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Abstract

In the first part of this thesis, we will follow Kirchberg’s categorical perspective to establish new notions

of WEP and QWEP relative to a C∗-algebra, and develop similar properties as in the classical WEP and

QWEP. Also we will show some examples of relative WEP and QWEP to illustrate the relations with the

classical cases.

The focus of the second part of this thesis is the approximation of rotation algebras in the quantum

Gromov–Hausdorff distance. We introduce the completely bounded quantum Gromov–Hausdorff distance

and show that for even dimensions, the higher dimensional rotation algebras can be approximated by matrix

algebras in this sense. Finally, we show that for even dimensions, matrix algebras converge to the rotation

algebras in the strongest form of Gromov–Hausdorff distance, namely in the sense of Latrémolière’s Gromov–

Hausdorff propinquity.
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Chapter 1

Introduction

In the first part of this thesis, we investigate a new notion of operator-valued WEP and QWEP. This part is

joint work with Jian Liang [LR14]. Let us recall that the notions of weak expectation property (abbreviated

as WEP) were introduced by E. Christopher Lance in his paper [Lan73] of 1973, as a generalization of

nuclearity of C∗-algebras. In 1993, Eberhard Kirchberg [Kir93] revealed remarkable connections between

tensor products of C∗-algebras and Lance’s weak expectation property. He defined the notion of QWEP as a

quotient of a C∗-algebra with the WEP, and formulated the famous QWEP conjecture that all C∗-algebras

are QWEP. He showed a vast amount of equivalences between various open problems in operator algebras.

In particular, he showed that the QWEP conjecture is equivalent to an affirmative answer to the Connes

Embedding Problem.

It is known that for two QWEP von Neumann algebras M and N , and an amenable C∗-subalgebra A,

the reduced amalgamated free product M ∗A N is also QWEP [Jun05]. But the answer is not known for

a general C∗-subalgebra A. To reduce the complexity of the problem, we consider the property of being

QWEP relative to a C∗-algebra A, We are interested to see if in the case where both M and N are QWEP

relative to A, whether M ∗A N is QWEP relative to A or not.

To study the notion of relative QWEP, first we need to define the relative WEP. Let H be a separable

Hilbert space, and B(H) be the C∗-algebra of bounded operators on H, and K be the C∗-algebra of compact

operators on H. Recall that in [Lan73], Lance defined a C∗-algebra A to have the WEP, if for A ⊂ B(H), A

is relatively weakly injective (abbreviated as r.w.i.) in B(H), namely there exists a u.c.p. map from B(H)

to A∗∗ such that its restriction to A is the identity. To define the notion of the relative WEP, there are two

natural ways of replacing B(H) in the framework of Hilbert C∗-modules. Recall that for a C∗-algebra D, any

C∗-algebra can be regarded as a C∗-subalgebra of L(HD), where HD is the Hilbert D-module given by the

completion of H⊗D, and L(HD) is the C∗-algebra of bounded adjointable D-linear maps on HD. Another

way of representation is to replace L(HD) by the von Neumann algebra B(H)⊗̄D∗∗. We say that A has the

WEP1 (respectively, WEP2) relative to C∗-algebra D, if A is r.w.i. in L(HD) (respectively, B(H)⊗̄D∗∗).

In Chapter 3, we investigate basic properties of these two notions. We discover that Kirchberg’s method
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in his seminal work on non-semisplit extensions is functorial, and gives rise to properties as in the classical

case. In particular, we establish the tensorial characterization for the two notions. Also we study the relation

between the two notions of relative WEP. This leads to a more general question: Let A and B be C∗-algebras

such that A ⊂ B ⊂ A∗∗ canonically. Does this imply that B is r.w.i. in A∗∗? The answer to this question

turns out to be negative in general. However, in the special case where K is the space of compact operators

on H, A = K ⊗min D and B = L(HD), B is r.w.i. in A∗∗ = (K ⊗min D)∗∗ = B(H)⊗̄D∗∗. This shows that

DWEP1 implies DWEP2. We also show that the converse is not true.

Furthermore, we define two notions of WEP relative to a C∗-algebra D more generally. Let ED be a

Hilbert D-module, and L(ED) be the C∗-algebra of bounded adjointable linear operators on ED. Also let

ED∗∗ be the weakly closed Hilbert D∗∗-module, and Lw(ED∗∗) be the von Neumann algebra of bounded

adjointable linear operators on ED∗∗ . We say that a C∗-algebra A has the DWEP1 if it is relatively weakly

injective in L(ED), i.e. for a faithful representation A ⊂ L(ED), there exists a ucp map L(ED) → A∗∗,

which preserves the identity on A. Respectively, we define the DWEP2 to be the relatively weak injectivity

in L(ED∗∗). By universality of HD, these definitions of WEP1 and WEP2 coincide with what we defined

above. After investigating some basic properties, we establish a tensor product characterization of DWEP

following Kirchberg’s framework. Let maxD1 be the tensor norm on A ⊗ C∗F∞ induced from the inclusion

A ⊗ C∗F∞ ⊆ L(EuD) ⊗max C
∗F∞ for some universal Hilbert D-module EuD and A ⊂ L(EuD). Then a

C∗-algebra A has the DWEP1, if and only if

A ⊗
maxD1

C∗F∞ = A ⊗
max

C∗F∞.

We have the similar result for DWEP2, where the maxD2 -norm is defined by replacing EuD with some universal

weakly closed D∗∗-module EuD∗∗ .

Then we define two notions of relative QWEP, derived from two notions of relative WEP. Following

Kirchberg’s scheme, after developing basic properties of relative QWEP, we show that the two notions are

equivalent, unlike the case in the relative WEP.

Finally, we investigate some properties of WEP and QWEP relative to some special classes of C∗-algebras,

and illustrate the relations with classical results in the theory of WEP and QWEP. In particular our examples

show that the property of having DWEP is a tool to tell the C∗-algebras apart.

The second part of this thesis is joint work with Marius Junge and Qiang Zeng [JRZ16]. The focus of

this part is convergence of matrix algebras to rotation algebras for specific choices of distance. The notion

of Gromov–Hausdorff distance of metric spaces was first introduced by Gromov [Gro81]. Since then, there
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has been plenty of research on what the “correct” definition of distance should be. Our goal is to define the

right distances that best serve our purposes.

In order to modify Gromov’s definition, Rieffel [Rie04b] adapted the definition to quantum Gromov–

Hausdorff distance corresponding to quantum metric spaces. To introduce this distance, Rieffel defined the

notion of “compact quantum metric spaces”, which was motivated by a similar notion given by Connes in his

theory of quantum Riemannian geometry defined by Dirac operators. Rieffel’s main motivation to introduce

the quantum Gromov–Hausdorff distance came from string theory. Since quantum tori have proved to be

very useful in quantum physics, his main example in [Rie04b] involves these objects. He shows that for

a consistent choice of “metrics”, if a sequence of parameters (θn)n converges to a parameter θ, then the

corresponding sequence of quantum tori, (Aθn)n, converges in quantum Gromov–Hausdorff distance to Aθ.

But in his definition of Gromov–Hausdorff distance, Rieffel used the Hausdorff distance of the state spaces,

which are not very easy objects to work with. This was the reason that Li introduced the notion of order-unit

quantum Gromov–Hausdorff distance [Li06] by replacing the state spaces. His main objects are order-unit

spaces equipped with a Lipschitz norm. For such an object (A, |||·|||A) and r ≥ 0, he introduced Dr(A) as

follows to replace the state spaces in Rieffel’s definition:

Dr(A) = {a ∈ A : |||a|||A ≤ 1, ‖a‖ ≤ r}.

Li’s order-unit quantum Gromov–Hausdorff distance is equivalent to quantum Gromov–Hausdorff distance

[Li06], but using these alternative objects makes the arguments a lot smoother.

We used this definition in Chapters 4 and 5 to approximate C(T), the space of continuous functions

on the torus, and the rotation algebra Aθ. In the last section of Chapter 5 we extend this definition

to operator spaces by using operator-valued coefficients. We introduce the notion of completely bounded

quantum Gromov–Hausdorff distance of two operator spaces as follows. Let X and Y be two operator

spaces, (X,L) be a Lip operator space structure, R > 0, ‖ · ‖ denote the C∗-norm and

DR(Mn(X)) = {x ∈Mn(X) : |||x|||Mn(L) ≤ 1, ‖x‖Mn(X) ≤ R}.

We denote the R-cb-quantum Gromov–Hausdorff distance of X and Y by dcboq,R(X,Y ), and define it by

dcboq,R(X,Y ) = inf sup
n∈N
{dH [id⊗ιX(DR(Mn(X))), id⊗ιY (DR(Mn(Y )))]},

where dH denotes the Hausdorff distance, and the infimum runs over all operator spaces V and completely

3



isometric embeddings ιX : X → V and ιY : Y → V . This definition seems to be stronger than that of

Wu’s [Wu06]. We show that there exists a sequence of matrix algebras that converges to the 2-dimensional

rotation algebras in this sense. Furthermore, we have the boundedness of the diameter and compactness

properties, i.e. we show that the map id : (A, |||·|||A) → (A, ‖ · ‖) is completely bounded. Furthermore, we

can construct a net of completely bounded finite rank maps that approximate the identity map in the cb

sense.

Later we show that there exists a sequence of nd×nd matrix algebras that converges to the d-dimensional

rotation algebra in cb quantum Gromov-Hausdorff distance for even d. In fact we can even go further and

show that the convergence occurs in the strongest possible form, i.e. in the “propinquity” sense. In [Lat15],

Latrémolière introduces the stronger notion of Gromov–Hausdorff propinquity. He shows that to prove the

“closeness” of two spaces (A, |||.|||A) and (B, |||.|||B) in the propinquity sense, it is enough for the spaces to

satisfy the following criteria:

There exist two ∗-homomorphisms πA : A ↪→ B(H) and πB : B ↪→ B(H) and ε > 0 such that the following

hold:

1. For all a ∈ A such that |||a|||A ≤ 1, there exists b ∈ B such that |||b|||B ≤ 1 and ‖πA(a)− πB(b)‖D < ε,

2. For all b ∈ B such that |||b|||B ≤ 1, there exists a ∈ A such that |||a|||A ≤ 1 and ‖πA(a)− πB(b)‖D < ε.

In Chapter 6, we use Kirchberg–Blanchard’s machinery [Bla97] with nuclearity as its main ingredient, to

construct the ∗-homomorphisms needed to satisfy the criteria above.

In our work, the main objects that we deal with are of the form (A, ‖.‖, |||·|||A). In our approach we do not

always use the same Lip-norms as those of Li’s. In fact we are taking a dynamic approach by using Markov

semigroups (Tt)t≥0 on the matrix algebras. In particular we are interested in Poisson and heat semigroups.

For instance, in Chapter 5, we study the 2-dimensional case by taking the heat semigroup defined by

Tt(u
j
θv
k
θ ) = e−t(|j|

2+|k|2)ujθv
k
θ ,

where uθ, vθ are the generators of the rotation algebra associated to θ. Using this semigroup we can define

a Lipschitz norm given by the gradient form, Γ, associated to the generator of the semigroup. In general, if

Tt = e−tA, the gradient form associated to A is given by

ΓA(f, g) =
1

2
[A(f∗)g + f∗A(g)−A(f∗g)],

for f, g in the domain of A. If Γ is the gradient form associated to the heat semigroup, one can show that

4



for any x = ujθv
k
θ and y = uj

′

θ v
k′

θ ,

Γ(x, y) = (jj′ + kk′)(ujθv
k
θ )∗uj

′

θ v
k′

θ .

We define the Lipschitz norm on the rotation algebra by |||f ||| = ‖Γ(f, f)1/2‖∞. This norm turns out to be

equivalent to Connes’ derivative given by Dirac operators [Con94]. Hence it is the correct choice of Lip-norm

for our purposes.

This part of the thesis is organized as follows. In Chapters 4 we give a brief introduction to order-unit

spaces and conditionally negative length functions. Then we show some analytic estimates which will provide

the main ingredients to prove the convergence in the later chapters. We conclude the chapter by studying

the 1-dimensional case, i.e. we find an approximation for C(T), the space of continuous functions on the

torus. Here (Tt)t≥0 is the Poisson semigroup.

In Chapter 5 we consider the 2-dimensional case, and we give an approximation of the 2-dimensional

rotation algebras by matrix algebras. In this section we choose (Tt)t≥0 to be the heat semigroup. Then

we introduce the notion of “cb-quantum Gromov-Hausdorff” distance, prove a compactness theorem and

show that we have an estimate for the 2-dimensional rotation algebras in the cb-quantum Gromov-Hausdorff

distance.

Finally, in Chapter 6 we explore the higher dimensional rotation algebras and approximate them with

matrix algebras for even dimensions. Furthermore, for the even dimensions we show that there is a sequence

of matrix algebras that converge to the rotation algebras in the sense of Gromov–Hausdorff propinquity.
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Chapter 2

Preliminaries

2.1 WEP and QWEP

The notion of WEP is from Lance [Lan73], inspired by Tomiyama’s extensive work on conditional expec-

tations. Kirchberg in [Kir93] raises the famous QWEP conjecture and establishes its several equivalences.

Here we list some useful results for readers’ convenience. Most of the results and proofs can be found in

Ozawa’s survey paper [Oza04].

Definition 2.1.1. Let A be a unital C∗-subalgebra of a unital C∗-algebra B. We say A is relatively weakly

injective (abbreviated as r.w.i.) in B, if there is a ucp map ϕ : B → A∗∗ such that ϕ|A = idA.

For von Neumann algebras M ⊂ N , the relative weak injectivity is equivalent to the existence of a

(non-normal) conditional expectation from N to M .

We say a C∗-algebra A has the weak expectation property (abbreviated as WEP), if it is relatively weakly

injective in B(H) for a faithful representation A ⊂ B(H).

Since B(H) is injective, the notion of WEP does not depend on the choice of a faithful representation of

A. We say a C∗-algebra is QWEP if it is a quotient of a C∗-algebra with the WEP. The QWEP conjecture

raised by Kirchberg in [Kir93] states that all C∗-algebras are QWEP.

From the definition of r.w.i., it is easy to see the following transitivity property.

Lemma 2.1.2. For C∗-algebras A0 ⊆ A1 ⊆ A, such that A0 is relatively weakly injective in A1, A1 is

relatively weakly injective in A, then A0 is relatively weakly injective in A.

Kirchberg also shows the following local characterization for r.w.i. property.

Lemma 2.1.3. Let A ⊂ B be C∗-algebras. The following are equivalent.

1. the C∗-algebra A is r.w.i. in B;

2. for any finite-dimensional subspace E ⊂ B and any ε > 0, there exists a contraction ψ : E → A such

that ‖ψ|E∩A − id |E∩A‖ < ε.
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By the above lemma, it is easy to see that the property of r.w.i. is also closed under direct product.

Lemma 2.1.4. If (Ai)i∈I is a net of C∗-algebras such that Ai is relatively weakly injective in Bi for all

i ∈ I, then Πi∈IAi is relatively weakly injective in Πi∈IBi.

In [Lan73], Lance establishes the following tensor product characterization of the WEP. The proof of the

theorem is called The Trick, and we will be using this throughout the paper. In the following, let F∞ denote

the free group with countably many infinite generators, and C∗F∞ be the full group C∗-algebra of F∞.

Theorem 2.1.5. A C∗-algebra A has the WEP, if and only if

A ⊗
max

C∗F∞ = A ⊗
min

C∗F∞.

As a consequence of the above theorem, we have the following result.

Corollary 2.1.6. A C∗-algebra A has the WEP if and only if for any inclusion A ⊆ B, A is relatively

weakly injective in B.

Similar to the WEP, the QWEP is also preserved by the relatively weak injectivity as following.

Lemma 2.1.7. If a C∗-algebra A is relatively weakly injective in a QWEP C∗-algebra, then it is QWEP.

Although the WEP does not pass to the double dual, the QWEP property is more flexible.

Proposition 2.1.8. A C∗-algebra A is QWEP if and only if A∗∗ is QWEP.

As a corollary of the above proposition, B(H)∗∗ is QWEP. Moreover we have the following equivalence.

Corollary 2.1.9. A C∗-algebra A is QWEP if and only if A is relatively weakly injective in B(H)∗∗.

2.2 Hilbert C∗-Modules

The notion of Hilbert C∗-modules first appeared in a paper by Irving Kaplansky in 1953 [Kap53]. The

theory was then developed by the work of William Lindall Paschke in [Pas73] . In this section we give a brief

introduction to Hilbert C∗-modules and present some of their fundamental properties which we are going to

use throughout this paper.

Definition 2.2.1. Let D be a C∗-algebra. An inner-product D-module is a linear space E which is a right

D-module with compatible scalar multiplication: λ(xa) = (λx)a = x(λa), for x ∈ E, a ∈ D, λ ∈ C, and a

map (x, y) 7−→ 〈x, y〉 : E × E → D with the following properties:

7



1. 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉 for x, y, z ∈ E and α, β ∈ C;

2. 〈x, ya〉 = 〈x, y〉a for x, y ∈ E and a ∈ D;

3. 〈y, x〉 = 〈x, y〉∗ for x, y ∈ E;

4. 〈x, x〉 ≥ 0; if 〈x, x〉 = 0, then x = 0.

For x ∈ E, we let ‖x‖ = ‖〈x, x〉‖1/2. It is easy to check that if E is an inner-product D-module, then

‖ · ‖ is a norm on E.

Definition 2.2.2. An inner-product D-module which is complete with respect to its norm is called a Hilbert

D-module or a Hilbert C∗-module over the C∗-algebra D.

Note that any C∗-algebra D is a Hilbert D-module itself with the inner product 〈x, y〉 = x∗y for x and

y in D. Another important example of a Hilbert C∗-module is the following:

Example 2.2.3. Let H be a Hilbert space. Then the algebraic tensor product H ⊗alg D can be equipped

with a D-valued inner-product:

〈ξ ⊗ a, η ⊗ b〉 = 〈ξ, η〉a∗b (ξ, η ∈ H, a, b ∈ D).

Let HD = H⊗D be the completion of H⊗alg D with respect to the induced norm. Then HD is a Hilbert

D-module.

Let E and F be Hilbert D-modules. Let t be an adjointable map from E to F , i.e. there exists a map

t∗ from F to E such that

〈tx, y〉 = 〈x, t∗y〉, for x ∈ E and y ∈ F.

One can easily see that t must be right D-linear, that is, t is linear and t(xa) = t(x)a for all x ∈ E and

a ∈ D. It follows that any adjointable map is bounded, but the converse is not true – a bounded D-linear

map need not be adjointable. Let L(E,F ) be the set of all adjointable maps from E to F , and we abbreviate

L(E,E) to L(E). Note that L(E) is a C∗-algebra equipped with the operator norm.

Now we review the notion of compact operators on Hilbert D-modules, as an analogue to the compact

operators on a Hilbert space. Let E and F be Hilbert D-modules. For every x in E and y in F , define a

map θx,y : E → F by

θx,y(z) = y〈x, z〉 for z ∈ E.
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One can check that θx,y ∈ L(E,F ) and θ∗x,y = θy,x. We denote by K(E,F ) the closed linear subspace of

L(E,F ) spanned by {θx,y : x ∈ E, y ∈ F}, and we abbreviate K(E,E) to K(E). We call the elements of

K(E,F ) compact operators.

Let E be a Hilbert D-module and Z be a subset of E. We say that Z is a generating set for E if the

closed submodule of E generated by Z is the whole of E. If E has a countable generating set, we say that

E is countably generated.

In [Kas80], Kasparov proves the following theorem known as the absorption theorem, which shows the

universality of HD in the category of Hilbert D-modules.

Theorem 2.2.4. Let D be a C∗-algebra, H be an infinite dimensional Hilbert space and E be a countably

generated Hilbert D-module. Then E ⊕ HD ≈ HD, i.e. there exists an element u ∈ L(E ⊕ HD,HD) such

that u∗u = 1E⊕HD and uu∗ = 1HD .

Remark 2.2.5. Using the absorption theorem, for an arbitrary Hilbert D-module E, we have L(E ⊕HD) '

L(HD). Hence we have an embedding of L(E) in L(HD) and a conditional expectation from L(HD) to

L(E).

Before we proceed to the main results of Hilbert C∗-modules, let us recall the notion of multiplier algebra

of a C∗-algebra.

Definition 2.2.6. Let A and B be C∗-algebras. If A is an ideal in B, we call A an essential ideal if there is

no nonzero ideal of B that has zero intersection with A. Or equivalently, if b ∈ B and bA = {0}, then b = 0.

It can be shown that for any C∗-algebra A, there is a unique (up to isomorphism) maximal C∗-algebra

which contains A as an essential ideal, i.e. A ∩ J 6= ∅ for all ideals J . This algebra is called the multiplier

algebra of A and is denoted by M(A).

Theorem 2.2.7. If E is a Hilbert D-module, then L(E) =M(K(E)).

Note that if E = D for a unital C∗-algebra D, then D = K(D) and L(D) =M(D).

In the special case where E = HD, we have

K(HD) ' K(H) ⊗
min

D = K ⊗
min

D,

where K = K(H) is the C∗-algebra of the compact operators. Therefore, by Theorem 2.2.7 we have

L(HD) 'M(K ⊗
min

D).
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In [Kas80] Kasparov introduces a GNS type of construction in the context of Hilbert C∗-modules, known

as the KSGNS construction (for Kasparov, Stinespring, Gelfand, Neimark, Segal) as follows.

Theorem 2.2.8. Let A be a C∗-algebra, E be a Hilbert D-module and let ρ : A → L(E) be a completely

positive map. There exists a Hilbert D-module Eρ, a ∗-homomorphism πρ : A → L(Eρ) and an element vρ

of L(E,Eρ), such that

ρ(a) = v∗ρπρ(a)vρ (a ∈ A),

πρ(A)vρE is dense in Eρ.

As a consequence of the above theorem, Kasparov shows that given a C∗-algebra D, any separable C∗-

algebra can be considered as a C∗-subalgebra of L(HD). This indicates that L(HD) plays the similar role

in the category of Hilbert C∗-modules to that of B(H) in the category of C∗-algebras.

Proposition 2.2.9. Let A be a separable C∗-algebra. Then there exists a faithful nondegenerate ∗-homomorphism

π : A→ L(HD).

As we see, L(HD) plays the role of B(H). Note that B(H) is also a von Neumann algebra, but L(HD)

is not in general. Paschke in [Pas73] introduces self-dual Hilbert C∗-modules to play the similar role in the

von Neumann algebra context.

Let E be a Hilbert D-module. Each x ∈ E gives rise to a bounded D-module map x̂ : E → D defined

by x̂(y) = 〈y, x〉 for y ∈ E. We will call E self-dual if every bounded D-module map of E into D arises by

taking D-valued inner products with some x ∈ E. For instance, if D is unital, then it is a self-dual Hilbert

D-module. Any self-dual Hilbert C∗-module is complete, but the converse is not true.

For von Neumann algebra N , it is natural to consider the the self-dual Hilbert N -module EN , because

of the following theorem from [JS05].

Theorem 2.2.10. For a Hilbert C∗-module E over a von Neumann algebra N , the following conditions are

equivalent:

1. The unit ball of E is strongly closed;

2. E is principal, or equivalently, E is an ultraweak direct sum of Hilbert C∗-modules qαN , for some

projections qα;

3. E is self-dual;

4. The unit ball of E is weakly closed.
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We denote the algebra of adjointable maps on EN closed in the weak operator topology by Lw(EN ).

Remark 2.2.11. According to [Pas73] and the absorption theorem, for a von Neuamann algebra N , we have

that Lw(EN ) = eB(H)⊗̄Ne for some projection e.

Remark 2.2.12. Let N be a von Neumann subalgeba of M , such that N = zM for some central projection

z ∈ M . Then one can unitize the inclusion map ι : B(`2)⊗̄N ↪→ B(`2)⊗̄M . Indeed since B(`2) is a type I∞

factor, the projection 1⊗ z : B(`2)⊗̄M → B(`2)⊗̄N is properly infinite, and hence it is equivalent to identity

on B(`2)⊗̄M [Tak02]. Let 1⊗ z = v∗v, and idB(`2)⊗̄M = vv∗. Note that 1⊗ z) ◦ ι = idB(`2)⊗̄N . Multiplying

by v from left and by v∗ from right, we get vιv∗ = idB(`2)⊗̄N .

2.3 Kirchberg’s observations on the multiplier algebra

In this section, we explore Kirchberg’s seminal paper on non-semisplit extensions in detail. In particular we

show the factorization property explicitly for readers’ convenience.

Let A, B and C be unital C∗-algebras. We say a map h : A→ B factors through C approximately via ucp

maps in point-norm topology if there exist ucp maps φn : A → C and ψn : C → B such that the following

diagram commutes approximately in point-norm topology.

A

φn ��

h // B

C

ψn

??

i.e. ‖(ψn ◦ φn)(x)− h(x)‖ → 0 for all x ∈ A.

The idea of the shortened proof of the following theorem was suggested to us by an anonymous referee.

Theorem 2.3.1. Let A be a σ-unital C∗-algebra and M(A) be its multiplier algebra. Then the identity map

on M(A) factors through `∞(A) approximately via ucp maps in point-norm topology.

Sketch of proof. Since A is σ-unital, given a finite subset F ⊂M(A) and ε > 0, one can find an approximate

identity (en)∞n=1 such that e0 = 0, enen+1 = en, and ‖[en, x]‖ < δn for all n and x ∈ F , where δn > 0 are

chosen so that ‖[x, (en − en−1)1/2]‖ < 2−nε for all n ≥ 1 and x ∈ F . Define

φF,ε :M(A)→ `∞(A)

a 7→ (en+1aen+1)∞n=1,
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and

ψF,ε : `∞(A)→M(A)

(an)∞n=1 7→
∑
n

(en − en−1)1/2an(en − en−1)1/2,

where the series converges strictly. Then for all x ∈ F , we have

‖ψF,ε ◦ φF,ε(x)− x‖ < ε.

Now consider Λ = {(F, ε) : F ⊂ M(A), F finite set, ε > 0}, equipped with the following order: (F, ε) <

(F ′, ε′) if and only if F ⊂ F ′ and ε′ < ε. We get two nets of ucp maps (φα)α∈Λ and (ψα)α∈Λ. Then for any

x ∈M(A) and ε > 0, there exists α0 such that for all α > α0, ‖ψα ◦ φα(x)− x‖ < ε.

Using the theorem above, we can establish the following result on the relation between M(A) and A∗∗.

Corollary 2.3.2. Suppose A is a C∗-algebra and M(A) is its multiplier algebra. Then M(A) is relatively

weakly injective in A∗∗.

Proof. Let φ and ψ be as above. Since there is a natural inclusion M(A) ⊂ A∗∗, we can define φ̃ : A∗∗ →

`∞(A∗∗) as an extension of φ, by φ̃(a) = (en+1aen+1)∞n=1 for all a ∈ A∗∗. Then the folowing diagram

commutes locally

M(A)� _

��

φ %%

id //M(A)

`∞(A)

ψ

99

A∗∗
φ̃ // `∞(A∗∗)

OO

Let ε be arbitrary, F a finite-dimensional subspace of A∗∗, and F0 = F ∩ M(A). Then we get a net

Λ = (F0, F, ε). Define δn,λ : A∗∗ →M(A) locally, as the composition of the following maps

F ↪→ A∗∗
φ̃−→ `∞(A∗∗) −→ `∞(A)

ψ−→M(A).

Then we have

lim
n,λ

δn,λ(1) = 1.

Let δ := limn,λ δn,λ : A∗∗ → M(A)∗∗ in the weak ∗-topology. Then δ gives the required conditional

expectation. Now it follows from Lemma 2.1.3 that M(A) is r.w.i. in A∗∗.
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Chapter 3

Operator-valued Kirchberg Theory

3.1 Module version of the weak expectation property

This Chapter is joint work with Jian Liang [LR14]. We will only state the results in this Section, since the

proofs have alreay appeared in his thesis (UIUC Ph.D. thesis, 2015).

The notion of r.w.i. is a paired relation between a C∗-subalgebra and its parent C∗-algebra. If the parent

C∗-algebra is B(H), the r.w.i. property is equivalent to the WEP. By carefully choosing a parent C∗-algebra,

we can define the notion of WEP relative to a C∗-algebra.

Let C be a collection of inclusions of unital C∗-algebras {(A ⊆ X)}.

For a C∗-algebra D, there are two classes of objects that we will discuss throughout this paper.

1. C1 = {A ⊆ L(ED)}, where ED is a Hilbert D-module.

2. C2 = {A ⊆ Lw(ED∗∗)}, where ED∗∗ is a self dual Hilbert D∗∗-module.

Definition 3.1.1. A C∗-algebra A is said to have the DWEPi for i = 1, 2, if there exists a pair of inclusions

A ⊆ X in Ci such that A is relatively weakly injective in X.

Note the in the case where D = C, WEP coincides with DWEPi, i = 1, 2.

Notice that the notion of DWEP is a r.w.i. property. By Corollary 2.1.6, the WEP implies the DWEPi,

for i = 1, 2. Also, inherited from r.w.i. property, we have the following lemmas for DWEP.

Lemma 3.1.2. Let A0 and A1 be C∗-algebras such that A0 is relatively weakly injective in A1. If A1 has

the DWEPi for i = 1, 2, then so does A0.

Remark 3.1.3. By the absorption theorem and Remark 2.2.5 and 2.2.11, L(ED) is r.w.i. in some L(HD)

and Lw(ED∗∗) is r.w.i. in some B(H)⊗̄D∗∗. Sometimes it is more convenient to consider the DWEP1 as

the relatively weak injectivity in L(HD), and the DWEP2 as the relatively weak injectivity in B(H)⊗̄D∗∗,

because of the concrete structures.
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Example 3.1.4. From the above, all WEP algebras have DWEPi for arbitrary C∗-algebra D. Also, D has

the DWEPi trivially for 1-dimensional Hilbert space H. Our first nontrivial example of DWEPi is K⊗minD.

For the first class C1, K ⊗min D is a principle ideal of L(HD), and thus is r.w.i. in L(HD). For the second

class C2, note that (K ⊗min D)∗∗ = B(H)⊗̄D∗∗, so K ⊗min D is r.w.i. in B(H)⊗̄D∗∗. By universality of

L(HD) and B(H)⊗̄D∗∗, K ⊗min D has the DWEPi for both i = 1, 2.

Because of the injectivity of B(H), we see that the notion of WEP does not depend on the representation

A ⊆ B(H). By constructing a universal object in the classes Ci, we can define the DWEPi independent of

inclusions.

Lemma 3.1.5. A C∗-algebra A has the DWEPi for some inclusion A ⊆ X in Ci, if and only if there exists

a universal object Xu and A ⊆ Xu in Ci, such that

1. A is relatively weakly injective in Xu;

2. If A is relatively weakly injective in some X, then there exists a ucp map from Xu to X, which is

identity on A.

Proof. Note that for all ucp maps ρ : A→ L(ED), by KSGNS construction there exists a Hilbert D-module

Eρ and a ∗-homomorphism πρ : A → L(Eρ). Let EuD =
⊕

ρEρ. Then any L(ED) containing A can be

embedded into L(EuD), and there exists a truncation L(EuD) → L(ED). Now suppose A is r.w.i. in some

L(ED). Then it is also r.w.i. in L(EuD)

Following Lance’s tensor product characterization Theorem 2.1.5, we have a similar result for theDWEPi,

for i = 1, 2. We only present the result for the first class. The other case can be proved similarly.

Let A ⊆ L(EuD) be the universal representation as observed in the proof of Lemma 3.1.5. We define a

tensor norm maxD1 on A⊗C∗F∞ to be the norm induced from the inclusion A⊗C∗F∞ ⊆ L(EuD)⊗maxC
∗F∞

isometrically. This induced norm is categorical in the sense that if φ is a ucp map from A to B, then φ⊗ id

extends a ucp map from A ⊗maxD1
C∗F∞ to B ⊗maxD1

C∗F∞. Indeed, let ι be the inclusion map from B

to its universal representation LB(EuD), then ι ◦ φ is a ucp map from A to LB(EuD). By KSGNS and the

construction of LA(EuD), there exists a ucp map from LA(EuD) to LB(EuD) extending the map ι ◦ φ. Hence

we have a composition of ucp maps

A ⊗
maxD1

C∗F∞ ⊆ LA(EuD) ⊗
max

C∗F∞ → LB(EuD) ⊗
max

C∗F∞,

whose image is B ⊗maxD1
C∗F∞.
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Theorem 3.1.6. A C∗-algebra A has the the DWEP1, if and only if

A ⊗
maxD1

C∗F∞ = A ⊗
max

C∗F∞.

It is natural to explore the relationship between DWEP1 and DWEP2. We have the following.

Theorem 3.1.7. If a C∗-algebra A has the DWEP1, then it also has the DWEP2.

In fact, the converse of the above theorem is not true, and we will give a counterexample in Section 5.

The following lemmas are crucial for the proof of the above Theorem.

Lemma 3.1.8. Suppose that the identity map on a C∗-algebra A factors through a C∗-algebra B approx-

imately via ucp maps in point-norm topology, i.e. there exist two nets of ucp maps φi : A → B and

ψi : B → A, such that ‖ψi ◦ φi(x)− x‖ → 0 for x ∈ A. If B has the DWEPi, then so does A.

Another lemma we need is that the DWEPi property is preserved under the direct product.

Lemma 3.1.9. If (Ai)i∈I is a net of C∗-algebras with the DWEPi, then
∏
i∈I Ai has the DWEPi.

Kirchberg [Kir93] shows that for a C∗-algebra A, the multiplier algebra M(A) factors through `∞(A)

approximately by ucp maps (Theorem 2.3.1). Using this fact, we have the following.

Corollary 3.1.10. Suppose that the C∗-algebra A has the DWEPi, for i = 1, 2. Then the multiplier algebra

M(A) also has the DWEPi, for i = 1, 2.

Remark 3.1.11. Now we see that DWEP1 implies DWEP2. We also have the following relations between

the two notions.

(1) Note that by Remark 2.2.11, Lw(HN ) = eB(H)⊗̄Ne for some projection e, and hence it is r.w.i. in

B(H) ⊗N∗∗ by Remark 2.2.12. Following the same pattern in the proof of Corollary 2.3.2, by extending

the inclusion map ι : Lw(HN ) → B(H)⊗̄N∗∗ to the map M(K ⊗min N) → B(H)⊗̄N∗∗, one can show that

Lw(HN ) is r.w.i. in M(K ⊗min N) = L(HN ). Let N be a von Neumann algebra. Then by Remark 2.2.5,

we have

Lw(EN )
r.w.i.
↪→ Lw(HN )

r.w.i.
↪→ M(K ⊗min N) = L(HN ).

Hence Lw(EN ) has the NWEP1.

(2) We also have that D∗∗WEP1 implies DWEP2. Indeed having D∗∗WEP1 is equivalent to being r.w.i.

in L(HD∗∗) =M(K ⊗min D
∗∗), and having DWEP2 is equivalent to being r.w.i. in B(H)⊗̄D∗∗. Note that

K⊗min D
∗∗ is r.w.i. in B(H)⊗̄D∗∗. By Corollary 3.1.10, we haveM(K⊗min D

∗∗) has the DWEP2 as well.
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Now we investigate some properties of module WEP. The first result is that the module WEP is stable

under tensoring with a nuclear C∗-algebra, similar to the classical case.

Proposition 3.1.12. For a C∗-algebra D, the following properties hold:

1. If a C∗-algebra A has the DWEP1, and B is a nuclear C∗-algebra, then A⊗min B has the DWEP1 as

well.

2. If the von Neumann algebras M and N have the CWEP2 and DWEP2 respectively, then M⊗̄N has

the (C ⊗min D)WEP2.

As a consequence of Corollary 3.1.10, we have the transitivity property of DWEP.

Proposition 3.1.13. If A has the BWEPi, and B has the CWEPi, then A has the CWEPi, for i = 1, 2.

Corollary 3.1.14. If A has the DWEP1, and D has the WEP, then A has the WEP.

Remark 3.1.15. The previous result is not necessarily true for the WEP2 case, since B(`2)⊗̄D∗∗ may not

have the WEP, for instance for D = B(`2). See Example 3.3.1 for the proof.

In his Habilitation [Jun99], Junge shows the following finite dimensional characterization of the WEP.

Theorem 3.1.16. The C∗-algebra A has the WEP if and only if for arbitrary finite dimensional subspaces

F ⊂ A and G ⊂ A∗, and ε > 0, there exist matrix algebra Mm and ucp maps u : F →Mm, v : Mm → A/G⊥,

such that

‖v ◦ u− qG ◦ ιF ‖ < ε,

where ιF : F → A is the inclusion map and qG : A→ A/G⊥ is the quotient map.

We have a similar result for the module WEP as follows.

Theorem 3.1.17. The C∗-algebra A has the DWEP1 if and only if for arbitrary finite dimensional subspaces

F ⊂ A and G ⊂ A∗, and ε > 0, there exist matrix algebra Mm(D) and ucp maps u : A → Mm(D),

v : Mm(D)→ A/G⊥, such that

‖v ◦ u|F − qG ◦ ιF ‖ < ε,

where ιF : F → A is the inclusion map and qG : A→ A/G⊥ is the quotient map.

For the DWEP2 case, a similar result holds when we replace the matrix algebra Mm(D) by Mm(D∗∗).
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3.2 Module version of QWEP

Definition 3.2.1. A C∗-algebra B is said to be DQWEPi if it is the quotient of a C∗-algebra A with

DWEPi for i = 1, 2.

Similar to the DWEPi, we have a tensor characterization for DQWEPi for i = 1, 2 as follows. First we

need the following result due to Kirchberg.

Lemma 3.2.2 ([Kir93] Corollary 3.2 (v)). If φ : A→ B∗∗ is a ucp map such that φ maps the multiplicative

domain md(φ) of φ onto a C∗-subalgerba C of B∗∗ containing B as a subalgebra, then the C∗-algebra

md(φ) ∩ φ−1(B) is relatively weakly injective in A.

We only prove the tensor characterization for DQWEP1. The proof of the other case is similar.

Theorem 3.2.3. Let C∗F∞ ⊂ L(HuD) be the universal representation. The following statements are equiv-

alent for a C∗-algebra B:

(i) B is DQWEP1;

(ii) For any ucp map u : C∗F∞ → B, the map u⊗ id extends to a continuous map from C∗F∞⊗maxD1
C∗F∞

to B ⊗max C
∗F∞, where maxD1 is the induced norm from the inclusion C∗F∞ ⊗C∗F∞ ⊆ L(HuD)⊗max

C∗F∞.

Proof. (i)⇒(ii): Suppose B is DQWEP1. Then B = A/J for some C∗-algebra A with DWEP1. Let

u : C∗F∞ → B be a ucp map, and π : A → B be the quotient map. Since C∗F∞ has the lifting property,

there exists a ucp map ϕ : C∗F∞ → A which lifts u, i.e. the following diagram commutes

C∗F∞
u //

ϕ

��

B

A

π

<<

By Theorem 3.1.6, we have A⊗maxD1
C∗F∞ = A⊗maxC

∗F∞. Therefore, we have the following continuous

maps

C∗F∞ ⊗
maxD1

C∗F∞
ϕ⊗id−→ A ⊗

maxD1

C∗F∞ = A ⊗
max

C∗F∞
π⊗id−→ B ⊗

max
C∗F∞.

Note that (π⊗id)◦(ϕ⊗id)|C∗F∞⊗1C∗F∞
= u by the lifting property. Therefore, u⊗id extends to a continuous

map from C∗F∞ ⊗maxD1
C∗F∞ to B ⊗max C

∗F∞.
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(ii)⇒(i): Let u : C∗F∞ → B be the quotient map. We have the following diagram

C∗F∞ ⊗
maxD1

C∗F∞
u⊗id//

� _

��

B ⊗
max

C∗F∞ // B(H)

L(HuD) ⊗
max

C∗F∞

44

where B(H) is the universal representation of B. By Arveson’s extension theorem, there exists a ucp

map Φ : L(HuD) ⊗max C
∗F∞ → B(H). Using The Trick (see proof of Theorem 3.1.6), we get a map

φ : L(HuD) → B∗∗. Let md(φ) be the multiplicative domain of φ. Note that C∗F∞ ⊂ md(φ). Therefore, φ

maps md(φ) onto a C∗-subalgebra of B∗∗ containing B. Let A = md(φ) ∩ φ−1(B). Then by Lemma 3.2.2,

A is r.w.i. in L(HuD), so A has the DWEP1. Hence B as a quotient of A is DQWEP1.

Remark 3.2.4. In the proof of the above Theorem, we showed that the second statement is equivalent to the

statement that for any ucp maps u : C∗F∞ → B, w : C∗F∞ → Bop, the map u⊗w extends to a continuous

map from C∗F∞ ⊗maxD1
C∗F∞ to B ⊗max B

op.

Now let us investigate some basic properties of the DQWEP. We have the following proposition similar

to the DWEP case.

Proposition 3.2.5. The following hold:

1. If a C∗-algebra B is DQWEP1 and C is nuclear, then C ⊗min B is also DQWEP1.

2. If von Neumann algebras M and N are CQWEP2 and DQWEP2, respectively, then M⊗̄N is (C⊗min

D)QWEP2.

Proof. (1) Suppose B is DQWEP1, then B = A/J for some C∗-algebra A with the DWEP1. Since C is

nuclear, it is also exact. Therefore, we have

C ⊗
min

B = C ⊗
min

(A/J) ∼=
C ⊗min A

C ⊗min J
.

But C ⊗min A has the DWEP1 by Proposition 3.1.12(1). Therefore, C ⊗min B is DQWEP1.

(2) Since M is CQWEP2, it is r.w.i. in Lw(HC∗∗)∗∗. Similarly, N is r.w.i. in Lw(HD∗∗)∗∗. Therefore,

we have ucp maps

M⊗̄N r.w.i.
↪→ Lw(HC∗∗)∗∗⊗̄Lw(HD∗∗)∗∗

r.w.i.
↪→ Lw(HC∗∗⊗̄D∗∗)∗∗.

Note that by the same argument as in the proof of Proposition 3.1.12 (2), Lw(HC∗∗⊗̄D∗∗)∗∗ is r.w.i. in
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Lw(H(C⊗minD)∗∗)
∗∗. Hence M⊗̄N is r.w.i. in Lw(H(C⊗minD)∗∗)

∗∗. Therefore, M⊗̄N is (C ⊗min D)QWEP2.

By Theorem 3.1.7, DWEP1 implies DWEP2, and hence DQWEP1 implies DQWEP2. In Section 5 we

will show that there exist C∗-algebras with DWEP2 which do not have DWEP1. However in the QWEP

context, the two concepts coincide. To see this, we need the following lemmas in which we use Kirchberg’s

categorical method. The next lemma shows that DQWEPi, for i = 1, 2, is stable under the direct products.

Lemma 3.2.6. Suppose (Bi)i∈I is a net of C∗-algebras in B(H). If Bi is DQWEPi, for all i ∈ I, then so

is Πi∈IBi.

Proof. Since Bi is DQWEPi, it is a quotient of a C∗-algebra Ai with DWEPi. By Lemma 3.1.9, Πi∈IAi

has the DWEPi. Therefore, Πi∈IBi is DQWEPi.

Lemma 3.2.7. Let B be a DQWEPi C∗-algebra, for i = 1, 2, and B0 a C∗-subalgebra of B which is relatively

weakly injective in B. Then B0 is also a DQWEPi C∗-algebra.

Proof. If B is DQWEPi, then it is a quotient of a C∗-algebra A with DWEPi. Let π : A → B be the

quotient map, B = A/J and A0 = π−1(B0). Then A0 is r.w.i. in A. In fact this follows from the fact that

A∗∗0 = J∗∗ ⊕B∗∗0 ⊂ J∗∗ ⊕B∗∗ = A∗∗.

Now by Lemma 3.1.2, A0 = π−1(B0) has the DWEPi. Hence B0 is DQWEPi.

Lemma 3.2.8. Let A and B be unital C∗-algebras. Suppose there exists a ucp map ψ : A→ B which maps

the closed unit ball of A onto the closed unit ball of B. If A has the DWEPi, then B is DQWEPi, for

i = 1, 2.

Proof. Let A0 ⊂ A be the multiplicative domain of ψ. Since ψ maps the closed unit ball of A onto that of

B, the restriction of ψ on A0 is a surjective ∗-homomorphism onto B. Let π = ψ|A0
.

By Lemma 3.2.2, we have A0 is r.w.i. in A and hence it has the DWEPi by Lemma 3.1.2. Since B is

a quotient of A0, B is D-QWEPi.

Corollary 3.2.9. Let B and C be C∗-algebras. Suppose B is DQWEPi, and ψ : B → C is a ucp map that

maps the closed unit ball of B onto that of C. Then C is DQWEPi.

Proof. Since B is DQWEPi, there exists a C∗-algebra A with the DWEPi, and a surjective ∗-homomorphism

π : A→ B. Notice that π maps closed unit ball of A onto that of B. Hence the composition ψ ◦ π maps the

closed unit ball of A onto that of C. By Lemma 3.2.8, C is DQWEPi.
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Lemma 3.2.10. Suppose (Bi)i∈I is an increasing net of C∗-algebras in B(H). If all Bi are DQWEPi, then

∪Bi and (∪Bi)′′ are DQWEPi.

Proof. Let B = ∪Bi. It suffices to show that B′′ is DQWEPi. Since Bi is DQWEPi, there exists a C∗-

algebra Ai with DWEPi, and a surjective ∗-homomorphism πi : Ai → Bi. Let J be a directed set containing

I. By Lemma 3.1.9,
∏
j∈J Aj has the DWEPi. Fix a free ultrafilter U on the net J . Define a ucp map

ϕ :
∏
j∈J Aj → B′′ by ϕ((xj)j∈J) = limj→U π(xj) in the ultraweak topology. By Kaplansky’s density

theorem, if J is large enough, then ϕ maps the closed unit ball of
∏
j∈J Aj onto that of B′′. Now by Lemma

3.2.8, B′′ is DQWEPi.

The next corollary shows that unlike the DWEP case, the DQWEP of a C∗-algebra and its double dual

are equivalent.

Corollary 3.2.11. A C∗-algebra B is DQWEPi if and only if B∗∗ is DQWEPi for i = 1, 2.

Proof. The “if” direction follows directly from Lemma 3.2.7 since B is r.w.i. in B∗∗. For the other direction,

we can apply Lemma 3.2.10 to B together with its universal representation.

Lemma 3.2.12. Suppose B and C are C∗-algebras, and B factors through C approximately via ucp maps

in the point-weak∗ topology. If C is DQWEPi, then so is B.

Proof. Since B factors through C, there are families of ucp maps αi : B → C and βi : C → B, i ∈ I such

that βi ◦ αi converges to the identity map on B in the point-weak∗ topology, i.e.

lim
x,U

(βi ◦ αi)(x)(x∗) = x∗(x)

for x ∈ B, x∗ ∈ B∗ and an ultrafilter U . Define α : B →
∏
i∈I C by α(x) = (αi(x))i∈I , for x ∈ B. Let

β :
∏
i∈I C → B∗∗, β = limi→U βi. Define β# : B∗ →

∏
U C
∗, by β#(x∗) = (β∗i (x∗))•. In fact β# = β∗|B∗ .

Then we have

B∗
β#

// (
∏
U C)∗.

By taking the duals, we have

B
α // C∗∗

(β#)∗ // B∗∗.

This gives a conditional expectation from C∗∗ to B∗∗ which is identity on B. Therefore, B is r.w.i. in C∗∗.

By Corollary 3.2.11, C∗∗ is DQWEPi. Hence so is B.
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Corollary 3.2.13. If a C∗-algebra B is DQWEPi, for i = 1, 2, then so is M(B).

Proof. Note that by Theorem 2.3.1, the identity map on M(B) factors through `∞(B) approximately via

ucp maps in point weak ∗-topology. Since B is DQWEPi, by Lemma 3.2.6, so is `∞(B). Therefore, by

Lemma 3.2.12, M(B) is DQWEPi.

We have the following transitivity result for DQWEPi. We only show the DQWEP1 case. The proof of

the other case is similar. First we need the following lemma.

Lemma 3.2.14. Let D be a C∗-algebra. If D is CQWEPi for i = 1, 2, then so are L(HD) and Lw(HD∗∗).

Proof. If D is CQWEP1, then by Proposition 3.2.5(1), so is K ⊗min D. By Theorem 2.3.1, L(HD) =

M(K⊗D) factors through `∞(K⊗minD), and therefore, it is DQWEP1, by Lemma 3.2.12. Hence it is also

DQWEP2. For the other case, it suffices to show that B(H)⊗̄D∗∗ is DQWEP1. Note that B(H)⊗̄D∗∗ =

(K⊗min D)∗∗ and K⊗min D is DQWEP1. By Corollary 3.2.11, (K⊗min D)∗∗ is DQWEP1, and hence it is

DQWEP2.

The following result shows the transitivity of the DQWEPi for i = 1, 2.

Corollary 3.2.15. Let B, C and D be C∗-algebras such that B is DQWEPi, and D is CQWEPi. Then B

is CQWEPi.

Proof. We only show this for i = 1. Let C∗F∞ ⊂ L(HuD) be the universal representation. Since B is

DQWEP1, by Theorem 3.2.3, for all ucp maps u : C∗F∞ → B, the map u ⊗ id : C∗F∞ ⊗maxD1
C∗F∞ →

B ⊗max C
∗F∞ is continuous, where maxD1 is the norm induced from the inclusion C∗F∞ ⊗ C∗F∞ ⊂

L(HuD) ⊗max C
∗F∞. Since D is CQWEP1, so is L(HuD) by Lemma 3.2.14. Now by the tensor charac-

terization of CQWEP1, the map w ⊗ id : C∗F∞ ⊗maxC1
C∗F∞ → L(HuD) ⊗max C

∗F∞ is continuous for all

ucp maps w : C∗F∞ → L(HuD). Now let w be a faithful representation C∗F∞ → L(HuD). Then we have the

following diagram

C∗F∞ ⊗
maxD1

C∗F∞ �
� //

u⊗id

��

L(HuD) ⊗
max

C∗F∞

B ⊗
max

C∗F∞ C∗F∞ ⊗
maxC1

C∗F∞

w⊗id

OOhh

Note that the image of w⊗ id is C∗F∞⊗maxD1
C∗F∞. Therefore, we get a continuous map from C∗F∞⊗maxC1

C∗F∞ to B ⊗max C
∗F∞. This proves that B is CQWEP1.

Now we are ready to establish the equivalence between the DQWEP notions by observing the following

result.
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Theorem 3.2.16. For a C∗-algebra B, the following conditions are equivalent:

1. B is DQWEP1;

2. B is DQWEP2;

3. B∗∗ is D∗∗QWEP1;

4. B∗∗ is D∗∗QWEP2.

Proof. (1)⇒(2): This follows from the fact that DWEP1 implies DWEP2.

(2)⇒(3): Suppose B is DQWEP2. Therefore, B is the quotient of a C∗-algebra A which is r.w.i. in

Lw(ED∗∗). By Remark 3.1.11(1), Lw(ED∗∗) has the D∗∗WEP1. Hence A has the D∗∗WEP1, and therefore,

B is D∗∗QWEP1.

(3)⇒(4): Follows from (1)⇒(2).

(4)⇒(1): Suppose B∗∗ is D∗∗QWEP2, and therefore so is B by Corollary 3.2.11. Then B is the quotient

of a C∗-algebra A which is r.w.i. in Lw(ED∗∗∗∗). We have

A
r.w.i.
⊂ Lw(ED∗∗∗∗)

r.w.i.
⊂ B(`2)⊗̄D∗∗∗∗ = (K ⊗

min
D∗∗)∗∗.

Therefore, it suffices to show that K ⊗min D
∗∗ is DQWEP1. Notice that K ⊗min D

∗∗ factors through∏
nMn(D∗∗) approximately via ucp maps in point-norm topology, since ∪Mn(D∗∗) is norm-dense in K⊗min

D∗∗. Now since D has the DWEP1, D∗∗ is DQWEP1. Therefore, by Proposition 3.2.5, so is Mn(D∗∗) =

Mn ⊗min D
∗∗. Hence by Lemma 3.2.12, K ⊗min D

∗∗ is DQWEP1. This finishes the proof.

3.3 Illustrations

In Section 3, we showed that DWEP1 implies DWEP2. Our first example will show the converse is not true,

and hence the two notions of DWEP are not equivalent.

Example 3.3.1. Let D = B(`2). Note that L(HD) = M(K ⊗min B(`2)), and K ⊗min B(`2) has the

WEP, and so does M(K ⊗min B(`2)). Therefore the two notions of DWEP1 and WEP coincide. On

the other hand, the DWEP2 of a C∗-algebra is the same as being r.w.i. in B(H)⊗̄B(`2)
∗∗

. Notice that

B(H)⊗̄B(`2)∗∗ = (K⊗B(`2))∗∗ is QWEP. Therefore by Proposition 2.1.9, DWEP2 is equivalent to QWEP.

Hence if A is a QWEP C∗-algebra without the WEP, for instance C∗rFn, then A has the DWEP2 but not

the DWEP1, for D = B(`2).

Now we are ready to see some examples of relative WEP and QWEP over special classes of C∗-algebras.
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Proposition 3.3.2. Let D be a nuclear C∗-algebra. Then a C∗-algebra A has the DWEPi for i = 1, 2 if

and only if it has the WEP.

Proof. Suppose A has the WEP. Therefore A has the DWEP1, and hence the DWEP2.

Now assume A has the DWEP2, i.e. it is r.w.i. in B(`2)⊗̄D∗∗. Since D is nuclear, D∗∗ is injective.

Hence we have D∗∗ ⊆ B(H)
E→ D∗∗, where E is a conditional expectation. Let CB(A,B) be the space of

completely bounded maps from A to B. Therefore we have

CB(S1, D
∗∗)

π
↪→ CB(S1,B(H))

ϕ→ CB(S1, D
∗∗),

where S1 is the algebra of trace class operators, π is a ∗-homomorphism, and ϕ acts by composing the maps in

CB(S1,B(H)) and E. Note that by operator space theory CB(S1, D
∗∗) ' B(`2)⊗̄D∗∗ and CB(S1,B(H)) '

B(`2)⊗̄B(H) = B(`2⊗H). Hence we have the maps B(`2)⊗̄D∗∗ π→ B(`2)⊗̄B(H) = B(`2⊗H)
ϕ→ B(`2)⊗̄D∗∗.

Now by Remark 2.2.12 we can unitize these two maps. Therefore A is r.w.i. in B(`2⊗H), and hence it has

the WEP.

After nuclear C∗-algebras, it is natural to consider the relative WEP for an exact C∗-algebra D. For

convenience, we consider the following stronger version of weak exactness property. A von Neumann algebra

M ⊆ B(H) is said to be algebraically weakly exact, (a.w.e. for short), if there exists a weakly dense exact

C∗-algebra D in M . By [Kir95], we know that the a.w.e. implies the weak exactness.

Notice that the unitization trick works better in C2 category, and hence we have the following.

Proposition 3.3.3. A C∗-algebra has the DWEP2 for some exact C∗-algebra D if and only if it is relatively

weakly injective in an a.w.e. von Neumann algebra.

Proof. Suppose a C∗-algebra A has the DWEP2, then A is r.w.i. in B(H)⊗̄D∗∗. Since both K and D are

exact C∗-algebras, so is K⊗min D. Note that K⊗min D is weakly dense in (K⊗min D)∗∗ = B(H)⊗̄D∗∗. We

have B(H)⊗̄D∗∗ is a.w.e.

For the other direction, suppose A is r.w.i. in an a.w.e von Neumann algebra M . Let D be an exact

C∗-algebra with D′′ = M . Then there exists a central projection z in D∗∗ such that M = zD∗∗. Hence we

have completely positive maps M ↪→ D∗∗ →M , which preserves the identity on M . Therefore by unitization

M is r.w.i. in B(H)⊗̄D∗∗ for some infinite dimensional Hilbert space H. Hence if A is r.w.i. in M , then it

is also r.w.i. in B(H)⊗̄D∗∗, and therefore it has the DWEP2.

As we showed, the nuclear-WEP is equivalent to the WEP. But the exact-WEP is different.
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Example 3.3.4. Let F2 be the free group on two generators. Then F2 is exact and hence C∗rF2 is exact

and LF2 is weakly exact. Since C∗rF2 is r.w.i. in LF2, by Proposition 3.3.3, C∗rF2 has the DWEP2 for

D = C∗rF2. But C∗rF2 does not have the WEP, since the WEP of a reduced group C∗-algebra is equivalent

to the amenability of the group (see Proposition 3.6.9 in [BO08]).

Now we consider the full group C∗-algebra of free group C∗F∞. Since it is universal in the sense that

for any unital separable C∗-algebra A, we have a quotient map q : C∗F∞ → A. By the unitization trick, we

have the following.

Proposition 3.3.5. Let A be a unital separable C∗-algebra. Then it has the DWEP2 for D = C∗F∞.

Proof. Since we have a quotient map q : C∗F∞ → A, there exists a central projection z in C∗F∞∗∗ such

that A∗∗ = zC∗F∞∗∗. Hence we have an embedding A∗∗ ↪→ B(H)⊗̄C∗F∞∗∗ with a completely positive map

from B(H)⊗̄C∗F∞∗∗ to A∗∗ by multiplying 1 ⊗ z. By the unitization trick in Remark 2.2.12, A∗∗ has the

DWEP2 for D = C∗F∞ and so does A, since A is r.w.i. in A∗∗.

It is natural and even more interesting to ask whether the full group C∗-algebra C∗F∞ has DWEP, for

D is the reduced group C∗-algebra C∗rF2. In fact, this is related to the QWEP conjecture. If C∗F∞ has the

DWEP1 for some WEP algebra D, then it has the WEP by Corollary 3.1.14 of transitivity. If C∗F∞ does

not have the DWEP1 for some C∗-algebra D, then it does not have the WEP either. At the time of writing

this paper, we do not have an answer for this question.

Now let us discuss some properties of being module QWEP relative to some special classes of C∗-algebras.

In the rest of this section, we will examine the relation between one of the equivalent statements of Theorem

3.2.16 (for example statement (1), B is DQWEPi), and the statement that B∗∗ is D∗∗WEPi, for either i = 1

or 2.

Proposition 3.3.6. Let B be a C∗-algebra. If B∗∗ has the D∗∗WEPi, then B is DQWEPi, for i = 1, 2.

Proof. Suppose B∗∗ has the D∗∗WEPi, and hence B∗∗ is D∗∗QWEPi by the trivial quotient. By Theorem

3.2.16, B is DQWEPi.

For some C∗-algebra D, the four equivalent statements in Theorem 3.2.16 are equivalent to the statement

that B∗∗ has the D∗∗WEPi. But this is not true in general. We will show examples of both circumstances.

Example 3.3.7. Let D = B(`2). Then a C∗-algebra B is DQWEPi if and only if B∗∗ has the D∗∗WEPi,

since they are both equivalent to B being QWEP. Indeed, if B is DQWEP1, then B = A/J and A has the

DWEP1. Since L(HD) has the WEP as shown in Example 3.3.1, so does A, and hence B is QWEP. On
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the other hand, having B(`2)∗∗WEP1 is equivalent to being r.w.i. in M(K ⊗min B(`2)∗∗), which is QWEP.

Hence B∗∗ is QWEP. By Proposition 2.1.8, B is QWEP as well.

Example 3.3.8. Let D be a nuclear C∗-algebra. Then the above statements are not equivalent. Indeed, it

follows from Proposition 3.3.2 that a C∗-algebra is DQWEPi if and only if it is QWEP. On the other hand,

assume that B∗∗ has the D∗∗WEP1. Note that D∗∗WEP1 implies DWEP2 by Remark 3.1.11(2), which is

equivalent to WEP by Proposition 3.3.2, and B∗∗ has the WEP if and only if it is injective. Therefore the

fact that a C∗-algebra B is DQWEPi does not imply that B∗∗ has the D∗∗WEP1.

Example 3.3.9. For a von Neumann algebra M , let us compare the properties MQWEP1 of B and the

M∗∗WEP1 of B∗∗. We have the following partial results.

Case (i): M is of type In. Then M is subhomogeneous, which is equivalent to nuclearity. By Example

3.3.8, these two statements are not equivalent.

Case (ii): M is of type I∞, then B(`2)⊗̄M is r.w.i. in M . Suppose B is MQWEP1, then B is a quotient

of a C∗-algebra A which is r.w.i. in B(`2)⊗̄M . Hence B∗∗ is r.w.i. in A∗∗ and hence in (B(`2)⊗̄M)∗∗, and

hence in M∗∗. Since M∗∗ is isomorphic to L(HM∗∗) for 1-dimensional Hilbert space H, it follows that B∗∗

has the M∗∗WEP1.

Case (iii): M is of type II∞ or III, then B(`2)⊗̄M ' M . By similar argument in Case (ii), we have the

same conclusion.

Case (iv): M is of type II1 and a McDuff factor, i.e. M⊗̄R ' M . Then we have a completely postive

map from M⊗̄B(`2) to M by the following:

M⊗̄B(`2)→M⊗̄
∞∏
n=1

Mn →M⊗̄R⊗̄L∞[0, 1] ⊆M⊗̄R⊗̄R 'M⊗̄R 'M.

with a completely positive left inverse from M to M⊗̄B(`2), namely M⊗̄B(`2) factors through M by com-

pletely positive maps. Therefore M⊗̄B(`2) is r.w.i. in M∗∗. By the same argument as above, the equivalence

is established.

At the time of writing this paper, we do not have an affirmative answer for the case where M is a

non-Mcduff II1 factor.
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Chapter 4

Gromov-Hausdorff Convergence for
C(T)

4.1 Order-unit Spaces and Forms of Gromov–Hausdorff

Convergence

In this section we briefly review the notions of order-unit spaces and Gromov-Hausdorff distance. We will

be mostly following [Rie04a, Li06, Lat15, Lat16] in this chapter.

The abstract characterization of order-unit spaces is due to Kadison [Kad51].

Definition 4.1.1. An order-unit space is a real partially ordered vector space, A, with a distinguished

element e (the order unit) satisfying:

(1) (Order unit property): For each a ∈ A, there is r ∈ R such that a ≤ re;

(2) (Archimedean property): For a ∈ A, if a ≤ re for all r ∈ R with r > 0, then a ≤ 0. On an order-unit

space (A, e), we can define a norm as

‖a‖ = inf{r ∈ R : −re ≤ a ≤ re}.

Furthermore, we require that A+ ∩ (−A+) = 0, where A+ denotes the positive cone of A. This condition

ensures that for a ∈ A, if a ≤ 0 and a ≥ 0, then ‖a‖ = 0.

Then A becomes a normed vector space and we can consider its dual, A′, consisting of the bounded linear

functionals, equipped with the dual norm ‖.‖′. By a state of an order-unit space (A, e), we mean a µ ∈ A′

such that µ(e) = ‖µ‖′ = 1. Denote the set of all states of A by S(A). For an order-unit space (A, e) and a

seminorm L on A, we can define an ordinary metric, ρL, on S(A) by

ρL(x, y) = sup
L(f)≤1

|f(x)− f(y)|. (4.1.1)

Then we say L is a Lipschitz seminorm on A if it satisfies:

(1) For a ∈ A, we have L(a) = 0 if and only if a ∈ Re.
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We call L a Lip-norm, and call the pair (A,L) a compact quantum metric space if L also satisfies:

(2) The topology on S(A) induced by the metric L is the weak-* topology.

For two metric spaces Y,Z inside a metric space (X, d), let their Hausdorff distance in X be denoted by

distdH(Y,Z). We may drop d when it is clear from the context what metric we are using.

For any two compact metric spaces X and Y , their Gromov–Hausdorff distance was introduced by

Gromov [Gro81] as follows

distGH(X,Y ) := inf{distH(hX(X), hY (Y )) | hX : X → Z, hY : Y → Z

are isometric embeddings into some metric space Z}.

The weakest form of Gromov–Hausdorff convergence that we are using in this thesis is convergence in

the sense of quantum Gromov–Hausdorff. This notion was first introduced by Rieffel [Rie04a]. Let A be an

order-unit space. By a quotient (π,B) of A, we mean an order-unit space B and a surjective linear positive

map π : A → B preserving the order-unit. Let (A,LA) and (B,LB) be compact quantum metric spaces.

The direct sum A ⊕ B, of vector spaces, with (eA, eB) as order-unit, and with the natural order structure

is also an order-unit space. We call a Lip-norm L on A ⊕ B admissible if it induces LA and LB under the

natural quotient maps A ⊕ B → A and A ⊕ B → B. Let ρL be as defined in (4.1.1). Then the quantum

Gromov–Hausdorff distance is defined by

distq(A,B) = inf{distρLH (S(A), S(B)) : L is an admissible norm on A⊕B}.

For a compact quantum metric space (A,L) and r ≥ 0, let

Dr(A) := {a ∈ A : L(a) ≤ 1, ‖a‖ ≤ r}.

The following definition is due to Li [Li06].

Definition 4.1.2. Let (A,LA) and (B,LB) be compact quantum metric spaces and R ≥ 0. The R-order-unit

quantum Gromov–Hausdorff distance between them, denoted by distRoq(A,B), is defined by

distoq(A,B) := inf{max(distH(hA(DR(A)), hB(DR(B))), ‖hA(ReA)− hB(ReB))‖},

where the infima are taken over all triples (V, hA, hB) consisting of a real normed vector space V and linear

isometric embeddings hA : A→ V and hB : B → V .
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Note that the term ‖hA(ReA)−hB(ReB))‖ is chosen to take care of the order-units. One may omit these

terms and require hA(eA) = hB(eB). Then we can immediately get the following results.

Lemma 4.1.3. Let ϕj : A→ Bj be linear isometric embeddings of normed spaces (over R or C) for j ∈ J ,

where J is an index set. Then there is a normed space C and linear isometric embeddings ψj : Bj → C such

that ψj ◦ ϕj = ψk ◦ ϕk for all j, k ∈ J .

Hence we get the triangle inequality.

Lemma 4.1.4. For R ≥ 0 and any quantum compact metric spaces (A,LA), (B,LB) and (C,LC) we have

distRoq(A,C) ≤ distRoq(A,B) + distRoq(B,C).

Note that it was shown in [Li06] that for R ≥ 0, the following holds:

1

2
distRoq ≤ distq ≤

5

2
distRoq.

The following Theorem is due to Li [Li06]. We are using this Theorem to find an approximation for the

space of continuous functions on the torus and an approximation for the rotation algebras in this chapter

and the next. First we recall the notion of a continuous field. Let T be a topological space. A continuous

field of Banach spaces over T is a family E(t)t∈T of Banach spaces, with a set Γ ⊂
∏
t∈T E(t) of vector fields

such that:

1. Γ is (complex) linear subset of
∏
t∈T E(t);

2. For every t ∈ T the set of x(t) for t ∈ Γ is dense in E(t);

3. For every x ∈ Γ the function x→ ‖x(t)‖ is continuous;

4. Let x ∈
∏
t∈T E(t) be a vector field. If for every t ∈ T and every ε > 0, there exists an x′ ∈ Γ such

that ‖x(t)− x′(t)‖ ≤ ε throughout some neighborhood of t, then x ∈ Γ.

Theorem 4.1.5. ([Li06]) Let ({(At, Lt)},Γ) be a continuous field of quantum compact metric spaces over

a locally compact Hausdorff space T . Let R ≥ 0. Let t0 ∈ T and {fn}n∈N be a sequence in Γ such that

(fn)t0 ∈ DR(At0) for each n ∈ N and the set {(fn)t0 : n ∈ N} is dense in DR(At0). Then the following are

equivalent:

1. distRoq(At, At0)→ 0 as t→ t0;

2. distGH(DR(At),DR(At0))→ 0 as t→ 0;
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3. for any ε > 0, there is an N such that the open ε-balls in At centered at (f1)t, ..., (fN )t cover DR(At)

for all t in some neighborhood U of t0.

Lemma 4.1.6. ([Li06]) Let A and B be normed spaces (over R or C). Let X be a linear subspace of A,

and let ε > 0. Let ϕ : X → B be a linear map with (1 − ε)‖x‖ ≤ ‖ϕ(x)‖ ≤ (1 + ε)‖x‖ for all x ∈ X.Then

there are a normed space V and linear isometric embeddings hA : A ↪→ V and hB : B ↪→ V such that

‖hA(x)− (hB ◦ ϕ)(x)‖ ≤ ε‖x‖ for all x ∈ X.

The strongest form of Gromov–Hausdorff convergence is convergence in the sense of quantum Gromov–

Hausdorff propinquity, which was introduced by Latrémolière in [Lat15]. Before we introduce this notion,

we need to give some definitions.

Definition 4.1.7. ([Lat16]) Let A and B be two unital C∗-algebras. A bridge γ = (D,ω, πA, πB) is given

by a unital C∗-algebra D, two unital ∗-monomorphisms πA : A ↪→ D and πB : B ↪→ D and ω ∈ D such that

the set S(A|ω) := {ϕ ∈ S(A) : ∀d ∈ D,ϕ(d) = ϕ(dω) = ϕ(ωd)} is not empty, where S(A) denotes the state

space of A.

In the following let F : [0,∞)4 → [0,∞) be defined by F (x, y, lx, ly) = xly + ylx, for x, y, lx, ly ∈ [0,∞).

For a C∗-algebra A, let sa(A) denote the self-adjoint elements of A. Let uA denote the unitization of A.

Recall ([Rie98]) that a Lipschitz pair (A,L) is a pair of a C∗-algebra and a seminorm L on a dense subspace

dom(L) of sa(uA) and such that

{a ∈ sa(uA) : L(a) = 0} = R1A.

Definition 4.1.8. ([Lat15]) A F -quasi-Leibniz pair (A,L) is a Lipschitz pair such that:

(1) the domain dom(L) of L is a dense Jordan-Lie subalgebra of sa(A),

(2) for all a, b ∈ dom(L), we have:

L(a ◦ b) ≤ F (‖a‖A, ‖b‖A, L(a), L(b)) and L({a, b}) ≤ F (‖a‖A, ‖b‖A, L(a), L(b))

A Leibniz pair [Lat16] (A,LA) is a Lipschitz pair such that such that:

1. the domain dom(L) is a Jordan-Lie subalgebra of sa(A),

2. for all a, b ∈ dom(L), we have

L(a ◦ b) ≤ ‖a‖AL(b) + L(A)‖b‖A

and

L({a, b}) ≤ ‖a‖AL(b) + L(a)‖b‖A.

29



Remark 4.1.9. A Leibniz pair is a F -quasi Leibniz pair for F defined as above.

We say a quasi-Leibniz pair (A,L) is an F -quasi-Leibniz quantum compact metric space [Lat16] when:

1. (A,L) is a compact quantum metric space,

2. L is lower semicontinuous,

3. (A,L) is an F -quasi-Leibniz pair.

Definition 4.1.10. ([Lat16]) Let C be a nonempty class of F -quasi-Leibniz quantum compact metric spaces

and let (A,LA), (B,LB) ∈ C. A C-trek from (A,LA) to (B,LB) is a finite family:

Γ = (Aj , Lk, γj+1, Lj+1 : j = 1, ..., n)

where:

1. for all j ∈ {1, ..., n+ 1} we have (Aj , Lj) ∈ C,

2. we have (A1, L1) = (A,LA) and (An+1, Ln+1) = (B,LB),

3. for all j ∈ {1, ..., n+ 1}, we are given a bridge γj from (Aj , Lj) to (Aj+1, Lj+1)

The Gromov–Hausdorff C-propinquity [Lat16], ΛC((A,LA), (B,LB)) between (A,LA) and (B,LB) is de-

fined by:

inf{λ(Γ) : Γ is a trek from (A,LA) to (B,LB)}.

Then we have the following refined criteria for convergence in the Gromov–Hausdorff propinquity sense

[Lat15].

Lemma 4.1.11. Let (A, |||.|||A) and (B, |||.|||B) be two F -quasi-Leibniz compact quantum metric spaces. If

there exist two ∗-homomorphisms πA : A ↪→ B(H) and πB : B ↪→ B(H) and ε > 0 such that the following

hold:

1. For all a ∈ A such that |||a|||A ≤ 1, there exists b ∈ B such that |||b|||B ≤ 1 and ‖πA(a)− πB(b)‖D < ε,

2. For all b ∈ B such that |||b|||B ≤ 1, there exists a ∈ A such that |||a|||A ≤ 1 and ‖πA(a)− πB(b)‖D < ε,

then ΛF ((A, |||.|||A), (B, |||.|||B)) ≤ ε.

We will use this Lemma later in Chapter 6 to approximate the rotation algebras in higher dimensions in

the sense of Gromov–Hausdorff propinquity.
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4.2 Conditionally negative length functions on groups

Although the objects we study in this thesis are C∗-algebras (more precisely order-unit spaces), we will

use various estimates in noncommutative Lp spaces. To this end, we need to work in the context of von

Neumann algebras. We refer to e.g. [BO08, JMP14, JZ15] and the references therein for the unexplained

facts in the following. Let (N , τ) be a noncommutative W ∗ probability space. Here N is a finite von

Neumann algebra and τ is a normal faithful tracial state. Let (Tt)t≥0 be a pointwise weak* continuous

semigroup acting on (N , τ) such that every Tt is unital, normal, completely positive and self-adjoint in the

sense that τ(Tt(f)g) = τ(fTt(g)) for every f, g ∈ N . We will call a semigroup satisfying these conditions

a noncommutative symmetric Markov semigroup. One can extend Tt to a strongly continuous semigroup

of contractions on L2(N , τ) (actually on Lp(N , τ) for all 1 ≤ p < ∞). Here the noncommutative Lp(N , τ)

space is the closure of N in the norm ‖f‖p = [τ(f∗f)p/2]1/p for 1 ≤ p < ∞ and ‖f‖∞ = ‖f‖ = ‖f‖N , the

operator norm. We denote by A the infinitesimal generator of Tt, i.e., Tt = e−tA. We define the gradient

form associated to A (Meyer’s “carré du champ”) by

ΓA(f, g) =
1

2
[A(f∗)g + f∗A(g)−A(f∗g)], (4.2.1)

for f, g in the domain of A. Our major examples involve groups with conditionally negative length functions.

Let G be a countable discrete group. Let λ : G → B(`2(G)) be the left regular representation of G

given by λ(x)δy = δxy for x, y ∈ G, where (δx)x∈G is the natural unit vectors of `2(G), the natural Hilbert

space associated to G. Let C∗r (G) and LG denote the reduced C∗-algebra and von Neumann algebra of G,

respectively. They are the norm closure and weak* closure of λ(G) in B(`2(G)), respectively. There is a

canonical normal faithful tracial state τG on C∗r(G) and LG given by τG(f) = 〈δe, fδe〉, where 〈·, ·〉 is the

inner product on `2(G) and e is the identity of G. A function ψ : G → R+ is called a length function if

ψ(e) = 0 and ψ(x) = ψ(x−1). A length function ψ is said to be conditionally negative if
∑
x βx = 0 implies

that
∑
x,y β̄xβyψ(x−1y) ≤ 0. By Schoenberg’s theorem, a conditionally negative length function ψ gives

rise to a completely positive semigroup (Tt)t≥0 acting on LG, which is defined by Ttλ(x) = e−tψ(x)λ(x). It

is well known that Tt thus defined is a noncommutative symmetric Markov semigroup and its generator is

given by Aλ(x) = ψ(x)λ(x). The Gromov form K in this context is defined as

K(x, y) =
1

2
[ψ(x) + ψ(y)− ψ(x−1y)], for x, y ∈ G.

It is well known [BO08] that ψ is conditionally negative if and only if K is positive semidefinite as a matrix.
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We can write the gradient form as

Γψ(f, g) =
∑
x,y

¯̂
f(x)K(x, y)ĝ(y)λ(x−1y) (4.2.2)

for f =
∑
x f̂(x)λ(x) ∈ LG and g =

∑
y ĝ(y)λ(y) ∈ LG being finite linear combinations. In the following,

we will frequently ignore the superscript A and ψ in the notation of gradient form for short.

In this paper, we will mainly work with G = Zd or G = Zdn = (Z/nZ)d. In this paragraph we write λ

and λn for the left regular representations of Z and Zn, respectively. Using the Fourier transform, we can

identify λ(k) with e2πik· for k ∈ Z, identify C∗r (Z) with C(T), the continuous functions on the torus T = Ẑ,

and identify LZ with L∞(T). Since the dual group of Zn is Zn, we can identify λn(j) with exp( 2πij·
n ) for

j ∈ Zn and C∗r(Zn) = L(Zn) ' L∞(Zn) = `∞(n). Here the induced trace on `∞(n) is the normalized trace

on the n×n matrix algebra Mn where `∞(n) is regarded as the diagonal subalgebra of Mn. In other words,

λn(j) is identified with

uj(n) =



1

e
2πij
n

e
2πij2
n

. . .

e
2πij(n−1)

n


∈ `∞(n) (4.2.3)

We will consider two types of conditionally negative length functions on Z and Zn, namely

ψ(k) = |k|, for k ∈ Z and ψn(k) = |k|n = min{k, n− k}, for k ∈ Zn = {0, 1, ..., n− 1}.

It is known that the word length functions are conditionally negative; see e.g. [JZ13, JPPP13]. To unify

our notation, we will write Z = Z∞, ψ = ψ∞ and N = N ∪ {+∞}. We will call the semigroup generated by

ψn the Poisson semigroup on C∗r(Zn) (or L(Zn)) for n ∈ N. This corresponds to the semigroup generated

by (−d2/dx2)1/2 on C(T) in Fourier analysis. A more natural operator to consider is −d2/dx2, the 1-

dimensional Laplacian. The corresponding conditionally negative length function on Z is ψ(k) = k2 for

k ∈ Z. On Zn for n ∈ N, it is tempting to consider ψ(k) = k2 for |k| ≤ n/2. (Note that here and in what

follows we may replace k by k − n if k > n/2.) However, it is easy to check that this length function on Zn
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for finite n is not conditionally negative. Instead, we consider

ψn(k) =
n2

2π2
[1− cos(

2πk

n
)], for k ∈ Zn, n ∈ N. (4.2.4)

One can check that ψn defined in (4.2.4) is conditionally negative by noting that exp( 2πi·
n ) is a positive

semidefinite function on Zn. Note that

ψn(k) =
n2

π2
sin2(

πk

n
) if k 6= 0 in Zn.

Using

2

π
≤ | sinx

x
| ≤ 1, ∀x ∈ (0, π/2),

we see that

4

π2
k2 ≤ ψn(k) ≤ k2,

whenever |k| ≤ n
2 . Since limn→∞ ψn(k) = k2 for any fixed k, we have

ψn(k) ∼ k2 for |k| ≤ n/2. (4.2.5)

Here and in the following ak ∼ bk for two sequences (ak) and (bk) means that there exists an absolute

constant C ≥ 1 such that C−1 ≤ ak/bk ≤ C. We also define ψ∞(k) = k2 for k ∈ Z and call the semigroup

generated by ψn defined by (4.2.4) the heat semigroup on C∗r(Zn) (or L(Zn)) for n ∈ N. Once we know ψn

for n ∈ N, we write Γ = Γψ∞ and Γn = Γψn . We also denote by ‖ · ‖∞ the supremum norm on both C(T)

and C∗r(Zn).

Let us now introduce the terminology and notation of compact quantum metric spaces. Our references

here are [Rie04a, Li06]. Given a unital C∗-algebra A, we denote by Asa the set of self-adjoint elements in

A. Then Asa is an order-unit space in the sense of [Li06] with the identity of A as its order unit. Let L

be a (densely) defined Lip-norm on Asa and write A = {f ∈ Asa : L(f) < ∞}. By definition, A is a dense

order-unit subspace of Asa and (A, L) is a compact quantum metric space; see [Li06]. Let S(A) denote the

state space of A. For r ≥ 0, recall

Dr(A) = {a ∈ A : L(a) ≤ 1, ‖a‖ ≤ r}.

For a (separable) Hilbert space H, we write Hc and Hr for its associated column and row operator space,
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respectively. We denote by Smp (resp. Sp) the Schatten p class on `m2 (resp. `2).

4.3 Some analytic estimates

In this section we collect some analytic estimates which we will need later. Let us define

L0
p(N ) = {f ∈ Lp(N ) : lim

t→∞
Ttf = 0}

for 1 ≤ p ≤ ∞. Here the limit is taken in ‖·‖p for 1 ≤ p <∞ and in the weak* topology for p =∞. Following

[JM10], we define the (mean zero) Lorentz spaces L0
r,s(N ) = [L0

p(N ), L0
q(N )]θ,s, where 1

r = 1−θ
p + θ

q . See

e.g. [BL76, PX03] for the interpolation spaces. Note that in our case for the generator A of the semigroup

(Tt)t≥0, we have Ker(A1/2) = {1}.

Proposition 4.3.1. Let Tt = e−tA be a noncommutative symmetric Markov semigroup on (N , τ). Suppose

‖Tt : L0
1(N , τ)→ L∞(N , τ)‖cb ≤ Ct−m/2. (4.3.1)

Then ‖A−α : L0
p(N , τ)→ L0

∞(N )‖cb ≤ C(m,α) for α > m
2p , where C(m,α) <∞ only depends on m and α.

Proof. The argument modifies from [JM10]; see also [JZ15]*Corollary 4.22. Let α = m
2s . The argument in

[JM10]*Lemma 1.1.3 can be trivially generalized to prove the complete boundedness. Hence, we have

‖A−α : L0
s,1(N )→ L∞(N )‖cb ≤ C(m,α).

We know from the interpolation theory that L0
p(N ) ↪→ L0

s,1(N ) if p > s. The assertion follows.

Let us consider the rotation C∗-algebra AΘ, where Θ = (θij) is a d×d skew symmetric matrix with θij ∈

[0, 1). By definition, AΘ is the universal C∗-algebra generated by unitaries u1, ..., ud with the commutation

relations

ukul = e2πiθkluluk, k, l = 1, ..., d.

It is well known that AΘ admits a faithful canonical tracial state τ such that τ(uk1
1 · · ·u

kd
d ) = 1 if and only

if k1 = · · · = kd = 0; see e.g. [Rie90]. In order to work with noncommutative Lp spaces of von Neumann

algebras, we recall that RΘ = A′′Θ is the rotation von Neumann algebra associated to Θ, which is the weak*

closure of AΘ acting on the GNS Hilbert space L2(AΘ, τ). The linear combinations of uk1
1 · · ·u

kd
d form a
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weakly dense subspace of RΘ. We will frequently use the following ∗-homomorphism:

π : RΘ → L(Zd)⊗RΘ, π(uk1
1 · · ·u

kd
d ) = e2πi〈~k,·〉uk1

1 · · ·u
kd
d . (4.3.2)

Note that π is trace preserving. Let ψ be a conditionally negative length function on Zd and T̃t the semigroup

on L(Zd) generated by ψ. We define a semigroup on RΘ

Tt(u
k1
1 · · ·u

kd
d ) = e−tψ(k1,...,kd)uk1

1 · · ·u
kd
d .

Then (T̃t ⊗ id) ◦ π = π ◦ Tt. We see that Tt is a noncommutative symmetric Markov semigroup on RΘ; see

also [JZ15]*Proposition 5.10. Thanks to Schoenberg’s Theorem, Tt is a completely positive map.

Corollary 4.3.2. Let A be the infinitesimal generator of Tt defined as above. Assume that there exist D > 0

and γ ≥ 0 such that

#{~k ∈ Zd : ψ(~k) = j} ≤ Djγ , for all j ∈ Z>0.

Then

‖Tt : L0
1(RΘ)→ L∞(RΘ)‖cb ≤ Ct−(γ+1),

where C only depends on D and γ (and independent of n). Therefore, A−α : L0
p(RΘ) → L0

∞(RΘ) is

completely bounded for α > γ+1
p . In particular, if ψ(~k) ∼ |k1|+ · · ·+ |kd|, we can choose γ = d− 1; and if

ψ(~k) ∼ |k1|2 + · · ·+ |kd|2, we have actually a better bound ‖Tt : L0
1(RΘ)→ L∞(RΘ)‖cb ≤ Ct−d/2.

Proof. Let x =
∑
ψ(~k)>0 a~k ⊗ u

k1
1 · · ·u

kd
d ∈Mm(L0

1(RΘ)) be a finite linear combination. Then (id⊗Tt)(x) =∑
~k e
−tψ(~k)a~k ⊗ u

k1
1 · · ·u

kd
d . Consider the linear functional

φ : L1(RΘ)→ C, φ(f) = τ(f · (uk1
1 · · ·u

kd
d )∗).

We have ‖φ‖cb = ‖φ‖ and thus ‖a~k‖Mm
≤ ‖x‖Mm(L1). It follows that

‖(id⊗Tt)x‖Mm(RΘ) ≤
∑

ψ(~k)>0

‖a~k‖Mm
e−tψ(~k)‖uk1

1 · · ·u
kd
d ‖≤‖x‖Mm(L1(RΘ))

∑
ψ(~k)>0

e−tψ(~k)

≤ D‖x‖Mm(L1)

∫ ∞
0

sγe−tsds = DΓ(γ + 1)‖x‖Mm(L1)t
−(γ+1).

This yields ‖Tt : L0
1(RΘ) → L∞(RΘ)‖cb ≤ ct−γ−1. We deduce from Proposition 4.3.1 with m = 2(γ + 1)

that A−α : L0
p(RΘ)→ L∞(RΘ) is completely bounded for α > γ+1

p .
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It remains to check the value of γ. For ψ(~k) ∼ |k1|+ · · ·+ |kd|, we have

#{~k : ψ(~k) = j} ≤ Djd−1.

For ψ(~k) ∼ |k1|2 + · · ·+ |kd|2, we can of course take γ = d−1. But the most interesting value of t is 0 < t < 1.

So we want a smaller value of γ. Let x =
∑
~k a~k ⊗ u

k1
1 · · ·u

kd
d ∈Mm(L0

1(RΘ)). Then

‖(id⊗Tt)x‖Mm(RΘ) ≤
∑
~k

‖a~k‖Mm
e−tψ(~k)

≤ C‖x‖Mm(L1)

(∫ ∞
0

e−cts
2

ds
)d
≤ Ct−d/2‖x‖Mm(L1).

Hence ‖Tt : L0
1(RΘ)→ L∞(RΘ)‖cb ≤ Ct−d/2.

For notational convenience, let us introduce the following norms for 2 ≤ p ≤ ∞. LetN be a von Neumann

algebra with a trace τ and H a separable Hilbert space. Recall from [Pis03] that Hc[p] = (Hc, Hr)1/p and

Hr[p] = (Hr, Hc)1/p. We define Lp(N , Hc[p]) as a subspace of Lp(B(H)⊗N ) with the norm

‖x‖Lp(N ,Hc[p]) = ‖〈x, x〉1/2N ‖Lp(N ,τ), x ∈ H ⊗N . (4.3.3)

Here 〈·, ·〉N is the N -valued inner prodcut given by 〈a ⊗ x, b ⊗ y〉N = 〈a, b〉Hx∗y. Similarly, we define

Lp(N , Hr[p]) as a subspace of Lp(N⊗B(H)) with the norm

‖x‖Lp(N ,Hr[p]) = ‖x∗‖Lp(N ,Hc[p]).

Note that L∞(N , Hc) = N ⊗min H
c, L∞(N , Hr) = N ⊗min H

r and

‖x‖Lp(N ,Hc[p]∩Hr[p]) = max{‖x‖Lp(N ,Hc[p]), ‖x‖Lp(N ,Hr[p])}.

Let us turn to the group case. Let ψ be a conditionally negative length function on G. Recall that ψ

determines a 1-cocycle b : G → Hψ with values in a real unitary representation (α,Hψ). Here Hψ is a real

Hilbert space and 〈b(g), b(h)〉Hψ = K(g, h). One has

b(gh) = b(g) + αg(b(h)) and ψ(g) = ‖b(g)‖2,

for g, h ∈ G. See [BO08] for more details. We define H = Hψ ⊗ LG to be a LG-LG bimodule with the left
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action

λ(g)(b(h)⊗ λ(s)) = αg(b(h))⊗ λ(gs)

and the right action (b(h) ⊗ λ(s))λ(g) = b(h) ⊗ λ(sg) for s, g, h ∈ G. Let δ : LG → H be (densely) defined

by

δ(λ(g)) = b(g)⊗ λ(g). (4.3.4)

One can check that δ is a (densely defined) derivation on LG. Moreover, we have

Γ(x, y) = 〈δ(x), δ(y)〉LG

for x, y in the domain of Γ. Here 〈·, ·〉LG is the LG-valued inner product of H. One can naturally extend δ

to Mm(LG) by defining δ(ag ⊗ λ(g)) = b(g) ⊗ ag ⊗ λ(g) for ag ∈ Mm. In terms of (4.3.3), we may choose

N = Mm(LG) and H = Hψ. Extending the semigroup generated by ψ to the matrix level, we can define

the gradient form Γ on Mm(LG). Then we have

‖Γ(x, x)1/2‖Lp(Mm(LG)) = ‖δ(x)‖Lp(Mm(LG),Hcψ[p])

for x ∈Mm(LG). Note that Lp(Mm(LG)) = Smp Lp(LG). For our later c.b. estimates of the Riesz transform,

we wish to completely embed L∞(LG,Hc
ψ) into Lp(LG,H

c
ψ[p]). To this end, we have to consider Hc

ψ ∩Hr
ψ

and Hc
ψ[p] ∩Hr

ψ[p].

Lemma 4.3.3. If G is abelian, then

‖Γ(x∗, x∗)1/2‖Lp(Mm(LG)) = ‖δ(x)‖Lp(Mm(LG),Hrψ[p])

for x ∈Mm(LG).

Proof. Let x =
∑
g ag ⊗ λ(g) where ag ∈Mm. We define a linear map

J : Hψ → Hψ, J(b(g)) = b(g−1).

Then thanks to commutativity,

〈b(g), b(h)〉 = K(g, h) =
1

2
[ψ(g) + ψ(h)− ψ(g−1h)]

=
1

2
[ψ(g−1) + ψ(h−1)− ψ(gh−1)] = 〈b(g−1), b(h−1)〉.
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Namely, J preserves the inner product of Hψ. Note that

δ(x∗)∗ =
(∑

g

b(g−1)⊗ a∗g ⊗ λ(g−1)
)∗

=
∑
g

b(g−1)∗ ⊗ ag ⊗ λ(g) = (J ⊗ id⊗ id)δ(x).

Here we used b(g−1)∗ to specify that we view b(g−1) as a row vector. Since J is an isometry, we have

‖Γ(x∗, x∗)1/2‖Lp(Mm(LG)) = ‖δ(x∗)‖Lp(Mm(LG),Hcψ[p]) = ‖δ(x∗)∗‖Lp(Mm(LG),Hrψ[p])

= ‖(J ⊗ id⊗ id)δ(x)‖Lp(Mm(LG),Hrψ[p]) = ‖δ(x)‖Lp(Mm(LG),Hrψ [p]).

Let us return to the rotation von Neumann algebra RΘ. Recall the homomorphism π as defined in

(4.3.2). Let δ : L(Zd)→ Hψ ⊗ L(Zd) be the derivation given in (4.3.4). Considering (id⊗δ) ◦ π, we extend

the derivation δ to Mm(RΘ) by

δ(a~k ⊗ u
k1
1 · · ·u

kd
d ) = b(~k)⊗ a~k ⊗ u

k1
1 · · ·u

kd
d . (4.3.5)

Note that the derivation is constructed so that the following diagram commutes in the matrix level:

RΘ

δ

��

π // L(Zd)⊗RΘ

δ⊗id

��
Hψ ⊗RΘ

id⊗π // Hψ ⊗ L(Zd)⊗RΘ

Extending Tt to idMm
⊗Tt on Mm(RΘ), we can define the gradient form Γ on Mm(RΘ) associated to the

generatoridMm ⊗A. Then we have Γ(x, y) = 〈δ(x), δ(y)〉Mm(RΘ) for x, y in the domain of Γ. It follows that

‖Γ(x, x)1/2‖Lp(Mm(RΘ)) = ‖δ(x)‖Lp(Mm(RΘ),Hcψ[p])

for x ∈Mm(RΘ). Using similar argument to that of Lemma 4.3.3, we have the following result.

Lemma 4.3.4. Let x =
∑
~k∈Zd a~k ⊗ u

k1
1 · · ·u

kd
d be a finite sum where a~k ∈Mm. Then

‖Γ(x∗, x∗)1/2‖Lp(Mm(RΘ)) = ‖δ(x)‖Lp(Mm(RΘ),Hrψ [p]).

Proof. Observing (4.3.5), we may define for clarity,

δc(uk1
1 · · ·u

kd
d ) = b(~k)⊗ uk1

1 · · ·u
kd
d ∈ H

c
ψ ⊗RΘ, δr(uk1

1 · · ·u
kd
d ) = b(~k)⊗ uk1

1 · · ·u
kd
d ∈ H

r
ψ ⊗RΘ.
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As in (4.3.5), we may extend δc and δr to matrix levels. Then

δc(x∗) =
∑
~k

b(−~k)⊗ a∗~k ⊗ (uk1
1 · · ·u

kd
d )∗.

Since 〈b(−~k), b(−~k′)〉Hψ = 〈b(~k), b(~k′)〉Hψ , we have

‖Γ(x∗, x∗)‖Lp(Mm(RΘ)) = ‖δc(x∗)‖Lp(Mm(RΘ),Hcψ[p])

= ‖
∑
~k,~k′

〈b(−~k), b(−~k′)〉Hψa~ka
∗
~k′
⊗ (uk1

1 · · ·u
kd
d )(u

k′1
1 · · ·u

k′d
d )∗‖p

= ‖
∑
~k,~k′

〈b(~k), b(~k′)〉Hψa~ka
∗
~k′
⊗ (uk1

1 · · ·u
kd
d )(u

k′1
1 · · ·u

k′d
d )∗‖p

= ‖δr(x)‖Lp(Mm(RΘ),Hrψ[p]).

Let us introduce more notations to formulate our complete embedding results. For 2 ≤ p ≤ ∞, let

∇p(RΘ) be a subspace of Lp(RΘ) with the semi-norm defined by

‖x‖∇p(RΘ) = ‖δ(x)‖Lp(RΘ,Hcψ[p]∩Hrψ[p]).

Then by Lemma 4.3.4 we have

‖x‖Smp (∇p(RΘ)) = max{‖Γ(x, x)1/2‖p, ‖Γ(x∗, x∗)1/2‖p} (4.3.6)

for any x in the domain of ΓidMm ⊗A.

For notational convenience, let us define for x in the domain of ΓidMm ⊗A,

|||x|||m = max{‖δc(x)‖Mm⊗minRΘ⊗Hcψ , ‖δ
r(x)‖Mm⊗minRΘ⊗Hrψ} = ‖x‖Mm(∇∞(RΘ)). (4.3.7)

Then |||x|||m is a Lip-norm. We usually ignore the subscript m and write |||x||| if the underlying space is

clear from context. We will also use frequently the notation L(x) := |||x|||, especially when we consider a

continuous field of quantum metric spaces.

Corollary 4.3.5. With the notation above, we have ‖ id : ∇∞(RΘ)→ ∇p(RΘ)‖cb ≤ Cp for some constant

Cp.

Proof. Writing c.c. and c.b. for completely contractive and completely bounded isomorphisms, respectively,
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we consider the following diagram:

N ⊗min (Hc
ψ ∩Hr

ψ)

��

� � c.b. // N ⊗min L(F∞) �
� c.c. // N⊗L(F∞)

c.c.

��
Lp(N , Hc

ψ[p] ∩Hr
ψ[p]) �

� c.b. // Lp(N⊗L(F∞))

Here N can be any finite von Neumann algebra. In particular we take N = RΘ. From [Pis03]*Theorem

9.7.1, we know that Hc
ψ ∩Hr

ψ ↪→ L(F∞) completely isomorphically and the first line of the diagram follows.

Also, by Corollary 9.7.2 and 9.8.8 in [Pis03], Hc
ψ[p] ∩ Hr

ψ[p] completely embeds into Lp(L(F∞)) and the

second line of the diagram follows. But N⊗L(F∞) ↪→ Lp(N⊗L(F∞)) is completely contractive. We deduce

that there is a complete contraction form N ⊗min (Hc
ψ ∩Hr

ψ) to Lp(N , Hc
ψ[p]∩Hr

ψ[p]). Combining this with

the definition of ∇p(RΘ), we find that ∇∞(RΘ) completely embeds into ∇p(RΘ).

Remark 4.3.6. The above procedure works not only for N = RΘ, it also works for N = Mnd , the nd × nd

dimensional matrix algebra, by choosing 2d generators of Mnd . To see this, we simply define the homomor-

phism π as in (4.3.2) and the derivation δ as in (4.3.5) using L(Zdn) instead of L(Zd). The notation ∇p(N )

will be used to represent ∇p(RΘ) or ∇p(Mnd).

Suppose the semigroup Tt = e−tA on N satisfies Γ2 ≥ 0, where Γ2(f, g) = 1
2 [Γ(Af, g) + Γ(f,Ag) −

AΓ(f, g)]. Then idMm
⊗Tt also satisfies Γ2 ≥ 0; see [JM10, JZ15] for more detailed discussion on this

condition. Hence, we deduce from [JM10] the complete boundedness of Riesz transforms

‖A1/2 : ∇p(N )→ L0
p(N )‖cb ≤ Kp. (4.3.8)

Combining this with Corollary 4.3.5, we obtain the following crucial ingredient in our argument for approxi-

mation in cb Gromov–Hausdorff convergence. Recall that we may take N = RΘ or N = Mnd as in Remark

4.3.6.

Corollary 4.3.7. Suppose Tt satisfies Γ2 ≥ 0 on N . Then we have ‖A1/2 : ∇∞(N )→ L0
p(N )‖cb ≤ Cp for

some constant Cp.

Recall that for a given function ϕ : G → C, the Fourier multiplier Tϕ on LG is defined by extending

Tϕ(λ(s)) = ϕ(s)λ(s) for s ∈ G. ϕ is called a Herz–Schur multiplier if Tϕ is completely bounded; see e.g.

[BO08].

Lemma 4.3.8. Let ϕ be a Herz–Schur multiplier on G and Γ be the gradient form associated to id⊗A

defined in (4.2.2). Let f ∈ Mm(LG) and assume (id⊗Tϕ)f belongs to the domain of the generator id⊗A,
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then

‖Γ((id⊗Tϕ)f, (id⊗Tϕ)f)‖Mm(LG) ≤ ‖Tϕ‖2cb‖Γ(f, f)‖Mm(LG).

Moreover, if ϕ is a Herz–Schur multiplier on Zd, then for any finite sum f =
∑
~k a~k⊗u

k1
1 · · ·u

kd
d ∈Mm(RΘ),

we have

‖Γ((id⊗Tϕ)f, (id⊗Tϕ)f)‖Mm(RΘ) ≤ ‖Tϕ‖2cb‖Γ(f, f)‖Mm(RΘ).

Proof. For f =
∑
s as ⊗ λ(s) in the domain of id⊗A, since the multiplier commutes with the generator A,

we have

‖Γ((id⊗Tϕ)f,(id⊗Tϕ)f)1/2‖Mm(LG) = ‖δ[(id⊗Tϕ)f ]‖L∞(Mm(LG),Hcψ)

= ‖(idMm
⊗ idHψ ⊗Tϕ)δ(f)‖L∞(Mm(LG),Hcψ) ≤ ‖Tϕ‖cb‖δ(f)‖L∞(Mm(LG),Hcψ).

We get the first assertion. The “moreover” part follows the same argument using the trace preserving

∗-homomorphism given in (4.3.2).

Remark 4.3.9. Similar to Remark 4.3.6, by considering G = Zd (resp. G = Zdn) and using the homomorphism

(4.3.2), we find that Lemma 4.3.8 still holds if we replace LG by RΘ (resp. Mnd). This shows that

Tϕ : (RΘ, |||·|||)→ (RΘ, |||·|||) (resp. Tϕ : (Mnd , |||·|||)→ (Mnd , |||·|||)) is completely bounded.

Lemma 4.3.10. Let ψ : G → Z be a conditionally negative length function. Suppose ψ has at most

polynomial growth, i.e. #{g ∈ G : ψ(g) = 0} < ∞ and for all l ≥ 1, #{g ∈ G : ψ(g) = l} ≤ Dlγ for

some constants γ and D ≥ 1. Then for any ε > 0 and k ∈ N, there exists a Herz–Schur multiplier ϕk,ε and

m = m(k) > k such that

(i) ‖Tϕk,ε‖cb ≤ 1 + ε;

(ii) the image of Tϕk,ε is contained in span{λ(g) ∈ G : ψ(g) ≤ m};

(iii) |ϕk,ε(g)− 1| ≤ ε for ψ(g) ≤ k;

(iv) there exists ε0 < ε such that for any r ∈ N, 1 ≤ p ≤ q ≤ ∞, η ∈ (0, ε0) and x =
∑
g:ψ(g)≤k ag ⊗ λ(g) ∈

Srq (Lp(LG)),

‖(id⊗Tϕk,η )(x)− x‖Srq (Lq(LG)) ≤ ε‖x‖Srq (Lp(LG)).

Therefore, if we define Pk(
∑
g∈G f̂gλ(g)) =

∑
g:ψ(g)≤k f̂gλ(g), then ‖(Tϕk,η − id)Pk : Lp(LG) →

Lq(LG)‖cb ≤ ε for 1 ≤ p ≤ q ≤ ∞.
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Proof. Let us define

ϕα(g) = e−ψ(g)/α1[ψ(g)≤m], g ∈ G. (4.3.9)

We know from Schoenberg’s theorem, φα(g) := e−ψ(g)/α gives a completely positive Fourier multiplier Tφα

on LG. We have ‖Tφα‖cb = ‖Tφα(1)‖ = 1. Given any x =
∑
g ag ⊗ λ(g) ∈ Sq(Lp(LG)), we claim that for

1 ≤ p, q ≤ ∞,

‖ag‖Srq ≤ ‖x‖Sq(Lp(LG)). (4.3.10)

Indeed, similar to the argument of Corollary 4.3.2, we define

% : Lp(LG)→ C, y 7→ %(y) = τG(yλ(g)∗).

We have ‖%‖cb = ‖%‖ ≤ 1. By [Pis03]*Lemma 1.7, we also have for any 1 ≤ q ≤ ∞,

‖%‖cb = sup
r
‖ id⊗% : Srq (Lp(LG))→ Srq‖.

Hence, we have

‖ag‖Srq = ‖ id⊗%(x)‖Srq ≤ ‖x‖Srq (Lp(LG)).

Using (4.3.10) with p = q =∞, we have

‖(id⊗Tφα)(x)− (id⊗Tϕα)(x)‖Mr(LG) ≤
∑

ψ(g)≥m

‖ag‖Mr
e−ψ(g)/α ≤ ε‖x‖Mr(LG)

for α large enough and thus ‖Tϕα‖cb ≤ 1+ε. Given ε, k, we can choose m > k and α large enough in (4.3.9),

and define ϕk,ε = ϕα such that

|ϕk,ε(g)− 1| ≤ ε for ψ(g) ≤ k < m

and supp ϕk,ε ⊂ {g ∈ G : ψ(g) ≤ m}. Clearly, the image of Tϕk,ε is contained in span{λ(g) : ψ(g) ≤ m}.

Let Sk = |ψ−1(0)|+ 1 + 2γ + · · ·+ kγ , where |ψ−1(0)| is the number of zeros of ψ, and let ε0 = ε
DSk

. Using

(4.3.10) again, we have for any η ∈ (0, ε0) and x =
∑
g:ψ(g)≤k ag ⊗ λ(g) ∈ Srq (Lq(LG)),

‖(id⊗Tϕk,η )(x)− x‖Srq (Lq(LG)) ≤
∑

ψ(g)≤k

‖ag‖Srq |ϕk,η(g)− 1| ≤ ε‖x‖Srq (Lp(LG)).

This inequality implies the last assertion by using [Pis03]*Lemma 1.7 again.
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The target space Z of the length function ψ in the above may be replaced by some other countable

discrete set, for instance, when we consider the length function (4.2.4). The proof can be modified easily to

deal with this case.

To motivate our following discussion, let us fix a conditional negative length function ψ on Zn for n ∈ N.

Let An denote the generator of the semigroup associated to ψ and assume 2 ≤ p < ∞. Following the

notation above, we define

∇p(L(Zn)) = {x ∈ Lp(L(Zn)) : max{‖Γn(x, x)1/2‖p, ‖Γn(x∗, x∗)1/2‖p} <∞}.

Let 1
2 = α+ β for some fixed α, β > 0. Consider the following chain of maps:

DR(C[Zn]) ⊂ ∇p(L(Zn))
A1/2
n−−−→ L0

p(LZn)
A−βn−−−→ L0

p(LZn)
A−αn−−−→ L0

∞(LZn).

Here C[Zn] is the group algebra of Zn. Note that by the boundedness of Riesz transform (4.3.8), we have

‖A1/2
n : ∇p(L(Zn))→ L0

p(L(Zn))‖ ≤ Kp. Suppose An has a spectral gap, by [JM10]*Proposition 1.1.5,

‖A−βn : L0
p → L0

p‖cb ≤ Cp. (4.3.11)

Using Proposition 4.3.1, we can show that A−αn : L0
p → L0

∞ is bounded for p > 1/α. Then

id = A−αn ◦A−βn ◦A1/2
n : D̊R(C[Zn])→ L0

∞,

where D̊R(C[Zn]) consists of the mean zero elements of DR(C[Zn]). It will become clear later that these

maps will help to establish crucial norm estimates.

For ∆ ⊂ Zn, we define

L∆
p (L(Zn)) = {f ∈ Lp(L(Zn)) : f =

∑
k∈∆

f̂(k)λ(k)}.

For k ≤ n/2 and n ∈ N, we define Λk = {0,±1, ...,±k} ⊂ Zn and Λck = {±(k + 1), ...,±[n2 ]} ⊂ Zn. For

n =∞, we let Λck = {j ∈ Z : |j| > k}. Let us define the projection

Qk : Lp(L(Zn))→ L
Λck
p (L(Zn)), Qk

(∑
j

f̂(j)λ(j)
)

=
∑
|j|>k

f̂(j)λ(j).
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Lemma 4.3.11. For 1 < p <∞ and n > 2k or n =∞,

‖Qk : Lp(L(Zn))→ L
Λck
p (L(Zn))‖cb ≤ Cp

for some constant Cp independent of n, k.

Proof. It is well known (see e.g. [Bou86, PX03]) that every projection P : Lp(LZ)→ L∆
p (LZ) is completely

bounded for any subinterval ∆ ⊂ Z. The case n =∞ follows. Assume n ∈ N. Let tr denote the normalized

trace on the n × n matrix algebra Mn. It is well known that there exists an injective trace preserving

∗-homomorphism ρ : L(Zn)→ (Mn, tr) given by

λ(j) 7→

 0 Ij

In−j 0


where the first 1 in the first column appears in the (j + 1)st row, the first 1 in the first row appears in the

(n− j + 1)st column, and the matrix entries are constant along diagonals. Fix k and put

B1 = {(i, j) : i ≥ k + 2, j ≤ i− k},

B2 = {(i, j) : j ≥ 2, i ≤ j − 1},

B3 = {(i, j) : j ≥ k + 2, i ≤ j − k}.

Let PB denote the projection on Mn given by

PB([aij ]1≤i,j≤n) =
∑

(i,j)∈B

aij ⊗ eij

where eij is the matrix unit of Mn. Then Qk = PB1 +PB2−PB3 . It is well known (see e.g. [Bou86]*Corollary

19, [PX97]) that for any triangular projection PB and 1 < p <∞,

‖PB : Sp → Sp‖cb ≤ Cp.

The assertion follows immediately.

Lemma 4.3.12. Let 2 ≤ p <∞. Then

‖A−βn : L
Λck
p (L(Zn))→ Lp(L(Zn))‖cb ≤ Cpψ(k)−β/(p−1)
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uniformly for n > 2k or n = +∞.

Proof. Let q = 2p and 1
p = 1−θ

q + θ
2 . Then θ = 1

p−1 . By (4.3.11) and Lemma 4.3.11, we have

‖A−βn Qk : Lq(L(Zn))→ Lq(L(Zn))‖cb ≤ Cp.

Since ‖A−βn Qk : L2(L(Zn))→ L2(L(Zn))‖cb ≤ ψ(k)−β , by the Riesz–Thorin theorem, we have

‖A−βn Qk : Lp(L(Zn))→ Lp(L(Zn))‖cb ≤ Cpψ(k)−βθ,

which yields the assertion.

4.4 Approximation for C(T)

Unless otherwise specified, in this section we consider the Poisson semigroups on L(Zn) defined in Section

4.2; that is, the generator Anλ(k) = |k|λ(k) for |k| ≤ n/2. Following the notation of [Li06], for n ∈ N, we

define

Ln(f) = ‖Γn(f, f)1/2‖∞ for f ∈ C∗r (Zn)sa.

We also write Γ := Γ∞ and L(f) := L∞(f). It was proved in [JM10, JMP14] that L and Ln are Lip-norms1.

Clearly, Ln(f) < ∞ for f ∈ C∗r (Zn)sa for n ∈ N. Note that L is only defined in a dense subspace of C(T).

We define A∞ = {f ∈ C(T;R) : L(f) <∞}. Here C(T;R) is the set of real-valued continuous functions on

T, which corresponds to C∗r(Z)sa. One can simply take A∞ = C(Z)sa which can be identified with the self-

adjoint trigonometric polynomials on [0, 1]. We also write An = C∗r (Zn)sa for short. Then (An, Ln), n ∈ N

are compact quantum metric spaces in the sense of [Rie04b, Li06]. Our first task is to check that they form

a continuous field of compact quantum metric spaces.

Define πn : C∗r(Z) → C∗r(Zn) to be the linear map sending λ(k) to λ(k mod n). Since Zn is abelian, its

universal C∗-algebra coincides with its reduced C∗-algebras and therefore πn is a ∗-homomorphism extended

from λ(1) 7→ λ(1) by universality. To describe πn in the function spaces, we have

πn : C(T)→ `∞(n), f 7→ πn(f) = (f(j/n))nj=0,

and πn(e2πik·)(j) = e
2πikj
n .

1There are different versions of definitions of compact quantum metric spaces. While Ln defined here satisfies more conditions
than the one in [Li06], our proof of convergence in the quantum Gromov–Hausdorff distance only requires the conditions listed
in [Li06].
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Lemma 4.4.1. Let f =
∑m
k=−m ake

2πik· and m ≤ n/2. Then πnAf = Anπnf . Therefore,

Γn(πnf, πnf) = πnΓ(f, f)

Proof. Note that

πnAf = πn(

m∑
k=−m

ak|k|e2πik·) =

m∑
k=−m

ak|k|e
2πik·
n .

Since m ≤ n/2, we get

Anπnf = An(

m∑
k=−m

ake
2πik·
n ) =

m∑
k=−m

ak|k|e
2πik·
n .

Therefore, πnAf = Anπnf . Now since πn is a ∗-homomorphism, we have

Γn(πnf, πnf) =
1

2
(An(πnf

∗)πnf + πnf
∗An(πnf)−An(πnf

∗πnf))

=
1

2
(πn(Af∗f) + πn(f∗Af)− πnA(f∗f))

= πnΓ(f, f).

Proposition 4.4.2. Let f =
∑m
k=−m f̂(k)e2πik·. Then

lim
n→∞

‖πnf‖∞ = ‖f‖∞,

and

lim
n→∞

‖Γn(πnf, πnf)‖∞ = ‖Γ(f, f)‖∞.

Proof. By Lemma 4.4.1, when n is large, Γn(πnf, πnf) = πnΓ(f, f). Let h = Γ(f, f). Note that since f is a

smooth function, so is h. By continuity of h, there exists t0 ∈ [0, 1] such that ‖h‖∞ = h(t0). Let j ∈ N be

such that | jn − t0| <
1

2n . Using the mean value theorem, we get

0 ≤ h(t0)− h(
j

n
) ≤ ‖h′‖∞|

j

n
− t0|.

By (4.2.2), we may assume h =
∑l
k=−l ake

2πik· for some finite l which only depends on m. Then h′(x) =∑l
k=−l 2πikake

2πikx and thus

sup
x∈[0,1]

|h′(x)| ≤
l∑

k=−l

2π|k||ak| ≤ Cl‖h‖1 ≤ Cm‖h‖∞,
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for some constant Cm only depending on m. This proves that limn→∞ ‖Γn(πnf, πnf)‖∞ = ‖Γ(f, f)‖∞. The

first assertion follows similarly.

Proposition 4.4.3. Let S = C(N;
∏
n∈NAn) denote the continuous sections of

∏
n∈NAn. Then ({An, Ln}n∈N, S)

is a continuous field of compact quantum metric spaces (see [Li06]*Definition 6.4).

Proof. Note that the continuity at n ∈ N is trivial and that 1 = (1n) is clearly in S. Here 1n is the identity

of An. An element of S can be written as (πn(f))n∈N for some f ∈ A∞. Then Proposition 4.4.2 verifies that

(a) ({Ān}n∈N, S) is a continuous field of order-unit spaces and (b) ({An, Ln}n∈N, S) is a continuous field of

compact quantum metric spaces. Here Ān is the norm closure of An.

Our next goal is to show that An converges to A∞ in the quantum Gromov–Hausdorff distance. In light

of Li’s criterion [Li06], we need to find a “uniform” cover of DR(An) for n large enough. We will achieve

this by using the approximation properties of Z and going through various estimates in Lp spaces. Recall

that a Fourier multiplier Tφ on L(Zn) is defined as

Tφ(
∑
j

ajλ(j)) =
∑
j

ajφ(j)λ(j).

Lemma 4.4.4. Let ε > 0 and k ∈ N. Then there exist m = m(k) > k and Herz–Schur multipliers ϕnk,ε on

Zn for n > 2m (including n =∞) such that

(i) ‖Tϕnk,ε‖cb ≤ 1 + ε;

(ii) the image of Tϕnk,ε is contained in span{λ(j) : |j| ≤ m};

(iii) |ϕk,ε(j)− 1| ≤ ε for |j|n ≤ k;

(iv) for x in span{λ(j) : |j|n ≤ k} and η ∈ (0, ε
2(k+1) ),

‖Tϕnk,ηx− x‖∞ ≤ ε‖x‖2. (4.4.1)

Proof. Note that #{j ∈ Zn : |j|n = k} ≤ 2 for k ≥ 1. Applying Lemma 4.3.10 first to G = Z (so

we have D = 2, γ = 0), we get m and a multiplier ϕk,ε on Z. Then applying Lemma 4.3.10 again to

G = Zn for n > 2m, we find multipliers ϕnk,ε on Zn, which satisfy ϕnk,ε(j) = ϕk,ε(j) for |j| ≤ m because

the proof of Lemma 4.3.10 does not depend on n once we choose m. The assertion follows by taking

p = 2, q =∞, r = 1.
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Lemma 4.4.5. Let Tnt = e−tAn be the Poisson semigroup associated with ψn acting on L(Zn) defined in

Section 4.2. Then A−αn : L0
p(L(Zn))→ L0

∞(L(Zn)) is completely bounded uniformly in n ∈ N for α > 1
p .

Proof. The argument is the same as for Corollary 4.3.2 with γ = 0.

Lemma 4.4.6. Let ε > 0. Then there exist k = k(ε),m = m(k) and Herz–Schur multipliers ϕnk,η, η ∈

(0, ε
2(k+1) ) on Zn for n > 2m (including n =∞) such that

‖x− Tϕnk,η (x)‖∞ ≤ ε[‖x‖2 + Ln(x)]

for n > 2m (including n =∞).

Proof. Let k ∈ N be a large number which will be determined later. We choose m and ϕnk,η as in Lemma

4.4.4. Since ‖(1−Qk)x‖2 ≤ ‖x‖2, by (4.4.1) we have

‖(1−Qk)(x− Tϕnk,η (x))‖∞ = ‖(1−Qk)x− Tϕnk,η ((1−Qk)x)‖∞ ≤ ‖(1−Qk)x‖2ε ≤ ε‖x‖2.

Note that Qk and An commute. Using Lemma 4.4.5, equation (4.3.11), Lemma 4.3.12 and the boundedness

of Riesz transforms [JM10], we have for p > 1/α,

‖A−αn A−βn A1/2
n Qk(x− Tϕnk,η (x))‖∞ ≤ cα‖A−βn QkA

1/2
n (x− Tϕnk,η (x))‖p

≤ cαCpk−β/(p−1)‖A1/2
n (x− Tϕnk,η (x))‖p,

≤ cαKpCpk
−β/(p−1)(‖Γn(x, x)1/2‖p + ‖Γn(Tϕnk,η (x), Tϕnk,η (x))1/2‖p)

where cα = ‖A−αn : L0
p(L(Zn))→ L∞(L(Zn))‖, Kp is the Lp bound of Riesz transforms, and Cpk

−β/(p−1) is

the bound in Lemma 4.3.12. By Lemma 4.3.8, we have

‖Qk(x− Tϕnk,η (x))‖∞ ≤ (2 + ε)cαKpCpk
−β/(p−1)‖Γn(x, x)1/2‖∞ ≤ εLn(x)

by choosing k large enough. The claim follows.

Proposition 4.4.7. Let ε > 0 and R ≥ 0. There exist N > 0 and x1, ..., xr in DR(A∞) such that the open

ε-balls in An centered at πn(x1), ..., πn(xr) cover DR(An) for all n > N (including n =∞).

Proof. The case R = 0 is trivial. Assume R > 0. Let m and ϕnk,η be given by Lemma 4.4.6. For n > 2m, let
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us define

DmR (An) = {x ∈ DR(An) : x =
∑
|j|≤m

ajλ(j)}.

Since DmR (A∞) is compact, we can find x1, ..., xr ∈ DR(A∞) such that for all y ∈ DmR (A∞) there exists an

s ∈ {1, ..., r} with ‖y−xs‖∞ ≤ ε. By Lemma 4.3.8 and 4.4.4, we know that 1
1+εTϕnk,η (x) belongs to DmR (A∞)

for every x ∈ DR(A∞). Thus we can find s ∈ {1, ..., r} such that ‖ 1
1+εTϕnk,η (x) − xs‖∞ ≤ ε. By Lemma

4.4.6,

‖x− xs‖∞ ≤ ‖x−
1

1 + ε
x‖∞ +

1

1 + ε
‖x− Tϕnk,η (x)‖∞ + ‖ 1

1 + ε
Tϕnk,η (x)− xs‖∞ ≤ 2(R+ 1)ε.

This shows that (xi)i=1,...,r is an 2(R+ 1)ε-net of DR(A∞).

Let n > 2m and yn ∈ DR(An). We may write Tϕnk,η (yn) =
∑
|j|≤m aje

2πij·
n . Since the coefficients (aj)

are uniquely determined by yn and ϕnk,η, we may define ŷ =
∑
|j|≤m aje

2πij· in A∞. Then

πn(ŷ) = Tϕnk,η (yn). (4.4.2)

But by Proposition 4.4.2, we have

lim
n→∞

sup
f∈K
|‖πn(f)‖∞ − ‖f‖∞| = 0, lim

n→∞
sup
f∈K
|‖Γn(πn(f), πn(f))‖∞ − ‖Γ(f, f)‖∞| = 0

for any compact subset K of LZ. Note that

‖ŷ‖2 = ‖Tϕnk,η (yn)‖2 ≤ ‖Tϕnk,η (yn)‖∞ ≤ (1 + ε)‖yn‖∞ ≤ (1 + ε)R.

Since ŷ falls in a finite-dimensional space with bounded L2 norm, the set

{ŷ : yn ∈ DR(An)}

is pre-compact in LZ. This yields that there exists N > 2m such that

‖ŷ‖∞ ≤ (1 + ε)‖πn(ŷ)‖∞ and ‖Γ(ŷ, ŷ)‖∞ ≤ (1 + ε)‖Γn(πn(ŷ), πn(ŷ))‖∞ (4.4.3)

for all yn ∈ DR(An) and all n > N . It follows from (4.4.2) that

‖ŷ‖∞ ≤ (1 + ε)‖Tϕnk,η (yn)‖∞ ≤ (1 + ε)2‖yn‖∞ ≤ (1 + ε)2R.
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By Lemma 4.3.8,

‖Γn(Tϕnk,η (yn), Tϕnk,η (yn))‖∞ ≤ (1 + ε)2‖Γn(yn, yn)‖∞.

Thus by (4.4.2) and (4.4.3), ‖Γ(ŷ, ŷ)‖∞ ≤ (1 + ε)3. We find 1
(1+ε)2 ŷ ∈ DR(A∞). Hence there exists an xs

in the 2(R+ 1)ε-net (xi)i=1,...,r of DR(A∞) such that ‖ 1
(1+ε)2 ŷ − xs‖∞ ≤ 2(R+ 1)ε. Then we deduce from

(4.4.2) that

‖Tϕnk,η (yn)− πn(xs)‖∞ ≤ ‖ŷ − xs‖∞

≤ ‖ŷ − 1

(1 + ε)2
ŷ‖∞ + ‖ 1

(1 + ε)2
ŷ − xs‖∞ ≤ (5R+ 2)ε.

Using Lemma 4.4.6, we have

‖yn − πn(xs)‖∞ ≤ ‖yn − Tϕnk,η (yn)‖∞ + ‖Tϕnk,η (yn)− πn(xs)‖∞ ≤ (6R+ 3)ε.

Replacing ε with ε
6R+3 in the very beginning, we complete the proof.

Theorem 4.4.8. (An, Ln) converges to (A∞, L) in the quantum Gromov–Hausdorff distance.

Proof. By Proposition 4.4.3, ({An, Ln}n∈N, S) is a continuous field of compact quantum metric spaces in

the sense of [Li06]. Let ε = 1/m. By Proposition 4.4.7, we find

x1(m), · · · , xrm(m) ∈ DR(A∞)

such that for any x ∈ DR(A∞) there exists xs(m) so that ‖x− xs(m)‖ ≤ 1/m. Then the set

Λ := ∪∞m=1{x1(m), · · · , xrm(m)}

is dense in DR(A∞). Give an ordering on Λ as follows: xi(m) < xj(m) if i < j and xi(m) < xj(m
′) if

m < m′. Then Λ is totally ordered and we can list the elements of Λ according to this ordering. Identify

x ∈ DR(A∞) with a section x = (πn(x))n∈N such that πn(x) ∈ An. By our construction, for any ε > 0, there

exist r and N such that the open ε-balls in An centered at πn(x1), · · · , πn(xr) cover DR(An) for all n > N ,

where xi ∈ Λ for all i. In other words, Λ satisfies Condition (iii) in [Li06]*Theorem 7.1. Hence An converges

to A∞ in distRoq, the R-variant order-unit quantum Gromov–Hausdorff distance by the same theorem. The

assertion follows from [Li06]*Theorem 1.1.

Remark 4.4.9. In Theorem 4.4.8, we used the Poisson semigroup on L(Zn) to define the Lip-norm. In fact,
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the same approximation result remains true if we use the heat semigroup on L(Zn) and the proof is slightly

more direct. Indeed, thanks to (4.2.5), we would get m = 1 in (4.3.1), which allows to choose p = 2 and

1
4 < α < 1

2 to replace Lemma 4.4.5. Then certain Lp estimates reduce to L2 estimates. We leave this to the

interested reader.
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Chapter 5

Gromov-Hausdorff Convergence for
Rotation Algebras

5.1 Matrix algebras converge to noncommutative tori

Similar to the previous section, we need to define a Lipschitz norm and a semigroup action on Mn, and

show that the family of matrix algebras together with these Lip-norms form a continuous field of compact

quantum metric spaces. Now we have to introduce some notation. Let n ∈ N. Then Mn ' `∞(n) oα Zn =

{uj(n), vk(n)}′′, where uj(n) is defined in (4.2.3) and vk(n) = λn(k), the left regular representation of Zn.

The action α is given by

αk(uj(n)) = vk(n)∗uj(n)vk(n).

Then we have the following relations

uj(n)ep = e
2πijp
n ep and vk(n)el = ek+l,

where {ej}nj=1 is the standard orthonormal basis for Cn. It follows that

u1(n)v1(n) = e
2πi
n v1(n)u1(n).

We expect that uj(n) and vk(n) commute in the limit.

5.1.1 Norm Estimates for Trigonometric Polynomials

For n ∈ N, we define Tnt to be the semigroup acting on Mn by Tnt (uj(n)vk(n)) = e−t(ψn(j)+ψn(k))uj(n)vk(n),

where ψn is given by (4.2.4),

ψn(k) =
n2

2π2
[1− cos(

2πk

n
)].

Then by Schoenberg’s Theorem Tnt is a completely positive map. Note that uj(n) = [u1(n)]j and vk(n) =

[v1(n)]k. So here we are using u1(n), v1(n) as the generators of Mn when we define the semigroup Tnt . In
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fact, as we shall see later, we may use any fixed pair of generators of Mn or any prime powers of these

generators as the generators of Mn, but we always define Tnt as if they were u1(n), v1(n). For example,

up(n), vq(n) also generate Mn as long as (pq, n) = 1; see e.g. [Dav96]. In this case, we may define

Tnt ([up(n)]j [vq(n)]k) = e−t(ψn(j)+ψn(k))[up(n)]j [vq(n)]k. (5.1.1)

For simplicity, we may just write u1(n) and v1(n) for up(n) and vq(n) by abuse of notation. The semigroup

we are using should be clear from context. Note that ψn(j) +ψn(k) on Z2
n is conditionally negative. Clearly,

for fixed k we have

ψn(k) ∼


k2 if |k| ≤ n

2 ,

(n− k)2 if |k| > n
2 .

Note that

4

π2
k2 ≤ ψn(k) ≤ k2, if |k| ≤ n

2
,

and

4

π2
(n− k)2 ≤ ψn(k) ≤ (n− k)2, if

n

2
< |k| ≤ n.

Let u and v be the generators of M∞ := Aθ. Intuitively, since limn→∞ ψn(k) = k2 =: ψ∞(k), we would

expect the heat semigroup in the limit

Tt(u
jvk) := T∞t (ujvk) = e−t(|j|

2+|k|2)ujvk (5.1.2)

acting on Aθ. We define the gradient form Γn associated to the generators

An(uj(n)vk(n)) = (ψn(j) + ψn(k))uj(n)vk(n)

as in (4.2.1) for n ∈ N. Without loss of generality, from now on we always assume that n is large enough

and |j|, |k| ≤ n/2. For n ∈ N, we define Ln(f) = ‖Γn(f, f)1/2‖∞. Write Γ := Γ∞ and L(f) := L∞(f). Note

that Mn ' C∗r (Zn oα Zn) for n ∈ N. It follows from [JM10, JMP14] that Ln and L are Lip-norms on Mn

and Aθ, respectively. Since the heat semigroup Tt on L(Zn) oα Zn is a symmetric Markov semigroup, the

following result follows the same argument as for Corollary 4.3.2.

Lemma 5.1.1. Let An be the generator of the heat semigroup acting on L(Zn) oα Zn defined as above.

Then A−αn : L0
p(Mn)→ L0

∞(Mn) is completely bounded uniformly in n ∈ N for α > 1
p .
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Similar to (4.3.2), for n ∈ N, we define a ∗-homomorphism

π : Mn → `∞(Z2
n)⊗Mn, uj(n)vk(n) 7→ λ(j, k)⊗ uj(n)vk(n), (j, k) ∈ Z2

n.

Here λ(j, k) is the left regular representation of Z2
n. We also define a ∗-homomorphism for 0 < θ < 1

π : Aθ → L(Z2)⊗Aθ, ujθv
k
θ 7→ λ(j, k)⊗ ujθv

k
θ , (j, k) ∈ Z2.

Here uθ, vθ are the generators of Aθ. It is easy to check that π is trace preserving. If we understand

M∞ = Aθ and ujθ = uj(∞), vkθ = vk(∞), we can define the Fourier multipliers for n ∈ N by

T̃φ(λ(j, k)) = φ(j, k)λ(j, k), Tφ(uj(n)vk(n)) = φ(j, k)uj(n)vk(n). (5.1.3)

Note that π ◦ Tφ = (T̃φ ⊗ id) ◦ π. We immediately have the following useful co-representation transference

technique.

Lemma 5.1.2. For any n ∈ N and 1 ≤ p ≤ ∞, we have

‖Tφ : Lp(Mn)→ Lp(Mn)‖cb ≤ ‖T̃φ : Lp(Z2
n)→ Lp(Z2

n)‖cb.

Let us consider φ(j, k) = e−tψ(j,k) in (5.1.3) for a conditionally negative length function ψ on Z2
n. For

instance, we may take ψ(j, k) = ψn(j) +ψn(k) on Z2
n where ψn is defined in (4.2.4). This gives a symmetric

Markov semigroup on Mn, which coincides with the semigroup Tt defined in (5.1.1) and (5.1.2). Again, let

Γ denote the gradient form associated to Tt. For the development of next section, we may extend Tt to

Mm ⊗min Mn by idMm
⊗Tt for any m ∈ N even though we only need m = 1 in this section. The following

result is a special case of (4.3.8).

Proposition 5.1.3. Let 2 ≤ p <∞. For any m ∈ N, aj,k ∈Mm and a finite sum f =
∑
j,k aj,k⊗uj(n)vk(n),

we have

‖(idMm ⊗A)1/2(f)‖Lp(Mm(Mn)) ≤ Cp max{‖Γ(f, f)1/2‖Lp(Mm(Mn)), ‖Γ(f∗, f∗)1/2‖Lp(Mm(Mn))}

where Cp is independent of m ∈ N and n ∈ N. Therefore, A1/2 : ∇∞(Mn)→ L0
p(Mn) is completely bounded.

Proof. The conditionally negative length function ψ gives the positive semidefinite Gromov form K on Z2
n.

By the Schur product theorem, we know that K •K is also positive semidefinite, where • denotes the Schur
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product of matrices. It follows Γ2 ≥ 0 on L(Z2
n); see e.g. [JZ15]. This transfers to Γ2 ≥ 0 on Mn by our

definition of Tt on Mn, which further extends to Mm⊗minMn. Now we can apply (4.3.8) and then Corollary

4.3.7.

Let Q1
l , Q

2
l : Lp(Mn)→ Lp(Mn), n > 2l, n ∈ N, be the projections defined as

Q1
l (
∑
j,k

ajkuj(n)vk(n)) =
∑
|j|>l,
k

ajkuj(n)vk(n),

Q2
l (
∑
j,k

ajkuj(n)vk(n)) =
∑
|k|>l,
j

ajkuj(n)vk(n).

Let ∆ ⊂ Z2
n. We define

L∆
p (Mn) = {f ∈ Lp(Mn) : f =

∑
(j,k)∈∆

ajkuj(n)vk(n)}.

Let

Λ2
l = {0,±1, ...,±l} × {0,±1, ...,±l}. (5.1.4)

Observe that Q1
l and Q2

l commute and the idempotent Pl defined by Pl = (1−Q1
l )(1−Q2

l ) projects Lp(Mn)

on L
Λ2
l

p (Mn).

Lemma 5.1.4. For 1 < p <∞, n ∈ N such that n > 2l ,

‖Q1
l : Lp(Mn)→ Lp(Mn)‖cb ≤ Cp, ‖Q2

l : Lp(Mn)→ Lp(Mn)‖cb ≤ Cp

‖Pl : Lp(Mn)→ Lp(Mn)‖cb ≤ Cp,

for some constant Cp independent of n, l.

Proof. As we proved in Lemma 4.3.11, Q1
l and Q2

l are completely bounded operators on Lp(LZn). Therefore

they are also completely bounded on Lp(LZn⊗LZn). This implies that Q1
l and Q2

l are completely bounded

on Lp(Mn) for n > 2l and n ∈ N by Lemma 5.1.2. Here is another argument for n =∞. Note that we have

for aj,k ∈Mm,

(idMm ⊗Q1
l ⊗ idL(Z2))(

∑
j,k

aj,k ⊗ ujθv
k
θ ⊗ λ(j, k))
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= (idMm
⊗ idRθ ⊗Q1

l )(
∑
j,k

aj,k ⊗ ujθv
k
θ ⊗ λ(j, k)).

We deduce that Q1
l is completely bounded on Lp(Rθ ⊗L(Z2)) and the assertion for Q1

l follows. The case of

Q2
l is similar. As a consequnce, Pl is also completely bounded in Lp.

Proposition 5.1.5. Let 1 < p < ∞, β > 0 and n > 2l. Let ψ be a conditionally negative length function

on Zn satisfying ψ(l) ≤ ψ(j) for |l| ≤ |j|. Then for any m ∈ N and aij ∈Mm, i, j ∈ Zn, we have

∥∥∥ ∑
l≤|j|≤n/2
ψ(j)>0

ψ(j)−βajk ⊗ uj(n)vk(n)
∥∥∥
Lp(Mm(Mn))

(5.1.5)

≤ cpψ(l)−β
∥∥∥∑
j,k

ajk ⊗ uj(n)vk(n)
∥∥∥
Lp(Mm(Mn))

,

for some constant cp independent of m,n and l.

Proof. Let 2 < p < p0 be such that 1
p = 1−θ

p0
+ θ

2 for some 0 < θ < 1. We define Fj(z) = ( ψ(l)
ψ(j) )zαe(z−θ)2

, for

some α large enough so that θα = β. Define a new operator T by

T (z)(
∑
j,k

ajk ⊗ uj(n)vk(n)) =
∑
|j|≥l

Fj(z)ajk ⊗ uj(n)vk(n).

Let z = it. Consider the Fourier multiplier

Aψ(
∑
j,k

ajk ⊗ uj(n)vk(n)) =
∑
j,k

ψ(j)ajk ⊗ uj(n)vk(n).

By [JM12]*Corollary 5.4 (see also [Cow83]), we have ‖Ais
ψf‖p0 ≤ Cp0e

cp0
|s|‖f‖p0 for all s ∈ R and f ∈

Lp0
(Mm(Mn)). Then

‖T (it) : Lp0
→ Lp0

‖ ≤ Cp0
ecp0

α|t|−t2‖Q1
l : Lp0

→ Lp0
‖,

for some constants Cp0
and cp0

independent of n and k. By Lemma 4.3.11, T (it) is bounded. Now let

z = 1 + it. Since | ψ(l)
ψ(j) | ≤ 1, we have

‖T (1 + it) : L2 → L2‖ ≤ |e(1+it−θ)2

| ≤ e−t
2+(θ−1)2

.

Therefore, T (1 + it) is also bounded. For z = θ, the assertion follows from Stein’s interpolation theorem

[Ste56]. By duality, the result holds for 1 < p ≤ 2 as well.
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Proposition 5.1.6. Let 1 < p < ∞ and β > 0. For any conditionally negative length function ψ on Zn,

any m ∈ N and aij ∈Mm, i, j ∈ Zn, we have

∥∥∥ ∑
j,k

ψ(j)+ψ(k)>0

(
ψ(j)

ψ(j) + ψ(k)
)βajk ⊗ uj(n)vk(n)

∥∥∥
Lp(Mm(Mn))

(5.1.6)

≤ cp
∥∥∥∑
j,k

ajk ⊗ uj(n)vk(n)
∥∥∥
Lp(Mm(Mn))

,

for some constant cp independent of m and n.

Proof. It follows from the same argument as for Proposition 5.1.5 applied to Fj,k(z) = ( ψ(j)
ψ(j)+ψ(k) )zαe(z−θ)2

.

Let A
(1)
n (uj(n)vk(n)) = ψn(j)uj(n)vk(n) and A

(2)
n (uj(n)vk(n)) = ψn(k)uj(n)vk(n). Then An = A

(1)
n +

A
(2)
n . Here we allow ψn to be any conditionally negative length function with ψn(k) ≤ ψ(l) if |k| ≤ |l|. By

(5.1.3), A
(1)
n , A

(2)
n and An are all generators of certain semigroups on Mn.

Corollary 5.1.7. Let 1 < p <∞, β > 0 and n ∈ N such that n > 2l. Then

‖A−βn (1− Pl) : Lp(Mn)→ Lp(Mn)‖cb ≤ Cpψn(l)−β ,

where Cp is independent of n, l ∈ N.

Proof. By (5.1.5) and (5.1.6), we have for any m ∈ N and any finite sum x =
∑
j,k aj,k ⊗ uj(n)vk(n) ∈

Mm ⊗Mn,

‖ id⊗Q1
l (x)‖Lp(Mm(Mn)) ≤ cpψn(l)−β‖ id⊗(A(1)

n )βx‖Lp(Mm(Mn))

≤ cpψn(l)−β‖ id⊗(A(1)
n +A(2)

n )βx‖Lp(Mm(Mn)).

Similar inequality holds for Q2
l . Using Lemma 5.1.4, we get

‖ id⊗(1− Pl)(x)‖Lp(Mm(Mn)) = ‖ id⊗[Q1
l +Q2

l (1−Q1
l )](x)‖Lp(Mm(Mn))

≤ (cpψn(l)−β + c̃pψn(l)−β)‖ id⊗(An)βx‖Lp(Mm(Mn))

= Cpψn(l)−β‖ id⊗(An)β(x)‖Lp(Mm(Mn)),

for some constants cp, c̃p and Cp independent of m,n and l.
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We remark that the previous complete boundedness results for matrix algebras can be alternatively

proved using Lemma 5.1.2 in the same way as what we did in Lemma 5.1.4.

5.1.2 Continuous Fields of Compact Quantum Metric Spaces

Let Aθ denote the rotation C∗-algebra associated to θ ∈ [0, 1). It is well known that A0 = C(T2). Let

(Mn)sa denote the algebra of self-adjoint elements of Mn. In this section we show that

({(Mn)sa, Ln}n∈N, S)

is a continuous field of compact quantum metric spaces. Here S consists of suitable continuous sections and

M∞ = Aθ. In order to establish this, we have to consider two cases, namely θ = 0 and θ a non-zero rational.

Approximation in the commutative case

A key tool is the following map, defined by comultiplication:

ρn : C(T2) = C(T)⊗min C(T)→Mn (5.1.7)

λj ⊗ λk 7→ uj(n)vk(n)

Note that for a fixed n, ρn is not a ∗-homomorphism. Therefore, we need to introduce a ∗-homomorphism

ρω as follows. First we recall the ultraproduct construction; see, e.g., [BO08]. Let ω be a free ultrafilter on

N. Note that the Banach space
∏
ωXn is defined as a quotient of

∏
nXn by the subspace

Iω = {(xn) ∈
∏
n

Xn : lim
n→ω
‖xn‖ = 0}

with respect to the norm

‖(xn)•‖ = lim
n→ω
‖xn‖Xn .

If (Xn) are C∗-algebras, we obtain a new C∗-algebra
∏
Xn/Iω, since Iω is an ideal. If in addition (Xn) are

von Neumann algebras with finite traces, then the von Neumann algebra ultraproduct (Xn)ω is defined to

be
∏
Xn/Iτω , where

Iτω = {(xn) ∈
∏
n

Xn : lim
n→ω

τ(x∗nxn) = 0}.
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Note that Iω ⊂ Iτω and we obtain a quotient ∗-homomorphism

σω :
∏

ω
Xn → (Xn)ω.

Now we focus on Xn = Mn. We define the maps π1, π2 : C(T)→
∏
ωMn as follows:

π1(λj) = (π(1)
n (λj))

•, where π(1)
n (λj) = uj(n),

and

π2(λk) = (π(2)
n (λk))•, where π(2)

n (λk) = vk(n).

Suppose
∑
k f

k ⊗ gk is a tensor of polynomials in C(T2). Then

ρn(
∑
k

fk ⊗ gk) =
∑
k

π(1)
n (fk)π(2)

n (gk)

is a densely-defined linear map. The maps π1 and π2 are ∗-homomorphisms with commuting ranges. In fact

we have

‖[π1(λ1), π2(λ1)]‖ = lim
n→ω
‖[u1(n), v1(n)]‖ = lim

n→ω
‖u1(n)v1(n)− v1(n)u1(n)‖

= lim
n→ω
‖(e 2πi

n − 1)v1(n)u1(n)‖ = lim
n→∞

|e 2πi
n − 1| = 0.

It follows that the map ρω := (ρn)• extends to the universal C∗ algebra C(T)⊗max C(T) and

ρω : C(T2) = C(T)⊗min C(T) = C(T)⊗max C(T)→
∏

ω
Mn

is a well-defined ∗-homomorphism. Let πω = σωρω. Then πω : C(T2)→ (Mn)ω is also a ∗-homomorphism.

Lemma 5.1.8. The maps πω and ρω are faithful. In particular, limn→∞ ‖ρn(f)‖Mn = ‖f‖min.

Proof. Let τn be the normalized trace on Mn and τω = limτ→ω τn. Then since uj(n) is a diagonal matrix

and vk(n) is a shift matrix, we have

τω(σωρω(λ(j)⊗ λ(k))) = lim
n→ω

τn(uj(n)vk(n)) = δj0δk0 = (τ ⊗ τ)(λ(j)⊗ λ(k)),

where τ is the canonical trace on C∗r(Z) ' C(T). This proves that πω is trace preserving. Now let x ∈ C(T2),
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and πω(x) = 0. Then since πω is trace preserving, we have

τω(πω(x∗)πω(x)) = τω(πω(x∗x)) = τ ⊗ τ(x∗x) = 0.

Since the trace on C(T2) is faithful, this proves that πω is faithful and so is ρω. We deduce that limn→ω ‖ρn(f)‖Mn
=

‖f‖min. But the ultrafilter ω is arbitrary, hence the assertion follows.

Let Poly(x, y) denote the vector space of noncommutative polynomials on two variables. That is

Poly(x, y) =
⋃
k≥1

{p : p =
∑
|i|,|j|≤k

aijx
iyj}.

If u, v are the canonical unitary generators of C(T2), we have ˚Poly(u, v) ⊂ C(T2). For instance, we may

take u = λ1 ⊗ 1 and v = 1⊗ λ1. Let

S = {ρn(x) : x ∈ (C(T2))sa ∩ Poly(u, v), n ∈ N}.

Here and in the following we understand ρ∞ = id.

Proposition 5.1.9. Let Γn be the gradient form associated to An on Mn. Then

lim
n→∞

‖Γn(ρn(x), ρn(x))− ρn(Γ(x, x))‖Mn = 0

for x =
∑
j,k ajku

jvk ∈ Poly(u, v). Therefore, ({(Mn)sa, Ln}n∈N, S) is a continuous field of compact quantum

metric spaces.

Proof. Note that ρn(x) =
∑
j,k ajkuj(n)vk(n). As usual, we assume all |j|, |k| ≤ n/2. Using the commutation

relation, we have

Γn(ρn(x), ρn(x)) =
1

2

[ ∑
j,j′,k,k′

[ψn(−j) + ψn(−k) + ψn(j′) + ψn(k′)

− e−
2πi(j′−j)k

n (ψn(j′ − j) + ψn(k′ − k))]ājkaj′k′uj′−j(n)vk′−k(n)
]
,

and ρn(Γ(x, x)) has a similar expression. The first assertion follows from the triangle inequality and taking

limit. Together with Lemma 5.1.8, we get the second claim.
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Approximation for rational θ

Let 0 < θ < 1 be a rational number. Then Aθ ' C(T) oθ Z. On the other hand Aθ is the universal

C∗-algebra generated by two unitaries u and v, which commute according to the following rule

uv = e2πiθvu.

Now we extend the map ρn defined previously, from θ = 0 to θ rational. In the following, we embed Aθ in

Mm(C(T2)) using the unitaries uj(n) and vk(n) which were introduced in the previous section. Since θ is

rational, we can write θ = p
m , such that (p,m) = 1. Note that m is fixed. We define a ∗-homomorphism

σ : Aθ →Mm ⊗min C(T)⊗min C(T)

uj 7→ uj(m)⊗ λj ⊗ 1

vk 7→ vkp(m)⊗ 1⊗ λk

Recall that the canonical trace τ on Aθ is faithful (see [Boc01]). Since σ is trace preserving, it is injective.

Now let ρθn = (id⊗ρn) ◦ σ, i.e.,

ρθn : Aθ →Mm(Mn) (5.1.8)

uj 7→ uj(m)⊗ uj(n) =: Uj(n)

vk 7→ vkp(m)⊗ vk(n) =: Vk(n)

It suffices to check the commutation relations for U1(n) and V1(n). We have

(u1(m)⊗ u1(n)) · (vp(m)⊗ v1(n)) = e2πiθ+ 2πi
n (vp(m)⊗ v1(n)) · (u1(m)⊗ u1(n)).

This means U1(n)V1(n) = e2πiηnV1(n)U1(n), where ηn = θ + 1
n = pn+m

mn . In order for U1(n), V1(n) to

generate Mn, we need to write ηn as a
n for some a, such that (a, n) = 1; see e.g. [Dav96]. For this, choose

a subsequence n = mkn for some exponents kn. Then ηkn = pmkn−1+1
mkn

= a
n . Suppose q is a prime number

which divides both pmkn−1 + 1 and mkn . So q divides m. This implies that q divides mkn−1 and hence

it divides pmkn−1. But q also divides pmkn−1 + 1. Hence q divides 1 which is a contradiction. Therefore,

Rn = mkn does the job, and it suffices to take the subsequence nk = mk. Let us state what we have found

so far:
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Lemma 5.1.10. The map ρθnk : Aθ →Mnk is surjective.

The Lemma above says that C∗(ρθnk(Aθ)) = Mnk , where C∗(ρθnk(Aθ)) denotes the C∗-algebra gen-

erated by ρθnk(Aθ). We next check the continuity at infinity. Let M∞ = Aθ and S = {ρθnk(x) : x ∈

(Aθ)sa ∩ Poly(u, v), k ∈ N}. As usual, we define An(Uj(n)Vk(n)) = (ψn(j) + ψn(k))Uj(n)Vk(n) and

Ln(f) = ‖Γn(f, f)‖∞ on Mn.

Proposition 5.1.11. Choose nk ∈ N as above. Then ({(Mnk)sa, Lnk}k∈N, S) is a continuous field of compact

quantum metric spaces.

Proof. We follow an argument similar to that of Proposition 5.1.9. Since ρω : C(T2) →
∏
ωMn is a trace

preserving ∗-homomorphism, it extends to a trace preserving ∗-homomorphism on Mm(C(T2)). For any

ε > 0, we have

(1− ε)‖f‖Aθ ≤ ‖ρθnk(f)‖Mnk
≤ (1 + ε)‖f‖Aθ

for all f ∈ Poly(u, v) and k large enough. Namely, limk→∞ ‖ρθnk(f)‖Mnk
= ‖f‖Aθ . Then by a direct

calculation, one can show that Γnk(ρθnk(f), ρθnk(f)) and ρθnk [Γ(f, f)] coincide in the large k limit, which

concludes the proof.

From now on, with abuse of notation, when we use ρθn for Aθ, we always mean ρθnk . We still need to

consider the case when θ is irrational. In fact, we now deal with a more general situation.

Continuous field for the higher dimensional case

In the following, let AdΘ denote the d-dimensional noncommutative torus which was introduced in Section

4.3. Recall that Θ = (θij) is a d × d skew symmetric matrix. We will discuss AdΘ in Chapter 6 in more

depth. In this section we only show that they form a continuous field of compact quantum metric spaces.

Recall that for a compact Hausdorff space X, a C(X)-algebra is a C∗-algebra A endowed with a unital

morphism from C(X) of continuous functions on X into the center of the multiplier algebra M(A) of A;

see [Kas88]. In the following we are going to derive some results about the rotation algebras using the

Heisenberg group HB = Zm ×B Zd, where m = d(d−1)
2 and B : Zd × Zd → Zm is a skew-symmetric bilinear

map. For u = (ui)i, u
′ = (u′j)j in Zd and z, z′ in Zm, the multiplication on HB is defined by

(z, u)(z′, u′) = (z + z′ +B(u, u′), u+ u′)

where [B(u, u′)]rs = uru
′
s − u′rus for r, s = 1, ..., d. Here we have identified [B(u, u′)]rs as a vector in Zm.

Indeed, since B is skew-symmetric, the diagonal of B(u, u′) is 0 and the upper triangular submatrix has
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d(d−1)
2 entries. One can check that this construction gives a group structure. Note that for (z, u) ∈ HB , we

have (z, u)−1 = (−z−B(u, u),−u). For definiteness, we use the upper triangular submatrix to represent B.

Let C∗(HB) and C∗r (HB) be the universal C∗-algebra and the reduced C∗-algebra of HB , respectively.

Lemma 5.1.12. C∗(HB) is a C(Tm)-algebra.

Proof. Note that C∗(HB) = C∗r (HB) since HB is amenable. Let λ(k, j) ∈ C∗(HB) be the left regular

representation. The left regular representation on Zm induces a representation on `1(Zm) given by

λ : `1(Zm)→ C(Tm), f =
∑
l∈Zm

f(l)el 7→ λ(f) =
∑
l

f(l)λ(l, 0),

where (el)l is the standard orthonormal basis of `2(Zm). Let f ∈ `1(Zm). Then we have

λ(f)λ(k, j) =
∑
l∈Zm

f(l)λ(l, 0)λ(k, 0)λ(0, j) =
∑
l∈Zm

f(l)λ(l + k, 0)λ(0, j) = λ(k, j)λ(f).

By density, this shows that C(Tm) is in the center of C∗r (HB). Since C∗(HB) is unital, M(C∗(HB)) =

C∗(HB). Hence C∗(HB) is a C(Tm)-algebra.

Let IΘ = {fx : x ∈ C∗(HB), f ∈ C(Tm), f(Θ) = 0} be an ideal in C∗(HB) and define CΘ = C∗(HB)/IΘ.

More generally, let A be a C(X)-algebra. Consider the evaluation map evx : C(X)→ C at x. Denote by Ax

the quotient of A by the closed ideal

Ix = {fa : f ∈ C(X), a ∈ A, f(x) = 0} = A ·Kernel(evx),

and by ax the image of an element a ∈ A in the fibre Ax. Recall that the C(X)-algebra A is said to be a

continuous field of C∗-algebras over X if the function πa : X → C defined by πa(x) = ‖ax‖ is continuous for

every a ∈ A. In fact, the function x 7→ ‖ax‖ is always upper semi-continuous; see [Bla97, Rie89, Dix77] and

the references therein.

Lemma 5.1.13. CΘ ' Ad2Θ and AdΘ is a continuous field of C∗-algebras.

Proof. Let (ei)
d
i=1 be the canonical generators of Zd. Note that for all r and s, we have λ(0, es)λ(0, er) =

λ(B(es, er), es + er), and

λ(0, er)λ(0, es) = λ(B(er, es), er + es)

= λ(2B(er, es), 0)λ(B(es, er), er + es)
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= λ(2B(er, es), 0)λ(0, es)λ(0, er). (5.1.9)

Let us fix Θ0 ∈ Tm. Recall that B(er, es) = er,s for r < s, where er,s is a vector in Zm. Then the map

f defined by f(Θ) = e4πiθrs − e4πiθ0
rs is in IΘ0 . Note that the image of λ(2er,s, 0) in the quotient CΘ0 is

simply e4πiθ0
rs . Considering (5.1.9) in CΘ0 , we find that the unitaries λ(0, er) in CΘ0 satisfy the commutation

relations of Ad2Θ0 . This means that one can define a ∗-homomorphism

σ : Ad2Θ0 → CΘ0 , σ(ur) = λ(0, er) + IΘ0 ∈ CΘ0 ,

where (ur)
d
r=1 are generators of Ad2Θ0 .

To identify CΘ with Ad2Θ, we define for k = (k1, ..., kd) ∈ Zd

λ̃(0, k) = λ(0, k1e1) · · ·λ(0, kded).

Let L(HB) be the von Neumann algebra of HB . For i, j, k ∈ Zd and f ∈ C(Tm), by Lemma 5.1.12 and

(5.1.9) we have

〈λ̃(0, k)λ̃(0, i)f, λ̃(0, j)〉L2(L(HB),τ) = τ
(
λ̃(0, j)∗λ̃(0, k)λ̃(0, i)f

)
= τ

fλ
∑
α<β

2iαkβB(eβ , eα), 0

 λ̃(0, j)∗λ̃(0, k + i)


= δj,k+i

∫
Tm

f(Θ) exp

−4πi
∑
α<β

iαkβθαβ

µ(dΘ),

where µ is the normalized Haar measure on Tm. Let fΘ0

n ∈ C(Tm), n ≥ 1, be a sequence of positive

functions such that
∫
fΘ0

n dµ = 1 and limn→∞
∫
fΘ0

n (Θ)g(Θ)µ(dΘ) = g(Θ0). Let ω be a free ultrafilter on

N. We consider the ultrapower of Hilbert spaces

L2(L(HB), τ)ω = `2(HB)ω = L2(Tm, `2(Zd))ω

and ultrapower of von Neumann algebra [L(HB)]ω. We may regard each element of C∗(HB) as an element

of [L(HB)]ω. Then for g ∈ C(Tm) and (
√
fΘ0

n 1L(HB))
• ∈ L2(L(HB), τ)ω, we have

〈gλ̃(0, k)λ̃(0, i)(
√
fΘ0

n )•, λ̃(0, j)(
√
fΘ0

n )•〉L2(L(HB),τ)ω = δj,k+i exp

−4πi
∑
α<β

iαkβθ
0
αβ

 g(Θ0)
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= g(Θ0)〈uk1
1 · · ·u

kd
d u

i1
1 · · ·u

id
d , u

j1
1 · · ·u

jd
d 〉L2(A2Θ0 ,τ). (5.1.10)

Let K = span{(
√
fΘ0

n x)• : x ∈ C∗(HB)}. Then K is a subspace of L2(L(HB), τ)ω. We consider a special

representation of C∗(HB) on K defined by

wΘ0(x)(
√
fΘ0

n y)• = (
√
fΘ0

n xy)•, x, y ∈ C∗(HB).

Then by (5.1.10) we have

τω([wΘ0(x)(
√
fΘ0

n y)•]∗[wΘ0(x)(
√
fΘ0

n y)•]) = lim
n→ω

τ(y∗x∗xyfΘ0

n ) = 0,

for x ∈ IΘ0 . Thus wΘ0 factors through CΘ0 : If we denote the quotient map by qΘ0 : C∗(HB) → CΘ0 and

define vΘ0(x+ IΘ0) = wΘ0(x), then wΘ0 = vΘ0qΘ0 . We define a linear operator α : L2(A2Θ0)→ K by

α(uk1
1 · · ·u

kd
d ) = (

√
fΘ0

n λ̃(0, k))•.

Note that α has dense range and preserves the inner product by (5.1.10). Then α is unitary. We define

φ : B(K)→ B(L2(Ad2Θ0)) by φ(x) = α∗xα. One directly checks that φ[wΘ0(λ̃(0, k))] = uk1
1 · · ·u

kd
d . We define

πΘ0 = φ ◦ vΘ0 . Then

πΘ0 : CΘ0 → Ad2Θ0 , πΘ0(λ̃(0, k) + IΘ0) = uk1
1 · · ·u

kd
d .

It follows that πΘ0 ◦ σ = id, and σ, πΘ0 are trace preserving isomorphisms. We can represent our argument

here in a commutative diagram

Ad2Θ
σ // CΘ

vΘ

$$

πΘ // Ad2Θ
� � // B(L2(Ad2Θ))

C∗(HB)

qΘ

OO

wΘ // B(K)

φ
99

Now we prove the lower semi-continuity of Θ 7→ ‖qΘ(x)‖ for x ∈ C∗(HB). First note that πΘ ◦ σ = id.

Hence πΘ is injective. The map

Ad2Θ ↪→ B(L2(Ad2Θ))

is also injective. Therefore, vΘ is an isometry. Note that ‖qΘ(x)‖ = ‖vΘ[qΘ(x)]‖ = ‖wΘ(x)‖. Let x, ξ, η ∈
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C∗(HB). We may write

x =
∑

k∈Zm, j∈Zd
xkje

2πi〈k,·〉λ̃(0, j) ∈ C∗(HB),

ξ =
∑

k∈Zm, j∈Zd
akje

2πi〈k,·〉λ̃(0, j), η =
∑

k∈Zm, j∈Zd
bkje

2πi〈k,·〉λ̃(0, j).

We deduce from (5.1.10) that 〈wΘ(x)(
√
fΘ
n ξ)

•, (
√
fΘ
n η)•〉 is a continuous function of Θ. Hence,

|〈wΘ(x)(
√
fΘ
n ξ)

•, (
√
fΘ
n η)•〉| = lim inf

Ξ→Θ
|〈wΞ(x)(

√
fΞ
n ξ)
•, (
√
fΞ
n η)•〉|

≤ lim inf
Ξ→Θ

‖wΞ(x)‖‖(
√
fΞ
n ξ)
•‖‖(

√
fΞ
n η)•‖.

Note that

‖qΘ(x)‖ = sup{|〈wΘ(x)(
√
fΘ
n ξ)

•, (
√
fΘ
n η)•〉| : ‖(

√
fΘ
n ξ)

•‖ ≤ 1, ‖(
√
fΘ
n η)•‖ ≤ 1}.

It follows that ‖qΘ(x)‖ ≤ lim infΞ→Θ ‖wΞ(x)‖ and the proof is complete.

In particular, we obtained the following:

Lemma 5.1.14. Let ρθn be as defined previously. For any θ0 we have

lim
θ→θ0
θ∈Q

lim
j→∞

‖ρθnj(θ)(xθ)‖Mnj(θ)
= ‖xθ0‖Aθ0 .

Here xθ =
∑
j,k ajku

j
θv
k
θ for any given x = xθ0 =

∑
j,k ajku

j
θ0
vkθ0 ∈ Aθ0 and nj(θ) is chosen according to

Lemma 5.1.10 for any given rational θ.

We also need to show that the same result as above holds for the Lip-norm. This can be done for

d-dimensional noncommutative tori. For simplicity, we restrict our attention to the 2-dimensional case. In

order to complete the proof of the continuity of the field of compact quantum metric spaces, we construct

suitable derivations. In fact, this was done in (4.3.5). Here we give two concrete cases.

Case 1: Poisson semigroup.

Consider the HilbertAθ-moduleH = (`2(Z)⊕`2(Z))⊗minAθ. Let hk = (
∑
|i|≤k ei) and define a derivation

δ by

δ(ujθv
k
θ ) = (hj ⊕ hk)⊗ ujθv

k
θ .

66



We have

〈δ(ujθv
k
θ ), δ(uj

′

θ v
k′

θ )〉Aθ = 〈hj ⊕ hk, hj′ ⊕ hk′〉(ujθv
k
θ )∗(uj

′

θ v
k′

θ )

= (〈hj , hj′〉+ 〈hk, hk′〉)(ujθv
k
θ )∗(uj

′

θ v
k′

θ ),

showing that

Γ(ujθv
k
θ , u

j′

θ v
k′

θ ) = K((j, j′), (k, k′))(ujθv
k
θ )∗uj

′

θ v
k′

θ = 〈δ(ujθv
k
θ ), δ(uj

′

θ v
k′

θ )〉Aθ ,

where K((j, j′), (k, k′)) = K1(j, j′) + K2(k, k′). Here K1 and K2 are the Gromov forms defined in Section

4.2.

Case 2: Heat semigroup. Consider the Hilbert Aθ-module H = R2 ⊗Aθ and define a derivation δ by

δ(ujθv
k
θ ) = (j, k)⊗ ujθv

k
θ .

Let x = ujθv
k
θ and y = uj

′

θ v
k′

θ . We have

Γ(x, y) =
1

2
[(j2 + k2) + (j′)2 + (k′)2 − (j − j′)2 − (k − k′)2](ujθv

k
θ )∗uj

′

θ v
k′

θ

= (jj′ + kk′)(ujθv
k
θ )∗uj

′

θ v
k′

θ .

Therefore, we get

〈δ(ujθv
k
θ ), δ(uj

′

θ v
k′

θ )〉Aθ = 〈(j, k)⊗ ujθv
k
θ , (j

′, k′)⊗ uj
′

θ v
k′

θ 〉

= 〈(j, k), (j′, k′)〉(ujθv
k
θ )∗(uj

′

θ v
k′

θ )

= (jj′ + kk′)(ujθv
k
θ )∗(uj

′

θ v
k′

θ ).

Note that both Rd and ⊕di=1`2(Z) embed into the column space `c2, we may take H = `c2 ⊗min Aθ. Let

p(x, y) =
∑
j,k ajkx

jyk ∈ Poly(x, y) be a noncommutative polynomial. Then by Lemma 5.1.13,

lim
θ′→θ

‖δp(uθ′ , vθ′)‖H = ‖δp(uθ, vθ)‖H = ‖
∑
j,k

ajkξjk ⊗ ujθv
k
θ‖H

= ‖
∑

j,k,j′,k′

āj′,k′ajk〈ξj′k′ , ξjk〉(uj
′

θ v
k′

θ )∗ujθv
k
θ‖

1/2
Aθ

for some ξjk ∈ `c2 and the coefficients ajk are independent of θ. In particular we have proven the following:
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Lemma 5.1.15. For any p = p(x, y) ∈ Poly(x, y), the map

θ 7→ ‖δp(uθ, vθ)‖H = ‖Γ(p(uθ, vθ), p(uθ, vθ))
1/2‖Aθ

is continuous.

Let u1
Θ, u

2
Θ, ..., u

d
Θ be the generators of AdΘ. Let xΘ = p(u1

Θ, u
2
Θ, ..., u

d
Θ) and LΘ(xΘ) = ‖Γ(xΘ, xΘ)‖AΘ

.

We define the set of continuous sections S = {p(u1
Θ, u

2
Θ, ..., u

d
Θ) : p ∈ Poly(x1, x2..., xd)}. The following

summarizes the arguments of this section.

Proposition 5.1.16. ({(AdΘ)sa, LΘ}Θ∈Td(d−1)/2 , S) forms a continuous field of compact quantum metric

spaces.

5.1.3 Matrix Algebras Converge to the Rotation Algebras

Let us define the following maps. Let {uθ, vθ} be the generators of Aθ. Observe that Poly(x, y) ⊂ C(T)∗C(T)

as a vector space. Define a linear map

σθ : Poly(x, y)→ Aθ

p(x, y) 7→ p(uθ, vθ)

with dense range.

Lemma 5.1.17. For any θ ∈ [0, 1), there exists sequences (θj) ⊂ Q ∩ [0, 1) and (nj) ⊂ N such that

(i) limj→∞ θj = θ;

(ii) (nj)j is increasing to infinity;

(iii) ({(Mnj )sa, Lnj}j∈N, S) is a continuous field of compact quantum metric spaces, where S = {ρθjnj (σθj (p)) :

j ∈ N, p(x, y) ∈ Poly(x, y)sa} and ρθn is defined in (5.1.8).

Proof. If θ is rational, we simply take θj ≡ θ and choose nj as in Proposition 5.1.11. Suppose θ is irrational.

Let (θj) be a sequence of rational numbers such that limj→∞ θj = θ. Put θ∞ = θ. Let p(x, y) ∈ Poly(x, y).

Using Lemma 5.1.14 and 5.1.15, for each θj , we can choose an nj such that nj ≤ nj+1,

|‖ρθjnj (p(uθj , vθj ))‖Mnj
− ‖p(uθ, vθ)‖Aθ | <

1

j
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and

|‖Γnj (ρθjnj (p(uθj , vθj )), ρ
θj
nj (p(uθj , vθj )))‖Mnj

− ‖Γ(p(uθ, vθ), p(uθ, vθ))‖Aθ | <
1

j
.

This means that ({(Mnj )sa, Lnj}j∈N, S) is a continuous field of compact quantum metric spaces.

The following is an analog of Lemma 4.4.6 for Mn and Aθ.

Lemma 5.1.18. Let ε > 0. Then there exist k = k(ε), m = m(k), and multipliers φnk,η, η ∈ (0, ε
2(2k+1)2 ),

on Mn for n > 2m (including n =∞) such that

‖x− Tφnk,η (x)‖Mn
≤ ε[‖x‖2 + Ln(x)]

for n > 2m (including n =∞). Here Tφnk,η is induced by T̃φnk,η as defined in (5.1.3).

Proof. Let k ∈ N be a large number which will be determined later. We choose m and ϕnk,η on Zn as in

Lemma 4.4.4 for n > 2m. Here we actually use the heat length function ψn as defined by (4.2.4) in Lemma

4.4.4. But since ( 2
π )2j2 ≤ ψn(j) ≤ j2 and

#{j : |j|2n ≤ k} ≤ #{j : |j|n ≤ k},

we may still choose η ∈ (0, ε
2(2k+1)2 ) and the conclusion of Lemma 4.4.4 remains valid. Let φnk,η(j, l) =

ϕnk,η(j)ϕnk,η(l) for (j, l) ∈ Z2
n. Note that for the Fourier multiplier φnk,η,

‖T̃φnk,η‖cb ≤ ‖Tϕnk,η‖
2
cb ≤ (1 + ε)2.

By Lemma 5.1.2, we have

‖Tφnk,η‖cb ≤ (1 + ε)2.

According to our choice of φnk,η, we have suppφnk,η ⊂ [−m,m]2. By choosing η ≤ ε/(2k + 1)2 and using

Lemma 4.3.10, we have

|φnk,η(j, l)− 1| ≤ ε

(2k + 1)2
, (j, l) ∈ [−k, k]2. (5.1.11)

Then for any x =
∑
|j|,|l|≤k aj,luj(n)vl(n), we have

‖Tφnk,η (x)− x‖Mn
≤

∑
|j|,|l|≤k

|aj,l||φnk,η(j, l)− 1| ≤ ‖x‖2ε.
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Since ‖Pky‖2 ≤ ‖y‖2 for any y ∈Mn, n > 2m (including n =∞), we have

‖Pk(y − Tφnk,η (y))‖Mn = ‖Pky − Tφnk,η (Pky)‖Mn ≤ ‖y‖2ε (5.1.12)

Using Lemma 5.1.1, Corollary 5.1.7, and the boundedness of Riesz transforms

‖A−α−βn A1/2
n (1− Pk)(y − Tφnk,η (y))‖∞

≤ cα‖A−βn A1/2
n (1− Pk)(y − Tφnk,η (y))‖p

≤ cαCpk−2β‖A1/2
n (y − Tφnk,η (y))‖p

≤ cαCpKpk
−2β(‖Γn(y, y)1/2‖p + ‖Γn(Tφnk,η (y), Tφnk,η (y))1/2‖p),

where cα = ‖A−αn : L0
p → L∞‖, Cpk−2β is the bound in Corollary 5.1.7 and Kp is the bound of the

noncommutative Riesz transforms. Using Lemma 4.3.8 and choosing k large enough in the beginning, we

have

‖(1− Pk)(y − Tφnk,η (y))‖∞ ≤ (2 + 2ε+ ε2)cαCpKpk
−2β‖Γn(y, y)1/2‖∞ ≤ εLn(y).

The proof is complete.

For notational simplicity, we also write Msa
n = (Mn)sa and Asaθ = (Aθ)sa in the following.

Proposition 5.1.19. Let ε > 0 and R ≥ 0. Then there exists N and p1, ..., pr ∈ Poly(x, y)sa with the

following properties:

(i) σθ(pj) ∈ DR(Asaθ );

(ii) for any j > N and any y ∈ DR(Msa
nj ), there exists s ∈ {1, ..., r} such that ‖y − ρθjnj (σθj (ps))‖Mnj

≤ ε.

Here (nj) are chosen as in Lemma 5.1.17.

Proof. The argument is similar to that of Proposition 4.4.7. The case R = 0 is trivial. Let min{R, 1} � ε > 0

and R > 0 be given. We choose m and φnk,η as in Lemma 5.1.18 for n > 2m. We define

B = {y ∈ LΛ2
m

2 (Asaθ ) : ‖y‖Aθ ≤ R, ‖Γ(y, y)1/2‖Aθ ≤ 1}.

Since B ⊂ `2([−m,m]2), B is pre-compact. Therefore, there exists an ε-net {y1, ..., yr} which covers B.

Without loss of generality, we may choose (yi)
r
i=1 from Poly(uθ, vθ). In this way we obtain noncommutative

polynomials p1, ..., pr ∈ Poly(x, y) such that σθ(pj) = yj and σθ(pj) ∈ DR(Asaθ ) for j = 1, ..., r.
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Let M
Λ2
m

n (resp. AΛ2
m

θ ) denote the elements of Mn (resp. Aθ) which are linear combinations of Uj(n)Vl(n)

(resp. ujθv
l
θ) for (j, l) ∈ Λ2

m. Since ρθn is injective, we introduce a locally defined map sn,m as follows

sn,m : M
Λ2
m

n → AΛ2
m

θ

y 7→ (ρθn)−1(y).

Note that Tφnk,η (y) is supported in Λ2
m for y ∈Mn. We define ŷ = sn,m(Tφnk,η (y)). Then

ρθn(ŷ) = Tφnk,η (y). (5.1.13)

Note that so far our argument is independent of θ and is valid for any n > 2m. Now we restrict our discussion

to (nj) in order to use the continuous field of compact quantum metric spaces. By Lemma 5.1.17, we have

lim
j→∞

sup
σθ(p)∈K

|‖ρθjnj (σθj (p))‖Mnj
− ‖σθ(p)‖Aθ | = 0,

and

lim
j→∞

sup
σθ(p)∈K

|‖Γnj (ρθjnj (σnj (p)), ρ
θj
nj (σnj (p)))‖Mnj

− ‖Γ(σθ(p), σθ(p))‖Aθ | = 0

for any compact subset K of Asaθ . Since ŷ = sn,m(Tφnk,η (y)) is in `2([−m,m]), we have

‖ŷ‖2 = ‖ρθn(ŷ)‖2 ≤ ‖Tφnk,η (y)‖Mn
≤ (1 + ε)2‖y‖Mn

.

It follows that the set {ŷ : y ∈ DR(Msa
nj )} is pre-compact. Then we can choose N > 2m large enough so

that for any j > N and y ∈ DR(Msa
nj )

(1 + ε)−1‖ŷ‖Aθ ≤‖ρθjnj (ŷ)‖Mnj
≤ (1 + ε)‖ŷ‖Aθ , (5.1.14)

(1 + ε)−1‖Γ(ŷ, ŷ)‖Aθ ≤‖Γnj (ρθjnj (ŷ), ρθjnj (ŷ))‖Mnj
≤ (1 + ε)‖Γ(ŷ, ŷ)‖Aθ .

Hence, we have

‖ŷ‖Aθ ≤ (1 + ε)‖ρθjnj (ŷ)‖Mnj
= (1 + ε)‖T

φ
nj
k,η

(y)‖Mnj
≤ (1 + ε)3‖y‖Mnj

≤ (1 + ε)3R
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and by Lemma 4.3.8 and (5.1.13),

‖Γ(ŷ, ŷ)‖Aθ ≤ (1 + ε)‖Γnj (ρθjnj (ŷ), ρθjnj (ŷ))‖Mnj
≤ (1 + ε)5‖Γnj (y, y)‖Mnj

for all y ∈ DR(Mnj ) and j > N . Since 1
(1+ε)3 ŷ ∈ B, there exists ps ∈ {p1, ..., pr} such that ‖σθ(ps) −

1
(1+ε)3 ŷ‖ ≤ ε. By (5.1.13) and (5.1.14), we have for j > N

∥∥∥ρθjnj (σθj (ps))− T
φ
nj
k,η

(y)

(1 + ε)3

∥∥∥
Mn

≤ (1 + ε)ε,

because σθj (ps)−
ŷ

(1+ε)3 ∈ DR(Msa
nj ).

Finally, for any y ∈ DR(Mnj ) and j > N , we have

‖T
φ
nj
k,η

(y)− ρθjnj (σθj (ps))‖Mnj

≤
∥∥∥Tφnjk,η (y)− 1

(1 + ε)3
T
φ
nj
k,η

(y)
∥∥∥
Mnj

+
∥∥∥ 1

(1 + ε)3
T
φ
nj
k,η

(y)− ρθjnj (σθj (ps))
∥∥∥
Mnj

≤ (4R+ 2)ε.

By Lemma 5.1.18, we have

‖y − ρθjnj (σθj (ps))‖Mnj
≤ ‖y − T

φ
nj
k,η

(y)‖Mnj
+ ‖T

φ
nj
k,η

(y)− ρθjnj (σθj (ps))‖Mnj
≤ (5R+ 3)ε.

Replacing ε by ε
5R+3 in the beginning completes the proof.

Theorem 5.1.20. Let θ ∈ [0, 1) and (nj) be given in Lemma 5.1.17. Then ((Mnj )sa, Lnj ) converges to

(Aθ, L) in the quantum Gromov–Hausdorff distance.

Proof. In Lemma 5.1.16 we proved that ({(Mnj )sa, Lnj}n∈N, S) is a continuous field of compact quantum

metric spaces in the sense of [Li06]. Let ε = 1/m and R ≥ 0. By Proposition 5.1.19, we can find N ∈ N and

ym1 = σθ(p
m
1 ), ..., ymrm = σθ(p

m
rm) ∈ DR(Asaθ ),

where (pmrs)
m
s=1 ⊂ Poly(x, y), so that for any z ∈ DR(Msa

nj ), j > N , there exists a pmrs ∈ {p
m
r1 , ..., p

m
rm} with

‖z − ρθjnj (σθj (p
m
rs))‖∞ ≤ ε.

The set

Λ := ∪∞m=1{ym1 , ..., ymrm} = σθ(∪∞m=1{pm1 , ..., pmrm})
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is dense in DR(Aθ). Give an ordering as in Theorem 4.4.8. By our construction, for any ε > 0, there exist

m and r such that the open ε-balls in Mnj centered at

ρθjnj (σθj (p1)), ..., ρθjnj (σθj (pr))

cover DR(Mnj ) for all nj > m, where σθ(pi)
m
i=1 ∈ Λ for all i. In other words, Λ satisfies condition (iii) in

[Li06]*Theorem 7.1. Hence Mn converges to Aθ in the order-unit quantum Gromov–Hausdorff distance by

the same theorem. The assertion follows from [Li06]*Theorem 1.1.

So far we have dealt with the heat semigroup on Aθ. The following indicates that the approximation can

also be done using the Poisson semigroup.

Lemma 5.1.21. Let Bn denote the discrete Poisson semigroup and An denote the discrete heat semigroup

on Mn. Then we have

‖Aβ/2n x‖p ∼ ‖Bβnx‖p,

for 1 < p <∞.

Proof. Note that for fixed j, k such that |j|, |k| ≤ n
2 , j2 + k2 = (|j|n + |k|n)2, where | · |n is as defined in

Section 4.2. Let p0 be such that 1
p = 1−θ

p0
+ θ

2 for 0 < θ < 1 and β = θα. Now since the maps

Bαit
n A−2αit

n : Lp0
→ Lp0

,

Bα(1+it)
n A−2α(1+it)

n : L2 → L2

are bounded, the assertion follows from Stein’s interpolation theorem in the same way as the proof of

Proposition 5.1.5.

Remark 5.1.22. Lemma 5.1.1 has a variant for the Poisson semigroup. Together with Lemma 5.1.21, one can

prove Proposition 5.1.19 for the Poisson semigroup, which in turn yields the approximation result. In fact,

one can even prove the convergence in quantum Gromov–Hausdorff distance using some exotic semigroups.

For example, one may consider the semigroup defined by Tt(u
jvk) = e−t(|j|+|k|

2)ujvk.
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5.2 Completely Bounded Quantum Gromov–Hausdorff

Convergence

In this section we introduce the notion of completely bounded quantum Gromov–Hausdorff distance. The

final goal is to show that the continuous fields of compact quantum metric spaces which we presented earlier

in this paper, converge in this sense.

Definition 5.2.1. Let X be an operator space. We say (X,L) is a Lip operator space structure, if

1. L ⊂ X is a dense subspace;

2. there exists a subspace N ⊂ L such that L/N carries an additional operator space structure, which

will also be referred to as Lip structure.

In particular, on the first matrix level the Lip structure induces a semi-norm on L. The matrix semi-norms

on L will be denoted by |||x|||Mn(L) or simply |||x||| if it is clear that x ∈ Mn(X). We also use the notation

L(x) := |||x|||, especially when we consider a continuous field of quantum metric spaces.

We define the completely bounded quantum Gromov–Hausdorff distance of two operator spaces as follows.

Definition 5.2.2. Let X and Y be two operator spaces. Let R > 0 and

DR(Mn(X)) = {x ∈Mn(X) : |||x|||Mn(L) ≤ 1, ‖x‖Mn(X) ≤ R}.

We denote the R-cb-quantum Gromov–Hausdorff distance of X and Y by dcboq,R(X,Y ), and define it by

dcboq,R(X,Y ) = inf sup
n∈N
{dH [id⊗ιX(DR(Mn(X))), id⊗ιY (DR(Mn(Y )))]},

where dH denotes the Hausdorff distance, and the infimum runs over all operator spaces V and completely

isometric embeddings ιX : X → V and ιY : Y → V . If in addition X and Y are unital with units eX and

eY , respectively, we modify the definition as follows:

dcboq,R(X,Y ) = inf sup
n∈N
{max{dH [id⊗ιX(DR(Mn(X))), id⊗ιY (DR(Mn(Y )))],

‖ιX(ReX)− ιY (ReY )‖}}.

Remark 5.2.3. The definition above seems stronger than the one introduced in [Wu06].
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Remark 5.2.4. Let K1 denote the unitalization of K, the space of compact operators on a Hilbert space. For

two operator spaces X and Y , we are particularly interested in dcboq,R(K1 ⊗X,K1 ⊗ Y ).

Now we prove the triangle inequality. The proof follows the same idea as that of Lemma 4.5 in [Li06].

Lemma 5.2.5. Let ιj : A→ Bj be linear completely isometric embeddings of operator spaces for j ∈ {1, 2}.

Then there is an operator space C and linear completely isometric embeddings ψj : Bj → C such that

ψ1 ◦ ι1 = ψ2 ◦ ι2.

Proof. Let ψj be as defined in the proof of Lemma 4.5 in [Li06]. The same argument extends easily to the

matrix levels. Then ψ1 ◦ ι1 = ψ2 ◦ ι2 and ψ1, ψ2 are complete isometries.

Lemma 5.2.6. Let X, Y and Z be operator spaces. Then the following holds

dcboq,R(X,Z) ≤ dcboq,R(X,Y ) + dcboq,R(Y,Z).

Proof. The triangle inequality follows immediately from applying Lemma 5.2.5 with A = Y .

Let k ≥ 0. Recall the notation Λ2
k in (5.1.4). Let x ∈ Mm(AΛ2

k

θ ) and δ be the derivation of Aθ into

a Hilbert C∗-module HAθ := Hψ ⊗ Aθ as defined in (4.3.5) (for the case m = 1). We define the matrix

Lip-norm as follows

|||x||| = max{‖(id⊗δ)(x)‖Mm(HAθ ), ‖(id⊗δ)(x∗)‖Mm(HAθ )}.

This is exactly the definition (4.3.7) in the two dimensional case restricted to rotation C∗-algebras. Note that

if x is self-adjoint, the matrix Lip-norm |||x||| introduced here is just the matrix extension of the Lip-norm

used in Proposition 5.1.16 for d = 2. We may write Lθ(x) or L∞(x) for |||x||| when considering continuous

fields of quantum metric spaces.

Lemma 5.2.7. Let X and Y be two operator spaces. Let ε ≥ 0 and ϕ : X → Y be a 1 + ε cb-isometry and

a 1 + ε Lip-isometry, i.e. for any m and any x̂ ∈Mm(X), we have

(1− ε)‖x̂‖Mm(X) ≤ ‖(id⊗ϕ)(x̂)‖Mm(Y ) ≤ (1 + ε)‖x̂‖Mm(X),

and

(1− ε)|||x̂||| ≤ |||(id⊗ϕ)(x̂)||| ≤ (1 + ε)|||x̂|||.

Then we have

dcboq,R(X,ϕ(X)) ≤ 2Rε.
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Proof. Let N = {(a,−ϕ(a), εa) : a ∈ X}. Then N ⊂ X ⊕1 Y ⊕1 X. Here X ⊕1 Y ⊕1 X is the `1-sum of X,

Y and X in the sense of operator spaces. Let

V = {(x, ϕ(x′), 0) +N : x, x′ ∈ X} ⊂ (X ⊕1 Y ⊕1 X)/N.

Then

‖(x, y, 0) +N‖(X⊕1Y⊕1X)/N = inf{‖x− a‖+ ‖y + ϕ(a)‖+ ε‖a‖ : a ∈ X}.

Thus X and Y embed isometrically into V (see Lemma 7.2 in [Li06]). We claim that the embeddings are

actually completely isometric. Indeed, since S1((X⊕1ϕ(X)⊕1X)/N) = S1(X)⊕1S1(ϕ(X))⊕1S1(X)/S1(N),

we have

S1(V ) ⊂ S1(X)⊕1 S1(ϕ(X))⊕1 S1(X)/S1(N).

Hence for x̂ ∈ S1(X), we have

‖(x̂, 0, 0) + S1(N)‖S1(V ) =‖x̂‖S1(X),

‖(0, (id⊗ϕ)x̂, 0) + S1(N)‖S1(V ) =‖(id⊗ϕ)x̂‖S1(Y ).

Note that by a result of Pisier (see [Pis98]*Lemma 1.7), if u : X → Y is a completely bounded map, for

every 1 ≤ p ≤ ∞, we have

‖u‖cb = sup
m
‖ id⊗u : Smp (X)→ Smp (Y )‖.

Therefore, by applying the above for p = 1 and p =∞, we find that

ι1 : X → (X, 0, 0) +N ⊂ V and ι2 : ϕ(X)→ (0, ϕ(X), 0) +N ⊂ V

are completely isometric embeddings. Note that the maps

ι : X → X ⊕1 Y ⊕1 X, x 7→ (0, 0, x),

q : X ⊕1 Y ⊕1 X → (X ⊕1 Y ⊕1 X)/N, (x, y, z) 7→ (x, y, z) +N

are completely contractive. For any x̂ ∈Mm(X), we have

‖(id⊗ι1)x̂− id⊗(ι2 ◦ ϕ)x̂‖Mm(V ) ≤ ‖(x̂, 0, 0)− (0, id⊗ϕ(x̂), 0) +N‖Mm(V ) (5.2.1)

= ‖(x̂,− id⊗ϕ(x̂), 0)− (x̂,− id⊗ϕ(x̂), εx̂) +N‖Mm(V ) ≤ ε‖x̂‖Mm(X).
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Now let x̂ ∈ DR(Mm(X)), i.e. x̂ ∈Mm(X), ‖x̂‖Mm(X) ≤ R and |||x̂||| ≤ 1. Then by the assumption, we have

‖ 1
1+ε (id⊗ϕ)x̂‖Mm(Y ) ≤ R and ||| 1

1+ε (id⊗ϕ)x̂||| ≤ 1. This means 1
1+ε (id⊗ϕ)x̂ ∈ DR(Mm(Y )). Using (5.2.1),

we find

dcboq,R(X,ϕ(X)) ≤ εR+
εR

1 + ε
‖ϕ‖cb ≤ 2Rε.

5.2.1 CB-continuous fields of compact quantum metric spaces

In this section we investigate an operator space version of continuous fields of compact quantum metric

spaces, and show that the continuous fields of compact quantum metric spaces which we introduced earlier

form cb-continuous fields of compact quantum metric spaces with appropriate operator space Lip-norms

defined on them.

Definition 5.2.8. Let T be a locally compact Hausdorff space and let ({At, Lt}t∈T , S0) be a continuous

field of order-unit spaces in the sense of [Li06], where S0 is a dense subset of S, the space of continuous

sections, containing the unit. We say ({At, Lt}, S0) is a cb-continuous field of order-unit spaces if for any

finite subset ∆ ⊂ S0, s0 and ε > 0, there exists a neighborhood U(s0) > 0, such that for any s ∈ U(s0),

m ≥ 1, f ∈ ∆ and matrix coefficients af ∈Mm, we have the following

1

1 + ε
‖
∑
f∈∆

af ⊗ f(s)‖Mm(As) ≤ ‖
∑
f∈∆

af ⊗ f(s0)‖Mm(As0 )

≤ (1 + ε)‖
∑
f∈∆

af ⊗ f(s)‖Mm(As).

We call ({At, Lt}t∈T , S0) a cb-continuous fields of compact quantum metric spaces if ({At, Lt}t, S0) is a

continuous field of compact quantum metric spaces and in addition, we have

1

1 + ε
|||
∑
f∈∆

af ⊗ f(s)|||Mm(As) ≤ |||
∑
f∈∆

af ⊗ f(s0)|||Mm(As0 )

≤ (1 + ε)|||
∑
f∈∆

af ⊗ f(s)|||Mm(As).

Recall the map ρn : C(T2) → Mn as defined in (5.1.7): ρn(ujvk) = uj(n)vk(n), where u, v are the

generators of C(T2) and uj(n)vk(n) are defined in Section 5.1. Let CΛ2
k(T2) (resp. M

Λ2
k

n ) denote the

elements in C(T2) spanned by ujvl (resp. uj(n)vl(n)) for (j, l) ∈ Λ2
k. Note that CΛ2

k(T2) and M
Λ2
k

n are

operator spaces.

Proposition 5.2.9. For any ε > 0 and k ≥ 0, there exists N > 0 such that for any n > N , the map

ρn|CΛ2
k (T2)

: CΛ2
k(T2)→M

Λ2
k

n is a (1 + ε) cb-isometry.
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Proof. By Lemma 5.1.8, the map (ρn)• : C(T2)→
∏
ωMn is a faithful ∗-homomorphism, and in particular

a complete isometry. Therefore, for any ε > 0 and k ≥ 0, there exists N > 0, such that for n > N , CΛ2
k(T2)

is (1 + ε)-isometric to M
Λ2
k

n via ρn; i.e. we have for scalar coefficients aj,l

(1− ε)
∥∥∥ ∑
|j|,|l|≤k

aj,lu
jvl
∥∥∥
C(T2)

≤
∥∥∥ ∑
|j|,|l|≤k

aj,luj(n)vl(n)
∥∥∥
Mn

≤ (1 + ε)
∥∥∥ ∑
|j|,|l|≤k

aj,lu
jvl
∥∥∥
C(T2)

.

Note that if X is an operator space, and BX∗ denotes the unit ball of X∗, then the min-structure on X is

given by the image of the map ιmin : X → C(BX∗) defined by ιmin(x) = fx, where fx(x∗) = x∗(x), for all

x ∈ X and x∗ ∈ X∗. Let min(Mn) denote the min-structure on Mn. Since min(Mn) is commutative, we

have

‖ρn : C(T2)→ min(Mn)‖cb = ‖ρn : C(T2)→ min(Mn)‖.

It follows that for any m and aj,l ∈Mm

(1− ε)
∥∥∥ ∑
|j|,|l|≤k

aj,l ⊗ ujvl
∥∥∥
Mm(C(T2))

≤
∥∥∥ ∑
|j|,|l|≤k

aj,l ⊗ uj(n)vl(n)
∥∥∥
Mm(min(Mn))

. (5.2.2)

Recalling that min(Mn) is the smallest operator space norm on Mn, we deduce from (5.2.2) that for any m

∥∥∥ ∑
|j|,|l|≤k

aj,l ⊗ ujvl
∥∥∥
Mm(C(T2))

≤ 1

1− ε

∥∥∥ ∑
|j|,|l|≤k

aj,l ⊗ uj(n)vl(n)
∥∥∥
Mm(min(Mn))

(5.2.3)

≤ 1

1− ε

∥∥∥ ∑
|j|,|l|≤k

aj,l ⊗ uj(n)vl(n)
∥∥∥
Mm(Mn)

.

Now by a result of Haagerup–Rørdam [HR95], there exists a Hilbert space H and u(θ), v(θ) ∈ B(H) such

that the following hold

1. For any θ, C∗(u(θ), v(θ)) ' Aθ,

2. There is a constant c > 0, such that for any θ′, max{‖u(θ)− u(θ′)‖, ‖v(θ)− v(θ′)‖} ≤ c|θ − θ′|1/2.

This implies that there exists δ > 0 such that for |θ − θ′| < δ and |j| ≤ k, |l| ≤ k, we have

sup
j,l
‖uj(θ)vl(θ)− uj(θ′)vl(θ′)‖ ≤ 2ck|θ − θ′|1/2.

Let dcb denote the Banach-Mazur distance of two operator spaces. Then there exists δ = δ(ε, k) > 0 such

that dcb(AΛ2
k

θ ,AΛ2
k

θ′ ) < 1 + ε for any |θ − θ′| < δ; see [Pis03]*Section 2.13. We may find a complete bounded
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map φ sending u(θ)v(θ) to u(θ′)v(θ′) such that

‖φ : AΛ2
k

θ → A
Λ2
k

θ′ ‖cb ≤ 1 + ε.

It follows that for all matrix coefficients aj,l we get

∣∣∣∣∣∣
∥∥∥ ∑
|j|,|l|≤k

aj,l ⊗ uj(θ)vl(θ)
∥∥∥− ∥∥∥ ∑

|j|,|l|≤k

aj,l ⊗ uj(θ′)vl(θ′)
∥∥∥
∣∣∣∣∣∣ ≤ ε

∥∥∥ ∑
|j|,|l|≤k

aj,l ⊗ uj(θ)vl(θ)
∥∥∥.

Setting θ′ = 1
n < δ and θ = 0, we have for any m

‖
∑
|j|,|l|≤k

aj,l ⊗ uj(1/n)vl(1/n)‖Mm(A1/n) ≤ (1 + ε)‖
∑
|j|,|l|≤k

aj,l ⊗ ujvl‖Mm(C(T2)). (5.2.4)

But u1(n) and v1(n) verify the commutation relation of A1/n. By universality of A1/n we have for any m

‖
∑
|j|,|l|≤k

aj,l ⊗ uj(n)vl(n)‖Mm(Mn) ≤ ‖
∑
|j|,|l|≤k

aj,l ⊗ uj(1/n)vl(1/n)‖Mm(A1/n). (5.2.5)

By combining the estimates (5.2.3), (5.2.4) and (5.2.5), we complete the proof.

Proposition 5.2.10. For any ε > 0 and k ≥ 0, there exists N > 0 and a family of maps ρθn : AΛ2
k

θ →M
Λ2
k

n

such that for n > N , ρθn is a 1 + ε cb-isometry and a 1 + ε Lip-isometry.

Proof. Note that if we know ρθn is a 1 + ε cb-isometry then by the same argument as for Lemma 4.3.8 it is

also a 1 + ε Lip-isometry on AΛ2
k

θ . Therefore it suffices to show that ρθn is a 1 + ε cb-isometry. If θ = 0, then

the result follows immediately from Proposition 5.2.9. Let θ = p
q be rational. Recall from Lemma 5.1.10 that

we have a surjective map ρθnl : AΛ2
k

θ → M
Λ2
k

nl for suitable nl. We show that this map is a 1 + ε cb-isometry.

As we observed in Section 5.1.2, there is a trace preserving ∗-homomorphisms σ : Aθ →Mq ⊗min C(T2). By

Proposition 5.2.9, there exists N > 0 such that the map ρm : CΛ2
k(T2) → M

Λ2
k

m is a 1 + ε cb-isometry for

m > N . Hence, so is the map id⊗ρnl : Mq ⊗min C
Λ2
k(T2)→Mq ⊗min M

Λ2
k

nl . Note that the specific choice of

the subsequence nl = ql+1 guarantees that ρθnl(Aθ) = Mnl . Therefore, the restriction of ρθnl = (id⊗ρnl) ◦ σ

to AΛ2
k

θ is also a 1 + ε cb-isometry. This gives the following diagram

Mq ⊗min C
Λ2
k(T2)

id⊗ρnl// Mq ⊗min M
Λ2
k

nl

AΛ2
k

θ

σ

OO

ρθnl // M
Λ2
k

nl

?�

OO
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which proves the rational case. Finally, let θ be irrational. Then there exists a sequence θs = ps
qs

of rational

numbers converging to θ. We may assume θs − θ is small enough so that we may apply the result of

Haagerup–Rørdam [HR95] to get a 1 + ε
3 cb-isometry φs : AΛ2

k

θ → AΛ2
k

θs
in the same way as in the proof

of Proposition 5.2.9. Then by what we proved above, we may choose ns large enough such that the map

ρθsns : AΛ2
k

θs
→M

Λ2
k

ns is a 1 + ε
3 cb-isometry. Let ρθns = ρθsns ◦φs. Then ρθns : AΛ2

k

θ →M
Λ2
k

ns is a 1 + ε cb-isometry.

We can illustrate the argument using the following diagram

AΛ2
k

θ

φs
��

ρθns

''
AΛ2

k

θs

σ

��

ρθsns

// M
Λ2
k

ns� _

��

Mqs ⊗ CΛ2
k(T2)

id⊗ρns// Mqs ⊗M
Λ2
k

ns .

Let ({An, Ln}n∈N, S) denote either of the two continuous fields of compact quantum metric spaces which

were introduced in Sections 4.4 and 5.1. The following result follows immediately from Proposition 5.2.10.

Proposition 5.2.11. ({An, Ln}n∈N, S) is a cb-continuous field of compact quantum metric spaces.

5.2.2 Approximations for C(T) and Aθ

Here we only present a formal proof of the approximation for Aθ. The argument modifies easily to the case

of C(T). Before we prove the main result, we show the following estimate.

Theorem 5.2.12. Let ε > 0. Then there exist k = k(ε), m = m(k) and multipliers φnk,η, η ∈ (0, ε
4(2k+1)2 )

on Mn for n > 2m (including n =∞) such that

‖Tφnk,η − id : (Mn, |||·|||)→ (Mn, ‖ · ‖)‖cb ≤ ε.

Here Tφnk,η is induced by T̃φnk,η as defined in (5.1.3).

Proof. We follow the proof of Lemma 5.1.18, but we have to get rid of the L2 norm this time. Let k be a

large number which will be determined later. Fix α, β such that α + β = 1
2 . Similar to Lemma 5.1.18, we
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may choose multipliers φnk,η, η ∈ (0, ε
D(2k+1)2 ) for some D to be determined later, such that

|φnk,η(j, l)− 1| ≤ ε

D(2k + 1)2
, (j, l) ∈ [−k, k]2. (5.2.6)

Note that

Tφnk,η − id = A−αA−β(Tφnk,η − id)A1/2

= A−αA−β(Tφnk,η − id)PkA
1/2 +A−αA−β(Tφnk,η − id)(id−Pk)A1/2.

By Proposition 5.1.3, we know ‖A1/2 : (Mn, |||·|||)→ L0
p(Mn)‖cb = Kp <∞. Using (5.2.6) and Lemma 5.1.4,

we may extend (5.1.12) to matrix levels as in Lemma 4.3.10 (but with q = p ≥ 2 here) and obtain

‖(Tφnk,η − id)Pk : L0
p(Mn)→ L0

p(Mn)‖cb ≤
2ε

D
.

By (4.3.11), we know ‖A−β : L0
p(Mn) → L0

p(Mn)‖cb = c′β < ∞. And by Lemma 5.1.1, ‖A−α : L0
p(Mn) →

L0
∞(Mn)‖cb = cα <∞. Therefore, we find

‖A−αA−β(Tφnk,η − id)PkA
1/2 : (Mn, |||·|||)→ (Mn, ‖ · ‖)‖cb ≤

2cαc
′
βKpε

D
≤ ε

2

by choosing D large enough. By Corollary 5.1.7, we have ‖A−β(1− Pk) : Lp(Mn)→ Lp(Mn)‖cb = Cpk
−2β .

It follows that

‖Tφnk,η − id : (Mn, |||·|||)→ (Mn, ‖ · ‖)‖cb

≤ ‖(Tφnk,η − id)Pk : (Mn, |||·|||)→ (Mn, ‖ · ‖)‖cb

+ ‖(Tφnk,η − id)A−αA−β(1− Pk)A1/2 : (Mn, |||·|||)→ (Mn, ‖ · ‖)‖cb

≤ ε

2
+ cαCpk

−2βKp‖(Tφnk,η − id) : L∞(Mn)→ L∞(Mn)‖cb.

But the cb-norm of Tφnk,η − id : L∞(Mn) → L∞(Mn) is less than 2 + η, by the construction of φnk,η. The

assertion follows by choosing k large enough.

Theorem 5.2.13. There exists a sequence nj → ∞ such that (Anj , Lnj ) converges to (A∞, L∞) in the

R-cb-quantum Gromov–Hausdorff distance.

Proof. Let 0 < ε < 1, R > 0. In this proof we simply write n for nj . We choose m and φnk,η as in Lemma
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5.2.12. By Lemma 5.2.6, we have

dcboq,R(A∞,An) ≤ dcboq,R(A∞,A
Λ2
m∞ ) + dcboq,R(AΛ2

m∞ ,AΛ2
m

n ) + dcboq,R(AΛ2
m

n ,An). (5.2.7)

By Proposition 5.2.10, we may choose n large enough such that the map ρθn : AΛ2
m

θ → M
Λ2
m

n defined by

unj v
n
l 7→ uj(n)vl(n) is a 1 + ε cb-isometry and 1 + ε Lip-isometry. Hence by Lemma 5.2.7,

dcboq,R(AΛ2
m∞ ,AΛ2

m
n ) ≤ 2Rε.

By Lemma 5.1.18, we have ‖Tφnk,η‖cb ≤ (1+ε)2. Together with Lemma 4.3.8, we deduce that 1
(1+η)2 (id⊗Tφnk,η )x ∈

DR(Mp(A
Λ2
m

n )) for all x ∈ DR(Mp(An)) and n large enough (including n =∞). By Theorem 5.2.12, we have

‖x− (id⊗Tφnk,η )x‖ < ε. This shows that

dH(DR(Mp(An)),DR(Mp(A
Λ2
m

n ))) < ε+
[
1− 1

(1 + ε)2

]
R‖Tφnk,η‖cb ≤ (3R+ 1)ε.

Hence dcboq,R(An,A
Λ2
m

n ) < (3R+ 1)ε. Hence, by (5.2.7), we conclude that

dcboq,R(A∞,An) < 8(R+ 1)ε.

This completes the proof.
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Chapter 6

Approximation for Higher
Dimensional Quantum Tori

6.1 Completely Bounded Quantum Gromov–Hausdorff Distance

for Higher Dimensional Quantum Tori

In this section we explore the convergence of matrix algebras to the noncommutative tori in higher dimen-

sions. In the following, let m = d(d−1)
2 and AdΘ denote the rotation algebra with d generators which was

introduced in Section 4.3. Recall that by Proposition 5.1.16, (AΘ)Θ form a continuous field of compact

quantum metric spaces. The following is an analog of Haagerup and Rørdam’s result in higher dimensions.

Theorem 6.1.1. There exists a Hilbert space H, such that for all Θ, there exist unitaries u1(Θ), ..., ud(Θ) ∈

B(H) such that C∗(u1(Θ), ..., ud(Θ)) ' AdΘ and limΘ′→Θ ‖uk(Θ′) − uk(Θ)‖B(H) = 0 for k = 1, ..., d, where

Θ′ → Θ in Rd(d−1)/2.

Proof. We recall the Heisenberg group HB as defined in Subsection 5.1.2. To shorten the notation, we will

write H for HB in the following. Note that since H is amenable, C∗(H) is a nuclear C(Tm)-algebra. Therefore,

by Theorem 3.2 in [Bla97] we get a unital monomorphism of C(Tm)-algebras α : C∗(H) ↪→ O2⊗C(Tm) and

a unital C(Tm)-linear completely positive map E : O2 ⊗ C(Tm) → C∗(H) such that E ◦ α = idC∗(H). Here

O2 is the Cuntz algebra generated by two orthogonal isometries. Let O2 ⊂ B(H) for some Hilbert space

H. Then for all x ∈ C∗(H), α(x) ∈ C(Tm,B(H)). We define JΘ = {g ∈ C(Tm) : g(Θ) = 0}. Then JΘ is a

closed ideal of C(Tm). Recall from Lemma 5.1.13 the quotient CΘ = C∗(H)/IΘ. We consider the following

diagram

C∗(H)
α //

qΘ

��

C(Tm,B(H))

q̃Θ

��
CΘ

// C(Tm,B(H))/JΘ ⊗min B(H).

Since α is C(Tm)-linear, the kernel of qΘ and that of q̃Θ ◦ α coincide. We define πΘ = q̃Θ ◦ α ◦ q−1
Θ . Then

πΘ is a well-defined monomorphism and the above diagram commutes. Note that for f ∈ C(Tm,B(H)), we
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have q̃Θ(f) = f(Θ) and

‖f(Θ)‖B(H) = ‖f + JΘ ⊗min B(H)‖C(Tm,B(H))/JΘ⊗minB(H).

Then limΘ′→Θ ‖α(x)(Θ′)− α(x)(Θ)‖B(H) = 0 for x ∈ C∗(H). It follows that

lim
Θ′→Θ

‖πΘ′(x̂+ IΘ′)− πΘ(x̂+ IΘ)‖B(H) = 0, x̂+ IΘ ∈ CΘ.

By Lemma 5.1.13, Ad2Θ ' CΘ and λ(0, e1) + IΘ, ..., λ(0, ed) + IΘ generates CΘ, where (ek)dk=1 are canonical

generators of Zd. Let uk(Θ) = πΘ(λ(0, ek) + IΘ), k = 1, ..., d and note that πΘ(CΘ) ⊂ B(H). The proof is

complete.

We now consider approximations of A2d
Θ by matrix algebras. We want to use finite dimensional versions

of rotation algebras and we have to determine their center. In order to use induction we have to introduce

a new form of action. We consider an action σ of Z2 on a unital C∗-algebra B. Then we can construct the

universal crossed product BoσZ2. In particular, if B is faithfully represented on H, we may choose a special

representation π of B on H⊗ `2(Z2) such that the left regular representation of Z2 spatially implements the

action σ, i.e.

(1⊗ λ(j,k))π(b)(1⊗ λ∗(j,k)) = π(σ(j,k)(b)), b ∈ B;

see e.g. [BO08]. Let u, v denote the universal generators of Aθ. We define a representation of Aθ by

γ : Aθ → B(H)⊗ L(Z2)⊗Aθ, ujvk 7→ 1⊗ λ(j,k) ⊗ ujvk.

It follows that for b ∈ B,

γ(ujvk)(π(b)⊗ 1)γ(ujvk)∗ = (1⊗ λ(j,k))(π(b)⊗ 1)(1⊗ λ(j,k))
∗ ⊗ ujvk(ujvk)∗ = π(σ(j,k)(b))⊗ 1.

Therefore, the Z2-action σ and the representations π and γ satisfy

γ(u)(π(b)⊗ 1)γ(u)∗ = π(σ(1,0)(b)), (6.1.1)

γ(v)(π(b)⊗ 1)γ(v)∗ = π(σ(0,1)(b)), γ(u)γ(v) = e2πiθγ(v)γ(u).

In the following, we use the notation 〈D : R〉 to denote the universal C∗-algebra generated by D with
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relations R. We may even ignore R for short if the relations are clear from context. We define

Aθ(n) = 〈U, V : Un = 1 = V n, UV = e2πiθV U,U and V unitaries〉,

and

B oσ Aθ = 〈b, U, V : b ∈ B,UbU∗ = σ1,0(b), V bV ∗ = σ0,1(b), UV = e2πiθV U,U and V unitaries〉,

Similarly, if we start with a Z2
n action σ on B, where θ = q

n , we may find representations π of B and γ

of Aθ(n) as follows.

γ : Aθ(n)→ B(H)⊗ L(Z2
n)⊗Aθ(n), up(n)vq(n) 7→ 1⊗ λ(j,k) ⊗ up(n)vq(n),

where the generators up(n), vq(n) of AΘ(n) are as given in equation (5.1.1). Similarly, it follows that for

b ∈ B, the Z2-action σ and the representations π and γ satisfy

γ(up(n))(π(b)⊗ 1)γ(up(n))∗ = π(σ(1,0)(b)), (6.1.2)

γ(vq(n))(π(b)⊗ 1)γ(vq(n))∗ = π(σ(0,1)(b)), γ(up(n))γ(vq(n)) = e2πiθγ(vq(n))γ(up(n)).

For simplicity, in the following we will write σ1,0 and σ0,1 for σ(1,0) and σ(0,1), respectively.

Definition 6.1.2. Suppose B is a unital C∗-algebra. We define

B oσ Aθ(n) = 〈b, U, V : b ∈ B,UbU∗ = σ1,0(b), V bV ∗ = σ0,1(b),

Un = 1 = V n, UV = e2πiθV U,U and V unitaries〉,

where θ = q
n , q, n ∈ N, and σ is an action of Z2

n on B.

Thanks to (6.1.1) and (6.1.2), the universal objects defined above exist. Note that for Aθ(n) we have

necessarily θ = q
n for some q ∈ Z. If q and n are coprime, then it is well known that Aθ(n) ' Mn. By

universality and using the notation introduced here, we can rewrite the noncommutative torus A2d
Θ iteratively

as

A2d
Θ = Aθ12

oσ2 Aθ34
oσ3 · · ·oσd Aθ2d−1,2d

, (6.1.3)

85



where the Z2-action σk, k = 2, ..., d, is defined by

σk1,0(u1) = e−2πiθ1,2k−1u1, ..., σ
k
1,0(u2k−2) = e−2πiθ2k−2,2k−1u2k−2,

σk0,1(u1) = e−2πiθ1,2ku1, ..., σ
k
0,1(u2k−2) = e−2πiθ2k−2,2ku2k−2.

Indeed, note that by the definition of Bθ, we have

σk1,0(u1) = u2k−1u1u
∗
2k−1, ..., σ

k
1,0(u2k−2) = u2k−1u2k−2u

∗
2k−1,

σk0,1(u1) = u2ku1u
∗
2k, ..., σ

k
0,1(u2k−2) = u2ku2k−2u

∗
2k.

Then (6.1.3) follows from universality of A2d
Θ and Aθ12 oσ2 Aθ34 oσ3 · · ·oσd Aθ2d−1,2d

.

Proposition 6.1.3. Let θ = q
n and q, n are coprime. Let σ be an action of Z2

n on a C∗-algebra B. Then

B oσ Aθ(n) 'Mn(B).

Proof. We first consider the case for which the action σ is inner, i.e. there exist unitaries w1 and w2 in B such

that σ1,0(x) = w1xw
∗
1 , σ0,1(x) = w2xw

∗
2 and [w1, w2] = 0. Let un and vn be the generators of Aθ(n). We

consider a special representation π0 of Boσ Aθ(n) defined by π0(b) = b⊗ 1 for b ∈ B, π0(U) = w1⊗ un and

π0(V ) = w2⊗ vn. It can be directly checked that π0 is indeed a representation. Then we have wn1 = 1 = wn2 ,

π0(U)π0(V ) = e2πiθπ0(V )π0(U)

and since C∗(un, vn) = Aθ(n) = Mn, we have

π0(B oσ Aθ(n)) = π0(〈b, U, V : b ∈ B〉) (6.1.4)

= C∗(b⊗ 1, w1 ⊗ un, w2 ⊗ vn : b ∈ B) = B ⊗min Mn.

Now let πu : BoσAθ(n)→ B(Hu) be the universal representation of BoσAθ(n). We show that in this case,

we can also write πu(U) and πu(V ) as tensors. Note that Aθ(n) has dimension at most n2. Thanks to the

image of U and V under π0, we know that C∗(πu(U), πu(V )) = Mn. Therefore we may take Hu = K ⊗ `n2

for some Hilbert space K. Let us define u = πu(w∗1)πu(U) and v = πu(w∗2)πu(V ). Then for x ∈ πu(B),

x = σ−1
1,0[σ1,0(x)] = πu(w∗1)πu(U)xπu(U)∗πu(w1) = uxu∗.

Thus ux = xu. Similarly, vx = xv. We deduce that πu(B) ⊂ C∗(u, v)′ ∩B(Hu). Since w1 and w2 commute,

86



plugging in x = πu(w1), πu(w2), we find πu(U)πu(wi) = πu(wi)πu(U) and πu(V )πu(wi) = πu(wi)πu(V ) for

i = 1, 2. It follows that πu(wi) ∈ M ′n ∩ B(Hu). Moreover, u and v also satisfy the conditions uv = e2πiθvu

and un = 1 = vn. Therefore,

C∗(u, v) 'Mn, πu(B) ⊂ B(K)⊗ C and u, v ∈ πu(B)′ ∩ B(Hu).

We may write u = a⊗ ũ for some a ∈ πu(B)′ ∩B(K) and ũ ∈Mn, and πu(w1) = πK(w1)⊗ z for some z ∈ C

where πK is the restriction of πu on K. Hence,

πu(U) = πu(w1)u = πK(w1)a⊗ zũ.

Similarly, we can write πu(V ) as a tensor. By (6.1.4), B oσ Aθ(n) 'Mn(B).

Now we consider σ to be a general action. We define a Z2
n action σ̂ on BoσAθ(n): For x =

∑
k,l bklU

kV l ∈

B oσ Aθ(n),

σ̂1,0(x) =
∑
k,l

σ1,0(bkl)U
kV l, σ̂0,1(x) =

∑
k,l

σ0,1(bkl)U
kV l.

Similarly, we define a Z2
n action, still denoted by σ̂, on the universal crossed product B oσ Z2

n: For x =∑
k,l bklλ(k, l) ∈ B oσ Z2

n,

σ̂1,0(x) =
∑
k,l

σ1,0(bkl)λ(k, l), σ̂0,1(x) =
∑
k,l

σ0,1(bkl)λ(k, l).

Then by universality we have (BoσAθ(n))oσ̂Z2
n = (BoσZ2

n)oσ̂Aθ(n). By the crossed product construction,

the action σ̂ on B oσ Z2
n is spatially implemented by w1 = 1⊗ λ(1, 0) and w2 = 1⊗ λ(0, 1). More precisely,

π(σ̂(1,0)(x)) = (1⊗ w1)π(x)(1⊗ w∗1), π(σ̂(0,1)(x)) = (1⊗ w2)π(x)(1⊗ w∗2),

where π(x) = ⊕g∈Z2
n
σg−1(x); see e.g. [BO08] for more details. By what we proved in the first paragraph, we

find that (B oσ Z2
n) oσ̂ Aθ(n) 'Mn(B oσ Z2

n). But Mn(B oσ Z2
n) = Mn(B) oσ Z2

n where we have denoted

the inflated action id⊗σ still by σ. It is well known that there exists a faithful conditional expectation E :

Mn(B)oσZ2
n →Mn(B). Recall that we have the canonical embedding ι : BoσAθ(n) ↪→ (BoσAθ(n))oσ̂Z2

n.
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We have the following diagram

(B oσ Aθ(n)) oσ̂ Z2
n
' // Mn(B) oσ Z2

n

E

��
B oσ Aθ(n)

ι

OO

// Mn(B)

Note that the multiplicative domain of E is Mn(B), restricted on which E is a ∗-homomorphism. Moreover,

B oσ Aθ(n) is contained in the multiplicative domain of E and clearly E(B oσ Aθ(n)) = Mn(B). But E ◦ ι

is faithful. Hence, we find that B oσ Aθ(n) 'Mn(B).

In the following we show the convergence of the matrix algebras to the rotation algebra A2d
Θ . Similar to

the 2 dimensional case, we define the matrix level Lip-norms on (a dense subspace of) AΘ as in (4.3.7):

|||x|||m = max{‖ id⊗δ(x)‖Mm⊗minAΘ⊗minHcψ
, ‖ id⊗δ(x)‖Mm⊗minAΘ⊗minHrψ

}.

Similarly, by Remark 4.3.6 we may define the matrix level Lip-norms on Mnd once we choose a set of

generators of Mnd . The Lip-norms on AΘ and Mnd will also be denoted by L∞(·) and Ln(·), respectively,

especially when we consider continuous fields of compact quantum metric spaces. We follow the same plan

as in Section 5.2. Let u1(Θ), ..., u2d(Θ) be the generators of A2d
Θ . In particular, u1(0), ..., u2d(0) generate

C(T2d). Following Definition 6.1.2, we consider the C∗-algebra

A2d
1/n := Aθ1,2(n) oσ34

Aθ3,4(n) oσ56
· · ·oσ2d−1,2d

Aθ2d−1,2d
(n), (6.1.5)

where the action σ2k−1,2k = (αk, βk), k = 2, ..., d is defined by

αk(u1) = u∗2k−1u1u2k−1 = e2πiθ1,2k−1u1, ..., αk(u2k−2) = u∗2k−1u2k−2u2k−1 = e2πiθ2k−2,2k−1u2k−2,

βk(u1) = u∗2ku1u2k = e2πiθ1,2ku1, ..., βk(u2k−2) = u∗2ku2k−2u2k = e2πiθ2k−2,2ku2k−2,

uqi = 1, i = 1, ..., 2d, θi,j =
1

n
, 1 ≤ i < j ≤ n.

Then by Proposition 6.1.3, we have A2d
1/n ' Mnd . For definiteness, let us fix the generators in the iterated

crossed product and define v1(n) = u1, ..., v2d(n) = u2d. Then, we have

vi(n)vj(n) = e
2πi
n vj(n)vi(n), 1 ≤ i < j ≤ 2d. (6.1.6)
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We define a map ρn : C(T2d) → Mnd by ρn(u1(0)i1 · · ·u2d(0)i2d) = v1(n)i1 · · · v2d(n)i2d . Let Λdk =

{0,±1, ...,±k}d and

CΛ2d
k (T2d) =

{
x ∈ C(T2d) : x =

∑
|i1|≤k,...|i2d|≤k

aiu1(0)i1 · · ·u2d(0)i2d , ai ∈ C
}

Similarly, in the following, we will consider

M
Λ2d
k

nd
=
{
x ∈Mnd : x =

∑
|i1|≤k,...|i2d|≤k

aiu1(n)i1 · · ·u2d(n)i2d , ai ∈ C
}
.

and

AΛ2d
k

Θ =
{
x ∈ A2d

Θ : x =
∑

|i1|≤k,...|i2d|≤k

aiu1(Θ)i1 · · ·u2d(Θ)i2d , ai ∈ C
}
.

Lemma 6.1.4. For any ε > 0 and k ≥ 0, there exists N > 0 such that for any n > N , the map ρn|
CΛ2d

k (T2d)
:

CΛ2d
k (T2d)→M

Λ2d
k

nd
is a 1 + ε cb-isometry and a 1 + ε Lip-isometry.

Proof. By the definition of ρn and the commutation relations (6.1.6), we can generalize directly Lemma 5.1.8

to get a faithful ∗-homomorphism (ρn)• : C(T2d) →
∏
ωMnd , where

∏
ωMnd is the von Neumann algebra

ultraproduct. Now we repeat the proof of Proposition 5.2.9 with the result of Haagerup–Rørdam replaced

by Theorem 6.1.1. The claim of 1 + ε Lip-isometry follows the same argument as for Lemma 4.3.8. We leave

the details to the reader.

Suppose θrs = prs
q , 1 ≤ r < s ≤ q. We consider the iterated crossed product following the notation

introduced in Definition 6.1.2

A2d
Θ (q) := Aθ12

(q) oσ34
Aθ34

(q) oσ3 · · ·oσd Aθ2d−1,2d
(q), (6.1.7)

where the action σk, k = 2, ..., d is defined by

σk1,0(u1) = u2k−1u1u
∗
2k−1 = e−2πiθ1,2k−1u1, ..., σ

k
1,0(u2k−2) = u2k−1u2k−2u

∗
2k−1 = e−2πiθ2k−2,2k−1u2k−2,

σk0,1(u1) = u2ku1u
∗
2k = e−2πiθ1,2ku1, ..., σ

k
0,1(u2k−2) = u2ku2k−2u

∗
2k = e−2πiθ2k−2,2ku2k−2,

uqi = 1, i = 1, ..., 2d.

For definiteness, in the following result the generators of A2d
Θ (q) will be denoted by uΘ

j (q), j = 1, ..., 2d.

Proposition 6.1.5. Let Θ = (θrs)
2d
r,s=1 and Θn = (θnrs)

2d
r,s=1 be two skew symmetric matrices such that
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θrs = prs
q and θnrs = θrs + 1

n . For any ε > 0 and k ≥ 0, there exists N > 0 such that for n > N the maps

ρΘ
n : AΛ2d

k

Θ → [A2d
Θn(nq)]Λ

2d
k defined by

ρΘ
n (u1(Θ)i1 · · ·u2d(Θ)i2d) = [uΘn

1 (qn)]i1 · · · [uΘn

2d (qn)]i2d , |ij | ≤ k, j = 1, ..., 2d

is a 1 + ε cb-isometry and a 1 + ε Lip-isometry. Moreover, we have A2d
Θql+1 (ql+2) 'Mq(l+1)d .

Proof. Similar to (5.1.8), we define

σ : A2d
Θ → A2d

Θ (q)⊗min C(T2d)

σ(u1(Θ)k1 · · ·u2d(Θ)k2d) = uΘ
1 (q)k1 · · ·uΘ

2d(q)
k2d ⊗ u1(0)k1 · · ·u2d(0)k2d .

Since the canonical trace on A2d
Θ is faithful (see e.g. [Rie90]) and σ is trace preserving, σ is a faithful

∗-homomorphism. Recall that by (6.1.5) and Proposition 6.1.3, A2d
1/n is a matrix algebra. We define

ρΘ
n = (id⊗ρn) ◦ σ : A2d

Θ → A2d
Θ (q)⊗min A2d

1/n

u1(Θ)k1 · · ·u2d(Θ)k2d 7→ uΘ
1 (q)k1 · · ·uΘ

2d(q)
k2d ⊗ v1(n)k1 · · · v2d(n)k2d =: ûk1

1 · · · û
k2d

2d .

By Lemma 6.1.4, for any ε > 0 and k ≥ 0 there exists N > 0 such that for all n > N

ρΘ
n |AΛ2d

k
Θ

: AΛ2d
k

Θ → A2d
Θ (q)⊗A2d

1/n

is a 1 + ε cb-isometry and a 1 + ε Lip-isometry onto its image. To identify the image of ρΘ
n , note that by

(6.1.6) we have

ûrûs = e2πi(θrs+
1
n )ûsûr, 1 ≤ r < s ≤ 2d.

If we let θnrs = θrs+ 1
n = nprs+q

nq , then we may define the iterated crossed product AΘn(nq) in the same way as

(6.1.7), where the entries of Θn are given by θnrs. AlthoughAΘn(nq) is universally defined, dimension counting

shows that we can take û1, ..., û2d as its universal generators. Therefore, we have ρΘ
n (A2d

Θ ) = A2d
Θn(nq), and

ûj = uΘn

j (qn), j = 1, ..., 2d.

Similar to the case of the 2-dimensional tori, we can choose a subsequence nl so that û1, ..., û2d generate

Mndl
. Indeed, since ûrûs = e

2πi(θrs+
1
nl

)
ûsûr for all r < s, by Proposition 6.1.3, we just need (θrsnl+1, nl) = 1
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for all r, s to verify that C∗(ρΘ
nl

(A2d
Θ )) ' Mndl

. But θrs = prs
q , it suffices to take nl = ql+1 as in Lemma

5.1.10. Then we find that

θnlrs =
qlprs + 1

ql+1
and A2d

Θnl (nlq) = A2d
Θnl (nl) 'Mndl

.

Note that the generators of Mndl
may be different from v1(nl), ..., v2d(nl). Thus M

Λ2d
k

ndl
refers to the subspace

of Mndl
generated by ûj11 · · · û

j2d
2d for |ji| ≤ k, i = 1, ..., 2d.

Suppose θrs may not be written as prs
q . Note that

{(prs
q

)1≤r<s≤2d, 0 6= q ∈ Z, prs ∈ Z, |prs| ≤ q, (prs, q) = 1}

is dense in [−1, 1]d(2d−1). Following the same argument as that of Proposition 5.2.10 with the result of

Haagerup–Rørdam replaced by Theorem 6.1.1, we find maps

ρΘ
n : A

Λ2d
k

Θ → [A2d
Θ̃n

(nq)]Λ
2d
k (6.1.8)

which is a 1+ε cb-isometry and a 1+ε Lip-isometry. Here Θ̃n and q are chosen such that Θ̃ = (θ̃rs = prs
q )nr,s=1

is close to Θ and Θ̃n = (θ̃nrs = prs
q + 1

n )nr,s=1. Moreover, we have A2d
Θ̃ql+1 (ql+2) 'Mq(l+1)d .

Let S = {ρΘ
ndl

(x) : x =
∑
~j=(j1,...,j2d)∈Λ2d

k
a~ju1(Θ)j1 · · ·u2d(Θ)j2d , k ∈ N, l ∈ N̄}. Here ρΘ

ndl
is 1 + 1

l cb-

isometry and 1 + 1
l Lip-isometry found in Lemma 6.1.4, Proposition 6.1.5 and (6.1.8). Here nl = ql+1 for

some q chosen appropriately as above. The following is a consequence of these results.

Proposition 6.1.6. ({(Mndl
)sa, Lnl}l∈N̄, S) is a cb-continuous field of compact quantum metric spaces.

We consider a conditionally negative length function φn on Z2d
n for n ∈ N̄ as in Section 4.3. For example,

we can take φn(k1, ..., k2d) = ψn(k1) + · · · + ψn(k2d) where ψn is given in (4.2.4). We find a symmetric

Markov semigroup on L(Z2d
n ), which induces a symmetric Markov semigroup on Mnd as in (5.1.3). Lemma

5.1.2 and Proposition 5.1.3 extend directly to the current situation.

Theorem 6.1.7. There exists a sequence of matrix algebras Mndj
converging to A2d

Θ in the R-cb quantum

Gromov–Hausdorff distance.

Proof. First we need a tail estimate which is an extension of Theorem 5.2.12. This follows the same proof

as that of Theorem 5.2.12. Indeed, similar to the proof of Lemma 5.1.18, given ε > 0, we may choose k and

then define φnk,η(j1, ..., j2d) = ϕnk,η(j1) · · ·ϕnk,η(j2d), where ϕnk,η(·) is the multiplier found in Lemma 4.4.4 and

this time we take η ∈ (0, ε
2d(2k+1)2d ). Then we use (possibly extended versions of) Lemma 5.1.1, Lemma

91



5.1.4, Corollary 5.1.7, Proposition 5.1.3 (or Corollary 4.3.7) and Remark 4.3.9 as explained above. The rest

of the argument is a simple extension of the proof of Theorem 5.2.13.

6.2 Application to Gromov–Hausdorff propinquity

In this section we follow [Lat15] to generalize Latrémolière’s result on convergence of matrix algebras to

rotation algebras in the sense of Gromov–Hausdorff propinquity. For a fixed permissible function F (see

Definition 2.18 in [Lat15]), denote by ΛF ((A,LA), (B,LB)) the Gromov–Hausdorff propinquity between

two compact quantum metric spaces, in the sense of [Lat15]; see Definition 3.54. Recall that according

to [Lat15], if A and B are two unital C∗-algebras, a bridge γ = (D,ω, πA, πB) is given by a unital C∗-

agebra D, two unital ∗-monomorphisms πA : A ↪→ D and πB : B ↪→ D and ω ∈ D such that the set

S(A|ω) := {ϕ ∈ S(A) : ∀d ∈ D,ϕ(d) = ϕ(dω) = ϕ(ωd)} is not empty, where S(A) denotes the state space of

A; see Definition 3.42. In the following let F : [0,∞)4 → [0,∞) be defined by F (x, y, lx, ly) = xly + ylx, for

x, y, lx, ly ∈ [0,∞) (see Definition 2.18 in [Lat15]).

Lemma 6.2.1. Let (A, |||.|||A) and (B, |||.|||B) be two F -quasi-Leibniz compact quantum metric spaces in the

sense of [Lat15]; see Definition 2.44. If there exist two ∗-homomorphisms πA : A ↪→ B(H) and πB : B ↪→

B(H) and ε > 0 such that the following hold:

1. For all a ∈ A such that |||a|||A ≤ 1, there exists b ∈ B such that |||b|||B ≤ 1 and ‖πA(a)− πB(b)‖D < ε,

2. For all b ∈ B such that |||b|||B ≤ 1, there exists a ∈ A such that |||a|||A ≤ 1 and ‖πA(a)− πB(b)‖D < ε,

then ΛF ((A, |||.|||A), (B, |||.|||B)) ≤ ε.

Proof. We refine the proof of Lemma 3.79 in [Lat15] by taking a trek (see Definition 3.49 in [Lat15]) consisting

of a single bridge (see Definition 3.42 in [Lat15]), namely γ = (B(H), id, πA, πB). Note that in this case,

since any state on A or B can be extended to a state on B(H), and for ω = id, S(A|ω) = S(A), with the

notation of [Lat15], we have the height ζ(γ||||.|||A, |||.|||B) = 0 (see Definition 3.46 in [Lat15]). On the other

hand, if (1) and (2) hold, then by definition, the reach ρ(γ||||.|||A, |||.|||B) = ε (see Definition 3.45 in [Lat15]).

Now by Definitions 3.47 and 3.54 in the aforementioned paper, we have ΛF ((A, |||.|||A), (B, |||.|||B)) ≤ ε.

Definition 6.2.2. Let (An, |||.|||An) and (B, |||.|||B) be F -quasi-Leibniz quantum compact metric spaces in the

sense of [Lat15]. We say (An, |||.|||An) converges to (B, |||.|||B) in the strong Gromov–Hausdorff propinquity

sense, if the unitization of (K ⊗ An, |||.|||K⊗An) converges to the unitization of (K ⊗ B, |||.|||K⊗B) in the

Gromov–Hausdorff propinquity sense, where K is the space of compact operators on `2.
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Recall the definition of A2d
Θn(nq) in Proposition 6.1.5. By Definitions 2.21 in [Lat15] and the existence of

a derivation δ as defined in (4.3.5), (A2d
Θ , |||.|||) and (A2d

Θn(nq), |||.|||) are Leibniz pairs. Indeed, the conditions

in the definition were proved in [JM10, JMP14]; see also [Zen14] for more remarks on the Lip-norms.

Furthermore, let δc and δr denote the column and row structure derivations, respectively (see Lemma 4.3.4).

Note that Remark 4.3.6 applies to the algebra A2d
Θn(nq) as well by choosing 2d generators. Then by (4.3.7),

for x ∈ A2d
Θn(nq), n ∈ N, |||x||| = max{‖δc(x)‖, ‖δr(x)‖}. Choose the multiplier ϕnk,η on Zdn as φnk,η in the

proof of Theorem 6.1.7. Note that

‖δc(x)‖ = sup
k≥1,η>0

‖δc(Tϕnk,η (x))‖.

But Tϕnk,η is a finite rank map and δc is continuous on a fixed finite dimensional space. Similar argument

holds true for ‖δr(x)‖. It follows that |||·||| is a lower semicontinuous Lip-norm. Therefore, by Definition 2.44

in [Lat15] and by the choice of F , A2d
Θ (n) and A2d

Θ are F -quasi-Leibniz quantum compact metric spaces.

Here, in fact they are Leibniz quantum compact metric spaces. For notational convenience, we will write

A2d
Θ (n) or even AΘ(n) for A2d

Θn(nq) in the following by abuse of notation.

Let uΘ
1 (n), ..., uΘ

2d(n) denote the generators of A2d
Θ (n) and uΘ

1 , ..., u
Θ
2d denote the generators of A2d

Θ . In

the following let

l = (l1, ..., l2d) ∈ Z2d, λΘ
n (l) = uΘ

1 (n)l1 ...uΘ
2d(n)l2d and λΘ(l) = (uΘ

1 )l1 ...(uΘ
2d)

l2d .

We understand that A2d
Θ (∞) = A2d

Θ and uΘ
i (∞) = uΘ

i , for 1 ≤ i ≤ 2d, are the generators of A2d
Θ .

Lemma 6.2.3. Let m > 0 and ψ be the length function associated with the heat semigroup that was introduced

previously. There exists a constant C = C(m,ψ) such that for n > 2m (including n = ∞) and all y ∈

K ⊗AΛ2d
m

Θ (n), we have ‖ẙ‖
K⊗AΛ2d

m
Θ (n)

≤ C|||̊y|||
K⊗AΛ2d

m
Θ (n)

.

Proof. Recall from Section 4.3 the definition of ∇p(A2d
Θ (n)). For x ∈ Sp(∇p(A2d

Θ (n))), by (4.3.6) we have

‖x‖Sp(∇p(A2d
Θ (n))) = max{‖Γ(x, x)1/2‖p, ‖Γ(x∗, x∗)1/2‖p}.

Let p = 2 and x =
∑
k ak ⊗ λΘ

n (k) ∈ S2(∇2(A2d
Θ (n))). Then we have

‖x‖2S2(∇2(A2d
Θ (n))) =

∑
k

‖ak‖2S2
ψ(k).
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Similar to (4.3.10), we define for fixed k,

φ : ∇2(A2d
Θ (n))→ C,

∑
l

alλ
Θ
n (l) 7→ akψ(k).

Then we have ‖φ‖cb = ‖φ‖ ≤ 1. Note that by [Pis98]*Lemma 1,7, we have

‖φ‖cb = ‖ idS2
⊗φ : S2(∇2(A2d

Θ (n)))→ S2‖ = ‖ idK⊗φ : K ⊗min ∇2(A2d
Θ (n))→ K‖.

Hence, we have for x =
∑
k ak ⊗ λΘ

n (k) ∈ K ⊗min ∇2(A2d
Θ (n)),

sup
k
ψ(k)1/2‖ak‖K ≤ ‖x‖K⊗min∇2(A2d

Θ (n)). (6.2.1)

Let y =
∑
k∈Λ2d

m
bkλ

Θ
n (k) ∈ ∇0

2(AΛ2d
m

Θ (n)), where∇0
2(A2d

Θ (n)) consists of the mean-zero elements of∇2(AΛ2d
m

Θ (n)).

Define a map ν : ∇0
2(AΛ2d

m

Θ (n)) → `∞(Λ2d
m ) by ν(y) = (bk)k∈Λ2d

m
and let µ be the inverse of η. We have the

following chain of maps

(AΛ2d
m

Θ (n), |||·|||) id // ∇0
2(AΛ2d

m

Θ (n))
ν // `∞(Λ2d

m )
µ // (AΛ2d

m

Θ (n), ‖ · ‖).

By Corollary 4.3.5, we have ‖ id : (AΛ2d
m

Θ (n), |||·|||) → ∇0
2(AΛ2d

m

Θ (n))‖cb ≤ c for some constant c. We deduce

from (6.2.1) that

‖ν : ∇0
2(AΛ2d

m

Θ (n))→ `∞(Λ2d
m )‖cb ≤

1

inf k∈Λ2d
m

ψ(k)6=0

ψ(k)1/2
.

Moreover, ‖µ : `∞(Λ2d
m ) → AΛ2d

m

Θ (n)‖cb ≤ (2m + 1)d, since the cardinality of Λ2d
m is (2m + 1)d. This proves

that ‖µ ◦ ν ◦ id ‖cb ≤ C, for n > 2m and some C = C(m,ψ).

Suppose ε > 0, k ∈ N and ϕnk,η is the multiplier on Zdn chosen as φnk,η in the proof of Theorem 6.1.7,

which is supported on Λ2d
m . We define the following multipliers for n > 2m,n ∈ N

Tϕnk,η (λΘ
n (l)) = ϕnk,η(l)λΘ

n (l),

such that for n > 2m we have

‖Tϕnk,η : (AdΘ(n), ‖.‖)→ (AdΘ(n), ‖.‖)‖cb ≤ 1 + η,
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and

‖Tϕk,η : (AdΘ(n), |||.|||)→ (AdΘ(n), |||.|||)‖cb ≤ 1 + η,

for all n > 2m,n ∈ N.

Corollary 6.2.4. There exists N > 0 such that the identity map (A2d
Θ (n), |||.|||)→ (A2d

Θ (n), ‖.‖) is completely

bounded uniformly for n > N including n =∞.

Proof. Let ε > 0. By Theorem 5.2.12, there exist η < ε, k = k(ε) and a multiplier ϕnk,η and N > 0 such that

‖Tϕnk,η‖cb ≤ 1 + η. For n > N , we have

‖ id−Tϕnk,η : (A2d
Θ (n), |||.|||)→ (A2d

Θ (n), ‖.‖)‖cb ≤ ε.

Let ε = 1 and supp(ϕnk,η) = Λ2d
m , for some m = m(k, η) independent of n. Then by Lemma 6.2.3, we have

‖(AΛ2d
m

Θ (n), |||.|||)→ (AΛ2d
m

Θ (n), ‖.‖)‖cb ≤ C(m,ψ),

where C(m,ψ) is the constant in the Lemma. Then for the maps id : (A2d
Θ (n), |||.|||) → (A2d

Θ (n), ‖.‖),

Tϕnk,η : (A2d
Θ (n), |||.|||)→ (A2d

Θ (n), |||.|||), we have

‖ id ‖cb ≤ ‖ id−Tϕnk,η‖cb + ‖Tϕnk,η‖cb

≤ 1 + ‖ id |
AΛ2d

m
Θ (n)

: (A2d
Θ (n), |||.|||)→ (A2d

Θ (n), ‖.‖)‖cb‖Tϕnk,η‖cb

≤ 1 + C(m,ψ)(1 + ε).

Hence

sup
n
‖ id : (A2d

Θ (n), |||.|||)→ (A2d
Θ (n), ‖.‖)‖cb ≤ c,

for some constant c independent of n.

Let nj be the subsequence we found in the proof of Proposition 6.1.5. Then we have C∗(ρΘ
nj (A

2d
Θ )) = Mndj

,

and A2d
Θ (nj) = Mndj

. Let Bnj and B∞ denote the spaces A2d
Θ (nj) and A2d

Θ , respectively. In the following we

use the index n instead of nj , for simplicity. For any m > 0, let Bmn and Bm∞ denote the subspaces AΛ2d
m

Θ (n)

and AΛ2d
m

Θ , respectively.

In the following, we consider the vector space

Poly =
⋃
k≥1

{p : p =
∑

|i1|,...,|i2d|≤k

ai1...i2dx
i1
1 ...x

i2d
2d }.
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For simplicity we denote an element x =
∑
|i1|,...,|i2d|≤k ai1...i2dx

i1
1 ...x

i2d
2d ∈ Poly by

∑
i∈Λ2d

k
aix(i). Let g1,...,

g2d denote the generators of the full group C∗-algebra C∗(F2d). Define the following ∗-homomorphisms

σnΘ : C∗(F2d)→ Bn, σΘ : C∗(F2d)→ B∞

by σΘ(gi) = uΘ
i and σnΘ(gi) = uΘ

i (n), for 1 ≤ i ≤ 2d and n ∈ N. Then we get a ∗-homomorphism

σ•Θ : C∗(F2d)→
∏
n

Bn = M∞

defined by σ•Θ = (σnΘ)n. Note that I = c0({Bn}) is an ideal in M∞. Hence we get the quotient map

q : M∞ →M∞/I. Let N = N∪{∞}. Since by Proposition 6.1.6, {(Bn)n∈N} is a continuous field over N, we

have

‖q ◦ σ•Θ(x)‖ = ‖σΘ(x)‖. (6.2.2)

Define B̂ = q ◦ σ•Θ(C∗(F2d)). By (6.2.2), since norms on B̂ and B∞ coincide, B̂ is isomorphic to B∞. Let

B = q−1(B̂) = {σ•Θ(a) + z : a ∈ C∗(F2d), z ∈ I}.

B is the C∗-algebra generated by c0({Bn}) and σ•Θ(C∗(F2d)). Then B is a C(N)-algebra with fiber maps

ηn : B → Bn and η∞ = q|B : B → B∞,

where ηn is the projection of B onto Bn. That is, ηn((xj)j + z) = xn, for (xj)j ∈ M∞ and z ∈ I, and

η∞(σ•Θ(x) + y) = σΘ(x), for x ∈ C∗(F2d), y ∈ I. Then the following sequence is exact

0→ I → B → B̂ ∼= B∞ → 0.

Note that both I and B∞ are nuclear C∗-algebras (recall that B∞ is an iterative cross product). Hence B

is nuclear (see Proposition 10.1.3 in [BO08]). Therefore, similar to Theorem 6.1.1, by the aforementioned

result of Kirchberg and Blanchard (see Theorem 3.2 in [Bla97]), there exists a Hilbert space H and a ∗-

homomorphism π : B → C(N) ⊗ B(H). Note that π maps C(N) to C(N) canonically. Let ιn : Bn → B be
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defined by ιn(y) = (yl)l∈N, where

yl =


y l = n,

0 else

for y ∈ Bn. Therefore, we get the following maps

πn : Bn → C(N)⊗ B(H), σ : C∗(F2d)→ B and π∞ : B∞ → C(N)⊗ B(H)

given by πn = π ◦ ιn, σ = ιn ◦ σnΘ and define π∞(x) as follows. For any a ∈ Poly, let an = πn(σnΘ(a)). Then

(an)n is a convergent sequence in C(N)⊗B(H). Hence limn an = a∞, for some a∞. Define π∞(σΘ(a)) := a∞.

The following diagram summarizes this argument

M∞
q // M∞/I

C∗(F2d)

σ•Θ

dd
q◦σ•Θ

99

σ•Θ

zz

q◦σ•Θ

%%
0 // I // B //?�

OO

B̂
?�

OO

B∞ // 0

where the last row is short exact.

Lemma 6.2.5. With the notation above, the following hold

1. limn→∞ ‖πn(λΘ
n (l))− π∞(λΘ(l))‖ = 0,

2. Let ε > 0 and m ∈ N. There exists N ∈ N, such that for all n > N and x =
∑
l∈Λ2d

m
al⊗x(l) ∈ K⊗Poly,

we have

‖ id⊗(πn ◦ σnΘ)(x)− id⊗(π∞ ◦ σΘ)(x)‖B(`2⊗H) < ε sup
l∈Λ2d

m

‖al‖K.

Proof. To prove (1), let g = gl11 ...g
l2d
2d and π, σ, σnΘ be as above. Let (yn)n = π ◦ σ(g) ∈ C(N) ⊗ B(H), for

some (yn)n∈N ∈ C(N). Therefore, limn yn = y∞. Moreover, we have

yn = π(σ(g)1{n}) = π(ιn(σnΘ(g))) = πnσ
n
Θ(g),

where 1{n} denotes the characteristic function of {n}. Since limn→∞ yn = y∞ in C(N)⊗ B(H), this implies

that

lim
n→∞

‖πn(σnΘ(g))− π∞(σΘ(g))‖ = 0.
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Hence, we get

lim
n→∞

‖πn(λΘ
n (l))− π∞(λΘ(l))‖ = 0,

for all l ∈ Zd.

To prove (2), let ε > 0 and δ = ε
(2m+1)2d . Using (1) and the triangle inequality, there exists N ∈ N such

that for all n > N , we have

‖ id⊗(πn ◦ σnΘ)(x)− id⊗(π∞ ◦ σΘ)(x)‖ = ‖
∑
l∈Λ2d

m

al ⊗ (πn(λΘ
n (l))− π∞(λΘ(l)))‖

≤ (
∑
l∈Λ2d

m

‖al‖)δ ≤ (2m+ 1)2d sup
l∈Λ2d

m

‖al‖
ε

(2m+ 1)2d
= ε sup

l∈Λ2d
m

‖al‖,

which proves the assertion.

In the following, let πn and π∞ be as defined above.

Theorem 6.2.6. For every noncommutative torus A2d
Θ , there exists a sequence of matrix algebras with

suitable Lip-norms converging to A2d
Θ in the sense of strong Gromov–Hausdorff propinquity.

Proof. Consider the bridge γ = (B(`2 ⊗ H), id⊗π∞, id⊗πn, id). Then by Lemma 6.2.1, it suffices to show

that there exists a subsequence nj such that for any ε > 0 and the unitization of K⊗B∞ and K⊗Bn (which

we will also denote by K ⊗B∞ and K ⊗Bn, respectively), the following hold:

1. For all a ∈ K⊗B∞ such that |||a||| ≤ 1, there exists b ∈ K⊗Bn such that |||b||| ≤ 1 and ‖ id⊗π∞(a)−

id⊗πnj (b)‖ < ε,

2. For all b ∈ K⊗Bn such that |||b||| ≤ 1, there exists a ∈ K⊗B∞ such that |||a||| ≤ 1 and ‖ id⊗π∞(a)−

id⊗πnj (b)‖ < ε.

Let ε > 0. By Theorem 5.2.12, there exist 0 < η < ε, k = k(ε) and multipliers ϕnk,η on Bn supported on

Λ2d
m , for some m = m(k, η) independent of n, such that ‖Tϕnk,η‖cb ≤ 1 + η and for all n > 2m we have

‖ id−Tϕnk,η : (Bn, |||.|||)→ (Bn, ‖.‖)‖cb ≤
ε

4
. (6.2.3)

In the following, by abuse of notation, for all n ∈ N, we denote id⊗Tϕnk,η : (K⊗Bn, |||·|||)→ (K⊗Bn, |||·|||) by

Tϕnk,η . For any x in K⊗Bmn or K⊗Bm∞, let x̂ denote the corresponding element in K⊗Poly. Let δ < ε
4C(m,ψ) ,

where C(m,ψ) is the constant from Lemma 6.2.3. Using Lemma 6.2.5 (2) and Lemma 6.2.3, we can choose
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a subsequence nj such that for all x ∈ K ⊗Bnj , by denoting x̃ = T
ϕ
nj
k,η

(̊x), we have

‖ id⊗(πnj ◦ σ
nj
Θ )(ˆ̃x)− id⊗(π∞ ◦ σΘ)(ˆ̃x)‖B(`2⊗H) (6.2.4)

≤ δ sup
l∈Λ2

m

‖al‖K ≤
ε

4
|||x̃|||K⊗Bmnj ,

where T̊
ϕ
nj
k,η

(x) denotes the mean-zero part of T
ϕ
nj
k,η

(x) and al are the coefficients of T
ϕ
nj
k,η

(x) =
∑
l∈Λ2d

m
al ⊗

λΘ(l). From now on we abuse the notation and drop the index j of nj .

To prove (1), let a ∈ K⊗B∞ such that |||a||| ≤ 1. Let x = Tϕk,η (a) ∈ K⊗Bm∞. Hence x̂ ∈ K⊗Poly. Let

b′ = id⊗σnΘ(x̂) ∈ K ⊗Bn. Then by (6.2.3), (6.2.4) we have

‖ id⊗π∞(a)− id⊗πn(b′)‖ = ‖ id⊗π∞(̊a)− id⊗(πn ◦ σnΘ)(ˆ̊x)‖

≤ ‖ id⊗(π∞ ◦ σΘ)(ˆ̊a)− id⊗(π∞ ◦ σΘ)(ˆ̊x)‖

+ ‖ id⊗(π∞ ◦ σΘ)(ˆ̊x)− id⊗(πn ⊗ σnΘ)(ˆ̊x)‖

≤ ‖̊a− Tϕk,η (̊a)‖+
ε

4
|||Tϕk,η (̊a)|||

≤ ε

4
+
ε

4
(1 + η)

≤ 3ε

4
.

Let b = b′

|||b′||| . Then |||b||| ≤ 1. Recall from Proposition 6.1.5 that for ε′ > 0, the map ρΘ
n : Bm∞ → Bmn is a

1 + ε′ Lip-isometry. Let ε′ = η. Note that b′ = id⊗ρΘ
n (σΘ(x̂)). Hence, |||b′||| ≤ (1 + η)|||x||| ≤ (1 + η)2 and

we have

‖b′ − b‖ = (
|||b′||| − 1

|||b′|||
)‖b′‖ ≤ ((1 + η)|||x||| − 1)

‖b′‖
|||b′|||

≤ (η2 + 2η)
‖b′‖
|||b′|||

.

By Corollary 6.2.4, ‖b
′‖

|||b′||| ≤ K for some K > 0. Therefore, if we choose η small enough, we have

‖ id⊗πn(b)− id⊗πn(b′)‖ ≤ ‖b− b′‖ ≤ K(η2 + 2η) ≤ ε

4
,

which proves (1).

To prove (2), let a subsequence nj which we will denote by n, be chosen as above. Let b ∈ K ⊗ Bn be

such that |||b||| ≤ 1. Let b̊ denote the mean-zero part of b. Therefore, we can write b = tn1 + b̊. Let

b′ = Tϕnk,η (̊b) =
∑

06=l∈Λ2d
m

al ⊗ λΘ
n (l) ∈ K ⊗Bn.
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Then by (6.2.3), we have ‖̊b − b′‖ ≤ ε
4 |||b|||. Let b̂′ =

∑
l∈Λ2

m
al ⊗ x(l) be the corresponding element in

K ⊗ Poly. Choose a′ = σΘ(b̂′) ∈ K ⊗B∞. Then using (6.2.4), we get

‖ id⊗π∞(a′)− id⊗πn(b)‖ ≤ ‖ id⊗(π∞ ◦ σΘ)(b̂′)− id⊗(πn ◦ σnΘ)(b̂′))‖

+ ‖ id⊗(πn ◦ σnΘ)(b̂′)− id⊗(πn ◦ σnΘ)(b̂)‖

≤ ε

4
|||b′|||+ ‖b− b′‖

≤ (
ε

4
(1 + η) +

ε

4
)|||b|||

Now let a = a′

|||a′||| . Similar to (1), using the fact that (ρΘ
n )−1 is a 1 + η Lip-isometry, we get ‖a′ − a‖ ≤

K(η2 + 2η). Therefore, choosing η small enough, we get

‖ id⊗π∞(a)− id⊗π∞(ã)‖ ≤ ‖a− a′‖ ≤ K(η2 + 2η) ≤ ε

4
.

Hence (2) follows.

(1) and (2) together with Lemma 6.2.1 prove that ΛF (K⊗B∞,K⊗Bn) < ε, which proves the assertion.

Remark 6.2.7. In Sections 4.4 and 5.1, we chose p > 2 for our estimates. Note that in the higher-dimensional

case, the choice of p depends on the dimension of the rotation algebra and the choice of the semigroup.
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