, as i→ ∞,

U f
r,i→U f

r

By Condition 2,
{

θt
}

is non-degenerate in Mi for each i. By the Hille-Yosida theorem, it is

known that U f
r,i satisfies the following partial differential equation with boundary conditions:

LU f
r,i(θ)− rU f

r,i(θ) =− f in Mi

U f
r,i = 0 on ∂Mi

and U f
r,i ∈W 2(Mi). Since U f

r,i→U f
r and U f

r,i ∈W 2(Mi), we can conclude that U f
r ∈W (∆K−1).

From now on, denote U f
r =Ur.
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For the uniqueness of Ur, it is sufficient to show that the solution to the following

LUr(θ)− rUr(θ) = 0

for θ ∈M is Ur = 0 on M. Since we already know that Ur ∈C(M), ‖Ur‖∞ where ‖ · ‖∞ is the

supreme norm is bounded. Let B = ‖Ur‖∞ ≥ ∞ and define:

Vr(θ) =
Ur(θ)

r(1+B)
− 1

r

Since Ur ∈W 2
loc(∆

K−1), it is trivial Vr ∈W 2
loc(∆

K−1) and Vr(θ)> 0 for any θ ∈ ∆K−1. Further-

more,

LVr(θ)− rVr(θ) =−1

because LUr(θ)− rUr(θ) = 0.

For f (θ) = −1, Ps f (θ) = E
[

f (θ p
s )
]
= −1. Hence, on M, Ur =

∫
∞

0 e−rsPs f (θ)ds =

−
∫

∞

0 e−rsds =−1
r . By the definition of Vr(θ),

Vr(θ)≤Ur,i(θ)

for any θ ∈ Mi and sufficiently large i ∈ N because we know that Ur,i(θ) → Ur(θ) = −1
r .

Therefore,

Vr(θ)≤−
1
r

for any θ ∈M. This implies that, for any θ ∈M,

Ur(θ)≤ 0 (20)
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Next, consider the solution to the following

rUr(θ)−LUr(θ) = 0

for θ ∈M. Define:

Vr(θ) =
1
r
− Ur(θ)

r(1+B)

Since Ur ∈W 2
loc(∆

K−1), it is trivial Vr ∈W 2
loc(∆

K−1) and Vr(θ)> 0 for any θ ∈ ∆K−1. Further-

more,

rVr(θ)−LVr(θ) = 1

because LUr(θ)− rUr(θ) = 0.

For f (θ)= 1, Ps f (θ)=E
[

f (θ p
s )
]
= 1. Hence, on M, Ur =

∫
∞

0 e−rsPs f (θ)ds=
∫

∞

0 e−rsds=

1
r . By the definition of Vr(θ),

Vr(θ)≤Ur,i(θ)

for any θ ∈ Mi and sufficiently large i ∈ N because we know that Ur,i(θ) → Ur(θ) = −1
r .

Therefore,

Vr(θ)≤
1
r

for any θ ∈M. This implies that, for any θ ∈M,

Ur(θ)≥ 0 (21)
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Therefore, by (21) and (22), the solution to the following problem:

LUr(θ)− rUr(θ) = 0

is Ur(θ)≡ 0 for any θ ∈M.

Proof of Lemma 2

Under Condition 2, the optimality equation becomes a non-degenerate second-order elliptic

partial differential equation on ∆K−1 because Γ is positive definite. In other words, for any

nonzero vector x ∈RK and belief θ ∈ ∆K−1,

K

∑
i, j=1

γi(θ)γ j(θ)xix j > 0.

Since ∂Dδ/Ωδ is a smooth part of boundary ∂Dδ , we can define the outward normal vector

of which direction cosines are defined and three times continuously differentiable on ∂Dδ/Ωδ .

This implies that, for any outward normal vector ν to ∂Dδ/Ωδ at θ ∈ ∂Dδ/Ωδ

K

∑
i, j=1

γi(θ)γ j(θ)νi(θ)ν j(θ)> 0.

Therefore, by Freidlin (1985)43, for any ε > 0, every point of ∂Dδ/Ωδ is a ε-regular point,

which is a strongly regular point. By Proposition 6, it is trivial that Ωδ is an non-attainable set.

43See Theorem 3.4.2 in Freidlin (1985)
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Proof of Proposition 9

For any given δ > 0, we can construct an increasing sequence of subsets
{

Dδ
}

of ∆K−1

that converges to ∆K−1 as δ goes to zero. Fix a sequence
{

δl
}

l∈N satisfying this conditions.

We know that the optimality equation on Dδ is elliptic second-order partial differential equation

and degenerate only on the boundary points that belongs to Ωδ . Since Ωδ is an non-attainable

set in the boundary of Dδ , it is enough to assign a boundary condition only on the ε-regular set,

∂Dδ\Ωδ
44.

Therefore, define the Dirichlet problem on Dδ as following:

LUδ (θ)− rUδ (θ) =−rg
(
a(θ), b̄(θ)

)
on Dδ

Uδ (θ) = g
(
a(θ), b̄(θ)

)
on ∂∆

ε

δ

where g(·, ·) is a continuous function on ∆K−1. On Dδl , for any give t > 0, by Dynkin’s formula,

Uδl(θ) = Eθ

[
g
(
a(θt∧τδ ), b̄(θt∧τδ )

)
exp{−r(t ∧ τδ )}

]
+ rEθ

∫ t∧τδ

0
g
(
a0(θs), b̄(θs)

)
exp{−rs}ds

= I + II

For the second term II, it is clear that

lim
t→∞

rEθ

∫ t∧τδ

0
g
(
a0(θs), b̄(θs)

)
exp{−rs}ds = rEθ

∫
τδ

0
g
(
a0(θs), b̄(θs))exp{−rs}ds

44See Theorem 5.2 in Stroock and Varadhan (1972).
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We rewrite the first term, I, as following:

Eθ

[
g
(
a(θt∧τδ ), b̄(θt∧τδ )

)
exp{−r(t ∧ τδ )}

]
= Eθ

[
g
(
a(θ

τδ ), b̄(θτδ )
)

exp{−rτδ}χ{τδ≤t}

]
+Eθ

[
g
(
a(θt), b̄(θt)

)
exp{−rt}χ{τδ>t}

]
= III + IV

By the uniform boundedness of g(·, ·), both collections of random variables in III and IV :

{
g
(
a(θ

τδ ), b̄(θτδ )
)

exp{−rτδ}χ{τδ≤t} : t ≥ 0
}

and
{

g
(
a(θt), b̄(θt)

)
exp{−rt}χ{τδ>t} : t ≥ 0

}

are uniformly integrable.

Therefore,

lim
t→∞

Eθ

[
g
(
a(θ

τδ ), b̄(θτδ )
)

exp{−rτδ}χ{τδ≤t}

]
= Eθ

[
g
(
a(θ

τδ ), b̄(θτδ )
)

exp{−rτδ}
]

lim
t→∞

Eθ

[
g
(
a(θt), b̄(θt)

)
exp{−rt}χ{τδ>t}

]
= 0

We conclude that, for any θ ∈ Dδ , the solution is given by:

Uδ (θ) = Eθ

[
g
(
a(θ

τδ ), b̄(θτδ )
)

exp{−rτδ}
]
+ rEθ

∫
τδ

0
g
(
a0(θs), b̄(θs)

)
exp{−rs}ds

Proof of Theorem 2

Fix
{

δi
}

i∈N such that limi→∞ δi = 0. For each δi, by Proposition 10, there exists a solution

Uδi to the approximate problem that is defined on Dδi for each i ∈N. Consider the sequence of

solutions,
{

Uδi
}

i∈N each of whom is bounded, measurable, and continuous almost everywhere

on each Dδi . By the definition of equilibrium payoff, it is also uniformly bounded.
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For each δi > 0, we construct an approximate Dirichlet problem on Dδi . Therefore, it is suf-

ficient to show that the sequence of solution,
{

Uδi
}

i∈N, for each approximate Dirichlet problem

has a pointwise limit, which is the approximate solution to the Dirichlet problem in ∆K−1. We

use the following lemmas. First, not that, by the way of constructing, for any δ1 > δ2 > 0,

Dδ1 ⊆ Dδ2 ⊆ ∆K−1. Then, the first hitting time with respect to Dδ converges to τ as δ goes to

zero.

Lemma 3 limε→0 τε(ω) = τ(ω) for any ω ∈ Ω∗ =
{

ω ′ ∈ Ω
∣∣ τ is achieved.

}
. For any δ1 >

δ2 > 0 and ω ∈Ωε2 , τδ1(ω)< τδ2(ω) with probability 1.

Proof. Consider ω for which τ could be achieved. Since the diffusion process θt is continuous

with probability 1 from the view of the normal type large player and Dδi increases when the

sequence {δi} converges to zero as i goes to ∞, it is trivial that
{

τδi(ω)
}

is an increasing

sequence of random variables bounded by τ(ω).

Supposed that limε→0 τε(ω) = τ ′(ω) for some τ ′(ω) and P
{

τ ′(ω) < τ(ω)
}
> 0. Then,

there is a t0 > 0 such that:

P
{

τ
′(ω)< t0 < τ(ω)

}
> 0

Therefore, with θ
p
0 = p,

θ
p

t0 /∈ ∪∞
i=1Dδi P− a.s. on

{
τ
′(ω)< t0 < τ(ω)

}

This implies that:

θt0 ∈ ∂∆
K−1 P− a.s. on

{
τ
′(ω)< t0 < τ(ω)

}

, which is a contradiction to the definition of τ . Therefore, limε→0 τε(ω) = τ(ω) for any ω ∈
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Ω∗ =
{

ω ′ ∈Ω
∣∣ τ is achieved.

}
.

Lemma 4 Under Condition 1, Pθ

{
ω ∈Ω

∣∣ θ θ
τδ
(ω) ∈ ∂Dδ\Ωδ

}
= 1 for any δ > 0.

Proof. By the result of Faingold and Sannikov (2011), under Condition 1, we can conclude that

limt→∞ θ0,t = 1 with probability 1 from the perspective of the normal type. For any δ > 0, we

can construct α-neighborhood of 0 ∈ ∆K−1 that is contained in ∆K−1:

Bα(0)
∣∣∣∣
∆K−1

=

{
θ ∈ ∆

K−1 ∣∣ |θ |< α

}

such that Bα(0)
∣∣
∆K−1 ∩ Dδ = /0 with α > 0. Define d = d(α,δ ) = dist(Bα(0)

∣∣
∆K−1,Dδ ) > 0

that is a distant between Bα(0)
∣∣
∆K−1 and Dδ .

Since limt→∞ θ0,t = 1 with probability 1, we can find Tα > 0 such that for all t > Tα , θ0,t ∈

Bα(0)
∣∣
∆K−1 with probability 1. Therefore, with probability 1, we can conclude that the belief

process θt hit the boundary ∂Dδ+d/Ωδ+d . Since δ is arbitrary, we conclude that for any δ > 0,

Pθ

{
ω ∈Ω

∣∣θ θ
τδ
(ω) ∈ ∂Dδ/Ωδ

}
= 1.

By the Proposition 9, for any given δi > 0, the solution to an Dirichlet problem on Dδi is

given by:

Uδi(θ) = Eθ

[
g
(
a(θ

τδi ), b̄(θτδi )
)

exp{−rτδi}
]
+ rEθ

∫
τδi

0
g
(
a0(θs), b̄(θs)

)
exp{−rs}ds

= I + II

For I, since θt is a continuous process with probability 1 and g
(
a(·), b̄(·)

)
e−rτδ is a contin-
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uous and uniformly bounded function on Dδ , the limit as δ → 0 exists and it is given by:

lim
δ→0

g
(
a(θ

τδ ), b̄(θτδ )
)

exp{−rτδ}= g
(
a(θτ), b̄(θτ)

)
exp{−rτ} a.s.

Since g(·, ·) is uniformly bounded, the following collection of random variables

{
g
(
a(θ

τδi ), b̄(θτδi )
)

exp{−rτδi} : i ∈ N
}

is uniformly integrable. Therefore,

lim
i→∞

Eθ

[
g
(
a(θ

τδi ), b̄(θτδi )
)

exp{−rτδi}
]
= Eθ

[
g
(
a(θτ), b̄(θτ)

)
exp{−rτ}

]

For each θ ∈Dδ such that θ = (θ1,0, ...,θK,0) and ω ∈Ω∗, since
∫

∞

0 e−rsg
(
a(θs), b̄(θs)

)
ds <

∞ is uniformly bounded,
{

νδ (θ)=
∫ τδ

0 e−rsg(a(θs, b̄(θs))ds
∣∣ δ > 0

}
is also a uniformly bounded

and increasing sequence on the real line by Lemma 5 when δ goes to zero.

Therefore, by Bonzano-Weierstrass theorem, it has a pointwise limit. In other words,

lim
i→∞

νδi(θ) =
∫ limi→∞ τδi

0
e−rsg

(
a(θs), b̄(θs)

)
ds =

∫
τ

0
e−rsg

(
a(θs), b̄(θs)

)
ds

by Lemma 4.

Again, by the dominated convergence theorem and Lemma 5,
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lim
i→∞

rEθ

∫
τδi

0
g
(
a0(θs), b̄(θs)

)
exp{−rs}ds = rEθ

{
lim
i→∞

∫
τδi

0
e−rsg

(
a(θs), b̄(θs)

)
ds
}

= rEθ

{∫ limi→∞ τδi

0
e−rsg

(
a(θs), b̄(θs)

)
ds
}

= rEx

{∫
τ

0
e−rsg

(
a(θs), b̄(θs)

)
ds
}

Therefore, we can conclude that for any given θ ∈ ∆K−1,
{

Uδi(θ)
}

δi∈N has a pointwise

limit as i→ ∞, which is given by:

lim
i→∞

Uδi(θ) = Eθ

[
g
(
a(θτ), b̄(θτ)

)
exp{−rτ}

]
+ rEθ

∫
τ

0
g
(
a0(θs), b̄(θs)

)
exp{−rs}ds

≡U(θ)

This U(θ) is the approximate Markov equilibrium payoff to the normal type large player

when the prior is given at θ ∈ ∆K−1.

Proof of Proposition 10

We use Proposition 5.5.22 in Karatzas and Shreve (2012) to prove this proposition. Let

Iδ = (δ ,1−δ ) for 0 < δ < 1
2 . First, under Condition 1, γ0(θ

′) = θ ′0σ−1(b̄)
(
µ0−µθ ′

)
6= 0 and

hence γ2
0 (θ

′) > 0 for any θ ′ ∈ ∆0
δ
=

{
θ ∈ ∆0

∣∣δ < θ < 1− δ

}
. For each θ0 ∈ Iδ , γ0(θ

′) =

γ0(1−θ0) =
[
γ0(θ

′)
]
(θ0) is a function in θ0 ∈ Iδ because θ0 +θ ′ = 1.

We can find a constant A > 0 and ε > 0, such that

∫
θ0+ε

θ0−ε

1+
∣∣[γ2

0 (θ
′)
]
(y)/y

∣∣[
γ2

0 (θ
′)
]
(y)

dy < A
∫

θ0+ε

θ0−ε

1
y
= A

{
log(θ0 + ε)− log(θ0− ε)

}
< θ0
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where θ ′ ∈ ∆0
y for each y ∈ (θ0− ε,θ0 + ε).

Let Sδ = inf
{

t ≥ 0 : θ0,t /∈ Iδ

}
be the first hitting time when the belief of normal type escapes

Iδ . For any t > 0, under Condition 1,

P
{∫ t∧Sδ

0

[
γ

2
0 (θ

′)
]
(θ0,s)

(
1+

1
θ0,s

)
ds < ∞

}
= 1

because limt→∞ θ0,t = 1 with probability 1 under the normal type large player.

For the weak solution θ0 =
{

θ0,t
}

t≥0 to the stochastic differential equation:

dθ0,t =
γ0(θ1,t) · γ0(θ1,t)

θ0,t
dt + γ0(θ1,t) ·dZn

t

, it is trivial that

P
{

θt∧Sδ
= θ0,0+

∫ t

0

[
γ0(θ1,s)

]
(θ0,s) ·

[
γ0(θ1,s)

]
(θ0,s)

θ0,s
χ{s≤Sδ }ds

+
∫ t

0

[
γ0(θ1,s)

]
(θ0,s) ·χ{s≤Sδ }dZn

s

∣∣∣∣ 0≤ t < ∞

}
= 1

Since the score function s(x) =
∫ x

c e−
∫ y

c
2
z dzdy =−c2

x + c for any c > 0, on θ0 ∈ Iδ , s(δ+)>

−∞ and s
(
(1−δ )−

)
<∞ where s

(
(1−δ )−

)
= limθ0↗(1−δ ) s(θ0) and s(δ+)= limθ0↘δ s(θ0).

Therefore, as δ → 0,

Pθ0

{
lim

t→Sδ

θ0,t = δ

}
= 1−Pθ0

{
lim

t→Sδ

θ0,t = 1−δ

}
=

s
(
(1−δ )−

)
− s(θ0)

s
(
(1−δ )−

)
− s(δ+)

=
δ (1−δ −θ0)

θ0(1−2δ )
→ 0
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This implies that Pθ0

{
inf0≤t≤Sδ

θt > δ

}
→ 1 as δ → 0 for any θ0 ∈ Iδ .

For θ0 ∈ I = (0,1), since s(0+) = −∞ and s(1−) < ∞, by Proposition 5.5.22 in Karatzas

and Shreve (2012),

Pθ0

{
lim
t→S

θ0,t = 1
}
= Pθ0

{
inf

0≤t<S
θ0,t > 0

}
= 1

where S = T0∧T1.

Proof of Corollary 2

By Proposition 10,

Pθ0

{
lim
t→S

θ0,t = 1
}
= Pθ0

{
inf

0≤t<S
θ0,t > 0

}
= 1

This implies that, at the first hitting time τ > 0, the belief process does not touch the point that

is sufficiently close to where θ1 = 1 before it touch some point near θ1 = 0. Therefore,

Eθ0

[
g
(
a(θτ), b̄(θτ)

)
e−rτ

]
= g
(
a(θτ), b̄(θτ)

)
Eθ0

[
e−rτ

]
= g
(
a∗, b̄∗

)
Eθ0

[
e−rτ

]
where

(
a∗, b̄∗

)
∈N (0,r). Therefore, by Theorem 2,

U(θ) = g(a∗, b̄∗)Eθ

[
exp{−rτ}

]
+ rEθ

∫
τ

0
g
(
a0(θs), b̄(θs)

)
exp{−rs}ds (22)

where

(a∗, b̄∗) ∈
{
(a, b̄) : a ∈ argmaxa′∈Ag(a′, b̄), and b ∈ argmaxb′∈Bh(a,b′, b̄) ∀b ∈ supp b̄

}
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Proof of Proposition 11

Fix θt ∈ ∆K−1 and r > 0. By definition of N (θt ,r),

N (θt ,r) =
{
(a, b̄t) : a ∈ argmaxa′∈Ag(a′, b̄t)+

(
σ(b̄t) ·σ(b̄t)

T)−1 · zT ·


µ1−µθt

...

µK−µθt

µ(a′, b̄t)

b ∈ argmaxb′∈B

K

∑
i=0

θih(ai,t ,b′, b̄t) ∀b ∈ supp b̄t

}

where zT = 1
r

(
θ1,tUθ1,t , ...,θK,tUθK,t

)
, for

(
a0,t(θt), b̄t(θt)

)
∈N (θt ,r) and any i ∈ {1, ...,K},

g
(
a0,t(θt), b̄t(θt))−θi,tg(a∗i , b̄t(θt)

)
≥
(
σ(b̄t) ·σ(b̄t

)T
)−1

· 1
r

K

∑
i=1

θi,t
∂U(θt)

∂θi,t

(
µi(θt)−µ

θt (θt)
)
·
(
θi,t µi(θt)−µ0(θt)

)
where µi(θt)= µ

(
a∗i , b̄t(θt)

)
and µ0(θt)= µ

(
a0,t
(
θt), b̄t(θt)

)
. For the sake of simplicity, denote

g0(θt) = g
(
a0,t
(
θt), b̄t(θt)

)
and gi(θt) = g

(
a∗i , b̄t(θt)

)
. Hence,

g
(
a0,t(θt), b̄t(θt)

)
−

K

∑
i=0

θi,tg
(
a∗i , b̄t(θt)

)
≥
(
σ(b̄t) ·σ(b̄t

)T
)−1

· 1
r

K

∑
i=1

θi,t
∂U(θt)

∂θi,t

(
µi(θt)−µ

θt (θt)
)
·
(
µ

θt (θt)−µ0(θt)
)
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Denote gθt (θt) = ∑
K
i=0 θi,tg

(
a∗i , b̄t(θt)

)
. Then,

g
(
a0,t(θt), b̄t(θt)

)
−gθt (θt)≥

(
σ(b̄t) ·σ(b̄t)

T)−1

· 1
r

K

∑
i=1

θi,t
∂U(θt)

∂θi,t

(
µi(θt)−µ

θt (θt)
)
·
(
µ

θt (θt)−µ0(θt)
)

≥
(
σ(b̄t) ·σ(b̄t)

T)−1

·C1

r

K

∑
i=1

θi,t
(
µi(θt)−µ

θt (θt)
)
·
(
µ

θt (θt)−µ0(θt)
)

≥
(
σ(b̄t) ·σ(b̄t)

T)−1

·C1

r

(
µ

θt (θt)−µ0(θt)
)
·
(
µ

θt (θt)−θ0,t µ0− (1−θ0,t)µ
θt (θt)

)
≥
(
σ(b̄t) ·σ(b̄t)

T)−1C1θ0,t

r

∣∣∣∣µθt (θt)−µ0(θt)

∣∣∣∣2
≥
(
σ(b̄t) ·σ(b̄t)

T)−1C1C2θ0,t

r

∣∣∣∣θ0,ta0,t(θt)+
K

∑
i=1

θi,ta∗i −a0,t(θt)

∣∣∣∣2
≥ (σ(b̄t) ·σ(b̄t)

T )−1
θ0,t(1−θ0,t)

C1C2

r

∣∣∣∣a0,t(θt)−
K

∑
i=1

θi,t

1−θ0,t
a∗i

∣∣∣∣2

where the second inequality is from Condition 3(a) and the fifth inequality is from Condition

3(b).

Let g = maxθt∈∆K−1 g(at(θt), b̄t(θt)) and g = minθt∈∆K−1 g(at(θt), b̄t(θt)) for any uniformly

bounded g(·, ·). Then, the right-hand side is bounded by g−g. Therefore, as r goes to zero,

∣∣∣∣a0,t(θt)−
K

∑
i=1

θi,t

1−θ0,t
a∗i

∣∣∣∣2 → 0

This convergence result holds for any θt ∈ ∆K−1. Hence, as the normal type large player be-

comes sufficiently patient, the equilibrium action converges to a convex combination of all the

other commitment types’ actions.
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Proof of Theorem 3

By Condition 5(a), β ∈ ∆K−1. Let Fi =

{
θ ∈ RK−1 : βi ≤ θi ≤ 1

}
for i ∈ {1, ...,K} and

F0 =

{
θ ∈ RK−1 : ∑

K
i=1 θi ≤ 1

}
. It is trivial that F = ∩K

i=1Fi is a compact subset in RK−1.

For each θ ∈ F and i ∈ {1, ...,K}, the distance from θ to Fi, δFi(θ), is θi− βi. Therefore,

∇δFi(θ)
T = (0, ...,0,1,0, ...,0) where the i-th component is 1.

Every θ ∈ ∂F belongs to ∂Fj for at most one j ∈ {0,1, ...,K}. Fix k ∈ {1, ...,K}. For such

a θ ∈ ∂Fk, γk(θ) = 0 by Condition 5(b). Therefore,

〈
Γ∇δFk(θ)

∣∣
θ∈∂Fk

, ∇δFk(θ)
∣∣
θ∈∂Fk

〉
=

K

∑
i, j=1

γi(θ)γ j(θ)ν
k
i (θ)ν

k
j (θ) = γ

2
k (θ) = 0.

where 〈·, ·〉 is the inner product defined on RK×RK and νk is the outward normal to ∂Fk at θ .

Furthermore, for θ ∈ ∂Fk,

1
2

K

∑
i, j=1

γi(θ)γ j(θ)
∂ 2δFk(θ)

∂θi∂θ j

∣∣∣∣
θ∈∂Fk

+
K

∑
i=1

γi(θ)γ0(θ)

θ0

∂δFk(θ)

∂θi

∣∣∣∣
θ∈∂Fk

=
K

∑
i=1

γi(θ)γ0(θ)

θ0

∂δFk(θ)

∂θi

∣∣∣∣
θ∈∂Fk

=
γk(θ)γ0(θ)

θ0

= 0.
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For j = 0 and θ ∈ ∂F0,

〈
Γ∇δF0(θ)

∣∣
θ∈∂F0

, ∇δF0(θ)
∣∣
θ∈∂F0

〉
=

K

∑
i, j=1

γi(θ)γ j(θ)ν
0
i (θ)ν

0
j (θ)

=

{ K

∑
i=1

γi(θ)

}2

= γ0(θ)
2 = 0

because γ0(θ) = 0 for θ ∈ ∂F0.

In the similar way,

1
2

K

∑
i, j=1

γi(θ)γ j(θ)
∂ 2δF0(θ)

∂θi∂θ j

∣∣∣∣
θ∈∂F0

+
K

∑
i=1

γi(θ)γ0(θ)

θ0

∂δF0(θ)

∂θi

∣∣∣∣
θ∈∂F0

=
K

∑
i=1

γi(θ)γ0(θ)

θ0

∂δF0(θ)

∂θi

∣∣∣∣
θ∈∂F0

=
K

∑
i=1

γi(θ)γ0(θ)

θ0

= 0.

Therefore, F is an invariant set, and hence, the interior of F denoted by Ḟ is also an invariant

set. This implies that for any θ ∈ Ḟ :

P
{

θt ∈ Ḟ : ∀t ≥ 0
}
= 1

In the similar way of Theorem 1, we can conclude that there exist a unique Markov equilib-

rium payoff function, UḞ(·), that satisfies the optimality equation on Ḟ . Suppose Condition 3

is imposed on the UḞ(·). For any θ ∈ Ḟ , denote α = min{d1, ...,dK} where di =
∣∣A∗(θ)−a∗i

∣∣.
Since F is strictly included in ∆K−1, di > 0 for any i ∈ {1, ...,K}. Therefore, for any j ∈
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{1, ...,K} and θ ∈ Ḟ ,

∣∣A∗(θ)−a∗j
∣∣≥ α > 0.
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