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Abstract

In the first part of this thesis, we will follow Kirchberg’s categorical perspective to establish new notions
of WEP and QWEP relative to a C*-algebra, and develop similar properties as in the classical WEP and
QWEP. Also we will show some examples of relative WEP and QWEP to illustrate the relations with the
classical cases.

The focus of the second part of this thesis is the approximation of rotation algebras in the quantum
Gromov—Hausdorff distance. We introduce the completely bounded quantum Gromov—Hausdorff distance
and show that for even dimensions, the higher dimensional rotation algebras can be approximated by matrix
algebras in this sense. Finally, we show that for even dimensions, matrix algebras converge to the rotation
algebras in the strongest form of Gromov—Hausdorff distance, namely in the sense of Latrémoliere’s Gromov—

Hausdorff propinquity.
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Chapter 1

Introduction

In the first part of this thesis, we investigate a new notion of operator-valued WEP and QWEP. This part is
joint work with Jian Liang [LR14]. Let us recall that the notions of weak expectation property (abbreviated
as WEP) were introduced by E. Christopher Lance in his paper [Lan73] of 1973, as a generalization of
nuclearity of C*-algebras. In 1993, Eberhard Kirchberg [Kir93] revealed remarkable connections between
tensor products of C*-algebras and Lance’s weak expectation property. He defined the notion of QWEP as a
quotient of a C*-algebra with the WEP, and formulated the famous QWEP conjecture that all C*-algebras
are QWEP. He showed a vast amount of equivalences between various open problems in operator algebras.
In particular, he showed that the QWEP conjecture is equivalent to an affirmative answer to the Connes
Embedding Problem.

It is known that for two QWEP von Neumann algebras M and N, and an amenable C*-subalgebra A,
the reduced amalgamated free product M x4 N is also QWEP [Jun05]. But the answer is not known for
a general C*-subalgebra A. To reduce the complexity of the problem, we consider the property of being
QWERP relative to a C*-algebra A, We are interested to see if in the case where both M and N are QWEP
relative to A, whether M x4 N is QWEP relative to A or not.

To study the notion of relative QWEP, first we need to define the relative WEP. Let ‘H be a separable
Hilbert space, and B(H) be the C*-algebra of bounded operators on #H, and K be the C*-algebra of compact
operators on H. Recall that in [Lan73], Lance defined a C*-algebra A to have the WEP, if for A C B(H), A
is relatively weakly injective (abbreviated as r.w.i.) in B(H), namely there exists a u.c.p. map from B(H)
to A** such that its restriction to A is the identity. To define the notion of the relative WEP, there are two
natural ways of replacing B(H) in the framework of Hilbert C*-modules. Recall that for a C*-algebra D, any
C*-algebra can be regarded as a C*-subalgebra of L(H ), where Hp is the Hilbert D-module given by the
completion of H ® D, and L(H ) is the C*-algebra of bounded adjointable D-linear maps on % p. Another
way of representation is to replace £(# ) by the von Neumann algebra B(H)®D**. We say that A has the
WEP; (respectively, WEP,) relative to C*-algebra D, if A is r.w.i. in L(H ) (respectively, B(H)&D**).

In Chapter [3| we investigate basic properties of these two notions. We discover that Kirchberg’s method



in his seminal work on non-semisplit extensions is functorial, and gives rise to properties as in the classical
case. In particular, we establish the tensorial characterization for the two notions. Also we study the relation
between the two notions of relative WEP. This leads to a more general question: Let A and B be C*-algebras
such that A C B C A** canonically. Does this imply that B is r.w.i. in A**? The answer to this question
turns out to be negative in general. However, in the special case where K is the space of compact operators
on M, A=K ®min D and B = L(H[), B is rw.i. in A = (K Qmin D)** = B(H)®D**. This shows that
DWEP; implies DWEP,. We also show that the converse is not true.

Furthermore, we define two notions of WEP relative to a C*-algebra D more generally. Let Ep be a
Hilbert D-module, and £(Ep) be the C*-algebra of bounded adjointable linear operators on Ep. Also let
Ep++ be the weakly closed Hilbert D**-module, and L£*(Ep++) be the von Neumann algebra of bounded
adjointable linear operators on Eps«. We say that a C*-algebra A has the DWEP; if it is relatively weakly
injective in L(Ep), i.e. for a faithful representation A C L(Ep), there exists a ucp map L(Ep) — A*™,
which preserves the identity on A. Respectively, we define the DWEP; to be the relatively weak injectivity
in L(Ep«+). By universality of Hp, these definitions of WEP; and WEP; coincide with what we defined
above. After investigating some basic properties, we establish a tensor product characterization of DWEP
following Kirchberg’s framework. Let max? be the tensor norm on A ® C*F, induced from the inclusion
A® C'Fs C L(E}) Omax C*Foo for some universal Hilbert D-module E}, and A C L(E}). Then a
C*-algebra A has the DWEP, if and only if

A ® CFp=4® C'Fy.

m axf’ max

We have the similar result for DWEP3, where the max?-norm is defined by replacing E'% with some universal
weakly closed D**-module E}...

Then we define two notions of relative QWEP, derived from two notions of relative WEP. Following
Kirchberg’s scheme, after developing basic properties of relative QWEP, we show that the two notions are
equivalent, unlike the case in the relative WEP.

Finally, we investigate some properties of WEP and QWEP relative to some special classes of C*-algebras,
and illustrate the relations with classical results in the theory of WEP and QWEP. In particular our examples
show that the property of having DWEP is a tool to tell the C*-algebras apart.

The second part of this thesis is joint work with Marius Junge and Qiang Zeng [JRZ16]. The focus of
this part is convergence of matrix algebras to rotation algebras for specific choices of distance. The notion

of Gromov-Hausdorff distance of metric spaces was first introduced by Gromov |[Gro81]. Since then, there



has been plenty of research on what the “correct” definition of distance should be. Our goal is to define the
right distances that best serve our purposes.

In order to modify Gromov’s definition, Rieffel [Rie04b] adapted the definition to quantum Gromov—
Hausdorff distance corresponding to quantum metric spaces. To introduce this distance, Rieffel defined the
notion of “compact quantum metric spaces”, which was motivated by a similar notion given by Connes in his
theory of quantum Riemannian geometry defined by Dirac operators. Rieffel’s main motivation to introduce
the quantum Gromov—Hausdorff distance came from string theory. Since quantum tori have proved to be
very useful in quantum physics, his main example in [Rie04b] involves these objects. He shows that for
a consistent choice of “metrics”, if a sequence of parameters (6,,),, converges to a parameter 6, then the
corresponding sequence of quantum tori, (A, ),, converges in quantum Gromov—Hausdorff distance to Ay.
But in his definition of Gromov-Hausdorff distance, Rieffel used the Hausdorff distance of the state spaces,
which are not very easy objects to work with. This was the reason that Li introduced the notion of order-unit
quantum Gromov—-Hausdorff distance [Li06] by replacing the state spaces. His main objects are order-unit
spaces equipped with a Lipschitz norm. For such an object (A4, ||-|| ,) and » > 0, he introduced D,(A) as

follows to replace the state spaces in Rieffel’s definition:
Dp(A)={acA:lall, <1, lal| <7}

Li’s order-unit quantum Gromov—Hausdorff distance is equivalent to quantum Gromov—Hausdorff distance
[Li06], but using these alternative objects makes the arguments a lot smoother.

We used this definition in Chapters [4] and [5| to approximate C(T), the space of continuous functions
on the torus, and the rotation algebra Ay. In the last section of Chapter [5| we extend this definition
to operator spaces by using operator-valued coefficients. We introduce the notion of completely bounded
quantum Gromov—Hausdorff distance of two operator spaces as follows. Let X and Y be two operator

spaces, (X, L) be a Lip operator space structure, R > 0, || - || denote the C*-norm and
Dr(Mn(X)) = {x € Mp(X) = [2lllr, 2y < L N2llas, ) < R}
We denote the R-cb-quantum Gromov-Hausdorff distance of X and Y by dSZ,R(X, Y), and define it by
doq,R(X,Y) = inf sup{d [id @ux (Dr(Mn(X))), id @oy (Pr(Ma (Y]},

where dy denotes the Hausdorff distance, and the infimum runs over all operator spaces V and completely



isometric embeddings tx : X — V and vy : Y — V. This definition seems to be stronger than that of
Wu’s [Wu06]. We show that there exists a sequence of matrix algebras that converges to the 2-dimensional
rotation algebras in this sense. Furthermore, we have the boundedness of the diameter and compactness
properties, i.e. we show that the map id : (A, |||l ,) = (A, | - ||) is completely bounded. Furthermore, we
can construct a net of completely bounded finite rank maps that approximate the identity map in the cb
sense.

Later we show that there exists a sequence of n? x né matrix algebras that converges to the d-dimensional
rotation algebra in c¢b quantum Gromov-Hausdorff distance for even d. In fact we can even go further and
show that the convergence occurs in the strongest possible form, i.e. in the “propinquity” sense. In [Lat15],
Latrémoliere introduces the stronger notion of Gromov-Hausdorff propinquity. He shows that to prove the
“closeness” of two spaces (A, ||.|| 4) and (B, |||l z) in the propinquity sense, it is enough for the spaces to
satisfy the following criteria:

There exist two *-homomorphisms 14 : A — B(H) and g : B — B(H) and € > 0 such that the following
hold:

1. For all a € A such that |||al|| , < 1, there exists b € B such that ||bl||g < 1 and ||ma(a) —7p(b)||p <,
2. For allb € B such that ||b||| 5 < 1, there exists a € A such that ||al|| 4 < 1 and ||7a(a) —7B()||D < €.

In Chapter @ we use Kirchberg—Blanchard’s machinery [Bla97] with nuclearity as its main ingredient, to
construct the *~homomorphisms needed to satisfy the criteria above.

In our work, the main objects that we deal with are of the form (A, |||, |||-|| ,)- In our approach we do not
always use the same Lip-norms as those of Li’s. In fact we are taking a dynamic approach by using Markov
semigroups (T}):>0 on the matrix algebras. In particular we are interested in Poisson and heat semigroups.

For instance, in Chapter EL we study the 2-dimensional case by taking the heat semigroup defined by
] _ 12 2 .
Ty (uhvh) = e HIFHIR 7 k-

where ug, vy are the generators of the rotation algebra associated to #. Using this semigroup we can define
a Lipschitz norm given by the gradient form, I', associated to the generator of the semigroup. In general, if

T, = e~ 4, the gradient form associated to A is given by
1 * * *
PA(f,0) = SIA(f)g + 17 Alg) — A(f0),

for f, g in the domain of A. If " is the gradient form associated to the heat semigroup, one can show that



for any =z = ugvg and y = uélvfg/,
[(x,y) = (jj + kk’)(uévg)*uglvgl.

We define the Lipschitz norm on the rotation algebra by [|f|| = [|IT'(f, f)'/?||c. This norm turns out to be
equivalent to Connes’ derivative given by Dirac operators [Con94]. Hence it is the correct choice of Lip-norm
for our purposes.

This part of the thesis is organized as follows. In Chapters 4] we give a brief introduction to order-unit
spaces and conditionally negative length functions. Then we show some analytic estimates which will provide
the main ingredients to prove the convergence in the later chapters. We conclude the chapter by studying
the 1-dimensional case, i.e. we find an approximation for C(T), the space of continuous functions on the
torus. Here (T}):>¢ is the Poisson semigroup.

In Chapter [5] we consider the 2-dimensional case, and we give an approximation of the 2-dimensional
rotation algebras by matrix algebras. In this section we choose (1);>o to be the heat semigroup. Then
we introduce the notion of “cb-quantum Gromov-Hausdorff” distance, prove a compactness theorem and
show that we have an estimate for the 2-dimensional rotation algebras in the cb-quantum Gromov-Hausdorff
distance.

Finally, in Chapter [6] we explore the higher dimensional rotation algebras and approximate them with
matrix algebras for even dimensions. Furthermore, for the even dimensions we show that there is a sequence

of matrix algebras that converge to the rotation algebras in the sense of Gromov-Hausdorff propinquity.



Chapter 2

Preliminaries

2.1 WEP and QWEP

The notion of WEP is from Lance [Lan3], inspired by Tomiyama’s extensive work on conditional expec-
tations. Kirchberg in [Kir93] raises the famous QWEP conjecture and establishes its several equivalences.
Here we list some useful results for readers’ convenience. Most of the results and proofs can be found in

Ozawa’s survey paper [Oza04].

Definition 2.1.1. Let A be a unital C*-subalgebra of a unital C*-algebra B. We say A is relatively weakly

injective (abbreviated as r.w.i.) in B, if there is a ucp map ¢ : B — A** such that |4 =id4.

For von Neumann algebras M C N, the relative weak injectivity is equivalent to the existence of a
(non-normal) conditional expectation from N to M.

We say a C*-algebra A has the weak expectation property (abbreviated as WEP), if it is relatively weakly
injective in B(H) for a faithful representation A C B(H).

Since B(H) is injective, the notion of WEP does not depend on the choice of a faithful representation of
A. We say a C*-algebra is QWERP if it is a quotient of a C*-algebra with the WEP. The QWEP conjecture
raised by Kirchberg in [Kir93] states that all C*-algebras are QWEP.

From the definition of r.w.i., it is easy to see the following transitivity property.

Lemma 2.1.2. For C*-algebras Ag C Ay C A, such that Ay is relatively weakly injective in Ay, Ay is

relatively weakly injective in A, then Ay is relatively weakly injective in A.
Kirchberg also shows the following local characterization for r.w.i. property.
Lemma 2.1.3. Let A C B be C*-algebras. The following are equivalent.
1. the C*-algebra A is r.w.i. in B;

2. for any finite-dimensional subspace EE C B and any € > 0, there exists a contraction ¢ : E — A such

that ||1/1|Er‘|A —id|EﬂAH < e.



By the above lemma, it is easy to see that the property of r.w.i. is also closed under direct product.

Lemma 2.1.4. If (4;)ics is a net of C*-algebras such that A; is relatively weakly injective in B; for all

1 € I, then I;c1 A; is relatively weakly injective in Il;c; B;.

In [Lan73|, Lance establishes the following tensor product characterization of the WEP. The proof of the
theorem is called The Trick, and we will be using this throughout the paper. In the following, let F,, denote

the free group with countably many infinite generators, and C*F, be the full group C*-algebra of F,.

Theorem 2.1.5. A C*-algebra A has the WEP, if and only if

AR C'Fpo =A ® C*'Fq.

max min

As a consequence of the above theorem, we have the following result.

Corollary 2.1.6. A C*-algebra A has the WEP if and only if for any inclusion A C B, A is relatively

weakly injective in B.

Similar to the WEP, the QWEP is also preserved by the relatively weak injectivity as following.
Lemma 2.1.7. If a C*-algebra A is relatively weakly injective in a QWEP C*-algebra, then it is QWEP.

Although the WEP does not pass to the double dual, the QWEP property is more flexible.
Proposition 2.1.8. A C*-algebra A is QWEP if and only if A** is QWEP.

As a corollary of the above proposition, B(#H)** is QWEP. Moreover we have the following equivalence.

Corollary 2.1.9. A C*-algebra A is QWEP if and only if A is relatively weakly injective in B(H)**.

2.2 Hilbert C*-Modules

The notion of Hilbert C*-modules first appeared in a paper by Irving Kaplansky in 1953 [Kap53]. The
theory was then developed by the work of William Lindall Paschke in [Pas73] . In this section we give a brief
introduction to Hilbert C*-modules and present some of their fundamental properties which we are going to

use throughout this paper.

Definition 2.2.1. Let D be a C*-algebra. An inner-product D-module is a linear space E which is a right
D-module with compatible scalar multiplication: A(za) = (Ax)a = z(Aa), for z € E, a € D, A € C, and a

map (z,y) — {(z,y) : E x E — D with the following properties:

7



1. (x,ay + Bz) = alz,y) + Blx,z) forz,y,z€ FE and «, B € C;
2. (z,ya) = (z,y)a for z, y € E and a € D;
3. (y,x) = (z,y)" forz,y€E;

4. (z,z) > 0; if (x,z) = 0, then z = 0.

For x € E, we let |lz|| = ||(z,2)||'/2. Tt is easy to check that if E is an inner-product D-module, then

| -] is a norm on E.

Definition 2.2.2. An inner-product D-module which is complete with respect to its norm is called a Hilbert

D-module or a Hilbert C*-module over the C*-algebra D.

Note that any C*-algebra D is a Hilbert D-module itself with the inner product (z,y) = z*y for « and

y in D. Another important example of a Hilbert C*-module is the following:

Example 2.2.3. Let H be a Hilbert space. Then the algebraic tensor product H ®4;4 D can be equipped

with a D-valued inner-product:

(E@a,n@b)=({;na’b  (§n€H,a,be D).

Let Hp = H ® D be the completion of H ®q;4 D with respect to the induced norm. Then Hp is a Hilbert

D-module.

Let E and F be Hilbert D-modules. Let ¢t be an adjointable map from E to F, i.e. there exists a map
t* from F to F such that

(tx,y) = (z,t"y), forx € E and y € F.

One can easily see that ¢t must be right D-linear, that is, ¢ is linear and ¢(za) = t(x)a for all x € E and
a € D. Tt follows that any adjointable map is bounded, but the converse is not true — a bounded D-linear
map need not be adjointable. Let L(E, F') be the set of all adjointable maps from E to F', and we abbreviate
L(E,E) to L(F). Note that L(F) is a C*-algebra equipped with the operator norm.

Now we review the notion of compact operators on Hilbert D-modules, as an analogue to the compact
operators on a Hilbert space. Let E and F' be Hilbert D-modules. For every x in E and y in F, define a
map 0., : E — F by

02.4(2) = y(z, 2) for z € E.



One can check that 0, , € L(E,F) and 0; = 0,,. We denote by K(E, F) the closed linear subspace of
L(E,F) spanned by {0,, : € E,y € F}, and we abbreviate K(E, E) to K(E). We call the elements of
K(E,F) compact operators.

Let E be a Hilbert D-module and Z be a subset of E. We say that Z is a generating set for E if the
closed submodule of E generated by Z is the whole of E. If E has a countable generating set, we say that
FE is countably generated.

In [Kas80], Kasparov proves the following theorem known as the absorption theorem, which shows the

universality of Hp in the category of Hilbert D-modules.

Theorem 2.2.4. Let D be a C*-algebra, H be an infinite dimensional Hilbert space and E be a countably
generated Hilbert D-module. Then E ® Hp ~ Hp, i.e. there exists an element u € L(E & Hp,Hp) such

that w*u = lggn, and uu™ = ly,.

Remark 2.2.5. Using the absorption theorem, for an arbitrary Hilbert D-module E, we have L(E @ Hp) ~

L(H ). Hence we have an embedding of £(F) in L£(H ) and a conditional expectation from L(Hp) to

Before we proceed to the main results of Hilbert C*-modules, let us recall the notion of multiplier algebra

of a C*-algebra.

Definition 2.2.6. Let A and B be C*-algebras. If A is an ideal in B, we call A an essential ideal if there is

no nonzero ideal of B that has zero intersection with A. Or equivalently, if b € B and bA = {0}, then b = 0.

It can be shown that for any C*-algebra A, there is a unique (up to isomorphism) maximal C*-algebra
which contains A as an essential ideal, i.e. AN J # () for all ideals J. This algebra is called the multiplier
algebra of A and is denoted by M(A).

Theorem 2.2.7. If E is a Hilbert D-module, then L(E) = M(K(E)).
Note that if E = D for a unital C*-algebra D, then D = K(D) and £(D) = M(D).

In the special case where £ = Hp, we have

K(H,) ~KH) © D=K @ D,

min min

where K = K(#H) is the C*-algebra of the compact operators. Therefore, by Theorem we have

L(Hp) ~ MK ® D).

min



In [Kas80] Kasparov introduces a GNS type of construction in the context of Hilbert C*-modules, known

as the KSGNS construction (for Kasparov, Stinespring, Gelfand, Neimark, Segal) as follows.

Theorem 2.2.8. Let A be a C*-algebra, E be a Hilbert D-module and let p : A — L(FE) be a completely
positive map. There exists a Hilbert D-module E,, a *-homomorphism w, : A — L(E,) and an element v,

of L(E,E,), such that

*

pla) = vymy(a)v, (a €A,

mo(A)v,E  is dense in  E,.

As a consequence of the above theorem, Kasparov shows that given a C*-algebra D, any separable C*-
algebra can be considered as a C*-subalgebra of L(# ). This indicates that £L(# ) plays the similar role

in the category of Hilbert C*-modules to that of B(#) in the category of C*-algebras.

Proposition 2.2.9. Let A be a separable C*-algebra. Then there exists a faithful nondegenerate *-homomorphism

7 A— L(Hp).

As we see, L(Hp) plays the role of B(H). Note that B(#) is also a von Neumann algebra, but £L(Hp)
is not in general. Paschke in [Pas73] introduces self-dual Hilbert C*-modules to play the similar role in the
von Neumann algebra context.

Let E be a Hilbert D-module. Each z € E gives rise to a bounded D-module map Z : £ — D defined
by Z(y) = (y,z) for y € E. We will call E self-dual if every bounded D-module map of F into D arises by
taking D-valued inner products with some x € E. For instance, if D is unital, then it is a self-dual Hilbert
D-module. Any self-dual Hilbert C*-module is complete, but the converse is not true.

For von Neumann algebra N, it is natural to consider the the self-dual Hilbert N-module E, because

of the following theorem from [JS05].

Theorem 2.2.10. For a Hilbert C*-module E over a von Neumann algebra N, the following conditions are

equivalent:
1. The unit ball of E is strongly closed;

2. E s principal, or equivalently, E is an ultraweak direct sum of Hilbert C*-modules qoIN, for some

projections qu;
3. E is self-dual;

4. The unit ball of E is weakly closed.

10



We denote the algebra of adjointable maps on En closed in the weak operator topology by £*(Ex).

Remark 2.2.11. According to [Pas73] and the absorption theorem, for a von Neuamann algebra N, we have

that L*(Exn) = eB(H)®Ne for some projection e.

Remark 2.2.12. Let N be a von Neumann subalgeba of M, such that N = zM for some central projection
z € M. Then one can unitize the inclusion map ¢ : B(¢3)QN < B(¢3)®M. Indeed since B({s) is a type I
factor, the projection 1® z : B({2)@M — B(¢2)®N is properly infinite, and hence it is equivalent to identity
on B(lo)®M [Tak02]. Let 1 ® z = v*v, and idg(s,)ga = vv*. Note that 1 ® z) o = idg(s,)gn. Multiplying

by v from left and by v* from right, we get viv* = idp( @ N-

2.3 Kirchberg’s observations on the multiplier algebra

In this section, we explore Kirchberg’s seminal paper on non-semisplit extensions in detail. In particular we
show the factorization property explicitly for readers’ convenience.

Let A, B and C be unital C*-algebras. We say a map h : A — B factors through C approximately via ucp
maps in point-norm topology if there exist ucp maps ¢, : A — C and v, : C — B such that the following

diagram commutes approximately in point-norm topology.

N A

C

ie. ||(¥n 0 dn)(x) — h(x)|| — 0 for all x € A.

The idea of the shortened proof of the following theorem was suggested to us by an anonymous referee.

Theorem 2.3.1. Let A be a o-unital C*-algebra and M(A) be its multiplier algebra. Then the identily map

on M(A) factors through ls(A) approximately via ucp maps in point-norm topology.

Sketch of proof. Since A is o-unital, given a finite subset I C M(A) and € > 0, one can find an approximate
identity (e,)%2; such that eg = 0, epent1 = €y, and ||[e,, ]| < J, for all n and = € F, where d,, > 0 are
chosen so that ||[z, (e, — e,,_1)'/?]|| < 27 "¢ for all n > 1 and x € F. Define

dre: M(A) = Lo (A)

3

a— (eny10€n11)nsy,
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and

Ype  loo(A) = M(A)

(an)?zozl = Z(en - en—l)l/Qan(en - en—l)l/Qv

where the series converges strictly. Then for all x € F, we have

HwF,E ° d)F,s(x) —z|| <e.

Now consider A = {(F,e) : F C M(A), F finite set,e > 0}, equipped with the following order: (F,e) <
(F',¢') if and only if FF C F’ and ¢’ < e. We get two nets of ucp maps (¢q)aca and (¥4 )aca. Then for any

x € M(A) and € > 0, there exists ag such that for all a > ag, [|1hs © da(x) — 2| < €. O

Using the theorem above, we can establish the following result on the relation between M(A) and A**.
Corollary 2.3.2. Suppose A is a C*-algebra and M(A) is its multiplier algebra. Then M(A) is relatively
weakly injective in A**.

Proof. Let ¢ and 1 be as above. Since there is a natural inclusion M(A) C A**, we can define ¢ : A** —
lso(A**) as an extension of ¢, by ¢(a) = (enip1aen11)22, for all @ € A**. Then the folowing diagram

commutes locally

M(A) d M(4A)
S A
loo T(A)

Let € be arbitrary, F' a finite-dimensional subspace of A**, and Fy = F N M(A). Then we get a net

A = (Fo, F,¢). Define 6, » : A** — M(A) locally, as the composition of the following maps
F s A7 25 0, (A™) — Loo(A) -5 M(A).

Then we have

lim 6, A (1) = 1.

n)

Let ¢ := limy »0pn @ A* — M(A)* in the weak *-topology. Then § gives the required conditional
expectation. Now it follows from Lemma that M(A) is r.w.i. in A™*. O

12



Chapter 3

Operator-valued Kirchberg Theory

3.1 Module version of the weak expectation property

This Chapter is joint work with Jian Liang [LR14]. We will only state the results in this Section, since the
proofs have alreay appeared in his thesis (UIUC Ph.D. thesis, 2015).

The notion of r.w.i. is a paired relation between a C*-subalgebra and its parent C*-algebra. If the parent
C*-algebra is B(H), the r.w.i. property is equivalent to the WEP. By carefully choosing a parent C*-algebra,
we can define the notion of WEP relative to a C*-algebra.

Let C be a collection of inclusions of unital C*-algebras {(A C X)}.

For a C*-algebra D, there are two classes of objects that we will discuss throughout this paper.
1. C; ={A C L(Ep)}, where Ep is a Hilbert D-module.
2. Co ={AC LY(Ep++)}, where Ep«« is a self dual Hilbert D**-module.

Definition 3.1.1. A C*-algebra A is said to have the DWEP; for i = 1, 2, if there exists a pair of inclusions

A C X in C; such that A is relatively weakly injective in X.

Note the in the case where D = C, WEP coincides with DWEP;, ¢ =1, 2.
Notice that the notion of DWEP is a r.w.i. property. By Corollary the WEP implies the DWEP,,

for i = 1,2. Also, inherited from r.w.i. property, we have the following lemmas for DWEP.

Lemma 3.1.2. Let Ay and Ay be C*-algebras such that Ag is relatively weakly injective in Ay. If Ay has

the DWEP; fori=1,2, then so does Ay.

Remark 3.1.3. By the absorption theorem and Remark [2.2.5|and [2.2.11] £(Ep) is r.w.i. in some L(Hp)

and LY(Ep=«) is r.w.i. in some B(H)®D**. Sometimes it is more convenient to consider the DWEP; as
the relatively weak injectivity in £(Hp), and the DWEP; as the relatively weak injectivity in B(H)®D**,

because of the concrete structures.

13



Example 3.1.4. From the above, all WEP algebras have DWEP; for arbitrary C*-algebra D. Also, D has
the DWEP; trivially for 1-dimensional Hilbert space H. Our first nontrivial example of DWEP; is K ®uin D.
For the first class C1, K ®min D is a principle ideal of £L(Hp), and thus is r.w.i. in L(Hp). For the second
class Ca, note that (K ®uin D)™ = B(H)®D**, s0 K Qmuin D is r.w.i. in B(H)®D**. By universality of
L(Hp) and B(H)QD**, K ®min D has the DWEP; for both i = 1, 2.

Because of the injectivity of B(H), we see that the notion of WEP does not depend on the representation
A C B(H). By constructing a universal object in the classes C;, we can define the DWEP; independent of

inclusions.

Lemma 3.1.5. A C*-algebra A has the D WEP; for some inclusion A C X in C;, if and only if there exists

a universal object X* and A C X" in C;, such that
1. A is relatively weakly injective in X*;

2. If A is relatively weakly injective in some X, then there exists a ucp map from X" to X, which is

identity on A.

Proof. Note that for all ucp maps p: A — L(Ep), by KSGNS construction there exists a Hilbert D-module
E, and a *-homomorphism 7, : A = L(E,). Let E}y = EBP E,. Then any L£(Ep) containing A can be
embedded into L£(EY,), and there exists a truncation £(EY,) — L(Ep). Now suppose A is r.w.i. in some

L(Ep). Then it is also r.w.i. in L(E}) O

Following Lance’s tensor product characterization Theorem[2.1.5 we have a similar result for the DWEP;,
for i = 1,2. We only present the result for the first class. The other case can be proved similarly.

Let A C L(EY) be the universal representation as observed in the proof of Lemma We define a
tensor norm max?’ on A® C*F, to be the norm induced from the inclusion A® C*F, C L(EY) @max C*Foo
isometrically. This induced norm is categorical in the sense that if ¢ is a ucp map from A to B, then ¢ ® id
extends a ucp map from A ® D C*Fo to B® D C*Fo. Indeed, let ¢ be the inclusion map from B

max max

to its universal representation £LZ(EY), then 1o ¢ is a ucp map from A to LZ(EY%). By KSGNS and the
construction of £LA(EY), there exists a ucp map from £A(EY) to LB (EY) extending the map ¢ o ¢. Hence
we have a composition of ucp maps

A ® C'Fy CLAEY) @ C'Fo — LE(EY) ® C*Fq,

maxlD max max

whose image i8 B @0 C*Foo.
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Theorem 3.1.6. A C*-algebra A has the the D WEPy, if and only if

A ® C'Fpu=A @ C'Fw.

m axlD max

It is natural to explore the relationship between DWEP; and DWEP,. We have the following.
Theorem 3.1.7. If a C*-algebra A has the D WEP;, then it also has the D WEPs.

In fact, the converse of the above theorem is not true, and we will give a counterexample in Section 5.

The following lemmas are crucial for the proof of the above Theorem.

Lemma 3.1.8. Suppose that the identity map on a C*-algebra A factors through a C*-algebra B approz-
imately via ucp maps in point-norm topology, i.e. there exist two nets of ucp maps ¢; : A — B and

Y; : B— A, such that ||¢; o ¢;(x) — z|| = 0 for x € A. If B has the DWEP;, then so does A.
Another lemma we need is that the DWEP; property is preserved under the direct product.

Lemma 3.1.9. If (4;)icr is a net of C*-algebras with the DWERP;, then [[,.; A; has the D WEP;.

iel
Kirchberg [Kir93] shows that for a C*-algebra A, the multiplier algebra M(A) factors through ¢o(A)

approximately by ucp maps (Theorem [2.3.1)). Using this fact, we have the following.

Corollary 3.1.10. Suppose that the C*-algebra A has the D WEP;, for i = 1,2. Then the multiplier algebra
M(A) also has the DWEP;, fori=1,2.

Remark 3.1.11. Now we see that DWEP; implies DWEPs. We also have the following relations between
the two notions.

(1) Note that by Remark LY(Hy) = eB(H)®Ne for some projection e, and hence it is r.w.i. in
B(H) ® N** by Remark Following the same pattern in the proof of Corollary by extending
the inclusion map ¢ : LY (Hy) = B(H)QN** to the map M(K @min N) — B(H)QN**, one can show that
LY(Hp) is raw.i. in M(K @min V) = L(Hy). Let N be a von Neumann algebra. Then by Remark
we have

LY(Ex) "S5 L(Hy) " MK @in N) = L(Hy).

Hence LY(Ey) has the NWEP;.

(2) We also have that D**WEP; implies DWEP;. Indeed having D**WEP; is equivalent to being r.w.i.
in L(Hp+) = M(K Qmin D**), and having DWEP; is equivalent to being r.w.i. in B(H)®D**. Note that
K @min D** is raw.i. in B(H)®@D**. By Corollary we have M (K @min D**) has the DWEP, as well.
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Now we investigate some properties of module WEP. The first result is that the module WEP is stable

under tensoring with a nuclear C*-algebra, similar to the classical case.
Proposition 3.1.12. For a C*-algebra D, the following properties hold:

1. If a C*-algebra A has the DWEP;, and B is a nuclear C*-algebra, then A @i, B has the DWEP; as

well.

2. If the von Neumann algebras M and N have the C WEPy and D WEPy respectively, then M®&N has
the (C ®@min D) WEP;.

As a consequence of Corollary [3.1.10} we have the transitivity property of DWEP.
Proposition 3.1.13. If A has the BWEP;, and B has the C WEP;, then A has the CWEP;, fori=1,2.
Corollary 3.1.14. If A has the DWEPy, and D has the WEP, then A has the WEP.

Remark 3.1.15. The previous result is not necessarily true for the WEP5 case, since B(¢2)®D** may not

have the WEP, for instance for D = B({3). See Example for the proof.

In his Habilitation [Jun99], Junge shows the following finite dimensional characterization of the WEP.
Theorem 3.1.16. The C*-algebra A has the WEP if and only if for arbitrary finite dimensional subspaces
F C Aand G C A*, and e > 0, there exist matriz algebra M,, and ucp mapsu : F — M,,, v: M,, — A/G*,

such that

[vou—ggour| <e,
where tp : F — A is the inclusion map and qg : A — A/G* is the quotient map.

We have a similar result for the module WEP as follows.

Theorem 3.1.17. The C*-algebra A has the D WEP; if and only if for arbitrary finite dimensional subspaces
F C Aand G C A*, and € > 0, there exist matriz algebra M,,(D) and ucp maps u : A — M, (D),
v: M, (D) — A/G*, such that

lvoulr —gaour| <e,

where 1p : F — A is the inclusion map and qg : A — A/G* is the quotient map.

For the DWEP case, a similar result holds when we replace the matriz algebra M,,(D) by M,,(D**).
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3.2 Module version of QWEP

Definition 3.2.1. A C*-algebra B is said to be DQWEP; if it is the quotient of a C*-algebra A with
DWEP; for i =1,2.

Similar to the DWEP;, we have a tensor characterization for DQWEP; for ¢ = 1,2 as follows. First we

need the following result due to Kirchberg.

Lemma 3.2.2 ([Kir93] Corollary 3.2 (v)). If ¢ : A — B** is a ucp map such that ¢ maps the multiplicative
domain md(¢p) of ¢ onto a C*-subalgerba C of B** containing B as a subalgebra, then the C*-algebra

md (@) N ¢~1(B) is relatively weakly injective in A.
We only prove the tensor characterization for DQWEP;. The proof of the other case is similar.

Theorem 3.2.3. Let C*Fo, C L(HY,) be the universal representation. The following statements are equiv-

alent for a C*-algebra B:
(i) B is DQWEP;;

(i) For any ucp map u : C*Foy — B, the map u®id extends to a continuous map from C*F O maxP C*'Fs
to B ®max C*F, where max{D 1s the induced norm from the inclusion C*Fo, @ C*F,, C E(’H%) Pmax

C*'Foo.

Proof. (i)=-(ii): Suppose B is DQWEP;. Then B = A/J for some C*-algebra A with DWEP;. Let
u : C*Fo, — B be a ucp map, and 7 : A — B be the quotient map. Since C*F, has the lifting property,

there exists a ucp map ¢ : C*Fo, — A which lifts u, i.e. the following diagram commutes

By Theorem we have A®maX{3 C*Foo = A®max C*Foso. Therefore, we have the following continuous
maps

C'F., ® CF..4 @ CF.=A4 ® CF. ™S B @ C*F...

maxf) maxlD max max

Note that (7 ®id)o (p®id)

C*Fou®1cwp,, = u Dy the lifting property. Therefore, u®id extends to a continuous

map from C*Fy ®,...0 C*Fo t0 B Qmax C*Fuo.

maxl

17



(ii)=-(i): Let u: C*Fo — B be the quotient map. We have the following diagram

C*Foe ® CFo 4B @ C*Foy — = B(H
maxl max
L(HY) ® C*F.,

max

where B(H) is the universal representation of B. By Arveson’s extension theorem, there exists a ucp
map ® : L(H})) Qmax C*Foo — B(H). Using The Trick (see proof of Theorem , we get a map
¢ : L(H}) — B**. Let md(¢) be the multiplicative domain of ¢. Note that C*Fs, C md(¢). Therefore, ¢
maps md(¢) onto a C*-subalgebra of B** containing B. Let A = md(¢) N ¢~!(B). Then by Lemma
Ais row.i. in L(H}), so A has the DWEP;. Hence B as a quotient of A is DQWEP;. O

Remark 3.2.4. In the proof of the above Theorem, we showed that the second statement is equivalent to the
statement that for any ucp maps u : C*Fo, — B, w : C*F,, — B°P, the map u ® w extends to a continuous

map from C*Fog @paxp C*Foo t0 B @max BP

Now let us investigate some basic properties of the DQWEP. We have the following proposition similar

to the DWEP case.

Proposition 3.2.5. The following hold:

1. If a C*-algebra B is DQWEP; and C' is nuclear, then C Qui, B is also DQWEP;.

2. If von Neumann algebras M and N are C QWEPy and D QWEPs, respectively, then M@N is (C @min
D)QWEP;.

Proof. (1) Suppose B is DQWEP;, then B = A/J for some C*-algebra A with the DWEP;. Since C is

nuclear, it is also exact. Therefore, we have

mlnA
C®B=C (AlJ)= CL

min min C ®m1n

But C ®muin A has the DWEP; by Proposition [3.1.12(1). Therefore, C ®upin B is DQWEP;.
(2) Since M is CQWEPy, it is r.w.i. in LY (Hcw)**. Similarly, N is r.w.i. in £%(Hp««)**. Therefore,

we have ucp maps

rw.t

MAN "5 L9 H e ) RLY (Hper )™ "5 LY (Howegpes)*
Note that by the same argument as in the proof of Proposition [3.1.12] (2), LY(Hcwgp++)*™ is raw.i. in
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LY(H(commp)=)"" Hence M&N is r.w.i. in L*(H g, p)++) " Therefore, MN is (C @min D)QWEP;.
O

By Theorem DWEP; implies DWEP,, and hence DQWEP; implies DQWEP;. In Section 5 we
will show that there exist C*-algebras with DWEPs which do not have DWEP;. However in the QWEP
context, the two concepts coincide. To see this, we need the following lemmas in which we use Kirchberg’s

categorical method. The next lemma shows that DQWEP;, for ¢ = 1,2, is stable under the direct products.
Lemma 3.2.6. Suppose (B;)icr is a net of C*-algebras in B(H). If B; is DQWEP;, for all i € I, then so
8 HiGIBi-

Proof. Since B; is DQWEP;, it is a quotient of a C*-algebra A; with DWEP,. By Lemma [3.1.9] IT;c;A;

has the DWEP;. Therefore, Il;c;B; is DQWEP;. O]

Lemma 3.2.7. Let B be a DQWEP; C*-algebra, fori = 1,2, and By a C*-subalgebra of B which is relatively
weakly injective in B. Then By is also a DQWEP; C*-algebra.

Proof. If B is DQWEP;, then it is a quotient of a C*-algebra A with DWEP;. Let m : A — B be the

quotient map, B = A/J and Ag = 7~ 1(By). Then Ag is r.w.i. in A. In fact this follows from the fact that

Now by Lemma Ag = m1(Byp) has the DWEP;. Hence By is DQWEP;. O

Lemma 3.2.8. Let A and B be unital C*-algebras. Suppose there exists a ucp map ¥ : A — B which maps
the closed unit ball of A onto the closed unit ball of B. If A has the DWEP;, then B is DQWEP;, for
i=1,2.

Proof. Let Ag C A be the multiplicative domain of 1. Since ¥ maps the closed unit ball of A onto that of
B, the restriction of 1) on Ap is a surjective *-homomorphism onto B. Let m = | 4,.

By Lemma [3.2.2] we have Ag is r.w.i. in A and hence it has the DWEP; by Lemma [3.1.2] Since B is
a quotient of Ay, B is D-QWEP;. O

Corollary 3.2.9. Let B and C be C*-algebras. Suppose B is DQWEP;, and ¢ : B — C' is a ucp map that
maps the closed unit ball of B onto that of C. Then C is DQWEP;.

Proof. Since B is DQWEP;, there exists a C*-algebra A with the DWEP;, and a surjective *~homomorphism
7w : A — B. Notice that 7 maps closed unit ball of A onto that of B. Hence the composition 1 o m maps the
closed unit ball of A onto that of C. By Lemma [3.2.8] C' is DQWEP;. O
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Lemma 3.2.10. Suppose (B;)icr is an increasing net of C*-algebras in B(H). If all B; are DQWEP;, then
UB; and (UB;)" are DQWEP;.

Proof. Let B = UB;. It suffices to show that B” is DQWEP;. Since B; is DQWEP;, there exists a C*-
algebra A; with DWEP;, and a surjective *-homomorphism 7; : A; — B;. Let J be a directed set containing
I. By Lemma HjeJ Aj; has the DWEP;. Fix a free ultrafilter I/ on the net J. Define a ucp map
Y HjeJ A; — B” by ¢((zj)jes) = limj_ym(z;) in the ultraweak topology. By Kaplansky’s density
theorem, if J is large enough, then ¢ maps the closed unit ball of ] jes Aj onto that of B”. Now by Lemma
3.2.8) B"” is DQWEP;. O

The next corollary shows that unlike the DWEP case, the DQWEP of a C*-algebra and its double dual

are equivalent.
Corollary 3.2.11. A C*-algebra B is DQWEP; if and only if B** is DQWEP; fori=1,2.

Proof. The “if” direction follows directly from Lemma [3.2.7]since B is r.w.i. in B**. For the other direction,

we can apply Lemma [3.2.10|to B together with its universal representation. O

Lemma 3.2.12. Suppose B and C are C*-algebras, and B factors through C approximately via ucp maps
in the point-weak™ topology. If C' is DQWEP;, then so is B.

Proof. Since B factors through C, there are families of ucp maps a; : B — C and 3; : C — B, i € I such

that 3; o a; converges to the identity map on B in the point-weak® topology, i.e.

lim(; o ;) (a)(2") = 2 ()

‘/117

for x € B, * € B* and an ultrafilter &. Define o : B — [[,.; C by a(z) = (a;(x)):er, for x € B. Let

i€l

B: [Lie; C = B*, B = lim;_y f;. Define 8# : B* — [[,, C*, by #(z*) = (8; (¢*))*. In fact §# = j*

B*-
Then we have

* ’8# *
B — (11, 0).
By taking the duals, we have

B*)”

B —%= O** —— B**.

This gives a conditional expectation from C** to B** which is identity on B. Therefore, B is r.w.i. in C**.

By Corollary [3.2.11] C** is DQWEP;. Hence so is B. O
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Corollary 3.2.13. If a C*-algebra B is DQWEP;, fori = 1,2, then so is M(B).

Proof. Note that by Theorem the identity map on M(DB) factors through ¢, (B) approximately via
ucp maps in point weak *-topology. Since B is DQWEP;, by Lemma 0 is £oo(B). Therefore, by

Lemma [3.2.12, M(B) is DQWEP;. O

We have the following transitivity result for DQWEP;. We only show the DQWEP; case. The proof of

the other case is similar. First we need the following lemma.
Lemma 3.2.14. Let D be a C*-algebra. If D is CQWEP; for i = 1,2, then so are L(H ) and LY (Hp+-).

Proof. If D is CQWEP,, then by Proposition 1), s0 is K ®min D. By Theorem LHp) =
M(K® D) factors through £ (K ®min D), and therefore, it is DQWEP;, by Lemma Hence it is also
DQWEP;. For the other case, it suffices to show that B(H)®D** is DQWEP;. Note that B(H)@D** =
(K ®min D)** and K Qmin D is DQWEP;. By Corollary (K ®min D)** is DQWEP, and hence it is
DQWEP,. 0

The following result shows the transitivity of the DQWEP; for ¢ =1, 2.

Corollary 3.2.15. Let B, C and D be C*-algebras such that B is DQWEP;, and D is CQWEP;. Then B
is CQWEP;.

Proof. We only show this for ¢ = 1. Let C*Fo, C L(H},) be the universal representation. Since B is
DQWEP;, by Theorem for all ucp maps u : C*Fo, — B, the map u ® id : C*F OmaxP C*Foo —
B ®max C*Fy is continuous, where max} is the norm induced from the inclusion C*Fo, ® C*F,, C
L(H}) @max C*Foo. Since D is CQWEPy, so is L(H},) by Lemma Now by the tensor charac-
terization of CQWEP{, the map w ® id : C*F ®maxC C*Fy — E(?—l%) QRmax C*Fs is continuous for all
ucp maps w : C*Fo, — L(H])). Now let w be a faithful representation C*Fo, — L(H7,). Then we have the
following diagram

maxlD max

u®idl \ Tu}@id
B ® C*F C'Fo @ C'Fo
max max{

Note that the image of w®id is C*Fo, ® D C*Fs. Therefore, we get a continuous map from C*F,, ®

max max?

C*Foo t0 B @max C*Fo. This proves that B is CQWEP;. O

Now we are ready to establish the equivalence between the DQWEP notions by observing the following

result.
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Theorem 3.2.16. For a C*-algebra B, the following conditions are equivalent:
1. B is DQWEP;;
2. B is DQWEPs;
3. B* is D**QWEP;;
4. B* is D**QWEP;.

Proof. (1)=(2): This follows from the fact that DWEP; implies DWEP5.

(2)=(3): Suppose B is DQWEP,. Therefore, B is the quotient of a C*-algebra A which is r.w.i. in
LY (Ep+«). By Remark (1), LY (Ep«+) has the D*WEP;. Hence A has the D**WEP;, and therefore,
B is D**QWEP;.

(3)=(4): Follows from (1)=(2).

(4)=(1): Suppose B** is D**QWEP5, and therefore so is B by Corollary Then B is the quotient

of a C*-algebra A which is r.w.i. in LY (Ep+«=+). We have

A"C" LY(Epes) " CB)@D = (K @ D)™
Therefore, it suffices to show that K ®ui, D™ is DQWEP;. Notice that K ®pi, D** factors through
[1,, M, (D**) approximately via ucp maps in point-norm topology, since UM, (D**) is norm-dense in }C ®min

D**. Now since D has the DWEP;, D** is DQWEP;. Therefore, by Proposition [3.2.5 so is M,,(D**) =
M,, ®min D**. Hence by Lemma m K Q@min D** is DQWEP,. This finishes the proof. O

3.3 Illustrations

In Section 3, we showed that DWEP; implies DWEP5. Our first example will show the converse is not true,

and hence the two notions of DWEP are not equivalent.

Example 3.3.1. Let D = B({2). Note that L(Hp) = M(K ®min B(¢2)), and K Qmin B(¢2) has the
WEP, and so does M(K ®muin B(¢2)). Therefore the two notions of DWEP; and WEP coincide. On
the other hand, the DWEP; of a C*-algebra is the same as being r.w.i. in B(H)®B(¢2)™". Notice that
B(H)@B(2)** = (K@ B(l2))** is QWEP. Therefore by Proposition DWEP: is equivalent to QWEP.
Hence if A is a QWEP C*-algebra without the WEP, for instance C}F,,, then A has the DWEP; but not
the DWEP,, for D = B(fs).

Now we are ready to see some examples of relative WEP and QWEP over special classes of C*-algebras.
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Proposition 3.3.2. Let D be a nuclear C*-algebra. Then a C*-algebra A has the D WEP; for i = 1,2 if
and only if it has the WEP.

Proof. Suppose A has the WEP. Therefore A has the DWEP;, and hence the DWEP,.
Now assume A has the DWEPy, i.e. it is rw.i. in B({2)®D**. Since D is nuclear, D** is injective.
Hence we have D** C B(H) 5 D**, where E is a conditional expectation. Let CB(A, B) be the space of

completely bounded maps from A to B. Therefore we have
CB(Sy, D**) < CB(S1,B(H)) % CB(S:, D),

where S is the algebra of trace class operators, 7 is a *~-homomorphism, and ¢ acts by composing the maps in
CB(S1,B(H)) and E. Note that by operator space theory CB(Sy, D**) ~ B({3)®D** and CB(S1, B(H)) ~
B(ly)®B(H) = B(fy ® H). Hence we have the maps B(£2)@D** 5 B(ly)RB(H) = B(ly @ H) 5 B(ls)@D**.
Now by Remark we can unitize these two maps. Therefore A is r.w.i. in B(¢3 ® H), and hence it has
the WEP. O

After nuclear C*-algebras, it is natural to consider the relative WEP for an exact C*-algebra D. For
convenience, we consider the following stronger version of weak exactness property. A von Neumann algebra
M C B(H) is said to be algebraically weakly exact, (a.w.e. for short), if there exists a weakly dense exact
C*-algebra D in M. By [Kir95], we know that the a.w.e. implies the weak exactness.

Notice that the unitization trick works better in Co category, and hence we have the following.

Proposition 3.3.3. A C*-algebra has the D WEP for some exact C*-algebra D if and only if it is relatively

weakly injective in an a.w.e. von Neumann algebra.

Proof. Suppose a C*-algebra A has the DWEPs, then A is r.w.i. in B(H)®D**. Since both K and D are
exact C*-algebras, 50 is K ®min D. Note that K @iy D is weakly dense in (K ®min D)** = B(H)®D**. We
have B(H)®D** is a.w.e.

For the other direction, suppose A is r.w.i. in an a.w.e von Neumann algebra M. Let D be an exact
C*-algebra with D" = M. Then there exists a central projection z in D** such that M = zD**. Hence we
have completely positive maps M < D** — M, which preserves the identity on M. Therefore by unitization
M is r.w.i. in B(H)®D** for some infinite dimensional Hilbert space H. Hence if A is r.w.i. in M, then it

is also r.w.i. in B(H)®D**, and therefore it has the DWEPs. O

As we showed, the nuclear-WEP is equivalent to the WEP. But the exact-WEP is different.
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Example 3.3.4. Let Fy be the free group on two generators. Then Fj is exact and hence C}Fy is exact
and LIFy is weakly exact. Since C[Fs is r.w.i. in LF9, by Proposition CrFy has the DWEP, for
D = C!Fy. But C;Fs does not have the WEP, since the WEP of a reduced group C*-algebra is equivalent

to the amenability of the group (see Proposition 3.6.9 in [BOOSg]).

Now we consider the full group C*-algebra of free group C*F,. Since it is universal in the sense that
for any unital separable C*-algebra A, we have a quotient map ¢ : C*F,, — A. By the unitization trick, we

have the following.

Proposition 3.3.5. Let A be a unital separable C*-algebra. Then it has the D WEPs for D = C*F .

EES

Proof. Since we have a quotient map ¢q : C*F,, — A, there exists a central projection z in C*Fo,™* such
that A** = 2C*F.**. Hence we have an embedding A** — B(H)RC*F,** with a completely positive map
from B(H)RC*Fo™* to A** by multiplying 1 ® z. By the unitization trick in Remark [2.2.12] A** has the

DWEP, for D = C*F, and so does A, since A is r.w.i. in A**. O

It is natural and even more interesting to ask whether the full group C*-algebra C*F., has DWEP, for
D is the reduced group C*-algebra C;Fs. In fact, this is related to the QWEP conjecture. If C*F, has the
DWEP; for some WEP algebra D, then it has the WEP by Corollary of transitivity. If C*F., does
not have the DWEP; for some C*-algebra D, then it does not have the WEP either. At the time of writing
this paper, we do not have an answer for this question.

Now let us discuss some properties of being module QWEP relative to some special classes of C*-algebras.
In the rest of this section, we will examine the relation between one of the equivalent statements of Theorem
(for example statement (1), B is DQWEP;), and the statement that B** is D**WEP;, for either i = 1

or 2.
Proposition 3.3.6. Let B be a C*-algebra. If B** has the D** WEP;, then B is DQWEP;, fori=1,2.

Proof. Suppose B** has the D**WEP,, and hence B** is D**QWEP; by the trivial quotient. By Theorem
[3:2.16, B is DQWEP;. O

For some C*-algebra D, the four equivalent statements in Theorem [3.2.16] are equivalent to the statement

that B** has the D**WEP;. But this is not true in general. We will show examples of both circumstances.

Example 3.3.7. Let D = B({3). Then a C*-algebra B is DQWEP; if and only if B** has the D*WEP;,
since they are both equivalent to B being QWEP. Indeed, if B is DQWEP, then B = A/J and A has the
DWEP;. Since L(H ) has the WEP as shown in Example so does A, and hence B is QWEP. On

24



the other hand, having B(¢3)**WEP; is equivalent to being r.w.i. in M (K ®min B(¢2)**), which is QWEP.
Hence B** is QWEP. By Proposition B is QWEP as well.

Example 3.3.8. Let D be a nuclear C*-algebra. Then the above statements are not equivalent. Indeed, it
follows from Proposition that a C*-algebra is DQWEP; if and only if it is QWEP. On the other hand,
assume that B** has the D**WEP;. Note that D**WEP; implies DWEP, by Remark 2), which is
equivalent to WEP by Proposition [3:3.2] and B** has the WEP if and only if it is injective. Therefore the

fact that a C*-algebra B is DQWEP; does not imply that B** has the D**WEP;.

Example 3.3.9. For a von Neumann algebra M, let us compare the properties M QWEP; of B and the
M*WEP; of B**. We have the following partial results.

Case (1): M is of type I,,. Then M is subhomogeneous, which is equivalent to nuclearity. By Example
these two statements are not equivalent.

Case (ii): M is of type I, then B(¢2)®M is r.w.i. in M. Suppose B is MQWEP, then B is a quotient
of a C*-algebra A which is r.w.i. in B({2)®@M. Hence B** is r.w.i. in A** and hence in (B(¢2)@M)**, and
hence in M**. Since M** is isomorphic to L(Hps++) for 1-dimensional Hilbert space H, it follows that B**
has the M**WEP;.

Case (iii): M is of type 1o, or III, then B(¢2)®M ~ M. By similar argument in Case (ii), we have the
same conclusion.

Case (iv): M is of type II; and a McDuff factor, i.e. M®R ~ M. Then we have a completely postive
map from M®B(¢3) to M by the following:

M®B(ty) - M® [ [ My - MER®L[0,1] € MER®R ~ M@R ~ M.

n=1

with a completely positive left inverse from M to M&B({3), namely M&B(¢s2) factors through M by com-
pletely positive maps. Therefore M®B(¢3) is r.w.i. in M**. By the same argument as above, the equivalence
is established.

At the time of writing this paper, we do not have an affirmative answer for the case where M is a

non-Mcduff 1I; factor.
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Chapter 4

Gromov-Hausdorft Convergence for

CO(T)

4.1 Order-unit Spaces and Forms of Gromov—Hausdorff
Convergence

In this section we briefly review the notions of order-unit spaces and Gromov-Hausdorff distance. We will
be mostly following [Rie04al [Li06l Lat15l [Lat16] in this chapter.

The abstract characterization of order-unit spaces is due to Kadison [Kad51].

Definition 4.1.1. An order-unit space is a real partially ordered vector space, A, with a distinguished
element e (the order unit) satisfying:

(1) (Order unit property): For each a € A, there is r € R such that a < re;

(2) (Archimedean property): For a € A, if a < re for all r € R with » > 0, then a < 0. On an order-unit

space (A, e), we can define a norm as
la|| = inf{r e R: —re < a < re}.

Furthermore, we require that A* N (—=A*") = 0, where AT denotes the positive cone of A. This condition

ensures that for a € A, if a <0 and a > 0, then ||a]| = 0.

Then A becomes a normed vector space and we can consider its dual, A’, consisting of the bounded linear
functionals, equipped with the dual norm ||.||. By a state of an order-unit space (4, e), we mean a py € A’
such that p(e) = ||p]|” = 1. Denote the set of all states of A by S(A). For an order-unit space (A, e) and a

seminorm L on A, we can define an ordinary metric, pr,, on S(A) by

pr(z,y) = sup [f(x) — f(y)l (4.1.1)
L(f)<1

Then we say L is a Lipschitz seminorm on A if it satisfies:

(1) For a € A, we have L(a) = 0 if and only if a € Re.
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We call L a Lip-norm, and call the pair (A, L) a compact quantum metric space if L also satisfies:

(2) The topology on S(A) induced by the metric L is the weak-* topology.

For two metric spaces Y, Z inside a metric space (X, d), let their Hausdorff distance in X be denoted by
disth(Y, Z). We may drop d when it is clear from the context what metric we are using.

For any two compact metric spaces X and Y, their Gromov-Hausdorff distance was introduced by

Gromov [Gro81] as follows

diStGH(X, Y) = inf{diStH(hx(X),hy(Y)) | hX X — Z, hy Y -7

are isometric embeddings into some metric space Z}.

The weakest form of Gromov-Hausdorff convergence that we are using in this thesis is convergence in
the sense of quantum Gromov—-Hausdorff. This notion was first introduced by Rieffel [Rie04a]. Let A be an
order-unit space. By a quotient (7, B) of A, we mean an order-unit space B and a surjective linear positive
map 7 : A — B preserving the order-unit. Let (A,L4) and (B, Lg) be compact quantum metric spaces.
The direct sum A @ B, of vector spaces, with (e4, ep) as order-unit, and with the natural order structure
is also an order-unit space. We call a Lip-norm L on A @ B admissible if it induces L4 and Lp under the

natural quotient maps A® B — A and A® B — B. Let p; be as defined in (4.1.1). Then the quantum

Gromov-Hausdorff distance is defined by
dist, (4, B) = inf{dist?} (S(A), S(B)) : L is an admissible norm on A & B}.
For a compact quantum metric space (4, L) and r > 0, let
D.(A):={a€ A: L(a) <1,|a]]| <7}

The following definition is due to Li [Li06].

Definition 4.1.2. Let (A, L4) and (B, Lg) be compact quantum metric spaces and R > 0. The R-order-unit

quantum Gromov—Hausdorff distance between them, denoted by distfjl(A, B), is defined by
distoq (A, B) := inf{max(dist gy (ha(Dr(A)), hg(Dr(B))), |ha(Rea) — hg(Regp))||},

where the infima are taken over all triples (V, ha, hg) consisting of a real normed vector space V' and linear

isometric embeddings hy : A —V and hg : B = V.

27



Note that the term ||h4(Rea) —hp(Rep))| is chosen to take care of the order-units. One may omit these

terms and require hs(e4) = hp(ep). Then we can immediately get the following results.

Lemma 4.1.3. Let ¢; : A — B; be linear isometric embeddings of normed spaces (over R or C) for j € J,
where J is an index set. Then there is a normed space C and linear isometric embeddings v; : B; — C' such

that v o p; =Y 0 @y for all j,k € J.
Hence we get the triangle inequality.

Lemma 4.1.4. For R > 0 and any quantum compact metric spaces (A, La), (B, L) and (C, Lc) we have
distl (A, C) < distl} (A, B) + dist (B, C).
Note that it was shown in [Li06] that for R > 0, the following holds:
%dz’stf’q < dist, < gdistf;.

The following Theorem is due to Li [Li06]. We are using this Theorem to find an approximation for the
space of continuous functions on the torus and an approximation for the rotation algebras in this chapter
and the next. First we recall the notion of a continuous field. Let T be a topological space. A continuous
field of Banach spaces over T is a family E(t);cr of Banach spaces, with a set I' C [ [, E(t) of vector fields

such that:
1. T'is (complex) linear subset of [],., E(t);
2. For every t € T the set of x(t) for ¢ € T" is dense in E(t);
3. For every x € T" the function z — ||z(t)|| is continuous;

4. Let x € [[,cp E(t) be a vector field. If for every t € T' and every € > 0, there exists an 2’ € T' such

that ||z(¢) — 2/ (¢)|| < e throughout some neighborhood of ¢, then = € T.

Theorem 4.1.5. ([Li06]) Let ({(A+, Lt)},T) be a continuous field of quantum compact metric spaces over
a locally compact Hausdorff space T. Let R > 0. Let to € T and {fn}nen be a sequence in T such that

(fn)to € Dr(As,) for each n € N and the set {(fn)t, : m € N} is dense in Dr(As,). Then the following are

equivalent:
1. dist] (A¢, Ayy) = 0 as t — to;
2. diStGH(DR(At),DR(AtO)) —0ast—0;
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3. for any € > 0, there is an N such that the open e-balls in A; centered at (f1)¢, ..., (fn)e cover Dr(Ay)

for all t in some neighborhood U of tg.

Lemma 4.1.6. ([Li06G]) Let A and B be normed spaces (over R or C). Let X be a linear subspace of A,
and let € > 0. Let p : X — B be a linear map with (1 — ¢)||z| < |le(@)|| < (1 + ¢)||z|| for all x € X.Then
there are a normed space V and linear isometric embeddings hy : A — V and hg : B — Vsuch that

|ha(z) = (hpop)(x)| < e|x|| for all z € X.

The strongest form of Gromov—Hausdorff convergence is convergence in the sense of quantum Gromov—
Hausdorff propinquity, which was introduced by Latrémoliere in [Latl5]. Before we introduce this notion,

we need to give some definitions.

Definition 4.1.7. ([Latl6]) Let A and B be two unital C*-algebras. A bridge v = (D,w, 7, 7p) is given
by a unital C*-algebra D, two unital *-monomorphisms 74 : A < D and wg : B < D and w € D such that
the set S(A|w) :={p € S(A) : Vd € D, p(d) = p(dw) = p(wd)} is not empty, where S(A) denotes the state

space of A.

In the following let F : [0,00)* — [0, 00) be defined by F(z,y,l;,1,) = xl, + yl,, for z,y,1,1, € [0,00).
For a C*-algebra A, let sa(A) denote the self-adjoint elements of A. Let uA denote the unitization of A.
Recall (|Rie98]) that a Lipschitz pair (A, L) is a pair of a C*-algebra and a seminorm L on a dense subspace
dom(L) of sa(uA) and such that
{a € sa(uA) : L(a) =0} = R14.

Definition 4.1.8. ([Latld]) A F-quasi-Leibniz pair (A, L) is a Lipschitz pair such that:
(1) the domain dom(L) of L is a dense Jordan-Lie subalgebra of sa(A),
(2) for all a,b € dom(L), we have:

L(aob) < F([la]la, [[b]l4, L(a), L(b)) and  L({a,b}) < F([[a] 4, [[bl[4, L(a), L(b))

A Leibniz pair [Latl6] (A, L) is a Lipschitz pair such that such that:
1. the domain dom(L) is a Jordan-Lie subalgebra of sa(A),

2. for all a,b € dom(L), we have

L(acd) < |lalaL(b) + L(A)|[b]| 4

and

L({a,b}) < [lallaL(b) + L(a)]|b] 4.
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Remark 4.1.9. A Leibniz pair is a F-quasi Leibniz pair for F' defined as above.

We say a quasi-Leibniz pair (A, L) is an F-quasi-Leibniz quantum compact metric space [Latl6] when:
1. (A, L) is a compact quantum metric space,
2. L is lower semicontinuous,
3. (A, L) is an F-quasi-Leibniz pair.
Definition 4.1.10. ([Latl6]) Let C be a nonempty class of F-quasi-Leibniz quantum compact metric spaces
and let (4,LA),(B,Lp) € C. A C-trek from (A, L4) to (B, Lp) is a finite family:

I'=(A;,Ly,vjt1,Ljp1:j=1,...,n)

where:
1. for all j € {1,...,n+ 1} we have (4;,L;) €C,
2. we have (Ay,L1) = (A,La) and (Ap41, Lny1) = (B, Lp),
3. for all j € {1,...,n+ 1}, we are given a bridge v; from (A;,L;) to (Aj41,Lj+1)

The Gromov—Hausdorff C-propinquity [Latl6], Ac((A, La), (B, Lg)) between (A,L4) and (B, Lg) is de-
fined by:
inf{\(T") : Tis a trek from (A, La) to (B,Lp)}.

Then we have the following refined criteria for convergence in the Gromov-Hausdorff propinquity sense

[Lat1s].

Lemma 4.1.11. Let (A,|||.|[|4) and (B,|||.|||g) be two F-quasi-Leibniz compact quantum metric spaces. If
there exist two *-homomorphisms w4 : A — B(H) and np : B — B(H) and € > 0 such that the following

hold:
1. For all a € A such that |||al|| 4 < 1, there exists b € B such that ||bl| g < 1 and ||ma(a) —75(d)|lp <€,
2. For all b € B such that ||b||| 5 < 1, there exists a € A such that ||al| 4, < 1 and ||7a(a) —75(D)||D <€,
then Ap((A [I[4), (B, Il 5)) < e

We will use this Lemma later in Chapter [6] to approximate the rotation algebras in higher dimensions in

the sense of Gromov—Hausdorff propinquity.
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4.2 Conditionally negative length functions on groups

Although the objects we study in this thesis are C*-algebras (more precisely order-unit spaces), we will
use various estimates in noncommutative L, spaces. To this end, we need to work in the context of von
Neumann algebras. We refer to e.g. [BOOS, [JMP14| [JZ15] and the references therein for the unexplained
facts in the following. Let (N, 7) be a noncommutative W* probability space. Here N is a finite von
Neumann algebra and 7 is a normal faithful tracial state. Let (T})¢>0 be a pointwise weak™ continuous
semigroup acting on (N, 7) such that every T} is unital, normal, completely positive and self-adjoint in the
sense that 7(Ty(f)g) = 7(fTi(g)) for every f,g € N. We will call a semigroup satisfying these conditions
a noncommutative symmetric Markov semigroup. One can extend T} to a strongly continuous semigroup
of contractions on Ly(N,7) (actually on L,(N,7) for all 1 < p < 00). Here the noncommutative L, (N, T)
space is the closure of AV in the norm || f||, = [7(f*f)P/?]"/? for 1 < p < 0o and ||f|ls = |If]| = || fllx, the
operator norm. We denote by A the infinitesimal generator of T}, i.e., T, = e~ *A. We define the gradient

form associated to A (Meyer’s “carré du champ”) by

PA(,0) = A )9 + FAlg) ~ A g)], (12.)

for f, g in the domain of A. Our major examples involve groups with conditionally negative length functions.

Let G be a countable discrete group. Let A : G — B(¢2(G)) be the left regular representation of G
given by A(x)dy = 0y for z,y € G, where (§;)zec is the natural unit vectors of ¢2(G), the natural Hilbert
space associated to G. Let C’(G) and LG denote the reduced C*-algebra and von Neumann algebra of G,
respectively. They are the norm closure and weak™® closure of A(G) in B(¢3(@G)), respectively. There is a
canonical normal faithful tracial state 7¢ on C(G) and LG given by 7¢(f) = (Je, fde), where (-,-) is the
inner product on ¢2(G) and e is the identity of G. A function ¢ : G — Ry is called a length function if
Y(e) =0 and Y(z) = (z~1). A length function ¢ is said to be conditionally negative if > 3, = 0 implies
that nyy BBy (7 y) < 0. By Schoenberg’s theorem, a conditionally negative length function v gives
rise to a completely positive semigroup (7});>o acting on LG, which is defined by TyA(z) = e @ \(z). Tt
is well known that T; thus defined is a noncommutative symmetric Markov semigroup and its generator is

given by AXN(x) = ¢¥(z)A(x). The Gromov form K in this context is defined as

K(e,y) = 3[0(@) + () — ¢(ay), for 2.y € G.

It is well known [BOQS] that ¢ is conditionally negative if and only if K is positive semidefinite as a matrix.
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We can write the gradient form as
IV(f9) = f@)K(z,)im)A=""y) (4.2.2)

for f =3, f(z)A\(z) € LG and g = >, 9(y)A(y) € LG being finite linear combinations. In the following,
we will frequently ignore the superscript A and v in the notation of gradient form for short.

In this paper, we will mainly work with G = Z¢ or G = Z¢ = (Z/nZ)?. In this paragraph we write A
and A, for the left regular representations of Z and Z,, respectively. Using the Fourier transform, we can
identify A(k) with e>™* for k € Z, identify C*(Z) with C(T), the continuous functions on the torus T = Z,
and identify LZ with Lo (T). Since the dual group of Z,, is Z,,, we can identify A, (j) with exp(%) for
Jj € Zy, and C(Zy) = L(Zy,) ~ Loo(Zy) = €so(n). Here the induced trace on ¢ (n) is the normalized trace

on the n x n matrix algebra M,, where ¢ (n) is regarded as the diagonal subalgebra of M,,. In other words,

An(j) is identified with

uj(n) = e n € ls(n) (4.2.3)

2mij(n—1)
e n

We will consider two types of conditionally negative length functions on Z and Z,,, namely

Y(k) = |k|, for k € Z and ¢, (k) = |k|, = min{k,n — k}, for k € Z,, = {0,1,...,.n — 1}.

It is known that the word length functions are conditionally negative; see e.g. [JZ13, JPPP13]. To unify
our notation, we will write Z = Z, ¥ = 1o and N = NU {+00}. We will call the semigroup generated by
1y, the Poisson semigroup on C}(Z,) (or L(Z,)) for n € N. This corresponds to the semigroup generated
by (—d?/dz?)'/? on C(T) in Fourier analysis. A more natural operator to consider is —d?/dz2, the 1-
dimensional Laplacian. The corresponding conditionally negative length function on Z is (k) = k? for
k € Z. On Z,, for n € N, it is tempting to consider ¥ (k) = k? for |k| < n/2. (Note that here and in what

follows we may replace k by k —n if k > n/2.) However, it is easy to check that this length function on Z,
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for finite n is not conditionally negative. Instead, we consider

—[1— COS(%)], for k € Zy,,n € N. (4.2.4)
n

One can check that 1, defined in (#.2.4) is conditionally negative by noting that exp(%r) is a positive

n

semidefinite function on Z,,. Note that
2

n® . o 7k, . .
(k) = —psin (?) if k#£0in Z,.

Using

<|

,
2 <M <) v e (0,7/2),
v

x

we see that

4 2 2
—k < Yn(k) < k7,

whenever |k| < %. Since lim,, o 1, (k) = k? for any fixed k, we have
Pn (k) ~ k2 for |k| < n/2. (4.2.5)

Here and in the following ax ~ by for two sequences (ax) and (bg) means that there exists an absolute
constant C' > 1 such that C=1 < a;/by < C. We also define 9o (k) = k% for k € Z and call the semigroup
generated by 1, defined by the heat semigroup on C¥(Z,) (or L(Z,)) for n € N. Once we know 1,
for n € N, we write I' = 'Y~ and ' = I'¥». We also denote by || - ||~ the supremum norm on both C(T)
and Ci(Z,,).

Let us now introduce the terminology and notation of compact quantum metric spaces. Our references
here are [Rie04al [Li06]. Given a unital C*-algebra A, we denote by Ay, the set of self-adjoint elements in
A. Then A, is an order-unit space in the sense of [Li06] with the identity of A as its order unit. Let L
be a (densely) defined Lip-norm on A,, and write A = {f € As, : L(f) < co}. By definition, A is a dense
order-unit subspace of Ay, and (A, L) is a compact quantum metric space; see |[Li06]. Let S(A) denote the

state space of A. For r > 0, recall
D,y(A)={ae€ A: L(a) <1, |a|] <r}.

For a (separable) Hilbert space H, we write H¢ and H" for its associated column and row operator space,

33



respectively. We denote by S} (resp. S,) the Schatten p class on (5" (resp. £2).

4.3 Some analytic estimates

In this section we collect some analytic estimates which we will need later. Let us define
LYN) ={f € L,(N): Jim T;f = 0}

for 1 < p < co. Here the limit is taken in ||-||, for 1 < p < oo and in the weak™* topology for p = co. Following

T

[IMI0], we define the (mean zero) Lorentz spaces LY (N) = [LY(N), LI(N)]g,s, where * = %f’ + %. See
e.g. |BL76, [PX03] for the interpolation spaces. Note that in our case for the generator A of the semigroup
(T})i>0, we have Ker(A'Y/2) = {1}.

Proposition 4.3.1. Let Ty = e~ be a noncommutative symmetric Markov semigroup on (N, 7). Suppose
T, : LYN,7) = Loo(N,7)]|a < Ct™™/2, (4.3.1)

Then [|[A= : LY(N,7) = LI (N)|[eb < C(m, @) for o > 35, where C(m,a) < oo only depends on m and .

Proof. The argument modifies from [JM10]; see also [JZ15]*Corollary 4.22. Let o = §*. The argument in

[JM10]*Lemma 1.1.3 can be trivially generalized to prove the complete boundedness. Hence, we have
A7 L3 (N) = Loo(N) b < C(m, ).

We know from the interpolation theory that L9(N) < L2 (V) if p > s. The assertion follows. O

Let us consider the rotation C*-algebra Ag, where © = (6;;) is a d x d skew symmetric matrix with 6;; €

[0,1). By definition, Ag is the universal C*-algebra generated by unitaries u, ..., uq with the commutation

relations

upwy = 2™y, kl=1,...,d.
It is well known that Ag admits a faithful canonical tracial state 7 such that 7(u¥ .- ufld) =1 if and only
if ki =+ = kg = 0; see e.g. [Rie90]. In order to work with noncommutative L, spaces of von Neumann
algebras, we recall that Rg = A{ is the rotation von Neumann algebra associated to ©, which is the weak*

closure of Ag acting on the GNS Hilbert space La(Ag, 7). The linear combinations of u]fl ~~~u§d form a
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weakly dense subspace of Rg. We will frequently use the following *-homomorphism:
7:Re — L(ZY)@Re, w(uf - ukt) = e%i@")u’f1 b (4.3.2)

Note that 7 is trace preserving. Let 1 be a conditionally negative length function on Z% and T} the semigroup

on L(Z%) generated by 1. We define a semigroup on Re
Tt(ulfl . U’Z’i) — e_tw(kl’”"kd)ulfl . ugd.
Then (Tt ®id) om = m o T;. We see that T} is a noncommutative symmetric Markov semigroup on Re; see

also [JZ15]*Proposition 5.10. Thanks to Schoenberg’s Theorem, T} is a completely positive map.

Corollary 4.3.2. Let A be the infinitesimal generator of Ty defined as above. Assume that there exist D > 0
and v > 0 such that

#{k € 2 (k) = j} < D37, for all j € Zo.

Then

IT: : LY(Re) = Loo(Ro)]lep < Ct~ 0O,

where C' only depends on D and ~ (and independent of n). Therefore, A= : L)(Re) — L% (Re) is
completely bounded for o > %‘1. In particular, if (k) ~ k| + - - + |ka|, we can choose v = d — 1; and if

V(k) ~ [k |2+ - + |ka|2, we have actually a better bound ||T; : L9(Re) — Loo(Re)|en < Ct=4/2.

Proof. Let x = Zw(,;)>0 ap ® ult - ukt € M,,(L9(Re)) be a finite linear combination. Then (id ®7T})(x) =

o e‘tw(’;)a,g @ul" - uke. Consider the linear functional
¢: Li(Re) = C, 6(f) =r(f- (" - ug")").

We have ||@||c, = ¢ and thus ||az||ar, < |22, (L) It follows that

[Gd©T)allas, (ro) < 3 Naglhrue™ Ol - wff|<lzllas, oy D, e
w(R)>0 ¥(k)>0

< Dllelar i) / Setds = DIy + D)l llag, oot~ OHY.
0

This yields ||T} : LY(Re) = Loo(Re)|lcb < ct=771. We deduce from Proposition with m = 2(y + 1)

that A= : LY(Re) = Los(Re) is completely bounded for o > 'YTJfl.
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It remains to check the value of 5. For (k) ~ |ky| + - - - + |ka|, we have
#{F:0(k) = j} < Dj* .

For 1(k) ~ |k |2+ -+ |kq|?, we can of course take v = d— 1. But the most interesting value of £ is 0 < ¢ < 1.

So we want a smaller value of 7. Let x =} ra; ® ubr ~u§“" € M,,(LY(Re)). Then

1Gd @T ) ar,, (re) < D lagllar, e ™
E

o0 2 d
<l ([ e*ds)" < 0Ol 0y

Hence || T} : LY(Re) = Loo(Ro) | < Ct=4/2. O

For notational convenience, let us introduce the following norms for 2 < p < co. Let A be a von Neumann
algebra with a trace 7 and H a separable Hilbert space. Recall from [Pis03] that H¢[p| = (H®, H"),,, and
H'[p| = (H",H®)1,. We define L,(N, H°[p]) as a subspace of L,(B(H)®N) with the norm

1/2
|2/l o mrepp)) = 1@ @)X L, vmy, @€ HON. (4.3.3)

Here (-,-)a is the N-valued inner prodcut given by {(a ® z,b0 ® y)»r = {(a,b)gr*y. Similarly, we define
L,(N,H"[p]) as a subspace of L,(N®B(H)) with the norm

Nzl a5 ) = 1272, o, me ) -
Note that Leo (N, HS) = N @min HS, Leo(N, H") = N ®Qmin H" and
Il 2, v, e pinmrp)) = max{l|]| L, v, mepp)), 121, v,z ) -

Let us turn to the group case. Let 1 be a conditionally negative length function on G. Recall that
determines a 1-cocycle b : G — H,, with values in a real unitary representation (o, Hy). Here Hy is a real

Hilbert space and (b(g),b(h))n, = K(g,h). One has
b(gh) = b(g) + ag(b(h)) and 1(g) = [[b(g)]%,
for g,h € G. See [BOOS] for more details. We define H = Hy, @ LG to be a LG-LG bimodule with the left

36



action

Ag)(b(h) @ A(s)) = g (b(Rh)) @ A(gs)

and the right action (b(h) @ A(s))A(g) = b(h) ® A(sg) for s,g,h € G. Let § : LG — H be (densely) defined
by
5(A(g)) = blg) © Ag)- (4.3.4)

One can check that § is a (densely defined) derivation on LG. Moreover, we have

Iz, y) = (6(x),0(y)) La

for z,y in the domain of I'. Here (-, )¢ is the LG-valued inner product of #. One can naturally extend §
to M,,(LG) by defining §(ag ® A(g)) = b(g) ® ag ® A(g) for ag € My,. In terms of (4.3.3), we may choose
N = M,,(LG) and H = H,. Extending the semigroup generated by v to the matrix level, we can define
the gradient form I' on M,,(LG). Then we have

D, 2) 2\ ey vty = 10y (0 (26, 1 )

for x € M,,,(LG). Note that L,(M,,(LG)) = S;"L,(LG). For our later c.b. estimates of the Riesz transform,
we wish to completely embed Lo (LG, Hy) into L, (LG, Hg[p]). To this end, we have to consider Hy N H,,

and H[p] N H[p].

Lemma 4.3.3. If G is abelian, then

T, )2\ L, 2y = 18(@) Ly (01, (.6, 1 )

for x € My, (LG).

Proof. Let v =3 ay, ® A(g) where ay € M,,. We define a linear map
J:Hy — Hy, J(b(g)) =0b(g™").

Then thanks to commutativity,

K(g,h) = S[(g) +9(h) — (g h)]
Lla™) + 0(h™) —i(gh™)] = (b(g™). b,

(b(g), b(h))
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Namely, J preserves the inner product of Hy. Note that
J(z*)* = (Z b(g") @al® )\(g’l)) =3 b(g ) @a,© A(g) = (J ®id@id)é(x).
g g
Here we used b(g~—1)* to specify that we view b(g~1) as a row vector. Since J is an isometry, we have

I (2", 2%) 2 Ly a2y = 182y 02t ) = 10(2") |2, (01,0 (26,1 5]

= [(J ®@id®@1id)é(2)l| 2, (M. (L6, 15D = 16(@) 2, (M0 (L), 1 ) - O

Let us return to the rotation von Neumann algebra Rg. Recall the homomorphism 7 as defined in
[32). Let 6 : L(Z%) — Hy ® L(Z?) be the derivation given in ([#3.4). Considering (id ®4) o 7, we extend

the derivation 6 to M,,(Re) by
Sap @ ubt - ukt) = b(k) @ ap @ uf - ke, (4.3.5)

Note that the derivation is constructed so that the following diagram commutes in the matrix level:

Re U L(ZY)®Re

é \Lé@id

v id @ 4
Hy ®Re Hy ® L(Z") ® Re

Extending T} to idys,, ®T; on M,,(Re), we can define the gradient form I' on M,,(Re) associated to the

generatoridys,, ®A. Then we have I'(z,y) = (6(z), 6(y)) m,, (Ro) for z,y in the domain of I'. Tt follows that

IT (2, 2)" 2 2, (01 (RY) = 162, (M (R 18]

for © € M,,(Re). Using similar argument to that of Lemma we have the following result.

Lemma 4.3.4. Let z = dezd ap ® u’fl -~u§"’ be a finite sum where ap € My,. Then
IT(z*, 2) 2|, (M, (Re)) = 16(2) L, (Mo (Re), HE ) -
Proof. Observing (4.3.5)), we may define for clarity,

6c(u’1€1 .. .usd) = b(];) ®u’1€1 .. .u’:ld c Hi ®Re, 57‘(”/161 ...u’;d) = b(]_g') ®u11€1 ...u’;d c le ®Ro.
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As in (4.3.5), we may extend 6¢ and 4" to matrix levels. Then
Zb ) ®az® @ (ufr - uba),

Since (b(—k), b(—k"))u,, = (b(k), b(k")) 1,,, We have

1P, )L, (M (Re)) = 10(Z") | L (Mo (R, 15 9]
7 W * k/ Kl
= HZ(b(*k),b(*k’»nga,g ® (uft - uf) (uy" - ugh) |l
P
. had * 1 kl k!
= HZ( (k), b(K)) mr, aga, @ (uf® - ufy) (ug™ -+ ug?)* ||,
EE
= 16" (@)L, (M (R, F 1) - O

Let us introduce more notations to formulate our complete embedding results. For 2 < p < oo, let

V,(Re) be a subspace of L,(Rg) with the semi-norm defined by

[zlv,(Re) = ||6(m)HLP(R&H;‘,[p]ﬁHQ[p])'

Then by Lemma we have

||

sp(V,(Re)) = max{[D(z, @), IT (2", 2*) "2} (4.3.6)

for any z in the domain of I'dam ®4,

For notational convenience, let us define for z in the domain of Tidam @4,

Iz lllr, = max{[[6°(z)[| a1, @i R @G » 10" (D) | M @ min RO @ H } = 2|01, (Ve (Re))- (4.3.7)

Then |||z]||,, is a Lip-norm. We usually ignore the subscript m and write |||z||| if the underlying space is
clear from context. We will also use frequently the notation L(x) := |||z|||, especially when we consider a

continuous field of quantum metric spaces.

Corollary 4.3.5. With the notation above, we have ||id : Voo (Re) = Vp(Re)|cb < Cp for some constant
Cp.

Proof. Writing c.c. and c.b. for completely contractive and completely bounded isomorphisms, respectively,
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we consider the following diagram:

N ®min (Hi N H;)%N(@min L(FOO)CL-J\@

L
V |

Ly(N, H[p) 0 HY[p))C eb.

Here N can be any finite von Neumann algebra. In particular we take N' = Rg. From [Pis03]*Theorem
9.7.1, we know that Hj, N HJ, — L(F) completely isomorphically and the first line of the diagram follows.
Also, by Corollary 9.7.2 and 9.8.8 in [Pis03], Hy[p] N Hj[p] completely embeds into L,(L(F)) and the
second line of the diagram follows. But N®L(Fo,) < L,(N®L(Fo)) is completely contractive. We deduce
that there is a complete contraction form N ®min (Hg N H}) to Ly(N, Hg[p] N Hyj[p]). Combining this with
the definition of V,(Re), we find that V. (Re) completely embeds into V,(Re). O

Remark 4.3.6. The above procedure works not only for N' = Rg, it also works for N' = M,,4, the n? x n¢

dimensional matrix algebra, by choosing 2d generators of M, 4. To see this, we simply define the homomor-
phism 7 as in ([4.3.2) and the derivation § as in (4.3.5) using L(Z%) instead of L(Z?). The notation V,(N)

will be used to represent V,(Re) or V,(M,a).

Suppose the semigroup T; = e~*4 on N satisfies I'y > 0, where I'y(f,g) = %[F(Af, g9)+T(f, Ag) —
AT(f,9)]. Then idys,, ®T; also satisfies I'y > 0; see [JM10, [JZ15] for more detailed discussion on this

condition. Hence, we deduce from [IM10] the complete boundedness of Riesz transforms
|AY2 2V (N) = LYN) [leb < K. (4.3.8)

Combining this with Corollary we obtain the following crucial ingredient in our argument for approxi-
mation in cb Gromov-Hausdorff convergence. Recall that we may take N'= Rg or N = M,,a as in Remark

4.5.0l

Corollary 4.3.7. Suppose T, satisfies Ty > 0 on N. Then we have [|AY? : Voo (N) = LY(N)|leb < Cyp for

some constant Cp.

Recall that for a given function ¢ : G — C, the Fourier multiplier T, on LG is defined by extending
T,(A(s)) = p(s)A(s) for s € G. ¢ is called a Herz—Schur multiplier if T, is completely bounded; see e.g.
[BOOS].

Lemma 4.3.8. Let ¢ be a Herz-Schur multiplier on G and I' be the gradient form associated to id ® A
defined in (4.2.2)). Let f € M,,(LG) and assume (id ®T,,)f belongs to the domain of the generator id ®A,
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then

ID((d ®T,) £, (1d @T) )l s, ey < N TollZITCE Pllad,. zc)-

Moreover, if ¢ is a Herz—Schur multiplier on Z°, then for any finite sum f = ; a,;@ulfl e usd € M, (Reo),
we have

ID((d &Ty) £, (id &T) llat,n(re) < NTell T HlIag, (Re)-

Proof. For f =3 as® A(s) in the domain of id ® A, since the multiplier commutes with the generator A,

we have

IT((1d @T,) £,(d ®Tp) )2 | ws,n6y = 161Gd OT) fl| 1w (M (26,115

= |[(idar,, ®@ida, @T)6 ()L Mmirc),mg) < N1TellebllO )N Lo MLy, H)-

We get the first assertion. The “moreover” part follows the same argument using the trace preserving

*-homomorphism given in (4.3.2). O

Remark 4.3.9. Similar to Remark by considering G = Z¢ (resp. G = Z%) and using the homomorphism
(4.3.2), we find that Lemma still holds if we replace LG by Re (resp. M,a). This shows that
Ty« (Re, [l — (Re, Il (resp. Ty (Mypa, [[I-[ll) — (Mia, [II-]I[)) is completely bounded.

Lemma 4.3.10. Let ¢ : G — 7Z be a conditionally negative length function. Suppose ¥ has at most
polynomial growth, i.e. #{g € G : P(g9) = 0} < o0 and for alll > 1, #{g € G : ¥(g9) = 1} < DIV for
some constants v and D > 1. Then for any € > 0 and k € N, there exists a Herz—Schur multiplier ¢ . and

m =m(k) > k such that

(i) 1 Torlleb <146

(ii) the image of Ty, . is contained in span{\(g) € G : ¢(g) < m};
(iii) |ore(g) — 11 < e for P(g) < k;

(iv) there exists eg < € such that for anyr €N, 1<p<q<oo,n€ (0,e0) andx =3 5 <y Gg @A(g) €
Sq (Lp(LG)),
1(d&Ty, ,)(z) — x|

sr(Ly(e) < Ellzllsyr,za))-

Therefore, if we define Py(3_,cq foMg) = > gw(g)<k faA(g), then (Ty,, —id)Py : Lpy(LG) —
Ly(LG@)|leb <€ for1 <p<g<oo.

41



Proof. Let us define

Palg) = e O/ <), g €G. (4.3.9)

We know from Schoenberg’s theorem, ¢, (g) := e~ %9/ gives a completely positive Fourier multiplier T},
on LG. We have [Ty, [ob = [T, (1)|| = 1. Given any z = 3 ag ® A(g) € Sq(Ly(LG)), we claim that for
1 <p,q < oo,

laglls: < lzlls,(z,zay- (4.3.10)
Indeed, similar to the argument of Corollary we define
0: Lp(LG) = C, y = o(y) = 1a(yA(9)").
We have [|o]|cb = |lo]] < 1. By [PisO3]*Lemma 1.7, we also have for any 1 < g < oo,
loller = sup [id®g : Sq(Ly(LG)) — Syl

Hence, we have

laglls; = [lid®o(z)|sr < ||»"UHS;(L,,(LG))~

Using (4.3.10) with p = ¢ = oo, we have

I1(d &Ts, ) (@) — (d&To) @) wey < D laglae 9™ <ellzllu, 1o
P(g)=>m

for o large enough and thus ||T,,_ |lcb < 1+e. Given €, k, we can choose m > k and « large enough in (4.3.9),

and define ¢y . = ¢, such that

loke(g) — 1] <e  for P(g) <k<m

and supp ¢r C {g € G : ¥(g9) < m}. Clearly, the image of Ty, _ is contained in span{A(g) : ¥(g) < m}.
Let Sk = |¢~1(0)] + 1+ 27 +--- + k7, where |[¢p~1(0)| is the number of zeros of 1, and let g9 = Ds,- Using

(4.3.10) again, we have for any n € (0,e0) and x =3, <x @9 ® A(9) € S (Lq(LG)),

I(d @, ,)(@) = 2llsyzoan < D lagl
P(g)<k

sylerm(9) = 1 < ellzllsrz, ey

This inequality implies the last assertion by using [Pis03]*Lemma 1.7 again. O
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The target space Z of the length function v in the above may be replaced by some other countable
discrete set, for instance, when we consider the length function . The proof can be modified easily to
deal with this case.

To motivate our following discussion, let us fix a conditional negative length function 1 on Z, for n € N.
Let A, denote the generator of the semigroup associated to ¢ and assume 2 < p < oco. Following the

notation above, we define
Vp(L(Zn)) = {2 € Ly(L(Zn)) : max{||[T" (@, 2)"/?||,, [T (2", &*)"/?||,} < oo}
Let % = «a + [ for some fixed a, 8 > 0. Consider the following chain of maps:
A2 AP Ape
Dr(C[Zn]) C Vp(L(Zy)) = LY(LZy) =" LY(LZy) —— L3 (LZy).

Here C[Z,] is the group algebra of Z,,. Note that by the boundedness of Riesz transform (4.3.8), we have
||A,1/2 : Vp(L(Zn)) = LY(L(Zn))|| < K. Suppose A, has a spectral gap, by [JMI0]*Proposition 1.1.5,

|47 L) — L)l < Cp. (4.3.11)
Using Proposition we can show that A, : L — LY is bounded for p > 1/a. Then
d = A7 0 A7 0 AY2 L Dr(ClZ,)) - 12,

where Dg(C|[Z,]) consists of the mean zero elements of Dr(C[Z,]). It will become clear later that these
maps will help to establish crucial norm estimates.

For A C Z,,, we define
Ly (L(Za)) = {f € Ly(L(Zn)) - f = Y J(R)AK)}.

For £ < n/2 and n € N, we define Ay = {0,+£1,..., £k} C Z,, and A}, = {£(k +1),...,£[5]} C Z,. For

n =00, we let A{ ={j € Z:|j| > k}. Let us define the projection

Qn + Ly(L(Za) = LpHLZa), Qe( X FOND) = 32 FOIAG).
J 51>k
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Lemma 4.3.11. For1 <p < oo and n > 2k or n = oo,
AC
1Qk : Lp(L(Zn)) = Lp" (L(Zn))ller < Cp

for some constant C,, independent of n, k.

Proof. It is well known (sce e.g. [Bou86, [PX03]) that every projection P : L,(LZ) — L5 (LZ) is completely
bounded for any subinterval A C Z. The case n = oo follows. Assume n € N. Let ¢r denote the normalized
trace on the n x n matrix algebra M,,. It is well known that there exists an injective trace preserving

*-homomorphism p : L(Z,,) — (My,tr) given by

where the first 1 in the first column appears in the (j + 1)%* row, the first 1 in the first row appears in the

(n — 7+ 1) column, and the matrix entries are constant along diagonals. Fix k and put

Br={(i,j):i>k+2,j<i—k},

By ={(i,j):j>k+2,i<j—k}.
Let Pp denote the projection on M, given by

Pp(laiglicijen) = Y aij @ ey
(i,5)€B

where e;; is the matrix unit of M,,. Then Q, = Pp, +Pp, — Pp,. It is well known (see e.g. [Bou86]*Corollary

19, [PX97]) that for any triangular projection Pg and 1 < p < oo,
|Pg : Sp = Splleb < Cp.

The assertion follows immediately. O

Lemma 4.3.12. Let 2 <p < oco. Then
1458+ Ly (L(Zn)) = Lyp(L(Z)) ey < Cptp(k) /@D
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uniformly for n > 2k or n = +o0.

Proof. Let ¢ = 2p and % = % + g. Then 6 = zﬁ' By and Lemma we have
1475Qx s Ly(L(Zn)) = Lo(L(Za)) e < Cp.
Since ||A;?Qp. : La(L(Zy)) — La(L(Zy))||eb < (k)7 by the Riesz—Thorin theorem, we have
1AL Qr + Lp(L(Zn)) = Lyp(L(Zn) b < Cptp(k) ™7,

which yields the assertion. O

4.4 Approximation for C(T)

Unless otherwise specified, in this section we consider the Poisson semigroups on L(Z,) defined in Section
that is, the generator A, (k) = |k|\(k) for |k| < n/2. Following the notation of [Li06], for n € N, we
define

Ln(f) = IT"(f, £)* 2o for [ & O} (Zn)sa-

We also write I' :=I'*® and L(f) := Loo(f). It was proved in [JMI0] [JMP14] that L and L,, are Lip—normﬂ
Clearly, L, (f) < oo for f € C(Zy,)sq for n € N. Note that L is only defined in a dense subspace of C(T).
We define Ao, = {f € C(T;R) : L(f) < oo}. Here C(T;R) is the set of real-valued continuous functions on
T, which corresponds to C}(Z)s,. One can simply take Ao, = C(Z)s, which can be identified with the self-
adjoint trigonometric polynomials on [0,1]. We also write A, = C(Z,)sq for short. Then (A, L,),n € N
are compact quantum metric spaces in the sense of [Rie04bl [Li06]. Our first task is to check that they form
a continuous field of compact quantum metric spaces.

Define 7, : C*

T

(Z) — C(Zy,) to be the linear map sending A(k) to A(k mod n). Since Z,, is abelian, its
universal C*-algebra coincides with its reduced C*-algebras and therefore 7, is a *~homomorphism extended

from A(1) — A(1) by universality. To describe 7, in the function spaces, we have

T 2 O(T) = loo(n), [ m(f) = (f(5/7))]=0;

2mikj

and 7, (e?™F)(j) = e~ n

IThere are different versions of definitions of compact quantum metric spaces. While L, defined here satisfies more conditions
than the one in [Li06], our proof of convergence in the quantum Gromov—Hausdorff distance only requires the conditions listed
in [Li06)].
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Lemma 4.4.1. Let f =" axe*™* and m <n/2. Then m,Af = A,mnf. Therefore,

—m

Fn(’frnfv an) = Wnr(fv f)

Proof. Note that

m m
T Af = 7 Z ag|kle?m k) = Z ak|k|627r71k‘
Since m < n/2, we get
m m
2mik- 2mik-
Anmnf = An( Y ape™) = 7 aplkle™.
k=-m k=—m

Therefore, m, Af = A,m,f. Now since 7, is a *-homomorphism, we have

Fn(’frnfv an) = %(An(ﬂ—nf*)']rnf + an*An(ﬂ—nf) - An(ﬂ—nf*ﬂ—nf))
= S (Ta(AS* ) + ma(FAF) ~ T A1)
=m (£, f). O

Proposition 4.4.2. Let f =31 f(k)e™* . Then

Jim |7 flloo = [1£[locs
and
i ([T (0 70 oo = ITC ) o

Proof. By Lemma[4.4.1} when n is large, I (7, f, mn f) = m.I(f, f). Let h =T(f, f). Note that since f is a
smooth function, so is h. By continuity of h, there exists ¢y € [0, 1] such that ||h|lcc = h(to). Let j € N be

such that |£ — #o| < 5. Using the mean value theorem, we get
0= h(to) = h(L) < el to]
o n’ n

By (4.2.2)), we may assume h = ch:_l are?™* for some finite [ which only depends on m. Then h/(z) =

ZZZ_Z 2rika,e®™** and thus

l

sup |1(z)] < ) 2mlklax| < Crllhllx < Conllh]loc,
z€l0,1] p—

46



for some constant C,,, only depending on m. This proves that lim, o [T (70 f, Tnf)|loo = IT(f, f)||co- The

first assertion follows similarly. O

Proposition 4.4.3. Let S = C(N;[], .y An) denote the continuous sections of [, e An. Then ({An, Ly}, o5, S)

is a continuous field of compact quantum metric spaces (see [Li06]*Definition 6.4).

Proof. Note that the continuity at n € N is trivial and that 1 = (1,,) is clearly in S. Here 1,, is the identity
of Ay. An element of S can be written as (7, (f)),,cx for some f € A,. Then Proposition verifies that
(a) ({An},en, S) is a continuous field of order-unit spaces and (b) ({An, Ln}, i, S) is a continuous field of

compact quantum metric spaces. Here A,, is the norm closure of A,,. O

Our next goal is to show that A,, converges to A in the quantum Gromov—Hausdorff distance. In light
of Li’s criterion |Li06], we need to find a “uniform” cover of Dgr(A,,) for n large enough. We will achieve
this by using the approximation properties of Z and going through various estimates in L, spaces. Recall

that a Fourier multiplier Ty, on L(Z,,) is defined as
Ts(D>a;Ai) = Y a;6()AG)-
J J

Lemma 4.4.4. Let ¢ > 0 and k € N. Then there exist m = m(k) > k and Herz-Schur multipliers ¢y, _ on
Zy, for n > 2m (including n = co) such that

(i) | Top Meb < 1+e;

(it) the image of Tyrn is contained in span{A(j) : [j| < m};
(iit) |pre(d) = 1| < € for |jln < k;

(iv) for x in span{A(j) : |j|» < k} and n € (0, 2(%5-1))’

1Ty, = @lloo < ell]l2- (4.4.1)

Proof. Note that #{j € Z, : |j|l. = k} < 2 for k > 1. Applying Lemma [4.3.10] first to G = Z (so
we have D = 2,7 = 0), we get m and a multiplier ¢y . on Z. Then applying Lemma again to
G = Zy for n > 2m, we find multipliers ¢} . on Z,, which satisfy ¢} _(j) = ¢k,(j) for |j| < m because
the proof of Lemma does not depend on n once we choose m. The assertion follows by taking

p=2,g=o00,r=1. O
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Lemma 4.4.5. Let T/ = e~ t4n be the Poisson semigroup associated with v, acting on L(Z,) defined in

Section , Then A,* : LY(L(Zn)) — L3 (L(Zn)) is completely bounded uniformly inn € N for a > %.
Proof. The argument is the same as for Corollary with v = 0. O
Lemma 4.4.6. Let ¢ > 0. Then there exist k = k(¢),m = m(k) and Herz-Schur multipliers ¢y, ., n €
(0, m) on Ly, forn > 2m (including n = oc) such that

[ = Top (@)oo < elllz]l2 + Ln(2)]

for n > 2m (including n = o).

Proof. Let k € N be a large number which will be determined later. We choose m and ©) , s in Lemma

Since ||(1 — Qr)z|l2 < ||z||2, by we have
(1= @Qr)(x = Tep (2))]loo = I(1 = Qr)z — T (1 = Qk))[loo <[I(1 = Qr)zl26 < ellz]2-

Note that @ and A, commute. Using Lemma |4.4.5, equation (4.3.11)), Lemma [4.3.12| and the boundedness
of Riesz transforms [JM10], we have for p > 1/a,

14,2 AP A2 Qi — Typ (@)oo < call AP QuAY (@ — Ty (@)l

s7

< caCpk PP VAV (@ = Ty (@)l

< ca KOk PO (0™ (@, 2) 2, + [T (T (@), Ty (2))/2],)

where ¢ = [|A; : L)(L(Zy)) = Loo(L(Zy))|l, K, is the L, bound of Riesz transforms, and Cpk=P/(r=1) g
the bound in Lemma 4.3.12] By Lemma we have

1Qx(z = Ty (@))lloe < (2 + €)cakyCpk ™/ PV (@, 2)!| o0 < L ()

by choosing k large enough. The claim follows. O

Proposition 4.4.7. Let ¢ > 0 and R > 0. There exist N > 0 and 1, ..., 2, in Dr(As) such that the open

e-balls in A, centered at mp (1), ..., mn(zr) cover Dr(Ay) for alln > N (including n = o).

Proof. The case R = 0 is trivial. Assume R > 0. Let m and ¢, , be given by Lemmam For n > 2m, let
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us define

Dip(An) = {z € Dr(An) cz = Y a;A(j)}.

[71<m
Since D} (Axo) is compact, we can find z1,...,2, € Dr(Ax) such that for all y € D (A ) there exists an

s €{1,...,r} with ||y —zs]|oc <e. By Lemma and we know that 1= T,» _(z) belongs to D (Ax)
for every € Dr(As). Thus we can find s € {1,...,r} such that ||11?T¢

[.4.6,

};m(l’) — Z5/loo < €. By Lemma

[ = 5]l < |l = oo + (@) = @slloo <2(R+ 1)e.

sM

1
[ =Ty, (@)lloc + ||17_|_5Tw7:

1+¢ 1+e¢

This shows that (z;);=1,.., is an 2(R + 1)e-net of Dp(Ax).
Let n > 2m and y" € Dr(A,). We may write Tor (y") = _)1<p, aje%Tijﬂ Since the coefficients (a;)

are uniquely determined by y™ and ¢}, we may define j =3, _,, aje*™ 7" in Ay. Then
Tn(9) = Top  (y")- (4.4.2)
But by Proposition we have
i sup [l (F)lloe — 1 fllcl = 0. T sup [T Gra(£). 70 (£l — DS £l = 0
feK feK
for any compact subset K of LZ. Note that
13l = 1Tz, ()ll2 < 1Tp, (")loo < (14 )lly™ oo < (1 + ).
Since g falls in a finite-dimensional space with bounded Lo norm, the set
{9:y" € Dr(An)}
is pre-compact in LZ. This yields that there exists N > 2m such that
[9llce < (A +&)lImn (@)oo and [IT(G,9)]lcc < (14 )T (7 (), T (9))lloo (4.4.3)
for all "™ € Dg(A,) and all n > N. It follows from that

7]l < 1+ )Ty, (") loo < (1 +€)[ly" [l < (1+€)*R.
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By Lemma [£:338]

IT™(Tp . ™) Top (") loe < (142200 4™l

Thus by [{.4.2) and (.4.3), |T(7,9)|lee < (1 +¢)%. We find ﬁ;& € Dr(As). Hence there exists an

in the 2(R + 1)e-net (z;)i=1,...» of Dr(Ac) such that ||ﬁg} — Zs|loo < 2(R+ 1)e. Then we deduce from
ETD) that

||T907§,7, (Y") = mn(@s)lloo <19 — 2sloo

< Iy "l + g0 — 2l < GR+2)
T N9 o0 71 . N9 - xg oo €.
== ae2Y 1tep? Tl =

Using Lemma [£:4.6] we have

19" = mn(@s)lloo < N1Y" = Top (" )Mloo + 1T, (™) = mn(s) o0 < (6R+ 3)e.

n
k,m

_£&€

6hy3 0 the very beginning, we complete the proof. O

Replacing ¢ with
Theorem 4.4.8. (A, L,) converges to (Aso, L) in the quantum Gromov—Hausdorff distance.

Proof. By Proposition ({An, Ln}, i, S) is a continuous field of compact quantum metric spaces in
the sense of [Li06]. Let e = 1/m. By Proposition we find

x1<m>7 Ty, (m) € DR(AOO)
such that for any x € Dr(A) there exists z5(m) so that ||z — x5(m)| < 1/m. Then the set

A= Uf,ff:l{:cl(m), Ty, (m)}

is dense in Dr(Awx). Give an ordering on A as follows: x;(m) < z;(m) if i < j and x;(m) < z;(m') if
m < m’. Then A is totally ordered and we can list the elements of A according to this ordering. Identify
r € Dp(Ax) with a section x = (7, (x)),, o such that m,(x) € A,. By our construction, for any £ > 0, there
exist r and N such that the open e-balls in A,, centered at m, (1), -+ , 7 (2,) cover Dg(A,) for all n > N,

where z; € A for all 4. In other words, A satisfies Condition (iii) in [Li06]*Theorem 7.1. Hence A,, converges

to Ay in distfq, the R-variant order-unit quantum Gromov—Hausdorff distance by the same theorem. The
assertion follows from [Li06]*Theorem 1.1. O

Remark 4.4.9. In Theorem we used the Poisson semigroup on L(Z,) to define the Lip-norm. In fact,
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the same approximation result remains true if we use the heat semigroup on L(Z,,) and the proof is slightly
more direct. Indeed, thanks to (4.2.5)), we would get m = 1 in (4.3.1)), which allows to choose p = 2 and
i <a< % to replace Lemma Then certain L, estimates reduce to Ly estimates. We leave this to the

interested reader.
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Chapter 5

Gromov-Hausdorft Convergence for
Rotation Algebras

5.1 Matrix algebras converge to noncommutative tori

Similar to the previous section, we need to define a Lipschitz norm and a semigroup action on M,,, and
show that the family of matrix algebras together with these Lip-norms form a continuous field of compact
quantum metric spaces. Now we have to introduce some notation. Let n € N. Then M,, ~ ls(n) X4 Z,, =
{u;(n),vg(n)}”, where u;(n) is defined in and vg(n) = A, (k), the left regular representation of Z,.
The action « is given by

ag(uj(n)) = vp(n) u;(n)vi(n).
Then we have the following relations

2mijp

uj(n)e, =e » e, and wvg(n)e; = eryi,

where {e;}}_; is the standard orthonormal basis for C". It follows that

27i

up(n)vi(n) = e vy (n)ui(n).

We expect that u;(n) and vi(n) commute in the limit.

5.1.1 Norm Estimates for Trigonometric Polynomials

For n € N, we define T}" to be the semigroup acting on M,, by T/ (u; (n)vy(n)) = et @n@+¥nE) gy (n)vy (n),
where v, is given by (4.2.4]),

n? 21k

Ynk) = 551 — cos(=0)].

= o2

Then by Schoenberg’s Theorem 7}" is a completely positive map. Note that u;(n) = [ui(n)]? and vg(n) =

[v1(n)]*. So here we are using u;(n),v1(n) as the generators of M,, when we define the semigroup 7;*. In
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fact, as we shall see later, we may use any fixed pair of generators of M, or any prime powers of these
generators as the generators of M, but we always define T}* as if they were uj(n),v(n). For example,

up(n),vg(n) also generate M, as long as (pg,n) = 1; see e.g. [Dav96]. In this case, we may define
T ([up ()} [ (n)]*) = e~ Cn@HnED [y, () oy (). (5.1.1)

For simplicity, we may just write ui(n) and v1(n) for u,(n) and v,(n) by abuse of notation. The semigroup
we are using should be clear from context. Note that t,,(j) +, (k) on Z2 is conditionally negative. Clearly,

for fixed k we have

k2 if [k| <
%(k) ~
(n—k)? if |k| >

B

V|3

Note that

4 . n
§k2 < Pn(k) < k27 if [k < -,

a,nd
2 n 9 92 .

Let u and v be the generators of M., = Ag. Intuitively, since lim,, o ¥, (k) = k? =: 1o (k), we would
expect the heat semigroup in the limit
T, (w/vk) := TP (w/ k) = 17 HIRI) 7o (5.1.2)

acting on Ay. We define the gradient form I'" associated to the generators

An(uj(n)og(n)) = (Yn(j) + ¥n(k))u;(n)vk(n)

as in for n € N. Without loss of generality, from now on we always assume that n is large enough
and [j], |k| <n/2. For n € N, we define L,,(f) = ||[T™(f, £)*/?|oo. Write T := '™ and L(f) := Loo(f). Note
that M,, ~ C*(Z,, X« Z,) for n € N. Tt follows from [JM10, [JMP14] that L,, and L are Lip-norms on M,,
and Ay, respectively. Since the heat semigroup T; on L(Z,) X4 Z, is a symmetric Markov semigroup, the

following result follows the same argument as for Corollary

Lemma 5.1.1. Let A, be the generator of the heat semigroup acting on L(Z,) X4 Z, defined as above.

Then A, : LY(M,) — L3 (M,) is completely bounded uniformly inn € N for a > %,
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Similar to , for n € N, we define a *-homomorphism
7 My, = loo(Z2) ® M, uj(n)vg(n) = A(J, k) @ u;j(n)vg(n), (4,k) € 72,
Here \(j, k) is the left regular representation of Z2. We also define a *-homomorphism for 0 < 6 < 1
7 Ag — L(Z*) ® Ay, ugvg — A(J, k) ® ugvg, (j,k) € 72

Here ug, vy are the generators of Ay. It is easy to check that = is trace preserving. If we understand

Mo = Ap and ug = u;(00), vl = vy(c0), we can define the Fourier multipliers for n € N by

Ty(AG, k) = 0. RIAGLR), Ty (m)oi(n)) = 60 k) (n)oe (). (5.1.3)
Note that mo Ty = (T¢ ®id) o . We immediately have the following useful co-representation transference
technique.

Lemma 5.1.2. For any n € N and 1 < p < oo, we have
HT¢> : LP(MH) — Lp(Mn)ch < ||T<¢> : LP(ZZ) - LP(ZEL)HCb'

Let us consider ¢(j,k) = e~k in for a conditionally negative length function ¢ on Z2. For
instance, we may take ¥(j, k) = 1, (j) + n(k) on Z2 where v, is defined in . This gives a symmetric
Markov semigroup on M,,, which coincides with the semigroup 7T} defined in and . Again, let
I" denote the gradient form associated to T;. For the development of next section, we may extend T; to

My, @min My, by iday,, ®T; for any m € N even though we only need m = 1 in this section. The following

result is a special case of (4.3.8)).

Proposition 5.1.3. Let2 < p < co. Foranym € N, a; € My, and a finite sum f =3, ; a;k®u;(n)vg(n),

we have

I(idar,, @AY 2Oz, vy < Cpmax{[|[T(f, )2, (ar, a0y 1T Y2, (0, 01,0)

where C,, is independent of m € N and n € N. Therefore, AY? Y (M) = Lg(Mn) is completely bounded.

Proof. The conditionally negative length function 1 gives the positive semidefinite Gromov form K on Z2.

By the Schur product theorem, we know that K e K is also positive semidefinite, where e denotes the Schur
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product of matrices. It follows I'y > 0 on L(Z2); see e.g. [JZ15]. This transfers to I's > 0 on M,, by our
definition of Ty on M,,, which further extends to M., ®min M. Now we can apply (4.3.8) and then Corollary
437 O

Let Qf,Q? : L,(M,) — L,(M,), n > 2l, n € N, be the projections defined as

QI (Y agruj(nor(n)) = Y azeuj(n)ur(n),
7,k

l71>1,
k

Q7> ajkui(n)ve(n)) = Y ajrui(n)vi(n).
7,k

k| >1,

Let A C Z2. We define

Let

A? ={0,41,..., 41} x {0, £1, ..., +1}. (5.1.4)
Observe that @} and Q? commute and the idempotent P, defined by P, = (1—Q})(1— Q?) projects L,(M,,)
on LQ’Q (M,,).

Lemma 5.1.4. For1 < p < 00, n € N such that n > 2l ,
Q7 = Lp(My) = Ly(My)lev < Cpy Q7 : Lp(My) —= Lyp(My)|lery < Gy

[Py 2 Lp(Mn) = Lp(Mp)|len < Cp,
for some constant C), independent of n,!.

Proof. As we proved in Lemmal4.3.11| Qll and Q12 are completely bounded operators on L, (LZ,,). Therefore
they are also completely bounded on L, (LZ,®LZ,). This implies that @} and Q7 are completely bounded
on L,(M,) for n > 2l and n € N by Lemma Here is another argument for n = co. Note that we have

for a; € My,

(idar,, ®QF @ idr(z) (Y ajn ® whvy © A(j, k))
7.k
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= (idar,, ®idr, Q1) s @ wyv @ A(j k).
jok
We deduce that Q] is completely bounded on L,(Ry ® L(Z?)) and the assertion for Q; follows. The case of

Q7 is similar. As a consequnce, P is also completely bounded in L,. O

Proposition 5.1.5. Let 1 < p < oo, 8 >0 and n > 2. Let ¢ be a conditionally negative length function

on Ly, satisfying (1) < (j) for |I| < |j|. Then for any m € N and a;j € My,,i,j € Zy,, we have

S 0) gk @ s (n)u(n)|
I<]j|<n/2
$%(3)>0

5.1.5
Lp (M (Mn)) ( )

< cpw(l)_BH Zajk ® uj(”)”k(”))

J.k

Ly (M (M)

for some constant c, independent of m,n and l.

Proof. Let 2 < p < pg be such that % = 1p;09 + £ for some 0 < 6 < 1. We define Fj(z) = (%)Z“e(Z*Q)Q, for

some « large enough so that 6 = 3. Define a new operator T' by

T(2)(Y_ ajr @ uj(n)v(n)) = > Fj(2)aje @ uj(n)o(n).
7,k

71>l

Let z = it. Consider the Fourier multiplier

Ap(D - aje © uj(n)og(n)) = Y d(i)aji ® uj(n)o(n).
gk

3.k

By [JMI2]*Corollary 5.4 (see also [Cow83]), we have [|A}f|l,, < Cpoero ¥l |y, for all s € R and f €
L, (M, (M,)). Then

. 42
|T°(it) - Ly, — L;DoH < Cpoe%oa‘tl i ||Ql1 i Lpy — Lpoll,

for some constants Cp, and c,, independent of n and k. By Lemma [4.3.11] T'(it) is bounded. Now let
z =1+1it. Since |%\ <1, we have

||T(1 —|—it) ) L2|| < |e(1+it—9)2‘ < 6_t2+(0_1)2.

Therefore, T(1 + it) is also bounded. For z = 6, the assertion follows from Stein’s interpolation theorem

[Ste56]. By duality, the result holds for 1 < p < 2 as well. O
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Proposition 5.1.6. Let 1 < p < oo and 5 > 0. For any conditionally negative length function ¢ on Z,,

any m € N and a;; € My, 1,j € Zyp, we have

)Y
— 7 Vaa @ui(n)ve(n 5.1.6
| Y G e e ], o o
¥ (4)+(k)>0
< _ .
S 6 j:kaﬂ’“ ®uy (n)v’“(n)‘ Ly (M (M)

for some constant c, independent of m and n.

Proof. Tt follows from the same argument as for Proposition applied to Fj x(z) = (%)ZO‘@(Z*G)Q,

O

Let AV (u;(n)ve(n)) = n () (n)or(n) and AL (u;(n)ve(n)) = ¥n(k)u;(n)vp(n). Then A, = AL +
AP Here we allow 1, to be any conditionally negative length function with ¥, (k) < ¥(1) if |k| < |I|. By
(5.1.3)), AP AP and A, are all generators of certain semigroups on M,,.

Corollary 5.1.7. Let 1 < p < 00,8 >0 and n € N such that n > 2l. Then
||A;ﬁ(1 =P Ly(My) — Lp(Mp)len < Cp¢n(l)_ﬂ7

where C), is independent of n,l € N.

Proof. By (5.1.5) and (5.1.6), we have for any m € N and any finite sum = = >, a;x ® u;j(n)vg(n) €
M, & My,

11d @Q ()| L, (11, (11,)) < epton(D) P 1id @AW 2| 1, (a1, (01

< ep¥n (D) Plid@(AY + Ag))ﬁx“Lp(Mm(Mn))-
Similar inequality holds for Q7. Using Lemma we get

lid @1 = P)(@)z, (v, ar,) = 114 @[Q; + QF (1 = Q@) L, (1,0 (01,
< (ep¥n (D)7 + E0n (1) )1d ©(An) 2|1, (M0 (11,))

= p%(l)_ﬁH id ®(An)5(x)||Lp(Mm(Mn))7

for some constants c,, ¢, and C,, independent of m,n and . O
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We remark that the previous complete boundedness results for matrix algebras can be alternatively

proved using Lemma [5.1.2]in the same way as what we did in Lemma

5.1.2 Continuous Fields of Compact Quantum Metric Spaces

Let Ay denote the rotation C*-algebra associated to 6 € [0,1). It is well known that Ay = C(T?). Let

(M,,)sq denote the algebra of self-adjoint elements of M,,. In this section we show that

({(MH)SLM Ln}neN, S)

is a continuous field of compact quantum metric spaces. Here S consists of suitable continuous sections and

My, = Ay. In order to establish this, we have to consider two cases, namely # = 0 and 6 a non-zero rational.

Approximation in the commutative case

A key tool is the following map, defined by comultiplication:

pn 2 C(T?) = C(T) @min C(T) — M, (5.1.7)

Aj ® A = uj(n)vg(n)

Note that for a fixed n, p, is not a *-homomorphism. Therefore, we need to introduce a *-homomorphism
P as follows. First we recall the ultraproduct construction; see, e.g., [BO0§|. Let w be a free ultrafilter on

N. Note that the Banach space [] X, is defined as a quotient of [], X,, by the subspace

L, ={(z,) € HXn : 711_12) 2]l = 0}

with respect to the norm

)l = Jim [lzallx,

If (X,,) are C*-algebras, we obtain a new C*-algebra [ X,,/I,,, since I, is an ideal. If in addition (X,,) are
von Neumann algebras with finite traces, then the von Neumann algebra ultraproduct (X,,)“ is defined to
be [[ X/ Ir,, where

L, ={(zn) € HX” : gl_rf}d T(x) Tpn) = 0}.
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Note that I, C I, and we obtain a quotient *-homomorphism
oy ! H X, = (Xn)~.
Now we focus on X,, = M,,. We define the maps 7,72 : C(T) — [[,, My, as follows:

m(A) = (7P(N)%,  where 7V (X)) = uj(n),

n

and

Wg()\k) = (777(12)()\16)).7 where 7T7(L2)(>‘k) = vk(n).
Suppose Y, f¥ ® g* is a tensor of polynomials in C(T?). Then
pn(O_ P gt = w D (HM)rD(g")
k k

is a densely-defined linear map. The maps 7 and 75 are *~-homomorphisms with commuting ranges. In fact

we have

I (A, 2 A0 = Tim [[fus (n), o1 ()] = Tim [Jus (m)vs () = w1 (n)us (n))]
= lim || = Dor(mu(n)]| = lim [ 1] =0.

It follows that the map p,, := (p,)® extends to the universal C* algebra C(T) ®max C(T) and
po : C(T?) = O(T) @min C(T) = O(T) max C(T) = [ [ M,

is a well-defined *-homomorphism. Let 7, = 0,,p,. Then 7, : C(T?) — (M,)* is also a *~homomorphism.
Lemma 5.1.8. The maps m, and p,, are faithful. In particular, im,_ oo ||pn ()|, = 1S min-

Proof. Let 1, be the normalized trace on M, and 7, = lim,_,,, 7,. Then since u;(n) is a diagonal matrix

and vg(n) is a shift matrix, we have

T (0wpu (A7) @ A(R))) = lim 7, (u; (n)o(n)) = d00k0 = (T @ T)(A(F) @ A(K)),

where 7 is the canonical trace on C7(Z) ~ C(T). This proves that T, is trace preserving. Now let x € C(T?),
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and ,(z) = 0. Then since 7, is trace preserving, we have
T (T (") (2)) = 7 (T (2¥2)) = T @ T(2™x) = 0.

Since the trace on C(T?) is faithful, this proves that 7, is faithful and so is p,,. We deduce that lim,,_, ||pn(f)|rs,, =

| /1l min- But the ultrafilter w is arbitrary, hence the assertion follows. O

Let Poly(x,y) denote the vector space of noncommutative polynomials on two variables. That is

Poly(z,y) = U p:p= Z agz'y’'}.

k=1 lil,151<k

If u,v are the canonical unitary generators of C(T2), we have Poly(u,v) C C(T2). For instance, we may

takeu = A1 ®1and v =1® Aq. Let
S={pn(z):z€ (C(T2))sa N Poly(u,v),n € N}

Here and in the following we understand po, = id.

Proposition 5.1.9. Let I'" be the gradient form associated to A, on M,. Then
i [0 (pn (2. 2)) — pu(D(a, 2))]|as, = 0

forz = Zj p @irul o™ € Poly(u,v). Therefore, ({(Mp)sa, Ly}, i, S) is a continuous field of compact quantum

metric spaces.

Proof. Note that pn(z) = >_, ; ajruj(n)vk(n). As usual, we assume all [j], [k| < n/2. Using the commutation

relation, we have

Culon(), () =5 [ 3 [n(=4) + bu(—8) + 6uF) + (k)
J,3" kK’
= W = )+ bl — KD Jageagiay s (n)ow-a ()]

and p,(I'(x,x)) has a similar expression. The first assertion follows from the triangle inequality and taking

limit. Together with Lemma we get the second claim. O
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Approximation for rational 6

Let 0 < # < 1 be a rational number. Then Ay ~ C(T) xy Z. On the other hand Ay is the universal

C*-algebra generated by two unitaries v and v, which commute according to the following rule

w = 2™y,

Now we extend the map p,, defined previously, from 6 = 0 to # rational. In the following, we embed Ay in
M, (C(T?)) using the unitaries u;(n) and vi(n) which were introduced in the previous section. Since 6 is

rational, we can write § = 2 such that (p,m) = 1. Note that m is fixed. We define a *-homomorphism

o: Ay = My Qmin C(T) Qmin C(T)
w o ui(m) @\ @1

VP = v (M) @ 1@ Mg

Recall that the canonical trace T on Ay is faithful (see [BocO1]). Since o is trace preserving, it is injective.

Now let pf = (id®p,) o0, i.e.,

P2 Ag — M, (M) (5.1.8)
w! = uj(m) @ u;(n) =: Uj(n)

oF gp(m) ® vi(n) =: Vi(n)

It suffices to check the commutation relations for Uy (n) and Vi(n). We have

27i
n

(u1(m) @ ui(n)) - (vp(m) ® vi(n)) = ™75 (v,(m) @ vi(n)) - (ua(m) @ us (n)).

This means Uy(n)Vi(n) = > V;(n)Uy(n), where 1, = 6 + £+ = 2™ p order for Ui(n), Vi(n) to

generate M,,, we need to write 7,, as % for some a, such that (a, n) = 1; see e.g. [Dav96]. For this, choose

_ pmkn—lJrl

a subsequence n = m*» for some exponents k,,. Then 7, poey o

= ~. Suppose ¢ is a prime number
which divides both pm*»~1 + 1 and m*~. So ¢ divides m. This implies that ¢ divides m*»~! and hence

kn=1 1 1. Hence ¢ divides 1 which is a contradiction. Therefore,

it divides pm*»~1. But ¢ also divides pm
R,, = mF does the job, and it suffices to take the subsequence n, = mF. Let us state what we have found

so far:
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Lemma 5.1.10. The map p’ : Ag — M,, is surjective.

The Lemma above says that C*(p% (Ag)) = M,,, where C*(p% (Ag)) denotes the C*-algebra gen-
erated by p? (Ag). We next check the continuity at infinity. Let Mo, = Ag and S = {pf (z) : = €
(Ag)sa N Poly(u,v),k € N}. As usual, we define 4,(U;(n)Vi(n)) = (¥n(j) + ¥n(k))U;(n)Vi(n) and
Lo (f) = IT"(f, f)lloo on M.

Proposition 5.1.11. Choose ny € N as above. Then ({(Mp,,)sas L, } pew, S) is a continuous field of compact

quantum metric spaces.

Proof. We follow an argument similar to that of Proposition Since p, : C(T?) — [[, M, is a trace
preserving *-homomorphism, it extends to a trace preserving *-homomorphism on M,,(C(T?)). For any

€ > 0, we have

(L= fllas < lon, (Nllat,, < L+ )]l

for all f € Poly(u,v) and k large enough. Namely, limi—oo |09, (f)llar,, = [ fll4,- Then by a direct

n

calculation, one can show that I (p% (f),pf (f)) and p% [(f, f)] coincide in the large k limit, which

concludes the proof. O

From now on, with abuse of notation, when we use p! for Ay, we always mean prk. We still need to

consider the case when @ is irrational. In fact, we now deal with a more general situation.

Continuous field for the higher dimensional case

In the following, let A¢ denote the d-dimensional noncommutative torus which was introduced in Section
Recall that © = (6;;) is a d x d skew symmetric matrix. We will discuss Ag in Chapter |§| in more
depth. In this section we only show that they form a continuous field of compact quantum metric spaces.
Recall that for a compact Hausdorff space X, a C'(X)-algebra is a C*-algebra A endowed with a unital
morphism from C(X) of continuous functions on X into the center of the multiplier algebra M (A) of A;
see [Kas88]. In the following we are going to derive some results about the rotation algebras using the

d(d—1)
2

Heisenberg group Hp = Z™ x g Z%, where m = and B : Z% x Z¢ — Z™ is a skew-symmetric bilinear

map. For u = (u;)i, v’ = (u}); in Z% and 2, 2’ in Z™, the multiplication on Hp is defined by

(2 u)(2', ') = (2 + 2 + Bluyu), u+ )

where [B(u,u)]rs = upul, — ulug for r;s = 1,...,d. Here we have identified [B(u,u)].s as a vector in Z™.

Indeed, since B is skew-symmetric, the diagonal of B(u,u’) is 0 and the upper triangular submatrix has
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@ entries. One can check that this construction gives a group structure. Note that for (z,u) € Hp, we

have (z,u)~! = (=2 — B(u,u), —u). For definiteness, we use the upper triangular submatrix to represent B.

Let C*(Hp) and C(Hp) be the universal C*-algebra and the reduced C*-algebra of Hp, respectively.
Lemma 5.1.12. C*(Hp) is a C(T™)-algebra.

Proof. Note that C*(Hp) = C*(Hpg) since Hp is amenable. Let A(k,j) € C*(Hpg) be the left regular

representation. The left regular representation on Z™ induces a representation on ¢1(Z") given by
AO(Z7) = O(T™), =) fe = AMf) =) f(DAC0),
lezm 1
where (e;); is the standard orthonormal basis of ¢5(Z™). Let f € £1(Z™). Then we have
AHOME,G) =D FOAL0AKE,0A0,5) = D FOAL+ E,0)A(0,5) = Ak, H)A(S)-
leZ’ﬂL leZwL

By density, this shows that C(T™) is in the center of C¥(Hpg). Since C*(Hp) is unital, M(C*(Hp)) =
C*(Hp). Hence C*(Hp) is a C(T™)-algebra. O

Let Io = {fz:x € C*(Hp), f € C(T™), f(©) = 0} be an ideal in C*(Hp) and define Co = C*(Hp)/Io.
More generally, let A be a C(X)-algebra. Consider the evaluation map ev, : C(X) — C at z. Denote by A,

the quotient of A by the closed ideal
I, ={fa: feC(X),a€ A, f(x) =0} = A-Kernel(ev,),

and by a, the image of an element a € A in the fibre A,. Recall that the C'(X)-algebra A is said to be a
continuous field of C*-algebras over X if the function 7, : X — C defined by m,(z) = ||a,|| is continuous for
every a € A. In fact, the function z — ||a,]|| is always upper semi-continuous; see [Bla97, [Rie89] [Dix77| and

the references therein.
Lemma 5.1.13. Cg =~ Ag@ and A‘é is a continuous field of C*-algebras.
Proof. Let (e;)%, be the canonical generators of Z¢. Note that for all r and s, we have (0, es)A(0,¢e,) =

A(B(es, er), es + er), and

A0,e.)A(0,e5) = A(B(er, es), e + €5)

= A\(2B(er,e5),0)\(Bles, er),er + €5)
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= M2B(e,, e5),0)A(0, e5)A(0, e,.). (5.1.9)

Let us fix ©° € T™. Recall that B(e,,es) = e, for r < s, where e, s is a vector in Z™. Then the map
f defined by f(©) = etmifrs — ™07 is in Igo. Note that the image of A(2e,,5,0) in the quotient Cgo is
simply 4™ Considering (5.1.9) in Ceo, we find that the unitaries A(0, e,) in Ceo satisfy the commutation

relations of Ag@o- This means that one can define a *-homomorphism
o Adgo = Coo, a(uy) = N0, e,) + Igo € Cepo,

d d
where (u,)5_, are generators of Aj,.

To identify Co with AYg, we define for k = (ki, ..., kq) € Z¢

A0, k) = A0, krer) - - M0, kqea).

Let L(Hpg) be the von Neumann algebra of Hp. For 4,5,k € Z? and f € C(T™), by Lemma [5.1.12 and
(5.1.9) we have

(O, FIAO,0) £ 0. 1)) aa tn).r) = 7 (A0.3)7 A0, A0, )

=7 N[ D] 2iaksBles,ea), 0 | A(0,5)* N0, k + i)
a<f

= 0jpri / F©)exp [ —4mi Y " iaksbap | 1(dO),
’]I‘m

a<f

where p is the normalized Haar measure on T™. Let f,(?o € C(T™),n > 1, be a sequence of positive
functions such that [ f,?odu =1 and lim, ff,?o(@)g(@)u(d@) = g(0Y%). Let w be a free ultrafilter on

N. We consider the ultrapower of Hilbert spaces
Lo(L(Hp),7)* = la(Hp)* = Lao(T™, o(Z%))

and ultrapower of von Neumann algebra [L(Hp)]“. We may regard each element of C*(Hpg) as an element

of [L(Hp)]*. Then for g € C(T™) and (\/f&"1rm,))® € L2(L(Hp),7)“, we have

(GO, )N, ) (\ 1), MO FL)) ba(Ltin)re = Sjasiexp | —dmi Y iaksbls | 9(°)

a<f
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k1 ka, i 1 j
= g(O°) (ukr kel -yl o) U Lo(Ageo ) (5.1.10)

Let K = span{(y/f9°z)® : x € C*(Hp)}. Then K is a subspace of Ly(L(Hp), 7)“. We consider a special

representation of C*(Hp) on K defined by
wes (2)(y/19°9)* = (J19°y), .y € C*(Hp).
Then by we have
i (wen @)/ 19°0)*)* wes (@) 78°)*]) = lim 752" ayfS") = 0,

for & € Igo. Thus wego factors through Cgo: If we denote the quotient map by ggo : C*(Hp) — Cgo and

define vgo(x + Igo) = weo (z), then wego = vgoggo. We define a linear operator « : La(Asgo) — K by

Note that « has dense range and preserves the inner product by (5.1.10). Then « is unitary. We define
¢ B(K) — B(L2(Algo)) by ¢(x) = a*za. One directly checks that [weo (A0, k))] = uf* -+ uke. We define
Teo = ¢ o vgo. Then

Teo : Coo — Abgo,  Teo(A(0, k) + Tgo) = ult - ufke.

It follows that mgo 0 0 = id, and o, mgo are trace preserving isomorphisms. We can represent our argument

here in a commutative diagram

Ady —2 = B(L2(Adg))

T /

HB *>B

Now we prove the lower semi-continuity of © — ||qe(z)|| for x € C*(Hp). First note that mg o o = id.
Hence mg is injective. The map

Aje — B(L2(Ao))

is also injective. Therefore, vg is an isometry. Note that ||go(z)| = ||velge(2)]]| = ||lwe(z)||. Let z,&,n €
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C*(Hp). We may write

T = Z 2™ FIN0, §) € C*(Hp),
kezZm, jeZd
= > ae™EIN0), n= > by FIN0, 7).
kezm™, jeZ kezm™, jert

We deduce from (5.1.10) that (we(x)(\/f2€)*, (v/fSn)*) is a continuous function of ©. Hence,

[wo (@) (y/ £06)*, (y/70m))| = lim inf | (w=() (/ £36)°, (/750"
< T inf ||w5($)||||(\/E€)'H||(\/E77)'||

Note that

llge (z) || = sup{[(we (x)(1/ f2€)% (\/ FZm*) 1 LRI < LIG/ F2m® |l < 1}

It follows that ||ge(z)| < liminfz_,e [Jw=(z)|| and the proof is complete. O
In particular, we obtained the following:

Lemma 5.1.14. Let p? be as defined previously. For any 0y we have

Jim lim 1956y (@) 101, o) = l1205 ]| 40, -

0eQ

_ 0 dak ; _ _ o d ok . ; ;
Here x9 = ij ajpuyvg for any given x = g, = ij ajkUp, Vg, € Ag, and n;(0) is chosen according to

Lemma|5.1.1() for any given rational 6.

We also need to show that the same result as above holds for the Lip-norm. This can be done for
d-dimensional noncommutative tori. For simplicity, we restrict our attention to the 2-dimensional case. In
order to complete the proof of the continuity of the field of compact quantum metric spaces, we construct
suitable derivations. In fact, this was done in . Here we give two concrete cases.

Case 1: Poisson semigroup.

Consider the Hilbert Ag-module H = (¢2(Z)DE(Z)) @minAg. Let hy, = (ngk e;) and define a derivation
d by

3 (ugug) = (hy ® hi) @ ujog.
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We have

v

(5o, 5 of V) ap = (g @ P oge @ B (o) () vl )

= ((hy, hyr) + (i, o)) (Wdol) (ud of ),

showing that

. ’

T(uhof, ) o) = K ((G.5), (k, K)ol ) ) of = (8(uoh), 8(u) o)) a,

where K((4,7'), (k,k")) = K1(j,j5") + Ka2(k,k"). Here K; and K5 are the Gromov forms defined in Section
Case 2: Heat semigroup. Consider the Hilbert Ag-module H = R? ® Ay and define a derivation § by

Let x = ue“e and y = “9 vg We have

Dl g) = 3107 +8) + () + ()2 = (G = 3 = (s = P of

= (' + kK') (uhol) i) of
Therefore, we get

(S(uhvf), 6(ud vE)) 4y = (. k) @ whol, (7', k') @ ud) of)
= (G k), (7, k) (uhob ) (uf vf )

= (jj + k') (uhvf)* (uf vE).

Note that both R? and @?:162(2) embed into the column space ¢5, we may take H = (§ Qmin Ag. Let

p(z,y) = ZMC a;jrx'y* € Poly(z,y) be a noncommutative polynomial. Then by Lemma |5.1.13

. )k
Jim {10p(uer, vor) 3 = [10p(us, vo)lle = | zk:ajkfjk ® upvg [l
Js

Z a;r, k/%k(fg'k’ 'fgk>(u9 Ug) ue”a”

J.k.3" k'

1/2

for some &;;, € €5 and the coefficients a;;, are independent of 6. In particular we have proven the following:
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Lemma 5.1.15. For any p = p(z,y) € Poly(z,y), the map

6 = [16p(uo, vo) |3 = [T (p(us, vo), p(us, v9))'/? || 4,

15 continuous.

Let ug,ud,...,ud be the generators of AL. Let zg = p(uy,ud, ...,ud) and Le(ze) = |T(ze,70)| Ao
We define the set of continuous sections S = {p(ug,ud,....,ud) : p € Poly(x1,xa...,74)}. The following

summarizes the arguments of this section.
Proposition 5.1.16. ({(A%)sa, Lo }ocraw-1/2,S5) forms a continuous field of compact quantum metric

spaces.

5.1.3 Matrix Algebras Converge to the Rotation Algebras

Let us define the following maps. Let {ug, vg} be the generators of Ay. Observe that Poly(z,y) C C(T)xC(T)

as a vector space. Define a linear map

og : Poly(z,y) — A

p(x,y) = p(ug, ve)
with dense range.
Lemma 5.1.17. For any 0 € [0,1), there exists sequences (6;) C QN [0,1) and (n;) C N such that
(Z) hmj_mo 9]‘ = 0,’
(11) (n;); is increasing to infinity;

(i) ({(Mn;)sa> Ln; } jer: S) s a continuous field of compact quantum metric spaces, where S = {pfij (00,(p)) :

j € N,p(x,y) € Poly(x,y)sa} and pf is defined in (5.1.8).

Proof. 1If 0 is rational, we simply take §; = 6 and choose n; as in Proposition[5.1.11} Suppose @ is irrational.

Let (6;) be a sequence of rational numbers such that lim;_, . §; = 6. Put 6 = 6. Let p(z,y) € Poly(z,y).

Using Lemma [5.1.14] and [5.1.15] for each 6;, we can choose an n; such that n; < njiq,

1
6.
e (o, vo; Dllara; = llp(ua, vollaol <
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and

. . v 1
177 (077 (p(us, » ve,)), P37, (P(ua, s v0,)) | a1, = IT(D(ua,v0), (g, va))l| 4, | < 7
This means that ({(My,)sa, Ln; } e S) is a continuous field of compact quantum metric spaces. O
The following is an analog of Lemma for M,, and Ay.

Lemma 5.1.18. Let ¢ > 0. Then there exist k = k(e), m = m(k), and multipliers ¢y ., n € (0, m),

on My, for n > 2m (including n = co) such that
e = Top (@)llmr, <elllzllz + Ln(2)]

for m > 2m (including n = oc). Here Typ  is induced by T@J,n as defined in (5.1.3).

Proof. Let k € N be a large number which will be determined later. We choose m and Pk, O0 Ly as in

Lemma for n > 2m. Here we actually use the heat length function v, as defined by (4.2.4) in Lemma
But since (2)%j% < ¢,,(j) < j? and

#7112 <k} < #{5 < il < kY,

we may still choose 1 € (0, m) and the conclusion of Lemma remains valid. Let qﬁg’n(j,l) =

‘Pz,n(j)éﬁzm (1) for (4,1) € Z2. Note that for the Fourier multiplier i
ITop llew < [ Tpp 12 < (1+2)%

By Lemma [5.1.2] we have

1Ty Nlew < (1+¢)%

According to our choice of ¢ . we have supp ¢y, C [—~m,m]2. By choosing < ¢/(2k + 1)? and using

Lemma [£.3.10] we have

|0k (7, 1) —1] < (4,0) € [~k K]*. (5.1.11)

&
2k + 1)2’

Then for any « = 3 ;) ;<5 a1 (n)vi(n), we have

1Top (@) —alan, < D lagallop, (1) = 1] < [[a]|ze

71,111 <k
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Since || Pryll2 < ||y||2 for any y € M,,, n > 2m (including n = ), we have

1Pty — Ty @)lar, = I1Pey — Top, (Pewllas, < llgllac (5.1.12)

Using Lemma [5.1.1} Corollary [5.1.7] and the boundedness of Riesz transforms

|4, > P A2 (1= P)(y — Top, (9))loo
< call AP AP (1= P)(y — Typ ()l
< caCpk P AN (y = Top (1)l

< caCp Kk P (T (y, 9) 2l + 1T (T (), T () l),

where ¢ = [|[A;® : LY — Lu|, Cpk™2# is the bound in Corollary [5.1.7) and K, is the bound of the
noncommutative Riesz transforms. Using Lemma [{.3.§ and choosing k large enough in the beginning, we
have

(1= P)(y = Ty, ())loo < (24 25 + %) caCpKpk™ P17 (3, 9)'?|lo < eLn(y)-
The proof is complete. O
For notational simplicity, we also write M3% = (M,,)s, and A5* = (Ap)s, in the following.

Proposition 5.1.19. Let € > 0 and R > 0. Then there exists N and p1,...,pr € Poly(z,y)sq with the

following properties:
(1) o6(p;) € Dr(A");

(ii) for any j > N and any y € DR(MfL;‘), there exists s € {1,...,r} such that ||y — pffj (00, (ps))||Mnj <e.

Here (nj) are chosen as in Lemma|5.1.17

Proof. The argument is similar to that of Proposition The case R = 0 is trivial. Let min{R,1} > ¢ >0
and R > 0 be given. We choose m and ¢}, as in Lemma @ for n > 2m. We define

B = {ye LM (A5) - < RT(y. )20 <1
={y € Ly (A5") : Iyl 4, Ty, y) = ]la, <13

Since B C f3([—m,m]?), B is pre-compact. Therefore, there exists an e-net {yi,...,y,} which covers B.
Without loss of generality, we may choose (y;)i_, from Poly(ug, vg). In this way we obtain noncommutative

polynomials p1, ..., pr € Poly(z,y) such that og(p;) = y; and og(p;) € Dr(AJ*) for j =1,...,7.
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Let M,?z“ (resp. Agz”) denote the elements of M, (resp. Ag) which are linear combinations of U;(n)V;(n)

(resp. ugvlg) for (j,1) € A2,. Since p? is injective, we introduce a locally defined map sy, ,,, as follows

A2 A2
Spm t Mp™ — Ag™

y = (o)~ ()
Note that Typ (y) is supported in A2, for y € M,,. We define §j = s,y (Tisp ,(¥)). Then
o5) = Toy (v). (5.1.13)

Note that so far our argument is independent of 6 and is valid for any n > 2m. Now we restrict our discussion

to (n;) in order to use the continuous field of compact quantum metric spaces. By Lemma we have

lim —sup |llp (o6, (p)llar,; = oo (p)]l.a,] =0,
7P 0y (p)eK

and

lim — sup [|[T" (o5} (o, (9)), 937 (0, (D)) |12z, = [T (0(P), 06 (D)) 45| = O
I gh(p)eK

for any compact subset K of Ag*. Since § = snm(Tyy (y)) is in £o([=m, m]), we have

17ll2 = lon@)ll2 < |1 Top, @)z, < (1+2)llylar, -

It follows that the set {§ : y € DR(M,SL?)} is pre-compact. Then we can choose N > 2m large enough so

that for any j > N and y € DR(Mi;l)

(L+&) M lgllae <ol @)lar,, < 1+ eIl (5.1.14)

(1+) M@ D) las <IT™ (057 (@), o1 () ar., < (1 + )T 9.0
Hence, we have

19040 < (L +)llp% Dlar,, = L +€)IT, n (W)l < 1+ el’llyllar,, < (1+¢)°R
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and by Lemma [4.3.8 and (5.1.13)),

D@ 9 llas < L+ )L™ (05 (9), 5 (D) lIaz,, < (L+)°IT" (g, y)as,,,

for all y € Dr(M,,) and 5 > N. Since ﬁy € B, there exists p; € {p1,...,pr} such that |og(ps) —

J

(H%)ggn <e. By (5.1.13) and (5.1.14), we have for j > N

0 T¢:fn(y) 1
J (ps R4 A — < ,
[, o) = T2 ], < e
because 7, (ps) — (H_E)g € Dr(M9).
Finally, for any y € Dr(Mp;) and j > N, we have
1T,z (5) — 0% (o0, 02)) o,
1 1
T () | =T ) = pl(00,(0))|| | < (4R+2)e.
<[t - T, .+ T @ - o], < 4R+ 20

By Lemma [5.1.18] we have
Iy = o @0, (o)) s, < lly = Ty @), + T, () = o0 00, () s, < (5R+3)e.

Replacing € by x5 in the beginning completes the proof. O

Theorem 5.1.20. Let 0 € [0,1) and (n;) be given in Lemma|5.1.17. Then ((Mp,)sa, Ln;) converges to

(Ap, L) in the quantum Gromov—Hausdorff distance.

Proof. In Lemma [5.1.16| we proved that ({(My;)sa, Ln; },,cr, S) is a continuous field of compact quantum
metric spaces in the sense of [Li06]. Let e = 1/m and R > 0. By Proposition [5.1.19] we can find N € N and

Yt =oo(p1"), .y = oa(p))) € Dr(AGY),

where (p)")JL; C Poly(z,y), so that for any z € Dr(M;?), j > N, there exists a p;? € {p}], ..., p;} } with

l2 = P (o6, (7)) oo < &

The set

A= Un " o b = oo(Unoa et - 0 )
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is dense in Dg(Ap). Give an ordering as in Theorem By our construction, for any € > 0, there exist

m and r such that the open e-balls in M,,; centered at

Pfﬂ_; (09_7» (1)) s pf{j (gej (py))

cover Dr(M,,;) for all n; > m, where og(p;);2; € A for all 4. In other words, A satisfies condition (iii) in
[Li06]*Theorem 7.1. Hence M,, converges to Ay in the order-unit quantum Gromov-Hausdorff distance by

the same theorem. The assertion follows from [Li06]*Theorem 1.1. O

So far we have dealt with the heat semigroup on Ay. The following indicates that the approximation can

also be done using the Poisson semigroup.

Lemma 5.1.21. Let B,, denote the discrete Poisson semigroup and A,, denote the discrete heat semigroup
on M,,. Then we have

14722, ~ || Byl
for1 < p<oo.
Proof. Note that for fixed j, k such that |j],|k| < 2, j% + k% = (|jln + |k|»)?, where |- |, is as defined in

Section Let pg be such that % = 1p;09 + g for 0 < 8 < 1 and 8 = fa. Now since the maps

ait 4 —2ait .
Bt AL : Lp, = L

Po>

Bg(1+it)A;2a(l+it) :LQ N LQ

are bounded, the assertion follows from Stein’s interpolation theorem in the same way as the proof of

Proposition [5.1.5 O

Remark 5.1.22. Lemma has a variant for the Poisson semigroup. Together with Lemma [5.1.21] one can
prove Proposition [5.1.19 for the Poisson semigroup, which in turn yields the approximation result. In fact,
one can even prove the convergence in quantum Gromov-Hausdorff distance using some exotic semigroups.

For example, one may consider the semigroup defined by T, (uiv*) = e~ t13l+E*) yiyk,
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5.2 Completely Bounded Quantum Gromov—Hausdorff
Convergence

In this section we introduce the notion of completely bounded quantum Gromov-Hausdorff distance. The
final goal is to show that the continuous fields of compact quantum metric spaces which we presented earlier

in this paper, converge in this sense.
Definition 5.2.1. Let X be an operator space. We say (X, L) is a Lip operator space structure, if
1. L C X is a dense subspace;

2. there exists a subspace N C L such that L/N carries an additional operator space structure, which

will also be referred to as Lip structure.

In particular, on the first matrix level the Lip structure induces a semi-norm on L. The matrix semi-norms
on L will be denoted by [[z[l5, 1, or simply ||| if it is clear that z € M, (X). We also use the notation

L(z) := |||=]||, especially when we consider a continuous field of quantum metric spaces.
We define the completely bounded quantum Gromov—Hausdorff distance of two operator spaces as follows.

Definition 5.2.2. Let X and Y be two operator spaces. Let R > 0 and
Dr(Mu(X)) ={z € M,(X): |||me,,L(L) <1 ”xHMn(X) < R}.
We denote the R-cb-quantum Gromov—Hausdorff distance of X and Y by dgg’R(X, Y), and define it by

S g(X,Y) = inf sup{dss id @1.x (Dr(Ma (X)), 1d @1y (Dr(Ma(Y))]},

where dy denotes the Hausdorff distance, and the infimum runs over all operator spaces V' and completely
isometric embeddings tx : X — V and ¢ty : Y — V. If in addition X and Y are unital with units ex and

ey, respectively, we modify the definition as follows:

dg;R(X, Y) =inf sgg{max{dH [id ®@tx (Dr(Mn(X))),id @y (Dr(M,(Y)))],

[ex(Rex) — vy (Rey)||}}-

Remark 5.2.3. The definition above seems stronger than the one introduced in [Wu06].
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Remark 5.2.4. Let K1 denote the unitalization of IC, the space of compact operators on a Hilbert space. For

two operator spaces X and Y, we are particularly interested in dggy rRKi® X, Ki®Y).

Now we prove the triangle inequality. The proof follows the same idea as that of Lemma 4.5 in [Li06].

Lemma 5.2.5. Let 1; : A — B; be linear completely isometric embeddings of operator spaces for j € {1,2}.

Then there is an operator space C' and linear completely isometric embeddings v; : B; — C such that
1o =1pg 0.

Proof. Let 1; be as defined in the proof of Lemma 4.5 in [Li06]. The same argument extends easily to the

matrix levels. Then 1 o0 17 = 15 015 and 11, 19 are complete isometries. O

Lemma 5.2.6. Let X, Y and Z be operator spaces. Then the following holds
dog r(X, Z) < dgg p(X,Y) + dgy (Y, 2).

Proof. The triangle inequality follows immediately from applying Lemma with A =Y. O

Let k& > 0. Recall the notation A? in (5.1.4). Let = € Mm(Aé\i) and J be the derivation of Ay into
a Hilbert C*-module H 4, := Hy ® Ap as defined in (4.3.5) (for the case m = 1). We define the matrix

Lip-norm as follows

/Il = max{[|(id @) ()| a1, (3.4, [|(1d @) (&™) | s, (34.0) }-

This is exactly the definition (4.3.7)) in the two dimensional case restricted to rotation C*-algebras. Note that
if z is self-adjoint, the matrix Lip-norm [||z||| introduced here is just the matrix extension of the Lip-norm
used in Proposition [5.1.16| for d = 2. We may write Lg(x) or Lo (z) for ||z||| when considering continuous

fields of quantum metric spaces.

Lemma 5.2.7. Let X and Y be two operator spaces. Let ¢ >0 and ¢ : X =Y be a 1+ € cb-isometry and

a 1+ ¢ Lip-isometry, i.e. for any m and any & € M,,(X), we have

(1 =)l x) < M1(d @@)(@)l[ar,,,(v) < (1 + )2l a1, ()5

and

A=)zl < NlGd @) (@)l < (1 + )l

Then we have

gy p(X, (X)) < 2Re.
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Proof. Let N = {(a,—¢(a),ea) :a € X}. Then N C X @Y @ X. Here X &1 Y ®; X is the {;-sum of X,

Y and X in the sense of operator spaces. Let
V={(x,0(2),0)+ N:z,2’ € X} C (X &Y & X)/N.
Then

1(2,9,0) + Nl (xe,ve,x)/nv = nf{[lz — all + [ly + p(a)l| + ella] - a € X}

Thus X and Y embed isometrically into V' (see Lemma 7.2 in [Li06]). We claim that the embeddings are
actually completely isometric. Indeed, since S1((X®1¢(X)P1X)/N) = S1(X)D151(0(X))®151(X)/S1(N),
we have

S1(V) € 51(X) @1 S1(p(X)) @1 51(X)/S1(N).

Hence for & € S1(X), we have

||(§77070) + SI(N)”Sl(V) :”‘%Hsl(x)’

10, (id @), 0) + S1(N)ls, (vy =[1(d @) s, (v)-

Note that by a result of Pisier (see [Pis98]*Lemma 1.7), if v : X — Y is a completely bounded map, for
every 1 < p < oo, we have

[uller = sup [|id ®u : S (X) — S;*(Y)]|.
m
Therefore, by applying the above for p = 1 and p = oo, we find that
11: X = (X,0,0)+ NCV and 12:¢9(X)— (0,0(X),00+NCV
are completely isometric embeddings. Note that the maps

1: X > X®1Y @ X, (E'—)(0,0,x),

qX@ly@lX%(XGalY@lX)/N) (‘rayvz)’_)(a%yaz)—i_]v
are completely contractive. For any & € M,,,(X), we have

|(d®e)d —id @ (s 0 90 ar,, vy < I(,0,0) = (0,id ©p(2), 0) + Nllas,,(v) (5.2.1)

= ||(Z, —id®@p(2),0) — (2, —id @p(2),e2) + Nlar,, vy < ell@ | ar,, (x)-
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Now let & € Dr(M,, (X)), i.e. T € My (X), ||Z[ a1, (x) < R and [[|2]| < 1. Then by the assumption, we have

I 1J1r5 (id @)z ar,, vy < R and || 1; (id®p)Z|| < 1. This means ﬁ(id ®)E € Dr(M,(Y)). Using (5.2.1),
we find

Cl eR
dog r(X,9(X)) < eR+ =@l < 2Re.

5.2.1 CB-continuous fields of compact quantum metric spaces

In this section we investigate an operator space version of continuous fields of compact quantum metric
spaces, and show that the continuous fields of compact quantum metric spaces which we introduced earlier
form cb-continuous fields of compact quantum metric spaces with appropriate operator space Lip-norms

defined on them.

Definition 5.2.8. Let T" be a locally compact Hausdorff space and let ({A;, Lt }ier, So) be a continuous
field of order-unit spaces in the sense of [Li06], where Sy is a dense subset of S, the space of continuous
sections, containing the unit. We say ({A;, L.}, So) is a cb-continuous field of order-unit spaces if for any
finite subset A C Sy, sp and € > 0, there exists a neighborhood U(sp) > 0, such that for any s € U(sg),

m > 1, f € A and matrix coeflicients ay € M,,, we have the following

1
ﬁ” > ay @ () arucan 11D ar ® F(50)|asany)
€ :
fea fea

<@+l Y ar @ F(8)llncan-

fea

We call ({A¢, Lt}ier, So) a cb-continuous fields of compact quantum metric spaces if ({As, Li}i,So) is a
continuous field of compact quantum metric spaces and in addition, we have
1
T2l ar @ F@ vy <Y ar @ Fso)llar, )

fea fea

< (1+ 5)|||Z ag @ f(5)lllar,, a,)-

fea

Recall the map p, : C(T?) — M, as defined in (5.1.7): pn(uiv®) = wu;j(n)vg(n), where u,v are the
generators of C(T?) and u;j(n)vk(n) are defined in Section Let CA% (T?) (resp. Mé\i) denote the
clements in C(T2) spanned by uiv! (resp. u;(n)uvi(n)) for (j,1) € AZ. Note that CA%(T2) and MM are

operator spaces.

Proposition 5.2.9. For any € > 0 and k > 0, there exists N > 0 such that for any n > N, the map
2

oL (T?) — Mp* isa (14 ¢€) cb-isometry.

pn|CA% (T2) :
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Proof. By Lemma[5.1.8 the map (p,,)® : C(T?) — [],, M, is a faithful *-homomorphism, and in particular
a complete isometry. Therefore, for any € > 0 and k£ > 0, there exists N > 0, such that for n > N, CA (T?)

. . A2 . .
is (1 + )-isometric to My* via p,; i.e. we have for scalar coefficients a;,

1—6H Z ajluﬂ H 2)§H Z aj’luj(n)vl(n)HM 1+€H Z aﬂuﬂ H 12y’

51,11 <k 71,111 <k " 171,11 <k

Note that if X is an operator space, and Bx+ denotes the unit ball of X*, then the min-structure on X is
given by the image of the map tyin : X — C(Bx~«) defined by tmin(z) = fi, where fi(z*) = 2*(x), for all
x € X and z* € X*. Let min(M,,) denote the min-structure on M,,. Since min(M,,) is commutative, we
have

1pn : C(T2) = min(M;,)lles = llpn : C(T%) — min(M,)].

It follows that for any m and a;; € M,,

(1—e) H S aueuiy HM - H Y a4 @ui(n)uln )HM . (5.2.2)
l7],11<k I3l 11<k m n

Recalling that min(M,,) is the smallest operator space norm on M,,, we deduce from (5.2.2)) that for any m

. 1
aj; ®u]le < —H aj; ®uj(n)v(n H 5.2.3
|j%|:<k ’ Mn(C(T2)) — 1—¢ u%;k 31 ©uj(nju(n) My, (min(M,)) (5:23)
1
§7_€H > aj,l®uj(n)vl(n)HM .
51,11 <k (M)

Now by a result of Haagerup-Rgrdam [HR95], there exists a Hilbert space H and u(f),v(0) € B(H) such

that the following hold
1. For any 60, C*(u(0),v(0)) ~ Ay,
2. There is a constant ¢ > 0, such that for any ¢, max{||u(0) — u(0")||, ||v(0) — v(8")||} < c|6 — 0'|'/2.

This implies that there exists ¢ > 0 such that for |§# — 6’| < ¢ and |j] < k, || < k, we have

sup ||u? (0)v'(0) — u? (0")v'(0")|| < 2ck|6 — 0')V/2.
4l

Let d.p, denote the Banach-Mazur distance of two operator spaces. Then there exists § = d(e, k) > 0 such

that dcb(Agi,Aé\,i) < 1+ ¢ for any |§ — 0’| < d; see [Pis03]*Section 2.13. We may find a complete bounded
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map ¢ sending u(0)v(6) to u(6")v(8’) such that
6 Ap* — ApFller < 1 +e.

It follows that for all matrix coefficients a;; we get

| ¥ aued@ro)-| ¥ aed@re)] <d ¥ asdene)

71,111 <k 71,11 <k 31,11 <k

Setting 6/ = % < ¢ and 0 = 0, we have for any m

I Y2 e @w (1/n)' (1/n)lan, ) < A+l D0 au @ wvlla, ). (5.2.4)
l3l:1t<k 71,111 <k

But u;(n) and vi(n) verify the commutation relation of A, /,,. By universality of A; /, we have for any m

1Y au@umumla,on <1 Y au@ e (1/n)o (1/n)|a,a,,.)- (5.2.5)
lil1t<k i<k
By combining the estimates (5.2.3)), (5.2.4) and (5.2.5), we complete the proof. O

2 2
Proposition 5.2.10. For any e > 0 and k > 0, there exists N > 0 and a family of maps p? Agk — M,?’“

such that forn > N, p is a 1 +¢ cb-isometry and a 1 + ¢ Lip-isometry.

Proof. Note that if we know p? is a 1 + ¢ cb-isometry then by the same argument as for Lemma it is
also a 1+ ¢ Lip-isometry on Agi. Therefore it suffices to show that p? is a 1 + & cb-isometry. If § = 0, then
the result follows immediately from Proposition Let 6 = £ be rational. Recall from Lemmathat
we have a surjective map pf” : Agi — Mﬁ for suitable n;. We show that this map is a 1 + € cb-isometry.
As we observed in Section there is a trace preserving *-homomorphisms o : Ag — M, @min C(T?). By
Proposition there exists N > 0 such that the map p,, : CA (T?) — Mf,\qi is a 1 + € cb-isometry for
m > N. Hence, so is the map id ®py, : My ®min CA% (TQ) — My ®min MTIL\; Note that the specific choice of
the subsequence n; = ¢/ guarantees that p (Ag) = M,,. Therefore, the restriction of p% = (id ®py,) o o

2
to .A/o\’c is also a 1 + e cb-isometry. This gives the following diagram

id ®pn 2
Mq ®min CAi (T2) *p; Mq ®min M’rllxzk

1, ]

A2 Pny A2
Ayt My
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which proves the rational case. Finally, let # be irrational. Then there exists a sequence 6, = % of rational
numbers converging to 8. We may assume 6; — 6 is small enough so that we may apply the result of
2 2
Haagerup-Rgrdam [HR95] to get a 1 + 5 cb-isometry ¢, : Ag’“ — Agj in the same way as in the proof
of Proposition [5.2.9] Then by what we proved above, we may choose ns large enough such that the map
0. . AN Af s £ ohos 0 0 0 Ak Ak s :
pre t Apt — Myl is a 1+ § cb-isometry. Let py, = py2 o 5. Then pf, : Ay* — My} is a 1 +& cb-isometry.

We can illustrate the argument using the following diagram

A2
A9 .

A2 N A2
AG: MyF

0
(25

l”
id ®@pn g

M, ® CM(T2) “2% 0, @ M
0

Let ({An; Ln}, ¢, S) denote either of the two continuous fields of compact quantum metric spaces which

were introduced in Sections [4.4] and The following result follows immediately from Proposition [5.2.10

Proposition 5.2.11. ({An, Ln},c,S) is a cb-continuous field of compact quantum metric spaces.

5.2.2 Approximations for C(T) and A,

Here we only present a formal proof of the approximation for Ay. The argument modifies easily to the case

of C(T). Before we prove the main result, we show the following estimate.

Theorem 5.2.12. Let e > 0. Then there ezist k = k(e), m = m(k) and multipliers ¢, n € (0, m)

on My, forn > 2m (including n = 00) such that
[Tgp  —id : (M, |I[-lIl) = (M, [| - [Dlen < €.

Here Typ 15 induced by ibﬁ,, as defined in (5.1.3)).

Proof. We follow the proof of Lemma [5.1.18] but we have to get rid of the Ly norm this time. Let k be a
large number which will be determined later. Fix «, 8 such that a + g = % Similar to Lemma [5.1.18] we
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may choose multipliers ¢y, 7 € (0, m) for some D to be determined later, such that

O (d:0) — 1] < m, (7,1) € [~k, k]*. (5.2.6)

Note that

Typ, —id=A"A(Tyy —id)AM?

= ATCA (T —id) P AY? + AT AT (T, —id)(id — Py ) AY/2.

By Proposition [5.1.3] we know [|A'/2 : (M, |||-|I) = L5(My)|ler = K < 0c. Using (5.2.6) and Lemmal5.1.4)
we may extend ([5.1.12)) to matrix levels as in Lemma |4.3.10| (but with ¢ = p > 2 here) and obtain

[(Top, —id)Py = Ly(My) = Ly(My)|ler < -

By (@3.11), we know [[A~7 : LY(M,) = LY(My)|ler = ¢ < oo. And by Lemma [5.1.1} A= : LY(M,) —

LY (Mp)|leb = ca < 0o. Therefore, we find

2ca K pe

e . €
A=A Ty = id)PAY? 2 (Mo, |11 = (M || - )]s < 5 3

by choosing D large enough. By Corollary [5.1.7, we have |[A=?(1 — Py,) : L,(M,) — Ly(My)llcr = Cpk~25.

It follows that

[Ty, —id s (M, [I[-I) = (M, [ [D]eb
< (o, = id) Py = (Mo, [I1-l1) = (Mo [ - [Dlew
+ |[(Top, —1)AT* AP (1 = PO)AYZ 2 (M, [IF1) = (Ma, |- D) lew

£ _ .
< 5+ caCpk P Kyl|(Typ | —id) : Loo(Mn) = Loo(Ma)eb.

But the cb-norm of Ty —id : Loo(My) — Loo(My) is less than 2 + 5, by the construction of ¢; . The

assertion follows by choosing k large enough. O

Theorem 5.2.13. There erists a sequence nj — oo such that (Ay;, Lyn;) converges to (As, Loo) in the

R-cb-quantum Gromov-Hausdorff distance.

Proof. Let 0 < € < 1,R > 0. In this proof we simply write n for n;. We choose m and ¢, as in Lemma
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By Lemma we have
oq R(AOO,A ) oq R(AOO?AOO ) oq R(AOO 7A’ﬂ ) oq R(A’ﬂ 3~A ) (527)

2 2
By Proposition [5.2.10, we may choose n large enough such that the map p? : Agm — Mé\m defined by
ulvp' = uj(n)u(n) is a 1+ ¢ cb-isometry and 1 + ¢ Lip-isometry. Hence by Lemma

oqR(Aoo , AN < 2Re.

By Lemma/5.1.18) we have || Tgp [lcn < (14¢)2. Together with Lemma we deduce that (1+ E (
Dr(M, (Aﬁf")) for all z € Dr(M,(A,,)) and n large enough (including n = o). By Theorem we have

id ®T, Zm)x €
|z — (id®Tyn )| <e. This shows that
s (DR(M,(A,)). Da(M(AY)) < £+ [1 = s | BITep o < GRo+ 1)
Hence ng,R(An,AQE") < (3R +1)e. Hence, by (5.2.7), we conclude that
A p(Aso, An) < 8(R+ 1)e.

This completes the proof. O
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Chapter 6

Approximation for Higher
Dimensional Quantum Tori

6.1 Completely Bounded Quantum Gromov—Hausdorff Distance
for Higher Dimensional Quantum Tori

In this section we explore the convergence of matrix algebras to the noncommutative tori in higher dimen-

sions. In the following, let m = d(dz_ D and A% denote the rotation algebra with d generators which was

introduced in Section Recall that by Proposition [5.1.16] (Ag)e form a continuous field of compact

quantum metric spaces. The following is an analog of Haagerup and Rgrdam’s result in higher dimensions.

Theorem 6.1.1. There exists a Hilbert space H, such that for all ©, there exist unitaries ui(0),...,uq(O) €
B(H) such that C*(u1(0), ...,uq(0)) = AL and limer—e ||uk(0') — ur(0)|sm) = 0 for k = 1,...,d, where
0" — © in RUI-D/2,

Proof. We recall the Heisenberg group Hp as defined in Subsection To shorten the notation, we will
write H for Hp in the following. Note that since H is amenable, C*(H) is a nuclear C(T™)-algebra. Therefore,
by Theorem 3.2 in [Bla97] we get a unital monomorphism of C(T™)-algebras o : C*(H) — Oy ® C(T™) and
a unital C(T™)-linear completely positive map E : Oy ® C(T™) — C*(H) such that E o o = idg« (). Here
Oy is the Cuntz algebra generated by two orthogonal isometries. Let Oy C B(H) for some Hilbert space
H. Then for all x € C*(H), a(z) € C(T™,B(H)). We define Jg = {g € C(T™) : g(©) = 0}. Then Jg is a
closed ideal of C(T™). Recall from Lemma the quotient Cg = C*(H)/Io. We consider the following

diagram

C*(H)

Co >C(Tm,B(H))/J@ Amin B(H)

Since « is C(T™)-linear, the kernel of go and that of gg o a coincide. We define m¢ = go o a0 qél. Then

7o is a well-defined monomorphism and the above diagram commutes. Note that for f € C(T™, B(H)), we
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have G (f) = £(©) and

1£ OBy = IIf + Jo @min B(H) ot ,B(3))/Jo@mmBH)-

Then lime/ e [|a(2)(0') — a(x)(0)|5m) = 0 for x € C*(H). It follows that
lim ||7T@/(i‘—|-I@r)—ﬂ@(i‘—i-f@)”B(H) =0, z+ 1o € Co.
0’50

By Lemma |5.1.13 Ag@ ~ Cg and A(0,e1) + o, ..., A\(0,e4) + Io generates Cg, where (ek)zzl are canonical
generators of Z?. Let ux(©) = 7o (A(0,ex) + Io), k = 1,...,d and note that 7o (Ce) C B(H). The proof is

complete. O

We now consider approximations of A%)d by matrix algebras. We want to use finite dimensional versions
of rotation algebras and we have to determine their center. In order to use induction we have to introduce
a new form of action. We consider an action ¢ of Z? on a unital C*-algebra B. Then we can construct the
universal crossed product B x,Z?2. In particular, if B is faithfully represented on H, we may choose a special
representation 7 of B on H ® f5(Z?) such that the left regular representation of Z? spatially implements the

action o, i.e.

(L& AGk)T (D)L @A 1)) = oGk (b)), b€ B;

see e.g. [BOOSY]. Let u,v denote the universal generators of Ay. We define a representation of Ay by
v:Ag — B(H) @ L(Z*) @ Ay, Wk = 1@ A g ® uok.
It follows that for b € B,
A (r(0) @ Dy (v)* = (18 Ay () @ 1)(1 Agy)* © W (woh)* = m(a () 1.
Therefore, the Z2-action o and the representations 7 and v satisfy

Y(u)(w(b) @ 1)y(u)" = 7(0(1,0)(b)), (6.1.1)

V(W) (m(b) © Dy(v)* = 7(0(0,1)(0),  Y(wy(v) = ™y (v)y(u).

In the following, we use the notation (D : R) to denote the universal C*-algebra generated by D with
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relations R. We may even ignore R for short if the relations are clear from context. We define
Ag(n) = (U,V :U" =1=V" UV = * VU, U and V unitaries),
and

Bx, Ag = (b,U,V:bc B,UU" =0y0(b), VOV* = 001(b),UV = ™ VU,U and V unitaries),

Similarly, if we start with a Z2 action o on B, where § = £, we may find representations 7 of B and

n?

of Ag(n) as follows.
v Ap(n) = B(H) @ L(Z7) ® Ag(n),  up(n)vg(n) = 1@ Agjx) © up(n)vg(n),

where the generators u,(n),vs(n) of Ag(n) are as given in equation (5.1.1]). Similarly, it follows that for

b € B, the Z>-action ¢ and the representations 7 and + satisfy

V(up(n))(m(0) @ 1)7(up(n))” = 7(o(1,0)(0), (6.1.2)

(v (n))(m(0) ® 1)7(vg(n))* = m(o0,1)(B)),  Y(up(n))y(vg(n)) = €2 (vg(n))y(up(n)).

For simplicity, in the following we will write o1 and o¢ 1 for o(;9) and o(g 1), respectively.

Definition 6.1.2. Suppose B is a unital C*-algebra. We define

B xg Ag(n) = (b,U,V : b€ B,UNU* = 0y4(b), VBV* = 0.1 (b),

Ur=1=V",UV =¢*%VU,U and V unitaries),

where 6 = 1, ¢,n € N, and o is an action of 72 on B.

Thanks to (6.1.1) and (6.1.2]), the universal objects defined above exist. Note that for Ay(n) we have

necessarily ¢ = 4 for some ¢ € Z. If ¢ and n are coprime, then it is well known that Ag(n) ~ M,. By
universality and using the notation introduced here, we can rewrite the noncommutative torus A%_)d iteratively

as

A2@d = A912 A 52 A934 HNg3 o+ Ngyd A92d7112d, (6.1.3)
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where the Z?-action o*, k = 2, ...,d, is defined by

k _ =27l ok _ k __—2mifgk _ _
0170(1141) =€ 1,2k 1u1, ceny 0'170(112]6,2) =€ 2k—2,2k 17.142;@,2,

k —27i01 2k k —2mifap_
0'071(U1) —e i 1,2kul7 - 0071(u2k—2) —e 102 2‘%UQ]€_2.
Indeed, note that by the definition of By, we have

k * k *
0170(U1) = U2k —1U1 UL 15 ---s 01,0(U2k72) = U2k —1U2k—2Uok 1,

k * k *
0071(u1) = Uk Ui Udpy vy 0071(u2;€_2) = Uk Uk —2Us}

Then (6.1.3) follows from universality of A% and Ag,, 52 Agy, X -+ Xga Agyy s 40

Proposition 6.1.3. Let 0§ = L and q,n are coprime. Let o be an action of 72 on a C*-algebra B. Then

B %, Ag(n) ~ M, (B).

Proof. We first consider the case for which the action o is inner, i.e. there exist unitaries w; and wsy in B such
that o1 ,0(z) = wizwy, 0o1(r) = wezwd and [wq,ws] = 0. Let w,, and v, be the generators of Ag(n). We
consider a special representation mg of B X, Ag(n) defined by mo(b) =b®1 for b € B, mo(U) = w1 @ u,, and

mo(V) = we @ vy,. It can be directly checked that 7 is indeed a representation. Then we have w} = 1 = w},
70(U)mo(V) = 2™ mo (Vo (U)
and since C*(up,v,) = Ag(n) = M, we have

70(B x4 Ag(n)) = mo((b,U,V : b € B)) (6.1.4)

=C*"(b® 1, w1 ® tup,ws vy, : b € B) = B Quin M.

Now let my, : B X, Ag(n) — B(H,,) be the universal representation of B X, Ag(n). We show that in this case,
we can also write 7, (U) and m,(V) as tensors. Note that Ap(n) has dimension at most n?. Thanks to the
image of U and V under mg, we know that C*(m,(U), 7,(V)) = M,,. Therefore we may take H, = K ® 3

for some Hilbert space K. Let us define v = m, (w})m,(U) and v = m, (w3)m, (V). Then for z € 7,(B),
T = O’;é [01,0(2)] = Ty (W]) Ty (U)axmy, (U) 1y (w1) = uau™.

Thus uz = xu. Similarly, v = zv. We deduce that 7, (B) C C*(u,v)' N B(H,). Since wy and wy commute,

86



plugging in z = m,, (wy), 7, (w2), we find my, (U)m, (w;) = 7y (w;)my (U) and my, (V) (w;) = my (w;)my, (V') for
i =1,2. It follows that m,(w;) € M/, N B(H,). Moreover, u and v also satisfy the conditions uv = e>™%vu

and u™ = 1 = v™. Therefore,
C*(u,v) ~ M, m,(B)CBK)®C and u,v € m(B) NB(H.).

We may write u = a ® @ for some a € m,(B) NB(K) and @ € M,,, and 7, (w1) = 7 (w1) ® z for some z € C

where 7 is the restriction of m,, on K. Hence,
T (U) = 7y (wr)u = e (w)a & 2.

Similarly, we can write m, (V) as a tensor. By (6.1.4), B x, Ag(n) ~ M, (B).
Now we consider o to be a general action. We define a Z2 action 6 on Bx,.Ag(n): For z = Dkl buUFV €
B Ao A9 (n)a

6’1,0(.%) = ZULo(bkl)Ukvl, 6071(‘%) = Zdoyl(bkl)Ukvl.
k,l k,l

Similarly, we define a Z2 action, still denoted by &, on the universal crossed product B x, Z2: For x =

Zk,l bklA(k, l) € B x4 Z%,
6’170(33) = ZULO(bkl)/\(k’ l), 5’071(33) = ZUO,I(bkl)/\(ka l)
k1l k,l

Then by universality we have (Bx,.Ag(n))xsZ2 = (Bx,Z2)%5As(n). By the crossed product construction,

the action & on B x, Z2 is spatially implemented by w; = 1 ® A(1,0) and we = 1 ® X(0, 1). More precisely,
m(61,0) (7)) = (1@ w)r(@)(1@w]), 7(60,1)(r) = (1&w)r(z)(l®ws),

where (1) = ©gez2 04-1(x); see e.g. [BOOS| for more details. By what we proved in the first paragraph, we
find that (B x, Z2) x5 Ag(n) ~ M,,(B x4, Z2). But M,,(B x4, Z2) = M, (B) x4, Z2 where we have denoted
the inflated action id ®c still by o. It is well known that there exists a faithful conditional expectation E :

M,,(B) %472 — M,(B). Recall that we have the canonical embedding ¢ : Bx,Ag(n) — (Bx,Ag(n))xsZ2.
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We have the following diagram

(B x5 Ag(n)) x5 Z2 —— M,(B) %, 72

B x, .Ag(n) >Mn(B)

Note that the multiplicative domain of F is M, (B), restricted on which F is a *~homomorphism. Moreover,
B x4, Ag(n) is contained in the multiplicative domain of F and clearly E(B X, Ag(n)) = M, (B). But Eo.

is faithful. Hence, we find that B x, Ag(n) ~ M, (B). O
In the following we show the convergence of the matrix algebras to the rotation algebra Azed. Similar to

the 2 dimensional case, we define the matrix level Lip-norms on (a dense subspace of) Ag as in (4.3.7):

Il lllr, = max{]| id ®6(2) [ s, @min Ao @mintrs> 11 D)0, @1t A0 @ruin F }-

Similarly, by Remark we may define the matrix level Lip-norms on M,« once we choose a set of
generators of M,,a. The Lip-norms on Ag and M,« will also be denoted by Lo(-) and L,(-), respectively,
especially when we consider continuous fields of compact quantum metric spaces. We follow the same plan
as in Section Let u1(0), ..., u24(0) be the generators of AZ!. In particular, ui(0), ..., u24(0) generate

C(T?4). Following Definition we consider the C*-algebra
A%C/ln = A91,2 (n) Xoza A93,4 (n) Hoss * " Novg—1,24 A92d—1,2d (n)7 (615)

where the action oog_1,25 = (o, Bx), k =2, ...,d is defined by

* 27mif _ * 27wifo) _
ap(u1) = up_urtop—1 = €TV g, o (Ugk—2) = U Ugk—2Uok—1 = €7 222k Ty o
ﬁ _ * _ 277191,2k _ * — 2#10%,2_2;6
p(u1) = ugpuiugy = e UL, oy Br(Uok—2) = U Uok—2Usp =€ 2R Uk 2,
q . 1 .
ul=1,1=1,..,2d, 9i7jzﬁ,1§z<j§n.

Then by Proposition we have Af‘/in ~ M,a4. For definiteness, let us fix the generators in the iterated

crossed product and define vy (n) = uq, ..., v24(n) = uzg. Then, we have

vi(n)vj(n) = e vj(n)vi(n), 1<i<j<2d. (6.1.6)
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We define a map p, : C(T??) — M,a by pn(u1(0)1 - uzq(0)2¢) = vi(n) .- vgq(n)i2d. Let A =

{0,+1, ..., +k}¢ and

CAY (T2d) = {x cCm:z= Y aqui(0)" - usa(0)*,a; € <c}

li1]|<k,...|i2q4| <K

Similarly, in the following, we will consider

M:d’“ = {x €EMya:x= Z ajur(n)™ - -ugq(n)?, a; € (C}.
li1|<k,...|i24| <k
and
2d . .
AF ={eeaf o= Y awm(®)" - ua(©)*,a; € Cf.

lir|<k,...|i2al <k
Lemma 6.1.4. For anye > 0 and k > 0, there exists N > 0 such that for anyn > N, the map pn|CAid(T2d) :
o’ (T2%) — M:L\jcd is a 14+ € cb-isometry and a 1 + ¢ Lip-isometry.
Proof. By the definition of p,, and the commutation relations , we can generalize directly Lemma
to get a faithful *-homomorphism (p,,)® : C(T?4) — [], M,«, where [[, M, is the von Neumann algebra
ultraproduct. Now we repeat the proof of Proposition with the result of Haagerup—Rgrdam replaced
by Theorem [6.1.1} The claim of 1+ ¢ Lip-isometry follows the same argument as for Lemma [.3.8] We leave

the details to the reader. O

Suppose 0,5 = ”;S ,1 < r < s < g We consider the iterated crossed product following the notation

introduced in Definition [6.1.2]
A2®d(q) = A912 (Q) Nosa -’4934 (Q) Ngd + o Ngd A92d71,2d (Q), (617)

where the action 0%,k = 2, ..., d is defined by
k * —27if _ k * —27ifok — _
oy o(ur) = ugg_1urus, 1 =e L2y, 07 o(Ugk—2) = Ugk—1Uk—2Usy, 1 = € o2 ugg—a,

*27T191,2ku1’ *2W192k—2,2ku2k_27

crg,l(ul) = UgpUiUsy, = € s Ugvl(wk_g) = UgkUgk—2Us), = €
For definiteness, in the following result the generators of A%!(q) will be denoted by u?(q), j=1,..,2d.

Proposition 6.1.5. Let © = (0,4)24_, and ©" = (0],)2¢_, be two skew symmetric matrices such that
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0. = % and 07, = 05 + % For any e > 0 and k > 0, there exists N > 0 such that for n > N the maps

09 : Agid — [A2L (ng)]*" defined by
(€] il iQd . @n il @n ’i2d ; s —
P (u1(©) - - ugq(0)2) = [uy (qn)]" -+ [ugy (q)]**,  [i] < k,j=1,..,2d

is a 1 + € cb-isometry and a 1 + € Lip-isometry. Moreover, we have Aéilﬂ (ql+2) ~ Ma+na.

Proof. Similar to (5.1.8)), we define

o AY = A2 (q) @min C(T?9)

O'(U1 (@)kl . qu((.-.))de) _ ul@(q)kl - ugd(q)km ® Uy (O)kl - qu(O)km'

Since the canonical trace on A% is faithful (see e.g. [Rie90]) and o is trace preserving, o is a faithful

*-homomorphism. Recall that by (6.1.5)) and Proposition .A%‘/in is a matrix algebra. We define

PS = (id®pp)oo: A?ad - A?ad(Q) @min A%/in

ul(G)kl R qu(@)km — u?(q)kl ... ugd(q)k“ ® vy (n)kl . ’Uzd(n)kw — 1]’1“1 o ﬁgéd
By Lemma for any € > 0 and k > 0 there exists N > 0 such that for all n > N
A2d
Pl g Aot — ABl() @ AT,
(S]

is a 1+ ¢ ch-isometry and a 1 + ¢ Lip-isometry onto its image. To identify the image of p©, note that by

(6.1.6) we have

PN i L1y oo
s = 20 qa,, 1<r<s<2d.

If we let 07, = 6,,++ = "’275;"1, then we may define the iterated crossed product Agn (ng) in the same way as
(6.1.7]), where the entries of ©™ are given by 0. Although Agn(ng) is universally defined, dimension counting
shows that we can take iy, ..., iaq as its universal generators. Therefore, we have p&(AZ!) = A% (ng), and
;= u]@"(qn), ji=1,..,2d.

Similar to the case of the 2-dimensional tori, we can choose a subsequence n; so that 41, ..., iag generate

62771(9TS+,%Z)

Mn;i. Indeed, since 4,15 = G5, for all r < s, by Proposition|6.1.3} we just need (6,sn;+1,n;) =1
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for all r,s to verify that C*(p% (A%) ~ M, a. But 0, = E= it suffices to take n; = ¢t as in Lemma

n q’

FI110 Then we find that

q'prs + 1
ql+1

ny
ars -

and  AXL, (n1q) = A%k, () =~ M.

2d
Note that the generators of Mnld may be different from vy (n;), ..., vag(n;). Thus M:d" refers to the subspace
l

of M, generated by alt --~ﬁéfi‘i for |7;] < k,i=1,...,2d. O

Suppose 0,5 may not be written as pf. Note that

Prs
{(7)1§r<s§2d70 7& q S Z7prs S Za |prs| S q, (prsaq) = 1}

is dense in [—1, 1]d(2d’1). Following the same argument as that of Proposition [5.2.10| with the result of

Haagerup-Rgrdam replaced by Theorem [6.1.1} we find maps

o . 2d A2
P Ae = [AG. (ng)] ™ (6.1.8)
which is a 1+¢ cb-isometry and a 14& Lip-isometry. Here ©” and ¢ are chosen such that © = (., = B ) a1
is close to © and O™ = (9, = Brs + L)r—1. Moreover, we have A(Q;)qul (¢"F%) ~ Ma+1a.

Let § = {pu(®) 1 @ =Yg sy, pene 5 (O)" -~ u2a(©)2¢, k € N, € N}. Heve plly is 1+ 7 cb-

isometry and 1 + % Lip-isometry found in Lemma Proposition and (6.1.8). Here n; = ¢'*! for

some ¢ chosen appropriately as above. The following is a consequence of these results.
Proposition 6.1.6. ({(M,4)sa, Ln, }icr,S) is a cb-continuous field of compact quantum metric spaces.

We consider a conditionally negative length function ¢, on Z2¢ for n € N as in Section For example,
we can take ¢pn(k1,...,k2q) = ¥n(k1) + - + ¥n(kaq) where v, is given in (4.2.4). We find a symmetric
Markov semigroup on L(Z2%), which induces a symmetric Markov semigroup on M,« as in (5.1.3). Lemma

and Proposition [5.1.3| extend directly to the current situation.

Theorem 6.1.7. There exists a sequence of matriz algebras M,a converging to A% in the R-cb quantum
J

Gromov-Hausdorff distance.

Proof. First we need a tail estimate which is an extension of Theorem [5.2.12] This follows the same proof

as that of Theorem [5.2.12] Indeed, similar to the proof of Lemma [5.1.18] given ¢ > 0, we may choose k and

then define ¢}, (j1, ..., j2a) = ¥} ,(J1) -~ ¢} ,,(J2a), where o}, (-) is the multiplier found in Lemma and

this time we take n € (0, m) Then we use (possibly extended versions of) Lemma Lemma
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Corollary Proposition (or Corollary [4.3.7) and Remark as explained above. The rest

of the argument is a simple extension of the proof of Theorem [5.2.13 O

6.2 Application to Gromov—Hausdorff propinquity

In this section we follow [Latlh] to generalize Latrémoliere’s result on convergence of matrix algebras to
rotation algebras in the sense of Gromov—Hausdorfl propinquity. For a fixed permissible function F' (see
Definition 2.18 in [Latlh]), denote by Ar((A,La),(B,Lp)) the Gromov-Hausdorff propinquity between
two compact quantum metric spaces, in the sense of [Latld]; see Definition 3.54. Recall that according
to [Latl5], if A and B are two unital C*-algebras, a bridge v = (D,w,wa,7p) is given by a unital C*-
agebra D, two unital *-monomorphisms 74 : A < D and ng : B — D and w € D such that the set
S(Alw) :={p € S(A) :Vd € D, ¢(d) = p(dw) = p(wd)} is not empty, where S(A) denotes the state space of
A; see Definition 3.42. In the following let F : [0,00)* — [0, 00) be defined by F(z,y,l.,1,) = xl, + yl,, for
Z,Y,lz, 1y € [0,00) (see Definition 2.18 in [Lat15]).

Lemma 6.2.1. Let (A, |||.[[|,) and (B, |||.|l5) be two F-quasi-Leibniz compact quantum metric spaces in the
sense of [Latls]; see Definition 2.44. If there exist two *-homomorphisms mq : A — B(H) and g : B —
B(H) and € > 0 such that the following hold:

1. For all a € A such that |||al|| 4 < 1, there exists b € B such that ||b]| 3 < 1 and ||ma(a) —75(b)||p <€,
2. For allb € B such that ||b]|| g < 1, there exists a € A such that |||a]|| 4 <1 and ||ma(a) —75(b)|Dp <e,
then A ((A, [I[.4), (Bs [ll-lll5)) < e

Proof. We refine the proof of Lemma 3.79 in [Lat15] by taking a trek (see Definition 3.49 in [Lat1d]) consisting
of a single bridge (see Definition 3.42 in [LatI5]), namely v = (B(H),id, 74, 75). Note that in this case,
since any state on A or B can be extended to a state on B(H), and for w = id, S(A4|w) = S(A), with the
notation of [Latlhl], we have the height C(v||||.|ll 4, |ll-IIl ) = O (see Definition 3.46 in [Latl5]). On the other
hand, if (1) and (2) hold, then by definition, the reach p(Y||||.]l| 4, |ll-/ll 5) = € (see Definition 3.45 in [Lati5]).

Now by Definitions 3.47 and 3.54 in the aforementioned paper, we have Ap((A, ]|/l 1), (B, |Ilz)) <e. O

Definition 6.2.2. Let (A, [|.[ 4,) and (B, ||.[| ) be F-quasi-Leibniz quantum compact metric spaces in the
sense of [Latl5]. We say (Ay, |||l 4,) converges to (B, |||.[[[z) in the strong Gromov-Hausdorff propinquity
sense, if the unitization of (K ® Ay, |[[|-llxga,) converges to the unitization of (K ® B, |||.|[xgp) in the

Gromov—Hausdorff propinquity sense, where /C is the space of compact operators on /5.
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Recall the definition of A% (ng) in Proposition By Definitions 2.21 in [Lat15] and the existence of
a derivation § as defined in , (AZ |11 and (AZL (nq), |||.]ll) are Leibniz pairs. Indeed, the conditions
in the definition were proved in [JMI10, [JMP14]; see also [Zenld] for more remarks on the Lip-norms.
Furthermore, let ¢ and §” denote the column and row structure derivations, respectively (see Lemma [4.3.4)).
Note that Remark applies to the algebra ,A2@dn (ng) as well by choosing 2d generators. Then by 7
for x € A% (ng), n € N, ||z = max{[|6¢(z)|, |6"(z)|}. Choose the multiplier ©f.p, on 74 as ¢y, in the

proof of Theorem Note that

16°()ll = sup [[0%(Tp  (2))]]-

k>1,n>0

But T, or is a finite rank map and §¢ is continuous on a fixed finite dimensional space. Similar argument
holds true for ||6"(x)]|. It follows that |||-]|| is a lower semicontinuous Lip-norm. Therefore, by Definition 2.44
in [LatI5] and by the choice of F, A% (n) and A%l are F-quasi-Leibniz quantum compact metric spaces.
Here, in fact they are Leibniz quantum compact metric spaces. For notational convenience, we will write
AZl(n) or even Ag(n) for A% (ng) in the following by abuse of notation.

Let u(n),...,udy(n) denote the generators of A% (n) and u?,...,uS,; denote the generators of A%. In

the following let
L= (o laa) € 720, A2() = u@ () uy(n)> and AP(1) = (). (u§)".

We understand that AZ!(c0) = A% and uP (co) = uf, for 1 < i < 2d, are the generators of A%

Lemma 6.2.3. Let m > 0 and v be the length function associated with the heat semigroup that was introduced
previously. There exists a constant C = C(m, ) such that for n > 2m (including n = oo) and all y €

A2d 5 .
K ®Ag™ (n), we have [|y|| = Cllwlll

2d 2d .
Ag’" (TL K@Agm (n)

Proof. Recall from Section |4.3|the definition of V, (A% (n)). For z € S,(V, (A% (n))), by (4.3.6) we have

Zlls, v,z my)) = max{||T(z,2)"2||,, [IT(z*,2*)"/?|,}.

Let p=2and 2 =Y, ar ® A9 (k) € S2(V2(A%!(n))). Then we have

H$||?92(v2(,4§_)d(n))) = Z ||ak||?92¢(k)-
k
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Similar to , we define for fixed k,
¢ Va(A(n)) = C, Zal)\g(l) — apy(k).
1
Then we have ||¢|ler, = ||¢|| < 1. Note that by [Pis98]*Lemma 1,7, we have
I$ller = [l ids, ®¢ : S2(V2(AF!(n))) = Soll = [|idic ©¢ : K Qmin V2(AG! (1)) — K||.
Hence, we have for z = 3", ar ® A? (k) € K @umin V2(AZ(n)),
sup ¥ ()" ael < 110,72 420 (6.2.1)

Let y = > cpza biAS (k) € VI (.Agi? (n)), where V9(AZ!(n)) consists of the mean-zero elements of Vz(Ag?’? (n)).
Define a map v : vg(Ang (n)) = Loo(A2) by v(y) = (br)genza and let p be the inverse of 7. We have the

following chain of maps

(AL (), [H1]) L VYA (n)) > o (A20) — L (AB™ (), || - )

AZd A2d
By Corollary we have [|id : (Ag™ (n), [|l-l) = V3(Ag™ (n))|le» < ¢ for some constant c. We deduce
from (6.2.1) that

0 A2d 2d 1
: " goo A cb < .
||I/ VQ(A@ (Tl)) - ( m)H b= inf ke A2 ¢(k)l/2
P(k)#0

2d
Moreover, || : £oo(A29) — Ag’" (n)|leb < (2m + 1)4, since the cardinality of A2¢ is (2m + 1)?. This proves

that ||povoidlle, < C, for n > 2m and some C' = C(m, ). O

Suppose € > 0, £k € N and Py 18 the multiplier on Z¢ chosen as ¢7€l,n in the proof of Theorem

which is supported on A2?. We define the following multipliers for n > 2m,n € N

Tor (AR (D) = @i, (DAL (),
such that for n > 2m we have

Ty, = (AS @), [ = (AE (), [ IDlleb < 1+,
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and

T, + (AS @), LD = (AG (), Dl < 1+,

for all n > 2m,n € N.

Corollary 6.2.4. There exists N > 0 such that the identity map (AZL(n), |||.|I) = (AZ(n),|.]|) is completely

bounded uniformly for n > N including n = co.

Proof. Let € > 0. By Theorem [5.2.12] there exist < €, k = k(e) and a multiplier Ckn and N > 0 such that

”T%"Zn”Cb <14mn. For n > N, we have
lid =Ty = (AZ (), (111 = (AE (), (11D fleb < e
Let e =1 and supp(goﬁ,n) = A2%d for some m = m(k,n) independent of n. Then by Lemma we have
A2d A2d
[(Ag™ (n), [lI-Il) = (Ag™ (1), 11D llen < C(m, ),

where C(m,) is the constant in the Lemma. Then for the maps id : (AZ(n),||./l) — (AE(n),|.]),

Ty« (AZ ) 1) = (AE (1), [I1I), we have

[id e < [[id _Twﬁm lleb + ||T<p2'177

cb

<Lt i g, ¢ B LD = (B ), Dl T, o
<1+C(m,¢¥)(1+e¢).
Hence
sup [|id : (AE' (n), |11 = (A& (), [-Dllev < e,
for some constant ¢ independent of n. O

Let n; be the subsequence we found in the proof of Proposition Then we have C*(pf;, (Ag')) = M,q,
and A¥ (n;) = Mn?. Let B, and B, denote the spaces AZ!(n;) and A%, respectively. In the following we
2d
use the index n instead of n;, for simplicity. For any m > 0, let B]* and B! denote the subspaces .Agm (n)
2d
and Ag’" , respectively.

In the following, we consider the vector space

_ C— i i2d
Poly = U {p:p= E iy igg Ty - )
k>1 [i1]yeeesliza| <k
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For simplicity we denote an element « =3, . iy igg T2 € Poly by ZieAid a;x(i). Let gi,...,

.....

g24 denote the generators of the full group C*-algebra C*(Fa4). Define the following *-homomorphisms
08 : C*(Faq) = B, 0o :C*(Faq) — Beo
by ce(g;) = u and 03 (g;) = uP(n), for 1 <i < 2d and n € N. Then we get a *~homomorphism
08 : C*(Faq) — HB" = M

defined by o8 = (08)n. Note that I = ¢o({Bn}) is an ideal in M. Hence we get the quotient map
q: Mo — My /I. Let N=NU{oco}. Since by Proposition {(Bn),ex} is a continuous field over N, we

have

lgeog (@) = lloe ()] (6.2.2)
Define B = go 08 (C*(F2q)). By , since norms on B and B, coincide, B is isomorphic to Beo. Let
B=q'(B)={08(a) +z:a e C*(Faq),z € I}.
B is the C*-algebra generated by co({B,}) and 0&(C*(Fa4)). Then B is a C(N)-algebra with fiber maps

M B — B, and 17 =¢|p: B — B,

where 7,, is the projection of B onto B,,. That is, n,((z;); + 2) = zp, for (z;); € M« and z € I, and

Noo(08(x) +y) = 0o (x), for x € C*(Faq), y € I. Then the following sequence is exact
O—>I—>B—>B%BOO—>0.

Note that both I and B, are nuclear C*-algebras (recall that By, is an iterative cross product). Hence B
is nuclear (see Proposition 10.1.3 in [BOOg|). Therefore, similar to Theorem by the aforementioned
result of Kirchberg and Blanchard (see Theorem 3.2 in [Blad7]), there exists a Hilbert space H and a *-
homomorphism 7 : B — C(N) ® B(H). Note that = maps C(N) to C(N) canonically. Let ¢, : B, — B be
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defined by tn(y) = (y1)ien, Where

for y € B,,. Therefore, we get the following maps

n: By = C(N)®@B(H), 0:0%*(Fyq) - B and 7y : Be — C(N) ® B(H)

given by 7, = w oy, 0 = 1, 0 0 and define 7w () as follows. For any a € Poly, let a,, = 7m,(0%(a)). Then
(an)n is a convergent sequence in C(N)®@B(H). Hence lim,, a,, = a0, for some a.,. Define 7o, (0o (a)) := .

The following diagram summarizes this argument

M, Mo /1
“& y
C*(Faq)
(o= %\
0 I B B Boo —0

where the last row is short exact.
Lemma 6.2.5. With the notation above, the following hold
1 limy, 0 HM(AS(I)) - 7"00(/\@([))” =0,

2. Lete >0 andm € N. There exists N € N, such that for alln > N andx =), y20 a1 @2x(l) € K® Poly,

we have

[id@(my 0 06)(x) — id ®(Te © 00) (%) | B(20m) < e sup. llalx-
€

m

Proof. To prove (1), let g = glll...gé";f and 7, o, 08 be as above. Let (y,), = moo(g) € C(N) ® B(H), for

some (Yn),cxy € C(N). Therefore, lim,, yn = yoo. Moreover, we have

yn = m(0(9)Liny) = m(tn(96(9))) = o5 (9),

where 1;,,) denotes the characteristic function of {n}. Since lim;,_,oc Yn = Yoo in C(N) @ B(H), this implies

that

lim |7, (06 (9)) — 7o (00 (9))[| = 0.

n—oo
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Hence, we get

lim_ |7, (A7 (1)) = oo (A7 (D) | = 0,

n—0o0

for all [ € Z¢4.

To prove (2), let e > 0 and ¢ = i

W. Using (1) and the triangle inequality, there exists N € N such

that for all n > N, we have

lid@(m 0 08)(2) ~ id (T 0 00) (@) = 1| D @@ (m(AZ (1) = (A D))
leA2d
€
<( ]} < (2m + 1)** sup [lay|| m———=57 = € sup [aill;
lg;d leAzd @m+1)24 7o p
which proves the assertion. [

In the following, let 7, and 7, be as defined above.

Theorem 6.2.6. For every noncommutative torus .A2®d, there exists a sequence of matriz algebras with

suitable Lip-norms converging to Aéd in the sense of strong Gromov—Hausdorff propinquity.

Proof. Consider the bridge v = (B({2 @ H),id @7 oo, id @7y, 1id). Then by Lemma it suffices to show
that there exists a subsequence n; such that for any ¢ > 0 and the unitization of £ ® B, and KX ® B,, (which

we will also denote by K ® B and K ® B, respectively), the following hold:

1. For all @ € K ® By, such that |||al|| < 1, there exists b € K ® B,, such that |||b|| < 1 and || id @7 (a) —

id @7, (b)]] < &,

2. For all b € K ® B,, such that |||b]|| < 1, there exists a € K ® By, such that |||al]| <1 and || id @7 (a) —

id®@m,, (b)| <e.

Let € > 0. By Theorem [5.2.12] there exist 0 < n < ¢, k = k(e) and multipliers Py ON B,, supported on

AZd, for some m = m(k,n) independent of n, such that ||T,n . leb <1+ n and for all n > 2m we have

1id =Top = (B, 1) = (B [[-[Dlleb < (6.2.3)

£
T
In the following, by abuse of notation, for all n € N, we denote id T - (K& By, 1) = (K& By, |lI]ll) by
T%.n' For any x in K@ B or C® B, let & denote the corresponding element in & Poly. Let § < m7
where C(m, 1) is the constant from Lemma [6.2.3] Using Lemma (2) and Lemma [6.2.3] we can choose
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a subsequence n; such that for all x € K ® B,,;, by denoting ¥ = T(P"j (2), we have
k

s7

114 @ (s, 0 06} (F) — id @ (Mmoo © 06 ) (@)l 26 (6.2.4)

<os ” ” < 1|||~|||
(; up ||a X m
= P HIK > )C®an7

where ZZO—LFWJ' (z) denotes the mean-zero part of T (z) and a; are the coefficients of T n () = jcpza a1 @
k,n k.n k.n m
A®(1). From now on we abuse the notation and drop the index j of n;.

To prove (1), let a € K ® By such that [[af| < 1. Let z = T,  (a) € K& BZ. Hence & € K ® Poly. Let

b =id®og(2) € K ® B,. Then by (6.2.3), (6.2.4) we have

id oo (@) — id @m, ()] = [[id ©oo (@) — id © (my 0 03 (3)]
< id @(7ao © 76)(&) — 1d @ (0 0 06) (3|

+ [id ® (o0 0 o) (&) — id @(m, @ 03)(2)]|

. . € .
< la = T, (@l + I T, (@]
€ g
<-4+
<7 T4+
3¢
S -

1

_ v Gt © . pm m g
Let b = I Then |||b]]| < 1. Recall from Proposition that for & > 0, the map p;) : B — B™ is a

1 + ¢’ Lip-isometry. Let ¢/ = 1. Note that b’ = id ®p9(0e(2)). Hence, [||t'|| < (1 +n)||z[| < (1 +n)? and
we have

oy

LAl

Wi -1 Wl
&l < (" +2m)

o — o] = <
o=l = Tl

MY < (L4 )izl = 1)

By Corollary |6.2.4 \HZ:HI < K for some K > 0. Therefore, if we choose 1 small enough, we have

lid @, (b) — id @m, ()| < [|b =[] < K(n* +21) <

W] ™

which proves (1).
To prove (2), let a subsequence n; which we will denote by n, be chosen as above. Let b € K ® B,, be

such that [[b]]| < 1. Let b denote the mean-zero part of b. Therefore, we can write b = t,,1 + b. Let

V=Tp )= > @) ekaB,.
0#£leAZd
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Then by 1) we have [|b— b/ < SIolll. Let V= Y ez @ @ x(l) be the corresponding element in
K ® Poly. Choose o’ = ¢ (0) € K ® Boo. Then using (6.2.4), we get

lid®meo (@) = id @m(B)] < || id ® (e © 06) (V') —id @(ma 0 08) (')

+ [l id @(mn 0 08) () — id @(mn 0 08) (D)

IN

3
—IIv’ b—b
i e I

(S0 +m+2)llbll

IN

Now let a = HIZ—:I” Similar to (1), using the fact that (p)~! is a 1 + 1 Lip-isometry, we get |la’ — a| <

K(n? 4 27). Therefore, choosing 1 small enough, we get

lid oo (@) — id@mec (@) < lla — o' < K +29) <

=1 m

Hence (2) follows.

(1) and (2) together with Lemma prove that Ap(K®Boo, K&B,,) < ¢, which proves the assertion. [

Remark 6.2.7. In Sections [f.4] and [5.1] we chose p > 2 for our estimates. Note that in the higher-dimensional

case, the choice of p depends on the dimension of the rotation algebra and the choice of the semigroup.
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