
 
 
 
 
 
 

BREEDING FOR INCREASED PROTEIN CONCENTRATION, SUDDEN DEATH 

SYNDROME RESISTANCE, AND SOYBEAN CYST NEMATODE RESISTANCE IN 

SOYBEAN 
 

 
 
 
 

BY 

 
LILLIAN FRANCES BRZOSTOWSKI 

 

 

 

 

DISSERTATION 
 

Submitted in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy in Crop Sciences 

in the Graduate College of the 
University of Illinois at Urbana-Champaign, 2017 

 
 
 
 
 
 

Urbana, Illinois 
 
 

Doctoral Committee: 
 
 Professor Brian Diers, Chair 
 Professor Glen Hartman 
 Professor Fred Kolb 
 Professor Randy Nelson



 

ii 
 

ABSTRACT 

 

 Soybean (Glycine max (L.) Merr.) is one of the most important agronomic crops in the 

USA and worldwide with dynamic uses in food, industry, and feed. Development of improved 

soybean cultivars is critical to provide the resources necessary for a growing world population. 

Approximately 83 million acres/33.5 million hectares of soybean were harvested in 2016 in the 

USA, and Illinois is one of the top soybean producing states. For the past several decades, 

soybean breeders have sought to protect and improve the economic value of soybean through 

genetic improvement of seed composition and disease resistance traits. In order for a gene to be 

effectively incorporated into a breeding program, it must maintain its desired effect across many 

genetic backgrounds without a negative effect on agronomic traits such as yield. The objective of 

this dissertation was to identify genetic regions that can be used in breeding programs to 

successfully increase protein concentration, sudden death syndrome (SDS) resistance, and 

soybean cyst nematode (SCN) resistance.  
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CHAPTER 1: LITERATURE REVIEW OF BREEDING FOR INCREASED PROTEIN 

CONCENTRATION, SUDDEN DEATH SYNDROME RESISTANCE, AND SOYBEAN 

CYST NEMATODE RESISTANCE IN SOYBEAN 

 

Soybean 

 

Approximately 3,000 to 5,000 years ago, cultivated soybean was domesticated in China 

(Carter et al., 2004). The first recorded production in North America was in 1765 when a few 

landraces were introduced to North America (Hymowitz and Harlan, 1983). Soybean was mainly 

a forage crop until the mid 20
th
 century. During this time, farmers grew plant introductions (PI) 

from East Asia or selections from these lines (Probst and Judd, 1973). In the 1930s, breeding 

programs developed cultivars derived from crosses between PIs, and the shift from soybean as a 

forage to soybean as a grain crop began as there was an increase in demand for soybean oil 

(Hartwig, 1973). As soybean became a more widely grown crop in the USA, commercial 

breeding programs were established. With 80 years of selective breeding, the genetic base of 

North American cultivars is narrow (Gizlice et al., 1994; Sneller, 1994; Hyten et al., 2006). 

Almost all soybean varieties released between 1947 and 1988 trace their ancestry back to just 80 

accessions (Gizlice et al., 1994). 

Soybean (Glycine max (L.) Merr.) is an important agronomic crop in the US and around 

the world. It is a dynamic crop with many food, industrial, and feed uses. Processed soybeans are 

the largest source of protein feed and the second largest source of vegetable oil in the world. 

Soybean accounts for 90 percent of total oilseed production in the USA (USDA-ERS, 2013).   

In 2016, producers harvested over 4.3 billion bushels/117 million metric tons of soybean 

from over 82.7 million acres/33.5 million hectares in the USA. Yields averaged 52.1 bushels per 

acre/3501 kg ha
-1

, and prices were approximately ten dollars a bushel (USDA-NASS, 2017). 

Over 44 percent of the US soybean and soybean products were exported. China is the top buyer 

of US whole soybeans and soybean oil, and Mexico is the top buyer of US soybean meal 

(USDA-NASS, 2017).   

In Illinois, soybean is the second most widely grown crop behind corn. In 2016, over 547 

million bushels/14.9 million metric tons from 9.77 million acres/3.96 million hectares were 

harvested in the state (USDA-NASS, 2017). Average yield across Illinois in 2016 was 56 bushels 
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per acre/3762 kg ha
-1

. With higher prices than corn and high domestic and international demand, 

soybean will continue to be major crop for producers (USDA-ERS, 2013). 

 

Soybean Protein Concentration 

 

Part of the economic value of soybean can be attributed to the protein found in its seed. A 

soybean seed is on average 350 g kg
-1

 protein (130 g kg
-1

 moisture) and contains most of the 

amino acids that are needed to meet the dietary requirements of swine and poultry (Liu, 1997; 

Cromwell, 2012). Soybean meal (SBM), which is made out of crushed seed after oil is extracted 

from it, has the highest level of crude protein compared to other vegetable protein sources and 

accounts for approximately 69% of protein sources in animal feed worldwide (Wilson, 2008). 

Over 75% of SBM produced in the United States is fed to poultry or swine; however, SBM is 

also used as a protein source in the dairy, cattle, pet, and aquaculture industry (Cromwell, 2012; 

ISA, 2013). With SBM’s popularity in the feed industry, it is important for breeders to release 

cultivars that are not only high yielding for producers but also have a high protein concentration. 

This will allow the needs of the largest soybean customer, livestock producers, to be met 

(USDA-ERS, 2012).  

Soybean producers currently sell their product to the elevator by weight. They are not 

paid for component levels; however, research demonstrates market price moves with quality 

(ISA, 2013). On the whole, prices are lowered with low quality soybean seeds that are in poor 

condition with low seed composition levels. When this is considered, it becomes advantageous to 

farmers to grow soybean seeds with a good balance of protein, oil, and amino acids.  

Elevators also sell soybean to crush plants by the bushel. The price of SBM is reduced if 

it does not meet a 48% protein level, so the drive for high protein soybeans come from the 

processors. The combined value of protein, oil, and hulls is called its Estimated Process Value 

(EPV) or “crush value.” High protein soybeans have a higher EPV and are worth more to the 

processor. Brazilian producers tend to grow soybeans with higher EPVs, which give them an 

advantage in the world SBM market. It is important to grow and develop high protein, high 

yielding cultivars to keep soybean production in the USA economically competitive (ISA, 2013). 

Storage proteins, which account for a large portion of protein in soybean, are either water 

soluble albumins or saline soluble globulins (Murphy, 2008). Most soybean proteins are 
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globulins which are either 7S vicilin-type and 11S leguminin-type (Clarke and Wiseman, 2000). 

The 11S faction is represented by glycinin, and the 7S faction is represented by β-conglycinin. 

(Yaklich et al., 1999). 

 

Relationship between protein and other seed components 

 

Soybean seeds on average are 350 g kg
-1

 protein, 175 g kg
-1

 oil, 260 g kg
-1

 carbohydrates, 

45 g kg
-1

 crude fiber, and 45 g kg
-1

 ash (130 g kg
-1

 moisture basis)(Hymowitz, 1972; Wilson, 

2004). Complex relationships exist between these components and with seed yield. An increase 

in protein often leads to a decrease in oil, carbohydrates, and yield.   

The inverse relationship between protein and oil concentration has been well established 

(Hartwig and Kilen, 1990; Wilson, 2004). Wilcox and Shibles (2001) crossed parents with low 

(345 g kg
-1

 on a 130 g kg
-1

 moisture basis)) and high (413 g kg
-1

) protein concentration in a study 

to determine the relationship between protein concentration and oil along with other seed traits 

including yield, sugar concentration, and sulfur concentration. A highly negative correlation (r=-

0.88) between protein and oil concentration was observed. In a large data set from the US 

Soybean Uniform test representing 10 maturity groups, Pearson correlation coefficients for 

percentage oil versus protein ranged from -0.1042 to -0.6289 with an average of -0.4273 (Piper 

and Boote, 1999). Possible reasons for these strong negative correlations include pleiotrophy or a 

tight repulsion linkage between protein and oil quantitative trait loci (QTL). Recker et al. (2014) 

conducted 26 generations of random mating in two populations and observed significantly large 

negative genotypic correlations (>|0.5|) despite theoretically small linkage disequilibrium. 

The inverse relationship between protein and oil has been expressed in terms of energetic 

cost. It had been suggested the energy cost to synthesize two units of protein was the same as the 

cost of one oil unit (Hanson et al., 1961).  Usually, a 1.5 to 1.7 ratio is observed suggesting a 

genotype dependent ratio or that more energy is required to synthesize protein than previously 

thought (Hanson et al., 1961, Leffel and Rhodes, 1993; Chung et al., 2003). 

An inverse relationship between seed yield and protein concentration has been observed 

frequently (Burton, 1987; Wilcox and Guodong, 1994). Wilcox and Cavins (1995) observed this 

trend in summarizing three breeding studies where the inverse relationship between protein 

concentration and yield had r values between -0.23 and -0.86. In the previously mentioned 
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Wilcox and Shibles (2001) study, there was a 3.9 g kg
-1

 decrease in protein for each 100 kg ha
-1

 

yield increase and the correlation was -0.45. Despite the negative correlation between yield and 

protein being well documented, the reason for the relationship remains unclear. It has been 

hypothesized the negative correlation is the result of the physiological relationship between N 

and carbon supply. Both components play a major role in yield and protein concentration. A 

relationship between carbon and N may exist as they are both affected by N accumulation, 

partitioning, and whole plant remobilization. Additionally, protein synthesis in soybean requires 

a large amount of nitrogen in comparison to other legumes and vegetables (Sinclair and deWitt, 

1975).  

Hanson et al (1961) explained the relationship between protein, oil, and carbohydrates in 

terms of a seed’s energy commitment using a regression model. Protein and oil each use the 

same limited carbon supply. Based on the regression model, the protein fraction took 0.7863 

grams carbon energy to produce 1 gram of protein; the oil fraction took 1.1423 grams carbon 

energy to produce 1 gram of oil; and, the residual fraction (carbohydrates) took 0.400 grams 

carbon energy to produce 1 gram of residual. A high yielding, high protein soybean should be 

possible if nitrogen is not limiting because these factions do not require as much carbon energy 

as oil.  

Later work with the energy investment concept supported an alternative hypothesis where 

in a high energy environment, the residual fraction is supported first, then the oil component, and 

then the protein component. A miscalculation in the 1961 formula or a physiological barrier to 

high protein production was suggested (Shimura and Hanson, 1970). It takes less energy to 

produce a gram of protein than a gram of oil, but the advantage is negated by a decrease in the 

residual fraction.  This could be a reason protein increases at the expense of yield (Hanson, 

1991). Chung et al. (2003) also mentioned the carbon supply limitation as a reason for the 

inverse relationship between protein and oil. It was also suggested a lack of genetic diversity 

could explain why more carbohydrates are not metabolized into protein and oil. Additionally, it 

is possible that there is a limitation to how much photosynthate a plant can produce and move to 

the seed.  

There is also a negative relationship between protein concentration and sugars. Hartwig 

et al (1997) measured raffinose, stachyose, and sucrose among 20 high protein lines and 

observed a strong negative relationship between sucrose and protein (r=-0.78). There was also a 
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negative correlation between protein and raffinose (r=-0.26) A negative correlation was observed 

between protein and stachyose + raffinose, but it was not significant. Stachyose and raffinose 

have a detrimental effect on the nutritional qualities of animal feed (Hartwig et al., 1997).  

Wilcox and Shibles (2001) saw similar results in 43 random breeding lines. Protein increased 

whereas oil, total carbohydrates, stachyose + raffinose, and sucrose all decreased. A negative 

decrease in sugars is expected with an increase in protein concentration as protein, oil, and the 

seed coat account for 70% of seed weight (Leffel and Rhodes, 1993).  When protein is increased, 

oil decreases; however, protein + oil increases. The seed coat remains the same, so the residual 

seed faction, which includes sugar concentration, must decrease (Hartwig et al., 1997).  

 

Environment and soybean protein concentration 

 

Several studies have focused on environmental conditions that effect protein 

concentration. The effect of water supply and temperature has been of specific interest to 

researchers. Rotundo and Westgate (2009) conducted a meta-analysis of environmental effects 

including drought and temperature stress that affect final seed composition. Generally, they 

found drought decreased protein concentration. Across all studies reviewed a relative reduction 

of 16% of total protein concentration was observed when drought occurred. A few studies where 

protein concentration increased under drought were noted. In these instances, plants were 

subjected to drought at early reproductive stages. A possible reason for this increase is related to 

yield components. Drought in the early reproductive stages leads to fewer seeds per plant. As a 

result, larger seeds develop with a greater source to sink ratio occuring during seed fill (Borras et 

al., 2004).  

Specht et al. (2001) sought to determine the genetics underlying drought tolerance in a 

field population of F7:11 recombinant inbred lines (RILs). The second year of the study saw 

severe water limitations coupled with hot temperature and winds. Seed protein concentration 

decreased whereas oil concentration increased with more drought during that year. Carrera et al. 

(2009) related temperature and drought to protein and oil concentration in 82 soybean multi-

environment trials across Argentinian soybean growing areas using multiple linear regression. 

High temperatures during seed fill combined with ample water led to a small decrease in protein. 

Within the limited water environments, protein concentration decreased with increasing water 
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deficits (Carrera et al., 2009).  In contrast, Dornbos and Mullen (1992) observed severe drought 

stress (50% soil saturation with either 33°C or 35°C air temperature) increased protein 

concentration 4.4% (Dornbos and Mullen, 1992).  

Bellaloui and Mengistu (2008) observed the effect of full-season irrigation, reproductive 

stage irrigation, and non-irrigation on seed composition of the cultivars “Dwight” and 

“Freedom.” Full season irrigation increased protein concentration in Dwight compared to non-

irrigation whereas the opposite effect was observed in Freedom. The observed genotype by 

treatment interaction suggests protein concentration is a complex trait affected by many factors.  

Carter et al (1986) observed that the decrease in protein concentration with increasing 

temperatures (18°C, 22°C, 26°C, 30°C) is not the same for all genotypes. In NC-111, protein 

concentration progressively decreased from 584 g kg
-1

 at 18°C to 438 g kg
-1

 at 30°C; however, 

on a per seed basis, protein content remained the same across treatments. In NC-106, protein 

concentration decreased on a smaller scale from 568 g kg
-1

 at 18°C to 438 g kg
-1

 at 30°C whereas 

on a per seed basis there was a greater decrease. The content per seed was 139.9 mg seed
-1

 at 

18°C and 103.4 mg seed
-1 

at 30°C (Carter et al, 1986). Gibson and Mullen (1996) looked at the 

effect of mean daily temperatures of 25°C, 27.5°C, 30°C, and 32.5°C on protein concentration in 

a growth chamber experiment. The temperature treatment only had a minor effect during R1-R5 

growth stages, but increasing mean daily temperatures increased protein concentration during 

R5-R8 (Gibson and Mullen, 1996). Dornbos and Mullen indicated a quadratic model was 

appropriate to model protein concentration and temperature. As the mean daily temperature 

increased from 20-27°C, protein concentration decreased whereas as the daily mean temperature 

increased from 27°C -35°C, protein concentration increased (Dornbos and Mullen, 1992). 

Conflicting results on temperatures impact on protein concentration support the idea that factors 

such as timing of stress, genotype, and other environmental conditions are all important in 

determining final protein concentration.  

 

Germplasm and soybean protein concentration 

 

There is protein concentration diversity in soybean germplasm. In the USDA Soybean 

Germplasm Collection, 130 g kg
-1

 moisture basis protein concentration is between 276 g kg
-1

 and 
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504 g kg
-1

. Out of 14820 accessions in the collection with protein phenotypic data, 13,697 have a 

concentration greater than 348 g kg
-1

 (USDA, 2017). 

Geographic trends in protein concentration have been observed. Soybean grown in 

northern and western soybean-producing area tend to have 1.5-2% less protein than those grown 

in southern states where the growing season is warmer and longer (Hurburgh, 1990). Yaklich et 

al. (2002) compared the protein and oil concentrations from the Northern and Southern Regional 

Uniform Tests from 1950-1998.  Overall mean protein and oil concentrations were higher in the 

Southern Region (182 g kg
-1

 oil and 358 g kg
-1

 protein on a 13% moisture basis) compared to the 

Northern Region (179 g kg
-1

 oil and 354 g kg
-1

 protein).  

 

Breeding for increased protein concentration 

 

Protein concentration is a highly heritable trait with h
2
 between 0.56 and 0.92 reported 

(Brummer et al., 1997). High heritabilities coupled with genetic diversity make high protein 

concentration a good candidate for breeding. The trait can also be phenotyped relatively quickly 

using a near-infrared reflectance (NIR) analyzer. Several breeding methods have been employed 

and have been successful at producing high protein lines; however, the negative correlation of 

this trait with yield has been difficult to overcome.  

Recurrent selection has been used to increase protein concentration in soybean 

populations. In a study by Brim and Burton (1979), two populations, one derived from a cross 

between two highly adapted experimental lines with different maturities, protein concentrations, 

and oil concentrations and one derived from backcrossing nine unadapted high protein lines to an 

elite parent, were both subdivided in two for a total of four populations and underwent six cycles 

of recurrent selection. Protein concentration was increased and oil concentration decreased after 

four cycles of selection in all populations. Yield in the two derived from the backcrosses was 

significantly lower at C6 than in C0; however, in the other two populations, one population did 

not have a significant change and one had a yield increase. The population with a protein and 

yield increase demonstrated the ability to create high protein, high yield lines. Wilcox et al. 

(1998) also observed an increase in protein and decrease in oil after eight cycles of recurrent 

selection. Recurrent selection has been effective at increasing protein concentration, but it is 
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unrealistic method to be used on a large scale in a breeding program due to the difficulty in 

crossing soybeans.  

Backcrossing is a technique that has shown promise to increase soybean protein 

concentration while maintaining yield. Wehrmann backcrossed “Pando”, a high protein and low 

yielding plant introduction, to three high-yielding recurrent parents representing the maturity 

groups grown in Iowa to form BC2F2 lines. None of the lines had protein concentration higher 

than Pando, but 72% had a higher concentration than the recurrent parent and 19% were not 

significantly different than the donor parent. Approximately 19% of the BC2F2 lines yielded as 

much as the recurrent parent but with a higher protein concentration, demonstrating the ability to 

obtain high protein lines with good yields via backcrossing (Wehrmann et al., 1987). Wilcox and 

Cavins (1995) also used Pando as a donor parent in a study evaluating protein and yield. They 

selected for high protein and yield between each backcross and were able to identify a BC3 line 

that combined high protein concentration with yield greater than one of the controls. 

In the previously mentioned Recker et al study, 26 generations of random mating resulted 

in non-significant genetic correlations between yield and protein (2014). This suggests there can 

be success in increasing yield and protein simultaneously when the appropriate breeding strategy 

is implemented. 

 

Marker Assisted Breeding and QTLs 

 

Marker assisted breeding shows promise in aiding the development of high protein, high 

yielding soybean cultivars. Over 147 marker associations with protein concentration have been 

mapped to all soybean chromosomes. They are listed at: 

http://www.soybase.org/search/index.php?qtl=protein (Soybase, 2017). Three QTL associated with 

increased protein have been confirmed according to the rules of the soybean genetics community 

(Soybase, 2017).  

In 1992, Diers et al. (1992) used 243 restriction fragment length polymorphism (RFLP) 

markers and identified two QTL controlling protein and oil concentration in a population of F2:3 

lines derived from a cross between the G. max experimental line, A81-356022, and the G. soja 

plant introduction, PI468916. The QTL were mapped to chromosome (chr) 20 (formally linkage 

group (LG) I) and chr 15 (LG E) with the G. soja alleles associated with increased protein 

http://www.soybase.org/search/index.php?qtl=protein
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concentration. Following the Diers study, Sebolt et al. (2000) retested the QTL identified on chr 

20 and chr 15. They backcrossed the two G. soja QTL alleles into the A81-356022 background 

to study the allelic effects on protein and oil concentration and agronomic traits. In the second 

part of the study, they developed three BC3 populations to test the G. soja chr 20 QTL allele in 

different genetic backgrounds. Markers linked to the QTL on chr 15 were not associated with 

seed composition or agronomic traits, but markers linked to QTL allele from G. soja on chr 20 

were associated with higher protein concentration in the first part of the study and in two out of 

the three BC3 populations. Additionally, lines with the G. soja chr 20 QTL allele had reduced 

yield, smaller seeds, increased height, and later maturity.  

Lee et al. (1996) evaluated two biparental populations, “Young” x PI416937 and PI97100 

x “Coker 237,” with RFLP markers to identify QTL associated with protein and oil 

concentration. A QTL on chr 15 was associated with increased protein in both populations; 

however, the other four QTL identified were population specific. Researchers sought to confirm 

the QTL from the Lee study by using the same RFLP markers in an independent PI97100 x 

Coker 237 population. Also, the original RFLP markers plus additional simple sequence repeat 

(SSR) markers in the same genetic regions were used in an independent Young x PI416937 

population. The populations were grown in multiple environments. In the PI97100 x Coker 237  

population, two out of four previously described protein QTL were confirmed including the one 

on chr 15; however, none of the previously reported protein QTL were confirmed in the Young x 

PI416937 population. This study proved that while it can be difficult to validate QTL in several 

genetic backgrounds, it is a necessity before selecting for QTL in breeding programs (Fasoula et 

al., 2004). 

With rapid advances in genotyping technology and statistical modeling, association 

mapping has become a powerful tool to map protein QTL. Additionally, high throughput 

genotyping platforms have exponentially increased the number of markers used in mapping 

studies. While improved technology has allowed for more accurate and precise QTL mapping, 

the chr 15 and chr 20 QTL loci originally identified by Diers et al (1992) are still detected at a 

high frequency across mapping populations and appear to have the largest effect on protein 

concentration (Bolon et al., 2010; Hwang et al., 2014, Vaughn et al., 2014; Bandillo et al., 2015; 

Phansak et al., 2016).  
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Overview of QTL inconsistencies in mapping studies 

 

The Fasoula et al. (2004) study supports the commonly observed trend of inconsistent 

QTL detection. Genetic background, heritability, population size, number of environments, and 

number and density of genetic markers all play a major role in QTL detection (Kao and Zeng, 

1997). The main reasons for QTL inconsistency are experimental design and low detection 

power. Beavis (1994) designed a simulation study to examine QTL detection and the 

inconsistency of QTL analysis. Phenotypic variances associated with correctly identified QTL 

were greatly overestimated when progeny number was small (n=100) and but were more 

accurate when progeny number was large (1000). The highest power to detect QTL occurs when 

there is a small number of true QTL, a large number of progeny, and high heritabilities. 

Limitations to these parts of a QTL study, namely population size, prevent the detection of true 

QTL. Other possibilities for inconsistent QTL detection and confirmation can be attributed to 

allelic relationships and epistasis between a QTL and genetic background (Blanc et al., 2006). 

 

Fine mapping and candidate genes for protein concentration 

 

In order to develop more efficient markers for marker assisted selection, it is important to 

fine map a validated QTL. Fine mapping allows for the identification of better markers that are 

closer to the region of interest making tasks such as screening germplasm and gene cloning 

easier. The QTL on chr 20 originally identified in the aforementioned Diers study is currently 

one of the best characterized QTL associated with protein concentration. It has been mapped to 

the same region in several populations using different high protein parents which suggests there 

could be different alleles at this locus or the same allele in many sources (Diers et al., 1992; 

Brummer et al., 1997; Chung et al., 2003; Sebolt et al., 2003; Warrington et al., 2015). Nichols et 

al. (2006) localized the QTL to a 3-cM interval between SSR marker Satt239 and amplified 

fragment length polymorphism (AFLP), ACG9b. An evaluation of agronomic traits in lines with 

this QTL was inconsistent. This fine mapping study confirmed the QTL in the two backcross 

populations.  

With recent advances in genomics and the availability of the soybean genome sequence, 

the QTL on chr 20 has further been characterized.  Bolon et al. (2010) utilized transcript 
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profiling via Affymetric Soy GeneChip microarray and Illumina high-throughput transcriptome 

sequencing of a near isogenic line (NIL) pair differing for the high and low protein alleles for the 

chr 20 QTL. Fourteen genes mapped to the same region on chr 20 as the protein QTL in the 

Nichols et al. (2006) study, and 13 out of the 14 genes had transcript levels that were 

differentially expressed between the two NIL genotypes. These represent possible candidate 

genes involved in the determination of protein seed concentration. 

Many QTL have been identified; however, very few have been validated, evaluated for 

agronomic traits, or fine-mapped. If QTL are going to be useful in a breeding program, they must 

be better characterized.  

 

Sudden Death Syndrome 

 

Sudden death syndrome (SDS) was first observed in Arkansas in 1972 by H.J. Walters 

(Hirrel, 1983).  Since that time, the disease has spread to almost all soybean growing regions in 

the US and as far north as Canada (Rupe et al., 2001). In addition to multiple other countries, the 

disease also has been observed in Argentina and Brazil, the major soybean growing countries in 

South America (Nakajima et al., 1993; Ploper, 1993; Chehri et al., 2014; Tewoldemedhin et al., 

2015). Symptoms were first reported in Illinois in 1986 (Roy et al., 1997). From 1996 to 2009, 

SDS was listed as one of the most important soybean diseases in the US (Wrather et al., 2009; 

Wrather et al., 2010). Yield losses up to 80 percent have been attributed to the disease with yield 

losses between 5 percent and 15 percent more common (Roy et al., 1997). In 2009, estimated 

yield loss due to SDS was over 34.4 million bushels/0.94 million metric tons in the US (Wrather 

et al., 2010).  

 

Fusarium virguliforme 

 

The fungal causal agent of the disease was originally referred to as Fusarium solani 

(Mart.) Sacc. (Roy et al., 1989; Rupe, 1989) but in subsequent years was referred to as F. solani 

f. sp. glycines to designate its soybean host (Roy et al., 1997). In 2003, Aoki et al. (2003) 

observed two morphologically and phylogenetically distinct species classified as Fusarium 

solani which caused sudden death syndrome, F. tucumaniae in South America and F. 
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virguliforme in North America. F. tucumaniae is different from other species of F. solani in that 

it has longer and more slender footed conidia. F. virguliforme produces comma-shaped 

sporodochial conidia in addition to septate, falcate, footed aerial conidia which differentiates it 

from Fusarium phaseoli (Aoki et al., 2003). In contrast to F. tucumaniae, F. virguliforme does 

not form perithecia (fruiting body). F. virguliforme has no known teleomorph (sexual 

reproductive stage) (Covert et al., 2007). Most of the literature now refers to the causal agent of 

sudden death syndrome in the US as F. virguliforme (Aoki and O’Donnell) (Aoki et al., 2003). In 

2005, Aoki et al. identified two other species that caused SDS symptoms, Fusarium brasilense 

and Fusarium cuneirostrum which differ morphologically by their sporodocial conidia and 

phylogenetically (Aoki et al., 2005). It was later determined that Fusarium cuneirostrum did not 

cause SDS (O’Donnell et al., 2010; Aoki et al., 2012). An additional causal agent of SDS from 

Argentina and Brazil has been identified more recently, Fusarium crassistipitatum (Aoki et al., 

2012). 

Fusarium virguliforme overwinters freely in the soil and in plant residue as 

chlamydospores.  It infects roots early in the growing season when the fungus penetrates the 

root-cap zone and then spreads intercellularly through the corticular tissue including the xylem 

and phloem by its hyphae (Navi and Yang, 2006).  Rupe et al. (1999) found the soil 

concentration of F. virguliforme to be the highest in the top 15 cm of soil which is also were the 

most soybean roots are found. 

In 1989, Roy et al. (1989) and Rupe (1989) completed Koch’s postulates for SDS in two 

separate experiments growing and identifying the pathogen plated on potato dextrose agar 

(PDA). The isolates from plants displaying symptoms of SDS produced slow growing blue 

masses of macroconidia on PDA. There were few microconidia produced, and the PDA stained a 

dark maroon (Roy et al., 1989; Rupe, 1989). F. virguliforme was only isolated from the roots and 

lower stems and not from the leaves (Rupe, 1989). It was later observed that the fungus produces 

phytotoxins which are translocated to the leaves (Baker and Nemec, 1994; Jin et al., 1996; Ji et 

al., 2006). Four phytotoxins have been identified in cultures of F. virguliforme. One is a low 

weight, monorden identified by Baker and Nemec (1994), and another is a 17 kDa proteinaceous 

phytoxin identified by Jin et al. (1996). Additional work involving these two phytotoxins 

suggested the importance of light in the development of SDS symptoms. Light initiates a series 

of events where the free radicals develop, and the Rubisco large subunit is degraded initiating 
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programmed cell death (Ji et al., 2006). The identified third phytoxin is a 13.5-kDa acidic 

protein, FvTox1 reported by Brar et al. (2011). It was proposed FvTox1 is a single gene which 

produces free radicals that interrupt photosynthesis and is a major virulence factor in foliar 

symptom development of SDS (Brar et al., 2011; Pudake et al., 2013). Recently, a phytotoxic 

effector called FvNIS1 (necrosis-inducing secreted protein 1) has also been identified to be 

associated with SDS foliar symptoms (Chang et al., 2016). 

Over 262 F. virguliforme isolates have been identified and genotyped although no races 

have been reported (O’Donnell et al., 2010). These isolates have been collected from soybean 

growing areas in the US, Canada, Argentina, and Brazil. Isolate FSG1 (Mont-1) is commonly 

used by the soybean research community. F. virgilforme isolates have different levels of 

aggressiveness and produce varying foliar and root symptoms. It is possible that some isolates 

are better at colonizing root tissue whereas others are better at translocating phytotoxin to the 

leaves (Li et al., 2009). 

 

SDS symptoms 

 

Foliar symptoms of SDS commonly develop when the plant is in its reproductive phase, 

namely after flowering and before pod fill (Hartman et al., 2015a). Early symptoms tend to 

appear on the uppermost leaves as small scattered, interveinal light green or chlorotic spots 

giving a mottled appearance. The spots then enlarge and can become necrotic or may run 

together to form larger areas of interveinal leaf cholorosis. If symptoms progress, most of the 

affected tissue will become necrotic with green tissue only remaining near the veins. In severe 

cases, defoliation occurs with petioles remaining attached to the stem. Flowers and pods can also 

be aborted with the younger ones aborted first. This leads to decreased seed and pod fill in 

addition to fewer pods (Roy et al., 1997). Field disease severity is usually rated on a 1 to 9 scale 

as described by Njiti et al. (1996).  

Root symptoms become more pronounced with increased severity of foliar symptoms. 

Roots of infected plants can exhibit crown necrosis and lateral root rot. Inside the root, grayish to 

reddish brown discoloration radiates out from the pith; however, the pith remains white. Bluish 

sporulation may be seen on the taproot and lower stem. Plants are easily pulled from the soil 

(Roy et al., 1997).  
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Environmental conditions favoring SDS 

 

From its earliest detection, SDS has been commonly associated with high soil moisture 

and cool temperatures. Irrigated fields with high fertility and high yield potential exhibit the 

worst symptoms. Scherm and Yang (1996) conducted greenhouse and field experiments 

examining the effect of temperature and moisture on the development of SDS symptoms. In the 

greenhouse, root symptoms were most severe at 18°C whereas foliar symptoms were most 

severe between 22°C and 24°C. Symptoms were light over 30°C. Favorable conditions for 

disease development in the roots followed by favorable conditions for plant development leads to 

increased disease. Disease increases because increased levels of the toxin in the roots are able to 

be translocated to the leaves better which leads to foliar symptoms. The wettest treatments in 

both greenhouses and fields produced the worst SDS symptoms. Compacted field areas that 

retain more moisture for longer period of time also show more symptoms than non-compacted 

areas (Scherm and Yang, 1996). Field irrigation during late to mid reproductive stages showed 

greater increases in SDS development compared to irrigation during vegetative stages (de Farias 

Neto et al., 2006). Soils amended with calcium phosphate, potassium phosphate, potassium 

sulfate, sodium phosphate, or potassium nitrate also resulted in a 21% to 45% increase in SDS 

severity (Sanogo and Yang, 2001).   

 

Managing SDS 

 

It is difficult to manage SDS. Foliar fungicides have limited effects on the control of F. 

virguiliforme as inoculation takes place underground in the root early in the growing season 

(Henricksen and Elen, 2005). A seed treatment labeled for SDS control was recently made 

commercially available (Hartman et al., 2015b). Results from industry tests appear promising; 

however, the treatment is recommended for use with resistant varieties.  

Although there are rotations that decrease the presence of other soybean pathogens, there 

does not appear to be a rotation that significantly lowers the level of F. virguliforme in the soil 

(Rupe et al., 1997). Crop rotation is not only limited by the ability to of the pathogen to 

overwinter via chlamydospores but also its wide host range (Hartman et al., 2015b). F. 
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virguliforme symptomatic hosts include alfalfa (Medicago sativa), red clover (Trifolium 

pratense), common bean (Phaseolus vulgaris), pea (Pisum sativa), Canadian milk vetch 

(Astragalus canadensis), sugar beet (Beta vulgaris), and canola (Brassica napus) whereas 

asymptomatic hosts include corn (Zea mays), wheat (Triticum aestivum), ryegrass (Lolium 

perenne L.), pigweed (Amaranthus palmeri), and lambsquarters (Chenopodium album) 

(Kolander et al., 2012).  

Tillage has been suggested as a cultural control for SDS (Hartman et al., 2015b). Wrather 

et al. (1995) found no-till increased SDS foliar symptoms when compared to disk-till and ridge-

till. Vick et al. (2003) reported subsoiling greatly reduced foliar symptoms compared to no-till in 

compacted areas (Vick et al., 2003). The efficacy of tillage to control SDS is likely dependent on 

location and is likely best suited for control in fields with compaction problems. 

Later planting dates have also been associated with decreased SDS symptoms. In addition 

to studying tillage, Wrather et al. (2005) observed the effect of mid-May, mid-June, and late July 

planting dates. In findings similar to Hershman et al. (1990), early planting resulted in increased 

SDS symptoms. However, later planting dates tend to lead to decreased yields, so this is not 

necessarily an appropriate control for farmers to use.  

Resistant cultivars are the one of the best methods of SDS control. Field resistance has 

been classified as horizontal, rate reducing and partial. It is controlled by many genes and with 

high heritabilities reported (see below) (Njiti et al., 1996). Several resistant genotypes have been 

identified and have been made available to producers; however, none of the current resistance is 

complete. All genotypes will display some SDS symptoms if conditions are favorable 

(Hershman, 1990; Iqbal et al, 2001; Mueller et al., 2003). 

 

SDS and SCN 

 

In early observations of sudden death syndrome, Hirrel (1983) noted the presence of 

soybean cyst nematodes in affected fields. He noted SCN was associated with 70 to 80% of 

plants displaying SDS symptoms in 30 fields across four states (Hirrel, 1983).  

McLean and Lawrence (1995) studied the effect of F. virguliforme on SCN in a 

coinoculation study. After 40 days, the fungus was found in 37% of examined cysts. It was also 

isolated from the cortex and syncytia in plant tissue near developing juveniles. Wounding caused 
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by the nematode can provide an opportunity for F. virguliforme to enter plant tissue. Roy et al. 

(2000) isolated F. virguliforme in cysts from a majority of fields in the Midwest and South 

affected with both pathogens (Roy et al., 2000). The ability of F. virguliforme to survive in SCN 

cysts can possibly influence the severity of SDS and its dispersal. The cysts provide a more  

protected environment from other soil microorganisms than either soil or soybean residue. In an 

isolated environment such as the cyst, there is little competition with other organisms leading to 

enhanced survival. Cysts are possibly also a food source to spur the growth of chlamydospores in 

the spring. The spread of SDS from its original place of detection in Arkansas could be in part 

due to F. virguliforme colonized cysts (McLean and Lawrence, 1995). 

In early greenhouse studies where soil was inoculated with F. virguliforme and SCN, 

SCN led to more severe foliar SDS symptoms but was not necessary for disease infection (Roy et 

al., 1989). A field microplot study produced similar results. Foliar disease symptoms appeared 

three to seven days earlier and were more severe in plots with F. virguliforme and SCN than 

those with only F. virguliforme (McLean and Lawrence, 1993). In a later microplot study, F. 

virguliforme and SCN also damaged plants synergistically in coinoculated plots. Plots with 

natural levels of SCN also had high levels of SDS. In one season, only coinoculated plots 

displayed SDS symptoms. These results pointed to a positive correlation between the pathogens 

(Xing and Westphal, 2006). Enhanced symptoms of SDS caused by SCN may explain the typical 

scattered clustered pattern of diseased plants in a field. SCN is usually not distributed evenly 

through the field, so “hot spots” of SDS may occur where SCN populations are particularly high 

(Scherm and Yang, 1996).  

Some studies have supported the association between SCN and SDS, but others have not. 

A correlation between cyst counts and disease severity in a Scherm et al. (1998) study on soil 

variables in SDS fields in Iowa was visible but weak, and the cross-correlation coefficients for 

SCN cysts were not always significant (Scherm et al., 1998).  Gao et al. (2006) inoculated a 

susceptible genotype with different levels of F. virguliforme and SCN and conducted real-time 

polymerase chain reaction. Infection of soybean roots by SCN did not affect colonization by the 

fungus, and the only significant main effect was fungal population. Both pathogens reduced plant 

growth, but SCN did not increase foliar symptoms of SDS. Overall, statistical interactions 

between SCN and F. virguliforme were rarely significant. 
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Breeding for SDS resistance 

 

Heritabilities for foliar disease symptoms of SDS of approximately 0.83 have been 

reported (Hnetkovsky et al., 1996; Njiti et al, 1996; de Farias Neto et al., 2007; Wen et al., 2014). 

A breeder can select for a highly heritable trait, so there is opportunity to improve SDS 

resistance through breeding.  

Cultivars resistant to SDS have been identified in field and greenhouse studies (Lightfoot, 

2015). Field screens have been conducted at locations with a history of SDS symptoms or 

locations inoculated with the pathogen (Chang et al., 1996; Hnetkovsky et al., 1996; de Farias 

Neto et al., 2006). Disease severity and disease incidence (DI) are taken about the R6 growth 

stage to calculate a disease index (DI) (Njiti et al., 1996).  In greenhouse screenings, seeds are 

planted into soil with incorporated or layered inoculum. Seedlings are rated for foliar symptoms 

approximately 21 days after planting (de Farias Neto et al, 2008; Hartman et al., 1997; Hashmi et 

al., 2005). The field and greenhouse screening methods for SDS have pros and cons; however, 

they both have displayed success in identifying resistance. 

There are several sources of resistance to SDS in soybean germplasm. Between 1997 and 

2003, over 6800 plant introductions and cultivars in the USDA Soybean Germplasm Collection 

were screened for SDS resistance in a greenhouse (Hartman et al., 1997; Mueller et al., 2002; 

Mueller et al, 2003). Ninety lines were identified as having a moderate resistance level better 

than or equal to that of the check(s) in the study. These studies were beneficial in that they 

pinpointed germplasm that can be used to identify new resistance genes and alleles.  

 

Marker-assisted breeding and SDS QTLs 

 

Marker-assisted selection can make the breeding process more efficient by eliminating 

some laborious phenotyping by making selection for resistance more accurate. Currently, 56 

marker associations with SDS resistance on 11 chromosomes have been identified and listed at: 

http://www.soybase.org/search/index.php?qtl=SDS  (Soybase, 2017). Further research has indicated 

that QTL associated with resistance control either foliar symptom severity, root symptom 

severity, or both (Njiti et al., 1998; Triwotayakorn et al., 2005; Kazi et al., 2007; Abdelmajid et 

http://www.soybase.org/search/index.php?qtl=SDS
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al, 2012). Locations of several QTL have been the same across mapping populations (Njiti et al., 

2002; Luckew et al., 2013; Wen et al., 2014).  

Several QTL associated with SDS resistance have been identified, but only a few have 

been confirmed. An outline set forth by the Soybean Genetics Committee for confirming QTL 

can be found at: www.soybase.org.  Njiti et al (1998) developed a secondary population of NILs 

from a recombinant inbred line (RIL) from the “Essex” x “Forrest” population that was used to 

map SDS QTL. The NILs were segregating within the regions of chr 18 (LG G) and chr 6 (LG 

C2) where QTL associated with SDS resistance had been previously mapped in the primary RIL 

population. The Forrest allele of the region on chr 18 was associated with a decrease in disease 

index (DI) and infection severity (DS) across locations with p=0.0004. de Farias Neto (2007) 

mapped resistance QTL on chr 19 (LG L) and chr 17 (LG D2). In a “Ripley” x “Spencer” 

population, the QTL on chr 17 mapped to the same genetic region as a QTL they also mapped in 

a population developed by crossing PI567374 x “Omaha.” The QTL was then tested in an F2 

population derived from a BC1F2 with PI567374 as the donor parent and Omaha as the recurrent 

parent. It was also tested in an F8 population developed from an F5-derived line from the original 

Ripley x Spencer mapping population that was segregating for the region of interest. In both 

populations, there was a significant association between markers linked to the QTL and 

greenhouse DS. Plants with the Ripley allele or the PI567374 allele had less foliar symptoms. 

The QTL on chr 17 was designated cqSDS-001 (de Farias Neto et al., 2007).  

While many QTL for SDS resistance have been come mapped in bi-parental populations, 

recently association mapping has become a useful tool to map SDS resistance QTL (Lightfoot, 

2015). These studies have used diverse mapping panels to mapped novel loci for resistance along 

with previously mapped SDS QTL. (Wen et al. 2014; Chang et al., 2016). 

 

Fine mapping and candidate genes for SDS resistance 

 

One of the best characterized genetic regions associated with SDS resistance is a cluster 

of loci on chr 18. Meksem et al. (1999) examined this genomic region in a fine mapping study 

with resistance derived from Forrest. SCN parasitism, SDS foliar symptoms, and SDS root 

symptoms were rated in NILs with recombinations within the region of interest. The region near 

the RFLP marker Bng122D was significantly associated with SDS foliar and root symptoms 
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whereas Satt309 was significantly associated with resistance to SCN and SDS foliar symptoms 

but not with root symptoms. The latter foliar resistance gene could not be separated from rhg1. 

Although putative locations of regions related to SDS resistance were reported, due to low map 

resolution they were unable to determine whether resistance to SDS and SCN in Forrest was 

conferred by a cluster of four genes with two closely linked pairs or two genes with pleiotrophic 

effects where one controlled SDS root and foliar symptoms and one controlled SCN infection 

and SDS foliar symptoms. Triwitayakorn (2005) also examined the cluster of genes on chr 18 

associated with SDS resistance, and identified candidate genes for QRfs1 and QRfs2. QRfs2 

clustered with rhg1 and provided resistance to foliar symptoms in the Meksem et al. study 

whereas QRfs1 provided resistance to root symptoms. A 0.2 cM resolution map of the region on 

chr 18 was developed between the 7.5 cM interval between Satt309 and SIUC-Sat122 

(Triwitayakorn et al., 2005). A gene within the Rfs2/rhg1-a locus, GmRLK18-1, was later 

inserted as a transgene and resistance to SDS and SCN was observed (Srour et al., 2012).  

More genetic studies to confirm and fine map QTL are needed for increasing the 

efficiency of incorporating SDS resistance into cultivars by breeders because these studies will 

increase the predictability of markers linked to resistance traits.  

 

Soybean Cyst Nematode 

 

Soybean cyst nematode (SCN) or Heterodera glycines Ichinohe is the most economically 

important pathogen of soybean in the US. From 2006-2009, the estimated average annual loss to 

SCN was 128.6 million bushels/3.5 million metric tons representing a $1.286 billion loss to 

producers (Koenning and Wrather, 2010). SCN was first identified in North Carolina in 1953; 

however, since this time, the pathogen has spread to almost all major soybean producing areas.  

SCN is a soilborne pathogen with an egg and four juvenile stages. The eggs can 

overwinter within a female cyst under harsh environmental conditions (Alston and Schmitt, 

1988; Jackson et al., 2005). The first stage juvenile develops within an egg and molts to become 

a second stage/infective stage juvenile (J2). The J2 moves a short distance through the soil to the 

root tips. It penetrates the root and establishes a feeding site called a syncytium and engorges. 

The juvenile molts three more times before becoming an adult. Females become immobile and 

continue to feed on the root. Their bodies swell and become yellow, lemon-shaped cysts that 
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protrude from the root and contain approximately 100 to 200 eggs. Eggs only develop if they are 

fertilized by a male. At death, the cysts are brown and dislodge from the root. Adult males are 

vermiform and mobile. They stop feeding, exit the root to fertilize females, and die. The life 

cycle takes about 25 to 40 days with several generations occurring in a single growing season 

(Triantaphyllou and Hirshmann, 1962; Jardine and Todd, 2001).  

 

SCN symptoms 

 

The most common symptom of SCN is yield loss; so the producer usually does not 

become aware of an SCN problem until it is too late for yield to be protected. Visible symptoms 

include stunting, chlorosis, decreased root mass, and/or decreased nodulation. In severe cases, 

premature plant death occurs. Many of these symptoms are indistinguishable from other diseases 

and abiotic stresses. Soil sampling to identify cysts is the best way to confirm if a symptom is 

caused by SCN (Jardine and Todd, 2001).  

 

Conditions conducive to SCN development 

 

SCN is heavily influenced by environmental conditions including soil type and moisture 

levels. Greater soil and root populations are observed in sandy soils compared to clay soils (Todd 

and Pearson, 1988). Levels of SCN can increase to damaging levels in fine textured soils but at a 

lower rate due to decreased reproductive levels. Several stages of the nematode’s life cycle 

including hatching, movement, and development require aerobic respiration. Fine textured soils 

retain water for longer periods of time creating anaerobic conditions unfavorable to the 

nematode’s survival. Heavier textured soils can allow for easier nematode movement as there is 

more space between soil particles (Koenning and Barker, 1995).  

SCN survival is also affected by temperature. Slack et al. (1972) noted larvae survived 

for over 630 days in water at temperatures between 0°C and 12°C but died when ice crystals 

formed within close proximity or after a day at 40°C. In natural soils, nematodes survived 6 to 8 

years between 0°C and 20°C and were not immediately killed by extreme high (above 40°C)  

and low temperatures (below freezing). At temperatures over 20°C larvae survival time 

decreased with increased temperatures. Optimum temperature for an egg to hatch is 24°C where 
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there is low mortality and development is rapid. Hatching has been observed between 20°C and 

30°C (Alston and Schmitt, 1988). Penetration, development, and reproduction of SCN are 

negatively affected at temperatures below 14°C and above 33°C (Hamblen et al., 1972).  

 

Control methods for SCN 

 

Rotation to non-host crops such as corn, wheat, or sorghum can be an effective means of 

control, but these methods do not completely eradicate the pathogen from the soil because of an 

egg’s ability to overwinter in the soil protected within the cyst for several years (Jackson et al., 

2005; Miller et al., 2006; Porter et al., 2001). Multiple seed treatments have also been made 

available to producers, but they are recommended to be used in conjunction with genetic 

resistance. The best method of SCN control is resistant cultivars. SCN are able to penetrate the 

root and form syncytia in SCN-resistant cultivars; however, the syncytia either form slowly or 

become necrotic soon after they are formed. This causes the nematode to starve to death 

(Williamson and Hussey, 1996). 

 

Genetic resistance to SCN 

 

Soybean genetic resistance to SCN was identified shortly after the pathogen was found in 

the US. Caldwell et al. (1960) used a traditional genetic study and showed that resistance from 

PI548402 (“Peking”) was controlled by the three recessive and independent alleles: rhg1, rhg2, 

and rhg3. In a later study, Matson and Williams (1965) reported a fourth dominant resistance 

gene from Peking that was named Rhg4. Rao-Arelli et al. (1992) reported another dominant 

allele in PI88788 which was given the designation Rhg5 (Rao-Arelli et al., 1992). 

Over 118 soybean plant introductions have been identified as SCN resistant and represent 

potential sources of resistance (Arelli et al., 2000).  It appears genetic diversity for SCN 

resistance exists; however, it is narrow with only seven sources of resistance currently used by 

breeders to create commercial cultivars. Several of the commonly used resistance sources have 

one or more genes in common making genetic diversity even more limited. Most SCN resistance 

in cultivars is derived from PI88788 (Diers and Arelli,, 1999; Shier, 2008). This PI has shown a 

broad level of resistance to HG types, and it is currently the source of resistance that has been 
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most successfully used in developing cultivars with the best agronomic performance. Of 760 

maturity group I to IV cultivars listed as having SCN resistance, 705 had resistance derived from 

PI88788 alone (Concibido et al., 2004).  

With the heavy reliance of breeders on just a few sources of resistance, it is important to 

continue to search for novel resistance sources. This need is even more important when the 

ability of nematodes to adapt and overcome plant resistance is taken into account. In a survey of 

soil samples from Illinois, 70% of the SCN populations found could overcome PI88788 

resistance (Niblack et al., 2008). One way to find new resistance genes is by screening soybean 

relatives such as Glycine soja. It has been shown that stacking resistance alleles from wild 

soybean with those from domestic sources can increase resistance (Kim et al., 2011).  

 

rhg1 

 

The rhg1 locus has been mapped in almost all SCN the resistant accessions used in 

mapping studies and is the most common SCN resistance gene in cultivars in the US. Brucker et 

al. (2005) identified allelic differences in a population segregating for rhg1 alleles from PI88788 

and Peking. The resistance allele from PI88788 is now designated rhg1-b.  

SCN resistant cultivars protect yields under high SCN pressure, but they were shown to 

yield 5 to 10% less than susceptible cultivars when pressure is low (Noel, 1992). Mudge et al. 

(1996) tested two independent breeding populations with rhg1 from PI 209332. Rhg1 was shown 

to be linked to two QTL conferring yield depression.  They proposed this may be due to yield 

drag where yield is suppressed by pleiotrophic effects of resistance genes or due to the effect of 

yield reducing alleles in coupling linkage with the resistance gene. Kopisch-Obuch et al. (2005) 

tested five soybean populations of NILs segregating for rhg1-b. They detected yield depression 

in one of the NIL populations but suggested further research to confirm and refine the findings. 

 

Classifying SCN isolates 

 

The SCN HG type system is the current way to classify SCN populations. Prior to this 

system, resistance was classified using the SCN race system. This method incorporated four 

sources of resistance: “Pickett”, Peking, PI88788, and PI90763. If a SCN race had a female 
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index (FI) above 10 percent it was designated a “+”whereas a female index at or below 10 

percent was designated a “-“ (Schmitt and Shannon, 1992). Female index is calculated by 

dividing the mean number females on a test soybean line by the mean number of females on the 

standard susceptible and multiplying by 100. The problem with the race classification system 

was that it only incorporated four sources of resistance and did not adequately characterize 

SCN’s diversity. Additionally, the term “race” was not appropriate because the genotype of a 

nematode population could not be inferred from the test. The HG type system addresses some of 

these problems by allowing for the addition of several sources of resistance. SCN populations are 

collected by environment and are tested on several differentials (Peking, PI88788, PI90763, 

PI427654, PI209332, PI89772, and “Cloud”) with each FI noted. A standard susceptible, “Lee 

74”, is used to calculate FI. A FI above ten receives a numerical designation, and the HG type 

corresponds to the differentials on which a nematode population can reproduce (Niblack et al., 

2002). 

 

Breeding for SCN resistance 

 

Breeding for SCN resistance is difficult. The pathogen is variable, and most resistance 

sources control only a subset of HG types. Often, several genes are needed to produce broad 

based resistance. The sources of resistance also are not adapted to the soybean growing areas in 

US and can be hard to introduce into elite germplasm (Concibido et al., 2004). The recent 

sequencing of the soybean genome combined with the exponential decrease in sequencing costs 

has opened the doorway for marker assisted selection (MAS) to become a more viable option in 

breeding for SCN resistance (Concibido et al., 2004; Schmutz et al., 2010). The conventional 

way to screen for SCN resistance is to inoculate plants in a greenhouse and calculate their female 

indices; however, molecular technology presents another option. Once markers linked to QTL 

associated with resistance are identified, they can then be used to select resistant and susceptible 

genotypes. Marker-assisted selection for SCN resistance is of great interest to breeders because 

the conventional greenhouse screening is expensive, time consuming, and sometimes unreliable. 

Markers have the ability to address each of these flaws to produce cheaper, more accurate data in 

a shorter amount of time. Additionally, markers also present the opportunity to identify new 

resistance genes because genotypes can be easily screened with thousands of markers.  
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QTLs for SCN resistance 

 

From 1986 to 2006, over 17 papers have reported over 62 marker-based quantitative trait 

locus (QTL) associations with SCN resistance (Guo et al., 2006). In 1994, Concibido et al. 

detected a major resistance QTL on chr18 using a population developed from a cross between 

SCN-susceptible experimental line M83-15 and the line M85-1430, which has SCN resistance 

derived from PI209332. This QTL was tightly linked to the RFLP marker K069 and had an R
2
 

value of 0.16 (Concibido et al., 1994). The QTL was later assigned the gene symbol rhg1. Since 

this study, QTL in the rhg1 interval have been identified in multiple backgrounds (Guo et al., 

2006; Wu et al, 2009; Vuong et al., 2011). 

Seven SCN resistance QTL have been confirmed based on rules from the Soybean 

Genetics Committee (Soybase, 2017) including rhg1, which has the confirmed QTL designation 

cqSCN-001 and Rhg4, which has the confirmed QTL designation cqSCN-002. Kim et al. (2010) 

was able to fine map the rhg1-b allele from PI88788 by testing lines with known genetic 

recombination within the area of the rhg1 locus.  Lines were phenotyped for resistance to the 

SCN isolate PA3 (HG type 0). Analysis placed rhg1-b within a 67-kb region between the SSR 

markers, BARCSOYSSR_18_0090 and BARCSOYSSR_18_0094. This region was 34 kb from a 

receptor like-kinase gene for rhg1 from “Peking” described by Lightfoot and Meksem (2002) 

(Kim et al., 2010).  

Young et al (1999) identified PI567516C as the only source of resistance to LY1 

nematodes, a highly virulent synthetic population derived from a mass mating of HG Type 1.2.3  

females with HG Type 1.2 males. Further research confirmed the accessions’s resistance (Arelli 

and Young, 2005) and its genetic distinction from another commonly used resistance source, 

“Hartwig” (Chen et al., 2006). QTL were mapped using SSR markers in a population derived 

from a PI567516C x Hartwig cross. A genetic region on chr 10 (LG O), defined by Satt592, 

Satt331, and Sat_274, was associated with LY1 resistance (Arelli et al., 2010). These markers 

can be used to aid in marker assisted selection for nematode resistance. Vuong et al. identified 

four QTL associated with SCN resistance using F2:3 progeny from a Magellan x PI567516C 

cross. One of these QTL was in the marker interval Satt_038-Satt592 on chr 10. It was confirmed 
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in a F6:7 RIL population derived from the same cross. The chr 10 QTL conferred resistance to HG 

types 2.5.7, 0, 2.7, 1.3.5.6.7, and LY1 (Vuong et al. 2010).  

QTL have also been mapped in G. soja accessions. Wang et al. (2000) identified two 

significant QTL in populations derived from a cross between the G. soja PI468916 and G. max 

experimental line A81-356022. The QTL were mapped to chr 18 and chr 15 with the G. soja 

allele conferring resistance to SCN. Kabelka et al. (2005) were able to confirm both QTL in a 

population of BC4F3:4 lines developed with PI468916 as the donor parent and A81-356022 as the 

recurrent parent. A significant association was observed between the AFLP and SSR markers on 

chr 15 and chr 18 and the SCN phenotypes of the population (P<0.05). Additionally, AFLP 

markers and bulk segregant analysis identified additional markers in the regions containing the 

QTLs. The QTL on chr 18 was mapped to a 18.5 cM region with an average marker distance of 

3.1 cM whereas the QTL on chr 15 was mapped to a 13.2 cM region with an average marker 

distance of 0.5 cM. The QTL on chr 15 and chr 18 were designated as cqSCN-006 and cqSCN-

007, respectively.  

Recently, Kim and Diers (2013) fine mapped cqSCN-006 and cqSCN-007. Over 1200 F5 

and F6 plants were tested with SSR markers flanking cqSCN-006 on chr 15 to identify 

recombinants. The progeny from 20 recombinant plants were then tested with more markers and 

screened for SCN resistance in the greenhouse. This effort resulted in the mapping of the QTL to 

a 803.4 kb region. A similar strategy was used to fine map cqSCN-007 to a 146.5 kb region on 

chr 18. In this effort, over 1600, F5 plants were tested with SSR markers flanking the QTL to 

identify recombinants. The progeny from 18 recombinant plants were then tested with additional 

markers and screened for SCN resistance in the greenhouse.   

 The identification and characterization of QTL associated with SCN resistance aids in 

more advanced genomic studies aimed at pinpointing candidate genes and their biological 

functions.  

 

Candidate genes and resistance mechanisms 

  

Advances in genomics have enabled researchers to build upon the information uncovered 

in previous genetic studies to learn more about SCN-resistance.  
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Liu et al. (2012) cloned Rhg4 from Forrest (Peking resistance). They then conducted 

mutation analysis, gene silencing, and transgenic complementation to verify that the cloned gene 

conferred resistance. The gene encoded a serine hydroxymethytransferase (SHMT), an enzyme 

needed for the interconversion of serine and glycine and therefore cellular one-carbon 

metabolism. Resistant and susceptible alleles of Rhg4 had two genetic polymorphisms that 

distinguished them. The polymorphisms disrupt the plants folate pathway which can trigger 

either a hypersensitive response or a resistance signaling pathway (Liu et al., 2012)  

Cook et al. (2012) reported a novel mode of plant resistance conditioned by rhg1-b. The 

31-kb segment at this locus encoded an amino acid transporter, an alpha SNAP protein, and a 

wound inducible domain protein. Moreover, susceptible genotypes had only one copy of this 

segment whereas resistance genotypes had ten copies. When the genes were overexpressed on an 

individual basis, there was no resistance; however, when the genes were overexpressed together, 

resistance was enhanced. This indicated copy number variation plays an important role in SCN 

resistance. 

 

Genetic resistance summary 

 

 As one of few practical methods of SCN control, resistance is an important trait for 

producers. Breeders are actively working to release cultivars that protect yield from SCN 

damage. Genomic studies have revealed the complexity of SCN resistance and have also 

provided genetic information for breeders to exploit in creating new cultivars. Genetic gain has 

been increased with the ability to assemble beneficial genotypic variation. With genetic 

architecture of SCN resistance better characterized, heritability can also increase while selection 

intensity and cycle time can decrease.  

Currently, QTL studies and new marker technology are having the greatest impact on 

resistance breeding. Lines containing SCN resistance genes such as rhg1 can now be easily 

identified with markers. This allows selections to be made faster and more accurately. With 

advances in genetic mapping and marker technology occurring quickly, it may become easier to 

identify new and more effective sources of resistance.  
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CHAPTER 2: IMPACT OF SEED PROTEIN ALLELES FROM THREE SOYBEAN 

SOURCES ON SEED COMPOSITION AND AGRONOMIC TRAITS* 

 

 

Abstract 

 Soybean [Glycine max (L.) Merrill] meal is one of the most important plant-based protein 

sources in the world. Developing cultivars high in seed protein concentration and seed yield is a 

difficult task because the traits have an inverse relationship. Over two decades ago, a protein 

quantitative trait loci (QTL) was mapped on chromosome (chr) 20, and this QTL has been 

mapped to the same position in several studies and given the confirmed QTL designation cqSeed 

protein-003. In addition, the wp allele on chr 2, which confers pink flower color, has also been 

associated with increased protein concentration. The objective of our study was to evaluate the 

effect of cqSeed protein-003 and the wp locus on seed composition and agronomic traits in elite 

soybean backgrounds adapted to the Midwestern USA. Segregating populations of isogenic lines 

were developed to test the wp allele and the chr 20 high protein QTL alleles from Danbaekkong 

(PI619083) and PI468916 at cqSeed protein-003. An increase in protein concentration and 

decrease in yield were generally coupled with the high protein alleles at cqSeed protein-003 

across populations, whereas the effects of wp on protein concentration and yield were variable. 

These results not only demonstrate the difficulty in developing cultivars with increased protein 

and yield but also provide information for breeding programs seeking to improve seed 

composition and agronomic traits simultaneously.  

  

   

 

 

 

 

*Submitted to Theoretical and Applied Genetics. Brzostowski, L.F.  et al. 2017. Theor. Appl. 

Genet. 
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Introduction 

 

Soybean is grown as a source of protein and oil, and soybean seed averages 

approximately 350 g kg
-1

 protein (130 g kg
-1

 moisture basis). The seed contains a good balance 

of the amino acids necessary to meet the dietary requirements of swine and poultry (Liu, 1997; 

Kerley and Allee, 2003; Cromwell, 2012), which makes it an exceptional source of protein meal 

for livestock and a leading source of plant-based protein in the world (Wilson, 2008; Cromwell, 

2012). It is important for breeders to continue to develop soybean cultivars that maintain and 

improve current protein levels, so soybean will continue its prominence as a livestock feed.                                          

There is considerable range in seed protein concentration in soybean germplasm 

accessions. In the USDA Soybean Germplasm Collection, there are accessions with protein 

concentrations, on a 130 g kg
-1

 moisture basis, as low as 276 g kg
-1

 and as high as 504 g kg
-1

 

(USDA, 2017). Additionally, protein concentration is a highly heritable trait with reported 

heritabilities of up to 0.99 (Brummer et al., 1997; Chung et al., 2003; Eskandari et al., 2013).  

Although a high heritability and a substantive range in genotypic values  should make 

increasing seed protein concentration an obtainable objective for breeding programs, complex 

relationships between protein, oil, and yield have made it difficult to efficiently combine high 

values for each of these three desirable traits into a single cultivar. The negative correlations 

between protein and oil concentration and protein and yield have been well established (Hartwig 

and Kilen, 1991; Wilcox and Cavins, 1995; Sebolt et al., 2000; Wilcox and Shibles, 2001; Chung 

et al., 2003; Wilson, 2004; Eskandari, et al., 2013; Bandillo et al., 2015). The leading hypothesis 

for the negative correlations is the physiological relationship between nitrogen and carbon 

supply. Both nitrogen and carbon supply play a role in yield and seed composition and are 

affected by nitrogen accumulation, partitioning, and whole plant remobilization (Sinclair and 

deWit, 1975). Protein, oil, and yield rely on the same limited carbon energy supply, and each 

component has a different energy requirement (Hanson, et al., 1961; Shimura and Hanson, 1970; 

Chung et al., 2003). On a genetic basis, hypotheses for the negative genetic correlations between 

protein and yield and protein and oil include but are not limited to pleiotropic effects or linkage 

drag (Chung et al., 2003; Nichols et al., 2006; Bandillo et al., 2015).  

While the negative correlation between yield and protein concentration is strong, it is 

weaker than that between protein and oil (Chung et al., 2003). There is evidence that the 
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relationship between yield and protein can be modulated. Individual lines and groups of lines 

with elevated protein and yield have been identified in studies in which a high protein phenotype 

present in a low yielding parent has been backcrossed into a low protein, high yielding parent 

(Wehrmann et al., 1987; Wilcox and Cavins, 1995). In addition, recurrent selection and restricted 

index selection have been successfully used in developing high protein, high yielding lines (Brim 

and Burton, 1979; Holbrook et al., 1989). Following 26 generations of random mating to reduce 

linkage disequilibrium, Recker et al. (2014) observed no significant genetic correlations between 

yield and protein. However, a significant negative correlation between oil and protein was still 

observed, which provides further evidence of a pleiotropic relationship between the two traits. 

The aforementioned studies suggest there can be success in increasing yield and protein 

simultaneously when the appropriate breeding strategy is implemented. Evaluation and 

characterization of QTL associated with protein concentration can provide valuable information 

to help determine the best breeding scheme to meet seed composition and yield objectives.  

Quantitative trait loci (QTL) for protein concentration have been mapped to all soybean 

chromosomes (Soybase, 2017). In one of the first QTL mapping studies in soybean, Diers et al. 

(1992) mapped two seed protein QTL in a population derived from a cross between the G. max 

experimental line, A81-356022, and the Glycine soja Siebold & Zucc. plant introduction, 

PI468916.  One protein QTL was mapped to chromosome (chr) 15 (formerly linkage group (LG) 

E), whereas the other mapped to chr 20 (formerly LG I). These QTL were confirmed based on 

guidelines set forth by the Soybean Genetics Committee (Soybase). The QTL on chr 15 was 

given the designation cqProt-001 (Fasoula et al., 2004), and the QTL on chr 20 was designated 

cqProt-003 (Nichols et al., 2006). These designations have since been updated on the Soybase 

website (Soybase, 2017) and are now listed as cqSeed protein-001 and cqSeed protein-003. 

Protein QTL have been mapped from several sources to the same genomic regions on chr 15  

(Lee et al., 1996; Brummer et al., 1997; Fasoula et al., 2004; Kim et al., 2015; Phansak et al., 

2016) and chr 20 (Brummer et al., 1997; Sebolt et al., 2000; Chung et al., 2003; Wang et al., 

2014; Warrington et al., 2015; Phansak et. al, 2016) suggesting these loci may have several 

alleles or the same alleles may be in several accessions or alternatively, there could be multiple 

closely linked QTL in these intervals. Follow-up studies have sought to refine the locations of 

the chr 15 and chr 20 QTL using advanced genetics techniques (Bolon et al., 2010; Hwang et al., 

2014, Vaughn et al., 2014; Kim et al., 2015; Bandillo et al., 2015). 
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The Korean cultivar Danbaekkong (PI619083) contains a high protein allele at the chr 20 

QTL (Harris, 2001; Yates, 2006; Warrington et al., 2015). Danbaekkong is a late maturity group 

(MG) IV soyfood cultivar (Kim et al, 1996). Although PI468916 and Danbaekkong have protein 

QTL that map to the same region on chr 20, it is unknown whether their alleles are the same or 

different. We will herein refer to the high protein QTL allele from Danbaekkong as CHR20-D 

and the high protein QTL allele from PI468916 as CHR20-PI.  

CHR20-PI has been evaluated across northern U.S. soybean backgrounds and was found 

to be associated with greater protein, reduced yield, reduced oil, smaller seeds, taller plants, 

and/or earlier maturity (Sebolt et al., 2000; Nichols et al., 2006). Evaluation of CHR20-D in 

southern U.S. backgrounds and locations has shown an inconsistent association with yield, and it 

has been suggested that the Danbaekkong high protein allele could be successfully used to 

develop lines with high protein and yield (Harris, 2001; Yates, 2006). A recently released MGIII 

cultivar containing CHR20-D was demonstrated to have increased protein concentration and no 

yield loss compared to the checks (Mian et al., 2017). However, CHR20-D has not been directly 

evaluated in northern germplasm, and thus there is a need to determine whether its effect on 

protein and other traits is similar to what was observed by the high protein allele for CHR20-PI.  

The recessive wp allele, which confers pink flower color, was mapped to chr 2 (formerly 

LG D1b), and this allele was found to be associated with increased seed protein concentration 

(Stephens and Nickell, 1992; Stephens et al. 1993). Stephens et al. (1993) also showed that the 

wp allele was associated with larger seeds and decreased seed oil concentration (Stephens et al. 

1993).  Hegstad et al. (2000) observed lines containing the wp allele in two populations had 

increased protein concentration, decreased oil concentration, later maturity, and increased plant 

height. Additionally, significant yield reductions associated with wp were observed in one 

population. Zabala and Vodkin (2005) determined that the pink flower color caused by the wp 

allele was the result of the insertion of a transposable element in the flavanone 3-hydroxylase 

gene 1.  To date, the wp allele has not been tested in a background other than the one in which it 

was first discovered.                                                                                                                                     

 Before a protein-increasing QTL or gene can be widely used in breeding programs, it is 

important to analyze its effect, not only on protein concentration, but also agronomic traits, 

especially yield, in various high-yield genetic backgrounds. The objective of this study is to test 
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the effect of CHR20-D, CHR20-PI, and wp on protein concentration and other agronomic traits 

in multiple genetic backgrounds.  

Materials and Methods  

 

Plant Material 

 

Population Development CHR20-D 

 

 Two populations of isogenic lines segregating for CHR20-D were developed. The donor 

parent Danbaekkong was mated to the recurrent parents ‘Dwight,’ a late MG II cultivar (Nickell 

et al., 1998), and LD02-5025, a late MG II elite breeding line (Cary and Diers, 2007). An F2 

plant that was homozygous for CHR20-D was selected from each mating and backcrossed to the 

respective recurrent parent using simple sequence markers (SSR) linked to the chr 20 QTL to 

facilitate the introgression without the need to analyze the seed protein contents of backcross 

progeny. An additional generation of backcrossing was conducted to reach the backcross-two F1 

(BC2F1) generation. After each generation of backcrossing, the presence of the CHR20-D allele 

was verified using several SSR markers linked to the QTL including Satt614, Satt239, and 

Satt354 (Nichols et al., 2006). Heterozygous BC2F1 plants were selfed to produce BC2F2 seed. 

Plants in this selfed generation were genotyped with markers linked to the QTL to identify plants 

homozygous for (1) the high protein allele (i.e., CHR20-D) from the donor and (2) the 

corresponding low protein allele from the recurrent parent. Any lines exhibiting a recombination 

between the SSR donor and recurrent parent markers were discarded. Two populations of BC2F2-

derived lines, one for each recurrent parent, plus their respective recurrent parents and check 

cultivars were grown in the field in 2013 and 2014.  

 

Population Development CHR20-PI and wp  

 

Four populations were developed from four separate backcrosses (BC4) in which one of 

four different Illinois-adapted genotypes were used as a recurrent parent.  These parents included 

the two maturity group II cultivars Dwight (Nickell et al., 1998) and Loda (Nickell et al., 2001), 

and the two maturity group IV experimental lines LS93-0375 (Schmidt and Klein, 1993) and 
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C1981 (Nowling, 2001). The donor parent possessing the high protein CHR20-PI allele 

originated from a BC3F4 population (A81-356022 (4) x PI 468916) described by Sebolt et al. 

(2000).  The donor parent for the wp allele was a F4-derived line from the cross of two parents 

with pink flowers, LN89-5320 x LN89-5322 (Stephens and Nickell, 1992; Stephens et al., 1993).                                                                  

 The high protein QTL alleles in the two donor parents were introgressed into each of the 

four genetic backgrounds in the following manner.  Presence of CHR20-PI was verified in BCnF1 

plants with the SSR markers Satt239 and Satt496 (Nichols et al., 2006).  Lines with a 

recombination between the two markers were discarded, and selected BCnF1 plants containing 

CHR20-PI were then mated to the recurrent parents.  The presence of the wp allele was verified 

by performing progeny tests (ie. progenies fixed for green hypocotyl color inferred parent was 

homozygous for wp, progenies fixed for purple hypocotyl color inferred parent was homozygous 

for Wp, etc.) with the BCnF2 seed and occurred after the next backcross (BCn+1) had taken place. 

Progeny tests from the previous generation were used to identify the BCn+1F1 seed to be 

genotyped with molecular markers to verify the presence of the CHR20-PI allele from PI468916.  

BC4F1 plants predicted to be heterozygous for alleles at both QTLs within each background were 

selfed, and single-seed descent was performed to produce BC4F4 seed. BC4F4 plants homozygous 

in both QTLs were selected and selfed to form populations of BC4F4-derived lines.  Molecular 

markers linked to CHR20-PI and progeny tests for the wp locus were used to assess the genotype 

of the lines, and lines with recombination between markers in the region were discarded.  

Field Evaluation 

Environments and Check Cultivars CHR20-D Populations 

 

 In 2013 and 2014, populations of BC2F2–derived lines were evaluated at the Crop 

Sciences Research and Education Center in Urbana, IL and in a grower’s field near Pontiac, IL.  

Planting dates were as follows: Pontiac, IL 2013, May 14; Urbana, IL 2013, May 15; Pontiac, IL 

2014, May 7; Urbana, IL 2014, May 21. The check cultivar was IA2102 (Crochet and Hughes, 

2011) for both populations. There were 39 lines in the LD00-5025 population (18 homozygous 

for CHR20-D at markers linked to the chr 20 QTL and 21 homozygous for the low protein allele 

at markers linked to the chr 20 QTL) and 47 lines in the Dwight population (24 homozygous for 
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CHR20-D at markers linked to the QTL, 23 homozygous for the low protein allele at markers 

linked to the chr 20 QTL). 

 

Environments and Check Cultivars CHR20-PI and wp Populations 

 

MG II BC4F4 Populations 

Maturity group II BC4F4 populations were grown at the Northern Illinois Agronomy 

Research Center in DeKalb, IL in 2008, the Crop Sciences Research and Education Center in 

Urbana, IL in 2007 and 2008, a Mead, NE rainfed (Rf) location in 2007, and a Mead, NE 

irrigated (Ir) location in 2007 for a total of five environments. Planting dates were as follows: 

Urbana, IL 2007, May 16; Mead Rf, NE 2007 and Mead Ir, NE 2007, May 17; DeKalb, IL 2008, 

May 20; Urbana, IL 2008, May 28. Check cultivars were LD02-4485 (Abney and Crochet, 2006) 

and IA2068 (Abney and Crochet, 2003) in the Loda backcross population whereas the Dwight 

backcross population included only LD02-4485. The respective recurrent parent for each 

population was also included in the trials. There were 65 lines in the Loda population and 71 

lines in the Dwight population. 

MGIV BC4F4 Populations 

Maturity group IV BC4F4 populations were planted at the Crop Sciences Research and 

Education Center in Urbana, IL during 2007 and 2008, a Mead, NE Rf location in 2007, and a 

Mead, NE Ir location in 2007 for a total of four environments.  Planting dates were the same as 

those previously mentioned for the MG II populations. LD00-3309 (Diers et al., 2006) was a 

check cultivar in both MG IV populations while the LS93-0375 population included the cultivar 

Macon (Nickell et al., 1996) as an additional check. The recurrent parent for each population was 

also included in the field evaluations.  There were 75 lines in the LS93-0375 population and 49 

lines in the C1981 population. 

Field Evaluation and Phenotypic Measurements for All Populations 

 

 Populations were blocked separately, and the lines plus the recurrent parents and check 

cultivars were arranged in a randomized complete block design. The CHR20-D populations were 



 

48 
 

grown in non-replicated tests, and the CHR20-PI populations were replicated twice.  All 

populations were planted in two-row plots, 3.6 m long using a four-row ALMACO plot planter 

(ALMACO Nevada, Iowa). Row spacing was 0.76-m, and seeding rate was ~27 seeds per meter. 

All environments were rain-fed with the exception of Mead, NE (Ir).  Plots were rated for 

maturity date, plant height, and lodging. Plant height was measured in cm as the distance 

between the soil surface and the top node on the main stem. Maturity was the date when 95% of 

the pods reached mature color (R8 described by Fehr et al., 1971) with September 1 recorded as 

901. Lodging was rated on a scale of 1 and 5, with 1 equaling all plants erect and 5 equaling all 

plants prostrate. Seed yield was measured at maturity using a plot combine, adjusted to 130 g kg
-

1
 moisture, and reported as kg ha

-1
. Additionally, a Perten DA 7250 NIR analyzer was used to 

determine protein and oil concentration on a 130 g kg
-1

 moisture basis for the CHR20-D 

populations (Perten Hagersten, Sweden).  Seed protein and oil concentration analysis for the 

CHR20-PI and wp locus populations was performed at the USDA Northern Regional Research 

Center in Peoria, IL and also reported on a 130 g kg
-1

 moisture basis. 

 

DNA Extraction and Genetic Marker Analysis for All Populations 

 

 Genomic DNA was isolated from young trifoliolate leaves by a modified CTAB method 

described by Keim et al. (1988) or a quick DNA extraction method described by Bell-Johnson et 

al. (1998). Polymorphic simple sequence repeat (SSR) markers were used to perform polymerase 

chain reactions according to Cregan and Quigley (1997). Amplification products were separated 

in 6% (w/v) non-denaturing polyacrylamide gels by electrophoresis (Wang et al., 2003). 

 

Statistical Analysis for All Populations 

 

  All data were subjected to analysis of variance using SAS v9.4 (SAS Institute Inc., Cary, 

NC) PROC MIXED. Data were analyzed across and within locations and an environment was a 

year by location combination. Marker genotype and lines nested within marker genotype were 

considered to be fixed effects whereas replicate and environment were treated as a random 

effect. Degrees of freedom were calculated according to the Kenward-Roger method (Littell et 

al., 2006). 
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Results 

 

CHR20-D 

 

CHR20-D was evaluated in the LD02-5025 and Dwight backgrounds, and each 

population was evaluated for seed composition and agronomic traits at four environments in 

Illinois. For both backgrounds, marker alleles from Danbaekkong linked to CHR20-D were 

associated with a significant (P<0.05) increase in protein concentration, decreased oil 

concentration, and increased lodging score compared to the recurrent parent allele across 

environments (Table 2.1; Table 2.2).  In addition, lines containing CHR20-D had a significant 

(P<0.0001) yield reduction across environments compared to lines containing the recurrent 

parent allele for both backgrounds (Table 2.1). This difference was -455 kg ha
-1

 in the LD02-

5025 background and -363 kg ha
-1

 in the Dwight background, which represent a seed yield 

decrease associated with the introgression of the donor parent high protein allele. Maturity date 

was not significant (P<0.05) over environments in the LD02-5025 population, but was 

significant for the Dwight population with lines containing the Dwight allele maturing two days 

earlier than lines with the Danbaekkong allele (Table 2.2). Additionally, a significant marker 

genotype x environment interaction was observed for protein and oil concentration in both 

populations. The marker genotype x environment interactions for yield were non-significant.  

For the LD02-5025 population, the lines containing the high protein QTL allele had 

increased average protein concentration and decreased oil concentration for each environment 

with the exception of Pontiac in 2013 (Table 2.1). These significant differences ranged from 25 

to 31 g kg
-1

 for protein concentration and -10 to -14 g kg
-1

 for oil concentration. Within all four 

environments, lines with the high protein QTL allele on average yielded significantly (P<0.05) 

less than lines with the LD02-5025 allele, and this difference ranged from -273 to -558 kg ha
-1

. 

Similar trends were observed in the Dwight population within environments for protein 

concentration, oil concentration, and yield (Table 2.1). Lines with the high protein QTL allele 

had significantly increased average protein concentration and decreased oil concentration 

compared to lines with the Dwight allele in the Urbana 2013, Urbana 2014, and Pontiac 2014 

environments. These significant differences ranged from a 19 to 28 g kg
-1

 increase in protein 

concentration and a coupled -7 to -14 g kg
-1

 decrease in oil concentration. In addition, lines with 
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CHR20-D yielded significantly less than those with the Dwight allele in all four environments. 

The observed difference ranged from -239 at Pontiac 2014 to -496 kg ha
-1

 at Urbana 2014.  

 

CHR20-PI and wp  

 

Four populations were developed via backcrossing to test the effect of CHR20-PI and wp 

on seed composition and agronomic traits. The Loda and Dwight populations were evaluated in 

five environments while the LS93-0375 and C1981 populations were evaluated in four 

environments. Across environments, a significant marker genotype x environment interaction 

was detected for protein within all backgrounds. Additional significant marker genotype x 

environment interactions were population-specific.                                                               

 Within and across environments, CHR20-PI was associated with significantly increased 

protein concentration and decreased oil concentration compared to the recurrent parent allele for 

all four populations (Table 2.3). The magnitude of the effect was dependent upon genetic 

background and environment. Within and across environments, the effect of CHR20-PI on yield 

was variable, although that variability did not include an example of a significant yield increase. 

Across environments, lines containing CHR20-PI had significantly reduced yields in the Dwight 

and C1981 populations, but such lines in the Loda and LS93-0375 populations did not exhibit 

significant yield depression. Within each population, CHR20-PI significantly decreased maturity 

date one to three days across environments (Table 2.2). A significant increase in plant height was 

also observed across environments in the Loda, Dwight, and LS93-0375 populations with plants 

containing the donor allele averaging 2.1 to 3.3 centimeters taller than those containing the 

recurrent allele.  Significant associations were not observed for lodging in any of the four 

populations.                                                                                                                                       

 While CHR20-PI was consistently associated with an increase in protein concentration 

and a decrease in oil concentration, the wp allele had a non-significant effect on oil concentration 

and a variable effect on protein concentration across environments when lines homozygous for 

wp were compared to lines containing no high protein alleles (Table 2.4). Across environments, 

the wp allele also had a variable effect in terms of significance when lines homozygous for wp 

were compared to lines with no high protein alleles on yield, maturity date, plant height within 

the Loda, Dwight, LS93-0375, and C1981 backgrounds. When lines contained both the wp allele 
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and CHR20-PI, a significant increase in protein concentration was observed in all backgrounds 

in comparison to lines containing no high protein alleles; however, yield and oil concentration 

were significantly decreased.  

Discussion 

 

 Although CHR20-PI has been studied for over two decades, detailed seed concentration 

and agronomic information on CHR20-D and the wp locus is more limited. Our study evaluated 

CHR20-PI, CHR20-D, and the wp alleles to determine whether these genes can be effectively 

used to improve seed composition in a breeding program targeted at improving the seed protein 

concentration in high-yield cultivar development.  

 For the most part, similar seed composition and yield trends were observed when the 

Danbaekkong high protein allele was introgressed into the Dwight and LD02-5025 backgrounds. 

This is not surprising because these two recurrent backgrounds not only have the same maturity 

but are also related with Dwight a parent of LD02-5025. In both populations, lines containing the 

Danbaekkong high protein allele had decreased yield across and within environments  and also 

had increased protein and decreased oil across and within all environments with the exception of 

Pontiac 2013 (Table 2.1). We do not have a good explanation for the inconsistent Pontiac 2013 

results, but it may have to do with the growing environment at this location during 2013, as seed 

composition is influenced by numerous environmental conditions such as temperature and 

moisture (Dornbos and Mullen, 1992; Gibson and Mullen, 1996; Specht et al., 2001; Carrera et 

al., 2009). The influence of the growing environment is supported by Pontiac 2013 having the 

lowest average protein concentrations of the four environments where the population was grown. 

In previous studies using elite germplasm from the southern USA, CHR20-D was shown 

to have an inconsistent effect on seed yield in southern environments (Harris, 2001; Yates, 

2006).  This contrasts with the results from both Danbaekkong populations in our study where 

the Danbaekkong high protein allele was consistently associated with significantly decreased 

yield. Furthermore, we observed a significant yield decrease even when there was no significant 

increase in protein concentration. A number of explanations for the apparent discrepancy 

between our study and the previous studies include, but are not limited to, environmental 

influence, genetic background, and genetic linkage. 
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 While CHR20-D was consistently associated with decreased yields, CHR20-PI had a 

more variable effect on yield. Additionally, CHR20-PI significantly increased protein and 

decreased oil within all environments and populations. This consistency was not observed for 

CHR20-D where a significant effect on seed composition was not seen in the Pontiac 2013 

environment for both populations. Because we did not introgress high protein alleles of CHR20-

D and CHR20-PI into the same genetic backgrounds and test them in the same environments, we 

cannot directly compare the effects of these two alleles. Therefore, we are unable to speculate on 

their allelic identity relationship based on this study. With that caveat noted, we did observe that 

CHR20-PI allele had a smaller effect on yield than did the CHR20-D allele.  

 For protein concentration, CHR20-PI was more consistent than the wp locus in increasing 

protein concentration across genetic backgrounds.  In the C1981 population, lines containing the 

wp allele did not have a significant increase in protein concentration compared to lines 

containing no high protein alleles (Table 2.4). When the wp allele was stacked with CHR20-PI in 

this background, protein concentration was not numerically different than lines containing only 

CHR20-PI.  Within the LS93-0375 background, the wp allele was ineffective in significantly 

increasing protein concentration on its own, but in combination with CHR20-PI, a significant 

increase in protein concentration in relation to lines with no high protein alleles was observed.  

Only in the Loda population were the wp allele and CHR20-PI numerically similar in their 

impact on protein concentration.  Other than in the C1981 background, lines containing both the 

chr 20 and chr 2 protein increasing alleles had on average the greatest protein concentration 

compared to lines in the other three possible genotypic groups.  CHR20-PI increased protein 

concentration, but also was associated with decreased oil across genetic backgrounds and 

environments (Table 2.3).  CHR20-PI also was associated with decreased yield and increased 

plant height variably across environments and genetic backgrounds (Table 2.2 and 3). Stacking 

wp in combination with CHR20-PI generally produced results that would be expected if two-

locus interaction was not significant (i.e., the two alleles at each locus interacted in an additive 

fashion) for all traits across environments (Table 2.4). The combination of the high protein 

alleles at the chr 20 and chr 2 loci increased protein concentration to the greatest extent; 

however, this combination also decreased seed yield to the greatest extent numerically across 

genetic backgrounds.  The reliability of CHR20-PI for increasing protein concentration would 

make it a better candidate than wp for a forward breeding application.  However, if yield is the 
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primary goal, neither allele would likely be a successful candidate in breeding program aimed at 

developing high yield cultivars through a traditional marker-assisted selection (MAS) breeding 

scheme.                                                                                                                             

 Rapid improvements in genotyping and big data set analysis have led to recent protein 

and oil QTL mapping studies using diverse, large populations and with high density genetic 

markers (Hwang et al., 2014; Bandillo et al., 2015; Vaughn et al., 2015; Phansak et al., 2016; Qi 

et al., 2016). While additional seed composition QTL have been mapped in these studies, the chr 

20 QTL region continues to be identified as having the largest effect on protein and oil 

concentration. Data from these studies can be used to better characterize and define the chr 20 

QTL and ultimately clone it.                                                                                                                   

 As more information is generated about genes that control seed composition, this 

information can not only be used to dissect the genetic architecture of composition and generate 

more efficient markers for MAS, but also to provide insight into the relationship between seed 

composition and yield. Even with rapid advances in QTL mapping technologies and methods, 

QTL confirmation and evaluation studies remain important so that mapped QTL can be 

effectively incorporated into a breeding program to improve seed composition traits.                                                                                                                

 Predictive modeling has shown promise to revolutionize plant breeding by improving 

genetic gain through a decrease in the length of breeding cycles and an increase in selection 

accuracy. Prediction accuracies over 0.60 have been reported for yield, protein, and oil, and it is 

assumed that these accuracies will further increase with improved statistical models and methods 

(Jarquin et al., 2014; Xavier et al., 2016; Jarquin et al., 2016). QTL mapping and evaluation 

studies can be important tools to aid breeders in selecting the most appropriate prediction model, 

making the model more robust, or assembling a strong training population. Overall, improved 

genomic selection techniques have potential to lead to the development of more high protein and 

high yield cultivars.                                                                                                                      

 The development of cultivars with improved yield and protein concentration continues to 

be challenging due to the negative relationship between the two traits. The QTL evaluated in this 

study, and in other studies where protein and yield were both evaluated, provide genetic evidence 

for this negative correlation (Hegstad et al., 2000; Sebolt et al., 2000; Chung et al., 2003; Nichols 

et al., 2006). We cannot demonstrably document whether the impact on both protein and oil of 

the two alleles at the chr 20 and chr 2 QTLs that we studied arose from single-locus pleiotropy or 
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two-locus linkage. However, the inability of researchers to separate the effect of the QTL on 

both traits and the high energy cost of producing protein suggests that it is likely pleiotropy.  The 

continued evaluation of QTL combined with advancements in genetic technologies could help us 

better understand the genetic relationships among seed components and lead to better strategies 

to develop cultivars with increased protein concentration and yield.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

55 
 

Tables 

 
Table 2.1. The impact on seed yield, protein, and oil when the protein-increasing allele of the chr 20 QTL from Danbaekkong (CHR20-D) was 

introgressed into the LD02-5025 and Dwight backgrounds. Protein and oil concentrations are reported on a 130 g kg
-1

 moisture basis.  
 

 

ns = non-significant.  

†Recurrent parent of population. 

‡Location and year. 

§Mean of lines predicted to be homozygous for the high protein Danbaekkong allele at the chr 20 QTL based on the genetic markers Satt614, 

Satt239, and Satt354. 

¶ Mean of lines predicted to be homozygous for the recurrent parent low protein allele at the chr 20 QTL based on the genetic markers Satt614, 

Satt239, and Satt354. 

#Difference between the means of lines that were homozygous for the donor and recurrent parent allele classes.
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Table 2.2. The impact on maturity, plant height, and plant lodging when the protein-increasing allele on chr 20 derived from Danbaekkong 

(CHR20-D) or derived from PI468916 (CHR20-PI) was introgressed into the listed genetic backgounds.  

 

 

ns = non-significant.  

†Characterized as the calendar date when 95% of pods have reached mature color (R8; Fehr et al., 1971) with September 1 equivalent to 901.  

‡Measured as the distance from the soil surface to the topmost node on the main stem.  

§Lodging is visually rated on a 1 to 5 scale (i.e., 1=all plants erect and 5=all plants prostrate).  

¶High protein allele name (that originated from one or the other donor parent - see caption). 

# Recurrent parent of population. 

†† Mean of lines predicted to be homozygous for the high protein CHR20-D allele based on the genetic markers Satt614, Satt239, and Satt354 or 

the high protein CHR20-PI allele based on the genetic markers Satt239 and Satt496. 

‡‡ Mean of lines predicted to be homozygous for the chr 20 low protein allele of the recurrent parent 20 based on the genetic markers Satt614, 
Satt239, and Satt354 or Satt239 and Satt496. 
 
§§ Difference between the means of homozygous classes.

QTL 

allele¶

Genetic 

Background#

Donor 

allele††

Recurrent 

allele‡‡

Difference§§ P value Donor 

allele

Recurrent 

allele

Difference P value Donor 

allele

Recurrent 

allele

Difference P value

CHR20-D LD02-5025 919 920 -1 ns 94.0 91.0 3.0 ns 2.7 2.2 0.5 <.0001

Dwight 918 920 -2 0.0016 94.3 93.2 1.1 ns 2.2 2.0 0.2 0.018

CHR20-PI Loda 916 917 -1 0.0262 72.2 70.1 2.1 0.0174 2.1 2.0 0.1 ns

Dwight 917 918 -1 0.0005 77.8 75.5 2.3 0.0004 1.7 1.5 0.2 ns

LS93-0375 925 926 -1 0.0044 92.4 89.1 3.3 <.0001 1.5 1.6 -0.1 ns

C1981 928 931 -3 0.0058 106.4 104.4 2.0 ns 2.1 2.0 0.1 ns

Maturity date† Plant Height (cm)‡ Lodging (1-5)§
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Table 2.3. The impact on seed yield, protein, and oil when the high protein QTL allele on chr 20 from PI468916 (CHR20-PI) was introgressed into 

the Loda, Dwight, LS93-0375, and C1981 backgrounds. Protein and oil concentrations are reported on a 130 g kg
-1
 moisture basis.  

 

ns = non-significant.  

†Recurrent parent of population. 

 

Genetic 

Background† Environment‡

Donor 

allele§

Recurrent 

allele¶

Difference# P value Donor 

allele

Recurrent 

allele

Difference P value Donor 

allele

Recurrent 

allele

Difference P value

Loda Dekalb, IL 2008 3138 3188 -50 ns 356 344 12 <.0001 174 181 -7 <.0001

Mead, NE (Ir) 2007 2819 3092 -273 0.0031 392 370 22 <.0001 165 176 -11 <.0001

Mead, NE (Rf) 2007 2859 3115 -256 0.0036 383 361 22 <.0001 171 181 -10 <.0001

Urbana, IL 2007 2510 2672 -162 0.0241 381 363 18 <.0001 170 180 -10 <.0001

Urbana, IL 2008 2024 1953 71 ns 362 349 13 <.0001 176 182 -6 <.0001

Across 2670 2804 -134 ns 375 357 18 <.0001 171 180 -9 0.0004

Dwight Dekalb, IL 2008 3659 3941 -282 <.0001 354 342 12 <.0001 165 174 -9 <.0001

Mead, NE (Ir) 2007 3542 4020 -478 <.0001 386 360 26 <.0001 153 166 -13 <.0001

Mead, NE (Rf) 2007 3486 3895 -409 <.0001 384 358 26 <.0001 159 171 -12 <.0001

Urbana, IL 2007 3233 3510 -277 <.0001 364 347 17 <.0001 162 172 -10 <.0001

Urbana, IL 2008 2853 2999 -146 ns 347 333 14 <.0001 175 184 -9 <.0001

Across 3354 3673 -319 0.0053 367 348 19 0.0019 163 173 -10 <.0001

LS93-0375 Mead, NE (Ir) 2007 4256 4513 -257 0.0003 398 373 24 <.0001 156 169 -13 <.0001

Mead, NE (Rf) 2007 4133 4339 -206 0.0058 394 369 25 <.0001 162 175 -13 <.0001

Urbana, IL 2007 3712 3861 -149 0.0483 386 365 21 <.0001 164 177 -13 <.0001

Urbana, IL 2008 3240 3213 27 ns 374 358 16 <.0001 174 183 -9 <.0001

Across 3835 3982 -147 ns 388 366 22 <.0001 164 176 -12 <.0001

C1981 Mead, NE (Ir) 2007 4003 4239 -236 ns 403 378 25 <.0001 155 167 -12 <.0001

Mead, NE (Rf) 2007 3989 4370 -381 0.0010 404 374 30 <.0001 157 171 -14 <.0001

Urbana, IL 2007 3424 3655 -231 0.0042 386 364 22 <.0001 163 177 -14 <.0001

Urbana, IL 2008 3098 3330 -232 0.0008 375 360 15 <.0001 168 179 -11 <.0001

Across 3629 3899 -270 0.0007 392 369 23 0.0005 161 174 -13 <.0001

Seed yield (kg ha-1) Protein (g kg-1) Oil (g kg-1)
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Table 2.3 (cont) 

‡Location and year.  

§ Mean of lines predicted to be homozygous for CHR20-PI based on the genetic markers Satt239 and Satt496. 

¶ Mean of lines predicted to be homozygous for the recurrent parent allele at chr 20 based on the genetic markers Satt239 and Satt496. 

# Difference between the means of homozygous classes. 
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Table 2.4.  Across environment means for seed yield, protein, and oil, and for maturity, lodging and height of the genotypic class arising from the 

introgression of the chr 20 low protein allele from the donor parent PI468916 and the introgression of the chr 2 Wp allele (purple flower/low 

protein) from LN89-5320 or LN89-5322 (Stephens and Nickell, 1992; Stephens et al., 1993) compared to the deviations from that mean for the 

other three genotypic classes. Of the four listed genotype classes for each genetic background, the first represents lines whose two-locus genotype 

matches that of the recurrent parent (low protein - purple flower/low protein), the next two represent lines with one or the other single allele 

introgressions, and the forth represents lines with a dual introgression of both the high protein allele at chr 20 from PI468916 (CHR20-PI) and the 

pink flower/high protein allele (wp).  Protein and oil concentrations are reported on a 130 g kg
-1

 moisture basis. 

Genetic 

Locus‡ 

    

Seed 

Yield   

Seed 

Protein   Seed Oil   

Maturity 
date¶   Lodging#   

Plant 
Height†† 

Background† n§   (kg ha
-1

)   (g kg
-1

)   (g kg
-1

)       (1-5)   (cm) 

  chr 20‡‡ wp§§                           

Loda low Wp 18   3004   352   182   916   2.1   72 

  low wp 17   -442   13**   -5   3**   -0.1   -5*** 

  high Wp 17   -159   16***   -8***   -1   0.1   2* 

  high wp 13   -518**   31***   -14***   2   -0.1   -3** 

                                

Dwight low Wp 18   3790   346   174   918   1.6   78 

  low wp 22   -284***   4*   -2   -1   -0.1   -6*** 

  high  Wp 12   -279***   17***   -10***   -2**   0.2   3** 

  high  wp 19   -603***   24***   -12***   -2***   0   -3*** 

                                

LS93-0375 low Wp 17   4127   366   176   925   1.5   91 

  low wp 19   -307*   0   0   2*   0   -5* 

  high  Wp 16   -131   18***   -10***   -1   0   3** 

  high  wp 23   -426**   25***   -13***   0   0   0 

                                

C1981 low Wp 12   4064   367   174   930   2.1   105 

  low wp 11   -309***   0   0   1   0   -1 

  high  Wp 11   -254***   25***   -13***   -2   0   8** 

  high  wp 15   -567***   25***   -13***   -3*   -0.2   -3 
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Table 2.4 (cont) 

*, **, *** Significant at the 0.05, 0.01, and 0.001 probability levels, respectively.  

†Recurrent parent of population. 

‡Genotype of the genotypic class.  

§ Number of lines in the genotypic class.  

¶ Characterized as the calendar date when 95% of pods have reached mature color (R8; Fehr et al., 1971) with September 1 equivalent to 901. 

# Distance between the soil line and the top node on the main stem. 

†† Lodging is visually rated on a 1 to 5 scale with 1=all plants erect and 5=all plants prostrate. 

‡‡ Genetic state at the chr 20 locus. ‘low’ is homozygous for the low protein allele, ‘high’ is homozygous for CHR20-PI. 

§§ Genetic state at the wp locus. ‘Wp’ is homozygous for the purple flower/low protein allele, and ‘wp’ is homozygous for the pink flower/high 

protein allele.
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CHAPTER 3: AGRONOMIC EVALUATION OF A HIGH PROTEIN ALLELE FROM 

PI407788A ON CHROMOSOME 15 ACROSS TWO SOYBEAN BACKGROUNDS* 

 

 

 

Abstract 

 

Soybean protein [Glycine max (L.) Merrill] is a prominent plant-based protein source 

worldwide due to its high quality and relatively low cost. A major barrier to the development of 

high protein cultivars is the negative relationship between protein and yield. A large effect 

protein quantitative trait loci (QTL) has been mapped to the same location on chromosome (chr) 

15 in several studies and given the designation, cqSeed protein-001. The objective of this study 

was to evaluate the effect of the high protein allele from PI407788A at the chr 15 locus on seed 

composition and agronomic traits. Segregating near-isogenic populations were formed by 

backcrossing the high protein allele into two elite soybean backgrounds, and these populations 

were planted at field environments in Illinois. Across backgrounds, the PI407788A allele 

significantly (P<0.0001) increased protein and decreased oil compared to the recurrent alleles but 

had a non-significant effect on yield. Information from this study will aid breeders in forming 

strategies to develop cultivars with increased seed composition and yield to meet the needs of a 

growing world population.  

 

 

 

 

 

 

 

*Submitted to Crop Science. Brzostowski, L.F. and B.W. Diers. 2017. Crop Sci. 
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Introduction 

 

Soybean protein is one of the highest quality plant-based protein sources in the world 

containing a good balance of amino acids to support the diet of non-ruminant livestock. Soybean 

meal (SBM), which is made out of crushed seed after oil is extracted from it, has the highest 

level of crude protein among plant-based protein sources and accounts for approximately 69% of 

the protein sources in animal feed worldwide (Wilson, 2008; Cromwell, 2012). The price of 

SBM is reduced if it is does not meet a 48% protein level, so it is important for breeders to 

develop soybean cultivars with elevated protein levels. Additionally, the value of soybean could 

increase if seed protein levels are improved.  

Soybean seeds on average are 350 g kg
-1

 protein, 175 g kg
-1

 oil, 260 g kg
-1

 carbohydrates, 

45 g kg
-1

 crude fiber, and 45 g kg
-1

 ash (130 g kg
-1

 moisture basis) (Hymowitz, 1972; Wilson, 

2004). Complex relationships exist among these seed components and with seed yield. An 

increase in protein often leads to a decrease in oil, carbohydrates, and yield which is a major 

obstacle in the development of high protein cultivars that are profitable for producers (Leffel and 

Rhodes, 1993; Wilcox and Cavins, 1995; Hartwig et al., 1997; Wilcox and Shibles, 2001; Chung 

et al., 2003; Eskandari et al., 2013; Bandillo et al., 2015).   

Several high protein cultivars have been released that have reported moderate yield loss 

compared to a check cultivar (Burton et al., 1999; Anand et al., 2004; Panthee and Pantalone, 

2006; Carter et al., 2010; Chen et al., 2011). A limited number of cultivars have also been 

released that report no yield loss compared to a check cultivar, which suggests that it is possible 

to develop soybean with improved protein and yield using the appropriate combination of 

genetics, breeding strategy, and environments (Panthee and Pantalone, 2006; Mian et al., 2017);  

however, it should be noted that the aforementioned cultivars still had a significantly (P<0.05) 

decreased oil concentration in reference to check cultivars. While the mechanisms that control 

relationships between seed composition traits and yield are still unknown, hypotheses include 

genetic linkage and pleiotrophy (Chung et al., 2003; Nichols et al., 2006; Recker et al., 2014; 

Bandillo et al., 2015; Phansak et al., 2016). 

Soybean protein concentration is inherited as a quantitative trait, and quantitative trait 

loci (QTL) for protein have been mapped to locations on all chromosomes (Soybase, 2017). 

Initial work in QTL mapping for seed composition traits was done using biparental populations. 
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Diers et al. (1992) identified two high protein QTL in a population derived from cross of an Iowa 

State University experimental line and the Glycine soja Sieb. and Zucc. plant introduction 

PI468916. One QTL was located on chromosome (chr) 20 (formerly linkage group (LG) I) and a 

second was located on chr 15 (LG E).  These QTL have been confirmed based on guidelines set 

forth by the Soybean Genetics Committee (Soybase), and the QTL on chr 15 was given the 

designation cqSeed protein-001 (Fasoula et al., 2004) while the QTL on chr 20 was given the 

designation cqSeed protein-003 (Nichols et al., 2006).  Large effect QTL have been mapped 

repeatedly to these two locations in other biparental populations and also more recently in 

diverse mapping panels (Lee et al., 1996; Brummer et al., 1997; Sebolt et al., 2000; Chung et al., 

2003; Fasoula et al., 2004; Wang et al., 2014; Kim et al., 2015; Bandillo et al., 2015; Warrington 

et al., 2015; Phansak et al., 2016; Qi et al., 2016). Additionally, advances in genetic techniques 

and statistical analysis have led to subsequent studies that refined the location of the chr 15 and 

chr 20 QTL and identified candidate genes at the loci (Bolon et al., 2010; Hwang et al., 2014, 

Vaughn et al., 2014; Bandillo et al., 2015). 

While the chr 15 QTL was confirmed prior to the chr 20 QTL, there has been much less 

research conducted on the chr 15 QTL especially in regard to its impact on agronomic traits. The 

chr 20 QTL has been consistently demonstrated to be associated with increases in seed protein 

and decreases in seed oil and yield (Sebolt et al., 2000; Chung et al., 2003; Nichols et al., 2006).  

Sebolt et al. (2000) evaluated the effect of the high protein allele on chr 20 from PI468916 across 

multiple genetic backgrounds, and the PI468916 allele was shown to be associated with 

increased protein, decreased yield and oil, smaller seeds, and an earlier maturity date. Similar 

observations were made in a follow-up study which also mapped the chr 20 QTL to a 3 cM 

interval (Nichols et al., 2006). Sebolt et al. (2000) did test for the chr 15 QTL, but no significant 

effects were detected, which was likely the result of the QTL being lost during backcrossing due 

to poor marker coverage in that study.  

 A QTL was mapped to the same region on chr 15 as cqSeed protein-001 in a BC1F5-

derived population developed from a cross of the donor parent, LG00-13329, and the recurrent 

parent, ‘Williams 82’ (Kim et al., 2015). LG00-13329 had been previously derived from a cross 

of PI407788A, a high protein MG IV accession from Korea, to Williams 82. In the mapping 

population, the chr 15 QTL allele from PI407788A was associated with increased protein 

concentration and decreased oil concentration, and this QTL was fine mapped to a 535 kb 
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interval between BARCSOYSSR_15_0161 and BARCSOYSSR_15_0194. While this study 

provided useful information for marker-assisted selection (MAS) and efforts to clone the QTL, 

further studies of this refined genetic region are needed to determine whether this high protein 

allele is suitable for use in breeding programs focused on developing cultivars with high protein 

concentration and good agronomic performance.                                                                            

 It is important to evaluate a protein QTL across multiple genetic backgrounds and 

environments before it is incorporated into a breeding program due to the complex relationships 

between seed components and yield. While this step is necessary, there are currently a limited 

number of studies where this is a research objective, and this is especially true for the chr 15 

protein QTL. Therefore, the objective of this study is to test the effect of the high protein allele 

from PI407788A located on chr 15 on seed composition and agronomic traits across two genetic 

backgrounds.  

Materials and Methods 

Population Development  

Two populations of NILs segregating for the chr 15 QTL were developed through four 

backcrosses (BC4). A moderate protein, maturity group II, elite experimental line AR09-192019 

(Abney and Hughes, 2011) and a low protein, maturity group (MG) II, elite cultivar LD02-4485 

(Abney and Crochet, 2006) were used as recurrent parents for each of the populations. LG05C-

1782, was used as the donor parent for the chr 15 high protein QTL. LG05C-1782 is a BC1 line 

that was developed as described by Kim et al. (2015) using Williams 82 as the recurrent parent 

and PI407788A as the donor of the high protein allele. 

After each generation of backcrossing, the presence of the chr 15 high protein allele was 

confirmed using simple sequence repeat markers (SSR) linked to the QTL (Kim et al., 2015). 

Plants with the genetic region of interest were then used in the next generation of backcrossing 

until the BC4F1 generation was reached. BC4F1 plants heterozygous for the region of interest 

were identified and selfed to produce BC4F2 seed. BC4F2 plants homozygous for the donor and 

recurrent parent alleles of the chr 15 QTL region were identified with markers and grown in the 

greenhouse. Bulked seed from the individual plants were grown in the field as BC4F2:3 lines. 

Progeny from these lines were used for field evaluations in 2015 and 2016. There were 48 lines 

in the AR09-192019 background (24 homozygous for the PI407788A allele at chr 15 based on 
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markers linked to the QTL, 24 homozygous for the AR09-192019 allele at chr 15 based on 

markers linked to the QTL) and 84 lines in the LD02-4485 background (42 homozygous for the 

PI407788A allele at chr 15 based on markers linked to the QTL, 42 homozygous for the LD02-

4485 allele at chr 15 based on markers linked to the QTL).  

 

Field Evaluation and Phenotypic Measurements  

 

 In 2015 and 2016, a population of BC4F2-derived lines in the LD02-4485 background and 

a second population in the AR09-192019 background that were segregating for the chr 15 QTL 

were selected and placed into two tests based on maturity. Each test contained lines from both 

backgrounds, so the background effect on the QTL could be tested. The tests were planted at the 

Crop Sciences Research and Education center in Urbana, IL and in a grower’s field near Pontiac, 

IL. Each test was grown in a separate randomized complete block design experiment that was 

replicated twice and included lines plus recurrent parents and checks. The tests were planted 

using an ALMACO plot planter (ALMACO Nevada, Iowa) at Pontiac 2015 on May 7, Urbana 

2015 on May 14, Pontiac 2016 on May 20, and Urbana 2016 on May 23. The two-row plots were 

3.6 m long with a row spacing of 0.76 m and a seeding rate of ~27 seeds per meter. Plant height, 

maturity data, and lodging score were collected on all plots prior to harvest. Plant height was the 

distance between the soil surface and the main stem apex in centimeters. Maturity date was the 

date on which 95% of pods reached their mature color (R8 described by Fehr et al., 1971); 

September 1 was recorded as 901. Lodging score was on a 1 to 5 scale, with 1 recorded as all 

plants within a row erect and 5 recorded as all plants within a row prostrate. At maturity, plots 

were harvested for yield using a plot combine. Yield data was adjusted to 130 g kg
-1

 moisture 

and reported as kg ha
-1

. Protein and oil concentration on a 130 g kg
-1

 basis were collected on all 

lines using a Perten DA 7250 NIR analyzer (Perten Hagersten, Sweden).  

 

DNA Extraction and Genetic Marker Analysis  

 

 Plants were genotyped with SSR markers linked to the QTL (Kim et al., 2015). Genomic 

DNA was extracted from young trifolioate leaf samples collected from individual plants via 

either a modified CTAB (Keim et al., 1988) or a quick DNA extraction (Bell-Johnson et al., 
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1998) method. Polymerase chain reaction (PCR) was then performed using polymorphic genetic 

markers as described by Cregan and Quigley (1997). Electrophoresis was used to analyze the 

PCR products in 6% (w/v) nondenaturing polyacrylamide gels stained with ethidium bromide 

(Wang et al., 2003). 

 

Statistical Analysis  

 

  All data were subjected to analysis of variance using SAS v9.4 (SAS Institute Inc., Cary, 

NC) PROC GLM. Data were analyzed across and within locations and genetic backgrounds. 

Data were also analyzed across the two tests, and an environment was a year by location 

combination. Marker genotype, test, and genetic background were fixed, and replication and 

environment were random. 

 

Results 

 

 The near isogenic lines (NILs) were developed to be representative of the maturity group 

II germplasm grown in the Midwestern USA. LD02-4485 and AR09-192019 were originally 

selected because they were high yielding, similar in maturity, and differed in protein 

concentration based on previously reported agronomic data (Abney and Hughes, 2011). 

Significant differences (P<0.0001)  between the genetic backgrounds were observed for all traits 

(Table 3.1).When evaluated across and within the four environments, lines in the AR09-192019 

population consistently had significantly decreased average oil concentration, plant height, and 

lodging score, an earlier maturity date, and increased protein concentration compared to lines in 

the LD02-4485 population. These trends were similar to what were observed between the 

recurrent parents. Within environments, AR09-192019 lines had on average 17 to 29 g kg
-1

 more 

protein than LD02-4485 lines. Additionally, lines in the AR09-192019 population yielded less 

than those in the LD02-4485 population across and in each environment except for Pontiac 2016 

where the two backgrounds were not significantly different from each other.   

 The QTL by genetic background interaction was non-significant (P<0.05) for all of the 

traits measured so further analyses were done across both genetic backgrounds. These analyses 

showed that lines containing the QTL allele from PI407788A had significantly greater average 
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protein concentration and less oil concentration (Table 3.2). Within environments, the mean 

increases in protein ranged from 8 to 14 g kg
-1

, and across environments, the mean increase was 

11 g kg
-1

. Average yield and lodging score were not significantly different between the two 

genotypic classes; however, lines with the high protein allele had numerically lower average 

yields and lodging scores (Table 3.2; Table 3.3). Across environments, no significant difference 

was detected between lines with the high and low protein alleles for maturity date or plant height 

(Table 3.3). In Pontiac and Urbana 2016, lines with the PI407788A allele matured one day 

earlier (P<0.05) and were 3 cm and 2 cm shorter, respectively.   

 No statistically significant differences were observed for the effect of the PI407788A 

allele between the AR09-192019 and LD02-4485 backgrounds for all seed composition and 

agronomic traits when averaged across the four environments. In the AR09-192019 background, 

the high protein allele was associated with a 10 g kg
-1

 protein increase and a 109 kg ha
-1

 yield 

decrease. In the LD02-4485 background, the allele was associated with a 12 g kg
-1

 protein 

increase and a 57 kg ha
-1

 yield decrease.  

 

Discussion 

 

 The high protein allele on chr 15 from PI407788A was tested across two MG II genetic 

backgrounds to determine its effect on seed composition and agronomic traits including yield. 

The QTL from PI407788A was mapped by Kim et al. (2015), but multiple seed composition 

QTL have been mapped to this location prior to and following that study (Diers et al., 1992; 

Sebolt et al., 2000; Fasoula et al., 2004; Pathan et al., 2013; Bandillo et al., 2015; Phansak et al., 

2016; Qi et al., 2016.) Confirmation of this QTL in our study demonstrates its importance and 

further suggests that it is a stable candidate that can be used to develop cultivars with improved 

protein concentration. It also provides more evidence that diverse germplasm accessions such as 

PI407788A are useful sources to improve protein concentration in a breeding program. 

 The exponential decrease in genotyping costs and improvements in large data analysis 

capabilities have led to several recent protein and oil QTL mapping studies that used large and 

diverse population sizes and/or high density genetic markers (Hwang et al., 2014; Bandillo et al., 

2015; Vaughn et al., 2015; Phansak et al., 2016; Qi et al., 2016). These studies have mapped 

additional seed composition QTL, but the chr 15 and chr 20 QTL are still consistently identified 
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as having the largest effects on protein and oil concentration. The effects of the chr 20 QTL on 

seed composition traits have generally been larger than those of the chr 15 QTL, which may 

account for the limited number of follow-up studies on the chr 15 QTL compared to the chr 20 

QTL. Our results are consistent with that trend as the increases in protein concentration we 

observed for the chr 15 high protein allele were generally smaller than those previously reported 

for the chr 20 QTL (Sebolt et al., 2000; Chung et al., 2003; Nichols et al., 2006). Sebolt et al. 

(2000) attempted to characterize the effect of both QTL on agronomic traits but was unsuccessful 

in confirming the presence of the chr 15 QTL in their populations. To date, our study is the only 

successful attempt that we are aware of that tested the chr 15 QTL for its effect on both seed 

composition and agronomic traits.  

 Across genetic backgrounds, the high protein allele from PI407788A increased protein 

and decreased oil concentration, but it was not associated with significantly reduced yields 

(Table 3.2). This is in contrast to the evaluations of the chr 20 QTL and several other studies that 

observed a decrease in yield when protein was increased (Sebolt et al., 2000; Chung et al., 2003; 

Nichols et al., 2006). While the negative association between yield and protein concentration has 

been demonstrated in multiple studies, there is some evidence that the relationship can be 

separated when the right breeding scheme is applied (Brim and Burton, 1979; Holbrook et al., 

1989; Wilcox and Cavins, 1995; Recker et al., 2014). Although we found no significant yield 

associations with the PI407788A allele, the yield of lines with the high protein allele were still 

numerically less than lines with the alternative alleles (Table 3.2).    

Studies have shown that the chr 20 protein allele is associated with a yield reduction of 

67 to 228 kg ha
-1

 for each 10 g kg
-1

 increase in protein (Sebolt et al., 2000; Nichols et al., 2006; 

Brzostowski , submitted). Although the chr 15 allele was not significantly associated with yield, 

and therefore, we need to be cautious in making conclusions due to the limited number of 

environments and genetic backgrounds evaluated, we estimate that this QTL is associated with a 

69 kg ha
-1

 decrease in yield for each 10 g kg
-1

 increase in protein. This chr 15 yield association is 

on the lower end of the yield association observed for the chr 20 QTL, and more research is 

needed to verify whether the chr 15 could be use more successfully than the chr 20 QTL for 

increasing protein concentration without associated yield reductions. 

 Seed composition is heavily influenced by environmental conditions such as water 

availability and temperature, so it is possible that under different environmental conditions the 
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high protein allele could cause a significant yield decrease (Specht et al., 2001; Rotundo and 

Westgate, 2009). Also, genetics play a role in determining seed composition not only evidenced 

by the numerous seed composition QTL that have been mapped but also by the highly heritable 

nature of protein and oil concentration (Brummer et al., 1997; Chung et al., 2003; Eskandari et 

al., 2013). We did not observe a significant difference when we compared the genetic effects on 

each trait between the AR09-192019 and LD02-4485 backgrounds; however, this is only two 

backgrounds, and it is possible that significant difference in effects may be observed if tests were 

expanded to other genetic backgrounds. Therefore, it would be worthwhile to test the chr 15 

QTL in other backgrounds and environments before it is deployed in a breeding program. 

Nonetheless, the stability of the genetic effects of the PI407788A allele across two backgrounds 

that were significantly different for all measured traits is promising (Table 3.1).  

 This study highlights the importance of evaluating the effect of high protein QTL on seed 

composition and agronomic traits. While it remains difficult to simultaneously increase protein 

and oil concentration and yield, the high protein allele from PI407788A could be a successful 

candidate for use in developing high protein soybean cultivars with economical seed yield. 

Additionally, the information presented in this study combined with new insights generated by 

rapidly evolving molecular technologies could help breeders form efficient and effective 

strategies to simultaneously improve seed composition and yield.  
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Tables 

Table 3.1. Evaluation of seed composition and agronomic traits across lines in the AR09-192019 or LD02-4485 background. Protein and oil 

concentrations are reported on a 130 g kg
-1

 moisture basis. 

n.s. = non-significant.  

†The date when 95% of pods have reached mature color (R8; Fehr et al., 1971) with September 1 equivalent to 901.  

‡Distance between the soil line and apex of the main stem.  

§Lodging score was on a 1 to 5 scale with 1=all plants erect and 5=all plants prostrate.  

¶Location and year combination. 

# Mean of all near-isogenic lines with AR09-192019 as their recurrent parent.  

†† Mean of all near-isogenic lines with LD02-4485 as their recurrent parent. 

‡‡ Difference between the means of lines in the AR09-192019 and LD02-4485 backgrounds. 

 

    Seed yield (kg ha
-1

)   Protein (g kg
-1

)   Oil (g kg
-1

)   Maturity date†   Plant Height (cm)‡   Lodging (1-5)§ 

Environment¶   

AR09-

192019# 

LD02-

4485†† 

Diff.‡‡ P value   AR09-

192019 

LD02-

4485 

Diff. P value   AR09-

192019 

LD02-

4485 

Diff. P value   AR09-

192019 

LD02-

4485 

Diff. P value   AR09-

192019 

LD02-

4485 

Diff. P value   AR09-

192019 

LD02-

4485 

Diff. P value 

Pontiac 2015   4913 5522 -609 <.0001   390 361 29 <.0001   212 220 -8 <.0001   907 913 -6 <.0001   82 90 -8 <.0001   1.3 1.6 -0.3 <.0001 

Urbana 2015   4018 4556 -538 <.0001   372 343 29 <.0001   221 231 -10 <.0001   906 910 -4 <.0001   70 78 -8 <.0001   1.1 1.3 -0.2 <.0001 

Pontiac 2016   4873 4886 -13 n.s.   386 362 24 <.0001   219 229 -10 <.0001   912 916 -4 <.0001   100 105 -5 <.0001   2.0 2.5 -0.5 <.0001 

Urbana 2016   4612 4859 -247 <.0001   382 365 17 <.0001   222 229 -7 <.0001   908 912 -4 <.0001   91 99 -8 <.0001   1.4 1.9 -0.5 <.0001 

Across   4603 4957 -354 <.0001   382 358 25 <.0001   219 228 -9 <.0001   908 912 -4 <.0001   86 93 -7 <.0001   1.4 1.8 -0.4 <.0001 



 

77 
 

Table 3.2. Average effects of the high protein allele from PI407788A on seed composition and yield across both the AR09-192019 and LD02-

4485 backgrounds. Protein and oil concentration are reported on a 130 g kg
-1
 moisture basis. 

    Seed yield (kg ha-1)   Protein (g kg-1)   Oil (g kg-1) 

Environment†   
Donor 
Allele‡ 

Recurrent 
Allele§ Diff.¶ 

P 
value   

Donor 
Allele 

Recurrent 
Allele Diff. 

P 
value   

Donor 
Allele 

Recurrent 
Allele Diff. 

P 
value 

Pontiac 2015   5226 5375 -151 n.s.   379 365 14 <.0001   214 221 -7 <.0001 

Urbana 2015   4313 4407 -94 n.s.   360 347 13 <.0001   224 231 -7 <.0001 

Pontiac 2016   4863 4899 -36 n.s.   376 366 10 <.0001   222 228 -6 <.0001 

Urbana 2016   4749 4789 -40 n.s.   375 367 8 <.0001   224 229 -5 <.0001 

Across   4790 4866 -76 n.s.   372 361 11 <.0001   221 227 -6 <.0001 

n.s. = non-significant.  

† Location and year combination. 

‡ Mean of near-isogenic lines predicted to be homozygous for the PI407788A allele at the chr 15 locus based on the genetic marker Satt384. 

§ Mean of near-isogenic lines predicted to be homozygous for the recurrent allele at the chr 15 locus based on the genetic marker Satt384. 

¶ Difference between the means of homozygous classes. 
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Table 3.3. Average effects of the high protein allele from PI407788A on maturity date, plant height, and lodging across both the AR09-192019 

and LD02-4485 backgrounds. 

    Maturity date†   Plant Height (cm)‡   Lodging (1-5)§ 

Environment¶   
Donor 
Allele# 

Recurrent 
Allele†† Diff.‡‡ 

P 
value   

Donor 
Allele 

Recurrent 
Allele Diff. 

P 
value   

Donor 
Allele 

Recurrent 
Allele Diff. 

P 
value 

Pontiac 2015 
 

911 912 -1 n.s.   87 88 -1 n.s.   1.4 1.5 -0.1 n.s. 

Urbana 2015 
 

908 909 -1 n.s.   74 75 -1 n.s.   1.2 1.2 0.0 n.s. 

Pontiac 2016 
 

913 914 -1 0.0263   102 105 -3 0.0186   2.3 2.4 -0.1 n.s. 

Urbana 2016 
 

910 911 -1 0.0129   95 97 -2 0.0495   1.7 1.8 -0.1 n.s. 

Across   911 912 -1 n.s.   90 91 -2 n.s.   1.6 1.7 -0.1 n.s. 

n.s. = non-significant.  

†The date when 95% of pods have reached mature color (R8; Fehr et al., 1971) with September 1 equivalent to 901.  

‡Distance between the soil line and apex of the main stem.  

§ Lodging score was on a 1 to 5 scale with 1=all plants erect and 5=all plants prostrate. 

¶Location and year combination. 

# Mean of lines predicted to be homozygous for the PI407788A allele at the chr 15 locus based on the genetic marker Satt384. 

†† Mean of lines predicted to be homozygous for the recurrent allele at the chr 15 locus based on the genetic marker Satt384. 

‡‡ Difference between the means of homozygous classes. 
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CHAPTER 4: FIELD EVALUATION OF THREE SOURCES OF GENETIC 

RESISTANCE TO SUDDEN DEATH SYNDROME OF SOYBEAN 

 

 

Abstract  

 Sudden death syndrome (SDS) of soybean [Glycine max (L.) Merrill] is a disease that 

causes yield loss in soybean growing regions across the USA and worldwide. The most effective 

way to control the disease is through genetic resistance. While multiple quantitative trait loci 

(QTL) for SDS resistance have been mapped, studies to further evaluate these QTL are limited. 

The objective of our research was to test the effect of previously mapped SDS resistance QTL on 

foliar symptoms when incorporated into elite soybean backgrounds. Six backcross populations 

were developed to test the following QTL: cqSDS-001, with resistance originating from 

PI567374, a QTL on chromosome 10 from Ripley, and QTL on chromosomes 1 and 18 from 

PI507531. The NIL populations segregated for QTL alleles and were field tested in multiple 

inoculated environments and evaluated for leaf scorch. While foliar disease development was 

variable across environments and populations, each QTL was detected within at least one 

environment. This includes the detection of cqSDS-001 in three genetic backgrounds. The QTL 

allele from the resistant parent was associated with greater resistance than the susceptible allele 

for all QTL and backgrounds with the exception of the allele for the QTL on chromosome 18, 

where the opposite occurred. This study highlights the importance and difficulties of confirming 

QTL and the need for multi-year SDS field testing provides information for breeders to use to 

improve resistance to SDS.
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Introduction 

 

Sudden death syndrome (SDS) is an economically important disease of soybean [Glycine 

max (L.) Merr.]  caused in North America by the soil-borne fungus, Fusarium virguliforme 

O’Donnell and T. Aoki (Aoki et al., 2003). It was first observed in Arkansas in 1972 and has 

since spread to almost all soybean growing regions in the US and as far north as Canada (Rupe et 

al., 2001). Additionally, the disease has been observed in Argentina and Brazil, the major 

soybean growing countries in South America (Ploper, 1993; Nakajima et al., 1993). The causal 

agents of SDS in South America are F. virguliforme, F. tucumaniae, F. brasiliense, and F. 

crassistipitatum (Aoki et al, 2003; 2005; 2012).  Yield losses up to 80 percent have been reported 

in fields affected by SDS, but losses between 5 percent and 15 percent are more common (Roy et 

al., 1997). From 2007 to 2009, SDS was the fifth most important soybean disease in the USA 

with estimated yield losses ranging from approximately 0.56 to 0.94 million metric tons 

(Koenning and Wrather, 2010).  

Foliar symptoms of SDS commonly develop when the plant is in its reproductive phase, 

and they begin as small scattered, interveinal light green or chlorotic spots resulting in a mottled 

appearance (Roy et al., 1997; Hartman et al., 2015). The spots then enlarge and can become 

necrotic or may run together to form larger areas of interveinal leaf cholorosis. In severe cases, 

defoliation occurs with petioles remaining attached to the stem. Root symptoms can also be 

associated with SDS and become more pronounced when foliar symptoms are severe. Roots of 

infected plants can exhibit crown necrosis and lateral root rot with gray or red brown 

discoloration radiating out from the pith. Blue sporulation may also be seen on the taproot and 

lower stem. 

While management practices to protect against losses due to SDS are limited, one of the 

most effective ways to manage the disease is through genetic resistance. Field resistance to SDS 

has been classified as horizontal, rate reducing, and partial, it is controlled by many genes, and 

high heritabilities of over 0.80 for SDS resistance have been reported (Njiti et al., 1996; Njiti et 

al., 1997; Wen et al., 2014; Bao et al., 2015).  Resistant genotypes have been identified and made 

available to producers; however, all genotypes will display some SDS symptoms if conditions 

are favorable (Hartman et al., 1997; Iqbal et al., 2001; Mueller et al., 2002; Mueller et al., 2003). 
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SDS resistance is complex, and it remains important for breeders to further their understanding 

of genetic resistance in order to develop better cultivars for producers.  

 Quantitative trait loci controlling SDS resistance have been mapped to over 11 

chromosomes, and they are listed at: http://www.soybase.org/search/index.php?qtl=SDS 

(Soybase, 2017). Research has shown that QTL confer resistance to foliar or root injury or both 

(Njiti et al., 1998a; Triwotayakorn et al., 2005; Kazi et al., 2008; Abdelmajid et al., 2012), and 

only a few QTL have been mapped to the same regions across mapping populations (Njiti et al., 

2002; Luckew et al., 2013; Wen et al., 2014; Bao et al., 2015; Zhang et al., 2015). In a 

population developed from a cross between ‘Ripley’ (Cooper et al., 1990) and ‘Spencer’(Wilcox 

et al., 1990), de Farias Neto et al. (2007) mapped resistance QTL on chromosome (chr) 19 

(formally linkage group (LG) L) and chr 17 (LG D2). The QTL on chr 17 mapped to the same 

genetic region in a population derived from crossing PI567374 by ‘Omaha’ (Nickell et al., 1998) 

and was confirmed and designated cqSDS-001. This is the only QTL that has been confirmed 

based on the rules set by the Soybean Genetics Committee 

(http://www.soybase.org/resources/QTL.php). Most SDS resistance QTL have been mapped in 

biparental populations; however, advances in genotyping and statistical analysis have led to 

recent genome wide association studies that have identified novel and previously identified SDS 

resistance QTL (Wen et al., 2014; Bao et al., 2015; Zhang et al., 2015).  

After QTL have been mapped, follow-up research to better understand these QTL is 

needed. It is important to confirm and incorporate QTL into multiple genetic backgrounds to 

determine whether they will maintain their effect and be useful in breeding programs (Fasoula et 

al., 2004). A QTL that does not maintain its desired effect across multiple backgrounds could be 

dependent on a mechanism specific to a genotype and therefore will have limited use to a 

breeder. The objective of this study is to evaluate previously mapped SDS resistance QTL from 

PI567374, Ripley, and PI507531 in backcross soybean populations.  

 

 

 

 

 

 

http://www.soybase.org/search/index.php?qtl=SDS
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Materials and Methods 

 

Population Development 

 

Six segregating populations were developed via backcrossing to incorporate four SDS 

resistance QTL separately into different genetic backgrounds (Table 4.1).  

The QTL allele on chromosome 17 (cqSDS-001) from PI567374 (de Farias Neto et al., 

2007) was backcrossed four generations into three genetic backgrounds to form three populations 

of BC4F2-derived lines. The backgrounds were adapted to central Illinois and had SCN resistance 

from PI88788 or PI437654 (Cary and Diers, 2004). They included LD02-4485 (Abney and 

Crochet, 2006), a maturity group (MG) II cultivar; LD01-5907 (Abney and Crochet, 2006), a late 

MG III experimental line; and LD00-3309 (Diers et al., 2006), a MG IV cultivar.  

The QTL allele on chromosome 10 from Ripley (Pruski, personal communication) was 

backcrossed four generations into LD02-4485 to create a population consisting of BC4F2-derived 

lines. The resistance QTL from Ripley will herein be referred to as CHR10.  

Two additional populations of BC3F2-derived lines were developed by individually 

backcrossing resistance alleles for QTL on chromosomes 1 and 18 from PI507531 (Pruski, 

personal communication) into Spencer, a MG IV cultivar highly susceptible to SDS. The 

resistance QTL from PI507531 on chromosomes 1 and 18 will herein be referred to as CHR1 and 

CHR18, respectively. 

Polymorphic markers within and flanking the genetic regions of interest were used to 

perform marker-assisted selection (MAS) and introgress each QTL region into one or more 

recurrent parents. The approximate size of the introgressed intervals are as follows: cqSDS-001, 

12.5 Mb; CHR 10, 7.7 Mb; CHR1, 45.9 Mb; CHR18, 33.8 Mb. Once backcrossing was 

completed, heterozygous BCnF2 plants were self-pollinated to form populations of BCnF2-

derived lines, and lines homozygous for the QTL allele from the resistant or susceptible parent 

were selected based on flanking markers. Lines that had recombinations between markers were 

discarded. 
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Field Evaluation   

 

Each population was evaluated for three growing seasons at inoculated locations between 

2012 and 2015 (Table 4.1). Early maturing populations were planted at locations in Ames, IA; 

Decatur, MI; and Urbana, IL. Late maturing populations were planted at locations in Urbana; 

Valmeyer; and Shawneetown, IL. In 2012, planting dates were as follows: Ames, April 18; 

Decatur, May 6; Shawneetown, n/a;  Urbana, April 19; Valmeyer, n/a. In 2013, planting dates 

were as follows: Decatur, April 30; Shawneetown, n/a ; Urbana, May 14; Valmeyer, n/a. In 

2014,  planting dates were as follows: Decatur, May 5; Shawneetown, n/a; Urbana, April 24; 

Valmeyer, n/a. In 2015, planting dates were as follows: Decatur, May 2; Shawneetown, n/a; 

Urbana, April 29; Valmeyer, n/a. Plant inoculum in the form of F. virguliforme infested sorghum 

kernels was incorporated into the seedbed at most Iowa and Illinois locations (de Farias Neto et 

al., 2006). The inoculum rate was as follows: 14 cm
3
/1 m of row at Ames and 34 cm

3
/1 m of row 

at the inoculated Illinois locations. The Decatur and Valmeyer locations were naturally infested 

with F. virguliforme. Lines from each population plus recurrent parents and checks were blocked 

separately, and plots were arranged in a randomized completed block design. Plot length, row 

spacing, and seeding rate were variable. At Urbana, two-row plots were 3.05 m long with 0.76 m 

row spacing and a seeding rate of ~30 seeds per m. Plot length, row spacing, and seeding rate 

were similar at Decatur except plots were a single row. At Ames, two-row plots were 2.40 m 

long with a 0.80 m row spacing and a seeding rate of ~27 seeds per m (Table 4.1). Entries were 

replicated twice at Ames; Decatur; and Urbana, and three times at Valmeyer and Shawneetown. 

During reproductive growth stages, locations were irrigated as needed using drip tape or a center 

pivot irrigation system to promote SDS symptom development.  

Foliar disease incidence and severity readings were taken on a per plot basis at 

approximately the R6 growth stage (Fehr et al., 1971). Disease incidence (DI) was measured as a 

percentage of plants in a plot displaying foliar SDS symptoms. Foliar disease severity (DS) was 

rated on a scale from 1 to 9 according to Njiti et al (1996): 1 = 0-10% of leaf surface chlorotic or 

1-5% necrotic, 2 = 10-20% of leaf surface chlorotic or 6-10% necrotic, 3 = 20 – 40% of leaf 

surface chlorotic or 10-20% necrotic, 4 = 40-60% of leaf surface chlorotic or 20-40% necrotic, 5 

= > 60% of leaf surface chlorotic or > 40% necrotic, 6 = up to 33% premature defoliation, 7 = up 

to 66% premature defoliation, 8 = > 66% premature defoliation, 9 = premature death of the plant. 
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Disease index (DX) was calculated with a possible range of 0 to 100 using the following 

equation: DX=(DS x DI)/9 (Njiti et al., 1996). 

 

Genetic Analysis 

 

 Genomic DNA was isolated from expanding young trifoliate leaves using either a 

modified CTAB (hexadecyltrimethylammonium bromide) method (Keim et al., 1988) or a 

modified quick DNA extraction method (Bell-Johnson et al., 1998). Polymerase chain reactions 

(PCR) were done according to Cregan and Quigley (1997) to test the NILs with simple sequence 

repeat (SSR) markers (Cregan et al., 1999; Song et al., 2004; Song et al., 2010). Electrophoresis 

was used to separate PCR products on 6% (w/v) nondenaturing polyacrylamide gels (Wang et 

al., 2003). 

 

Statistical Analysis 

 

  The PROC MIXED function in SAS v9.4 (SAS Institute Inc., Cary, NC) was used to 

analyze leaf scorch symptoms in each population. Environments were defined as year by location 

combinations. Marker genotype, line, and marker genotype nested within line were fixed, and 

environment and replication were random. Interactions that included a random effect were also 

random. Data were transformed using the square root function if the normality assumption of the 

residuals was not met. Additionally, in the case of heterogeneous error variances, the mixed 

model was fitted using the REPEATED statement with GROUP=option (Littell et al., 2006). 

Reported p values are based on transformed data whereas all other data have been back 

transformed to original units.  

 

Results 

 

Field Test Overview 

 

 The soybean populations were developed to be representative of the maturity groups and 

cultivars planted in Illinois. The six populations were evaluated at multiple locations over three 
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growing seasons (Table 4.1). Foliar symptom development varied according to the environment 

and population. In several environments, limited disease expression or the presence of other 

pathogens made it impossible to record leaf scorch ratings.  

 

cqSDS-001  

 

 QTL cqSDS-001 on chromosome 17 was tested in the LD02-4485, LD01-5907, and 

LD00-3309 backgrounds, and the populations consisted of 36, 44, and 36 lines, respectively 

(Table 4.1). For the LD02-4485 population, foliar disease data were not collected in the 2014 

Decatur, MI environment due to inadequate disease development (Table 4.2). In 2012, lines with 

the resistance QTL allele had a significantly (P<0.05) reduced average DS and DX at Decatur 

and a reduced average DX at Urbana. In Urbana 2013, the average DX and DI of lines 

containing the resistance allele at cqSDS-001 was significantly less than those containing the 

susceptible allele. Although these significant differences were observed within multiple 

environments, they were small in magnitude, which is likely the result of the foliar symptoms 

being weak in the LD02-4485 background. The effect of the QTL was not observed across 

environments.  

 For the LD01-5907 population, SDS foliar symptoms were recorded at four environments 

(Table 4.3). No data were collected from this population in 2015 or at the Shawneetown location 

in 2013 and 2014 as there was insufficient symptom development. Lines homozygous for 

resistance at the cqSDS-001 locus had a significantly lower DX, DI, and DS at Valmeyer in 

2014. Although the difference in DS was only a fraction of a rating point, the difference in DI 

was over 13%. The resistance QTL allele’s effect was not detected across environments. 

 Leaf scorch ratings were collected at six environments for the LD00-3309 population 

(Table 4.4). Reliable symptoms did not develop at the Shawneetown location during the three 

field seasons of evaluation. Even though symptom expression was light, significant differences 

among lines were observed at Urbana in 2012 and 2013. In Urbana 2012, lines homozygous for 

the PI567374 allele had a reduced average DI and DX compared to lines homozygous for the 

LD00-3309 allele. In Urbana 2013, the average DS, DI, and DX of lines with the resistance allele 

was reduced compared to lines with the LD00-3309 allele. Despite being statistically significant, 
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all differences observed in the LD00-3309 population were small in magnitude. In the LD00-

3309 background, cqSDS-001 was not significant across environments.  

 

Chr 10 QTL from Ripley (CHR10) 

 

 CHR10 was evaluated in the LD02-4485 background in a population of 48 NILs (Table 

4.1). The population was tested in six environments, and there was inadequate disease 

development for data collection at the 2015 Urbana location (Table 4.5). With the exception of 

2013 Decatur, MI where symptoms were moderate, foliar disease development was low. The 

only environment that a significant difference between lines containing the resistance QTL allele 

and the susceptible allele was Urbana 2014. Despite low level disease expression, lines with the 

resistance allele at CHR10 had an average DS of 0.34 while lines with the susceptible allele had 

an average DS of 0.70. No significant QTL effect was observed across environments.  

 

Chr 18 QTL from PI507531 (CHR18) 

 

 Using Spencer as the recurrent parent, a population of 35 lines was developed to 

determine the effect of CHR18 (Table 4.1). This population was planted at nine environments; 

however, ratable foliar symptoms were only observed at six environments (Table 4.6).  Spencer 

is susceptible to many foliar diseases in addition to SDS, which made visual data collection 

impossible at the three nonrated environments. While foliar symptoms were moderate to severe 

in most environments, a significant effect for CHR18 was only detected in 2015 at 

Shawneetown. Unfortunately, the QTL effect was opposite of what was expected with the 

average DX significantly greater for lines homozygous for the resistance allele compared to 

homozygous susceptible lines; however, the difference was relatively small. This unexpected 

effect was supported by a similar, but not significant, trend of in other environments. Across 

environments, no significant differences due to the CHR18 QTL were detected.  
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Chr 1 QTL from PI507531 (CHR1) 

 

 A population consisting of 46 lines was developed to test the effect of CHR1 on SDS 

foliar symptoms in the Spencer background (Table 4.1). Adequate leaf scorch symptoms were 

observed in eight out of the nine environments where the population was planted (Table 4.7). 

Overall, disease development was robust in the eight environments where data were collected, 

and symptoms were moderate to severe.   

 CHR1 was detected within and across environments; however, the average difference 

between resistant and susceptible lines tended to be small especially for DS. Within the 2013 and 

2014 Urbana, IL environments, lines with the CHR1 resistance alleles had a significantly lower 

average DS, DI, and DX than lines with the susceptible allele. In addition, lines with the 

resistance QTL allele had a significantly reduced average DS and DX within 2013 Valmeyer and 

a significantly reduced DX within 2014 Valmeyer. Across 2013 environments, the CHR1 

resistance allele was associated with decreased DS while across 2014 environments the 

resistance allele was associated with decreased DX. Across all environments, there was a 

significant reduction in DS for lines containing the resistance allele compared to lines containing 

the susceptible allele.  

 

Discussion 

 

The objective of this study was to identify QTL breeders can use to successfully improve 

SDS resistance in their current programs. In this study, QTL effects on resistance were detected 

in at least one environment. With the exception of lines in the CHR18 population, lines with a 

resistance allele had a reduced average disease severity, disease incidence, and/or disease 

severity compared to lines with the susceptible allele. QTL effects for cqSDS-001 on resistance 

were detected in the LD02-4485, LD01-5907, and LD00-3309 backgrounds and within multiple 

environments. The CHR1 resistance allele from PI507531 significantly reduced SDS foliar 

symptoms within three environments and averaged across all environments compared to the 

susceptible allele. While differences between lines containing the resistance QTL alleles and 

lines containing the susceptible QTL alleles were observed, they were often minor. Significant 

differences between QTL classes for DS were a fraction of a point on the rating scale. It is 
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possible the QTL would have a greater effect on resistance in different genetic backgrounds or 

different environments; however, it is also possible that these QTL are not good candidates to 

increase SDS resistance in cultivars at a level that provides an economic benefit to producers. 

Additionally, cqSDS-001 and CHR10 were detected in populations and environments where 

symptom development was minor. Therefore, it is also possible that this QTL only improves 

resistance when disease pressure is low.  Although we did not test for yield so we cannot 

estimate the impact of these QTL on yield, it has been shown previously that yield loss can still 

occur when symptoms are mild to moderate (Njiti et al., 1998b). 

It can be challenging to achieve robust and reliable SDS foliar symptoms in the field. As 

in other SDS field studies, considerable effort was taken to optimize field environments to make 

them conducive to SDS development (de Farias Neto et al., 2006; de Farias Neto et al., 2007; 

Kandel et al., 2015; Weems et al., 2015). The plots were planted early, irrigated as needed during 

reproductive growth stages, and the soil was inoculated with Fusarium virguliforme; however, 

the foliar symptoms in some tests were still too light to rate or nonexistent. Environmental 

factors that are difficult to control in a field setting such as temperature, rainfall, and soil texture 

all play a major role in SDS disease development (Scherm and Yang, 1996; Roy et al., 1997; 

Scherm et al., 1998; Hartman et al., 2015).  

The genetic backgrounds used in this study were selected because they are characteristic 

of high yielding, MG II-IV cultivars grown currently or previously across Illinois and other 

soybean growing states in the midwestern USA. LD02-4485, LD01-5907, and LD00-3309 are 

also moderately resistant to SDS, and this could have been another barrier to obtaining good 

foliar symptoms and an explanation for the minor significant differences observed between QTL 

classes within the populations. These three backgrounds have SCN resistance alleles at rhg1, and 

the genetic interval containing this allele has been shown to be associated with improved SDS 

resistance (Prabhu et al., 1999; Njiti et al., 2002; Triwitayakorn et al., 2005; Srour et al, 2012). 

For the most part, we were able to consistently achieve symptoms and collect leaf scorch data in 

the susceptible background, Spencer. In future SDS confirmation studies, it may be more 

effective to test QTL in high-yielding genetic backgrounds that have been previously shown to 

be moderately susceptible or susceptible to the disease.  

In some environments, SDS symptoms were most likely present, but we could not collect 

reliable data due to the presence of other pathogens. Several other fungal diseases of soybean 
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including brown stem rot (causal agent-Phialophora gregata), red crown rot (Cylindrocladium 

parasiticum), charcoal rot (Macrophomina phaseolina), and stem canker (Diaporthe 

phaseolorum var. meridionalis, Diaporthe phaseolorum var. caulivora) cause foliar leaf scorch 

symptoms similar to SDS (Hartman et al., 2015). Destructive sampling is often the only way to 

tell the diseases apart, which is not necessarily feasible in field experiments with many locations, 

replications, and entries. Additionally, it can be common for plants to be infected with several 

other pathogens that produce symptoms that make the visual diagnosis of SDS difficult or 

impossible. This is especially the case when SDS symptoms appear late in the growing season 

around the R7 growth stage or at a lower position a plant’s canopy. The Shawneetown location 

often had other foliar symptoms that confounded our SDS ratings. The complex nature of 

screening for resistance to SDS demonstrates the importance of extensive multi-environment 

field experiments to effectively breed for enhanced SDS resistance.  

There have been rapid advances in genetics and statistical modeling, and there is hope 

that next generation breeding methods will lead to cultivars with durable resistance to SDS. 

Association mapping studies have mapped novel and previously mapped SDS resistance QTL 

across several diverse association panels (Wen et al., 2014; Bao et al., 2015; Zhang et al., 2015). 

They have also offered insight to help us better understand the complexity of SDS resistance; 

however, many questions still remain. Genomic selection (GS), which uses predictive models 

created with phenotypic and genotypic data to generate genomic estimated breeding values 

(GEBVs), is being tested for use in breeding for SDS resistance. While the reported prediction 

accuracies of GS models for SDS related traits have been low, GS still holds promise to increase 

SDS resistance (Bao et al., 2015). Research evaluating the implementation of GS to improve 

resistance to SDS is limited and still in its infancy. Although recent studies have suggested the 

potential of association mapping and genomic selection to increase durable resistance to SDS, 

more exploration is needed before these methods can be successfully applied in a breeding 

program. Additionally, until a reliable system is established, accurate phenotypic assessment will 

continue to impede the efficacy of breeding for improved resistance to SDS. 

The QTL evaluated in this study could be used to pyramid resistance QTL into elite 

cultivars for more durable resistance. While the genetic mechanisms of the QTL we evaluated 

are unknown, stacking the two distinct SDS resistance mechanisms, resistance to root rot and 

leaf scorch, could also be a strategy to increase resistance. Although stacking multiple QTL into 
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a single cultivar is a time consuming endeavor, MAS improves efficiency and reduces the time 

needed to do so. In the future, predictive modeling in combination with high throughput genetic 

data could conserve the resources and time needed to incorporate multiple resistance QTL into 

elite cultivars. It would also help capture the resistance of multiple small effect QTL.   

de Farias Neto et al. (2007) mapped and confirmed cqSDS0-001 using resistance 

originating from Ripley and also mapped a QTL to the same interval from PI567374. In our 

study, we have now detected the effect of resistance allele from PI567374 in three backgrounds 

and new environments. This shows that this QTL can increase resistance across backgrounds and 

environments and therefore could be useful for breeders as they breed for SDS resistance.  

While the CHR10 allele from Ripley and the CHR1 and CHR18 alleles from PI507531 

had been previously mapped, there has not been further evaluation of these QTL outside of the 

original study. We have observed the impact of the CHR1 and CHR10 QTL in new 

environments and backgrounds showing that positive effects of these resistance alleles. The 

CHR1 QTL showed a positive effect on resistance in four environments and across environments 

indicating that it could be promising for use in breeding programs. The increase in resistance was 

small, so more information would be needed to validate whether this QTL could improve 

resistance at the increased level necessary for resistant cultivars.  

While we observed a significant effect for the CHR18 QTL interval, the QTL effect was 

opposite of expectations. There are a number of explanations for the unexpected result. This 

includes that (1) the QTL effect detected in the current study was not for the same QTL detected 

previously, but instead a closely linked QTL, (2) there are multiple alleles for the QTL and the 

donor parent had an allele for greater resistance than the PI parent, (3) the original QTL and the 

marker used to track it during backcrossing were not tightly linked and the resistance allele was 

lost during backcrossing, (4) the parents of the backcross population were not segregating for 

QTL alleles previously detected and the significance was a Type 1 error, and (5) there is not a 

QTL in this region and the significance in the mapping study was a Type 1 error. Overall, it is 

difficult to identify large effect QTL to improve traits such as SDS resistance because QTL 

detection and confirmation can be inconsistent, and these factors make it important to critically 

evaluate QTL prior to wide use in a breeding program (Beavis et al., 1994; Kao and Zang, 1997; 

Fasoula et al., 2004). 
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There are numerous challenges a breeder must overcome to improve resistance to SDS. 

These include difficulty in accurately evaluating symptoms and the complex genetic nature of 

resistance. Nonetheless, genetic resistance remains critical in limiting the yield loss caused by 

sudden death syndrome. Our study indicates there are several sources including PI567374 and 

PI507531 a breeder could use to enhance SDS resistance in their program. It is important to note 

that the significant increases in resistance associated with these two sources were small in 

magnitude and were only noted in a limited number of environments, and therefore, they could 

be of limited use to improve resistance to SDS. Nonetheless, the detection of resistance QTL 

effects from PI567374 within multiple genetic backgrounds and from PI507531 across 

environments is promising. This study also highlights both the necessity and complicated nature 

of multiyear field testing to evaluate symptoms, and the importance of evaluating QTL across 

multiple genetic backgrounds prior to incorporating them into a breeding program. It is expected 

that advances in high throughput genotyping and phenotyping will offer better insight into the 

complexity of sudden death syndrome and will ultimately result in improved cultivars for 

producers. In the meantime, implementing MAS using QTL such as cqSDS-001 and CHR1 and 

the continued evaluation of mapped QTL could be effective methods to mitigate losses due to 

this devastating disease.
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Tables 

Table 4.1. Description of the populations evaluated for sudden death syndrome foliar symptoms and the environments where they were evaluated.  

Parentage of 
BC Population† Generation‡ QTL§ MG¶ No. Entries# Years††   Location‡‡ 

    
Res Sus 

  

Ames, 
IA 

Decatur, 
MI 

Shawneetown, 
IL 

Urbana, 
IL 

Valmeyer, 
IL 

LD02-4485 x 
PI567374 BC4F2:n 

cqSDS-
001 2.6 

19 17 
2012, 2013, 

2014 
 

x x 
 

x 
 LD02-4485 x 

Ripley BC4F2:n chr 10 2.6 
19 29 

2013, 2014, 
2015 

  
x 

 
x 

 LD01-5907 x 
PI567374 BC4F2:n 

cqSDS-
001 3.8 

22 22 
2013, 2014, 

2015 
   

x x x 
Spencer x 
PI507531 BC3F2:n chr 1 4.0 

28 18 
2013, 2014, 

2015 
   

x x x 
Spencer x 
PI507531 BC3F2:n chr 18 4.0 

16 19 
2013, 2014, 

2015 
   

x x x 
LD00-3309 x 

PI567374 BC4F2:n 
cqSDS-

001 4.0 
18 18 

2012, 2013, 
2014       x x x 

†The recurrent parent (listed first) crossed to the donor parent (listed second). 

‡Backcross generation of the population when it was evaluated.  

§ The QTL name or chromosome (chr) location of the QTL segregating in the population. 

¶ Relative maturity of the recurrent parent. 

# Number of lines in the test. “Res” indicates lines are predicted to be homozygous resistant based on markers linked to the QTL. “Sus” indicates 

lines are predicted to be homozygous  susceptible based on markers linked to the QTL. 

†† Years when population was evaluated. 

‡‡ Location where population was planted. An “x” indicates the population was planted at a location. 
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Table 4.2. Evaluation of sudden death syndrome disease severity, disease incidence, and disease index in a population of lines segregating for the 

resistance QTL, cqSDS-001, in the LD02-4485 background.  

      Disease Severity†   Disease Incidence‡   Disease Index§ 

Year Location¶   Res# Sus†† Diff‡‡ P value§§   Res Sus Diff P value   Res Sus Diff P value 

2012 Ames, IA 
 

1.37 1.35 -- 0.75 
 

5.4 3.9 -- 0.51 
 

1.80 1.30 -- 0.61 

2012 Decatur, MI 
 

0.45 0.84 -0.39 0.01 
 

6.0 8.3 -- 0.11 
 

0.84 1.56 -0.72 0.04 

2012 Urbana, IL 
 

0.54 1.03 -- 0.07 
 

2.3 3.9 -- 0.10 
 

0.39 0.81 -0.42 0.04 

2013 Decatur, MI 
 

1.96 1.94 -- 0.64 
 

34.7 29.6 -- 0.23 
 

8.2 8.97 -- 0.62 

2013 Urbana, IL 
 

0.11 0.39 -0.28 0.04 
 

0.6 2.0 -1.4 0.04 
 

0.12 0.37 -- 0.07 

2014 Urbana, IL   0.22 0.46 -- 0.25   0.5 1.1 -- 0.22   0.11 0.29 -- 0.23 

†Disease severity (DS) was rated on a 1-9 scale according to Njiti et al., 1996. 

‡Disease incidence (DI) is the percent of the two-row plot displaying foliar symptoms. 

§Disease index (DX) was calculated using the following equation: DX=((DS*DI)/9) (Njiti et al., 1996). 

¶Location where disease ratings were recorded. 

#Means of lines predicted to be homozygous resistant (Res) at cqSDS-001 based on the genetic markers Sat_222, Satt311, Satt301, Satt186. 

†† Means of lines predicted to be homozygous susceptible (Sus) at cqSDS-001 based on the genetic markers Sat_222, Satt311, Satt301, Satt186. 

‡‡Difference between the means of homozygous classes. 

§§Probability value used to compare the mean of homozygous resistant and homozygous susceptible lines. 
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Table 4.3. Evaluation of sudden death syndrome disease severity, disease incidence, and disease index across lines segregating for the resistance 

QTL, cqSDS-001, in the LD01-5907 background. 

      Disease Severity†   Disease Incidence‡   Disease Index§ 

Year Location¶   Res# Sus†† Diff‡‡ P value§§   Res Sus Diff P value   Res Sus Diff P value 

2013 Urbana, IL   0.81 1.10  -- 0.22   3.3 4.1 -- 0.33   0.74 0.91 -- 0.28 

2013 Valmeyer, IL 
 

1.89 1.89 -- 0.66 
 

84.9 82.7 -- 0.72 
 

18.50 18.40 -- 0.71 

2014 Urbana, IL 
 

0.74 0.69 -- 0.82 
 

1.8 2.2 -- 0.90 
 

0.32 0.49 -- 0.60 

2014 Valmeyer, IL   1.36 1.61 -0.25 0.04   68.9 82.2 -13.3 0.01   11.10 15.30 -4.20 0.003 

†Disease severity (DS) was rated on a 1-9 scale according to Njiti et al., 1996. 

‡Disease incidence (DI) is the percent of the plot displaying foliar symptoms. 

§Disease index (DX) was calculated using the following equation: DX=((DS*DI)/9) (Njiti et al., 1996) 

¶Location where disease ratings were recorded. 

#Means of lines predicted to be homozygous resistant (Res) at cqSDS-001 based on the genetic markers Sat_222, Satt311, Satt488, Satt301, 

GMHSP179, Satt186, Satt031.  

†† Means of lines predicted to be homozygous susceptible (Sus) at cqSDS-001 based on the genetic markers Sat_222, Satt311, Satt488, Satt301, 

GMHSP179, Satt186, Satt031. 

‡‡Difference between the means of homozygous classes. 

§§Probability value used to compare the mean of homozygous resistant and homozygous susceptible lines. 
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Table 4.4. Evaluation of sudden death syndrome disease severity, disease incidence, and disease index across lines segregating for the resistance 

QTL, cqSDS-001, in the LD00-3309 background. 

      Disease Severity†   Disease Incidence‡   Disease Index§ 

Year Location¶   Res# Sus†† Diff‡‡ P value§§   Res Sus Diff P value   Res Sus Diff P value 

2012 Urbana, IL 
 

0.75 1.10 -- 0.21 
 

1.1 2.3 -1.2 0.046 
 

0.22 0.54 -0.32 0.04 

2012 Valmeyer, IL 
 

1.10 1.50 -- 0.15 
 

12.6 13.8 -- 0.63 
 

3.00 4.90 -- 0.3 

2013 Urbana, IL 
 

0.60 1.20 -0.60 0.01 
 

1.1 2.3 -1.2 0.01 
 

0.25 0.49 -0.24 0.03 

2013 Valmeyer, IL 
 

2.10 2.30 -- 0.30 
 

97.7 97.6 -- 0.94 
 

23.40 24.40 -- 0.38 

2014 Urbana, IL 
 

0.54 0.33 -- 0.31 
 

2.0 1.1 -- 0.14 
 

0.55 0.14 -- 0.14 

2014 Valmeyer, IL   1.22 1.24 -- 0.87   69.4 66.9 -- 0.61   10.00 12.50 -- 0.84 

†Disease severity (DS) was rated on a 1-9 scale according to Njiti et al., 1996. 

‡Disease incidence (DI) is the percent of the plot displaying foliar symptoms. 

§Disease index (DX) was calculated using the following equation: DX=((DS*DI)/9) (Njiti et al., 1996) 

¶Location where disease ratings were recorded. 

#Means of lines predicted to be homozygous resistant (Res) at cqSDS-001 based on the genetic markers Sat_222, Satt488, and Satt186. 

†† Means of lines predicted to be homozygous susceptible (Sus) at cqSDS-001 based on the genetic markers Sat_222, Satt488, and Satt186. 

‡‡Difference between the means of homozygous classes. 

§§Probability value used to compare the mean of homozygous resistant and homozygous susceptible lines. 
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Table 4.5. Evaluation of sudden death syndrome disease severity, disease incidence, and disease index across lines segregating for the resistance 

QTL from Ripley on chromosome 10 in the LD02-4485 background. 

      Disease Severity†   Disease Incidence‡   Disease Index§ 

Year Location¶   Res# Sus†† Diff‡‡ P value§§   Res Sus Diff P value   Res Sus Diff P value 

2013 Decatur, MI 
 

2.90 2.80 -- 0.69 
 

47.8 49.7 -- 0.75 
 

16.50 17.00 -- 0.79 

2013 Urbana, IL 
 

0.46 0.33 -- 0.27 
 

2.1 1.7 -- 0.36 
 

0.33 0.21 -- 0.23 

2014 Decatur, MI 
 

0.10 0.29 -- 0.11 
 

1.6 3.1 -- 0.32 
 

0.18 0.91 -- 0.19 

2014 Urbana, IL 
 

0.34 0.70 -0.36 0.04 
 

1.0 1.7 -- 0.07 
 

0.23 0.43 -- 0.14 

2015 Decatur, MI   0.86 0.66 -- 0.19   18.7 13.7 -- 0.18   2.66 1.92 -- 0.17 

†Disease severity (DS) was rated on a 1-9 scale according to Njiti et al., 1996. 

‡Disease incidence (DI) is the percent of the plot displaying foliar symptoms. 

§Disease index (DX) was calculated using the following equation: DX=((DS*DI)/9) (Njiti et al., 1996) 

¶Location where disease ratings were recorded. 

#Means of lines predicted to be homozygous resistant (Res) at the QTL locus on chromosome 10 based on the genetic markers Satt653 and 

Satt345. 

†† Means of lines predicted to be homozygous susceptible (Sus) at the QTL locus on chromosome 10 based on the genetic markers Satt653 and 

Satt345. 

‡‡Difference between the means of homozygous classes. 

§§Probability value used to compare the mean of homozygous resistant and homozygous susceptible lines. 
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Table 4.6. Evaluation of sudden death syndrome disease severity, disease incidence, and disease index across lines segregating for the resistance 

QTL from PI507531 on chromosome 18 in the ‘Spencer’ background. 

      Disease Severity†   Disease Incidence‡   Disease Index§ 

Year Location¶   Res# Sus†† Diff‡‡ P value§§   Res Sus Diff P value   Res Sus Diff P value 

2013 Urbana, IL 
 

3.80 3.40 -- 0.10 
 

53.4 45.8 -- 0.11 
 

23.70 18.70 -- 0.10 

2013 Valmeyer, IL 
 

4.60 4.40 -- 0.39 
 

100.0 100.0 -- 1.00 
 

50.70 49.10 -- 0.40 

2014 Urbana, IL 
 

2.40 2.20 -- 0.60 
 

32.6 28.7 -- 0.60 
 

12.30 9.70 -- 0.39 

2014 Valmeyer, IL 
 

3.00 3.17 -- 0.37 
 

98.0 98.3 -- 0.89 
 

32.60 35.00 -- 0.38 

2015 Urbana, IL 
 

1.73 1.57 -- 0.62 
 

46.0 43.0 -- 0.86 
 

13.84 11.54 -- 0.49 

2015 Shawneetown, IL   6.07 5.90 -- 0.25   62.5 57.4 -- 0.21   42.00 37.03 5.0 0.04 

†Disease severity (DS) was rated on a 1-9 scale according to Njiti et al., 1996. 

‡Disease incidence (DI) is the percent of the plot displaying foliar symptoms. 

§Disease index (DX) was calculated using the following equation: DX=((DS*DI)/9) (Njiti et al., 1996) 

¶Location where disease ratings were recorded. 

#Means of lines predicted to be homozygous resistant (Res) at the QTL locus on chromosome 18 based on the genetic markers Satt115, Satt566, 

and Satt504. 

†† Means of lines predicted to be homozygous susceptible (Sus) at the QTL locus on chromosome 18 based on the genetic markers Satt115, 

Satt566, Satt504 . 

‡‡Difference between the means of homozygous classes. 

§§Probability value used to compare the mean of homozygous resistant and homozygous susceptible lines. 
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Table 4.7. Evaluation of sudden death syndrome disease severity, disease incidence, and disease index across lines segregating for the resistance 

QTL from PI507531 on chromosome 1 in the ‘Spencer’ background. 

      Disease Severity†   Disease Incidence‡   Disease Index§ 

Year Location¶   Res# Sus†† Diff‡‡ P value§§   Res Sus Diff P value   Res Sus Diff P value 

2013 Urbana, IL 
 

3.40 4.10 -0.70 0.015 
 

44.6 54.2 -9.6 0.04 
 

18.90 26.30 -7.40 0.009 

2013 Valmeyer, IL 
 

4.00 4.44 -0.44 0.004 
 

100 100 -- 1.00 
 

44.20 49.30 -5.10 0.004 

2013 Shawneetown, IL 
 

0.82 0.86 -- 0.45 
 

16.8 11.0 -- 0.35 
 

2.70 2.03 -- 0.50 

2014 Urbana, IL 
 

2.10 2.70 -0.60 0.03 
 

31.4 40.0 -8.6 0.048 
 

10.20 14.40 -4.20 0.05 

2014 Valmeyer, IL 
 

2.60 2.90 -- 0.06 
 

92.7 96.0 -- 0.28 
 

27.10 31.40 -4.30 0.03 

2015 Urbana, IL 
 

2.96 2.85 -- 0.58 
 

48.5 47.8 -- 0.995 
 

21.90 20.35 -- 0.78 

2015 Valmeyer, IL 
 

2.33 2.39 -- 0.50 
 

86.9 89.8 -- 0.51 
 

23.61 24.76 -- 0.52 

2015 Shawneetown, IL 
 

6.18 6.18 -- 0.91 
 

58.3 58.1 -- 0.95 
 

12.10 11.59 -- 0.74 

Across 2013 
 

2.70 3.10 -0.40 0.004 
 

53.80 54.90 -- 0.77 
 

22.00 25.80 -- 0.31 

Across 2014 
 

2.37 2.79 -- 0.30 
 

62.50 67.80 -- 0.43 
 

18.80 22.90 -4.10 0.005 

Across 2015 
 

2.26 2.24 -- 0.96 
 

65.12 65.98 -- 0.81 
 

18.92 18.77 -- 0.99 
Across 2013, 2014, and 
2015   2.47 2.71 -0.24 0.02   60.19 62.04 -- 0.26   20.14 22.53 -- 0.07 

†Disease severity (DS) was rated on a 1-9 scale according to Njiti et al., 1996. 

‡Disease incidence (DI) is the percent of the plot displaying foliar symptoms. 

§Disease index (DX) was calculated using the following equation: DX=((DS*DI)/9) (Njiti et al., 1996) 

¶Location where disease ratings were recorded. 

#Means of lines predicted to be homozygous resistant (Res) at the QTL locus on chromosome 1 based on the genetic markers Satt531, Satt179, and Satt468. 

†† Means of lines predicted to be homozygous susceptible (Sus) at the QTL locus on chromosome 1 based on the genetic markers Satt531, Satt179, and 

Satt468. 

‡‡Difference between the means of homozygous classes. 

§§Probability value used to compare the mean of homozygous resistant and homozygous susceptible line.
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CHAPTER 5: STACKING OF ALLELES FROM MULTIPLE SOURCES INCREASES 

THE GENETIC RESISTANCE OF SOYBEAN TO HIGHLY VIRULENT SOYBEAN 

CYST NEMATODE ISOLATES* 

 

 

Abstract 

 Soybean cyst nematode (SCN), Heterodera glycines (HG) Ichinohe, is estimated to be the 

pathogen that causes the greatest economic loss to soybean [Glycine max (L.) Merrill] in the 

USA. Genetic resistance is an effective way to manage SCN. Resistance sources have been 

identified, and resistance quantitative trait loci (QTL) from these sources have been mapped. 

However, there is a need to diversify SCN resistance genes in cultivars as most grown in the 

northern USA have resistance tracing only to the source PI88788. The objective of this study was 

to determine the effectiveness of combinations of SCN resistance alleles from different sources 

in two populations formed via backcrossing. Population 1 segregates for a resistance QTL from 

both PI567516C and PI88788 while Population 2 segregates for the same QTL as Population 1 

and two QTL from PI468916. Lines from both populations were evaluated with two highly 

virulent nematode isolates that could overcome multiple sources of resistance. Furthermore, a 

subset of lines from Population 2 (Population 2 Subset) was evaluated with two additional 

nematode isolates. The SCN resistance alleles from each source significantly increased SCN 

resistance compared to the alternative alleles. The effect of resistance alleles varied depending on 

SCN isolate and population, and there was generally an increase in resistance as more resistance 

alleles were stacked together. These results indicate stacking multiple sources of resistance can 

be an effective means to increase broad-spectrum SCN resistance. 

 

 
 

 

*Submitted to Crop Science. Brzostowski, L.F., and B.W. Diers. 2017. Crop Sci. 



 

109 
 

Introduction 

 

 Soybean cyst nematode (SCN) is the pathogen estimated to cause the largest economic 

loss to soybean in the USA. From 2006-2009, the estimated average annual yield loss to SCN 

was 3.5 million metric tons, which represents a loss of over a billion dollars a year for producers 

(Koenning and Wrather, 2010). The first identification of SCN in the USA was in North Carolina 

in 1953, and since this time, the pathogen has spread to most major soybean producing areas 

(Tylka and Marett, 2014).  

 Rotation to non-host crops such as corn can be a means of SCN control; however, this 

method does not completely eradicate the pathogen from the soil due to SCN’s ability to 

overwinter in soil for several years (Porter et al., 2001; Jackson et al., 2005; Miller et al., 2006). 

Nematicide seed treatments have recently been made available to producers, but they need to be 

combined with genetic resistance to protect yields (Tylka et al., 2015; Tenuta and Tenuta, 2015). 

Genetic resistance is the most effective method to control losses due to SCN, and over the past 

several decades, SCN resistance has been a primary focus of soybean breeders (Kopisch-Obuch 

et al., 2005).  The mechanism of SCN resistance is not entirely understood. In resistant cultivars, 

the nematode penetrates the root and forms a syncytium; however, the syncytium either forms 

slowly or becomes necrotic soon after formation leading the nematode to starve to death 

(Williamson and Hussey, 1996).  

 Genetic resistance to SCN in soybean was identified shortly after the pathogen was 

discovered in the USA. Caldwell et al. (1960) observed resistance from PI548402 (‘Peking’) was 

controlled by three genes named rhg1, rhg2, and rhg3. In a later study, Matson and Williams 

(1965) reported a fourth resistance gene from Peking named Rhg4. Rao-Arelli et al. (1992) 

identified another gene in PI88788, which was given the designation Rhg5 (Rao-Arelli et al., 

1992). SCN resistance was shown to be inherited as a quantitative trait in genetic mapping 

studies, and resistance genes were mapped as quantitative trait loci (QTL) (Concibido et al., 

2004). Two major mapped SCN resistance QTL from Peking were given the gene designations 

rhg1 and Rhg4, and these designations will be used in this article. The terms gene and QTL will 

be used interchangeably to simplify explanations. 

 Over 118 soybean accessions have been identified as resistant to SCN and therefore are 

considered potential resistance sources (Arelli et al., 2000). Despite the number of resistance 
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sources available, resistance in cultivars has a narrow base with only seven resistance sources 

commonly used by breeders. Several of these sources were found to share one or more resistance 

genes, further limiting diversity for resistance. In the northern USA, PI88788 is the most widely 

used SCN resistance source in commercial cultivars. It has resistance to a broad range of HG 

(Heterodera glycines) types (Niblack et al., 2002), and cultivars with good agronomic traits have 

been developed from this source (Diers and Arelli, 1999; Cary and Diers, 2015). In the 2016 

University of Illinois Soybean Variety Test, 254 SCN resistant cultivars entered in the test had 

their source of SCN resistance listed. Of these cultivars, 249 (98%) had their resistance from PI 

88788 (University of Illinois, 2016).The resistance allele at rhg1 from PI88788 was shown to be 

different from the allele at this locus from Peking, and the PI88788 allele was given the 

designation, rhg1-b (Kim et al., 2010). Rhg1 has been cloned, and the resistance has been 

determined to be conferred by copy number variation of three genes: an amino acid transporter, 

an α-SNAP protein, and a WI12 (wound-inducible domain) protein (Cook et al., 2012). 

 With the heavy reliance on just a few sources of resistance, it is crucial to continue to 

search for and evaluate novel resistance sources to protect yields. This need is even more 

important when the ability of field nematodes to adapt to and overcome host plant resistance is 

taken into account. In a survey of soil samples taken around Illinois, 70% of the SCN 

populations studied could overcome resistance conferred by PI88788 (Niblack et al., 2008).  

 Young (1999) identified PI567516C as the only source of resistance to LY1, a highly 

virulent synthetic population of nematodes formed by mass mating HG type 1.2.3 females to HG 

type 1.2 males. Follow-up research confirmed this resistance in PI567516C and its genetic 

distinction from ‘Hartwig’ (Anand, 1992), a highly resistant cultivar with resistance from 

PI437654 (Chen et al., 2006; Arelli et al., 2009). In a population derived from a cross between 

PI567516C and Hartwig, a genetic region on chr 10 (formally linkage group (LG) O), defined by 

the markers Satt592, Satt331, and Sat_274, was associated with resistance to LY1 (Arelli et al., 

2010). A QTL was mapped to the same region on chr 10 in a population developed from a cross 

between PI567516C and the susceptible cultivar ‘Magellan’ (Schapaugh et al., 1998; Vuong et 

al., 2010). The QTL conferred resistance to HG types 2.5.7, 0, 2.7, 1.3.5.6.7, and LY1, and it was 

confirmed in a recombinant inbred line (RIL) population derived from the original PI567516C 

by Magellan cross.  
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 Breeders have also sought to increase the genetic diversity of SCN resistance by 

identifying resistant soybean relatives and using them as parents in mapping studies. Wang et al. 

(2001) mapped QTL alleles that significantly increased SCN resistance from the Glycine soja 

Siebold & Zucc. accession PI468916 on both chr 15 (LG E) and chr 18 (LG G). The QTL on chr 

15 and chr 18 were later confirmed (Kabelka et al., 2005). The chr 15 QTL was designated 

cqSCN-006, and the chr 18 QTL was designated cqSCN-007. Further testing of these QTL 

provided no evidence of linkage drag that would reduce yield (Kabelka et al., 2006). Kim and 

Diers (2013) fine mapped cqSCN-006 to a 803.4 kb region and cqSCN-007 to a 146.5 kb region. 

The region containing cqSCN-006 was recently reduced to a 212.1 kb interval and cqSCN-007 to 

a 103.2 kb interval (Yu and Diers, 2016). The abundance of genetic and phenotypic information 

for these QTL make them good candidates for incorporation into other genetic backgrounds to 

determine whether they are appropriate for widespread use in breeding programs.  

 Stacking multiple QTL from different resistance sources may provide more durable 

protection against SCN isolates that can overcome the resistance conferred by the genes 

commonly used by breeders. The objectives of this study are to i) test the effect of SCN on a 

population segregating for rhg1-b from PI88788 and the resistance allele from PI567516C for 

the chr 10 QTL (herein referred to as CHR10) ii) test the effect of SCN on a population 

segregating for rhg1-b from PI88788 and the resistance alleles at cqSCN-006, cqSCN-007, and 

CHR10. 

 

Materials and Methods 

 

Population Development 

 

Population 1 

 

 Population 1 segregated for rhg1-b from PI88788 and the SCN resistance QTL CHR10 

from PI567516C. Population development was initiated by crossing the recurrent parent LD00-

3309 (Diers et al., 2006), a maturity group IV cultivar with SCN resistance tracing back to 

PI88788, with PI567516C, an accession which does not have a resistance allele at rhg1 but does 

have a resistance allele at CHR10. Following each generation of crossing, plants were genotyped 
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with markers linked to the QTL. Two generations of backcrossing were conducted to reach the 

BC2F1 generation. BC2F1 plants fixed for the rhg1-b allele and heterozygous for CHR10 were 

crossed to LD09-15628, a line developed by backcrossing the susceptible allele at rhg1 into the 

background of LD00-3309. The cultivar IA3023 was the donor parent of the susceptible allele, 

and the line had been developed through four backcrosses (BC4). The F1 plant from the cross 

between LD09-15628 and the BC2F1 plant previously described were heterozygous for rhg1-b 

and CHR10. The population was advanced through single-seed descent in a greenhouse and field 

until the F4 generation. After testing each F4 plant with markers linked to the QTL, heterozygous 

plants were eliminated, and each plant was hand harvested to produce 143 F4:5 lines (Table A.1).    

   

Population 2 

 

 Population 2 segregated for rhg1-b from PI88788, the resistance QTL cqSCN-006 and 

cqSCN-007 from PI468916, and the resistance QTL CHR10 from PI567516C. This population 

was developed by first crossing the recurrent parent 09SCNPOP11-9 to PI567516C.  

09SCNPOP11-9 is a BC4F2:3 line fixed for the resistance alleles at cqSCN-006 and cqSCN-007 

and for rhg1-b in the LD00-3309 background. After each generation of crossing, marker-assisted 

selection was performed with markers linked to the QTL.  Two generations of backcrossing were 

conducted, and BC2F1 plants fixed for the rhg1-b allele and heterozygous for cqSCN-006, 

cqSCN-007, and CHR10 were crossed to LD09-15628. An F1 plant from this cross that was 

predicted to be heterozygous for rhg1-b, cqSCN-006, cqSCN-007, and CHR10 was selected with 

genetic markers. Population 2 was advanced by single-seed descent in the greenhouse and field 

until the F4 generation. Each F4 plant was genotyped with markers linked to the QTL, and 

heterozygous plants were eliminated. A total of 107 F4 plants were grown to maturity and 

individually harvested to produce F4:5 lines (Table A.2).      

 

Genetic Analysis 

 

 The F4 plants in Populations 1 and 2 were genotyped to predict the resistance allele for 

each plant and to identify those plants homozygous for genetic markers linked to the QTL. 

Genomic DNA was isolated from young trifoliolate leaves via a modified CTAB (cetyltrimethyl 
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ammonium bromide) method (Keim et al., 1988). The DNA samples were tested with simple 

sequence repeat (SSR) markers linked to the QTL of interest (Cregan et al., 1999; Vuong et al., 

2010; Kim and Diers, 2013) by conducting polymerase chain reactions (PCR) according to the 

method described by Cregan and Quigley (1997). Products from PCR were separated on 6% 

(w/v) nondenaturing polyacrylamide gels by electrophoresis (Wang et al., 2003). 

 

SCN Bioassay 

 

 SCN bioassays for Populations 1 and 2 were conducted using two different SCN field 

isolates; the first was a HG type 1.2.3.4.5.6.7 (TN21) and the second a HG type 1.2.3.5.6.7. The 

bioassays were conducted separately for each isolate by infesting a single F6 plant from each F4-

derived line. The SCN isolates had been maintained for several generations and were obtained 

from Alison Colgrove at the University of Illinois, Urbana, Illinois. TN21 was originally 

collected from a field in Missouri where it was selected on PI437654 and then Hartwig, while 

HG 1.2.3.5.6.7 was collected from a field in DeKalb, IL.   

 A subset of thirteen F4-derived lines from Population 2 (Population 2 Subset) was 

evaluated with two additional isolates. Lines were replicated three times by infesting F6 plants 

with SCN isolates HG 2.5.7 and HG 1.2.3.4.5.6.7 (TN23). Tests were conducted separately 

according to isolate. HG 2.5.7 was collected in a field in southwest White County, IL. TN23 was 

collected in a field at the former Dixon Springs Agricultural Center in Simpson, IL, and it was 

originally selected on PI437654.  

 In all tests, the following check cultivars and indicator lines were replicated four times: 

Peking, PI88788, PI90763, PI437654, PI209332, PI89722, ‘Cloud’, ‘Lee 74’, IA3023, LD00-

3309, PI567516C, and LD00-2817 (Diers et al., 2010). Lines, checks, and indicator lines were 

planted in a randomized design.    

The bioassays were conducted in a greenhouse in a thermo-regulated water bath system 

using modified methods described by Arelli et al. (2000) and Niblack et al. (2002). Briefly, PVC 

(polyvinyl chloride) tubes filled with a 1:1 sand to soil mix were placed in a plastic crock. Each 

tube was inoculated with approximately 2,000 nematode eggs suspended in water. A single 

germinated seedling was planted in each tube and an experimental unit was a tube with a plant. 

The crocks were suspended in a water bath maintained at 27±1°C. The plants were watered as 
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needed and grown under a 16-hour day length. After the test was maintained for 28 days, the 

tubes are immersed in water to remove the plants from the soil. Cysts were dislodged from each 

root on a nested 850-µm aperture over 250-µm aperture sieve using gentle water pressure, and 

the cysts were counted using a stereo microscope. A female index (FI) was calculated on a per 

plant basis using the following equation (Golden et al., 1970): FI = 100 x (Number of cysts per 

plant/Average number of cysts on susceptible host “Lee 74”). Lines were then classified 

according to Schmitt and Shannon (1992): resistant (FI<10), moderately resistant (FI=10-30), 

moderately susceptible (FI=31-60), and susceptible (FI>60).  

 

Statistical Analysis 

 

  Marker-trait associations were tested individually using (ANOVA) by the PROC GLM 

function in SAS v9.4 (SAS Institute Inc., Cary, NC). Markers individually significant at α=0.05 

were then placed in multivariate models, and all two-way and three-way interactions between 

markers were evaluated.  Those not significant were removed from the model and analysis 

repeated. All factors were considered fixed. If the residuals were not normal with homogeneous 

variances, female indices were log10 transformed. Reported p values are based on transformed 

data; however, all other data have been back transformed to original units. R
2
 values from the 

multivariate ANOVA measure the percentage of total genotypic variance for resistance 

explained by the QTL and their interactions. Means of genotypic classes were separated 

according to Fisher’s LSD.  

 

Results 

 

HG Type Tests 

 

 The SCN isolates, HG 1.2.3.5.6.7, TN21, HG 2.5.7, and TN23, are thought to be near-

homogenous because they have been maintained in the greenhouse for several generations. 

Female reproduction of all isolates on the susceptible check Lee 74 was robust with a FI range of 

223 for TN23 to 402 for HG 1.2.3.5.6.7 (Table 5.1). All four isolates reproduced as expected on 

the indicator lines. 
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 Population 1 

 

 Population 1 segregated for resistance alleles from PI88788 and PI567516C in a LD00-

3309 background. The FI of lines in Population 1 had a continuous distribution for both SCN 

isolates (Fig. A.1A-B). The range of FI for lines was 30 to 203 for HG 1.2.3.5.6.7 and 12 to 118 

for TN21. LD00-3309, the recurrent parent and donor of the rhg1-b allele, had a FI of 65 for HG 

1.2.3.5.6.7 and 42 for TN21. Phenotypic data were collected on 140 lines in the HG 1.2.3.5.6.7 

test and 141 lines in the TN21 test.  

 Across all lines within the HG 1.2.3.5.6.7 and TN21 tests, significant (P<0.0001) QTL 

effects were observed for rhg1 and CHR10 (Table 5.2) resulting in lines containing the resistance 

alleles being more resistant than those with the alternative alleles. The magnitude of the effects 

was dependent on the QTL and SCN isolate. For HG 1.2.3.5.6.7, FI average across all lines in 

the population was 90. The difference between the homozygous classes for rhg1 was a FI of -38, 

and this difference for CHR10 was -26. These negative values represent a decrease in 

reproduction due to the resistance alleles. There was no significant interaction between rhg1 and 

CHR10, and the two QTL together explained 40% of the total variation for resistance to HG 

1.2.3.5.6.7. For TN21, the average FI across all lines was 52, and the difference between the 

homozygous classes was -19 for rhg1 and -15 for CHR10.  There was a significant interaction 

between the two loci for TN21, and rhg1, CHR10, and the interaction explained 50% of the total 

variation for resistance.  

 When genotypic classes were compared, similar trends were observed in the HG 

1.2.3.5.6.7 and TN21 tests (Fig. 5.1A-B). Lines that were homozygous resistant at one or two 

loci had a reduced FI compared to lines containing no resistance QTL. Lines with the resistance 

allele at either CHR10 or rhg1 were not significantly different from each other. Additionally, 

lines with the resistance alleles at both QTL had a reduced average FI compared to lines with 

only one resistance allele or lines that were homozygous susceptible. Although adding resistance 

alleles resulted in improved resistance, the significant statistical interaction between rhg1 and 

CHR10 observed in the TN21 test was the result of the combined effect of the resistance QTL 

not being additive. This means that the increase in resistance was smaller than expected when the 

two resistance QTL were combined based on effect of the individual resistance alleles. For both 

isolates, combined effect of the resistance alleles for both QTL reduced the FI by approximately 
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50%. For TN21, the average FI of lines with resistance alleles for both QTL was 38 while lines 

with no resistance alleles averaged 72. For HG 1.2.3.5.6.7, the mean FI for those lines with both 

resistance alleles was 62 while the average FI for lines with neither resistance allele was 125.  

 

Population 2  

 

 Population 2 segregated for resistance alleles from PI88788, PI468916, and PI567516C 

in an LD00-3309 background. There was a continuous distribution in the FI of lines in 

Population 2 for both SCN isolates (Fig. A.1C-D). The range of FI for lines was 1 to 167 for HG 

1.2.3.5.6.7 and 11 to 116 for TN21. Phenotypic data were collected on 105 lines in the HG 

1.2.3.5.6.7 test and 104 lines in the TN21 test. 

 Across all lines, each of the four resistance alleles significantly (P<0.05) increased 

resistance to both HG 1.2.3.5.6.7 and TN21, and the magnitude of the QTL effect was dependent 

upon the QTL and SCN isolate (Table 5.2). For HG 1.2.3.5.6.7, the average FI of the population 

was 33. cqSCN-006 had a numerically greater effect on reproduction than the other QTL, and the 

FI difference between the homozygous classes ranged from -15 to -30 for the four QTL. A 

statistically significant interaction (P<0.01) was observed between rhg1 and cqSCN-007.  The 

combined effect of the QTL and interaction explained 57% of the total variance for resistance to 

HG 1.2.3.5.6.7.  For TN21, the average FI of the population was 48, and rhg1-b had a 

numerically greater effect on reproduction than the other resistance alleles. The differences in FI 

between the homozygous QTL classes ranged from -7 to -18. There were no significant 

interactions between QTL, and together the QTL explained 38% of total genetic variation 

associated with resistance to TN21. 

 For HG 1.2.3.5.6.7 and TN21, the mean FI of lines containing the resistance alleles at 

two or more QTL were significantly (P<0.05) lower than the mean of lines with no resistance 

alleles (Fig. 5.2A-B). Two exceptions to this were the means of lines with resistance alleles at 

rhg1 and CHR10 in the HG 1.2.3.5.6.7 test and lines with the cqSCN-006 and CHR10 resistance 

alleles in the TN21 test. Generally, lines homozygous for all four resistance QTL alleles had 

reduced SCN reproduction compared to lines that only had a single QTL or lines that were 

homozygous susceptible. Lines carrying all four resistance QTL and lines carrying resistance 

alleles at rhg1, cqSCN-007, and CHR 10 were classified as resistant to HG 1.2.3.5.6.7 and had 
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average FIs of 4 and 7, respectively (Fig. 5.2A). Lines with the four resistance alleles and lines 

with the resistance alleles rhg1-b, cqSCN-006, and CHR10 were classified as moderately 

resistant to TN21 with average FIs of 29 and 28, respectively (Fig. 5.2B).  

 

Population 2 Subset 

 

 Population 2 Subset consisted of the following genotypes: three lines containing no 

resistance alleles; three lines containing only the rhg1-b resistance allele; three lines containing 

the rhg1-b and CHR10 resistance alleles; and four lines containing the rhg1-b, cqSCN-006, 

cqSCN-007, and CHR10 resistance alleles. With the resistance QTL detected in Population 1 and 

Population 2, the Population 2 Subset allowed for more extensive testing of resistance QTL 

stacks with two additional SCN isolates, HG 2.5.7 and TN23. There was a continuous 

distribution for the average FI of individual lines in the Population 2 Subset for both SCN 

isolates, and the FI of lines ranged from 10 to 88 for HG 2.5.7 and 23 to 100 for TN23 (Fig. 

A.1E-F). The average female index on LD00-3309 for HG 2.5.7 was 59 and was 37 for TN23. 

 For HG 2.5.7, lines that were homozygous for the resistance allele at all four QTL had a 

reduced average FI compared to the other genotypic classes (Fig. 5.3A). The average FI of these 

lines was 15 which gives them a moderately resistant classification. Lines homozygous for the 

four susceptibility alleles had an average FI of 71, and this FI was decreased to 49 through the 

addition of rhg1-b. The FI of lines homozygous for both CHR 10 and rhg1-b was 59, which was 

not significantly different from lines carrying rhg1-b alone. An improvement in resistance 

occurred when the resistance alleles at cqSCN-006 and cqSCN-007 were stacked with the rhg1-b 

and CHR10 resistance alleles. 

 For TN23, lines with the two or four resistance QTL stacks had a significantly reduced 

female index compared to the other genotypic classes, and they were not significantly different 

from each other (Fig. 5.3B). The average FI of lines with all four resistance QTL alleles was 28 

while the average of lines with the rhg1-b and CHR10 resistance allele stack was 33. Lines 

carrying the rhg1-b allele had a reduced FI compared to lines with no resistance QTL alleles but 

had an increased FI compared to lines with resistance stacks. Lines with no resistance QTL 

alleles were susceptible with an average FI of 79.  
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Discussion 

 

 The SCN isolates in this study were selected for their ability to overcome several 

resistance sources that are commonly used by breeders. These isolates were naturally occurring; 

however, highly virulent SCN populations such as HG 1.2.3.5.6.7, TN21, and TN23 are 

currently rare in field environments. The widespread dependence on PI88788 and a handful of 

other resistance sources increases the likelihood that more nematode field populations will 

overcome the resistance conferred by these sources. SCN populations that can reproduce on 

PI88788 such as HG 2.5.7 are already common in soybean fields across the USA and Canada 

(Niblack et al., 2008; Faghihi et al., 2010; Brzostowski et al., 2014). In a survey of 527 soil 

samples collected across Tennessee, Indiana, Illinois, and Ontario, >61% of the isolates collected 

had FI >10% on PI88788 and >56% of the isolates collected within a state had a FI>10 on at 

least two differentials (Faghihi et al., 2010). This distribution of nematode isolates demonstrates 

the need to develop cultivars with more broad and durable resistance to SCN. 

 The soybean populations used in this study were developed to test the effect of 

combinations of the resistance alleles rhg1-b from PI88788, cqSCN-006 and cqSCN-007 from 

PI468916, and CHR10 from PI567516C on SCN reproduction. These QTL were incorporated 

into an LD00-3309 background to form segregating populations of isolines. The QTL are known 

to have large effects; therefore, population sizes were relatively small. The LD00-3309 

background was selected because it is representative of high-yielding cultivars with PI88788 

resistance that are adapted to the midwestern USA (Diers et al., 2006). All four resistance QTL 

were detected across multiple nematode isolates with each conferring partial resistance, and the 

magnitude of their effect on FI varied according to QTL and isolate. When lines contained 

multiple resistance alleles were considered, lines classified as resistant and moderately resistant 

to multiple nematode isolates were observed.  CHR10 from PI567516C has been noted as a 

promising novel SCN resistance QTL because it has been shown to confer resistance to several 

SCN isolates (Young, 1999; Vuong et al., 2010). In our study, CHR10 generally had a smaller 

effect on nematode reproduction compared to the other QTL tested; however, the addition of the 

CHR10 resistance allele did increase resistance in several combinations that it was evaluated 

most notably in Population 1 (Fig. 5.1). Overall, our data suggest broad spectrum resistance to 

SCN can be significantly improved by stacking resistance alleles from multiple sources. 



 

119 
 

 The accession PI437654 confers resistance to a broad range of SCN isolates and has been 

used to develop highly resistant cultivars and germplasm lines (Anand et al., 1988; Diers et al., 

1997; Wu et al., 2009; Diers et al. 2010). Despite its promise, few cultivars with resistance from 

PI437654 have been released because it has been difficult to develop agronomically acceptable 

high yielding cultivars with this source. Additionally, resistance conferred by PI437654 is 

mediated by numerous QTL, which makes it challenging to achieve resistance similar to 

PI437654 in elite cultivars (Concibido et al., 2004; Wu et al., 2009). For example, we observed 

that when inoculated with HG 1.2.3.5.6.7, LD00-2817, a high yielding cultivar with SCN 

resistance from PI437654 and/or Peking that was bred from Hartwig had a FI of 58, but 

PI437654 only had a FI of 1 (Table 5.1). Despite the high level of resistance provided by 

PI437654, two of the isolates used in our study had a FI>10 on PI437654, TN21 had an average 

FI of 44 while TN23 had an average FI of 80. A reason for the high reproduction on PI437654 is 

that both isolates were selected on PI437654 or Hartwig, which has its resistance tracing to 

PI437654. Our lines with the four gene stacks had numerically reduced FI compared to PI437654 

with a FI of 29 for TN21 and 28 for TN23 (Table 5.1; Figs. 5.1-3).  

 Pyramiding resistance in a single genetic background has been demonstrated as an 

effective way to improve the host resistance to soybean pathogens and pests, including SCN. 

Kim et al. (2011) stacked SCN resistance alleles from exotic and domestic sources and observed 

increased resistance to the SCN isolates PA1, PA3, and PA5. Qualitative or quantitative gene 

pyramids in soybean have also been shown to enhance resistance to Soybean Mosaic Virus 

(qualitative), soybean aphid (qualitative), Phytopthora root rot (quantitative), and leaf chewing 

insects (quantitative) (Dorrance et al., 2008; Shi et al., 2009; Li et al., 2010; Ajayi-Oyetunde et 

al., 2016; Ortega et al., 2016).    

 It will be important to evaluate the effect of stacking resistance QTL on agronomic traits 

including yield. One of the reasons for the widespread use of PI88788 as a resistance source is 

that it has been combined with high yield and other good agronomic traits. In some genetic 

backgrounds, rhg1 has been associated with yield drag in environments with low SCN pressure; 

however, there is evidence that the genetic linkage between rhg1 and yield depression can be 

broken (Mudge et al. 1996, Kopisch-Obuch et al., 2005). Kabelka et al. (2006) evaluated the 

yield of one population segregating for resistance at cqSCN-006 and cqSCN-007 and another 

segregating for resistance at cqSCN-006, cqSCN-007, and rhg1 from PI88788 in environments 
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with varying SCN pressure. Overall, the resistance alleles did not have a negative effect on yield 

and in some cases enhanced yield. For cultivars with stacked resistance sources to be truly 

effective, economic yields must be maintained.   

 Phenotyping for SCN resistance is costly and laborious; therefore, marker-assisted 

selection (MAS) for SCN resistance is of great interest to breeders (Concibido et al., 2004). 

While SSR markers linked to SCN resistance QTL were used in this study and have been used in 

breeding for almost two decades, rapid advances and decreasing costs in sequencing 

technologies have led to the recent development of low cost, high throughput single nucleotide 

polymorphism (SNP) marker-based assays for SCN resistance (Kadam et al., 2016). These SNP 

assays are not only more efficient with a lower error rate than previous genotyping methods, they 

can also identify the copy number variation at the rhg1 locus. 

  It is expected that the next generation of breeding will lead to improved SCN resistance. 

High-throughput genotyping platforms could identify new alleles and genes that can be stacked 

using MAS to create cultivars with broad-based resistance to SCN. The combination of 

predictive modeling with SNP data could also reduce the time needed to stack multiple resistance 

QTL into elite cultivars and to select for these QTL in breeding programs (Bao et al., 2014; Shi 

et al., 2015). Population 1 and Population 2 took several years to develop and while pyramiding 

resistance is often suggested as a means to improve resistance to pests and pathogens, often the 

time needed discourages breeders from doing so.  

 Current genetic resistance to SCN is narrow, and breeders must implement new strategies 

to effectively manage this pathogen. The objective of our study was to evaluate the effect of 

stacking novel and common SCN resistance alleles on the reproduction of nematode isolates that 

can overcome multiple resistance sources. These isolates could not be controlled by rhg1-b 

mediated resistance alone. Based on our results, PI468916 and PI567516C are alternative sources 

breeders can use to enhance and diversify SCN resistance in their programs. Combining 

resistance alleles from PI88788, PI468916, and PI567516C conferred resistance or partial 

resistance to highly virulent nematode isolates. This suggests stacking resistance sources 

improves resistance to SCN and can be a useful strategy for future breeding. Genetic resistance 

remains important to controlling losses to SCN. Incorporating new resistance sources into 

breeding programs and stacking resistance sources will provide the necessary options needed for 

producers to protect their yields from SCN damage.  
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Tables and Figures 

Table 5.1. The reaction of four soybean cyst nematode (SCN) isolates to Lee 74, the Heterodera glycines type indicator lines, and elite checks 

with known genetic resistance to SCN. 

            Female Index on Indicator Lines and Elite Checks† 

  

# 
Females 

   
1§ 2 3 4 5 6 7   

Isolate 
 

on Lee 
74 

 
HG type‡ 

 
Peking PI88788 PI90763 PI437654 PI209332 PI89772 Cloud LD00-3309 LD00-2817 

1.2.3.5.6.7 
 

402 
 

1.2.3.5.6.7 
 

45 13 11 1 15 15 53 65 58 

TN21 
 

371 
 

1.2.3.4.5.6.7 
 

66 23 45 44 26 34 43 42 44 

HG 2.5.7 
 

303 
 

2.5.7 
 

2 31 0 1 22 0 39 59 6 

TN23   223   1.2.3.4.5.6.7   72 23 70 80 21 58 78 37 83 

†Female index=100 x (average number of females per line/average number of females on ‘Lee 74’) (Golden et al., 1970). 

‡HG Type of isolate based on female indices.  

§ Numerical designation of indicator line in HG Type test (Niblack et al., 2002). 
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Table 5.2. Effects of soybean cyst nematode (SCN) resistance quantitative trait loci (QTL) on female reproduction in Populations 1 and 2 for HG 

1.2.3.5.6.7 and TN21 nematode isolates. 

Population   QTL   HG 1.2.3.5.6.7 Female Indices   HG TN21 Female Indices 

    
Resistant   

allele† 
Susceptible 

allele‡ 

    
  

Resistant 
allele 

Susceptible 
allele    

    
Effect§ P value R2¶ 

 
Effect P value R2 

Population 1 
 

rhg1 
 

70 108 -38 <.0001 0.27 

 

42 61 -19 <.0001 0.31 

  
CHR10 

 

76 102 -26 <.0001 0.12 

 

44 59 -15 <.0001 0.18 

             

 

 Population 2 
 

rhg1 
 

22 43 -21 <.0001 0.09 

 

38 56 -18 <.0001 0.16 

  
cqSCN-006 

 

21 43 -22 <.0001 0.06 

 

39 56 -17 <.0001 0.12 

  
cqSCN-007 

 

17 47 -30 <.0001 0.24 

 

43 51 -8 0.0120 0.01 

    CHR10   25 40 -15 <.0001 0.07   44 51 -7 0.0315 0.04 

†Mean of lines homozygous for the SCN resistance allele at the locus. 

‡Mean of lines homozygous for the SCN susceptible allele at the locus. 

§Difference between homozygous classes. 

¶Proportion of total genetic variation for resistance explained by the QTL. 
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Figure 5.1. Average female index values for Population 1 genotypes when evaluated with HG 1.2.3.5.6.7 

(A) and TN21 (B) nematode isolates. R indicates homozygous for the resistance allele of the QTL while S 

indicates homozygous susceptible. Means with the same letter are not significantly different (α=0.05). 

Mean separations are based on log10 transformed data. 
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Figure 5.2. Average female index values for Population 2 genotypes when evaluated with HG 1.2.3.5.6.7 

(A) and TN21 (B) nematode isolates. R indicates homozygous for the resistance allele of the QTL while S 

indicates homozygous susceptible for the QTL. Means with the same letter are not significantly different 

(α=0.05). For the HG 1.2.3.5.6.7 isolate data, mean separations are based on log10 transformed data. 

 

  

A 
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Figure 5.3. Average female index values for Population 2 Subset genotypes when evaluated with HG 

2.5.7 (A) and TN23 (B) nematode isolates. R indicates homozygous for the resistance allele of the 

quantitative trait loci (QTL) while S indicates homozygous susceptible at the QTL. Means with the same 

letter are not significantly different (α=0.05). Mean separations are based on log10 transformed data. 
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APPENDIX A: SOYBEAN CYST NEMATODE SUPPLEMENTAL MATERIALS 

 

Tables and Figures 

Table A.1. Genotypes of lines in Population 1 based on markers linked rhg1 and the resistance 

quantitative trait loci (QTL) on chr 10 (CHR10). R indicates homozygous for the resistance allele of the 

QTL while S indicates homozygous susceptible at the QTL. 

QTL† 
Number of 

lines 

rhg1 CHR10 
 R R 39 

R S 37 

S R 37 

R R 32 
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Table A.2. Genotypes of lines in Population 2 based on markers linked rhg1, cqSCN-007, cqSCN-007, 

the resistance quantitative trait loci (QTL) on chr 10 (CHR10). R indicates homozygous for the resistance 

allele of the QTL while S indicates homozygous susceptible at the QTL. 

QTL† 
Number of 

Lines 

rhg1 cqSCN-006 cqSCN-007 CHR10 
 S S S S 4 

R S S S 12 

S R S S 7 

S S R  S 8 

S S S R 9 

R R S S 4 

S R R S 9 

S S R R 4 

R S S R 9 

R S R S 8 

S R S R 3 

R R R S 4 

S R R R 4 

R S R R 8 

R R S R 10 

R R R R 4 



 

134 
 

Figure A.1. Distribution of female index (FI) for soybean cyst nematode (SCN) isolates HG 1.2.3.5.6.7 

and TN21 in Population 1, which segregates for resistance quantitative trait loci (QTL) from PI88788 and 

PI567516C (A-B), and Population 2, which segregates for resistance QTL from PI88788, PI567516C, and 

PI468916 (C-D). Distribution of FI for SCN isolates HG 2.5.7 and TN23 on the Population 2 Subset, 

which contains selected lines from Population 2 (E-F). The average female index values of the recurrent 

parent LD00-3309 are denoted by an arrow.  
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Figure. A.1. (cont.) 
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Figure. A.1. (cont.) 
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