
c© 2017 Patrick Royce Johnstone



ACCELERATED FIRST-ORDER OPTIMIZATION METHODS USING
INERTIA AND ERROR BOUNDS

BY

PATRICK ROYCE JOHNSTONE

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Doctoral Committee:

Professor Pierre Moulin, Chair
Professor Yoram Bresler
Assistant Professor Niao He
Associate Professor Angelia Nedich
Professor Rayadurgam Srikant



ABSTRACT

Optimization is an important discipline of applied mathematics with far-

reaching applications. Optimization algorithms often form the backbone of

practical systems in machine learning, image processing, signal processing,

computer vision, data analysis, and statistics. In an age of massive data

sets and huge numbers of variables, a deep understanding of optimization is

a necessary condition for developing scalable, computationally inexpensive,

and reliable algorithms.

In this thesis we design and analyze efficient algorithms for solving the

large-scale nonsmooth optimization problems arising in modern signal pro-

cessing and machine learning applications. The focus is on first-order meth-

ods which have low per-iteration complexity and can exploit problem struc-

ture to a high degree. First-order methods have the capacity to address

large-scale problems for which all alternative methods fail. However, first-

order methods can take many iterations to reach the desired accuracy. This

has led optimization researchers to ask the following question: is it possible

to improve the convergence rate of first-order methods without jeopardizing

their low per-iteration complexity?

In this thesis, we address this question in three areas. Firstly we inves-

tigate the use of inertia to accelerate the convergence of proximal gradient

methods for convex composite optimization problems. We pay special atten-

tion to the famous lasso problem for which we develop an improved version

of the well-known Fast Iterative Soft-Thresholding Algorithm. Secondly we

investigate the use of inertia for nonconvex composite problems, making

use of the Kurdukya- Lojaziewicz inequality in our analysis. Finally, when

the objective function satisfies an error bound which is fairly common in

practice, we develop stepsize selections for the subgradient method which

significantly outperform the classical approach.

The overarching message of this thesis is the following: with careful anal-

ysis and design, the convergence rate of first-order methods can be signifi-

cantly improved.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The purpose of this thesis is to develop and understand algorithms that solve

mathematical optimization problems. While optimization arises everywhere

in engineering and science, we will focus on problems emerging in signal

processing and machine learning. In modern times in these areas there has

been a trend towards larger problem sizes, which come with unprecedented

challenges. Hence the focus of this thesis will be large-scale optimization.

Modern optimization problems in signal processing and machine learning

are so large that only specialized algorithms which utilize the problem’s

unique structure are feasible. In contrast, black-box approaches often fail.

The past two decades have seen a considerable amount of research devoted

to developing algorithms which exploit problem structure.

During the 1980s and 90s interior point methods became popular opti-

mization solvers. However over the last two decades as problem sizes have

increased dramatically, these methods have failed to keep up. An important

group of alternative methods is actually older than the interior point meth-

ods but has gone through a renaissance over the past one or two decades.

This is the family of first-order methods which earn their name by only ex-

tracting (sub)gradients rather than Hessian information from the objective

function. These methods succeed by using cheap and scalable computations

at each iteration. In contrast with interior point methods, these computa-

tions do not include solving large systems of linear equations.

The main drawback of first-order methods is slow convergence rate, mean-

ing that a large number of iterations is required for a moderate to high

accuracy solution. This has led to a significant thrust of research in the

optimization, machine learning, and signal processing communities aimed

at accelerating first-order methods without jeopardizing their attractive fea-

tures. While these acceleration techniques come in all different shapes and

sizes, a common thread is the need to take into account detailed problem
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structure when designing the algorithm. In this thesis, we utilize two types

of structure: composite optimization and error bounds.

Composite optimization in this thesis refers to problems with an additive

decomposition into a smooth part and a simple nonsmooth part. This form

of objective is ubiquitous in machine learning and signal processing. In signal

processing it occurs in compressed sensing and inverse problems such as

image deblurring. The smooth term encapsulates the measurement process

and the nonsmooth term encapsulates prior information on the object one

wishes to reconstruct, such as sparsity in a known basis. In machine learning

it occurs in regularized empirical risk minimization where the regularizer is

typically a simple nonsmooth function and the empirical risk is typically a

smooth function.

In optimization an error bound is an upper bound on the distance of a

point to the optimal set by some computable residual function. When an

objective function satisfies an error bound, it usually allows for a more pre-

cise understanding of the convergence rate of first-order methods. While

the study of error bounds goes back to the origin of first-order methods in

the 1960s, there has been much renewed interest in the topic recently, with

applications to problems arising in machine learning and signal processing.

A related concept is the Kurdukya- Lojaziewicz (KL) inequality, which mea-

sures the “sharpness” of a function around local minimizers.

1.2 Contributions of the Thesis

The thesis focuses on three major areas which are broken up into Chapters

2, 3, and 4. Section 1.3 provides information on notation and some mathe-

matical background relevant to the entire thesis. Each chapter also discusses

notation and the mathematical background specific to that chapter.

In Chapter 2 we consider convex composite optimization problems. The

proximal gradient algorithm is an important first-order approach to solving

this type of problem. Our first contribution is to show global convergence of

an inertial variant of the proximal gradient method. Inertia is an acceler-

ation technique for solving quadratic optimization problems and monotone

inclusions. Our second contribution in this chapter is to do with the lasso

problem, a hugely important instance of convex composite optimization.

We conduct a local convergence analysis for the inertial proximal gradient

method applied to lasso. This result allows us to develop an improved ver-

sion of the well-known Fast Iterative Soft Thresholding Algorithm (FISTA).
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In particular we fix an undesirable local convergence property of FISTA

which arises on the lasso problem.

In Chapter 3 we again consider composite optimization problems, but

this time we abandon the assumption of convexity. Instead we assume the

function satisfies the KL inequality which is common in practice. In fact

when the function is semialgebraic it satisfies the KL inequality. The main

contribution of this chapter is to determine for the first time the convergence

rate of a broad family of inertial proximal gradient methods for solving

nonconvex composite problems. The family of methods we study includes

several algorithms proposed in the literature for which convergence rates are

unknown.

In Chapter 4 we again consider convex optimization but this time un-

der an error bound condition. We study the subgradient method, which is

a classical approach to nonsmooth optimization going back to the 1970s.

Conventional wisdom in optimization says that the subgradient method is

slow, simple, intuitive, easy to implement, and scalable. In this chapter,

we utilize the error bound condition to address the first element of conven-

tional wisdom. We devise stepsizes which outperform the classical choice

and can even obtain a linear convergence rate. Linearly convergent subgra-

dient methods under an error bound are not new and were first devised in

the 1970s. However our method has the advantage of being able to estimate

on-the-fly an unknown error bound parameter.

1.3 Mathematical Background

1.3.1 Notation

For the most part the notation and conventions follow [1]. Thus H is always

a Hilbert space over the reals, 〈·, ·〉 is the inner product and ‖ · ‖ is the

induced norm. The notation Rn means the n-dimensional Euclidean Hilbert

space. For Rn we assume the standard Euclidean norm and inner product

and use ‖ · ‖1 to denote the `1-norm. The notation R+ denotes the set of all

nonegative real numbers.

A function is closed if it has a closed epigraph and proper if it has a

nonempty domain. Let Γ0(H) be the set of all closed, convex and proper

functions from H to (−∞,∞]. We will also refer to these functions by saying

they are CCP (convex, closed, and proper). For any g : H → (−∞,∞] and

point x ∈ H, we denote by ∂g(x) the subdifferential at x [1, Def. 16.1]
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defined as the set

∂g(x) , {v ∈ H : g(y) ≥ g(x) + 〈v, y − x〉,∀y ∈ H}.

The notation dom ∂g ⊂ H represents the set of x such that ∂g(x) is nonempty.

If g is CCP, dom(∂g) is a dense subset of dom(f) [1, Cor. 16.29]. When

∂g(x) is a singleton we will call it the (Gâteaux) gradient at x, denoted by

∇g(x).

For a : R → R, b : R → R, and c ∈ [−∞,+∞], the notation a(l) =

O(b(l)) (resp. a(l) = Ω(b(l))) means there exists a constant C ≥ 0 such

that lim supl→c |a(l)/b(l)| ≤ C (resp. lim inf l→c |a(l)/b(l)| ≥ C). We will

say a sequence {xk}k∈N ⊂ H converges R-linearly to x∗ ∈ H with rate

of convergence q ∈ (0, 1), if ‖xk − x∗‖ = O(qk). We say xk converges to

x∗ Q-linearly with rate q ∈ (0, 1) if limk→∞
{
‖xk − x∗‖/‖xk−1 − x∗‖

}
= q.

Collectively we refer to both Q-linear and R-linear convergence simply as

linear convergence. We use xk → x∗ to denote strong convergence and

xk ⇀ x∗ to denote weak convergence.

Given a closed set C and point x, define d(x,C) , min{‖x− c‖ : c ∈ C}.
If C is also convex, then there is a unique point, which we denote by PC(x),

such that ‖x − PC(x)‖ = d(x,C). If C is a linear subspace of the Hilbert

space H, then PC is a linear operator. The projection satisfies the following

nonexpansiveness property: for all x, y ∈ H, PC(x)− PC(y)‖ ≤ ‖x− y‖ [1].

For a vector v ∈ Rn, vi is the ith element of v for i = 1, 2, . . . , n. Subscripts

are used for iteration number, as in xk.

Some variable names are reused across chapters. For example, we study

several different algorithms which produce a sequence of iterates. We will

always use {xk} to denote the output of an algorithm and it will always be

clear from context and the chapter to which algorithm the iterates belong.

1.3.2 Properties of Convex and Smooth Functions

Now we list some properties of the subdifferential, as well as convex and

smooth functions. For the Fréchet and Gâteaux definitions of differentiabil-

ity we refer to [1, Definition 2.45 and 2.43]. Note that Fréchet differentia-

bility on a neighborhood of a point implies Gâteaux differentiability at that

point, and the two derivatives agree [1, Lemma 2.49(i)]. For a Hilbert space

H, consider a function f : H → (−∞,+∞]. Then

〈t, u− v〉 ≥ f(u)− f(v), ∀v ∈ H, u ∈ dom ∂f, and t ∈ ∂f(u), (1.1)
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and

〈t− p, u− v〉 ≥ 0, ∀u, v ∈ dom ∂f, t ∈ ∂f(u) and p ∈ ∂f(v). (1.2)

For a proper and convex function which is Gâteaux differentiable everywhere

on H, (1.1)–(1.2) hold for all u, v ∈ H [1, Prop. 17.10] and ∂f(x) = {∇f(x)}
(i.e. a singleton) everywhere.

We say that a Fréchet differentiable function f has L-Lipschitz continuous

gradient if ‖∇f(y)−∇f(x)‖ ≤ L‖y−x‖, ∀x, y ∈ H. For such a function [1,

Thm. 18.15 (iii)]:

f(u)− f(v) ≤ 〈∇f(v), u− v〉+
L

2
‖u− v‖2, ∀u, v ∈ H. (1.3)

The gradient∇f of a convex and Fréchet differentiable function is L-Lipschitz

continuous if and only if [1, Cor. 18.16]

〈∇f(u)−∇f(v), u− v〉 ≥ 1

L
‖∇f(u)−∇f(v)‖2, ∀u, v ∈ H. (1.4)

This is the celebrated Baillon-Haddad Theorem.

1.3.3 Proximal Operators

The proximal operator proxg : H → H with respect to a function g ∈ Γ0(H)

is defined implicitly as:

y − proxg(y) ∈ ∂g(proxg(y)), (1.5)

and explicitly as

proxg(y) = arg min
x∈H

{
1

2
‖x− y‖2 + g(x)

}
, ∀y ∈ H.

The proximal operator is a well-defined mapping from H to dom ∂g [1, Prop.

23.2, Example 23.3].
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CHAPTER 2

AN INERTIAL METHOD FOR CONVEX

COMPOSITE PROBLEMS

2.1 Chapter Introduction

The primary problem considered in this chapter is to

minimize
x∈H

F (x) = f(x) + g(x) (2.1)

where H is a Hilbert space over the real numbers, the functions f, g : H →
(−∞,+∞] are proper, convex and closed, and in addition f is differentiable

everywhere and has a Lipschitz continuous gradient. This problem has come

under considerable attention in recent years due to its many applications in

areas such as machine learning, compressed sensing and image processing

[2, 3, 4, 5, 6, 7, 8, 9, 10]. Of particular interest in this chapter will be the

special case where the nonsmooth term is the `1-norm, i.e.

minimize
x∈Rn

{f(x) + ρ‖x‖1} (2.2)

where ρ > 0, and ‖x‖1 =
∑n

i=1 |xi|. As has been widely recognized the

`1-norm encourages “sparse” solutions, i.e. solutions with few nonzero ele-

ments, which is its primary attraction [2, 7]. A special case of Prob. (2.2)

is

minimize
x∈Rn

{
1

2
‖b−Ax‖22 + ρ‖x‖1

}
(2.3)

with A ∈ Rm×n and b ∈ Rm, which is often referred to as sparse least-

squares, sparse regression, basis pursuit, or lasso and is of vital importance

in many areas [11, 3, 7, 4]. Other important instances of Prob. (2.1) include

least-squares with a total-variation [12], nuclear norm [13], or group-sparse

[2] regularizer, and minimization of a convex function constrained to a closed

and convex set.
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2.1.1 Background

The increasing size of Problems (2.1)–(2.3) in modern applications is driv-

ing the need for computationally inexpensive and scalable algorithms to

find their solutions. In modern applications the number of variables and the

number of data can be in the millions [11, 2]. Proximal gradient methods

for solving optimization problems including (2.1) are simple and computa-

tionally inexpensive, and address the problem by splitting it into simpler

subproblems. Hence proximal gradient methods are an example of a split-

ting method. While the overall objective F in Prob. (2.1) may not have

desirable properties, each component of the sum can be handled. The func-

tion f is smooth which means it can be processed via its gradient, and

many popular nonsmooth regularizers can be processed via a computation-

ally tractable proximal operator [5]. Importantly, first-order methods do

not rely on or approximate second-order information, which may be pro-

hibitively expensive in high dimensions. The concept of splitting has also

been applied to more complicated objectives [14, 15, 16]. These techniques

can also be viewed in the broader context of montone inclusion problems

and variational inequalities which includes convex optimization as a special

case [14, 15, 17, 18, 1, 19].

The celebrated first-order splitting method for Prob. (2.1) is the proxi-

mal forward-backward splitting algorithm (FBS) [17, 20]. This is also known

simply as the proximal gradient method. For this method the convergence

rate of the objective function to the optimal value is as good as if the non-

smooth component were not present. Weak convergence of the iterates is

also guaranteed and linear convergence occurs on strongly convex problems

[1, Cor. 27.9, Ex. 27.12]. Line search techniques allow for when the gradient

is not Lipschitz continuous or the Lipschitz constant is unknown [4, 21].

For the special case of Problems (2.2)–(2.3) it is often referred to as the

iterative shrinkage and soft-thresholding algorithm (ISTA) due to the form

of the proximal operator with respect to the `1-norm. Other state-of-the-

art approaches to solving Prob. (2.1) and Problems (2.2)–(2.3) in particular

include coordinate descent [22], ADMM [8], and stochastic methods [23].

2.1.2 Inertial Methods

A class of methods of particular interest in this chapter (and Chapter 3) are

inertial methods (a.k.a. momentum methods). These are iterative schemes

for solving monotone inclusion and optimization problems, as well as com-
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puting fixed points, which often have connections to systems of differential

equations (e.g. [24, 25, 26, 27, 28]). Their defining property is that the next

iterate depends on more than one previous iterate (i.e. they are multistep).

A very early example is due to Polyak [28], who introduced the heavy ball

with friction method for minimizing a strongly convex quadratic function

which can greatly improve upon the convergence speed of the simple gradi-

ent method (see also [27, p. 65]). The conjugate gradient method is inertial,

as are Nesterov’s celebrated accelerated methods, and their variants and

extensions [29, 4, 30, 31]. Inertial methods typically have the same per-

iteration complexity as their noninertial counterparts. However in certain

contexts they can be significantly faster [27, 28, 32, 4].

2.1.3 Chapter Contributions

In this chapter we consider the following Inertial Forward-Backward Splitting

Algorithm (I-FBS):

yk+1 = xk + ζk(xk − xk−1), (2.4)

xk+1 = proxλkg (yk+1 − λk∇f(yk+1)) (2.5)

with x0, x1 ∈ H. The sequences {ζk, λk}k∈N are in R+. FBS is recovered

when ζk = 0. I-FBS is related to FISTA introduced in [4], which is itself

related to earlier accelerated methods [29, 32, 30]. FISTA corresponds to a

particular choice for the inertia sequence {ζk}k∈N in I-FBS. The goal of our

global convergence analysis is different from that of the literature on FISTA

in that we are concerned with deriving general conditions on ζk which imply

convergence of the iterates. For example the choice ζk = 0.5 for all k ∈ N is

not explicitly covered by the FISTA literature but is covered by our analysis.

To clarify notation, we will use “I-FBS” to refer to all parameter choices

satisfying our convergence criteria given in Corollary 4, and “FISTA” to refer

to the parameter choices which guarantee an O(1/k2) objective function rate

(for example [4, 32, 12]). We note that our local analysis for `1-regularized

problems applies to both I-FBS and certain variants of FISTA. For these

problems we characterize the local performance of FISTA and provide ways

to improve it.

The well-known property of FISTA is the “fast” O(1/k2) objective func-

tion convergence rate for Prob. (2.1). It is important to note that we do not

expect this global objective function behavior to hold for I-FBS. Neverthe-

less the goal of this chapter is not to study objective function convergence
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rates, but convergence of the iterates {xk}k∈N, which is also important in

practice [5, p. 5]. When we do compute convergence rates in the local

analysis, they are asymptotically linear rates applicable to the iterates, i.e.

‖xk − x∗‖ ≤ Cqk for sufficiently large k, where x∗ is an optimal solution,

and q ∈ (0, 1). One of the main findings of our local analysis for Prob. (2.2)

is that despite the optimal global sublinear convergence rate of FISTA, its

local convergence performance can be greatly improved. This is important

for applications where a high accuracy solution is needed, such as medical

imaging [9, 10].

For the sake of generality our global analysis applies to the following

scheme which we call the Generalized Inertial Proximal Splitting Algorithm

(GIPSA). For all k ∈ N compute:

yk+1 = xk + βk(xk − xk−1), (2.6)

zk+1 = xk + ζk(xk − xk−1), (2.7)

xk+1 = proxλkg (yk+1 − λk∇f(zk+1)) . (2.8)

Throughout the chapter we will refer to {ζk, βk}k∈N as the “inertia param-

eters” and {λk}k∈N as the “stepsize”. Note that I-FBS is recovered when

ζk = βk. The main motivation for studying the more general (2.6)–(2.8)

is that it unifies several existing schemes which correspond to particular

parameter choices [24, 3, 18, 33, 34, 12, 35]. Thus our global convergence

analysis of GIPSA unifies and extends the prior art. Certain special cases of

GIPSA (e.g. [18, 33]) solve the more general maximal monotone inclusion

problem:

Find x s.t. 0 ∈ A(x) + B(x) (2.9)

where A and B are maximal monotone and B is cocoercive.1 Other spe-

cial cases were introduced as inertial versions of the Krasnosel’skǐi-Mann

(KM) iterations for finding fixed points [34, 36]. In this chapter we focus on

convex optimization, which allows us to obtain less stringent convergence

criteria than in those previous studies because we can use properties unique

to convex functions. We note that GIPSA was originally suggested in [37],

however our convergence conditions are more general. GIPSA is also related

(via discretization) to the continuous ODEs studied in [38, 26].

We apply our global analysis to GIPSA rather than the simpler I-FBS in

order to unify several previous results under one analysis, and to “fill the

1Setting A = ∂g and B = ∇f recovers Prob. (2.1).
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gaps” between them. For example [18, 33, 34, 24] correspond to special pa-

rameter choices of GIPSA. However note that our primary practical concern

is I-FBS, for which our proposed adaptive restart method for Prob. (2.2)

outperforms the existing FISTA-type methods.

Our main contributions in this chapter can be summarized as:

1. A global convergence analysis of GIPSA.

2. A local convergence analysis of I-FBS and FISTA for `1-regularized

problems.

3. An adaptive restart modification of FISTA with improved local con-

vergence properties for `1-regularized problems.

We now explain each contribution in more detail.

Global Analysis

In our global analysis we establish conditions on {ζk, βk, λk}k∈N that imply

the global weak convergence of the iterates {xk, yk, zk}k∈N of GIPSA to a

solution of Prob. (2.1). No theoretical convergence study of (2.6)–(2.8) spe-

cialized to convex optimization exists. Special cases of GIPSA corresponding

to different parameter choices have been studied previously in [18, 33, 34].

However these analyses were not specialized to Prob. (2.1) and therefore im-

pose stricter conditions on the stepsize and inertia parameter than developed

here.

Our global analysis builds on the investigation of the inertial proximal

algorithm of [24]. This algorithm corresponds to GIPSA when the smooth

function f is not present. Essentially our global analysis extends [24, Theo-

rem 3.1] to the composite case. We show that a multistep Lyapunov energy

function is nonincreasing and this allows us to establish finiteness of the sum

of the squared increments, i.e.
∑

k∈N ‖xk − xk−1‖2 < ∞. This condition is

also needed for the local analysis. Weak convergence then follows via Opial

techniques adapted from [33].

Local Analysis

The forward-backward nature of I-FBS makes it amenable to a local analysis

for Problems (2.2)–(2.3). It has been observed that FBS obtains local linear

convergence for Prob. (2.2) and others [3, 39, 13, 40, 41]. This means that

after finitely many iterations, the iterates are permanently confined to a

10



manifold containing the solution with respect to which the objective function

is smooth. Thus after a finite time period, convergence to a solution is

linear, so long as the local part of the function is also strongly convex, or a

strict complementarity condition holds [13, 3]. For Prob. (2.2) the objective

function is smooth with respect to vectors of fixed sign and support.

We extend these results to I-FBS and FISTA. We show that I-FBS achieves

local linear convergence and we determine the convergence rate in terms of

the local curvature, the stepsize, and the inertia parameter. Importantly

our analysis shows that adding the correct inertia term allows for a far bet-

ter asymptotic convergence rate than is achievable with FBS (or FISTA).

The local analysis borrows from the framework developed in [3], however

extensive differences emerge in order to incorporate the inertia term.

We note that our local analysis results and techniques differ from what

was presented in [42], which used a spectral analysis to study the local

behavior of FBS and FISTA applied to Prob. (2.3). In contrast our analysis

is based around exploiting the contractive properties of the soft-thresholding

operator, which is the proximal operator with respect to the `1-norm. The

authors of [42] claim that both algorithms obtain local linear convergence

when the minimizer is unique and a strict complementarity condition holds.

Some of our results require neither of these conditions (Thms. 5 and 6)

while others depend on either strict complementarity (Thm. 9) or solution

uniqueness (Cor. 7). Unlike [42], we can compute Q-linear and R-linear

convergence rates and this allows us to determine the optimal value for

the inertia parameter. Many of our results also hold for the more general

Prob. (2.2). Our local analysis is also related to [43] and we discuss this

relationship in more detail in Sec. 2.3.4.

We note that it is possible to derive upper bounds on the number of it-

erations not confined to the optimal smooth manifold within our analysis

framework. To the best of our knowledge this is not possible in the compet-

ing frameworks [42, 43]. In some situations these upper bounds might be

useful, however in general they appear to be overly pessimistic compared to

what is observed in practice.

Adaptive Restart

Recently Chambolle and Dossal studied a variant parameter choice of FISTA

which we will call FISTA-CD [12]. FISTA-CD was also studied in [38, 44].

This variant has some stronger properties than the original version of FISTA

due to Beck and Teboulle [4]. In this chapter we use these strong properties

11



to establish the local convergence behavior of FISTA-CD for Problems (2.2)

and (2.3). We prove that FISTA-CD, exactly like I-FBS, obtains finite

manifold identification for these problems. Furthermore, we show that after

finitely many iterations FISTA-CD reduces to the form of a linear iterative

system that has been studied previously in [45], allowing us to determine the

asymptotic linear convergence rate. This rate is worse than that of the best

choice for the inertia parameter in I-FBS and is comparable with the rate

of (non-inertial) FBS. We then propose an adaptive restart for FISTA-CD

which obtains the optimal2 asymptotic convergence rate. Furthermore the

restart scheme does not require knowledge of the local curvature parameter.

Also important is that our proposed restart scheme preserves the optimal

global convergence rate of FISTA-CD while also obtaining the optimal local

convergence rate.

We note that restart techniques have been proposed before for accelerated

methods, as well as conjugate gradient schemes, but only in the context of

smooth and strongly convex problems [45, 26, 46], [47, p. 140]. It has been

conjectured that restarting could improve the performance of FISTA even in

the presence of nonsmooth regularizers [45, §5.2],[6, p. 36]. Our contribution

is to show that this is indeed true for the case of the `1-norm and to derive

explicit convergence rates.

2.1.4 Chapter Organization

The rest of the chapter is organized as follows. In Section 2.2, notation,

definitions, assumptions and some preparatory results are presented. In

Sections 2.3.1 through 2.3.3 we detail the conclusions of our global analysis of

GIPSA for Prob. (2.1). In Sections 2.3.4 through 2.3.8 we give the results of

our local convergence analysis of I-FBS and FISTA-CD for Problems (2.2)–

(2.3). In Sec. 2.4, a small synthetic numerical experiment on Prob. (2.3) is

presented in order to corroborate some of our theoretical findings. Finally

the proofs of all our results are given in Sections 2.6 through 2.9.

2among first-order methods
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2.2 Preliminaries

2.2.1 Chapter Specific Notation

For Prob. (2.1) define the optimal value as F∗ , infx∈H F (x) and the solution

set as XF , {x ∈ H : F (x) = F∗} which may be empty. For the sequence

{xk}k∈N generated by (2.6)–(2.8), let ∆k denote xk − xk−1 for all k ∈ N.

Given a function a : R→ R, we say that the iteration complexity of a method

for minimizing F is Ω (a(ε)) if k = Ω (a (ε)) implies F (xk) − F∗ = O(ε) as

ε→ 0.

For a sorted set S ⊆ {1, 2, . . . , n} with no repeated elements, let S(i), i =

1, . . . , |S| be the ith element of S, where |S| is the number of elements in

S. For a matrix A ∈ Rm×n, AS will denote the matrix in Rm×|S| formed by

taking the columns corresponding to the elements of S. That is AS(i, j) =

A(i, S(j)). For a vector v ∈ Rn, vS will denote the |S|×1 vector with entries

given by vS(i) = v(S(i)). The notation (vS , 0) will denote the vector in Rn

whose jth entry is v(j) if j ∈ S and 0 otherwise. The range space and null

space of a matrix A are denoted by R(A) and N (A) respectively. Given

c ∈ R and x ∈ Rn, sgn(c) is defined as +1 if c ≥ 0 and −1 if c < 0, sgn(x)

is simply applying sgn(·) elementwise. Finally [c]+ , max(c, 0).

The following identity appears in many convergence analyses and we will

use it many times in this chapter. For all x, y, z ∈ H,

〈x− y, x− z〉 =
1

2
‖x− y‖2 +

1

2
‖x− z‖2 − 1

2
‖y − z‖2. (2.10)

2.2.2 Proximal Operators

In light of the implicit definition of the proximal operator given in (1.5) we

point out that the update equation for GIPSA given in (2.8) can be written

implicitly as

0 ∈ xk+1 − yk+1 + λk∂g(xk+1) + λk∇f(zk+1). (2.11)

Now ρ‖ · ‖1 ∈ Γ0(Rn) and the proximal operator associated with it is the

shrinkage and soft-thresholding operator Sρ(v) : R → R, applied element-

wise. It is defined as

Sρ(v) , [|v| − ρ]+ sgn(v) (2.12)

{proxρ‖·‖1(z)}i = Sρ(zi), i = 1, 2, . . . , n. (2.13)

13



2.2.3 Assumptions and Optimality Conditions

Now we are ready to precisely state the assumptions used throughout the

chapter.

Assumption 1. (Problems (2.1)–(2.2)). The functions f and g are in

Γ0(H), dom ∂g is nonempty, f is Fréchet differentiable everywhere and has

an Lf -Lipschitz continuous gradient with Lf > 0, and F∗ > −∞.

The optimality conditions for Prob. (2.1) under Assumption 1 are as fol-

lows. A vector x∗ ∈ XF if and only if [1, Corollary 26.3 (vi)]

0 ∈ ∂F (x∗) = (∂g +∇f)(x∗) = ∂g(x∗) + {∇f(x∗)}. (2.14)

Note that this is equivalent to x∗ satisfying

x∗ = proxλg(x∗ − λ∇f(x∗)) (2.15)

for all λ > 0 [1, Corollary 26.3 (viii)]. Thus x∗ is a solution to Prob. (2.1)

if and only if it is a fixed point of the forward-backward operator : Tλ(x) ,

proxλg(x− λ∇f(x)). Note that Tλ is nonexpansive so long as 0 ≤ λ < 2/Lf

[1, Thm. 25.8]

The function 1
2‖Ax−b‖

2 is differentiable and has gradient equal toA>(Ax−
b) which is Lipschitz continuous with Lipschitz constant equal to the largest

eigenvalue of A>A. The objective function in Prob. (2.3) is bounded below

by 0. As previously stated, ρ‖ · ‖1 ∈ Γ0(H) and dom ∂‖ · ‖1 = Rn. Therefore

Prob. (2.3) satisfies Assumption 1. Thus results proved for Prob. (2.1) hold

for all problems, while results proved for Prob. (2.2) also hold for Prob. (2.3).

Note that the solution set XF of Prob. (2.3) is always nonempty.

2.2.4 Properties of the Solution Set of Prob. (2.2)

Lemma 1 Suppose Assumption 1 holds for Prob. (2.2) and XF is nonempty,

then there exists a vector h∗ ∈ Rn such that for all x∗ ∈ XF , ∇f(x∗) = h∗.

Furthermore, for all i ∈ {1, 2, . . . , n} and x∗ ∈ XF : −hi∗xi∗ ≥ 0. Finally

hi∗
ρ


= −1 : if ∃ x∗ ∈ XF : xi∗ > 0

= +1 : if ∃ x∗ ∈ XF : xi∗ < 0

∈ [−1, 1] : else.

Proof See Sec. 2.6.
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Let E , {i : |hi∗| = ρ} and note that Ec = {i : |hi∗| < ρ}. Throughout

the chapter we will assume the elements of E are in increasing order. By

Lemma 1, we infer that supp(x∗) ⊆ E for all x∗ ∈ XF . The set E will be

crucial to our local analysis.

2.2.5 Properties of FISTA-CD

Chambolle and Dossal [12] analyzed a variant parameter choice of FISTA

which has the O(1/k2) global objective function convergence rate and also

convergence of the sequence {xk}k∈N to a minimizer (see also [38, 44]). They

considered the following parameter choice for GIPSA (more specifically I-

FBS), which we refer to as FISTA-CD:

x1 = x0, λk = λ ∈ (0, 1/Lf ], ζk = βk =
k − 1

k + a
, a > 2, ∀k ∈ N.(2.16)

For a discussion on how to choose a see [12, §4]. We now detail the important

properties of FISTA-CD derived in [12] which we need for our analysis.

Lemma 2 ([12]) Suppose Assumption 1 holds for Prob. (2.1), XF is nonempty,

and {λk}k∈N and {ζk}k∈N are chosen as in (2.16). Then for the iterates

{xk}k∈N of (2.6)–(2.8):

1. [12, Theorem 4.1: Eq. (25)]

∞∑
k=1

k∑
j=1

 k∏
l=j

ζl

 ‖xj − xj−1‖2 <∞. (2.17)

2. [12, Theorem 4.1] There exists x̂ ∈ XF such that xk ⇀ x̂.

2.3 Main Results

2.3.1 Global Convergence Analysis of GIPSA

In this section we state conditions on {ζk, βk, λk}k∈N which imply weak

convergence of the iterates {xk, yk, zk}k∈N of (2.6)–(2.8) to a minimizer of

Prob. (2.1) under Assumption 1. These conditions also imply finite summa-

bility of the squared increments of the sequence, which will be useful in the

local analysis. The finite summability result also makes it trivial to prove

criticality of the limit points which we include for completeness.
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Theorem 3 For Prob. (2.1), suppose Assumption 1 holds. Assume {λk}k∈N
is positive and nondecreasing, and there exists ε > 0, 0 < γ < 2 and 0 ≤
β < 1 such that sequences {λk, ζk, βk}k∈N satisfy:

0 ≤ ζk ≤ 1, 0 ≤ βk ≤ β, λkζk ≤
βk
Lf
, λk ≤

2− γ
Lf

and 2− λkLf (1− ζk)− βk − βk+1 ≥ ε (2.18)

for all k ∈ N. Then for the iterates {xk, yk, zk}k∈N of (2.6)–(2.8):

(i)
∑

k∈N ‖xk − xk−1‖2 <∞,

(ii) d(0, ∂F (xk))→ 0 as k →∞.

(iii) If XF is nonempty then there exists x̂ ∈ XF such that xk ⇀ x̂, yk ⇀ x̂

and zk ⇀ x̂.

Proof See Sec. 2.5.

With some effort Theorem 3 can be extended to inexact proximal oper-

ators through the use of the enlarged subdifferential under a summability

condition on the errors [48]. It can also be extended to versions which in-

corporate a relaxation parameter. To simplify the presentation, proof, and

notation, we do not detail these elaborations.

For the special case where ζk = 0, Theorem 3 provides more general

parameter constraints than existing guarantees derived in [33]. Suppose

λk = λ ∈ [0, 2/Lf ), then [33] requires βk to be nondecreasing and to satisfy

0 ≤ βk ≤ β where β < (2−λLf )/6. On the other hand, Theorem 3 requires:

βk + βk+1 ≤ 2 − λLf − ε, which is satisfied if β < (2 − λLf )/2. Note that

[33] and Theorem 3 have the same requirement on the stepsize.

2.3.2 Specialized Conditions for I-FBS

We now simplify the conditions for the case of I-FBS, i.e. ζk = βk. For

consistency, let ζ = β. In this case:

2− ζk − ζk+1 + λkLf (ζk − 1) ≥ 1− ζk+1 ≥ 1− ζ > 0.

Therefore ε = 1− ζ satisfies (2.18). Next note that if we choose any γ < 1,

the condition on the stepsize simplifies to λk ≤ 1/Lf for all k. In the case of

FBS: i.e. ζk = βk = 0, Thm. 3 allows for larger stepsizes: λkLf ≤ 2−γ < 2,

which agrees with the standard criteria for FBS (e.g. [1, Thm. 25.8]). We

formalize this in the following corollary.
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Corollary 4 Assume {λk}k∈N is nondecreasing, λk ∈ (0, 1/Lf ], and 0 ≤
ζk ≤ ζ < 1 for all k. Then for the iterates of I-FBS (2.4)–(2.5), for

Prob. (2.1), Assumption 1 implies (i) and (ii) of Theorem 3. Assumption 1

and nonemptiness of XF imply (iii) of Theorem 3.

Note that the condition on ζk is more general than the requirement on

the inertia parameter given in [18] which is

1− 3ζk − λLf (1− ζk)2/2 ≥ η

where λk = λ ∈ (0, 2/Lf ] for all k and η > 0 is some constant. Note that

[18] does allow larger values of the stepsize λ, up to 2/Lf so long as ζk is

sufficiently small.

We emphasize that Corollary 4 does not apply to any of the FISTA vari-

ants because in all such algorithms ζk → 1. See [12] for a proof of weak

convergence of the iterates of FISTA-CD.

It is interesting to note that for FBS the convergence criteria are the same

for Prob. (2.9) (monotone inclusion problem) and Prob. (2.1) [1, Thm. 25.8

and Cor. 27.9]. However for GIPSA and I-FBS, this does not appear to be

the case.

2.3.3 Discussion of the General Case

We have discussed the special cases ζk = βk and ζk = 0. We now discuss

the general case. To simplify the discussion, consider fixed choices, i.e.

{ζk, βk, λk} = {ζ, β, λ} for all k. Then (2.18) becomes

ζ ∈ [0, 1], β ∈ [0, 1), 0 < λLf ≤ min

{
β

ζ
,
2(1− β)− ε

1− ζ

}
(2.19)

for some ε > 0 with the convention: 0/0 =∞. Now if we set ε to 0, the two

arguments to min in (2.19) are equal if ζ = ζ∗(β) = β
2−β . Substituting this

into the expression yields λLf < 2 − β. If ζ < ζ∗(β) then the right-hand

expression in the argument of min is the smallest, else it is the left-hand

expression. Thus the condition on λ is

λLf <

{
2(1−β)

1−ζ : if 0 ≤ ζ ≤ ζ∗(β)
β
ζ : if ζ∗(β) ≤ ζ ≤ 1.

(2.20)

While ζ = ζ∗(β) provides the largest range of feasible stepsize param-

eters according to our theoretical convergence analysis, we do not claim

that it is the “best” choice for a given instance of Prob. (2.1). For I-FBS
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for Prob. (2.2) our local convergence analysis derives some good parame-

ter choices (See Sections 2.3.4–2.3.8). However determining good parameter

choices more generally for GIPSA is a topic of future work. Nevertheless

it is important to establish general conditions for convergence before at-

tempting to determine appropriate choices via an empirical study or further

theoretical analysis.

2.3.4 Finite Convergence Results for I-FBS

We now turn our attention to Problems (2.2)–(2.3) and establish the lo-

cal convergence behavior of I-FBS and FISTA-CD. The upcoming theo-

rem proves convergence in a finite number of iterations for the compo-

nents in Ec to 0, and for the components in E to the optimal sign (re-

call E , {i : |hi∗| = ρ} where h∗ is defined in Lemma 1). Following the

terminology of [43, 13] we will refer to this as the “finite active manifold

identification” property. The manifold in the `1-norm setting is the halfs-

pace of vectors with support a subset of E and nonzero components with

sign equal to −hi∗/ρ.

Theorem 5 For Prob. (2.2) suppose that Assumption 1 holds and XF is

nonempty, thus there exists h∗ ∈ Rn satisfying the conditions of Lemma 1.

Assume that either:

1. {λk}k∈N is nondecreasing, 0 < λk ≤ 1/Lf , and 0 ≤ ζk ≤ ζ < 1 for all

k ∈ N, or

2. {ζk, λk}k∈N are chosen according to (2.16) (i.e. FISTA-CD),

then for all but finitely many k the iterates {xk, yk}k∈N of I-FBS, (2.4)–(2.5),

satisfy

sgn
(
yik − λk−1∇f(yk)

i
)

= −h
i
∗
ρ
, ∀i : |hi∗| = ρ, (2.21)

and

xik = yik = 0, ∀i : |hi∗| < ρ. (2.22)

Proof See Sec. 2.7.

Note that if xik 6= 0, then (2.12)–(2.13) implies that sgn(xik) = sgn(yik −
λk∇f(yk)

i). Note that [3, Theorem 4.5] is recovered when ζk = 0 for all k.
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The authors of [43] studied finite convergence results for prox-regular and

partially smooth functions, which includes Prob. (2.2). Specialized to this

problem, the analysis of [43, Theorem 5.3] establishes finite convergence

in support and sign for any algorithm which produces a convergent iterate

sequence, under the following additional condition: 0 ∈ rint(∂F (x∗)) for

the limit x∗ = limk→∞ xk. In the context of Prob. (2.2) this condition is

equivalent to the “strict complementarity condition” discussed in Sec. 2.3.7,

i.e. E = supp(x∗). In contrast, Theorem 5 is more general in that it proves

finite convergence to 0 on Ec ⊆ supp(x∗)
c and sign on E. It does not require

E = supp(x∗). However when this is true, Theorem 5 coincides with [43,

Theorem 5.3].

Given that I-FBS converges in a finite number of iterations to the op-

timal manifold, it could be desirable to switch to a local procedure which

searches in the space of lower dimension. Indeed for Prob. (2.3), if the solu-

tion is unique and the support and sign of the solution are known, then the

values of the nonzero entries can be computed by solving a linear system

with dimension equal to the number of nonzero entries [2, p. 20]. Theo-

rem 5 also motivates combining two-stage “active-set” strategies such as

the one described in [49] with I-FBS or FISTA-CD. Active-set strategies

alternate between iterated shrinkage-thresholding updates to identify the

active manifold, and local optimization procedures to estimate the nonzero

entries. Using I-FBS/FISTA-CD to identify the active manifold within such

a framework is an interesting topic for future work.

2.3.5 Reduction to Smooth Minimization

Theorem 5 allows us to characterize the behavior of I-FBS after a manifold

identification period of finite duration. In the following theorem, we show

that after a finite number of iterations, I-FBS (including FISTA-CD) reduces

indefinitely to minimizing a smooth function over E subject to an orthant

constraint.

Theorem 6 For Prob. (2.2) suppose that Assumption 1 holds and XF is

nonempty, thus there exists h∗ ∈ Rn satisfying the properties of Lemma 1.

Recall E , {i : |hi∗| = ρ} and let φ : R|E| → R be defined as

φ(xE) , −(hE∗ )>xE + f
(
(xE , 0)

)
, (2.23)
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where x ∈ Rn. Let the set OE ⊂ R|E| be defined as

OE , {v ∈ R|E| : −sgn(h
E(j)
∗ ) vj ≥ 0, ∀j ∈ {1, 2, . . . , |E|}}. (2.24)

Assume that either

1. {λk}k∈N is nondecreasing, 0 < λk ≤ 1/Lf , and 0 ≤ ζk ≤ ζ < 1, for all

k, or

2. {ζk, λk}k∈N are chosen according to FISTA-CD in (2.16),

then, for all but finitely many k, the iterates {xk, yk}k∈N of I-FBS, (2.4)–

(2.5), satisfy

xEk+1 = POE
(
yEk+1 − λk∇φ(yEk+1)

)
, (2.25)

and F (xk) = φ(xEk ), where F (x) = f(x) + ρ‖x‖1 and POE is the orthogonal

projector onto OE.

Proof See Sec. 2.8. The result of [3, Corollary 4.6] is recovered when ζk = 0

for all k.

2.3.6 Local Linear Convergence Under Local Strong Convexity

The analysis of the previous two sections shows that, after a finite number of

iterations, I-FBS reduces to minimizing the function φ subject to an orthant

constraint. This function can be strongly convex even if f does not have

this property. If φ is strongly convex, then local linear convergence can be

achieved, as we prove in the following corollary. Note that strong (in fact

strict) convexity of φ implies solution uniqueness for Prob. (2.2).

Corollary 7 For Prob. (2.2) suppose that Assumption 1 holds and φ defined

in (2.23) is strongly convex. Let lE be the strong convexity parameter of φ.

If λ ∈ (0, 1/Lf ], 0 < µ ≤ lE,

λk = λ and ζk =
1−
√
µλ

1 +
√
µλ

∀k ∈ N, (2.26)

then the iterates {xk}k∈N of I-FBS, (2.4)–(2.5), converge to the unique solu-

tion x∗ of Prob. (2.2) R-linearly and F (xk) converges to F∗ R-linearly where

F (x) = f(x) + ρ‖x‖1. Specifically

‖xk − x∗‖2 = O

((
1−

√
µλ
)k)

and F (xk)− F∗ = O

((
1−

√
µλ
)k)

.
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Proof Recall the definition of E , {i : |hi∗| = ρ}. We consider k large

enough that I-FBS has reduced to minimizing the lE-strongly convex func-

tion φ, i.e. (2.25) holds, xE
c

k = 0, and F (xk) = φ(xEk ). The result can now

be seen by considering Nesterov’s constant momentum scheme of [32, p. 76],

however the variable µ now represents a lower bound for the true strong

convexity parameter of φ. It can be verified that this does not change the

result given in [32, Thm 2.2.3]. Furthermore we allow stepsizes other than

1/Lf , which is discussed on [32, p. 72]. Finally the minimization is with

respect to the orthant OE defined in (2.24). This simple modification of

Nesterov’s scheme is discussed in [32, Algorithm (2.2.17)].

Note this local linear convergence result does not depend on strict comple-

mentarity (i.e. E = supp(x∗)) unlike the local analysis of FBS in [13, 39].

Suppose µ = lE and λ = 1/Lf , then the convergence rate and iteration

complexity are respectively

F (xk)− F∗ = O

(1−

√
lE
Lf

)k , iter. comp. = Ω

(√
Lf
lE

log
1

ε

)
.(2.27)

Given the nature of φ this iteration complexity is optimal [32]. Indeed it is

better than the iteration complexity of FBS [3] (which corresponds to I-FBS

with ζk equal to 0) which is Ω ((Lf/lE) log 1/ε) .

Other parameter choices, such as Constant Scheme III of [32, p. 84], will

also achieve local linear convergence with the same rate. However these

choices along with (2.26) are difficult to use in practice as they depend on

lE , which is hard to estimate. In Sec. 2.3.8 we will show how the rate

and corresponding iteration complexity in (2.27) can be achieved without

knowledge of lE by combining a restart scheme with FISTA-CD.

2.3.7 Local Linear Convergence Under Strict Complementarity

Local linear convergence can also be proved for Prob. (2.3) without requiring

solution uniqueness. We require limk→∞ xk , x∗ ∈ XF to obey the so-called

“strict complementarity” condition: E = supp(x∗), where E , {i : |hi∗| =

ρ}. This is a common assumption also used in [3, 13, 42, 43, 39]. Note

that this condition is not necessary for x∗ to be the unique minimizer for

Prob. (2.2) [50, Example (4)]. It is also not sufficient, which can be seen by

considering the following instance of Prob. (2.3) taken from [50, Example
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(4)]:

A =

[
1 0 2

0 2 −2

]
, b =

[
1.5

1

]
, ρ = 1.

This example has E = {1, 2, 3} and has infinitely many solutions which

satisfy strict complementarity, such as (1/4, 3/8, 1/8)>. The name “strict

complementarity” comes from considering the dual problem to Prob. (2.2)

[51, §6].

First we state the following proposition which shows that the proximal

step (2.8) of I-FBS reduces to a gradient descent step after finitely many

iterations, thus the proximal operator may be ignored. The proof follows [3,

Lemma 5.3] closely.

Proposition 8 For Prob. (2.2), suppose Assumption 1 holds and XF is

nonempty, thus there exists h∗ ∈ Rn satisfying the conditions of Lemma 1.

Let E , {i : |hi∗| = ρ}. Let {xk, yk}k∈N be the iterates of I-FBS, (2.4)–(2.5).

Assume either:

1. {λk}k∈N is nondecreasing, 0 < λk ≤ 1/Lf and 0 ≤ ζk ≤ ζ < 1 for all

k ∈ N, or

2. {λk, ζk}k∈N satisfy (2.16).

Let x∗ = limk→∞ xk which exists by Corollary 3 . Then for all but finitely

many k,

xik = yik − λk−1(∇f(yk)
i − hi∗), ∀i ∈ supp(x∗). (2.28)

Proof See Sec. 2.9.

Under strict complementarity (E = supp(x∗)) we will refer to the regime

where (2.28) is satisfied and xE
c

k = 0 as “the large-k regime” throughout the

remainder of the chapter. We refer to the regime where these conditions are

not satisfied as “the small-k regime”.

Now we consider a simple fixed parameter choice for Prob. (2.3). Under

the strict complementarity condition, we can prove local linear convergence

for any fixed choice of the inertia parameter in [0, 1) and the stepsize in

(0, 1/Lf ]. The analysis turns out to be fairly elementary in this case since

for this problem once in the large-k regime the iterations form a simple

second-order linear homogeneous recursion which has been studied before,

for example in [45]. Note that we do not require the function φ defined in

(2.23) to be strongly convex nor the minimizer to be unique.
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Theorem 9 For Prob. (2.3) there exists h∗ ∈ Rn satisfying the conditions

of Lemma 1. Let E , {i : |hi∗| = ρ}. Let ζk = ζ ∈ [0, 1) and λk =

1/Lf for all k ∈ N. Let the iterates of I-FBS, (2.4)–(2.5), be {xk}k∈N and

limk→∞ xk = x∗, which exists by Corollary 3. Suppose E = supp(x∗) (i.e.

strict complementarity holds). Then xk achieves local Q-linear convergence.

In particular there exists K > 0, C > 0, and q ∈ (0, 1) such that ‖xk −
x∗‖ = Cqk for all k > K. Let l̂E be the smallest nonzero eigenvalue of

A>EAE. If l̂E > 0, 0 < µ ≤ l̂E and ζ = (1 −
√
µ/Lf )/(1 +

√
µ/Lf ), then

q =
(
1−

√
µ/Lf

)1/2
. If l̂E = 0 then q ≤ ζ. Finally F (xk) converges to F∗

with rate q2.

Proof See Sec. 2.9.

This theorem extends [3, Theorem 4.11] to include a momemtum term

and shows that if the momentum term is chosen correctly it can accelerate

the local Q-linear convergence rate. For simplicity we prove the result only

for λk = 1/Lf but the case λk = λ ∈ (0, 1/Lf ] can also be shown. We

stress that in practice the quantities l̂E and Lf are typically not known.

In the next section we show that a simple adaptive restart scheme can be

incorporated into FISTA-CD to create a scheme which obtains the optimal

iteration complexity without needing knowledge of l̂E .

2.3.8 Asymptotic Behavior of FISTA-CD

We now ask, what is the convergence behavior of FISTA-CD in the large-k

regime? For Prob. (2.3) we see that once (2.28) holds, the iterates are in the

form of an inhomogeneous second-order linear recurrence which has been

studied previously in [45] and [42, §5–6]. It is difficult to analyze this recur-

sion because ζk changes at each iteration and to do so rigorously requires a

subtle argument following the one presented in [42, §5–6]. A simpler route

to understanding the behavior is to use the homogeneous approximation of

[45, §4] which sets ζk fixed and “close” to 1. This approximation implies

that under strict complementarity, once in the large-k regime and for ζk suf-

ficiently close to 1 (recall ζk → 1 for this parameter choice), FISTA-CD will

exhibit nonmonotone oscillatory behavior in the objective function values

with suboptimal Q-linear rate:

∃K,C > 0 : F (xk)− F∗ = C

((
1− λl̂E

)k)
, ∀k > K, (2.29)
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where l̂E is defined in Theorem 9. This is the same as the convergence

rate achieved by FBS (I-FBS with ζk = 0 and λk = 1/Lf for all k ∈ N,

although a slightly better rate can be achieved with λk = 2/(l̂E +Lf ) which

nevertheless has the same iteration complexity [3]).

For strongly convex quadratic minimization problems, [45] suggested restart-

ing the inertia sequence of Nesterov’s method whenever a certain restart

condition is observed. By applying the homogeneous approximation of [45]

to FISTA-CD once in the large-k regime, we argue that we can improve the

asymptotic convergence rate by incorporating such a restart technique. Thus

even though the overall problem is nonsmooth and in general not strongly

convex, restarting can improve the convergence properties of FISTA-CD.

Restart schemes such as the “speed restart” scheme [26], the “gradient

restart” scheme [45], the “objective function” scheme [45], or the more con-

servative restart scheme of [46] could be incorporated into FISTA-CD. For

simplicity we elaborate only the objective function restart scheme of [45] and

we call the new method FISTA-CD-RE (“FISTA-CD with restart”). The

idea is as follows. Whenever we observe F (xk+1) > F (xk), set the iteration

counter k in (2.16) to 1, and set x0 = xk and x1 = xk. In other words

restart FISTA-CD at the current point. We refer the reader to [45] for full

details and analysis which can be applied to our situation in the large-k

regime (under strict complementarity). The homogeneous approximation of

[45] suggests FISTA-CD-RE will have the optimal iteration complexity

iter. comp. = Ω

(√
Lf

l̂E
log 1/ε

)

and rate

F (xk)− F∗ = C ′
(

1−
√
l̂E/Lf

)k
. (2.30)

Remarkably it achieves this iteration complexity without knowledge of l̂E ,

the local strong convexity parameter. Thus we do not need to know l̂E

in order to achieve the optimal convergence rate given in Theorem 9 with

µ = l̂E . The method will also have O(1/k2) convergence rate while no

restarts occur. It is also straightforward to incorporate a backtracking line

search into FISTA-CD-RE, such as the one described in [4, p. 194], so that

the method does not require Lf .

We stress that the convergence rates given in (2.29) and (2.30) can be

proved rigorously using arguments in the spirit of [42, §5–6]. For simplicity
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we omit the details. Our main contribution is to show that, for all but

finitely many iterations, FISTA-CD reduces to a form that has been studied

previously in [42, 45], from which convergence behavior can be extracted.

2.4 Numerical Results

We now provide a synthetic experiment to corroborate the theoretical find-

ings of this chapter.

2.4.1 Experiment Details

We consider a randomly generated instance of Prob. (2.3). The parameters

of the experiment are n = 2000, m = 1000 and ρ = 0.1. The entries of A are

drawn i.i.d. from the normal distribution with mean 0 and variance 0.01.

The vector b is given by Ax0, where x0 has 260 nonzero entries generated

i.i.d. from the 0-mean unit variance normal distribution, and support set

chosen uniformly at random. Recall that lE denotes the smallest nonzero

eigenvalue of A>EAE where E is defined in Sec. 2.2.4. Note that for such a

randomly generated problem where the entries of A are drawn from a contin-

uous probability distribution, lE > 0, and thus the solution is unique, with

probability 1 [7]. We run (2.6)–(2.8) with several choices for the parameters.

For the most general form GIPSA we consider four parameter choices and

choose the stepsize λk = λ satisfying (2.20) with equality minus a small

constant 0.01. For I-FBS, we considered three parameter choices and chose

the stepsize as 1/Lf . The Lipschitz constant Lf is the largest eigenvalue

of A>A and is computed via the SVD. These parameter choices and their

identifiers are given in Table 2.1 where ζ∗ is the locally optimal choice from

Thm. 9: (1−
√
lE/Lf )/(1+

√
lE/Lf ). We estimate E via the interior point

solver of [11] which we use to find an approximate solution x∗ such that the

relative objective function error is no greater than 10−6. We then compute

h∗ = ∇f(x∗), and estimate E as the set of all i such that ρ− |hi∗| is smaller

than 10−4. We then use the SVD of AE to estimate lE . Using this approach,

ζ∗ is estimated as 0.77 for this experiment. Note that this is obviously not

a practical method for estimating the optimal inertia parameter. The pur-

pose of this experiment is simply to test the theoretical findings of Sections

2.3. In fact this experiment demonstrates that our proposal, FISTA-CD-

RE, has the same asymptotic convergence rate as I-FBS with the optimal

inertia parameter yet does not need to estimate lE . We run FISTA, which is
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Figure 2.1: Simulation results: showing relative error (F (xk)− F∗)/F∗
versus iteration k for Experiment 1.

parameter choice [4, Eq. (4.2)–(4.3)] with ζk = βk. We also run FISTA-CD

which is (2.6)–(2.8) with the parameter choice given in (2.16) with λ = 1/Lf

and a = 2.1. We run FISTA-CD-RE with the same values for λ and a as

FISTA-CD. All algorithms are initialized to x1 = x0 = 0. The results are

shown in Fig. 2.1 where we plot the relative error (F (xk) − F∗)/F∗ versus

k. Note the y-axis is logarithmic.

Table 2.1: The fixed parameter choices

Algorithm Identi-
fier

ζk = ζ βk = β

FBS 0 0
GIPSA1 0 0.8
GIPSA2 0.4 ζ∗

GIPSA3 1 0.9
GIPSA4 1 0.7
I-FBS1 0.4 0.4
I-FBS2 ζ∗ ζ∗

I-FBS3 0.95 0.95

2.4.2 Repeated Trials

We repeat this experiment 1000 times with different randomly drawn A and

x0 from the distributions described above. For each trial we record the

number of iterations until after which the relative error remains below tol,
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Table 2.2: Results for repeated trials (Sec. 2.4.2). The algorithm with the
lowest average # of iterations is boxed.

Algorithm Average # iterations
to rel. err. 10−2

(1000 trials)

Average # iterations
to rel. err. 10−6

(1000 trials)

FBS 564 916
GIPSA1 293 457
GIPSA2 175 268
GIPSA3 248 395
GIPSA4 73 137
I-FBS1 339 549
I-FBS2 133 201

I-FBS3 51 160

FISTA 65 255
FISTA-CD 65 255

FISTA-CD-RE 65 111

i.e. k : (F (xj) − F∗)/F∗ ≤ tol, ∀j ≥ k.3 The average of this number across

the 1000 trials is given in Table 2.2 for tol ∈ {10−2, 10−6} and all algorithms.

2.4.3 Observations

First let’s look at Fig. 2.1. Although the figure shows objective function

values, since the minimizer is unique, convergence of the iterates is implied,

which corroborates Theorem 3. All tested parameter choices for I-FBS tran-

sition from a manifold identification period to a local linear convergence pe-

riod, corroborating Theorem 5. Interestingly the GIPSA parameter choices

also exhibit local linear convergence suggesting it is possible to extend some

of the results of Theorem 5 to these choices. Furthermore, adding inertia

does improve the asymptotic rate and using ζ∗ achieves the best asymp-

totic rate. However, our proposed FISTA-CD-RE essentially achieves the

same asymptotic rate despite not needing to know lE . The upper bound

for the asymptotic convergence rate of I-FBS with inertial parameter ζ∗ is

computed using (2.27) to be 0.89, which compares with an empirically de-

termined rate of 0.83. However the fixed choice ζk = ζ∗ is outperformed

by the larger choice ζ = 0.95, along with GIPSA4, FISTA, FISTA-CD and

FISTA-CD-RE in the small-k regime (i.e. before linear convergence com-

mences). In the large-k regime FISTA-CD exhibits nonmonotone oscillatory

3F∗ is approximated by the smallest objective function value among all tested algo-
rithms after 1500 iterations.
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behavior and suboptimal asymptotic convergence as predicted in Sec. 2.3.8.

Now we look at Table 2.2. For a “low accuracy” solution (defined here as

rel. err. less than 10−2), I-FBS with ζ = 0.95 performs best and there is no

difference between FISTA, FISTA-CD and FISTA-CD-RE. GIPSA4 is also

competitive. FISTA-CD and FISTA-CD-RE are identical because a restart

had not yet occurred in any of the 1000 trials. The strong performance of

I-FBS with ζ = 0.95 in the low accuracy regime is interesting and we cannot

explain it with the existing theory. However for such large values of the

inertia parameter we expect the performance to be approximately similar

to FISTA and its variants. For a “high accuracy” solution (defined here as

rel. err. less than 10−6), our proposed FISTA-CD-RE outperforms all other

algorithms. It requires on average fewer than half as many iterations as

FISTA or FISTA-CD at essentially the same per-iteration cost.4 Further-

more our proposal does not require one to tune the momentum parameters

based on the local curvature constant. In contrast we see that fixed choices

for I-FBS and GIPSA are highly sensitive to the curvature.

2.5 Proof of Theorem 3

Before proving the theorem, we give three lemmas, beginning with the cel-

ebrated lemma due to Opial.

Lemma 10 ([52], Opial’s lemma) Suppose {xk} is a sequence in H and

S ⊂ H is a nonempty set such that:

1. limk→∞ ‖xk − x∗‖ exists for every x∗ ∈ S,

2. Every weakly convergent subsequence of {xk}k∈N weakly converges to

some x∗ ∈ S.

Then there exists x̂ ∈ S such that xk ⇀ x̂.

It is trivial to verify that the second condition of Opial’s lemma holds for

GIPSA, so long as xk − xk−1 → 0. We do this in the following lemma.

Lemma 11 For Prob. (2.1) suppose Assumption 1 holds and XF is nonempty.

Let {xk}k∈N be the sequence generated by (2.6)–(2.8). Suppose xvk ⇀ x for

some subsequence {vk}k∈N ⊆ N, and xk − xk−1 → 0. Then x ∈ XF .

4Despite having an additional function evaluation per iteration, FISTA-CD-RE only
requires one matrix multiply per iteration, which is the same as FISTA-CD and FISTA
since the matrix multiply is the dominant cost.

28



Proof The proof follows the techniques of [33, Theorem 2.1]. Thanks to

(2.6) and the assumption that xk − xk−1 → 0, we know that yk+1 − xk → 0

and thus xk − yk → 0. Similarly by (2.7) we see that zk+1 − xk → 0 and

therefore zk − xk → 0. Now by (2.11)

− 1

λvk−1
(xvk − yvk) +∇f(xvk)−∇f(zvk)

∈ {∇f(xvk)}+ ∂g(xvk). (2.31)

Now passing to the limit vk → ∞, using the fact that ∇f is Lipschitz

continuous, and [48, Proposition 3.4(b)], we infer that 0 ∈ ∂g(x)+{∇f(x)},
therefore x ∈ XF by optimality condition (2.14).

The final Lemma is standard in the analysis of inertial methods.

Lemma 12 Let {ϕk, δk, σk}k∈N ⊂ R+. If ϕk+1 − ϕk ≤ σk(ϕk − ϕk−1) + δk

for all k where σk ≤ σ < 1 and
∑

k∈N δk <∞, then limk→∞ ϕk exists.

Proof We refer to [24, Thm 3.1].

We now turn our attention to Theorem 3. We prove statement (i) by

using the multistep Lyapunov function from [24] which is shown to be non-

increasing. The proof of (ii) is trivial. Finally to prove (iii) we use Lemma

12 to prove the first condition of Opial’s lemma holds (the second condition

of Opial’s lemma holds by Lemma 11).

Proof of Theorem 3 statement (i)

Recall the notation: ∆k , xk−xk−1. Define the Lyapunov energy function:

Vk , F (xk) + βk
2λk
‖∆k‖2. We will show that Vk is nonincreasing. Using (1.1)

and (1.3), first note that

F (xk+1)− F (xk) = f(xk+1)− f(xk) + g(xk+1)− g(xk)

= f(xk+1)− f(zk+1) + f(zk+1)− f(xk)

+g(xk+1)− g(xk)

≤ 〈∇f(zk+1), xk+1 − zk+1〉+
Lf
2
‖xk+1 − zk+1‖2

+ 〈∇f(zk+1), zk+1 − xk〉+ 〈v, xk+1 − xk〉

∀v ∈ ∂g(xk+1)

= 〈∇f(zk+1) + v,∆k+1〉

+
Lf
2
‖xk+1 − zk+1‖2. (2.32)
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Using the fact that λk is nondecreasing and (2.32), we write

Vk+1 − Vk ≤ F (xk+1)− F (xk) +
1

2λk

(
βk+1‖∆k+1‖2 − βk‖∆k‖2

)
≤ 〈∇f(zk+1) + v,∆k+1〉+

Lf
2
‖zk+1 − xk+1‖2

+
1

2λk

(
βk+1‖∆k+1‖2 − βk‖∆k‖2

)
,

∀v ∈ ∂g(xk+1). (2.33)

Note that by the definition of the prox operator, xk+1 ∈ dom ∂g which is

nonempty by Assumption 1. Using (2.11) in (2.33) implies

Vk+1 − Vk ≤ 1

λk
〈yk+1 − xk+1,∆k+1〉+

Lf
2
‖zk+1 − xk+1‖2

+
1

2λk

(
βk+1‖∆k+1‖2 − βk‖∆k‖2

)
. (2.34)

Now using (2.6) and (2.7) we derive:

yk+1 − xk+1 = βk∆k −∆k+1 and zk+1 − xk+1 = ζk∆k −∆k+1. (2.35)

Substituting (2.35) into (2.34) yields

Vk+1 − Vk ≤
(
βk − ζkλkLf

λk

)
〈∆k+1,∆k〉+

ζ2
kλkLf − βk

2λk
‖∆k‖2

+

(
βk+1

2λk
+
Lf
2
− 1

λk

)
‖∆k+1‖2

= −
(
βk − ζkλkLf

2λk

)
‖∆k+1 −∆k‖2 −

ζk(1− ζk)Lf
2

‖∆k‖2

−
2− λkLf (1− ζk)− βk − βk+1

2λk
‖∆k+1‖2. (2.36)

Now (2.18) implies that the coefficients of ‖∆k+1−∆k‖2, ‖∆k‖2 and ‖∆k+1‖2

are nonpositive. Furthermore, from condition (2.18) we see that

2− λkLf (1− ζk)− βk − βk+1

2λk
≥ ε

2λk
>
εLf

4
> 0.

Therefore telescoping (2.36) implies

εLf
4

M∑
k=1

‖∆k+1‖2 < V1 − VM+1 <∞, ∀M ∈ N.

Thus statement (i) is proven.
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Proof of Theorem 3 statement (ii)

Consider (2.31) with the subsequence chosen as vk = k. Clearly this implies

statement (ii) since the left-hand side of (2.31) goes to 0 as k goes to ∞.

Proof of Theorem 3 statement (iii)

Assume XF is nonempty and xvk is a subsequence which weakly converges

to x′. We note that statement (i) implies ∆k → 0, thus from Lemma 11,

x′ ∈ XF . Therefore the second condition of Opial’s lemma is satisfied.

We now proceed to show the first condition of Opial’s lemma, i.e. for any

x∗ ∈ XF , the limit of {‖xk − x∗‖}k∈N exists. The key will be to derive a

recursion in the form of Lemma 12. This part of the proof has been adapted

from [33] which studies the special case where ζk = 0 for all k. Fix x∗ ∈ XF
(which is nonempty by assumption) and let ϕk , 1

2‖xk − x∗‖
2. Now using

(2.10) we see that

〈xk+1 − xk, x∗ − xk+1〉 = ϕk − ϕk+1 −
1

2
‖∆k+1‖2.

Combining this with (2.6) yields

ϕk − ϕk+1 =
1

2
‖∆k+1‖2 + 〈xk+1 − yk+1, x∗ − xk+1〉

+βk〈xk − xk−1, x∗ − xk+1〉. (2.37)

Now (2.11) implies

− (xk+1 − yk+1 + λk∇f(zk+1)) ∈ λk∂g(xk+1).

On the other hand optimality condition (2.14) implies

−λk∇f(x∗) ∈ λk∂g(x∗).

Using these facts and (1.2) gives

〈xk+1 − yk+1 + λk(∇f(zk+1)−∇f(x∗)), x∗ − xk+1〉 ≥ 0

which implies

〈xk+1 − yk+1, x∗ − xk+1〉 ≥ λk〈∇f(zk+1)−∇f(x∗), xk+1 − x∗〉. (2.38)
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Substituting (2.38) into (2.37) yields

ϕk+1 − ϕk ≤ −1

2
‖∆k+1‖2 − λk〈∇f(zk+1)−∇f(x∗), xk+1 − x∗〉

+βk〈xk − xk−1, xk+1 − x∗〉. (2.39)

Now using (2.10) again

〈xk − xk−1, xk+1 − x∗〉 = ϕk − ϕk−1 +
1

2
‖∆k‖2

+ 〈xk − xk−1, xk+1 − xk〉. (2.40)

On the other hand using (1.4)

〈∇f(zk+1)−∇f(x∗), xk+1 − x∗〉

≥ 1

Lf

(
‖∇f(zk+1)−∇f(x∗)‖2 + Lf 〈∇f(zk+1 −∇f(x∗), xk+1 − zk+1〉

)
=

1

Lf
‖∇f(zk+1)−∇f(x∗) +

Lf
2

(xk+1 − zk+1)‖2 −
Lf
4
‖xk+1 − zk+1‖2

≥ −
Lf
4
‖xk+1 − zk+1‖2. (2.41)

Therefore by substituting (2.40) and (2.41) into (2.39) and using (2.35), we

get

ϕk+1 − ϕk − βk(ϕk − ϕk−1) ≤ −ζk
2
‖∆k+1‖2 + ok‖∆k‖2

+dk〈∆k,∆k+1〉, (2.42)

where ζk = (1−λkLf/2), ok = (βk/2 + ζ2
kλkLf/4), and dk = βk− ζkλkLf/2.

Note that (2.18) implies ζk ≥ γ/2 > 0, ok ∈ [0, 1) and |dk| < 1. Now if we

let Θk , ϕk − ϕk−1 then (4.71) implies

Θk+1 − βkΘk ≤ −ζk
2

∥∥∥∥∆k+1 −
dk
ζk

∆k

∥∥∥∥2

+

(
ok +

(dk)
2

2ζk

)
‖∆k‖2 ≤ δk,

with δk , (1 + 1/γ) ‖∆k‖2. Note that (i) of this Theorem implies
∑

k∈N δk <

∞. Now since βk ≤ β < 1, we can apply Lemma 12, which implies

limk→∞ ‖xk − x∗‖ exists for any x∗ ∈ XF . Therefore both conditions of

Opial’s lemma hold and {xk}k∈N converges weakly to some minimizer x̂.

Now repeating (2.6): yk+1 = xk +βk(xk−xk−1) for all k ∈ N. Therefore for

any h ∈ H, 〈h, yk+1〉 = 〈h, xk〉 + 〈h, βk(xk − xk−1)〉 → 〈h, x̂〉, which proves

yk ⇀ x̂. In exactly the same way we can show zk ⇀ x̂ using (2.7).

32



2.6 Proof of Lemma 1

We commence by proving that the gradient with respect to f is constant at

all optimal points. The proof follows by considering [1, Corollary 26.3(vii)].

Note that condition (a) of this Corollary holds trivially because domf = H
and dom ∂g ⊆ dom g is nonempty. Now statement (vii) of Corollary 26.3

states the following. Given x ∈ XF

〈x− y,∇f(x)〉+ g(x) ≤ g(y) ∀y ∈ H. (2.43)

Consider x1, x2 ∈ XF , then (2.43) implies 〈x1− x2,∇f(x1)〉+ g(x1) ≤ g(x2)

and 〈x2 − x1,∇f(x2)〉+ g(x2) ≤ g(x1). Adding these two together yields

〈∇f(x1)−∇f(x2), x1 − x2〉 ≤ 0.

From this point on the proof is identical to [1, Prop. 26.10], which implies

∇f(x1) = ∇f(x2) , h∗. The rest of the Lemma follows by examining the

structure of the optimality condition (2.14) for the special case of Prob. (2.2).

We refer the reader to [3, Thm 2.1 (ii) and (iii)].

2.7 Proof of Theorem 5

Before proving the theorem, we need several lemmas. The first lemma details

the contractive properties of the soft-thresholding operator.

Lemma 13 ([3], Lemma 3.2) Fix any a and b in R, and ν ≥ 0:

(i) [3, Lemma 3.2 (3.7)] The function Sν defined in (2.12)–(2.13) is non-

expansive. That is, |Sν(a)− Sν(b)| ≤ |a− b|.

(ii) [3, Lemma 3.2 statement (5)] If |b| ≥ ν and sgn(a) 6= sgn(b) then

|Sν(a)− Sν(b)| ≤ |a− b| − ν.

(iii) [3, Lemma 3.2 statement (6)] If Sν(a) 6= 0 = Sν(b) then |Sν(a) −
Sν(b)| ≤ |a− b| − (ν − |b|).

Next we derive some technical properties of the solution set for Prob. (2.2).

Lemma 14 For Prob. (2.2) suppose Assumption 1 holds and XF is nonempty,

x∗ ∈ XF and λ > 0. Then there exists a vector h∗ ∈ Rn satisfying the con-

ditions of Lemma 1. Furthermore

|xi∗ − λhi∗| ≥ ρλ, and sgn(xi∗ − λhi∗) = −hi∗/ρ, ∀i : |hi∗| = ρ. (2.44)
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Proof. Recall that E , {i : |hi∗| = ρ}. For i ∈ supp(x∗), (2.12)–(2.13) and

(2.15) imply

0 6= xi∗ = sgn
(
xi∗ − λhi∗

) [
|xi∗ − λhi∗| − ρλ

]
+
. (2.45)

Therefore |xi∗ − λhi∗| > ρλ for all i ∈ supp(x∗). On the other hand, if

i ∈ E \ supp(x∗), then |xi∗ − λhi∗| = λ|hi∗| = ρλ. Recall that supp(x∗) ⊆ E.

Therefore the first part of (2.44) is proven.

Looking at (2.45) it can be seen that

sgn(xi∗) = sgn(xi∗ − λhi∗), ∀i ∈ supp(x∗). (2.46)

Note by Lemma 1, if i ∈ supp(x∗), then sgn(xi∗) = −hi∗/ρ. Else if i ∈
E \ supp(x∗) then

sgn(xi∗ − λhi∗) = sgn(−λhi∗) = −sgn(hi∗) = −h
i
∗
ρ
. (2.47)

since |hi∗| = ρ. Combining (2.46) and (2.47) yields the second part of (2.44).

The final lemma before we proceed with the proof of Theorem 5 is a crucial

finite summability result.

Lemma 15 For Prob. (2.2) suppose Assumption 1 holds. Assume either

1. {λk}k∈N is nondecreasing, 0 < λk ≤ 1/Lf , and 0 ≤ ζk ≤ ζ < 1 for all

k ∈ N, or

2. XF is nonempty and {ζk, λk}k∈N are chosen according to FISTA-CD

in (2.16).

Furthermore assume the iterates {xk, yk}k∈N of (2.4)–(2.5) satisfy, for all

k ∈ N:

‖xk − x‖2 ≤ ‖yk − x‖2 −Nk (2.48)

for some x ∈ Rn and {Nk}k∈N ⊂ R+. Then:
∑∞

k=1Nk <∞.

Proof. Substituting (2.4) into (2.48) yields

‖xk+1 − x‖2 ≤ ‖xk − x+ ζk∆k‖2 −Nk+1

= ‖xk − x‖2 + ζ2
k‖∆k‖2 + 2ζk〈xk − x,∆k〉

−Nk+1. (2.49)
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Let ϕk = 1
2‖xk − x‖

2 and Θk = ϕk − ϕk−1. Using (2.10) we write 〈xk −
x,∆k〉 = ϕk − ϕk−1 + 1

2‖∆k‖2. Using this in (2.49) yields

Θk+1 ≤ ζkΘk + δk −
1

2
Nk+1, (2.50)

where δk = 1
2ζk(1 + ζk)‖∆k‖2. Note that 0 ≤ δk ≤ ζk‖∆k‖2 ≤ ‖∆k‖2.

We first prove the lemma for parameter choice 1. For this parameter choice

by Theorem 3(i),
∑

k∈N δk < ∞. Let ζ = infk ζk and note that ζ ∈ [0, ζ].

Thus using (2.50):

Θk+1 ≤ ζ
k|Θ1|+

k∑
j=1

ζ
k−j

δj −
1

2

k∑
j=1

ζk−jNj+1.

Therefore, for all M ∈ N,

ϕM = ϕ0 +
M∑
k=1

Θk ≤ ϕ0 +
1

1− ζ

(
|Θ1|+

M−1∑
k=1

δk

)
− 1

2

M−1∑
k=1

Nk+1

=⇒
M−1∑
k=1

Nk+1 ≤ 2ϕ0 +
2

1− ζ

(
|Θ1|+

∞∑
k=1

δk

)
<∞, ∀M ∈ N.

Now for parameter choice 2, we proceed as follows. Note that since x1 =

x0, Θ1 = 0 for this parameter choice. From (2.50), and δk ≤ ζk‖∆k‖2, we

infer (using the convention:
∏b
j=a ζj = 1 if a > b):

Θk+1 ≤

(
k∏
i=1

ζi

)
Θ1 +

k∑
j=1

 k∏
l=j

ζl

 ‖∆j‖2 −
1

2

k∑
j=1

 k∏
l=j+1

ζl

Nj+1

≤
k∑
j=1

 k∏
l=j

ζl

 ‖∆j‖2 −
1

2

k∑
j=1

ζk−j2 Nj+1,

where we have used the fact that ζ2 < ζk for all k > 2. Thus for all M ∈ N

ϕM = ϕ0 +
M∑
k=1

Θk

≤ ϕ0 +

M−1∑
k=1

k∑
j=1

 k∏
l=j

ζl

 ‖∆j‖2 −
1

2

M−1∑
k=1

Nk+1

M−1−k∑
j=0

ζj2


≤ ϕ0 +

∞∑
k=1

k∑
j=1

 k∏
l=j

ζl

 ‖∆j‖2 −
1

2

M−1∑
k=1

Nk+1.
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Now by applying (2.17) of Lemma 2 and noting that ϕM ≥ 0, we infer∑∞
k=1Nk <∞.

We are now ready to prove Theorem 5. Note that parameter choice 1

satisfies the requirements of Corollary 4. Furthermore, by assumption, XF
is nonempty, thus all conclusions of Corollary 4 hold. For parameter choice

2 (FISTA-CD) we note that both conclusions of Lemma 2 hold.

Throughout the proof, fix an arbitrary x∗ ∈ XF . We will use the contrac-

tive properties of Sν given in Lemma 13 to construct a recursion in the form

of (2.48) of Lemma 15. That lemma allows us to argue that the number of

iterations such that (2.21)–(2.22) do not hold is finite.

Proof of (2.21) of Theorem 5

Recall from Lemma 1 there exists a vector h∗ such that ∇f(x∗) = h∗ for all

x∗ ∈ XF , and supp(x∗) ⊆ E, where E , {i : |hi∗| = ρ}. Fix k ∈ N. Now

(2.5) and optimality condition (2.15) imply

|xik+1 − xi∗|2

=
∣∣Sρλk(yik+1 − λk∇f(yk+1)i)− Sρλk(xi∗ − λkhi∗)

∣∣2 (2.51)

for all i ∈ [n], using the notation [n] , {1, 2, . . . , n}. Consider the following

condition:

sgn
(
yik+1 − λk∇f(yk+1)i

)
6= sgn(xi∗ − λkhi∗) for some i ∈ E. (2.52)

(Note that sgn(xi∗ − λkhi∗) = −hi∗/ρ from Lemma 14.) Now recall Lemma

14 implies |xi∗ − λkhi∗| ≥ λkρ for all i ∈ E. Therefore we can apply Lemma

13 (ii) to (2.51) to say the following. If (2.52) holds, then

|xik+1 − xi∗|2 ≤
(
|yik+1 − λk∇f(yk+1)i − (xi∗ − λkhi∗)| − ρλk

)2
≤

∣∣yik+1 − λk∇f(yk+1)i − (xi∗ − λkhi∗)
∣∣2 − ρ2λ2

k. (2.53)

Inequality (2.53) follows because of the following fact:

a ≥ b ≥ 0 =⇒ (a− b)2 ≤ a2 − b2 (2.54)

which applies because

|(yik+1 − λk∇f(yk+1)i)− (xi∗ − λkhi∗)| ≥ |(xi∗ − λkhi∗)| ≥ ρλk > 0(2.55)
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where we have used (2.52) and Lemma 14 to prove (4.70).

Now define for k ∈ N,

Pk , {i ∈ E : sgn(yik − λk−1∇f(yk)
i) 6= −hi∗/ρ}

and recall the standard notation |Pk| for the number of elements in Pk. For

all k ∈ N:

‖xk+1 − x∗‖2 =
∑

j∈Pk+1

|xjk+1 − x
j
∗|2 +

∑
j∈[n]\Pk+1

|xjk+1 − x
j
∗|2

≤
∑

j∈Pk+1

{∣∣∣yjk+1 − λk∇f(yk+1)j − (xj∗ − λkhj∗)
∣∣∣2 − ρ2λ2

k

}
+

∑
j∈[n]\Pk+1

∣∣∣yjk+1 − λk∇f(yk+1)j − (xj∗ − λkhj∗)
∣∣∣2 (2.56)

= ‖yk+1 − λk∇f(yk+1)− (x∗ − λkh∗)‖2 − ρ2λ2
k|Pk+1|

≤ ‖yk+1 − x∗‖2 − ρ2λ2
1|Pk+1|. (2.57)

Inequality (2.56) follows from (2.53) and the elementwise nonexpansiveness

of Sρλk (i.e. Lemma 13(i)). To deduce (2.57), we used the fact that I−λ∇f is

nonexpansive for 0 < λ < 2/Lf [1, Pro. 4.33], and {λk}k∈N is nondecreasing.

Now (2.57) is in the form of (2.48) of Lemma 15 with x = x∗ and Nk =

ρ2λ2
1|Pk|. Since we assumed ρ > 0 and λ1 > 0 it follows that

∑
k∈N |Pk| <∞

for either parameter choice 1 or 2. This implies |Pk| is nonzero for only

finitely many iterations, thus (2.21) is proved.

Proof of (2.22) of Theorem 5

For Ec nonempty, define ω , min{ρ− |hi∗| : i ∈ Ec} ∈ (0, ρ]. If Ec is empty,

(2.22) is trivially true, therefore assume Ec is nonempty and note that

ωλk = min{ρλk − λk|hi∗| : i ∈ Ec} > 0. (2.58)

Consider i ∈ Ec (which implies i /∈ supp(x∗)). If xik+1 6= 0, then Lemma 13

(iii), (2.5) and optimality condition (2.15) imply

|xik+1|2 = |Sρλk
(
yik+1 − λk∇f(yk+1)i

)
− Sρλk

(
−λkhi∗

)
|2

≤
[
|yik+1 − λk∇f(yk+1)i + λkh

i
∗| −

(
ρλk − λk|hi∗|

)]2
≤ |yik+1 − λk∇f(yk+1)i + λkh

i
∗|2 −

(
ρλk − λk|hi∗|

)2
(2.59)

≤ |yik+1 − λk∇f(yk+1)i + λkh
i
∗|2 − ω2λ2

k. (2.60)
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To derive (2.60) we used (2.58). To derive (2.59) we used (2.54) which

applies because

|yik+1 − λk∇f(yk+1)i + λkh
i
∗| ≥ |yik+1 − λk∇f(yk+1)i|

−λk|hi∗| (2.61)

> ρλk − λk|hi∗|, (2.62)

which is greater than 0 by (2.58). Note that (2.61) follows from the identity:

|a+ b| ≥ |a| − |b|, ∀ a, b ∈ R

and (2.62) follows from the fact that 0 6= xik+1 = Sρλk(yik+1−λk∇f(yk+1))i.

Analogously to the definition of Pk, define for all k ∈ N,

Qk , {i ∈ Ec : xik 6= 0}.

Thus for all k ∈ N,

‖xk+1 − x∗‖2 =
∑

j∈[n]\Qk+1

|xjk+1 − x
j
∗|2 +

∑
j∈Qk+1

|xjk+1|
2

≤
∑

j∈[n]\Qk+1

|yjk+1 − λk∇f(yk+1)j − (xj∗ − λkhj∗)|2

+
∑

j∈Qk+1

{
|yjk+1 − λk∇f(yk+1)j + λkh

j
∗|2 − ω2λ2

k

}
≤ ‖yk+1 − x∗‖2 − ω2λ2

1|Qk+1|.

This recursion is in the form of (2.48) in Lemma 15 with x = x∗ and Nk =

ω2λ2
1|Qk|. Since ω and λ1 are both greater than 0 we have

∑
k∈N |Qk| <∞.

Thus Qk is nonempty for only finitely many iterations. Note that by (2.4),

if xik and xik−1 are equal to 0, then yik+1 = 0. Thus (2.22) is proved.

2.8 Proof of Theorem 6

We first prove (2.25). From Theorem 5, there exists K > 0 such that for all

k > K, (2.21) and (2.22) hold for either parameter choice 1 or 2. For i ∈ E,
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k > K, we calculate the quantity

uik+1 , yik+1 − λk∇φ(yEk+1)i

= yik+1 − λk(−hi∗ +∇f(yk+1)i) (2.63)

= yik+1 − λk∇f(yk+1)i + ρλk

(
hi∗
ρ

)
= sgn

(
yik+1 − λk∇f(yk+1)i

)
×(|yik+1 − λk∇f(yk+1)i| − ρλk). (2.64)

Equation (2.63) follows from supp(yk+1) ⊆ E. Equation (2.64) follows from

(2.21). Therefore, for i ∈ E, k > K,

xik+1 = Sρλk
(
yik+1 − λk∇f(yk+1)i

)
=

{
uik+1 : −hi∗uik+1 ≥ 0

0 : else
,

which proves (2.25). Now (2.21) implies sgn(xik) = −hi∗/ρ for all i ∈ E,

k > K, and xik 6= 0. Therefore −hi∗xik = ρ|xik|, for all i ∈ E, k > K.

Therefore since xEck = 0 for k > K, −(hE∗ )>xEk = ρ‖xk‖1, which implies

F (xk) = φ(xEk ).

2.9 Proofs of Sec. 2.3.7

Proof of Proposition 8

Corollary 4 implies that limk→∞ xk , x∗ exists and x∗ ∈ XF for parameter

choice 1. On the other hand Lemma 2 implies this is true for parameter

choice 2. Theorem 5 states that there exists a finite K such that for k >

K (2.21) holds for all i ∈ E, and recall that supp(x∗) ⊆ E. Now since

xik → xi∗ 6= 0 for all i ∈ supp(x∗), there exists some K ′ > 0 such that for all

k > K ′, xik 6= 0. Combining this with (2.5), (2.13) and (2.21) implies that

for all k > max(K,K ′), and i ∈ supp(x∗),

xik = sgn(yik − λk−1∇f(yk)
i)(|yik − λk−1∇f(yk)

i| − λk−1ρ)

= yik − λk−1(∇f(yk)
i − hi∗).

Proof of Theorem 9

Recall that Prob (2.3) satisfies Assumption 1, therefore all conclusions of

Lemma 1 hold. Further recall that XF is nonempty for Prob. (2.3). There-
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fore limk→∞ xk , x∗ exists and x∗ ∈ XF by Corollary 4. Recall that

E = {i : |hi∗| = ρ} and also by the strict complementarity assumption:

E = supp(x∗). Proposition 8 proves that there exists K > 0 such that for

all k > K

xEk = yEk −
1

Lf
(∇f(yk)

E − hE∗ ) = yEk −
1

Lf
((A>Ayk)

E − (A>Ax∗)
E).(2.65)

On the other hand Theorem 5 proved that there exists K ′ > 0 such that for

all k > K ′, xE
c

k = yE
c

k = 0. Therefore for all k > max(K,K ′) , K ′′ both

conditions hold. Let Q = (A>EAE) and PR(Q) be the orthogonal projector

for the range space of Q.

We first consider the part of the error in the nullspace of PR(Q). Equation

(2.65) implies

(I − PR(Q))(x
E
k − xE∗ ) = (I − PR(Q))(y

E
k − xE∗ ), ∀k > K ′′.

Combining this with (2.4) implies: tk+1 = (1 + ζ)tk − ζtk−1 where tk =

(I−PR(Q))(y
E
k −xE∗ ) for all k > K ′′. This is a linear homogeneous recursion

with solution:

t̃iM = t̃i0 +
(t̃i1 − t̃i0)(1− ζM )

1− ζ
, ∀M ∈ N,

where t̃k = tk+dK′′e. Now limM→∞ t̃
i
M = (t̃i1 − ζt̃i0)/(1 − ζ). On the other

hand, Thm. 3 (iii) implies t̃iM → 0 as M → ∞. Therefore either t̃M = 0

for all M ∈ N or t̃iM = ζt̃iM−1 for all M . Therefore (I − PR(Q))(y
E
k − xE∗ ) =

(I − PR(Q))(x
E
k − xE∗ ) converges to 0 R-linearly with rate ζ.

Next we consider PR(Q)(x
E
k −xE∗ ). Note that Q is symmetric thus R(Q) =

N (Q)⊥. Thus, for all k > K ′′

PR(Q)(x
E
k − xE∗ ) = PR(Q)(y

E
k − xE∗ )− 1

Lf
PR(Q)Q(yEk − xE∗ )

= PR(Q)(y
E
k − xE∗ )− 1

Lf
QPR(Q)(y

E
k − xE∗ ). (2.66)

Let l̂E be the smallest nonzero eigenvalue of Q, which is also the smallest

eigenvalue of Q restricted R(PR(Q)). If l̂E = 0, then PR(Q) is the all-zero

matrix and xk converges to x∗ R-linearly with rate ζ. Assume l̂E > 0.

Restating (2.4) we have for all k ≥ K ′′: (4.42) holds and

PR(Q)y
E
k+1 = PR(Q)x

E
k + ζ(PR(Q)x

E
k − PR(Q)x

E
k−1).
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This is exactly the same recursion as studied in [45, §4.2–4.3] with respect

to the sequences {PR(Q)(x
E
k − xE∗ )} and {PR(Q)(y

E
k − xE∗ )}. Note that φ

restricted to R(PR(Q)) is a strongly-convex quadratic function. By looking

at the eigenvalues and eigenvectors of Q restricted to R(PR(Q)), one can

see that Q-linear convergence of PR(Q)x
E
k is obtained and the rate (1 −√

µ/Lf )1/2 is achieved by the choice: ζ = (1−
√
µ/Lf )/(1 +

√
µ/Lf ). We

refer to [45] for all the details. Note that the rate of xk is the same as

PR(Q)x
E
k since xk is zero outside E for k > K ′′ and (I − PR(Q))(x

E
k − xE∗ )

has R-linear convergence to 0 with rate ζ, which is faster than the rate

(1−
√
µ/Lf )1/2. Finally the fact that φ is quadratic for this problem gives

the objective function rates.
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CHAPTER 3

AN INERTIAL METHOD FOR NONCONVEX

COMPOSITE PROBLEMS

3.1 Chapter Introduction

In this chapter we are interested in solving the following optimization prob-

lem:

min
x∈Rn

Φ(x) = Φ1(x) + Φ2(x) (3.1)

where Φ2 : Rn → R∪{+∞} is closed and Φ1 : Rn → R is differentiable with

Lipschitz continuous gradient. This is a composite optimization problem like

Problem (2.1) studied in Chapter 2. The difference is that in Problem (3.1)

we make no assumption of convexity. We do assume that Φ is semialgebraic

[53], meaning there exist integers p, q ≥ 0 and polynomial functions Uij ,Wij :

Rn+1 → R such that

{(x, y) : y ≥ Φ(x)} =
p
∪
j=1

q
∩
i=1
{z ∈ Rn+1 : Uij(z) = 0,Wij(z) < 0}.

Semialgebraic objective functions in the form of (3.1) are widespread in

machine learning, image processing, compressed sensing, matrix completion,

and computer vision [54, 55, 56, 57, 58, 59, 60]. We will list a few examples

below.

In this chapter we focus on the application of Prob. (3.1) to sparse least-

squares and regression. This problem arises when looking for a sparse so-

lution to a set of underdetermined linear equations. Such problems occur

in compressed sensing, computer vision, machine learning and many other

related fields. Suppose we observe y = Ax + b where b is noise and wish

to recover x which is known to be sparse, however the matrix A is “fat” or

poorly conditioned. One approach is to solve (3.1) with Φ1 a loss function

modeling the noise b and Φ2 a regularizer modeling prior knowledge of x, in

this case sparsity. The correct choice for Φ1 will depend on the noise model

and may be nonconvex. Examples of appropriate nonconvex semialgebraic

42



choices for r are the `0 pseudo-norm, and the smoothly clipped absolute

deviation (SCAD) [61]. The prevailing convex choice is the `1 norm which is

also semialgebraic. This results in the lasso problem considered in Chapter

2. SCAD has the advantage over the `1-norm that it leads to nearly un-

biased estimates of large coefficients [61]. Furthermore unlike the `0 norm

SCAD leads to a solution which is continuous in the data matrix A.

In this chapter, much like Chapter 2, we are interested in inertial first-

order methods. For nonconvex problems it has been observed that using

inertia can help the algorithm escape local minima and saddle points that

would capture other first-order algorithms [62, Sec 4.1]. A prominent ex-

ample of the use of inertia in nonconvex optimization is training neural

networks, which goes by the name of back propagation with momentum [63].

Over the past decade the Kurdyka– Lojaziewicz (KL) inequality has come

to prominence in the optimization community as a powerful tool for studying

both convex and nonconvex problems. It is very general, applicable to almost

all problems encountered in real applications, and powerful because it allows

researchers to precisely understand the local convergence properties of first-

order methods. The inequality goes back to [64, 65]. In [66, 67, 68] the

KL inequality was used to derive convergence rates of descent-type first-

order methods. The KL inequality was used to study convex optimization

problems in [69, 70].

Nonconvex optimization has traditionally been challenging for researchers

to study since generally they cannot distinguish a local minimum from a

global minimum. Nevertheless, for some applications such as empirical risk

minimization in machine learning, finding a good local minimum is all that

is required of the optimization solver [71, Sec. 3]. In other problems local

minima have been shown to be global minima [72].

3.1.1 Chapter Contributions

The main contribution of this chapter is to determine for the first time the lo-

cal convergence rate of a broad family of inertial proximal gradient splitting

methods for solving Prob. (3.1). The family of methods we study includes

several algorithms proposed in the literature for which convergence rates are

unknown. The family was proposed in [73], where it was proved that the

iterates converge to a critical point. However the convergence rate, e.g. how

fast the iterates converge, was not determined. In fact in [73], local linear

convergence was shown under a partial smoothness assumption. In contrast

we do not assume partial smoothness and our results are far more general.
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We use the KL inequality and show finite, linear, or sublinear convergence,

depending on the KL exponent (see Sec. 2). The main inspiration for our

work is [68] which studied convergence rates of several noninertial schemes

using the KL property. However, the analysis of [68] cannot be applied to

inertial methods. Our approach is to extend the framework of [68] to the

inertial setting. This is done by proving convergence rates of a multistep

Lyapunov potential function which upper bounds the objective function.

We also prove convergence rates of the iterates and extend a result of [70,

Thm. 3.7] to show that our multistep Lyapunov potential has the same

KL exponent as the objective function. Finally we include experiments to

illustrate the derived convergence rates.

3.2 Preliminaries

In this section we give an overview of the mathematical concepts relevant

to this chapter. The Fréchet subdifferential of a closed function Φ : Rn → R
at a point x ∈ dom(Φ) is defined as

∂FΦ(x) ,
{
v : lim inf

z→x
(Φ(z)− Φ(x)− 〈v, z − x〉 ≥ 0)

}
.

The (limiting) subdifferential is defined as

∂LΦ(x) , {v : ∃xk → x,Φ(xk)→ Φ(x), vk ∈ ∂FΦ(xk)→ v}.

Note that ∂FΦ(x) ⊂ ∂LΦ(x) and ∂LΦ(x) is closed. For more details and

properties we refer to [53, Sec 2.1]. A necessary (but not sufficient) condition

for x to be a minimizer of Φ is 0 ∈ ∂LΦ(x). The set of critical points of Φ

is crit(Φ) , {x : 0 ∈ ∂LΦ(x)}. In the case where Φ is convex, ∂LΦ coincides

with the normal subdifferential ∂Φ as defined in Section 1.3.

We use the same definition of proximal operator as defined in Section 1.3,

except we do not require the function to be convex. To repeat, the proximal

operator w.r.t. a closed proper function Φ2 is defined as

proxΦ2
(x) = arg min

x′∈Rn
Φ2(x′) +

1

2
‖x− x′‖2.

Note that, unlike the convex case, this operator is not necessarily single-

valued. However it is always a nonempty set.

Definition A function Φ : Rn → R is said to have the Kurdyka– Lojaziewicz

(KL) property at x∗ ∈ dom ∂LΦ if there exists η ∈ (0,+∞], a neighborhood
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U of x∗, and a continuous and concave function ϕ : [0, η)→ R+ such that

(i) ϕ(0) = 0,

(ii) ϕ is C1 on (0, η) and for all s ∈ (0, η), ϕ′(s) > 0,

(iii) for all x ∈ U ∩ {x : Φ(x∗) < Φ(x) < Φ(x∗) + η} the KL inequality

holds:

ϕ′(Φ(x)− Φ(x∗))d(0, ∂LΦ(x)) ≥ 1. (3.2)

If Φ is semialgebraic, then it has the KL property at all points in dom ∂LΦ,

and ϕ(t) = cθ
θ t

θ for θ ∈ (0, 1].

In the semialgebraic case we will refer to θ as the KL exponent (note that

some other papers use 1 − θ [70]). For the special case where Φ is smooth,

(3.2) can be rewritten as ‖∇(ϕ ◦ (Φ(x)−Φ(x∗))‖ ≥ 1, which shows why ϕ is

called a “desingularizing function”. The slope of ϕ near the origin encodes

information about the “flatness” of the function about a point, thus the KL

exponent provides a way to quantify convergence rates of iterative first-order

methods.

For example the 1D function Φ(x) = |x|p for p ≥ 2 has desingluarizing

function ϕ(t) = t
1
p . The larger p, the flatter Φ is around the origin, and

the slower gradient-based methods will converge. In general, functions with

smaller exponent θ have slower convergence near a critical point [68]. Thus,

determining the KL exponent of an objective function holds the key to as-

sessing convergence rates near critical points. Note that for most prominent

optimization problems, determining the KL exponent is an open problem.

Nevertheless many important examples have been determined recently, such

as least-squares and logistic regression with an `1, `0, or SCAD penalty [70].

A very interesting recent work showed that for convex functions the KL

property is equivalent to an error bound condition which is often easier to

check in practice [69].

We now precisely state our assumptions on Problem (3.1), which will be

in effect throughout the rest of the chapter.

Assumption 2. (Problem (3.1)). The function Φ : Rn → R ∪ {+∞} is

semialgebraic, bounded from below, and has desingularizing function ϕ(t) =
cϕ
θ t

θ where cϕ > 0 and θ ∈ (0, 1]. The function Φ2 : Rn → R is closed, and

Φ1 : Rn → R has Lipschitz continuous gradient with constant LΦ1 .
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3.3 A Family of Inertial Algorithms

We study the family of inertial algorithms proposed in [73]. In what follows

s ≥ 1 is an integer, and I = {0, 1, . . . , s− 1}.

Algorithm 1: Multi-step Inertial Forward-Backward splitting (MiFB)

Require: x0 ∈ Rn, 0 < γ ≤ γ < 1/LΦ1 .
Set x−s = . . . = x−1 = x0, k = 1
repeat

Choose 0 < γ ≤ γk ≤ γ < 1/LΦ1 , {ak,0, ak,1, . . .} ∈ (−1, 1]s,
{bk,0, bk,1, . . .} ∈ (−1, 1]s.
ya,k = xk +

∑
i∈I ak,i(xk−i − xk−i−1)

yb,k = xk +
∑

i∈I bk,i(xk−i − xk−i−1)
xk+1 ∈ proxγkΦ1

(ya,k − γk∇Φ1(yb,k))
k = k + 1

until convergence

Note the algorithm as stated leaves open the choice of the parameters

ak,i, bk,i, and γk. For convergence conditions on the parameters we refer to

Section 3.4 and [74, Thm. 1].

The algorithm is very general and covers several inertial algorithms pro-

posed in the literature as special cases. For instance the inertial forward-

backward method proposed in [62] corresponds to MiFB with s = 1, and

bk,0 = 0. The well-known iPiano algorithm also corresponds to this same

parameter choice, however the original analysis of this algorithm assumed r

was convex [75]. The heavy-ball method is an early and prominent inertial

first-order method which also corresponds to this parameter choice when

Φ2(x) = 0. The heavy-ball method was originally proposed for strongly

convex quadratic problems but was considered in the context of noncon-

vex problems in [76]. The analysis of [77] applies to MiFB for the special

case when s = 1 and ak,0 = bk,0. However [77] only derived convergence

rates of the iterates and not the function values, which are our main in-

terest.1 Furthermore [77] used a different proof technique to the one used

here. This same parameter choice has been considered for convex optimiza-

tion in [74, 18], albeit without the sharp convergence rates derived here. In

both the convex and nonconvex settings, employing inertia has been found

to improve either the convergence rate or the quality of the obtained local

minimum in several studies [62, 75, 73, 74].

General convergence rates have not been derived for MiFB under noncon-

1Note that the objective function is not assumed to be Lipschitz continuous so rates
derived for the iterates do not immediately imply rates for the objective.
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vexity and semialgebraicity assumptions. The convergence rate of iPiano

has been examined in a limited situation where the KL exponent θ = 1/2

in [70, Thm 5.2]. Note that the primary motivation for studying this frame-

work is its generality - allowing our analysis to cover many special cases from

the literature. However the case s = 1 is the most interesting in practice

and corresponds to the most prominent inertial algorithms.

3.4 Convergence Rate Analysis

Throughout the analysis, Assumption 2 is in effect. Before providing our

convergence rate analysis, we need a few results from [73].

Theorem 16 Fix s ≥ 1 and recall I = {0, 1, . . . , s − 1}. Fix {γk}, {ak,i}
and {bk,i} for k ∈ N and i ∈ I. Fix ξ1, ξ2 > 0 and define

Λk ,
1− γkLΦ1 − ξ1 − ξ2γk

2γk
, Λ , lim inf

k∈N
Λk,

Πk,i ,
sa2
k,i

2γkξ1
+
sb2k,iL

2
Φ1

2ξ2
, Πi , lim sup

k∈N
Πk,i,

and zk , (x>k , x
>
k−1, . . . , x

>
k−s)

> where {xk} is the sequence of iterates gen-

erated by MiFB. Define the multi-step Lyapunov function as

Ψ(zk) , Φ(xk) +
∑
i∈I

s−1∑
j=i

Πj

 ‖xk−i − xk−i−1‖2. (3.3)

and

ξ3 , Λ−
∑
i∈I

Πi > 0. (3.4)

If the parameters of MiFB are chosen so that ξ3 > 0 then

(i) for all k, Ψ(zk+1) ≤ Ψ(zk)− ξ3‖xk+1 − xk‖2,

(ii) for all k, there is a σ > 0 such that d(0, ∂LΨ(zk)) ≤ σ
∑k

j=k+1−s ‖xj−
xj−i−1‖,

(iii) If {xk} is bounded there exists x∗ ∈ crit(Φ) such that xk → x∗ and

Φ(xk)→ Φ(x∗).

Proof Statements (i) and (ii) are shown in [73, Lemma A.5] and [73, Fact

(R.2)] respectively. The fact that Φ(xk) → Φ(x∗) is shown in [73, Lemma

A.6]. The fact that xk → x∗ is the main result of [73, Thm 2.2].
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The assumption that {xk} is bounded is standard in the analysis of algo-

rithms for nonconvex optimization and is guaranteed under ordinary con-

ditions such as coercivity. Since the set of semialgebraic functions is closed

under addition, Ψ is semialgebraic [78]. We now give our convergence result.

Theorem 17 Assume the parameters of MiFB are chosen such that ξ3 > 0

where ξ3 is defined in (3.4), thus there exists a critical point x∗ such that

xk → x∗, where {xk} are the iterates of MiFB. Let θ be the KL exponent of

Ψ defined in (3.3).

(a) If θ = 1, then xk converges to x∗ in a finite number of iterations.

(b) If 1
2 ≤ θ < 1, then Φ(xk)→ Φ(x∗) linearly.

(c) If 0 < θ < 1/2, then Φ(xk)− Φ(x∗) = O
(
k

1
2θ−1

)
.

Proof The starting point is the KL inequality applied to the multi-step

Lyapunov function defined in (3.3). Let z∗ , ((x∗)>, . . . , (x∗)>)>. Suppose

Ψ(zK) = Ψ(z∗) for some K > 0. Then the descent property of Thm. 1(i),

along with the fact that Ψ(zk)→ Ψ(z∗), implies that ‖xK+1− xK‖ = 0 and

therefore Ψ(zk) = Ψ(z∗) holds for all k > K. Therefore assume Ψ(zk) >

Ψ(z∗). Now since zk → z∗ and Ψ(zk)→ Ψ(z∗), there exists k0 > 0 such that

for k > k0 (3.2) holds with f = Ψ. Assume k > k0. Squaring both sides of

(3.2) yields

ϕ′2(Ψ(zk)−Ψ(z∗))d(0, ∂LΨ(zk))
2 ≥ 1, (3.5)

Now substituting Thm.1 (ii) into (3.5) yields

σ2ϕ′2(Ψ(zk)−Ψ(z∗))

 k∑
j=k+1−s

‖xj − xj−1‖

2

≥ 1. (3.6)

Now  k∑
j=k+1−s

‖xj − xj−1‖

2

≤ s
k∑

j=k+1−s
‖xj − xj−1‖2

≤ s

ξ3

k∑
j=k+1−s

(Ψ(zj−1)−Ψ(zj))

=
s

ξ3
(Ψ(zk−s)−Ψ(zk)) ,

where in the first inequality we have used the fact that (
∑s

i=1 ai)
2 ≤ s

∑n
i=1 a

2
i ,

and in the second inequality we have used Thm. 1(i). Substituting this into
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(3.6) yields

σ2s

ξ3
ϕ′2(Ψ(zk)−Ψ(z∗)) (Ψ(zk−s)−Ψ(zk)) ≥ 1,

from which convergence rates can be derived by extending the arguments in

[68, Thm 4].

Proceeding, let rk , Ψ(zk) − Ψ(z∗), and C1 = ξ3
σ2c2ϕs

, then using ϕ′(t) =

cϕt
θ−1, we get

rk−s − rk ≥ C1r
2(1−θ)
k . (3.7)

If θ = 1, then the recursion becomes rk−s − rk ≥ C1, ∀k > k0. Since

by Theorem 16 (iii), rk converges, this would require C1 = 0, which is a

contradiction. Therefore there exists k1 such that rk = 0 for all k > k1.

Suppose θ ≥ 1/2, then since rk → 0, there exists k2 such that for all

k > k2, rk ≤ 1, and r
2(1−θ)
k ≥ rk. Therefore for all k > k2,

rk−s − rk ≥ C1rk =⇒ rk ≤ (1 + C1)−1rk−s

≤ (1 + C1)−p1rk2 , (3.8)

where p1 , bk−k2
s c. Note that p1 >

k−k2−s
s . Therefore rk → 0 linearly. Note

that if θ = 1
2 , 2(1− θ) = 1 and (3.8) holds for all k ≥ k0.

Finally suppose θ < 1/2. Define φ(t) , D
1−2θ t

2θ−1 where D > 0, so

φ′(t) = −Dt2θ−2. Now

φ(rk)− φ(rk−s) =

∫ rk

rk−s

φ′(t)dt = D

∫ rk−s

rk

t2θ−2dt.

Therefore since rk−s ≥ rk and t2θ−2 is nonincreasing,

φ(rk)− φ(rk−s) ≥ D(rk−s − rk)r2θ−2
k−s .

Now we consider two cases.

Case 1: suppose 2r2θ−2
k−s ≥ r

2θ−2
k , then

φ(rk)− φ(rk−s) ≥
D

2
(rk−s − rk)r2θ−2

k ≥ C1D

2
, (3.9)

where in the second inequality we have used (3.7).

Case 2: suppose that 2r2θ−2
k−s < r2θ−2

k . Now 2θ−2 < 2θ−1 < 0, therefore
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(2θ − 1)/(2θ − 2) > 0, thus r2θ−1
k > qr2θ−1

k−s where q = 2
2θ−1
2θ−2 > 1. Thus

φ(rk)− φ(rk−s) =
D

1− 2θ

(
r2θ−1
k − r2θ−1

k−s

)
>

D

1− 2θ
(q − 1)r2θ−1

k−s

≥ D

1− 2θ
(q − 1)r2θ−1

k0
, C2. (3.10)

Thus putting together (3.9) and (3.10) yields φ(rk) ≥ φ(rk−s) + C3 where

C3 = max(C2,
C1D

2 ). Therefore

φ(rk) ≥ φ(rk)− φ(rk−p2s) ≥ p2C3,

where p2 , bk−k0
s c. Therefore

rk ≤
(

1− 2θ

D

) 1
2θ−1

(p2C3)
1

2θ−1 ≤ C4

(
k − s− k0

s

) 1
2θ−1

,

where C4 =
(
C3(1−2θ)

D

) 1
2θ−1

. To end the proof, note that Φ(xk) ≤ Ψ(zk).

In the case where Φ1 and Φ2 are also convex, we can use parameter choices

specified in [74, Thm. 1].

3.5 Convergence Rates of the Iterates

The convergence rates of ‖xk−x∗‖ can also be quantified. To do so we need

another result from [73].

Lemma 18 Recall the notation of Sec. 3.4 which defines rk , Ψ(zk) −
Ψ(z∗), where Ψ and zk are defined in (3.3), and {xk} are the iterates of

MiFB. Let vk , σ
ξ3

(ϕ(rk)− ϕ(rk+1)) where σ is defined in Theorem 16 (ii)

and ξ3 in (3.4). Assume the parameters of MiFB are chosen to so that

ξ3 > 0 and {xk} is bounded. Fix ξ4 > 0 so that ξ4 < 2/s. Then there exists

a k0 > 0 such that for all k > k0

rk > 0 =⇒ ‖xk − xk−1‖ ≤
ξ4

2

k−1∑
j=k−s

‖xj − xj−1‖+
1

2ξ4
vk−1. (3.11)

Proof This inequality is proved on page 14 of [73] as part of the proof of

[73, Thm 2.2].

We now state our result.
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Theorem 19 Assume the iterates {xk} of MiFB are bounded and the pa-

rameters of MiFB are chosen so that ξ3 > 0 where ξ3 is defined in (3.4).

Let θ be the KL exponent of Ψ defined in (3.3). Then

(a) If θ = 1, then xk = x∗ after finitely many iterations.

(b) If 1
2 ≤ θ < 1, xk → x∗ linearly.

(c) If 0 < θ < 1
2 , ‖xk − x∗‖ = O

(
k

θ
2θ−1

)
.

Proof Statement (a) follows trivially from the fact that rk = 0 after finitely

many iterations, and therefore ‖xk − xk−1‖ = 0. We proceed to prove

statements (b) and (c). As with Theorem 17 the basic idea is to extend

the techniques of [68] to allow for the inertial nature of the algorithm. The

starting point is (3.11). Fix K > k0. Then

∑
k≥K
‖xk − xk−1‖ ≤

ξ4

2

∑
k≥K

k−1∑
j=k−s

‖xj − xj−1‖+
1

2ξ4

∑
k≥K

vk−1

≤ ξ4s

2

∑
k≥K−s

‖xk − xk−1‖+
1

2ξ4

∑
k≥K

vk−1.

Let C = ξ4s
2 and note that 0 < C < 1. Therefore subtracting C

∑
k≥K ‖xk−

xk−1‖ from both sides yields

∑
k≥K
‖xk − xk−1‖ ≤

1

1− C

C K−1∑
k=K−s

‖xk − xk−1‖+
1

2ξ4

∑
k≥K

vk−1

 .

Next note that

K−1∑
k=K−s

‖xk − xk−1‖ ≤
√

s

ξ3
(Ψ(zK−s−1)−Ψ(zK−1))1/2

≤
√

s

ξ3

√
rK−s−1.

Let C ′ , C
√

s
ξ3

then using
∑

k≥K vk−1 = σ
ξ3
ϕ(rK−1),

∑
k≥K
‖xk − xk−1‖ ≤

1

1− C

(
C ′
√
rK−s−1 +

σ

ξ3
ϕ(rK−1)

)

≤ 1

1− C

(
C ′
√
rK−s−1 +

σ

ξ3
ϕ(rK−s−1)

)
,

where in the second inequality we used the fact that rk is nonincreasing and

ϕ is a monotonic increasing function. Thus using the triangle inequality and
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the fact that limk ‖xk − x∗‖ = 0,

‖xK − x∗‖ ≤
∑
k≥K
‖xk − xk−1‖ ≤

1

1− C

(
C ′
√
rK−s−1 +

σ

ξ3
ϕ(rK−s−1)

)
.

Hence if rk → 0 linearly, then so does ‖xk − x∗‖, which proves (b). On the

other hand if 0 < θ < 1/2, for k sufficiently large we see that ‖xk − x∗‖ =

O(ϕ(rk−s−1)), which proves statement (c).

3.6 KL Exponent of the Lyapunov Function

We now extend the result of [70, Thm 3.7] so that it covers the Lyapunov

function defined in (3.3).

Theorem 20 Let s ≥ 1, and consider

Ψ(s)(x1, x2, . . . , xs) , Φ(x1) +
s−1∑
i=1

πi‖xi+1 − xi‖2, (3.12)

where πi ≥ 0. If Φ has KL exponent θ ∈ (0, 1/2] at x̄ then Ψ(s) has KL

exponent θ at [x̄, x̄, . . . , x̄]>.

Proof Before commencing, note that if Φ has desingularizing function ϕ(t) =
cθ
θ t

θ, the KL inequality (3.2) can be written in the equivalent form:

d(0, ∂LΦ(x))
1

1−θ ≥ c−1
θ (Φ(x)− Φ(x∗)).

We now show that this bound holds for the Lyapunov function in (3.12).

The key is to notice the recursive nature of the Lyapunov function. In

particular for all s ≥ 2

Ψ(s)(x1
s) = Ψ(s−1)(xs−1

1 )

+ πs−1‖xs−1 − xs‖2,

with Ψ(1)(x1
1) , Φ(x1), and xs1 , [x>1 , . . . , x

>
s ]>. Since Φ has KL exponent

θ at x̄, Ψ(1) has KL exponent θ at x̄. We will prove the following inductive

step for s ≥ 2: If Ψ(s−1) has KL exponent θ (with constant c−1
θ ) at x̄s−1

1 ,

then Ψ(s) has KL exponent θ at x̄s1 where x̄s1 , [x̄, x̄, . . . , x̄]> where x̄ is

repeated s times.

Proceeding, for s ≥ 2 assume x1, x2, . . . , xs are such that ‖xs− xs−1‖ ≤ 1
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and the KL inequality (3.2) applies to Ψ(s−1) at x̄s1. Then

∂LΨ(s)(x̄1
s) 3

 us−2
1

us−1

0

+

 0

πs−1(xs−1 − xs)
πs−1(xs − xs−1)

 ,

where (us−2
1 , us−1) ∈ ∂LΨ(s−1)(xs−2

1 , xs−1). Therefore

d(0, ∂LΨ(s)(xs1))
1

1−θ

(a)

≥ C1

(
inf

(us−2
1 ,us−1)∈∂LΨ(s−1)(xs−2

1 ,xs−1)
‖ucs−1‖

1
1−θ

+‖us−1 + πs−1(xs−1 − xs)‖
1

1−θ + ‖πs−1(xs − xs−1)‖
1

1−θ
)

(b)

≥ C1

(
inf

(ucs−1,us−1)∈∂LΨ(s−1)(xs−2
1 ,xs−1)

‖ucs−1‖
1

1−θ + η1‖us−1‖
1

1−θ

−η2‖πs−1(xs−1 − xs)‖
1

1−θ + ‖πs−1(xs − xs−1)‖
1

1−θ
)

(c)

≥ C2

(
inf

(ucs−1,us−1)∈∂LΨ(s−1)(xs−2
1 ,xs−1)

‖ucs−1‖
1

1−θ + ‖us−1‖
1

1−θ

+
πs−1c

−1
θ

2
‖xs − xs−1‖

1
1−θ

)
(d)

≥ C3

 inf
(ucs−1,us−1)∈∂LΨ(s−1)(xs−2

1 ,xs−1)

∥∥∥∥∥ ucs−1

us−1

∥∥∥∥∥
1

1−θ

+
πs−1c

−1
θ

2
‖xs − xs−1‖

1
1−θ

)
(e)

≥ C3c
−1
θ

(
Ψ(s−1)(xs−1

1 )−Ψ(s−1)(x̄s−1
1 )

+
πs−1

2
‖xs − xs−1‖

1
1−θ
)

(f)

≥ C3c
−1
θ

(
Ψ(s−1)(xs−1

1 )−Ψ(s−1)(x̄s−1
1 )

+
πs−1

2
‖xs − xs−1‖2

)
= C3c

−1
θ

(
Ψ(s)(xs1)−Ψ(s)(x̄s1)

)
.

Now (a) and (d) follow from [70, Lemma 2.2], and (b) follows from [70,

Lemma 3.1]. Next (c) follows because η1 > 0, 0 < η2 < 1, and we have

decreased C2 to compensate for factoring out these coefficients. Further (e)

follows by the KL inequality. Finally (f) follows because ‖xs − xs−1‖ ≤ 1

and (1− θ)−1 ∈ (1, 2]. Since Ψ(1) has KL exponent θ at x̄, then so does Ψ(s)
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at [x̄, x̄, . . . , x̄]> (of length s) for all s ≥ 2, which concludes the proof.

This theorem says that when the KL exponent of the objective function Φ

is known, the same exponent applies to the Lyapunov function in (3.3). This

allows us to exactly determine the convergence rate of MiFB via Theorems

17 and 19.

3.7 Numerical Results

3.7.1 One-Dimensional Polynomial

This simple experiment verifies the convergence rates derived in Theorem

17 for MiFB. Consider the one-dimensional function Φ1(x) = |x|p for p > 2.

Use Φ2(x) = +∞ if |x| > 1 and 0 otherwise. The proximal operator is simple

projection and Φ1 is p(p− 1)-smooth on this set. The function Φ = h+ r is

semialgebraic with ϕ(t) = pt1/p, i.e. θ = 1/p. Therefore Theorem 2 predicts

O
(
k
− p
p−2

)
rates for MiFB, which is verified in Fig. 3.1 for three parameter

choices in the cases p = 4, 18. For simplicity we ignore constants and focus

on the sublinear order. For p ≤ 4 this convergence rate is better than that of

Nesterov’s accelerated method [32], for which only O(1/k2) worst-case rate

is known. Faster rates are achievable due to the additional knowledge of the

KL exponent.
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Figure 3.1: (Left) p = 4, (Right) p = 18, Φ∗ = 0. The dotted line is the

slope of the predicted O
(
k
− p
p−2

)
rate (i.e. ignoring constants). Note

ak,: , [ak,0, ak,1] and these are log-log plots.
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3.7.2 SCAD and `1 regularized Least-Squares

We solve Prob. (3.1) with Φ1(x) = 1
2‖Ax − b‖

2
2 and Φ2(x) =

∑n
i=1 Φ0(xi)

where Φ2 is: 1) the SCAD regularizer defined as

Φ0(xi) =


λ|xi| if |xi| ≤ λ
− |x

i|2−2aλ|xi|+λ2

2(a−1) if λ < |xi| ≤ aλ
(a+1)λ2

2 if |xi| > aλ,

and 2) the absolute value Φ0(xi) = λ|xi| leading to the `1-norm. In both

cases the proximal operator w.r.t. Φ2 is easily computed. It was shown in

[70, Sec. 5.2] and [69, Lemma 10] that both of these objective functions are

KL functions with exponent θ = 1/2.

We choose A ∈ R500×1000 having i.i.d. N (0, 10−4) entries, and b = Ax0,

where x0 ∈ R1000 has 50 nonzero N (0, 1)-distributed entries. For SCAD we

use a = 5 and λ = 1 and for the `1 norm we use λ = 0.01.
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Figure 3.2: (Top Left) Plot of Φ(xk) for SCAD least-squares. (Top Right)
Plot of Φ(xk)− Φ∗i with a logarithmic y-axis for SCAD least-squares. As
SCAD least-squares is a nonconvex problem, each of the four considered
parameter choices may converge to a different objective function value Φ∗i
for i = 1, 2, 3, 4. (Bottom Left) Plot of Φ(xk) for `1 least-squares. (Bottom
Right) Plot of Φ(xk)− Φ∗ with a logarithmic y-axis for `1 least-squares.

We consider four valid parameter choices. To isolate the effect of inertia,

all choices used the same randomly chosen starting point and fixed stepsize,
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γk = 0.1/LΦ1 for SCAD and γk = 1/LΦ1 for `1. The inertial parameters

were chosen so that u3 > 0 (defined in (3.4)) for SCAD and to satisfy

[74, Thm. 1] for the `1 problem. The two figures on the right corroborate

Theorem 2 in that all considered parameter choices converge linearly to their

limit, which was estimated by using the attained objective function value

after 1000 iterations. For the nonconvex SCAD this is a new result. For

`1-regularized least squares, inertial methods have been shown to achieve

local linear convergence in [74, 37] under additional strict complementarity

or restricted strong convexity assumptions. However, our analysis, which

is based on the KL inequality, does not explicitly require these additional

assumptions, as the objective function always has a KL exponent of 1/2 [69,

Lemma 10]. Furthermore our result proves global linear convergence, in that

the KL inequality (3.2) holds for all k, implying k0 = 1 in (3.5) and (3.8)

holds for all k. In addition the two left figures show that the inertial choices

appear to provide acceleration relative to the standard non-inertial choice

which for SCAD is a new observation. This does not conflict with Theorem

2 which only shows that both non-inertial and inertial methods will converge

linearly, however the convergence factor may be different. Estimating the

factor is beyond the scope of this paper and we leave it for future work.

Finally we mention that FISTA [79] and other Nesterov-accelerated methods

[32] are not applicable to SCAD as it is nonconvex.
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CHAPTER 4

FASTER SUBGRADIENT METHODS UNDER

AN ERROR BOUND

4.1 Chapter Introduction

4.1.1 Motivation and Background

In this chapter we consider the problem

min
x∈C

h(x), (4.1)

where H, as in Chapter 2, is a Hilbert space, h : H → R is a convex and

closed function, and C is a convex, closed, and nonempty subset of H. We do

not assume h is smooth or strongly convex. Solving Problem (4.1) arises in

many applications such as image processing, machine learning, compressed

sensing, statistics, and computer vision [5, 80, 81, 82, 83].

As in the previous chapters, we are interested in first-order methods

for solving this problem. Specifically, we focus on the class of subgradi-

ent methods, which were first studied in the 1970s [84, 85]. Since then,

these methods have been used extensively in nonsmooth convex optimiza-

tion because of their simplicity, and low-complexity [84, 85, 86, 87, 88, 89].

However in general these methods have a slow worst-case convergence rate

of h(x̂k) − minx∈C h(x) ≤ O(1/
√
k) after k subgradient evaluations for a

particular averaged point x̂k. In this chapter we show how a structural

assumption for Problem (4.1) that is commonly satisfied in practice yields

faster variants of the subgradient method.

The structural assumption we consider is the Hölder error bound (through-

out referred to as either HEB or HEB(c, θ)). We assume that h satisfies

h(x)− h∗ ≥ cd(x,Xh)
1
θ , ∀x ∈ C,

for some θ ∈ (0, 1] and c > 0, where h∗ = minx∈C h(x), and Xh , {x ∈ C :

h(x) = h∗} is the solution set (assumed to be nonempty). In general, an
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“error bound” is an upper bound on the distance of a point to the optimal

set by some residual function. The study of error bounds has a long tradi-

tion in optimization, sensitivity analysis, systems of inequalities, projection

methods, and convergence rate estimation [90, 91, 92, 93, 69, 94, 95, 96, 97,

98, 99, 100, 101, 102] In recent years there has been much renewed interest

in the topic. HEB is often referred to as the  Lojaziewicz error bound [103].

HEB is also related to the KL inequality utilized in Chapter 3. In fact in

[69] it was shown that the KL inequality is equivalent to HEB for CCP

functions.

There are three main motivations for studying the behavior of algorithms

for problems satisfying HEB. Firstly HEB holds for many problems arising in

various applications. In fact for a semialgebraic function HEB is guaranteed

to hold on any compact set for some θ and c [69]. Secondly, many algorithms

have been shown to achieve significantly faster convergence behavior when

HEB is satisfied. Thirdly, under HEB it has been possible to develop even

faster methods.

The two most common instances of HEB in practice are θ = 1/2 and θ = 1.

The case θ = 1/2 is often referred to as the quadratic growth condition (QG)

[100]. The case θ = 1 is often referred to by saying the function has weakly

sharp minima (WS) [99]. If the minimum is unique, then it is simply a sharp

minimum. In this chapter we will also refer to this case by saying that the

function is weakly sharp. There are also a small number of applications

where θ 6= 1/2 or 1, such as Lp regression with p 6= 1, 2.

Due to its prevalence in applications, many recent papers have studied QG

(the θ = 1/2 case). QG has been used to show a linear convergence rate

of the objective function values for various algorithms that would otherwise

only guarantee sublinear convergence [104, 101, 105, 106, 92, 107, 100]. Many

papers have discovered connections between QG and other error bounds and

conditions known in the literature. Most importantly it was shown in [100,

Appendix A] that for convex functions, QG is equivalent to the Luo-Tseng

error bound [97], the Polyak- Lojaziewicz condition [100], and the restricted

secant inequality [95].

Weakly sharp functions (i.e. θ = 1) have been studied in many papers, for

example [99, 98, 96, 84, 87, 108, 109, 110, 53]. For such functions [98] showed

that the proximal point method converges to a minimum in a finite number

of iterations. This is interesting because these methods would otherwise

only guarantee an O(1/k) rate.
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4.1.2 Applications satisfying HEB

Strongly and uniformly convex functions.

A uniformly convex function satisfies [111] for some µuc > 0 and d ≥ 2

h(y) ≥ h(x) + 〈g, y − x〉+
µuc
2
‖y − x‖d ∀x, y ∈ H, g ∈ ∂h(x). (4.2)

This corresponds to strong convexity when d = 2 which is the most im-

portant special case. For a minimizer x∗ in the interior of C, 0 ∈ ∂h(x∗).

Substituting g = 0 into (4.2) yields HEB with θ = 1/d. Applications with

d > 2 include Ld norm regression (discussed below) and polynomial convex

optimization [90].

Least squares and Logistic Regression.

The paper [100] showed that functions of the form h(x) = h0(Ax) where h0

is strongly convex and A is a matrix satisfy QG. This includes the ubiquitous

least-squares objective. Logistic regression is in the form h(x) = h0(Ax),

however h0 is only strictly convex. Nevertheless, it is strongly convex on

any bounded set.

Lasso (`1 regularized Least-squares). The `1-regularized least squares

problem considered in Chapter 2 was shown in [69, Lemma 10] to satisfy

HEB on the set {x : ‖x‖1 ≤ R} for sufficiently large R. QG is also shown

to be locally satisfied by the group lasso penalized least-squares and logistic

regression in [91, Theorem 2].

Composite Optimization The paper [92] considers the problem

min
x∈H

h0(Ax) + P (x)

where h is strongly convex on any bounded set and P is polyhedral or

the group lasso penalty. Rather surprisingly, they showed in [92] that this

function satisfies a local version of QG. The result also applies when P is

the nuclear norm so long as a strict complementarity condition is satisfied.

d Norm Regression Estimators

The goal of linear regression is to estimate a vector βLd ∈ Rn given a noisy

version of its linear measurements y = X>βLd + e where e is an unknown

noise term. If e conforms to a Gaussian distribution, then the least squares

estimate is the maximum likelihood estimator. If the noise is not Gaussian,

then the performance of the least squares estimator can be significantly

degraded. The Ld estimator with d 6= 2 has been considered as an alternative
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[112, 113, 114]. It is given by

arg min
βLd

m∑
i=1

|X(i)>βLd − yi|
d (4.3)

for d ≥ 1, where X(i) is the ith column of X. The case d = 2 corresponds to

least squares, and d = 1 to least absolute deviation. Other choices of d have

been considered in [112, 113, 114]. It is not hard to see that (4.3) satisfies

the KL inequality given in Chapter 3 with θ = 1/d. Therefore by [69, Thm

5] it satisfies HEB with θ = 1/d.

Polyhedral Convex Optimization.

Suppose that the function h in Problem (4.1) has a polyhedral epigraph

(i.e. is piecewise linear), then Problem (4.1) is called a polyhedral convex

optimization (PCO) problem. In this case, [109] showed that WS is satisfied

globally. Many applications are instances of PCO. For instance both the

hinge loss used in SVM classification and the `1 loss/regularizer used in

robust regression are polyhedral. Linear programming is PCO. Another very

important application is submodular optimization. The Lovász extension is

a convex relaxation for submodular optimization problems which is PCO

[115]. Finally note that the sum of polyhedral functions is polyhedral.

4.1.3 Subgradient Methods under HEB

There were a few early works that studied the subgradient method under

conditions related to HEB with θ = 1. In [84, Thm 2.7, Sec. 2.3], Shor pro-

posed a geometrically decaying stepsize which obtains a linear convergence

rate under a condition equivalent to the function being WS. The stepsize

depends on explicit knowledge of the error bound constant c, a bound on

the subgradients, and the initial distance d(x1,Xh). Goffin [85] extended

the analysis of [84] to a slightly more general notion than HEB.1 Rosenburg

[86] extended these results to constrained problems. In [108], Polyak showed

that the method still converges linearly when the subgradients are corrupted

by bounded, deterministic noise.

The paper [87] also considers functions satisfying HEB with θ = 1 with

(deterministically) noisy subgradients. For constant stepsizes, they show

convergence of lim inf h(xk) to h∗ plus a tolerance level depending on noise.

For diminishing stepsizes, lim inf h(xk) actually converges to h∗ despite the

noise. However [87] does not discuss convergence rates, which is the topic of

1Our analysis in this chapter also holds for Goffin’s condition number; see Sec. 4.2.5.
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the current chapter.

The authors of [109] introduced the restarted subgradient method RSG for

when h satisfies HEB. The method implements a predetermined number of

averaged subgradient iterations with a constant stepsize and then restarts

the averaging and uses a new, smaller stepsize. The authors show that after

O(ε2(θ−1) log 1
ε ) iterations the method is guaranteed to find a point such that

h(xk) − h∗ ≤ ε. For θ = 1 this is a logarithmic iteration complexity. This

improves the iteration complexity of the classical subgradient method which

is O(ε−2). RSG has another advantage that the dependence of the iteration

complexity on the initial distance to the solution set (or the initial objective

function gap) is logarithmic.

The recent paper [93] extends RSG to stochastic optimization. In partic-

ular they provide a similar restart scheme that can also handle stochastic

subgradient calls, and guarantees h(x)− h∗ ≤ ε with high probability. The

iteration complexity is the same as for RSG, up to constants. However, this

constant is large leading to a large number of inner iterations, making it

difficult to implement the method in practice.

For WS functions, the paper [110] introduced a method similar to RSG

except it does not require averaging at the end of each constant stepsize

phase. The method also obtains a logarithmic iteration complexity in the

θ = 1 case.

The paper [116] is concerned with a two-person zero-sum game equilib-

rium problem with a linear payoff structure. The authors show that finding

the solution to the equilibrium problem is equivalent to a WS minimization

problem. Using this fact, they derive a method based on Nesterov’s smooth-

ing technique with logarithmic iteration complexity. This is superior to the

O(1/ε) of standard Nesterov smoothing. Connections between our results

and [116] are discussed in Section 4.5.1.

The work [117] studies stochastic subgradient descent under the assump-

tion that the function satisfies WS locally and QG globally. They show a

faster convergence rate of the iterates to a minimizer, both in expectation

and with high probability, than is known under the classical analysis.

The work [118] proposes a new subgradient method for functions satisfying

a similar condition to HEB but with h∗ replaced by a strict lower bound on

h∗. Like RSG, this algorithm has a logarithmic dependence on the initial

distance to the solution set. However it still obtains an O(1/ε2) iteration

complexity, which is the same as the classical subgradient method.

In [119, 120] Renegar presented a framework for converting a convex conic

program to a general convex problem with an affine constraint, to which
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projected subgradient methods can be applied. He further showed how this

can be applied to general convex optimization problems, such as Prob. (4.1),

by representing them as a conic problem. For the special case where the

objective and constraint set is polyhedral, one of the subgradient methods

proposed by Renegar has a logarithmic iteration complexity [119, Cor. 3.4].

The main drawback of this method is that it requires knowledge of the

optimal value, h∗. It also requires a point in the interior of the constraint

set. Similarly the stepsizes proposed in Thm. 2 of [27, Sec 5.3.] and [88,

Prop. 2.11] depend on exact knowledge of h∗ and also obtain a logarithmic

iteration complexity under WS.

In recent times, convergence analyses for the subgradient method have

focused on the objective function rather than the distance of the iterates

from the optimal set. However in the early period of development, there were

many works focusing on the distance (e.g. [88, 84, 108, 85]). The subgradient

method is not a descent method with respect to function values, however it

is with respect to the distances to the optimal set. Thus the distance is a

natural metric to study for the subgradient method. Furthermore, for some

applications, the distance to the solution set arguably matters more than

the objective function value. For example in machine learning, the objective

function is only a surrogate for the actual objective of interest – expected

prediction error.

Without further assumptions, [27, p. 167–168] showed that the conver-

gence rate of the distance of the iterates of the subgradient method to the

optimal set can be made arbitrarily slow. This is true even for smooth con-

vex problems. In this case, gradient descent with a constant stepsize obtains

an O(1/k) objective function convergence rate, however the iterates can be

made to converge arbitrarily slowly to a minimizer. In this chapter, HEB

allows us to derive less pessimistic convergence rates for the distance to the

optimal set.

4.1.4 Chapter Contributions

Define the standard subgradient method as

xk+1 = PC(xk − αkgk) : ∀k ≥ 1, gk ∈ ∂h(xk), x1 ∈ C, (4.4)

where the choice of the stepsize αk is not specified. The projection onto C
is defined as PC . Recall the definition of the subgradient of h at x [1, Def.
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16.1]:

∂h(x) , {g ∈ H : h(y) ≥ h(x) + 〈g, y − x〉, ∀y ∈ H}.

Despite the long history of analysis of subgradient methods discussed in the

previous section, the simplest stepsize choices for (4.4) have not been studied

for objective functions satisfying HEB. These are the constant stepsize, αk =

α, and the nonsummable decaying stepsize, αk = α1k
−p for p ∈ (0, 1]. This

brings us to our contributions in this chapter.

Firstly we determine the convergence rate of a constant stepsize choice in

the subgradient method which previously had only been determined for the

special case of θ = 1/2 (see [88, Prop. 2.4]). Interestingly, for any θ ∈ (0, 1]

the method obtains a linear convergence rate for d(xk,Xh) up to a specific

tolerance level of order O(αθ).

Secondly, we determine the convergence rate of decaying polynomial step-

size choices. Previously, these results had only been obtained for the case

where θ = 1/2. For θ = 1 the paper [117] obtains an asymptotic convergence

rate for p = 1 with an additional global QG assumption. The big advantage

of the nonsummable stepsizes is that, for θ ≥ 1/2, they require no infor-

mation about the problem’s parameters in order to guarantee convergence.

In contrast, we show that for θ > 1/2 summable stepsizes can obtain much

faster rates with additional information. For instance summable stepsizes

require an upper bound on the initial distance to the solution set, otherwise

convergence is impossible.

We frame our convergence rates in terms of d(xk,Xh) because this quantity

arises naturally in our analysis. If the rate of convergence of h(x̂k) to h∗ is

known for some sequence x̂k, a naive estimate of the rate of convergence of

d(x̂k,Xh) can be obtained via the HEB. For example, the classical analysis

of the subgradient method leads to the rate

h(x̂k)− h∗ = O(k−
1
2 ),

where x̂k is a specific average of the previous iterates and αk = O(1/
√
k)

[89]. Combining this with HEB yields

d(x̂k,Xh) = O(k−
θ
2 ).

This rate is slower than the result of our specialized analysis. For example,

we show that with the proper choice of p and α1, the subgradient method
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with decaying stepsize can obtain the convergence rate

d(xk,X ) ≤ O(k
− θ

2(1−θ) ), ∀θ < 1.

It can be seen that the absolute value of the exponent is a factor 1/(1− θ)
larger in our analysis.

Our third major contribution is a new “descending staircase” stepsize

choice for the subgradient method (DS-SG). The method achieves the same

convergence rate as the best decaying stepsize for θ < 1. In addition for the

case θ = 1 it achieves linear convergence. Unlike the methods of [119, 120]

and [47, Exercise 6.3.3], our proposal does not require h∗. The methods of

[110, 84, 85] have a similar complexity for θ = 1 but cannot handle θ < 1.

The method RSG of [109] obtains the same iteration complexity but requires

averaging. Averaging is disadvantageous in applications where the solution

is sparse (or low rank) because it can spoil this property [121]. In Section

4.5.1 we discuss in more detail why averaging can be disadvantageous. The

method retains the same iteration complexity even when the subgradients

are corrupted, provided the noise is small relative to the sharpness constant

c.

DS-SG and our proposed decaying stepsize require knowledge of the con-

stant c in HEB which can be hard to estimate in practice. This motivates

us to develop our final major contribition: a “doubling trick” for the de-

scending staircase stepsize which does not require c and still obtains the

same iteration complexity up to a small constant. The competing methods

of [109, 110, 84, 85]2 all require knowledge of c.

In summary, our contributions under HEB are as follows:

1. We show that the subgradient method with a constant stepsize obtains

linear convergence for d(xk,Xh) to within a region of the optimal set

for all θ ∈ (0, 1].

2. We compute nonasymptotic convergence rates for both nonsummable

and summable decaying stepsizes under HEB for all θ ∈ (0, 1].

3. We develop a new “Descending Stairs” stepsize with iteration com-

plexity O(ε1−
1
θ ) when θ < 1 and ln 1

ε when θ = 1 for finding a point

such that d(xk,X )2 ≤ ε. We also develop an adaptive variant which

does not need c but retains the same iteration complexity up to a small

constant.

2The authors of [109] proposed an adaptive method which does not require c, however
the analysis only works for θ < 1.
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4.2 The Key Recursion

4.2.1 Optimality Condition and Assumptions

If 0 is in the strict relative interior of C − dom(f) then the solution set Xh
of Problem (4.1) is characterized by the optimality condition [1, Prop. 26.5]

Xh = {x : 0 ∈ ∂h(x) +NC(x)},

where NC(x) is the normal cone of C at x. Note that we don’t explicitly use

this optimality criterion anywhere in our analysis and we only include it for

completeness.

For Prob. (4.1), throughout the chapter we will assume that C ⊆ dom(∂h),

so that for any query point x ∈ C it is possible to find a g ∈ ∂h(x). If h

is convex and closed, the solution set Xh = {x : h(x) = h∗} is convex and

closed [1]. Following are the precise assumptions we will use throughout the

chapter.

Assumption 3. (Problem (4.1)). Assume C is convex, closed, and

nonempty. Assume h is convex, closed, and satisfies HEB(c, θ). Assume

Xh is nonempty. Assume C ⊆ dom(∂h). Assume there exists G such that

‖g‖ ≤ G for all g ∈ ∂h(x) and x ∈ C. Let κ , G/c.

4.2.2 The Recursion under HEB

In this section we derive the crucial recursion which describes the evolution

of the error d(xk,Xh)2 for the iterates of the standard subgradient method

under HEB. The same recursion has been derived many times before for the

special cases θ = {1/2, 1} (e.g. [85, 84, 88]). For the point xk let x∗k be the

unique projection of xk onto Xh.

Proposition 21 Suppose Assumption 3 holds. Then for all k ≥ 1 for the

iterates {xk} of (4.4)

d(xk+1,Xh)2 ≤ d(xk,Xh)2 − 2αkc(d(xk,Xh)2)
1
2θ + α2

kG
2.
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Proof For k ≥ 1,

d(xk+1,Xh)2 = ‖xk+1 − x∗k+1‖2

≤ ‖xk+1 − x∗k‖2

≤ d(xk,Xh)2 − 2αk〈gk, xk − x∗k〉+ α2
k‖gk‖2

≤ d(xk,Xh)2 − 2αk (h(xk)− f∗) + α2
kG

2

≤ d(xk,Xh)2 − 2αkc(d(xk,Xh)2)
1
2θ + α2

kG
2.

In the first inequality, we used the fact that x∗k+1 is the closest point to xk+1

in Xh. In the second inequality, we used the nonexpansive properties of the

projection operator. In the third, we used the convexity of h and in the final

inequality we used the error bound.

Let ek , d(xk,Xh)2 and γ = 1
2θ ∈ [1

2 ,+∞) then for all k ≥ 1

0 ≤ ek+1 ≤ ek − 2αkce
γ
k + α2

kG
2. (4.5)

The main effort of our analysis is in deriving convergence rates for this

recursion for various stepsizes.

4.2.3 Deterministic Noise in the Subgradient when θ = 1

For the weakly sharp case (θ = 1), the subgradient method exhibits resilience

to bounded noise. This has been observed in [87, 108]. Suppose that at each

iteration we have access to a noisy subgradient:

g̃k = gk + rk : gk ∈ ∂h(xk), ‖rk‖ ≤ R

and as before the method iterates for all k ≥ 0

xk+1 = PC(xk − αkg̃k).

Repeating the analysis of Sec. 4.2.2

d(xk+1,Xh)2 = ‖xk+1 − x∗k+1‖2

≤ ‖xk+1 − x∗k‖2

≤ d(xk,Xh)2 − 2αk〈g̃k, xk − x∗k〉+ α2
k‖g̃k‖2

≤ d(xk,Xh)2 − 2αk (h(xk)− h∗)− 2αk〈rk, xk − x∗k〉

+2α2
k(R

2 +G2)

≤ d(xk,Xh)2 − 2αkd(xk,Xh)(c−R) + 2α2
k(R

2 +G2),
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where in the third inequality we have used ‖g̃k + rk‖2 ≤ 2‖g̃k‖2 + 2‖r‖2.

We see that this is exactly the same recursion as (4.5) with the error bound

constant c replaced by c−R, and G2 replaced by 2(G2 +R2). Thus, if R < c,

all of the results presented throughout for θ = 1 hold with a new error bound

constant c̃ = c − R, and bound on the subgradients G̃2 = 2(G2 + R2). In

particular this refers to Theorems 24, 25, 26, 27, and 30.

4.2.4 Incremental Subgradient Methods

Suppose h(x) =
∑m

i=1 hi(x). Such objective functions which are a finite

sum of terms often arise in machine learning in the guise of empirical risk

minimization [122]. For such problems the incremental subgradient method

can be used [88]. This method proceeds by computing the subgradient with

respect to each individual function hi in a fixed order. More precisely the

method proceeds for k ≥ 1 with x1 ∈ C as

xk+1 = ψm,k (4.6)

ψi,k = PC(ψi−1,k − αkgi,k), gi,k ∈ ∂hi(ψi−1,k), i = 1, . . . ,m (4.7)

ψ0,k = xk. (4.8)

This method has been analyzed extensively in [88].

Proposition 22 ([88]) Suppose Assumption 3 holds. Then for all k ≥ 1

for the iterates of (4.6)–(4.8)

d(xk+1,X )2 ≤ d(xk,X )2 − 2αkcd(xk,X )
1
θ + α2

km
2G2.

This is the same as the main recursion we analyze in (4.5) with G2 re-

placed by m2G2. Thus all our results in the following sections apply to the

incremental subgradient method (4.6)–(4.8) with this change in constants.

4.2.5 Goffin’s Condition Number

Goffin [85] discussed a condition number for quantifying the convergence

rate of subgradient methods. The condition number is a generalization of

the ordinary notion defined for a smooth strongly convex function as the

ratio of the Lipschitz constant of the gradient to the strong convexity pa-

rameter. In contrast Goffin’s condition number requires neither smoothness

or strong convexity. The condition number is also more general than Shor’s
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eccentricity measure [84]. The condition number for a convex function h is

defined as

µh = inf

{ 〈u, x− x∗p〉
‖u‖‖x− x∗p‖

: x ∈ C\Xh, u ∈ ∂h(x), x∗p = projXh(x)

}
. (4.9)

By convexity and the Cauchy-Schwarz inequality 0 ≤ µh ≤ 1. Goffin showed

that if h satisfies HEB(c, θ) with θ = 1 and ‖g‖ ≤ G for all g ∈ ∂h(x), x ∈ C,
then it satisfies (4.9) with

µh ≥
c

G
=

1

κ

which proves that functions satisfying (4.9) with µh > 0 are more general

than weakly sharp functions.

Our results for θ = 1 throughout this chapter can be extended to func-

tions satisfying (4.9) with µh > 0 if we make the slight modification to the

subgradient method.

Lemma 23 ([85]) Let {xk} be a sequence satisfying

xk+1 = PC

(
xk − αk

gk
‖gk‖

)
: ∀k ≥ 1, gk ∈ ∂h(xk), x1 ∈ C. (4.10)

If Xh is nonempty and h is CCP and satisfies (4.9) with µh > 0 then for all

k ≥ 1

d(xk+1,Xh)2 ≤ d(xk,Xh)2 − 2αkµhd(xk,Xh) + α2
k.

This is the same recursion as (4.5) with G = 1, θ = 1, and c = µh. Thus

all the results derived in this chapter for HEB with θ = 1 can be derived

for the scheme (4.10) applied to functions satisfying (4.9) so long as c is

replaced by µh and G = 1. Also note that Lemma 23 does not require that

the subgradients are uniformly bounded over C.

4.3 Constant Stepsize

Consider the projected subgradient method with constant, or fixed, step-

size given in Algorithm FixedSG. This is often used in practice especially

for stochastic problems. Previously it was shown that if θ = 1/2 then this

method achieves linear convergence to within a region of the solution set
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Algorithm 2: (FixedSG)

Require: K > 0, α > 0, x1 ∈ C
1: for k = 1, 2, . . . ,K do
2: xk+1 = PC (xk − αkgk) : gk ∈ ∂h(xk)
3: end for
4: return xk+1

[88, 100]. Rather suprisingly, we show in the next theorem that linear con-

vergence to within a certain region of Xh occurs for any θ ∈ (0, 1].

Theorem 24 Suppose Assumption 3 holds. Let e∗ =
(
αG2

2c

)2θ
.

1. For all k ≥ 1 the iterates of FixedSG satisfy

d(xk,X )2 ≤ max
{
d(x1,X )2, e∗ + α2G2

}
.

2. If 0 < θ ≤ 1
2 then for all k ≥ 2 the iterates of FixedSG satisfy

d(xk,Xh)2 − e∗ ≤ qk−1
1 (d(x1,Xh)2 − e∗). (4.11)

where

q1 =

(
1− 1

θ
αce

1−2θ
2θ
∗

)
. (4.12)

If additionally

0 < α < 2
1−2θ

2(1−θ)G
2θ−1
1−θ c

θ
θ−1 (4.13)

then q1 ∈ (−1, 1).

3. If d(xk,Xh)2 ≤ D for all k for the iterates of FixedSG, 1
2 ≤ θ ≤ 1, and

0 < α <
2θD1− 1

2θ

c
, (4.14)

then for all k ≥ 2

d(xk,Xh)2 − e∗ ≤ max{qk−1
2 (d(x1,Xh)2 − e∗), e∗ + α2G2} (4.15)

where

q2 = 1− αcD
1
2θ
−1

θ
∈ (−1, 1).

Proof Recall our notation ek = d(xk,Xh)2 and let γ = 1
2θ . Returning to
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the main recursion (4.5) derived in Prop. 21 and replacing the stepsize with

a constant yields

0 ≤ ek+1 ≤ ek − 2αceγk + α2G2 (4.16)

where γ ≥ 1
2 . We would like to derive the convergence rate of ek− e∗, where

e∗ =
(
αG2

2c

) 1
γ

is the the only fixed point of this recursion, which is derived

by setting ek = ek+1 = e∗. The key is to write the recursion (4.5) as

ek+1 − e∗ ≤ ek − e∗ − 2αc(eγk − e
γ
∗). (4.17)

Boundedness:

We first prove ek is bounded. Considering (4.17) we see that if ek ≥ e∗

then ek+1 ≤ ek. On the other hand, if ek ≤ e∗, then (4.16) yields ek+1 ≤
ek + α2G2 ≤ e∗ + α2G2. Therefore

ek+1 ≤ max{ek, e∗ + α2G2} ≤ max{e1, e∗ + α2G2}.

Case 1: θ ≤ 1
2
.

For θ ≤ 1
2 , γ ≥ 1 and by the convexity of tγ ,

eγk − e
γ
∗ ≥ γeγ−1

∗ (ek − e∗).

Therefore

ek+1 − e∗ ≤ (1− 2αcγeγ−1
∗ )(ek − e∗).

Thus so long as

−1 < 1− 2αcγeγ−1
∗ < 1, (4.18)

linear convergence is guaranteed. Simplifying (4.18)

2αcγeγ−1
∗ < 2

=⇒ cγα

(
αG2

2c

) γ−1
γ

< 1

=⇒ α <

(
1

γ
G

2(1−γ)
γ 2

γ−1
γ c
− 1
γ

) γ
2γ−1

which implies (4.11), (4.12), and (4.13).

Case 2: θ ≥ 1
2
.
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For θ ∈ [1
2 , 1], γ ∈ [1

2 , 1], which implies by concavity

eγ∗ − e
γ
k ≤ γe

γ−1
k (e∗ − ek).

Therefore

eγk − e
γ
∗ ≥ γe

γ−1
k (ek − e∗).

Substituting this inequality into (4.17) yields

ek+1 − e∗ ≤ ek − e∗ − 2αcγeγ−1
k (ek − e∗).

Now if ek ≥ e∗ then using ek ≤ D implies

ek+1 − e∗ ≤ (1− 2αcγDγ−1)(ek − e∗) = q2(ek − e∗).

Thus so long as

1 > 1− 2αcγDγ−1 > −1

(which is implied by (4.14)), we have q2 ∈ (−1, 1). On the other hand if

ek ≤ e∗ then ek+1 ≤ e∗ + α2G2. Thus for all k ≥ 1

ek+1 − e∗ ≤ max
{
q2(ek − e∗), e∗ + α2G2

}
.

Iterating this recursion and using the fact that q2 ∈ (−1, 1) yields (4.15).

4.4 Iteration Complexity for Constant Stepsize

Using the results of the previous section we can derive the iteration com-

plexity of a constant stepsize for finding a point such that d(xk,Xh)2 ≤ ε.

Rather surprisingly, this section shows that restarting is not necessary for

θ ≤ 1
2 . This is because for θ ≤ 1

2 the iteration complexity for a constant

stepsize is equal to the complexity of RSG derived in [109]. However, for

θ > 1
2 , restarting does improve the iteration complexity. In Section 4.5 we

propose a new descending stairs stepsize which significantly accelerates the

constant stepsize choice. For 1
2 < θ ≤ 1 RSG also outperforms the constant

stepsize.

The basic idea in the following theorem is to pick α = O(ε
1
2θ ), so that e∗

defined in Theorem 24 is equal to ε. Then the iteration complexity can be

determined from the linear convergence rate of d(xk,Xh)2 to e∗.
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Theorem 25 Suppose Assumption 3 holds. Choose ε > 0 and set

α =
2cε

1
2θ

G2
. (4.19)

1. If 0 < θ ≤ 1
2 ,

0 < ε ≤
(
θκ2

2

) θ
1−θ

, (4.20)

K ,
1

2
θκ2 ln

(
d(x1,Xh)2

ε

)
ε1−

1
θ ,

then for the iterates of FixedSG, d(xk+1,Xh)2 ≤ 2ε for all k ≥ K.

2. If 1
2 < θ ≤ 1,

D ≥ 2 max{d(x1,Xh)2, ε} (4.21)

0 < ε ≤ min

{(
κ2

4

) θ
1−θ

,

(
θκ2

2

)2θ

D2θ−1

}
, and (4.22)

K ,
1

2
θκ2D1− 1

2θ ln

(
d(x1,Xh)2

ε

)
ε−

1
2θ , (4.23)

then for the iterates of FixedSG, d(xk+1,Xh)2 ≤ 3ε for all k ≥ K.

Proof We consider two cases: θ ≤ 1/2 and θ > 1/2.

Case 1: θ ≤ 1
2
.

From Theorem 24, the convergence factor in the constant stepsize case is

q1 = 1− αc
θ e

1
2θ
−1

∗ where e∗ =
(
αG2

2c

)2θ
. Recall the notation ek = d(xk,Xh)2.

From Theorem 24 we know that for all k ≥ 1

ek+1 − e∗ ≤ qk1 (e1 − e∗)

which implies

ek+1 − e∗ ≤ |q1|ke1.

This means that

ln(max{0, ek+1 − e∗}) ≤ k ln |q1|+ ln e1.

Thus ek+1 − e∗ ≤ ε is implied by

k ln |q1|+ ln e1 ≤ ln ε ⇐⇒ k ≥
ln e1

ε

ln 1
|q1|

.
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so long as |q1| < 1. Now we want e∗ = ε, which requires

(
αG2

2c

)2θ

= ε ⇐⇒ α =
2cε

1
2θ

G2
.

Now if ε satisfies (4.20) then q1 > 0. Thus

ln q1 = ln

(
1− αc

θ
e

1
2θ
−1

∗

)
≤ −αc

θ
e

1
2θ
−1

∗ ⇐⇒ ln
1

q1
≥ αc

θ
e

1
2θ
−1

∗ .

Therefore if α = 2cε
1
2θ

G2 and

k ≥
θ ln e1

ε

αce
1
2θ
−1

∗

=
θG2 ln e1

ε

2c2ε
1
θ
−1

=
θG2 ln e1

ε

2c2
ε1−

1
θ

then

ek+1 ≤ 2ε.

Case 2: θ > 1
2
.

As before, α = 2cε
1
2θ

G2 which implies e∗ = ε. First note that by Part 1 of

Theorem 24,

d(xk,Xh)2 ≤ max{d(x1,Xh)2, e∗ + α2G2}

= max

{
d(x1,Xh)2, ε+

4c2

G2
ε

1
θ

}
≤ max{d(x1,Xh)2, 2ε}

≤ D

for all k ≥ 1, where we used (4.22). Recalling (4.15) we see that for all k ≥ 1

ek+1 ≤ max{e∗ + qk2 (d(x1,Xh)2 − e∗), 2e∗ + α2G2}. (4.24)

Consider the first argument to the max in (4.24). This case is the same as

Case 1 for θ ≤ 1/2, except for a different convergence factor. The conver-

gence factor is

q2 = 1− αc

θ
D

1
2θ
−1

which is greater than 0 (and less than 1) if ε satisfies (4.22). Thus

ln q2 = ln
(

1− αc

θ
D

1
2θ
−1
)
≤ −αc

θ
D

1
2θ
−1 =⇒ ln

1

q2
≥ αc

θ
D

1
2θ
−1.
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Therefore if

k ≥ θG2D1− 1
2θ

2c2
ln
(e1

ε

)
ε−

1
2θ

then the first argument to max in (4.24) is upper bounded by 2ε.

Now consider the second argument to the max in (4.24), which is

2e∗ + α2G2 = 2ε+ α2G2 = 2ε+
4c2

G2
ε1/θ ≤ 3ε.

where we have used again (4.20).

The upper bounds on ε given in (4.20) and (4.22) are typically mild in

practice because the ratio G/c is at least equal to one, and we are interested

in ε being small. Theorem 25 shows that, in terms of d(xk,Xh), there is no

theoretical advantage in restarting for θ ≤ 1
2 . This is because [109] showed

that the restart method requiresO(ε′2(θ−1)) iterations (suppressing constants

and a ln 1
ε factor) to achieve h(x) − h∗ ≤ ε′. Now using the error bound in

order to guarantee d(xk,Xh)2 ≤ ε, we need h(x) − h∗ ≤ ε′ = ε
1
2θ . Using

this in the iteration complexity from [109] yields an iteration complexity

of O(ε1−
1
θ ), which is the same as the constant stepsize for θ ≤ 1/2. For

θ > 1
2 restarting has better dependence on ε, especially as θ → 1. However,

for θ = 1/2, the constant stepsize depends on ln d(x1,X ) and has the same

dependence on ε. This remarkable property makes it preferable to the more

sophisticated restart methods in this case.

The comparison with the classical result for the subgradient method is as

follows. It is easy to show that for the subgradient method with a constant

stepsize α

1

k

k∑
i=1

(h(xi)− h∗) ≤
d(x1,Xh)2

2αk
+
α

2
G2.

Setting α = ε1/2θ/(2G2) and

k ≥ G2d(x1,Xh)2ε−1/θ

2

implies h(xavk ) − h∗ ≤ ε1/2θ where xavk = 1
k

∑k
i=1 xi. Now using the error

bound this yields d(xk,Xh)2 ≤ ε. With respect to ε, this classical iteration

complexity is clearly worse than the result of Theorem 24 for all θ ∈ (0, 1].

Furthermore, the dependence on d(x1,Xh) is worse. For θ ≤ 1/2, the fixed

stepsize depends on ln d(x1,Xh), whereas the classical stepsize has iteration
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complexity which depends linearly on d(x1,Xh).

We note that as θ → 0 the iteration complexity can be made arbitrarily

large. This is not suprising, as it has been proved in [27, p. 167-168] that

the convergence rate of xk → x∗ can be made arbitrarily bad for gradient

methods. In fact it was shown there that for any decreasing sequence {εk},
there exists a smooth convex function with domain in R such that for the

iterates xk of gradient descent xk ≥ εk, for all k. Despite this, the conver-

gence rate of the function values, h(xk) → h∗ is no worse than O(1/k) for

any smooth convex function.

4.5 A “Descending Stairs” Stepsize with Better
Complexity for θ > 1/2

In this section we propose a “descending stairs” stepsize for the subgradient

method which obtains a better iteration complexity than the fixed stepsize

for θ > 1/2. In fact for θ = 1 the iteration complexity is logarithmic, i.e.

O(ln 1
ε ). The basic idea is to use a constant stepsize in the subgradient

method and every K iterations reduce the stepsize by a factor of β
1
2θ
ds > 1.

Also the number of iterations K increases by a factor β
1
θ
−1

ds . Our analysis

allows us to determine good choices for the initial stepsize and number of

iterations which lead to an improved rate.

The algorithm is similar to RSG [109] and the algorithm proposed in [110,

Sec. V]. However our method has some important advantages and a different

analysis. Unlike RSG our method does not require averaging the iterates

after every inner loop. This is beneficial on problems where a sparse or

low-rank solution is desired as averaging spoils these properties. The main

advantage of DS-SG over the scheme of [110, Sec V] is that it can handle

θ < 1.

We call our algorithm the “descending stairs subgradient method” (DS-

SG). The method requires an upper bound on the distance of the starting

point to the solution, i.e. Ω1 ≥ d(xinit,Xh)2. If C is bounded then one can

use the diameter of C. If a lower bound on the optimal value is known,

i.e. hl ≤ h∗, then by the error bound d(x1,Xh) ≤ c−1 (h(x1)− h∗)θ ≤
c−1 (h(x1)− hl)θ implies we can use Ω1 = c−2 (h(x1)− hl)2θ.

Theorem 26 Suppose Assumption 3 holds and 1
2 < θ ≤ 1. Choose xinit ∈ C
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Algorithm 3: (DS-SG) Descending Stairs Subgradient Method for
θ > 1/2

Require: βds, M , xinit, Ω1, G, c, θ.

1: K1 =

⌈
3

1
2θ θG2Ω

1− 1
θ

1

2
1
2θ c2

β
1
2θ
ds ln (3βds)

⌉
2: α(1) = 2c

3
1
2θG2

(β−1
ds Ω1)

1
2θ

3: x̂0 = xinit

4: for m = 1, 2, . . . ,M do
5: x̂m = FixedSG(Km, α(m), x̂m−1)

6: α(m+ 1) = β
− 1

2θ
ds α(m)

7: Km+1 = β
1
θ
−1

ds Km

8: end for
9: return x̂M

and Ω1 such that d(xinit,Xh)2 ≤ Ω1. Choose 0 < Cβ < 1 and βds so that

βds ≥
1

1− Cβ
.

In addition, if θ < 1 ensure that

βds ≥
1

3
max

{(
κ2

4

) θ
θ−1

Ω1, 2θ
−2θκ−4θΩ

2(1−θ)
1

}
. (4.25)

Fix ε > 0 and choose M ≥
⌈

ln
Ω1
ε

lnβds

⌉
. Then for x̂M returned by Algorithm

DS-SG, d(x̂m,Xh)2 ≤ ε.

1. If θ = 1 this requires at most

θ

(
3

2

) 1
2θ

κ2β
1
2θ
ds ln(3βds)

(
ln Ω1

ε

lnβds
+ 1

)
(4.26)

= O

(
κ2 ln

Ω1

ε

)
(4.27)

subgradient evaluations.

If θ < 1 this requires at most

2θ

Cβ

(
3

2

) 1
2θ

κ2β
1
2θ
ds ln(3βds)ε

1− 1
θ (4.28)

= Õ

(
max

{
κ2, κ

2θ−1
θ−1 Ω

1
2θ
1 ,Ω

1
θ
−1

1

}
ε1−

1
θ

)
(4.29)
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subgradient evaluations, where Õ suppresses constants and terms which de-

pend on log κ or log Ω1.

Proof We need some new notation. For x̂m defined in line 5 of DS-SG,

let êm = d(x̂m,Xh)2. We will use a sequence of tolerances {εm} defined as

εm = β−mds Ω1. Another sequence {Dm} is chosen as Dm = 2βdsεm. The

stepsize α(m) is equal to

α(m) =
2c

G2

(εm
3

) 1
2θ

and the number of iterations Km is chosen to satisfy

Km =

⌈
3

1
2θ θG2

2
1
2θ c2

β
1− 1

2θ
ds ln (3βds) ε

1− 1
θ

m

⌉
. (4.30)

Note that K1, given in Line 1 of Algorithm DS-SG, can be written as (4.30)

by substituting ε1 = β−1
ds Ω1. Furthermore, for Km defined in (4.30), note

the recursive relationship:

Km = β
1
θ
−1

ds Km−1,

which is implemented on Line 7 of Algorithm DS-SG. Altogether, this implies

that Km, written in Line 7 of Algorithm DS-SG, satisfies (4.30) for all m ≥ 1.

The set {εm/3, Dm,Km, α(m)} will be used in statement 2 of Theorem 25

in place of {ε,D,K, α}. This will show that êm ≤ εm.

We now show that {εm/3, Dm,Km, α(m)} satisfy (4.19), (4.21), (4.22),

and (4.23). First we prove that condition (4.25) ensures that (4.22) is satis-

fied for all m ≥ 1. The first argument to the min in (4.22) requires that

εm
3

=
1

3
β−mds Ω1 ≤

(
κ2

4

) θ
1−θ

.

In order for this to be satisfied for all m, it must hold for m = 1. This is

implied by (4.25). The second argument to the min in (4.22) requires

εm
3
≤
(
θκ2

2

)2θ

D2θ−1
m =

1

2

(
θκ2
)2θ

β2θ−1
ds ε2θ−1

m .

Using εm = β−mds Ω1 and rearranging this yields

β
2m(1−θ)+2θ−1
ds ≥ 2

3
θ−2θκ−4θΩ

2(1−θ)
1 .
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In order to hold for all m ≥ 1 it must hold for m = 1 which is implied by

(4.25).

By definition, α(m) satisfies (4.19) for all m ≥ 1. We prove (4.21) and

(4.23) by induction. For m = 1, D1 clearly satisfies (4.21). Also K1, given in

Line 1 of Algorithm DS-SG, satisfies (4.23). Altogether this implies ê1 ≤ ε1.

Next, assume it holds true at iteration m− 1, which implies by Theorem

24 êm−1 ≤ εm−1. Since FixedSG is initialized at x̂m−1, and d(x̂m−1,X )2 ≤
εm−1, then

Dm = 2βdsεm = 2εm−1

satisfies (4.21). Next to satisfy (4.23) we require

Km ≥ 3
1
2θ θG2

2c2
ln

(
3d(x̂m−1,Xh)2

εm

)
D

1− 1
2θ

m ε
− 1

2θ
m (4.31)

which is satisfied by Km. This can be seen by substituting Dm = 2βdsεm

and d(x̂m−1,Xh)2 ≤ εm−1 = βdsεm into (4.31), and comparing with (4.30).

Thus {εm/3, Dm,Km, α(m)} satisfies the requirements of Theorem 24 part

2 which implies êm ≤ 3(εm/3) = εm.

Now the choice M =

⌈
ln

Ω1
ε

lnβds

⌉
implies εm ≤ ε. If θ = 1, the total number

of subgradient evaluations is

MK1 ≤ θ

(
3

2

) 1
2θ

κ2β
1
2θ
ds ln(3βds)

(
ln Ω1

ε

lnβds
+ 1

)
.

In the case θ = 1 note that (4.25) reduces to

βds ≥ max

{
1

1− Cβ
,

2

3κ4

}
≥ max

{
1

1− Cβ
,
2

3

}
=

1

1− Cβ
,

since κ ≥ 1 when θ = 1 (and typically κ� 1). Therefore βds can be treated

as a constant, which implies (4.27).
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If θ < 1 the total number of subgradient evaluations is

K1 +K2 + . . .+KM = K1

(
1 + β

1
θ
−1

ds + (β
1
θ
−1

ds )2 + . . .+ (β
1
θ−1

ds )M−1

)

= K1
(β

1
θ
−1

ds )M − 1

(β
1
θ
−1

ds )− 1

≤ K1
(β

1
θ
−1

ds )M

(β
1
θ
−1

ds )− 1

≤ 1

Cβ

K1

β
1
θ
−1

ds

(β
1
θ
−1

ds )M . (4.32)

Now since

M ≤
ln Ω1

ε

lnβds
+ 1

it follows that

(β
1
θ
−1

ds )M ≤ β
1
θ
−1

ds (Ω1/ε)
1
θ
−1. (4.33)

Also

K1 ≤ 2θ

(
3

2

) 1
2θ

κ2β
1
2θ
ds Ω

1− 1
θ

1 ln(3βds). (4.34)

Using (4.33) and (4.34) in (4.32) yields

K1 +K2 + . . .+KM ≤
2θ

Cβ

(
3

2

) 1
2θ

κ2β
1
2θ
ds ln(3βds)ε

1− 1
θ .

Now if βds satisfies (4.25) with equality then this reduces to (4.29).

4.5.1 Discussion

The optimal choice for βds can be found as follows. We wish to minimize the

iteration complexity given in (4.26) for θ = 1 and (4.28) for θ < 1. For θ = 1,

(4.26) is a convex function in βds > 1. The optimal choice can be found by

setting the derivative w.r.t. βds to 0 however the closed form expression

is not particularly enlightening. Solving it numerically, we find the optimal

choice for βds is typically between 2 and 2.5, depending on the value of ln Ω1
ε .

For θ < 1, the iteration complexity in (4.28) is increasing with βds, therefore

the optimal choice is to set βds to equal (4.25) with equality.
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The method of [110, Sec V] corresponds to the special case of our method

when θ = 1. However the analysis of [110] does not extend naturally to

θ < 1. With regards to RSG in [109], the iteration complexity is very similar

to ours, even though the analysis is different. There are several things to

note in comparing the two. First is that their error metric is h(x)−h∗. Now

if h is convex with bounded subgradients then

h(x)− h∗ ≤ |〈g, x− x∗〉| ∀g ∈ ∂h(x), x∗ ∈ Xh
≤ ‖g‖‖x− x∗‖ ∀g ∈ ∂h(x), x∗ ∈ Xh
≤ G‖x− x∗‖ ∀x∗ ∈ Xh.

In particular choosing x∗ to be the projection of x onto Xh yields h(x)−h∗ ≤
Gd(x,Xh). Combining this with the error bound

cd(x,Xh)θ ≤ h(x)− h∗ ≤ Gd(x,Xh).

On the other hand our error metric is d(xk,Xh)2. Furthermore their it-

eration complexity is for finding h(x) − h∗ ≤ 2ε. To do an apples-to-

apples comparison, we can convert their error metric to d(xk,Xh)2 by using

ε′ = ε
1
2θ /2 in their iteration complexity. Recall their iteration complexity is

O(ε′2(θ−1) ln 1
ε′ ). Thus, if we make the substitution, we see that their itera-

tion complexity is the same as ours except they have an extra log 1
ε term.

The dependence on κ2 = G2/c2 is the same.

With respect to their algorithm implementation as given in [109, Algo-

rithm 2], the major difference to DS-SG is that [109] requires averaging to

be done after every inner loop. This may be undesirable on problems where

nonergodic methods are preferable. For instance, in problems where C en-

forces sparsity or low-rank, the averaging phase spoils this property [121].

Indeed some matrix problems are intractable unless the iterates remain low

rank [123]. Another situation in which averaging is undesirable is when

learning with reproducing kernals [124]. In such problems, the variable is

represented as a linear combination of a kernel evaluated at different points.

After t iterations of the subgradient method, the solution is
∑t−1

i=1 αik(xi, ·)
where k : H×H → R is the kernel function. Thus it is necessary to store the

t−1 points {xi} after t iterations which is infeasible. The key to making the

method practical is that for certain objectives the coefficients αi decay geo-

metrically and the early iterations can be safely ignored. Thus only a small

fraction of the last t points are recorded. However, if averaging is used, the

earlier coefficients are no longer negligible which compromises the feasibility

80



of the method. Another advantage of our approach over [109] will arise in

the next section, where we develop a method for adapting to unknown c.

An advantage of RSG over DS-SG is that RSG only requires the error

bound to be satisfied on a local region such that h(x) − h∗ ≤ ε, where ε is

the target accuracy. However if the function satisfies HEB with θ = 1 on a

local region, then it is automatically satisfied on the entire space. This quite

intuitive observation can be shown by considering the equivalent subgradient

characterization of WS functions given in [94]. We note that for θ < 1, the

iteration complexity of DS-SG has worse dependency on Ω1 than RSG.

We also mention Algorithm 3 of [118] which is a new subgradient method

for functions satisfying a similar condition HEB with θ = 1, but with h∗

replaced by a strict lower bound on h∗. Like DS-SG and RSG, this algorithm

has a logarithmic dependence on the initial distance to the solution set.

However it obtains an O(1/ε2) iteration complexity which is worse than the

O(ln 1
ε ) rate obtained by DS-SG and RSG in the weakly sharp case.

The argument in the proof of Theorem 26 for the case θ = 1 is similar to

[116, Thm. 2] (see also [119, Cor. 3.4]). Both theorems take a base algorithm

and create a meta-algorithm with faster overall convergence. In [116] the

problem of interest is a linear min-max saddlepoint problem and the base

algorithm is Nesterov’s smoothing. In Thm. 26 the base algorithm is the

constant stepsize subgradient method. Finding a unifying theory would be

an interesting topic for future research.

4.6 Double Descending Stairs Stepsize Method for
Unknown c

In our method DS-SG, the initial number of inner iterations is

K1 =

3
1
2θ θG2Ω

1− 1
θ

1

2
1
2θ c2

β
1
2θ
ds ln (3βds)

 . (4.35)

If a lower bound for c is known, then using this value in (4.35) ensures con-

vergence. However in many problems c is unknown. Further if c is greatly

underestimated than this will lead to many more inner iterations than neces-

sary. For the case where no accurate lower bound for c is known, we propose

the following “doubling trick” which still guarantees an overall logarithmic

iteration complexity. The analysis only holds when C is bounded. Let the

diameter of C be ΩC = maxx,x′∈C ‖x − x′‖2. The basic idea is to repeat
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DS-SG with a new c which is 1/2 the old estimate. In this way it takes only

a logarithmic number of trial choices for c until it lower bounds the true

constant. Furthermore, if the initial estimate c1 is much larger than the

true c, then the number of inner iterations is relatively small, which is why

the overall iteration complexity comes out to be only a factor of (4/3) times

larger than that of DS-SG. This means it is advantageous to use a large over-

estimate of c. Following the naming convention of [109] we call the method

the “Descending Stairs Squared” subgradient method (DS2-SG).

Algorithm 4: Double Descending Stairs subgradient method for θ =
1, unknown c (DS2-SG)

Require: βds, G, M , c1, ΩC , x1, stopping criterion
1: l = 1
2: while stopping criterion not satisfied do
3: x̃l =DS-SG(βds,M, x̃l−1,ΩC , Gl, cl, θ, ε)
4: cl+1 = cl/2
5: l = l + 1
6: end while
7: return x̃l−1

Theorem 27 Suppose Assumption 3 holds and θ > 1/2. Suppose C is

bounded with diameter ΩC. Choose Cβ ∈ (0, 1), βds > 0 and c1 > 0 so

that

βds ≥
1

1− Cβ
. (4.36)

In addition, if θ < 1 ensure that

βds ≥
1

3
max

{(
κ2

1

4

) θ
θ−1

ΩC , 2θ
−2θκ−4θ

1 Ω
2(1−θ)
C

}
, (4.37)

where κ1 = G/c1. Fix ε > 0 and choose

M ≥

⌈
ln ΩC

ε

lnβds

⌉
.

For the output of Algorithm DS2-SG, if l ≥ L = max{0, dlog2 c1/ce} +

1, then d(x̃l,Xh)2 ≤ ε. This requires the following number of subgradient

evaluations:

O

(
κ2 ln

ΩC
ε

)
if θ = 1, (4.38)
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and

Õ

(
max

{
κ2, κ2κ

1
θ−1

1 Ω
1
2θ
C ,

(
κ

κ1

)2

Ω
1
θ
−1

C

}
ε1−

1
θ

)
if θ < 1, (4.39)

where κ = max{κ, κ1} and κ1 = G/c1. If c1 = GΩ
1− 1

θ
C , κ1 ≤ κ and κ = κ.

Proof If cl ≤ c, for any l ≤ L then, d(x̃l,Xh)2 ≤ ε by Theorem 26. So

we assume cl > c for l = 1, 2 . . . , L − 1. For l < L it is clear that since

the iterates remain in the constraint set C, d(x̃l,Xh)2 ≤ ΩC . Now by the

choice of L, cl ≤ c for all l ≥ L. Therefore we can apply Theorem 26 to the

iterations within the while loop when l ≥ L, which implies d(x̃l,Xh)2 ≤ ε

for l ≥ L.

We now determine the overall iteration complexity. letK l
j for l = 1, 2, . . . , L

and j = 1, 2, . . .M be the number of iterations passed to FixedSG within

the jth call to FixedSG in DS-SG, during the lth loop in DS2-SG. The total

number of subgradient calls of DS2-SG is

(K1
1 +K1

2 + . . .K1
M ) + (K2

1 +K2
2 + . . .K2

M ) + . . . (KL
1 +KL

2 + . . .+KL
M )

= (K1
1 +K1

2 + . . .K1
M )
(
1 + 4 + 16 + . . .+ 4L−1

)
=

1

3
(K1

1 +K1
2 + . . .K1

M )(4L − 1)

=
4

3
(K1

1 +K1
2 + . . .K1

M ) max

{(c1

c

)2
, 1

}
.

which reduces to the iteration complexity given in (4.38)–(4.39).

Now

cd(x,X )
1
θ ≤ h(x)− h∗ ≤ ‖g‖‖x− x∗‖

for all x ∈ C, g ∈ ∂h(x). Therefore, let x∗ = projX (x) then

cd(x,X )
1
θ ≤ Gd(x,X ) =⇒ c ≤ Gd(x,X )1− 1

θ ∀x.

Minimizing the R.H.S. yields c ≤ GΩ
1− 1

θ
C . Therefore the choice c1 = GΩ

1− 1
θ

C
guarantees κ1 ≤ κ.

The competing methods for θ = 1 which also obtain a O(log 1
ε ) com-

plexity cannot handle unknown c. This is a major advantage of DS2-SG.

The authors of RSG [109] proposed a variant which also uses exponentially

increasing number of inner iterations, however the initial stepsize remains

constant. An advantage of that method is it does not require the constraint

set to be bounded. However their analysis is only valid for θ < 1, which
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excludes important problems such as polyhedral convex optimization.

A drawback of DS2-SG is it does not have an explicit stopping rule. In

particular, the number of “wrapper” iterations, L, depends on the true error

bound constant c, which is unknown. This is also the main drawback for the

variant restart scheme of [109] (along with the fact it cannot be applied when

θ = 1). As was suggested in [109], we suggest using an independent stopping

criterion. For example on a machine learning problem, one could use the

error on a validation set as an indication the algorithm has converged. If a

lower bound hLB ≤ h∗ is known, then 1
cθ

(h(xk)− hLB)θ can be used as a

stopping criterion. This is because d(xk,Xh) ≤ 1
cθ

(h(xk)− hLB)θ. Further-

more since, d(xk,X )
1
θ
−1 ≤ ‖g‖ for g ∈ ∂h(x), the norm of the subgradient

could be used as a stopping criterion for θ < 1.

In practice we often observe an increase in the objective function value

occurs at the beginning of each new iteration inside the while loop. This

occurs because the stepize is reduced by 1/2 which breaks the algorithm away

from its current fixed point. It is therefore a good strategy to keep track of

the iterate x̃l with the smallest objective function value so far, and use this

as the output. Thus the modified algorithm returns arg minl=0,1,...,L h(x̃l).

This does not change the overall iteration complexity.

4.7 Convergence Rates for Nonsummable Stepsizes

We now turn our attention to nonsummable but square summable stepsize

sequences for the subgradient method under HEB. These stepsizes are used

frequently for the stochastic and deterministic subgradient method, however

their behavior under HEB has not been studied in detail with the exception

of [117, 110]. We will see that these nonsummable stepsizes are slower than

the “descending staircase” stepsizes and summable stepsizes when θ > 1/2.

However for θ ≥ 1/2 the nonsummable stepsizes have the advantage that

they do not require G, c, and an upper bound for d(x1,X )2. We will first

state and discuss our results. The proofs are in Section 4.10.
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4.7.1 Results for θ ∈ (0, 1
2
)

Theorem 28 Suppose Assumption 3 holds and 0 < θ < 1/2. Let αk =

α1k
−p. Let

C1 , 22pθ+1

((
α1G

2

c

)2θ

+ α2
1G

2

)
(4.40)

C2 ,

(
α1(1− 2θ)

2θ(1− p)

) 2θ
2θ−1

.

Then if

1

2(1− θ)
≤ p ≤ 1 (4.41)

and α1 is chosen so that

C1 ≤
(

2θ(1− p)
α1(1− 2θ)

) 2θ
1−2θ

(k0 + 1)
2θ(2p(1−θ)−1)

1−2θ , (4.42)

α1 ≤ 2θ(1− p)d(x1,Xh)
2θ−1
θ

1− 2θ
, (4.43)

then for all k ≥ k0

d(xk,Xh)2 ≤ max{C1, C2}max

{
k−2pθ, k

2θ(1−p)
2θ−1

}
. (4.44)

In the following corollary we give the optimal choice for p that makes the

two arguments to the max function in (4.44) equal.

Corollary 29 In the setting of Theorem 28 with 0 < θ < 1
2 and C1 defined

in (4.40), if p = 1
2(1−θ) , and α1 is chosen so that (4.43) holds and

α
2θ

1−2θ

1 C1 ≤
(

θ

1− θ

) 2θ
1−2θ

(4.45)

then for all k ≥ 1

d(xk,Xh)2 ≤ α
2θ

2θ−1

1

(
θ

1− θ

) 2θ
1−2θ

k
−θ
1−θ .

If α1 is chosen so that (4.45) is satisfied with equality, then

d(xk,Xh)2 ≤ C1k
−θ
1−θ .
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We note that our derived convergence rate O(k
−θ
1−θ ) is faster than the naive

application of the classical result, which is d(x̂k,Xh)2 = O(k−θ) at the aver-

aged point x̂k =
∑
αkxk/

∑
αk. Furthermore our result is nonergodic (no

averaging is required).

Thus for θ < 1/2 decaying polynomial stepsize sequences can achieve the

same convergence rate as RSG of [109] and the constant stepsize we derived

in Theorem 25.

4.7.2 Results for θ ∈ [1
2
, 1]

We now consider nonsummable stepsizes for θ ≥ 1/2. The primary advan-

tage of the following theorem is that the stepsize does not require knowledge

of G, c, or d(x1,X )2.

Theorem 30 Suppose Assumption 3 holds and 1/2 ≤ θ ≤ 1. Suppose

αk = α1k
−p for some p ∈ (0, 1) and α1 > 0. Let C1 be as defined in (4.40),

C3 , C
1+2p(θ−1)

1−p
1

(
α1(1− 2p−1)ce

4pθ

)− 2pθ
1−p

C4 , 16

(
8θC1

α1ce

)2θ

C5 , d(x1,Xh)
2+4p(θ−1)

1−p

(
α1ce

4pθ

)− 2pθ
1−p

.

Then for all k ≥ 4

d(xk,Xh)2 ≤ 4 max{C1, C3, C4, C5}k−2pθ. (4.46)

Once again this improves on the known classical ergodic convergence rate

of O(k−θ). As p → 1 the method can get arbitrarily close to the best rate

O(k−2θ), however p = 1 is not covered by our analysis other than the special

case θ = 1
2 discussed in Theorem 31 and Proposition 32 below. The decaying

stepsize does not require knowledge of θ, c, G, h∗, or d(x1,Xh) to set the

parameters α1 and p. The result holds for arbitrary α1 > 0 and p ∈ (0, 1).

Nevertheless, the constants are affected by the choice of α1 and p as well as

practical performance.

The convergence rate for the decaying stepsizes is much slower than DS-

SG, the summable stepsizes in Sec. 4.8, and RSG [109]. These methods

obtain the rate O
(
k

θ
θ−1

)
for θ > 1/2. On the other hand Theorems 28 and

25 imply restarting is unnecessary for θ ≤ 1/2 as either the constant choice

or the decaying polynomial choice have the same convergence rate as RSG.
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The case θ = 1 in Theorem 30 can be compared with the main result

of [117] which also proves O(1/k2) rate of convergence for d(xk,Xh)2. A

difference is their result only holds for sufficiently large k. They also assume

the function satisfies the quadratic growth condition (i.e. θ = 1/2 error

bound) globally. For problems where C is compact, this does not matter,

since QG is implied by WS on a compact set. An advantage of [117] is that

it holds for stochastic gradient descent.

4.7.3 Results for θ = 1
2

For the special case of θ = 1
2 our analysis extends to the choice p = 1.

Theorem 31 Suppose Assumption 3 holds and θ = 1/2. Suppose αk =

α1k
−1 and

α1 ≤
1

c
.

Then for k ≥ 1

d(xk,Xh)2 ≤ max

{
2α1G

2

c
, d(x1,Xh)2

}
k−cα1 . (4.47)

Strongly convex functions with strong convexity parameter µsc satisfy the

error bound with θ = 1
2 and c = µsc

2 . In this case C1 = 8G2

c2
. Thus, for the

choice α1 = 2
µsc

we have proved that

d(xk,Xh)2 ≤
max

{
d(x1,Xh)2, 32G2

µ2
sc

}
k

.

This result can be compared with several papers. The result [125, Theorem

6.2] finds an O(1/k) convergence rate for h(x̂k) − h∗ for a particular aver-

aged point x̂k under strong convexity. This, combined with HEB, implies an

O(1/k) rate for d(x̂k,Xh)2. The work [126, Thm 1] obtained a nonergodic

O(1/k) rate for d(xk,Xh)2 in stochastic mirror descent under strong convex-

ity for a similar stepsize sequence to Theorem 31. The result [88, Prop. 2.8]

provides convergence rates for the (incremental) subgradient method with

stepsize αk = α1k
−1 for all values of α1 under QG. This is more general

than Theorem 31 as they cover the case where α1 > 1/c. However, for

α1 = 1/c, [88, Prop. 2.8] only proves O(log k/k) convergence whereas The-

orem 31 implies O(1/k) convergence. The result of [89, Eq. (2.9)] says that

for strongly convex functions with parameter µsc, the subgradient method
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achieves a nonergodic O(1/k) convergence so long as α1 > 1
2µsc

. In con-

trast we do not require strong convexity but only the weaker error bound.

The result can also be compared to [100, Thm. 4] which proved an O(1/k)

rate for the objective function gap under QG. However they additionally

require Lipschitz smoothness. Both [89] and [100] considered the stochastic

subgradient method.

We also provide another choice of stepsize which guarantees a convergence

rate of O(1/k) for d(xk,Xh)2 in the case where θ = 1
2 . This proof is a direct

adaptation of [100, Thm. 4]. Unlike [100, Thm. 4], it does not require

smoothness of the objective.

Proposition 32 In the setting of Theorem 31, consider the subgradient

method with

αk =
2k + 1

2c(k + 1)2
.

Then for all k

d(xk+1,Xh)2 ≤ d(x1,Xh)2

(k + 1)2
+

G2

c2(k + 1)
.

Note that the stepsizes of Theorem 31 and Proposition 32 both require

exact knowledge of c to achieve the O(1/k) rate.

4.7.4 Local Error Bounds

So far we have assumed that the error bound is satisfied for all x ∈ C. As

discussed in Sec. 4.5.1 in the case where θ = 1, if the bound is satisfied

on a local region then it is also satisfied on the entire set C. However for

other problems (particularly when θ = 1/2) it may be that the error bound

is satisfied on any compact set but with a different value of the error bound

constant c depending on the set. Enlarging the set necessarily leads to a

smaller constant. For example this is the case with `1 regularized least-

squares [69, Lemma 10] and logistic regression [100, Sec. 2.3]. It has been

shown to be true for a general class of convex functions [103, Theorem 3.3].

For square summable stepsize sequences in the subgradient method it is

trivial to prove that d(xk,Xh) is bounded. Thus if Xh is bounded than this

implies that xk is bounded. Therefore our results are applicable to a wider

range of problems.
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Corollary 33 Assume Xh is nonempty and bounded, h is CCP, and C ⊆
dom(∂h). Fix θ ∈ (0, 1]. Suppose that for any closed and compact set C′

there exists c(C′) and G(C′) such that for all x ∈ C′ h satisfies HEB with the

exponent θ and constant c(C′), and if g ∈ ∂h(x), then ‖g‖ ≤ G(C′). Then

the conclusions of Theorem 28, 30, and 31 hold.

We exclude Corollary 29 and Proposition 32 as the stepsizes in these

results depend on explicit knowledge of c.

4.8 Faster Rates for Decaying Stepsizes for 1
2 ≤ θ < 1

If 1
2 ≤ θ < 1, the constraint set is compact, an upper bound for G is known,

and a lower bound for c is known, then it is possible to obtain the same

iteration complexity as DS-SG using decaying stepsizes.

Theorem 34 Suppose Assumption 3 holds and 1
2 ≤ θ < 1. Suppose ‖x −

y‖2 ≤ ΩC for all x, y ∈ C. Choose c small enough (or G large enough) so

that

κ ≥
√

3Ω
1−θ
2θ
C .

For the iterates of the subgradient method (4.4), let αk = α1k
−p where

p =
1

2(1− θ)

and

α1 =
c

G2

(
θκ2

1− θ

)p
. (4.48)

Then, for all k ≥ d 2θ
1−θe

d(xk,X )2 ≤
(

θ

1− θ

) θ
1−θ
(
k

κ2

) θ
θ−1

. (4.49)

Proof The recursion describing the subgradient method is, for k ≥ 1,

ek+1 ≤ ek − 2αkce
γ
k + α2

kG
2, (4.50)

where ek = d(xk,X )2 and γ = 1
2θ . Let αk = α1k

−p. We wish to prove that

if

p =
γ

2γ − 1
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and the constant α1 is chosen as in (4.48), then ek ≤ Cek−b where

b ,
1

2γ − 1
,

for all k ≥ k0 , d2be, and Ce is defined in (4.49). Note that p = γb. This

will be proved by induction. The initial condition is

ek0 ≤ Cek
−b
0

which is implied by

ΩC ≤ Cek−b0 ⇐⇒ Ce ≥ ΩCk
b
0. (4.51)

Next, assume it is true for some k ≥ k0. That is ek = aCek
−b where

0 ≤ a ≤ 1. We wish to prove ek+1 ≤ Ce(k + 1)−b. Substitute ek = aCek
−b

into the right hand side of (4.50) yields the inequality

aCek
−b − 2α1ca

γCγe k
−(p+γb) + α2

1G
2k−2p

= aCek
−b +

(
α2

1G
2 − 2α1ca

γCγe
)
k−2p ≤ Ce(k + 1)−b (4.52)

using the fact that p + γb = 2p. We need (4.52) to hold for all a ∈ [0, 1].

Since 1
2 ≤ θ < 1, 1

2 < γ ≤ 1, therefore the L.H.S. is a convex function of a.

Therefore if the inequality holds for a = 0 and a = 1, then it holds for all

a ∈ [0, 1]. Consider first, a = 0. The condition is

α2
1G

2k−2γb ≤ Ce(k + 1)−b.

This is equivalent to

α1 ≤ G−1C
1
2
e k

γb(k + 1)−
b
2 . (4.53)

We will verify this condition later for the specific α1 chosen in (4.48).

Next consider a = 1. For this case we simplify (4.52) using

Ce(k + 1)−b = Cek
−b(1 + k−1)−b ≥ Cek−b − bCek−(b+1),

where we used convexity of t−b. Therefore in the case a = 1, (4.52) is true

if

(
α2

1G
2 − 2α1cC

γ
e

)
k−2p ≤ −bCek−(b+1) (4.54)
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Now 2p = b+ 1, therefore (4.54) holds if

α2
1G

2 − 2α1cC
γ
e ≤ −bCe,

which is a positive-definite quadratic in α1. Solving it yields the two solu-

tions

2cCγe ±
√

4c2C2γ
e − 4G2bCe

2G2
.

The quadratic has a real solution if

4c2C2γ
e − 4G2bCe ≥ 0 =⇒ Ce ≥

(
G2b

c2

) 1
2γ−1

=

(
G2

(2γ − 1)c2

) 1
2γ−1

.(4.55)

We will choose Ce = (κ2b)b and then the only valid choice for α1 is

α1 =
cCγe
G2

which corresponds to (4.48).

We now verify that this choice of α1 satisfies (4.53) for all k ≥ k0 = d2be.
Plugging α1 into (4.53) yields

c

G2
Cγe ≤ G−1C

1
2
e k

γb(k + 1)−
b
2

which can be rearranged to

G ≥ cCγ−
1
2

e k−γb(k + 1)
b
2 . (4.56)

Then

C
2γ−1

2
e = κ

√
b.

Plugging this into (4.56) yields

kγb(k + 1)−
b
2 ≥
√
b. (4.57)

Now

(k + 1)−
b
2 = k−b/2(1 + k−1)−b/2

≥ k−
b
2

(
1− b

2
k−1

)
= k−

b
2 − b

2
k−

b
2
−1.
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Therefore (4.57) is implied by

kb(γ−
1
2

) − b

2
kb(γ−

1
2

)−1 ≥
√
b.

Now substituting b = (2γ − 1)−1 into the two exponents yields

k
1
2 − b

2
k−

1
2 ≥
√
b

which is equivalent to

t2 −
√
bt− b

2
≥ 0

with the substitution t =
√
k. Thus we require

t ≥ 1 +
√

3

2

√
b

which is implied by k ≥ 2b.

Finally, we verify that Ce satisfies the initial condition (4.51). Thus

Ce =
(
bκ2
)b ≥ ΩCk

b
0.

Since k0 = d2be ≤ 2b+ 1 ≤ 3b, this is implied by

(
bκ2
)b ≥ ΩC(3b)

b.

Diving by bb this yields

κ2 ≥ 3Ω
1
b
C

which completes the proof.

The convergence rate given in (4.49) yields the following iteration com-

plexity: The subgradient method with this stepsize yields a point such that

d(xk,X )2 ≤ ε for all

k ≥ 2θ

1− θ
max{κ2, 3Ω

1
θ
−1

C }ε1−
1
θ .

This is equal (up to constants) to the iteration complexity derived for DS-

SG in Theorem 26. The main drawback versus DS-SG is that the analysis

only holds for a bounded constraint set. It is also trivial to embed this

stepsize into the “doubling” framework used in DS2-SG so that one does
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not need a lower bound for c. Since the analysis is the same as given in

Theorem 27, we omit the details. The proof of Theorem 34 is inspired by

[85] which considered geometrically decaying stepsizes when θ = 1. It could

be considered a natural extension of [85] to θ < 1.

We can obtain the same rate for this choice of α1 and p when θ < 1/2. In

this case, the constraint set does not need to be bounded and the rate holds

for all k ≥ 1.

Theorem 35 Suppose Assumption 3 holds and 0 < θ ≤ 1
2 . Suppose d(x1,X )2 ≤

Ω1. Choose c small enough (or G large enough) so that

κ2 ≥ max

{
1,

1− θ
θ

Ω
1−θ
θ

1

}
. (4.58)

For the iterates of the subgradient method (4.4), let αk = α1k
−p where

p =
1

2(1− θ)

and α1 be defined as in (4.48) Then, for all k ≥ 1, d(xk,X )2 satisfies (4.49).

Proof Recall γ = 1/(2θ) and note that γ ≥ 1 since θ ≤ 1/2. Recall

b =
1

2γ − 1
≤ 1 and p = γb.

As with the proof of Theorem 34, this will be a proof by induction. We

wish to prove that ek ≤ Cek
−b for all k ≥ 1 for the constant Ce defined as

Ce =
(
κ2b
)b
. The initial condition is e1 ≤ Ce which is implied by Ce ≥ Ω1.

This in turn is implied by (4.58).

Now we assume ek = aCek
−b for some k ≥ 1 and a ∈ [0, 1] and will

show that ek+1 ≤ Ce(k + 1)−b. Using the inductive assumption in the main

recursion (4.50) yields

aCek
−b +

(
α2

1G
2 − 2α1ca

γCγe
)
k−2p ≤ Ce(k + 1)−b, (4.59)

where we used the fact that p+γb = 2p. We need this to hold for all a ∈ [0, 1].

Since the L.H.S. is concave in a for γ ≥ 1, we compute the maximizer as

follows. Let D1 = α2
1G

2k−2p, D2 = Cek
−b, and D3 = 2α1cC

γ
e k−2γb. Then

let

f(a) = D1 +D2a−D3a
γ .
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Let a∗ be the solution to 0 = f ′(a∗) = D2 − γD3a
γ−1
∗ which implies

a∗ =

(
D2

γD3

) 1
γ−1

= C−1
e (2α1γc)

1
1−γ k

1
γ−1 = C−1

e D4α
1

1−γ k
1

γ−1 ,

where D4 = (2γc)
1

1−γ . But recall that a ∈ [0, 1], therefore the maximizer of

f(a) in [0, 1] is given by

min{1, C−1
e D4α

1
1−γ k

1
γ−1 }.

Thus if

k ≥ (CeD
−1
4 )γ−1α1 (4.60)

then the maximizer is equal to 1.

The analysis with a = 1 is the same as for this case where θ ≥ 1/2 given in

Theorem 34. Recall from that proof that the choice of stepsize and constant,

α1 = c
G2C

γ
e and Ce = (κ2b)b, implies that the inequality (4.59) is satisfied

for all k ≥ 1. Substituting these values into (4.60) yields

k ≥ (CeD
−1
4 )γ−1 c

G2
Cγe =

2γ

2γ − 1
.

Since γ ≥ 1 this is implied by k ≥ 2.

On the other hand, if k = 1, then (4.59) becomes

aCe + α2
1G

2 − 2α1cC
γ
e a

γ ≤ Ce2−b ∀a ∈ [0, 1]. (4.61)

The maximizer of the L.H.S. is a∗ = 1− 1
2γ . The L.H.S. of (4.61) is a convex

quadratic in α1. Solving it yields an upper bound and a lower bound on α1.

We will now verify that our choice for α1 given in (4.48) satisfies the two

inequalities. Recall the choice for α1:

α1 =
cCγe
G2

. (4.62)

First the upper bound:

α1 ≤ cCγe a
γ
∗

G2

(
1 +

√
C2γ
e − κ2Cea

−2γ
∗ (a∗ − 2−b)

)
.
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Simplifying further

α1 ≤ cCγe a
γ
∗

G2

(
1 + Cγe

√
1 + κ2C1−2γ

e a−2γ
∗ (2−b − a∗)

)
=

cCγe a
γ
∗

G2

(
1 + Cγe

√
1 + b−2a−2γ

∗ (2−b − a∗)
)
.

It can be verified that a∗ = (1− 1
2γ ) ≤ 2−b = 2

1
1−2γ for all γ ≥ 1. Therefore

the term inside the square-root is greater than or equal to 1. Thus our choice

of α1 in (4.62) is viable if

aγ∗(1 + Cγe ) ≥ 1 ⇐⇒ Cγe ≥ a−γ∗ − 1.

Simplifying yields

(κ2b)γb ≥ a−γ∗ − 1 ⇐⇒ κ2 ≥ 1

b

(
a−γb∗ − 1

) 1
γb

= (2γ − 1)

((
1− 1

2γ

) γ
1−2γ

− 1

)2− 1
γ

.

It can be confirmed numerically that for γ ≥ 1 this is implied by κ ≥ 1.

Finally, the lower bound on α1 is

α1 ≥ cCγe a
γ
∗

G2

(
1−

√
C2γ
e − κ2Cea

−2γ
∗ (a∗ − 2−b)

)
.

Since a∗ ≤ 1 and the term in parantheses is less than or equal to 1, our

choice for α1 in (4.62) satisfies this inequality.

4.9 Numerical Experiment

In this section we present the results of a simulation to demonstrate some of

the theoretical findings in this chapter. We consider an example satisfying

HEB(c, θ) with θ = 1 to test our proposed descending stairs stepsize choice

in DS-SG and our “double descending stairs” method for unknown c, DS2-

SG. Consider the following problem:

min
x
‖Ex− b‖1 : ‖x‖1 ≤ τ. (4.63)

This objective function is used in regression problems where one observes

b = Ex + η and would like to recover x, given that η is some unknown

noise term. If η is Gaussian, then the maximum likelihood estimator is the
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least-squares minimizer. However, if the noise is known to contain several

outliers, or equivalently is sampled from a distribution with “heavier tails”

then the Gaussian, the least absolute deviation loss is a more robust choice

as the resulting estimator is less sensitive to outliers [127]. The `1 box con-

straint is used to encourage a sparse solution x. In the context of regression,

enforcing sparsity makes sense when only a small subset of the features is

actually correlated with the target variable [122]. The statistical estimation

properties of (4.63) were discussed in [128, 129, 130].

Besides the subgradient techniques consider in this chapter, there are a

few other methods which can tackle Prob. (4.63). The problem can be

written as a linear program and solved via any LP solver. A popular op-

tion is an interior point method. These are second-order methods that rely

on computing second-order information and solving potentially large linear

systems at each iteration. Unfortunately they are not competitive with sub-

gradient methods on large scale problems. Simplex methods are another

option [131]. While their typical performance is good, these methods have

exponential computational complexity in the worst case. The alternating di-

rection method of multipliers (ADMM) is another approach to solving Prob.

(4.63), however it involves solving a quadratic program at each iteration,

placing it in the same computational regime as the interior point methods

[16]. The primal-dual splitting method of [80] is a first-order method which

can tackle Prob. (4.63). The main drawback of the method is that one must

know the largest singular value of E in order to choose the stepsizes cor-

rectly. As such, it is not directly comparable with the subgradient methods

developed in this chapter which do not require this information. The paper

[128] introduces a method for solving Prob. (4.63) which is similar to the

LARS method for solving the LASSO [132]. The method solves Prob. (4.63)

for an increasing sequence of τ . At every iteration it solves a linear system,

using the previous solution in a smart way. However, as far as we are aware,

the iteration complexity of this method is unknown. Edgeworth’s algorithm

is a coordinate descent method for Prob. (4.63) which has shown promis-

ing empirical performance [133]. However unlike the subgradient methods

considered here, the method is not guaranteed to converge to a minimizer.

In fact specific examples exist where Edgeworth’s algorithm converges to a

non-optimal point [134].

Problem (4.63) is a polyhedral optimization problem therefore HEB(c, θ)

is satisfied for all x with θ = 1 [109]. However, it is not easy to compute

c. Note that the constraint set is compact thus DS2-SG is applicable. Pro-

jection onto the `1 ball can be done in linear time in expectation via the
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method of [135].

To test the subgradient methods we consider a small synthetic instance

of Problem (4.63). We set m = 100 and n = 50 and construct E of size

m × n with i.i.d. N (0, 1) entries. We construct b of size m × 1 with i.i.d.

N (0, 1) entries. We set τ = 1, which was chosen to obtain a fairly sparse

solution with only 10% of its entries not equal to 0. All tested algorithms

were randomly initialized to the same point. The purpose of this small

experiment is to test some of the theoretical findings made in this chapter.

To start we test the convergence rates predicted by Theorem 30 for decay-

ing stepsizes. We consider two stepsizes αik = α0,ik
−pi for i = 1, 2. These are

(α0,1, p1) = (0.1, 0.99) and (α0,2, p2) = (0.01, 0.5), where the constant was

tuned to achieve good performance. In Fig. 4.1 we plot the log of d(xk,Xh)2

versus log10 k, where k is the number of iterations. An optimal solution x∗

is estimated by running DS-SG until it converges to within numerical preci-

sion. Looking at the figure it appears that for k > 100 the convergence rates

are as predicted in Theorem 30. Specifically for the first parameter choice,

d(xk,Xh)2 ≈ O(k−1.98) and for the second d(xk,Xh)2 ≈ O(k−1).

The figure confirms that DS-SG has a linear convergence rate, verifying

Theorem 26. Its performance is very similar to Shor’s method. While RSG

does appear to obtain linear convergence, its rate is slower than DS-SG and

Shor’s method. Also observe that for the first 15000 iterations, the dimin-

ishing stepsize with αk = O(k−1) is the best performing method. This is

because the three linearly convergent methods are all highly sensitive to the

condition number G/c, which can be large. This suggests that diminish-

ing stepsize rules can still play a role on highly ill-conditioned polyhedral

optimization problems.

As was mentioned we had to tune c to get good performance of DS-SG,

RSG, and Shor’s method. We now compare these three methods with our

proposed ‘doubling trick’ variant DS2-SG, which does not need the value

of c. We also compare with the method R2SG proposed in [109]. Note

that this method only works for θ < 1 so following the advice of [109], we

use the approximate value of θ = 0.8. We initialize DS2-SG with the same

parameters as DS-SG but with c1 = G = 160. To demonstrate the effect

of poorly chosen c in DS-SG, RSG, and Shor’s method, we set c = 100 for

all these methods (recall the tuned values were smaller). The results are

given in Fig. 4.3. We compare function values and for each algorithm we

keep track of the iterate with the smallest function value so far. This is

because for R2SG and DS2-SG, a large increase in objective function value

often occurs every time a smaller estimate of c is tried. All the rates we
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(α1, p) = (0.1, 0.99) and (α1, p) = (0.01, 0.5).
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derived for the last iterate also hold trivially for the best iterate. We see

that DS-SG, RSG, and Shor’s method converge to suboptimal solutions due

to the incorrect value of c. However DS2-SG finds the correct solution to

within the specified tolerance. This is even better than the performance of

DS-SG and Shor’s method with the parameter c tuned. R2SG has slower

convergence, which is not surprising since it is not guaranteed to obtain

linear convergence on this problem. It is also encouraging that DS2-SG is

faster than the summable decaying stepsize αk = 0.1k−0.99, since this choice

also does not require knowledge of c.

4.10 Proof of Theorems 28, 30, and 31

4.10.1 Preliminaries

In order to determine the convergence rate of the recursion (4.5) derived in

Prop. 21 under nonsummable stepsizes, we need two Lemmas. We start with

a result from [27] which considers (4.5) when θ < 1
2 without the nuisance

term α2
kG

2.

Lemma 36 Suppose

0 ≤ uk+1 ≤ uk − γku1+q
k
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for k = 0, 1, . . . where γk ≥ 0 and q > 0. Then

uk ≤ u0

(
1 + quq0

k−1∑
i=0

γi

)− 1
q

.

Proof [27, Lemma 6 pp. 46].

We will also use the following estimates for the sum of stepsizes
∑k

i=k0
αi.

Lemma 37 Let k ≥ k0 ≥ 1.

1. If p ∈ (0, 1)

k∑
i=k0

i−p ≥ (k + 1)1−p − k1−p
0

1− p
.

2. If p = 1

k∑
i=k0

i−p ≥ ln
k + 1

k0
.

Proof A straightforward integral test.

4.10.2 Main Proof for Theorems 28 and 30

Continuing with the main analysis, the goal is to derive convergence rates

for a sequence ek satisfying (4.5). To this end, let

I = {k : αkG
2 ≥ ceγk}. (4.64)

Recall the notation γ = 1/(2θ). We will consider three types of iterates and

bound the convergence rate in each case. First, for those iterates k ∈ I it

is easy to derive the convergence rate. Second, we will bound the rate for

an iterate in Ic when the previous iterate is in I. Finally we will consider s

consecutive iterates in Ic, for which we can use the inequality in (4.64) to

simplify recursion (4.5). Note that s can be arbitrarily large. In particular

when I is finite there are an unbounded number of consecutive iterates in

Ic. Together these three cases cover all possible iterates.

First for, k ∈ I and αk > 0

αkce
γ
k ≤ α

2
kG

2 =⇒ ek ≤
(
αkG

2

c

) 1
γ

.
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Thus the rate of ek is O

(
α

1
γ

k

)
for k ∈ I. In particular since αk = α1k

−p,

then for k ∈ I and α1 > 0

ek ≤
(
α1G

2

c

)2θ

k−2pθ. (4.65)

Now assume k ∈ I and k + 1 ∈ Ic. Then

ek+1 ≤ ek + α2
kG

2 ≤
(
αkG

2

c

) 1
γ

+ α2
kG

2. (4.66)

Now since 1
γ = 2θ ∈ (0, 2), for k ≥ 1

k−2pθ ≥ k−2p.

Therefore (4.66) implies that for k ∈ I, k + 1 ∈ Ic, and k ≥ 1,

ek+1 ≤ C1(k + 1)−2pθ, (4.67)

where

C1 = 22pθ

((
α1G

2

c

) 1
γ

+ α2
1G

2

)
.

Next assume k ∈ I, k + 1 ∈ Ic, and k + i ∈ Ic for i = 2, . . . s for some

s ≥ 2. Then for i = 2, . . . s

ek+i < ek+i−1 − αkceγk+i−1. (4.68)

To analyze the recursion (4.68) we consider θ < 1
2 and θ ≥ 1

2 separately.

Case 1: θ < 1
2
.

Now since γ > 1 we can apply Lemma 36 to (4.68) and derive for i = 2, . . . , s

ek+i ≤ ek+1

1 +
1− 2θ

2θ
e

1−2θ
2θ

k+1

i−1∑
j=1

αk+j

 2θ
2θ−1

.

We then use Lemma 37 to derive1 +
1− 2θ

2θ
e

1−2θ
2θ

k+1

i−1∑
j=1

αk+j

 2θ
2θ−1

≤
[
1 +

α1(1− 2θ)

2θ(1− p)
e

1−2θ
2θ

k+1

(
(k + i)1−p − (k + 1)1−p)] 2θ

2θ−1

. (4.69)
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Now consider the condition given in (4.42). Note that since p satisfies (4.41),

if (4.42) holds for k = k0, it holds for all k > k0. In particular if it holds for

k = 0, then it holds for all k. Continuing, if (4.42) holds then for all k > k0

1− α1(1− 2θ)

2θ(1− p)
e

1−2θ
2θ

k+1 (k + 1)1−p ≥ 0, (4.70)

where we have used the fact that k + 1 ∈ Ic. Therefore since (4.70) holds

we can simplify (4.69) to say that for k ∈ I and k+ i ∈ Ic for i = 2, 3, . . . , s,

and k > k0,

ek+i ≤ ek+1

[
α1(1− 2θ)

2θ(1− p)
e

1−2θ
2θ

k+1 (k + i)1−p
] 2θ

2θ−1

≤
(
α1(1− 2θ)

2θ(1− p)

) 2θ
2θ−1

(k + i)
2θ(1−p)

2θ−1 . (4.71)

The final case to consider is when i = 1, 2, . . . , s are in Ic. In this case,

the same bound (4.69) can be derived but with e1 replacing ek+1. Thus for

i = 2, 3, . . . s in I

ei ≤ e1

[
1 +

α1(1− 2θ)

2θ(1− p)
e

1−2θ
2θ

1

(
i1−p − 1

)] 2θ
2θ−1

.

Thus if α1 is chosen to satisfy (4.43) then

ei ≤
(
α1(1− 2θ)

2θ(1− p)

) 2θ
2θ−1

i
2θ(1−p)

2θ−1 . (4.72)

Combining (4.65), (4.67), (4.71), and (4.72) establishes (4.44) and concludes

the proof of Theorem 28.

Case 2: θ ≥ 1
2

Next we consider the case where 1
2 ≤ θ ≤ 1 which will finish the proof of

Theorem 30. Before commencing we introduce the following Lemma which

allows us to bound a decaying exponential by an appropriately scaled de-

caying polynomial of any degree.

Lemma 38 Suppose δ > 0, then if Cδ ≥ e−δδδ,

exp(−x) ≤ Cδx−δ ∀x > 0. (4.73)

Proof Taking logs of both sides of (4.73) yields

−x ≤ −δ lnx+ βδ ∀x > 0,
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where βδ = lnCδ. Therefore

βδ ≥ δ lnx− x ∀x > 0

which implies

βδ ≥ max
x>0
{δ lnx− x}.

The right hand side is a smooth concave coercive maximization problem

which therefore has a unique solution given by x∗ = δ. Therefore

βδ ≥ δ ln δ − δ

which implies the Lemma.

Continuing, we consider k ∈ I, k + 1 ∈ Ic, and k + i ∈ Ic for i = 2 . . . , s

in the case where θ ≥ 1
2 , so γ ≤ 1. Then since k + i ∈ Ic for i = 2, . . . s,

0 ≤ ek+i−1

ek+1
≤ 1 =⇒

(
ek+i−1

ek+1

)γ
≥ ek+i−1

ek+1
=⇒ eγk+i−1 ≥ e

γ−1
k+1ek+i−1.

Thus for k ∈ I, k + 1 ∈ Ic, and k + i ∈ Ic for i = 2, . . . , s for some s ≥ 2

ek+i ≤ ek+i−1 − αk+i−1ce
γ
k+i−1

≤ ek+i−1 − αk+i−1e
γ−1
k+1cek+i−1. (4.74)

Now taking logs and using log(1− x) ≤ −x,

ln ek+i ≤ ln ek+i−1 + ln(1− eγ−1
k+1cαk+i−1)

≤ ln ek+i−1 − eγ−1
k+1cαk+i−1.

Now summing and using Lemma 37

ln ek+i ≤ ln ek+1 − α1e
γ−1
k+1c

k+i−1∑
i=k+1

i−p

≤ ln ek+1 −
α1e

γ−1
k+1c

1− p
(
(k + i)1−p − (k + 1)1−p) .
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This leads to

ek+i ≤ ek+1 exp

{
−
α1e

γ−1
k+1c

1− p
(
(k + i)1−p − (k + 1)1−p)} (4.75)

= exp

{
−
α1e

γ−1
k+1c(k + i)1−p

1− p

(
1−

(
k + 1

k + i

)1−p
)}

.

We further consider two possible cases. If i ≥ k, then

k + 1

k + i
≤ k + 1

k + k
=

1

2
+

1

2k
,

therefore by concavity of t1−p(
k + 1

k + i

)1−p
≤ 2p−1

[
1 +

1− p
k

]
.

Take k > 3 so that

2p−1(1− p)
k

≤ 1− 2p−1

2
.

Hence

1−
(
k + 1

k + i

)1−p
≥ 1− 2p−1

[
1 +

1− p
k

]
≥ 1− 2p−1 − 2p−1(1− p)

k
≥ 1− 2p−1

2
.

Hence if 3 < k ≤ i then

ek+i ≤ ek+1 exp

(
−

(1− 2p−1)α1e
γ−1
k+1c

2(1− p)
(k + i)1−p

)
.

Now by Lemma 38 for any δ1 > 0,

exp

{
−
α1(1− 2p−1)ceγ−1

k+1

2(1− p)
(k + i)1−p

}

≤ δδ11 e
−δ1e

1+δ1(1−γ)
k+1

(
α1(1− 2p−1)c

2(1− p)
(k + i)1−p

)−δ1
.

Therefore using (4.67) for any k ≤ i and k > 3

ek+i ≤ δδ11 C
1+δ1(1−γ)
1

(
α1(1− 2p−1)ce

2(1− p)

)−δ1
(k + i)−δ1(1−p). (4.76)
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Taking δ1 = 2pθ
1−p and simplifying (4.76) yields

ek+i ≤ C
1+2p(θ−1)

1−p
1

(
α1(1− 2p−1)ce

4pθ

)− 2pθ
1−p

(k + i)−2pθ. (4.77)

Next consider k ≥ i > 1. Now

(k + i)1−p − (k + 1)1−p = (k + i)1−p

(
1−

(
k + 1

k + i

)1−p
)

= (k + i)1−p

(
1−

(
1− i− 1

k + i

)1−p
)

≥ (k + i)1−p

(
1−

(
1− i− 1

2k

)1−p
)

≥ (1− p)(k + i)1−p(i− 1)

2k
(4.78)

≥ 1− p
2

k−p(i− 1),

where in (4.78) we used the concavity of t1−p. Thus plugging this into (4.75)

implies for k ≥ i

ek+i ≤ ek+1 exp

(
−α1e

γ−1
k+1c(i− 1)

2kp

)
.

Therefore for all δ2 ≥ 0 it follows Lemma 38 that

ek+i ≤ ek+1 exp

(
−α1e

γ−1
k+1c(i− 1)

2kp

)

≤ δδ22 ek+1

(
α1e

γ−1
k+1c(i− 1)e

2kp

)−δ2
≤ C

1+δ2(1−γ)
1

(
4δ2

cα1e

)δ2
k−2pθ(1+δ2(1−γ))kpδ2i−δ2 , (4.79)

where we used ek+1 ≤ C1k
−2pθ and (i− 1)−δ2 ≤ 2δ2i−δ2 . Now if we choose

δ2 = 2θ

then (4.79) implies

ek+i ≤ C4i
−2θ, (4.80)
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where

C4 =

(
8θC1

cα1e

)2θ

.

Thus combining ek+i ≤ ek+1 ≤ C1k
−2pθ and (4.80) implies that for i ≤ k

ek+i ≤ max{C1, C4}min{k−2pθ, i−2θ}.

Now since −2θ < −2pθ,

ek+i ≤ max{C1, C4}min{k−2pθ, i−2pθ} ≤ max{C1, C4}
max{k2pθ, i2pθ}

.

If 2pθ ≥ 1 then by convexity of t2pθ

max{k2pθ, i2pθ} ≥ 1

2

(
k2pθ + i2pθ

)
≥ 2−2pθ (k + i)2pθ . (4.81)

On the other hand if 2pθ < 1 then because t2pθ is subadditive

max{k2pθ, i2pθ} ≥ 1

2

(
k2pθ + i2pθ

)
≥ 1

2
(k + i)2pθ . (4.82)

Combining (4.81) and (4.82) gives

ek+i ≤ 4 max{C1, C4}(k + i)−2pθ. (4.83)

Finally we consider the case where the first s iterates belong to Ic. Therefore,

using (4.75), for i = 1, 2, . . . , s

ei ≤ e1 exp

{
−α1e

γ−1
1 c

1− p
(
i1−p − 1

)}
.

Now since for x ≥ 1, x− 1 ≥ x
2 , this implies that

ei ≤ e1 exp

{
−α1e

γ−1
1 c

2(1− p)
i1−p

}
.

Using Lemma 38 this implies that for any δ3 > 0

ei ≤ e−δ3δδ33 e1

(
α1e

γ−1
1 c

2(1− p)
i1−p

)−δ3
, (4.84)

and we will use δ3 = 2pθ
1−p .

Combining (4.65), (4.67), (4.77), (4.83), and (4.84) yields the desired re-
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sult (4.46) and concludes the proof of Theorem 30.

4.10.3 Proof of Theorem 31

The format of the proof is identical to Theorems 28 and 30. As before it is

based on the set I defined in (4.64) and we consider three types of iterates.

First we bound the convergence rate for iterates in I, second for iterates in

Ic when the previous iterate is in I. And finally for s consecutive iterates

in Ic where s may be unbounded.

If k ∈ I then repeating (4.67) yields

ek ≤
α1G

2

c
k−1. (4.85)

Similarly for k ∈ I and k + 1 ∈ Ic,

ek+1 ≤
2α1G

2

c
(k + 1)−1. (4.86)

Finally for k ∈ I, k + 1 ∈ Ic, and k + i ∈ Ic, for i = 2, . . . , s, then repeating

(4.74) but with γ = 1 this time,

ek+i ≤ ek+i−1(1− cαk+i−1).

Taking logs, using log(1− x) ≤ −x and summing yields

log ek+i ≤ log ek+1 − cα1

k+i−1∑
j=k+1

j−1

≤ log ek+1 − cα1 (log(k + i)− log(k + 1)) ,

where we applied Lemma 37 in the second inequality. This yields for all

k ∈ I and k + i ∈ Ic for i = 2, 3, . . . , s for some s ∈ N

ek+i ≤ ek+1

(
k + i

k + 1

)−cα1

. (4.87)

Using (4.86) yields

ek+i ≤
2α1G

2

c
(k + 1)−1(k + 1)cα1(k + i)−cα1

≤ 2α1G
2

c
(k + i)−cα1 . (4.88)

Finally we consider the case where the initial iterates i = 1, 2, . . . , s are
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in Ic. Therefore repeating (4.87) with k = 0 gives

ei ≤ e1i
−cα1 . (4.89)

Combining (4.85), (4.86), (4.88), and (4.89) yields (4.47) and concludes

the proof of Theorem 31.

4.10.4 Proof of Proposition 32

As previously mentioned, this argument is a direct extension of [100, Thm.

4]. For θ = 1
2 , (4.5) reads as

ek+1 ≤ (1− 2αkc)ek + α2
kG

2.

We consider the choice αk = 2k+1
2c(k+1)2 . Then

ek+1 ≤
(

1− 2k + 1

(k + 1)2

)
ek +

G2(2k + 1)2

4c2(k + 1)4
.

Multiplying both sides by (k + 1)2 yields

(k + 1)2ek+1 ≤ k2ek +
G2(2k + 1)2

4c2(k + 1)2

≤ k2ek +
G2

c2

≤ e1 +
G2

c2
k.

Therefore

ek+1 ≤
e1

(k + 1)2
+

G2

c2(k + 1)
.
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