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ABSTRACT

This paper contains two parts. The first part will introduce Gn space and will show

it’s compact. I will give two proofs for the compactness, the first one is due to

Rostislav Grigorchuk [1], which refers to geometrical group theory and after the first

proof I will give a more topological proof. In the second part, our goal is to prove

a theorem by Denis Osin and Andreas Thom [2]: for every integer n ≥ 2 and every

ε ≥ 0 there exists an infinite simple group Q generated by n elements such that

β
(2)
1 (Q) ≥ n − 1 − ε. As a corollary, we can prove that for every positive integer n

there exists a simple group Q with d(Q) = n. In the proof of this theorem, I added

the details to the original proof. Moreover, I found and fixed an error of the original

proof in [2], although it doesn’t affect the final result.
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CHAPTER 1

COMPACTNESS OF THE SPACE OF MARKED
GROUPS

In this part, I will show the space of marked groups (Gn) (the definition will be showed

in section 1.2.2) is compact, which is originally proved by Rostislav Grigorchuk from

his paper Degrees of growth of finitely generated groups. And I will introduce two

proofs, the first proof is from Rostislav Grigorchuk [1], which refers to geometric

group theory and after the first proof I will give a more topological proof. Before

the first proof, I need to introduce a Lemma and a Theorem from Magnus’s book

[3], which shows when a graph is isomorphic to the graph of a group.

1.1 Magnus Lemma and Theorem

First we need to have some definitions:

1.1.1 Singular graph, connected graph with a regular colouring of n
colours and orientation M

A graph that consists of a single point, which is the initial and end point of all edges,

is called singular. The singular graph with 2n edges:s1, s1
−1, s2, s2

−1, ...sn, sn
−1 is

denoted by Sn.

A graph Γ is called connected if, for any two of the points, A,B, there exists a

path whose initial point is A and whose end point is B.

1



A graph can be coloured with n colours and oriented” by associating with each of

its edges, an edge of Sn. This leads to the following definition:

A colouring (with n colours) and orientation of a graph Γ is a mapping M of the

edges of Γ into the edges of Sn with the following properties:

(A1) For each point P in Γ, the edges of Γ with initial point P are mapped bi-

jectively to all edges of Sn by M , which means that one edge of every colour and

orientation begins at each point P of Γ.

(A2) For each edge E in Γ, M(E−1) = [M(E)]−1, which means that colour of

(E−1) is the same with E, while the orientation is reversed.

Clearly, a graph of the group on n generators a1, a2, ...an has a colouring and ori-

entation, i.e. maps the edge (g1, g2; ai
ε) into si

ε, where g2 = g1ai
ε. Also note, here

ε=1 or -1 determines the orientation and g2, g2 are the edge’s initial and end point

which corresponds to two elements in the group.

If M is a colouring and orientation of Γ and π = E1...En is a path in Γ, we define

M(π) = M(E1)...M(En), and we say that the path π covers the path M(π).

A colouring and orientation M of the graph Γ is called regular if for any two paths

π, π′ of Γ such that M(π) = M(π′), π is closed if and only if π′ is closed.

1.1.2 The statements and proofs

Lemma 1.1.1 ([3], Lemma 1.1) If M is a regular colouring (with n colours) and

orientation of Γ, then for each point P in Γ, M is a bijection between the paths in

Γ with initial point P and all paths in Sn(i.e words in s1, s2, ...sn)
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Proof: We need to show to any two paths π′, π with the same initial point P ,

s.t. M(π) = Mπ′ then π′=π. And if σ=sv1
ε1 ...svr

εr is any path in Sn, then there

exits a path π = E1...En in Γ with initial point P s.t. M(π) = σ. Note by defi-

nition, M preserves the number of edges in a path, thus here we may assume that

π = E1...Er, π
′ = E1

′...Er
′. To prove the results, we need to take the induction on r.

When r=1, the results are straight from (A1). Now we assume both results hold for r.

Assume M(E1...ErE, π′) = M(E1
′...Er

′E ′), then M(E1) = M(E1
′), since we de-

fined M(E1...En) = M(E1)...(En). So we can get M(E2...ErE, π′) = M(E2
′...Er

′E ′).

Thus by induction, we get E1 = E1
′. Also, by the paths expressionE1...ErE,E1

′...Er
′E ′,

we know the initial points of E2...ErE,E2
′...Er

′E ′ are the endpoints of E1, E1
′ re-

spectively, i.e. they are the same. In this sense, we can apply the induction on r,

then we can get E2...ErE = E2
′...Er

′E ′, therefore E1...ErE = E1
′...Er

′E ′.

Now suppose σ=sv1
ε1 ...svr

εrsv
ε. By induction, there exists a path π=E1...Er in Γ

with initial point P . If Q is the end point of π, by (A1), we can find an edge E

with initial point Q which covers sv
ε. Therefore, E1...ErE is the required path π in

Γ with initial point P , s.t. M(E1...ErE) = σ. �

Theorem 1.1.2 ([3], Theorem 1.6) Let Γ be a connected graph with a regular

colouring of n colours and orientations M . Then Γ is isomorphic to the graph of a

group G of n generators a1, ...an.

Proof: First we construct the group G, by giving the presentation with gener-

ators a1, a2, ...an. And to any word W (a1, a2, ...an), there is a corresponding word

W (s1, s2, ...sn) from Sn, i.e. replace each ai with the corresponding si, and define a

word W (a1, a2, ...an) as a relation if the path π in Γ which covers the corresponding

W (s1, s2, ...sn) of W (a1, a2, ...an) is closed (here, in particular, we define the path π

that covers W (s1, s2, ...sn) with initial point P0 in Γ, as the corresponding path of

the word W (a1, a2, ...an)). Now define G is the group of the given presentation.
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Now we need to show the graph of G is isomorphic to Γ. First we need to define

a map φ that maps the elements of G onto the points of Γ, and the edges (gv, gl; ai
ε)

onto the edges of Γ. For this purpose, let gv ∈ G defined by a word Wv(a1, a2, ...an),

and let πv be the corresponding path of Wv(a1, a2, ...an); then we define the map φ

by φ(gv) := Pv ∈ Γ, where Pv is the end point of the path πv, and since the images

of gk, gl are determined, the image of the edge (gv, gl; ai
ε) of φ in Γ is determined,

i.e. the path with initial point Pv that covers si
ε.

We need to show φ is well-defined. If Wv
′(a1, a2, ...an) is another word defin-

ing gv. Note Wv
′(a1, a2, ...an) can be obtained from Wv(a1, a2, ...an) by inserting or

deleting a finite number of relations R(a1, a2, ...an) or trivial relations. Therefore,

we need to show the paths corresponding to the words: K(a1, a2, ...an)T (a1, a2, ...an),

K(a1, a2, ...an)aλ
εaλ
−εT (a1, a2, ...an), K(a1, a2, ...an)R(a1, a2, ...an)T (a1, a2, ...an) have

the same end point.

Let’s first consider the path π corresponding to the product U(a1, ...an)V (a1, ...an),

it can be obtained as follows: Let π1 be the path with initial point P0 covering

U(s1, s2, ...sn), and let π2 be the path with initial point at the end point of π1 and

covering V (s1, s2, ...sn); then π = π1π2. In this sense, we can define the correspond-

ing path of K(a1, a2, ...an)

T (a1, a2, ...an) to be π1
′π2
′, and name the end point of π1 as Q. Note R(a1, ...an) and

aλ
εaλ
−ε are relations, thus by what we defined above, the corresponding R(s1, ...sn)

and sλ
εsλ
−ε are covered by closed paths with initial point P0. And since Γ is reg-

ular, so the paths π1, π2 with initial point Q that cover R(s1, s2, ...sn) and sλ
εsλ
−ε

respectively are closed. Also, it’s easy to see, by the way we showed above, we can

obtain that the paths corresponding to K(a1, a2, ...an)R(a1, a2, ...an)T (a1, a2, ...an)

and K(a1, a2, ...an)aλ
εaλ
−ε

T (a1, a2, ...an) are π1
′π1π2

′ , π1
′π2π2

′ respectively. Therefore the corresponding paths

of K(a1, a2, ...an)T (a1, a2, ...an), K(a1, a2, ...an)aλ
εaλ
−εT (a1, a2, ...an), K(a1, a2, ...an)

R(a1, a2, ...an)T (a1, a2, ...an) have the same end point, hence the map π is well-

defined.
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Now we focus on showing that π is an isomorphism. First we can show π is

onto. Since Γ is connected, there is a path π from P0 to any point, namely, P

of Γ, by Lemma 1.1, we can get π covers some word W (s1, s2, ...sn), then the el-

ement g ∈ G defined by W (a1, a2, ...an) is mapped to P . Now we can show π is

injective. Let gv, gv
′ be mapped to the same point P of Γ. Let Wv(a1, a2, ...an),

Wv
′(a1, a2, ...an) are the words defining gv, gv

′, with corresponding paths πv, πv
′.

Then πv
′πv
−1 is a closed path with initial point P0. Hence by the definition of re-

lation, Wv
′(a1, a2, ...an)Wv(a1, a2, ...an)−1 is a relation in G, therefore gv = gv

′, that

finishes the proof. �

1.2 Grigorchuk’s proof that Gn is compact

1.2.1 Topology from neighbourhoods

A neighbourhood topology on a set X assigns to each element x ∈ X a non empty

set N (x) of subsets of X, called neighbourhoods of x, with the properties:

1. If N is a neighbourhood of x then x ∈ N .

2. If M is a neighbourhood of x and M ⊆ N ⊆ X, then N is a neighbourhood of

x.

3. The intersection of two neighbourhoods of x is a neighbourhood of x.

4. If N is a neighbourhood of x, then N contains a neighbourhood M of x such

that N is a neighbourhood of each point of M .

1.2.2 Topology of Gn
Let Gn be the set consisting of all pairs of the form (G,S), where G is a group and

S = {a1, ...an} is the generating set with n elements of G. Define the neighbourhoods

Nn(G,S) of point (G,S), by defining Nn(G,S) to be the set of pairs (Gα, Sα), where

Sα={a1
(α), ...an

(α)} and the map 1→1,a1 → a1
(α),...an → an

(α) extends to a bijective
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map θ of the ball of radius m in the group G onto the ball of radius m in the group

Gα, with

(1)θ(g1g2) = θ(g1)θ(g2)

,

for any two elements g1, g2 ∈ G, s.t. length(g1) + length(g2)≤m, where the ball of

radius m is the set of elements of length ≤m in the group. Note, here Nn+1(G,S) ⊂
Nn(G,S), and if (G′, S ′) ∈ Nn(G,S), then (G,S) ∈ Nn(G′, S ′) and Nn(G′, S ′) =

Nn(G,S), thus as Nn(G,S) is a neighbourhood of (G,S), and Nn(G,S) contains a

neighbourhood Nn+1(G,S) of (G,S), and to any (G′, S ′) ∈ Nn+1(G,S), we can get

(G′, S ′) ∈ Nn+1(G,S) ⊂ Nn(G,S), which implies Nn(G′, S ′) = Nn(G,S) by above,

thus Nn(G,S) is a neighbourhood of (G′, S ′). That verifies the 4th property of Topol-

ogy from neighbourhoods.) The topology so defined is called the weak topology. The

weak topology in the space Gn can be described by metric:

d(G1, G2) :=
∞∑
n=1

1

2n
(d(B1(n), B2(n))

where B1(n), B2(n) are the balls of radius n, and where d(B1, B2) = 0 if the map

1→1,a1
(1) → a1

(2),...an
(1) → an

(2) extends to a bijective map θ satisfies (1), while

d(G1, G2) = 1 if there is no such extension.

1.2.3 Gn is compact

We want to show Gn is compact by showing it’s subsequently compact. Let Gn,

n=1,2,3.. be a sequence of groups with each group’s generating set contains n ele-

ments. If there is an element c such that |Gn| < c for all n. Then the existence of a

convergent subsequence is obvious.

Now we assume there’s no such a c. Call Bi1(r),Bi2(r) isomorphic if there is a

bijection θ satisfies θ(g1g2) = θ(g1)θ(g2). Among balls Bn(1),n=1,2,3... then there
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exists infinitely many isomorphism between each other, where Bn(r) is the set of

elements of length ≤ r in the group Gn. Let n1(i) be a sequence of numbers, for

each, the balls with radius 1 i.e. Bn1(i)(1)are isomorphic. (Note {Gn}n=1,2,3... has

infinite elements, while the cardinality of the generating sets is fixed as n, which

means the number of combinations of reduced words with length ≤l is finite up to

isomorphism, thus such a sequence always exists.) From this subsequence, with the

same reason, we can pick up a subsequence, call it as {n2(i)}, for which the balls

Bn2(i)(2) are isomorphic.Repeat it by induction, we can find a subsequence nk+1(i)

of sequence nk(i) and the balls Bnk+1(i)(k + 1) are isomorphic for i=1,2...

Denote Γ(Gnk(i)) for the subgraph of the Cayley graph of Gnk(i)(for all i) that con-

sists of the vertices at distance at most k from identity.

Consider the graph with a chosen vertex e (namely Γ), s.t. for any k, its sub-

graph consisting of the vertices at the distance at most k from e is isomorphic to

Γ(Gnk(i)) (for any i), i.e. the graph Γ is just limk→∞Γ(Gnk(k)). For this graph,

the condition of Theorem 1.1.2 is satisfied, therefore Γ is a graph of a certain

group G with the cardinal number of generating set n. Now we can see Γ as

the Cayley graph of G, i.e. Γ= Γ(G). So we can get limk→∞Γ(Gnk(k))=Γ= Γ(G).

Since the subgraph of Γ (Γ(G)) consisting of the vertices at the distance at most

k from e is isomorphic to Γ(Gnk(k)), we can get that G ∩ BG(k) is isomorphic to

Gnk(k) ∩BGnk(k)
(k), where BG(k), BGnk(k)

(k) are the balls of radius k of G and Gnk(k)

respectively. Therefore we can get: limk→∞Gnk(k) ∩BG(k) = limk→∞Gnk(k) is iso-

morphic to limk→∞G ∩BG(k) = G. So we conclude limk→∞Gnk(k) = G, that finishes

the poof. �
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1.3 A more topological proof

Here is a more topological proof to show Gn is compact, which doesn’t refer to geo-

metric group theory.

Proof: Gn is the set consisting of all pairs of the form (G, S), thus it induces 1-to-1

epimorphisms: Fn → G, where Fn is the free group of rank n, thus Gn can be identi-

fied with the set of all normal subgroups of Fn. We can define the metric of any two

subsets A,C of Fn by:

d(A,C) = inf{2−k|k ∈ Z∗ : A∩BFn(k) = C ∩BFn(k)}. Note, since S is ordered, we

can make an order of the elements in Fn lexicographically by the order of S. There-

fore, since A is an elements of 2Fn , it can be seen in the form of (A(1), A(2)...A(n)...),

where A(i) equals to 0 or 1, here 1 means the ith element of Fn is in A, and 0 means

the ith element of Fn is not in A. And the topology on 2Fn is the product topology

of the product space of the discrete space {0,1}.

Lemma 1: The topology induced by the metric showed above on 2Fn is the same

as the direct topology on 2Fn .

Proof: Any G ⊆ Fn, can be seen as (G(1), G(2)...G(n)...) ∈ 2Fn , where G(i) is

1 or 0. And the open ball centred in G of radius k, induced by the metric is:

B(G, k) = {H ∈ Fn|H ∩ BFn(k) = G ∩ BFn(k)}. Now assume the elements of

BFn(k) are from the first one of Fn to the mth element of Fn by order defined above.

Therefore B(G, k) = {G(1)} × {G(2)} × ... × {G(m)} × {0, 1} × {0, 1}... which is

open in the product topology since there are only m ones that are not {0, 1} in the

product. Therefore any open set in the sense of the topology induced by the metric

is also open in the sense of direct topology on 2Fn .

By definition to any element K of basis of 2Fn is in the form of
∏

i∈I Ui, where each

Ui is open in {0, 1} and Ui 6= {0, 1} for only finitely many i. So we may assume

the last Ui 6= {0, 1} is Ut. Note U1 × U2 × ... × Ut is a finite union of product of t

single points i.e.
∏t

i=1 Ui =
⋃
j∈J
∏t

i=1{Hj(i)}, where each Hj(l) equals to 0 or 1. So

K =
⋃
j∈J
∏t

i=1{Hj(i)} × {0, 1}∞. Now assume the elements of BFn(r) are from the
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first one of Fn to the qth element of Fn, where q > t. And

t∏
i=1

{Hj(i)} × {0, 1}∞ =
t∏
i=1

{Hj(i)} × {0, 1}q−t × {0, 1}∞

=
⋃

v=1,2...q−t

t∏
i=1

{Hj(i)} ×
q−t∏
n=1

{Hj(j, n)} × {0, 1}∞

where {Hj(j, n)} =0 or 1.

So K can be seen as another union:

⋃
j∈J

⋃
v=1,2...q−t

t∏
n=1

{Hj(n)} ×
q−t∏
h=1

{Hj(j, h)} × {0, 1}∞.

For brevity, we may denote the union element
∏t

n=1{Hj(n)} ×
∏q−t

h=1{Hj(j, h)} ×
{0, 1}∞ as G′ ∈ Fn. Observe to any union element, we have:

G′ = {P ∈ 2Fn|G′ ∩BFn(r)

= P ∩BFn(r)}

= B(G′, r).

Thus G′ is open in the topology induced by the metric. Therefore, we get K is the

union of the open sets in topology induced by the metric. So we can conclude that

any open set in the sense of the direct topology on 2Fn is also open in the sense of

the topology induced by the metric. Therefore these two topologies are the same. �

Lemma 2: 2Fn is compact in the sense of the topology induced by the metric.

Proof: 2Fn is compact in the product topology by Tychonoff’s theorem, and by

Lemma 1, we get 2Fn is also compact in the topology induced by the metric. �

Lemma 3: Gn (here we mean the set of all normal subgroups of Fn) is closed in

2Fn

Proof: Assume {Gi} to be any convergent sequence in Gn, and assume it converges
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to G in Fn, we need to show G is also in Gn. To any k ∈ Z∗, since BFn(k) con-

tains only finite elements, and {Gi} has infinite elements, thus we can always find

a subsequence, say, {Gij}, s.t. d(G,Gij) ≤ 2−i, i.e. Gij ∩ BFn(k) = G ∩ BFn(k)

for all i, j. In this sense, we can always find a subsequence of {Hj} of {Gi} s.t.to

any k ∈ Z∗, d(G,Hk) ≤ 2−k, i.e. Hk ∩ BFn(k) = G ∩ BFn(k). To any g ∈ G,

|g|=m (here,|g| denotes the length of g), we have g ∈ G ∩ BFn(m). So we can get

g ∈ G ∩ BFn(m) = Hm ∩ BFn(m) ⊆ G ∩ BFn(m + 2h) = Hm+2h ∩ BFn(m + 2h)

for any h ∈ Z∗. To any j ∈ G, we may assume |j| = h. It’s easy to see jgj−1 ∈
Hm+2h ∩ BFn(m + 2h) = G ∩ BFn(m + 2h) since Hm+2h is normal. Thus we can

get jgj−1 ∈ G. Therefore we can conclude that G is normal since g, j are arbitrary

elements in G. So we have showed G ∈ Gn, i.e. Gn is closed in 2Fn . �

By these 3 Lemmas, we have showed Gn is compact, since the closed subset of a

compact space is compact, that finishes the proof. �
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CHAPTER 2

A THEOREM OF SIMPLE GROUPS WITH
POSITIVE L2-BETTI NUMBERS

In this part, we will mainly deal with the Theorem 1.1. from Denis Osin and Andreas

Thom’s paper: Normal generation and l2-Betti numbers of groups [2], which is about

infinite simple group’s l2-Betti number.

2.1 Preliminaries

First we need to give some definitions:

A group is hyperbolic if it admits a finite presentation with linear isoperimetric

function. Similarly a group G is hyperbolic relative to a collection of subgroups

{Hλ|λ ∈ Λ} if it admits a finite relative presentation with linear isoperimetric func-

tion.

A group is called elementary if it contains a cyclic subgroup of finite index. We

also say that an element g ∈ G is parabolic if it is conjugate to an element of Hλ for

some λ ∈ Λ. Otherwise g is said to be hyperbolic.

An element g ∈ G is called loxodromic if it has infinite order and is hyperbolic.

Let G be a relatively hyperbolic group (i.e. G is hyperbolic relative to a collection

of subgroups {Hλ|λ ∈ Λ}). We call an element g ∈ G special if it is loxodromic and

EG(g) = 〈g〉 (the definition of EG(g) will be given later) .
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If G is an ordinary hyperbolic group, it can be thought of as hyperbolic relative

to the trivial subgroup. Then the same definition applies. In this case loxodromic

simply means of infinite order.

A ray in an infinite graph is a semi-infinite simple path; that is, it is an infinite

sequence of vertices v0, v1, v2, ... in which each vertex appears at most once in the

sequence and each two consecutive vertices in the sequence are the two endpoints of

an edge in the graph.

A one-sided infinite path in an infinite graph X is called a ray. Two rays are said

equivalent, if one of the following equivalent conditions hold:

(1) There is a third ray which has infinitely many vertices in common with each.

(2) For every finite vertex set F the two rays are eventually contained in the same

connected component of X − F .

(3) There are infinitely many disjoint paths in X joining the two rays.

In addition, we may defnie two rays V,W are inequivalent as below:

Define d(vi,W )=min {d(vi, wj)|j ≥ 0} and similarly for d(V,wj). To say that two

rays are inequivalent means that d(vi,W ) → ∞ as i → ∞, which is equivalent to

d(vj,W )→∞ as j →∞.

Definition Let ||Γ− B(n)|| be the number of connected unbounded components

in the complement of ||Γ− B(n)||, a ball of radius n is the number of vertices from

the center to the boundary of the ball, centered around some vertex of Γ

Definition (Ends of a graph) Let Γ be a connected, locally finite graph, and

let B(n) be the ball of radius n about a fixed vertex v∈ V (Γ). Then the number of

ends of Γ is e(Γ) := lim||Γ−B(n)||, denoted by Ends(Γ).

Definition (The Ends of a Group) Let G be a group and let Γ be its Cayley

graph with respect to a finite generating set. We define the Ends of G, Ends(G) :=
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Ends(Γ).

The two theorems below are well-known:

Theorem 2.1.1 ([4], Proposition 6.9). Let Γ be a finitely generated group. Γ

has 0,1,2 or infinitely many ends.

Theorem 2.1.2 ([4], Theorem 6.10 ).An infinite group is virtually cyclic if and

only if it is finitely generated and has exactly two ends.

Here is a well-known application of Theorem 2.1.2, and it will be used in Theorem

2.3.8 later:

Theorem 2.1.3 Zp ∗Zp ∗Zp ∗Zp ∗ ...∗Zp is virtually cyclic except the case Z2 ∗Z2.

Sketch Proof: It’s easy to see the Cayley graph of Z2 ∗ Z2 has two ends, hence by

theorem 2.1.2, Z2 ∗Z2 is virtually cyclic. Again by theorem 2.1.2, for the other cases,

we just need to show that there are more than two ends. If we can show Zp ∗ Zp
(p > 2) has more than two ends then the case of Zp ∗ Zp ∗ Zp ∗ Zp... ∗ Zp follows

immediately, so we can reduce the problem to the case of Zp ∗ Zp (p > 2). We can

see Zp ∗ Zp (p > 2) as {a, b|ap = bp = 1} and we can see the paths:

1→ a→ ab→ aba→ abab→ ababa...

,

1→ b→ ba→ bab→ baba→ babab→ bababa...

,

1→ a−1 → a−1b→ a−1ba−1 → a−1ba−1ba−1 → a−1ba−1ba−1b→ ...

are not equivalent. Indeed, we may see they are not equivalent by transforming the

corresponding Cayley graph to Bass-Serre tree (Name the Cayley graph of Zp ∗ Zp
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(p > 2) as Γ, and the graph of Bass-Serre tree as T .) in two steps, that is, first

lifting Γ to a transition graph, namely Γ1, second, projecting Γ1 to T . For the lift-

ing, we replace each vertex of Γ by two vertices v, w ∈ T connected by an edge

labelled e, where the a and ā edges of Γ are re-attached to v and the b and b̄ edges

are re-attached to w. For the projection, we collapse every a, ā edge and every b,

b̄ edge of Γ1 to a point, in other words, only the e edges are left. Now we need to

take the rays in Γ, lift them to Γ1, and project them to T . We may see the rays

in T would go off in different directions after several steps; and since T is a tree,

there are no embedded circles, so two embedded paths’s intersection is connected,

hence once those rays depart then they can never touch again, i.e. d(vi,W )→∞ as

i → ∞, where V,W are any two corresponding paths of the three in T , so they are

inequivalent in T , and we can prove T and Γ are quasi-isometric, so d(v′i,W
′)→∞

as i→∞, where V ′,W ′ are any two corresponding paths of the three in Γ, i.e. the

corresponding paths in Γ are inequivalent, hence the three paths defined above are

not equivalent. So there are more than two ends. Therefore by Stalling’s theorem,

Zp ∗ Zp(p > 2) is not virtually cyclic. That finishes the sketch of the proof. �

Here are the sketches of

1→ a→ ab→ aba→ abab→ ababa...

,

1→ a−1 → a−1b→ a−1ba−1 → a−1ba−1ba−1 → a−1ba−1ba−1b→ ...

in Γ,Γ1, T for the case Z3 ∗ Z3.

The next lemma is a simplified version of Lemma 2.27 from [5].

Lemma 2.1.4 ([5], Lemma 2.27). Suppose that G is a group hyperbolic relative

to a collection of subgroups {Hλ|λ ∈ Λ}. Then there exists a constant K > 0 and

subsets Ωλ ⊆ Hλ such that the following conditions hold:

(1) The union Ω = Ωλ is finite. λ ∈ Λ.

14



Figure 2.1

Figure 2.2
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(2) Let q be a cycle in Γ(G,X ∪ H), p1, ..., pk a set of isolated Hλ-components of

q for some λ ∈ Λ, g1, ..., gk the elements of G represented by the labels of p1, ..., pk

respectively. Then for any i = 1, ..., k, gi belongs to the subgroup 〈Ωλ〉 ≤ G and the

lengths of gi with respect to Ωλ satisfying the inequality:
∑k

i=1 |gi|Ωλ ≤ Kl(q).

Throughout this paper we fix a group G hyperbolic relative to a collection of sub-

groups {Hλ|λ ∈ Λ}, a finite relative generating set X = X−1 of G with respect to

{Hλ|λ ∈ Λ}, and the set Ω provided by Lemma 2.1.4.

Theorem 2.1.5, ([5], Theorem 1.6). Let G be a group, {Hλ|λ ∈ Λ} a collection

of subgroups of G. Suppose that G is finitely presented with respect to {Hλ|λ ∈ Λ}
and the Denh function of G with respect to {Hλ|λ ∈ Λ} is finite for all values of the

argument. Then the following conditions hold:

(1) For any g ∈ G, the intersection Hg
λ ∩Hµ is finite whenever λ 6= µ.

(2) The intersection Hg
λ ∩Hλ is finite for any g /∈ Hλ, where Hg

λ is the conjugation

of Hλ by g.

Lemma 2.1.6 ([5], Corollary 1.17) If g ∈ G is hyperbolic and f−1gmf = gn for

some f ∈ G, then m = ±n.

Lemma 2.1.7 ([6], Lemma 4.1). For any hyperbolic element of infinite order

g ∈ G, there exists a constant C = C(g) such that if f−1gnf = gn for some f ∈ G
and some n ∈ N , then there are m ∈ Z and h ∈ 〈X ∪ Ω〉 such that f = hgm and

|h|X∪Ω ≤ C.

Theorem 2.1.8 ([6], Theorem 4.3) For any loxodromic element g ∈ G, we set

EG(g) = {f ∈ G : f−1gnf = g±n for some n ∈ N}. Every hyperbolic element g ∈ G
is contained in a unique maximal elementary subgroup, namely in EG(g).
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Proof: For any loxodromic element g ∈ G, we set:

E+(g) = {f ∈ G : f−1gnf = gn,∀n ∈ N}

. Note, since X,Ω are finite, hence there are only finite h satisfying |h|X∪Ω ≤ C.

And by Lemma 2.1.7, E+(g)/〈g〉={h : |h|X∪Ω ≤ C}, therefore 〈g〉 has finite index in

E+(g). It’s easy to see that: EG(g)/E+(g)={f, e} where f ∈ G s.t. f−1gnf = g−n,

i.e. the index of E+(g) in EG(g) is 2. Hence 〈g〉 has finite index in EG(g), and we

can conclude that EG(g) is an elementary group containing g.

Now we need to show EG(g) is the maximal elementary group containing g, i.e. ∀
elementary group H that contains g is in EG(g). First we need to show H contains

a normal cyclic subgroup with finite index n: Since H is elementary, it contains a

cyclic subgroup with finite index, namely D. Consider the core of D in H(i.e.the

intersection of its conjugates in H), namely coreH(D), which is normal in H and

contained in D. We need to show it’s not trivial: Assume the index of D in H is

m, then |H/D|=m. Then the action of H on H/D by left translation induces a map

f: H → Sm, where Sm is the permutation of elements of H/D. Note to g ∈ H,

ghD = hD ∀h iff g ∈ hDh−1, it implies that kerf=coreH(D). Therefore the induced

map f ′: H/coreH(D)→ Sm is injective. Since H is infinite, coreH(D) is infinite by

the injection, so coreH(D) is not trivial. Now we can assume the subgroup coreH(D)

of D is in the form of 〈bt〉, where we assume D is in the form of 〈b〉. So we know

|D : coreH(D)|=t, since ∀g ∈ D, gt is in coreH(D). And we know D has finite index

in H, and coreH(D) is contained in D, so coreH(D) has finite index in H, name

the index as n. Now we replace D by coreH(D), so we can get H contains a cyclic

normal subgroup with finite index n, namely D.

Now we may assume that 〈s〉 is the normal cyclic subgroup with finite index in H.

And since 〈s〉 is of finite index, we can get ∃k ∈ Z\{0}, s.t. gk ∈ 〈s〉, i.e.∃l ∈ Z\{0},
s.t. gk = sl

17



In particular, we can show s is hyperbolic: Indeed, if s ∈ Ha
λ (i.e.not hyperbolic),

for some λ ∈ Λ, a ∈ G, then
〈
sl
〉
∈ Ha

λ . Assume b ∈ Ha
λ , s.t.a−1ba = sl, so

g−1a−1bag = g−1slg = sl, since gk = sl(i.e.sl commutes with g), hence sl ∈ Hag
λ ,

therefore we can get
〈
sl
〉
∈ Ha

λ ∩ H
ag
λ = (Hλ ∩Haga−1

λ )
a
. Since

〈
sl
〉

is infinite, we

can get (Hλ ∩Haga−1

λ )
a

is infinite, hence Hλ ∩Haga−1

λ is infinite. So by (2) of Lemma

2.5, aga−1 has to be in Hλ, hence g is not hyperbolic, contradiction. Therefore, we

get s is hyperbolic.

Since 〈s〉 is normal, for ∀t ∈ H, we have t−1st = sm and some m ∈ Z and by

Lemma 3, we have m = ±1. Hence t−1gkt = t−1slt = s±l = g±k. Therefore, by the

definition of EG(g), we get t ∈ EG(g), i.e. H ∈ EG(g). This finishes the proof. �

Theorem 2.1.9 (Kurosh subgroup theorem) Let G = A ∗B be the of groups

A and B and let H ≤ G be a of G. Then there exist a family (Ai)i∈I of subgroups

(Ai) ∈ A,(Bj)j∈J of subgroups (Bi) ∈ B, families gi, i ∈ I and fj, j ∈ J of elements

of G, and a subset X ⊆ G such that: H = F (X) ∗ (∗i∈IgiAig−1
i ) ∗ (∗j∈JfjBjf

−1
j ).

This means that X freely generates a subgroup of G isomorphic to the free group

F (X) with free basis X and that, moreover, giAig
−1
i , fjBjf

−1
j and X generate H in

G as a free product of the above form.

Theorem 2.1.10 The group G = Zp ∗ Zp ∗ Zp ∗ Zp... ∗ Zp doesn’t contain finite

normal subgroups, where p is prime.

Proof: Case(1), when G = Zp ∗ Zp = {a, b|ap = bp} = A ∗B, where A = {a|ap}, B =

{b|bp}. Assume there exists such a finite normal subgroup H, then by Theorem 2.9,

H = F (X) ∗ (∗i∈IgiAig−1
i ) ∗ (∗j∈JfjBjf

−1
j ). Since H is finite, thus the free group

F (X) is trivial. Here A,B are both Zp, and the subgroups of Zp are Zp and the trivial

group. Thus if H is not trivial, then H = gAg−1, H = gBg−1 or H = gAg−1 ∗ tBt−1,

however H is finite, thus H = gAg−1 or H = gBg−1, without losing generality, we

may assume H = gAg−1. Since H is normal, thus A = g−1Hg = H. To any b ∈ B,

bHb−1 = H, however bab−1 /∈ H = A, contradiction. Thus G doesn’t contain finite

normal subgroups.
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Case(2): G = Zp ∗ Zp ∗ Zp ∗ Zp... ∗ Zp (at least 3 copies). And we can reduce it by

considering the case of G = Zp ∗Zp ∗Zp, since if the case of G = Zp ∗Zp ∗Zp works,

then the other cases follow. We can see Zp ∗ Zp ∗ Zp as 〈a, b, c | ap = bp = cp = 1〉.
Note, any non-trivial element c can be represented in the normal form: c1c2 · · · ck,
where k ≥ 1, and each ci is in the form of xi with x ∈ {a, b, c}, 1 ≤ i < p, and

adjacent ci are powers of different generators. Without losing generality, we may

assume c1 is in the form of ai. Then for any normal form word w in the infinite

group 〈b, c〉, the term c1 cannot cancel when reducing the word wcw−1 to normal

form, so its normal form has the prefix wc. In this sense, we can get c has infinitely

many distinct conjugates and cannot lie in a finite normal subgroup. Therefore, we

have all the normal subgroups of G are infinite. �

2.2 Special elements of hyperbolic groups and some results

to be used for 2.3

In this section, our goal is to prove a theorem, which is the proposition 3.4 of Denis

Osin and Andreas Thom [2]: Let G be a hyperbolic group without nontrivial finite

normal subgroups. Then for every nontrivial element a∈G and every x∈G, there

exists a special element g ∈ x� a�G .

Now, with these definitions above, in order to prove the Theorem, we need to have

two Lemmas, the first Lemma is proved by Denis Osin and Andreas Thom [2] , and

the second Lemma is proved by Olshanskii [7].

Lemma 2.2.1 ([2], Lemma 3.2) Let G be a relatively hyperbolic group, h ∈ G
a special element. Then for every a /∈ EG(h), there exists a positive integer n such

that the element g = ahn is special.

Lemma 2.2.2 ([7]) Let G be a hyperbolic group, H ≤ G a non-elementary

subgroup (where a group is called elementary if it contains a cyclic subgroup of fi-
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nite index), then there exists an element h ∈H of infinite order such that EG(h) =

〈h〉 × EG(H).

Now Let us go back to the theorem:

Theorem 2.2.3 ([2], proposition 3.4) Let G be a hyperbolic group without

nontrivial finite normal subgroups. Then for every nontrivial element a∈G and ev-

ery x∈G, there exists a special element g ∈ x� a�G .

Proof of Theorem 2.2.3: First we need the following proposition:

Proposition 2.2.4 Define H to be � a�G. Then H is also non-elementary.

Proof of proposition 2.2.4: Otherwise, if H is elementary, then H contains a cyclic

normal subgroup with finite index. (By the same proof we gave in Theorem 2.1.8,

now we can claim H contains a cyclic normal subgroup with finite index n, namely

D.(Note, since D is normal in H with index n, ∀h ∈ H, D = (hD)n = hnD, it

implies that ∀h ∈ H, hn is contained in D.)

Therefore, H contains an infinite cyclic characteristic subgroup (where character-

istic subgroup of H is a subgroup which is invariant under every automorphism of

H) (Proof: Define C=〈hn|h ∈ H〉 (it implies C ⊆ D). Then to ∀hn, with h ∈ H and

∀f ∈ Aut(H), f(hn) = f(h)n ∈ C which implies f(C) ⊆ C, then consider f−1, we

can get C = f−1f(C) ⊆ f−1(C) ⊆ C, thus f−1(C) = C, it implies f(C) = C, so C

is characteristic. Note, ∀h ∈ H, hn ∈ C, so |H/C| ≤ n, and C ⊆ D, thus C is the

infinite cyclic characteristic subgroup of H. )

Then we can get the centralizer CG(C) has finite index in G (Proof: First, since

H is normal in G, C is characteristic in H, it’s easy to see C is normal in G. And

since C is normal in G. To ∀m ∈ CG(C), g ∈ G, h ∈ C, (gmg−1)h(gm−1g−1) =

gm(g−1hg)m−1g−1 = g(g−1hg)mm−1g−1 = h, so gmg−1 ∈ CG(C), so CG(C) is nor-
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mal in G. Now we consider the the map f : G/CG(C)→ Aut(C), by conjugating C

by elements of G/CG(C).Note aCa−1 = C iff a ∈ CG(C), i.e. f is injective. Therefore

G/CG(C) is isomorphic to a subgroup of Aut(C). Also, C is infinite cyclic, so C ∼= Z,

therefore, Aut(C) ∼= Z2. So G/CG(C) is finite, i.e. CG(C) has finite index in G.)

However, C has finite index in CG(C). (Proof: Since C is cyclic, we assume it’s

C=〈h〉. And CG(C) = {g ∈ G|gc = cg,∀c ∈ G}, so ∀g ∈ CG(C), gh=hg, therefore

CG(C) ⊆ CG({h}), so CG(C) = CG({h}). Since G is hyperbolic, h has infinite order,

then CG(C) contains 〈h〉 as a finite index subgroup (This fact is from Alessandro

Sisto’s note [8]))

Now, we can conclude that the cyclic subgroup C has finite index in G, hence G

is elementary. A contradiction. This finishes the proof of proposition 2.2.4.�

Since H is also non-elementary, by the proof of Lemma of [2], we get EG(H) is

a finite subgroup of G. As we know, EG(H) = ∩h∈H0EG(h), where H0 denotes

the set of all elements of H of infinite order. Since H is normal by definition

and conjugation keeps the order, ∀g ∈ G, g−1hg ∈ H0, ∀h ∈ H0. By Theo-

rem 1 ([8], Theorem 4.3), EG(h) = {f ∈ G : f−1hnf = h±n for some n ∈ N}.
g−1EG(H)g = ∩h∈H0g−1EG(h)g. To any g ∈ G, h ∈ H0, define h′ = ghg−1 ∈ H0,

and to any f ∈ G, we may assume f−1hnf = h±n, f−1h′lf = h′±l for some

n, l ∈ N , then we can get: f−1hmf = h±m, f−1h′mf = h′±m, where m = nl. So

g−1f−1ghmg−1fg = g−1f−1h′mfg = g−1h′±mg = h±m. It means, if f ∈ EG(h),

then for any g ∈ G, g−1fg ∈ EG(h), i.e. EG(h) = g−1EG(h)g. Moreover, we

get g−1EG(H)g = EG(H), i.e. EG(H) is normal in G. Therefore EG(H) is triv-

ial by the definition of G. By Lemma 2.2.2, there is an h ∈ H with infinite or-

der s.t. EG(h) = 〈h〉 × EG(H) = 〈h〉. Now since G is an ordinary hyperbolic

group, h is of infinite order and EG(h) = 〈h〉, thus h is a special element of G. If

x ∈ EG(h) = 〈h〉 ≤ H = � a�G, then we can take the required special element g

to be h, so g = h ∈ 〈h〉 ≤ H = xH. Otherwise, by applying Lemma 2.2.1, we can

get a special element g = xhn ∈ xH. That finishes the proof. �
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2.3 Simple groups with positive l2-Betti numbers

In this section, we want to prove the result of Osin-Thom for every integer n ≥ 2

and every ε ≥ 0 there exists an infinite simple group Q generated by n elements such

that β
(2)
1 (Q) ≥ n− 1− ε.

An irreducible torsion presentation P is of the form: 〈X|Rn1
1 , R

n2
2 , ..., R

nk
k 〉 (1).

By this, we define σ(P) :=
k∑

n=1

1/ni

The next result is from J. Peterson and A. Thom [9].

Theorem 2.3.1 (Theorem 3.2 in [9]). Let G be a group given by an irreducible

torsion presentation (1), where |X| <∞. Then β
(2)
1 (G) ≥ |X| − 1− σ(P).

The next three theorems are well-known.

Theorem 2.3.2 (Theorem 1.4 in [5]). Suppose a group G is hyperbolic relative

to a collection of subgroups {Hλ|λ ∈ Λ}. Let g be a loxodromic element of G. Then

the following conditions hold:

(a) There is a unique maximal elementary subgroup EG(g) 6 G containing g.

(b) EG(g) = {h ∈ G| ∃m ∈ N s.t. h−1gmh = gm}.
(c) The group G is hyperbolic relative to the collection {Hλ|λ ∈ Λ}∪ {EG(g)}.

Lemma 2.3.3 ([7]). Let G be a non-elementary group hyperbolic relative to a

collection of proper subgroups. Suppose also that G has no nontrivial finite normal

subgroups. Then G contains a special element.

Theorem 2.3.4 ([10]). Let G be group hyperbolic relative to a collection of sub-
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groups {Hλ|λ ∈ Λ}. Then for every finite subset A ⊆ G, there exists a finite subset

F ∈ G − {1} such that for any collection of subgroups N={Nλ|λ ∈ Λ} satisfying

Nλ CHλ and Nλ ∩ F = ∅ for all λ ∈ Λ, the following hold.

(a) Let N =<<
⋃
λ∈ΛNλ >> be the normal closure of

⋃
λ∈ΛNλ in G. Then for every

λ ∈ Λ, the natural map Hλ/Nλ → G/N is injective (equivalently, Hλ ∩N = Nλ).

(b) G/N is hyperbolic relative to {Hλ/Nλ|λ ∈ Λ}.
(c) The natural homomorphism G→ G/N is injective on A.

Lemma 2.3.5 (Theorem 4.3 and Corollary 1.7 in [5]). Suppose that a group

G is hyperbolic relative to a finite collection of hyperbolic subgroups. Then G is hy-

perbolic itself.

Lemma 2.3.6. Any infinite cyclic subgroup of an infinite elementary group has

finite index.

Proof: To any infinite cyclic subgroup K = 〈k〉 of a infinite elementary group G,

we assume H = 〈h〉 is the infinite cyclic subgroup of G with finite index, we claim

H ∩K is not trivial. The reason is since H has finite index, so there exits i < j s.t.

kiH = kjH, therefore kj−i ∈ H, i.e. H ∩K is not trivial. Then we can conclude that

H ∩ K has finite index in H, thus it has finite index in G. Also H ∩ K has finite

index in K, therefore K has finite index in G. �

Lemma 2.3.7 (Theorem 2.40, in [5]). Let G be a group hyperbolic relative

to a collection of subgroups {Hλ|λ ∈ Λ}.Then for every λ ∈ Λ and g ∈ G−Hλ , we

have |Hλ ∩Hλ
g| <∞.

Now let us come to the main theorem:

Theorem 2.3.8 (Theorem 1.1 in [2]) For every integer n ≥ 2 and every

ε ≥ 0 there exists an infinite simple group Q generated by n elements such that

β
(2)
1 (Q) ≥ n− 1− ε.
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Proof: We split the proof in several steps

Step1: Basic group G0 and property (a),(b) and (c)

To any n ∈ N, define X = {x1, ..., xn} and G0 = 〈X|x1
p, x2

p, ...xn
p〉, where p is a

prime satisfying n/p < ε. In particular, by Theorem 2.2.1, we can get β
(2)
1 (Q) >

n− 1− ε. We enumerate all elements of X × (G0\{1}) = {(xm1, g1), (xm2, g2), ...}.

Now we can construct a sequence of groups and epimorphisms: G0
f0−→ G1

f1−→ G2 →
... as follows:

Below we will use the same symbols to denote elements of Gi and their images in

Gi+1. At step i we assume that the group Gi is already constructed and satisfies the

following conditions:

(a) Gi is a non-elementary hyperbolic group without finite normal subgroups.

(b) Gi has an irreducible torsion presentation Pi with σ(Pi) < ε.

(c) If i ≥ 1 ,then for every j = 1, ..., i, we either have gj = 1 in Gi or xmj ∈
� gj �Gi .

Let us first consider the case i = 0. For (a): First, note that G0 is the free product

of n finite groups, which are all isomorphic to Zp, and we know the finite groups are

hyperbolic, moreover, the free product of two hyperbolic groups is hyperbolic, hence

G0 is hyperbolic. And G0 does not contain finite normal subgroups by theorem 2.10.

And G0 is not virtually cyclic/non-elementary except for the case of 〈X|x1
2, x2

2〉. For

(b): the first half is direct from the definition G0, the second half is true, because

σ(P0) = n/p < ε. And (c) is trivially true.

Step 2: Construction of Gi

Now we can construct the group Gi+1 from Gi. If If gi+1 = 1 in Gi, then we set

Gi+1 = Gi and fi = id. Otherwise, by (a) and Theorem 2.2.3, there exists a spe-

24



cial element hi∈ xmi+1
� gi+1 �Gi . Note hi is special, i.e. hi is loxodromic and

EG(hi) = 〈hi〉, and by (a) Gi is hyperbolic, so it it can be thought of as hyperbolic

relative to the trivial subgroup. So by theorem 2.3.2, Gi is hyperbolic relative to

the {e}∪ {EG(hi)}=〈hi〉. Rename 〈hi〉 as Hi,1, then we can get Gi is hyperbolic

relative to Hi,1. By Lemma 3.3, we can find another special element ti ∈ Gi, which

is considered as a group hyperbolic relative to Hi,1. So by theorem 2.3.2 again, we

can get Gi is hyperbolic relative to {Hi,1, Hi,2}, where Hi,2= 〈ti〉.

Let 〈X|Ai〉 be the irreducible torsion presentation Pi of Gi, where Ai is the set of

all powers of elements of Gi represented by R1, ..., Rk, i.e. Ai = {Rn1
1 , R

n2
2 , ..., R

nk
k }.

Since the order of each Ri is finite, thus the set of combinations of R1, ..., Rk is finite,

i.e. Ai is finite. Now apply theorem 2.3.4 on Gi which is hyperbolic relative to {Hi,1,

Hi,2}, let Fi be the be the finite set corresponding to F in theorem 2.3.4. And since

hi is special (it implies hi is loxodromic, thus by the definition of ’loxodromic’, hi

has infinite order) Fi is finite, we can always choose a prime qi > p such that the

subgroup Ni,1 = 〈hiqi〉 does not contain elements of Fi and σ(Pi)+1/qi < ε (Reason:

the elements of Fi∪Hi,1 is in the form of hi
t, and since F is finite, thus the powers t

are upper bounded, therefore we can require qi larger than these powers). Let Gi+1

be the group given by the presentation Pi+1 = 〈Pi|hiqi = 1〉

Step 3: Proof that Gi satisfyies (a),(b), and (c)

Now we defineNi,2 = {1}CHi,2, Ni =<< Ni,1 ∪Ni,2 >>, then we can getGi+1=Gi/Ni.

So we have Ni,j C Hi,j and Ni,j ∩ Fi = ∅ for j=1,2 and Hi,1/Ni,1
∼= Z/qiZ. So we

obtain Hi,1/Ni,1 and Hi,2 naturally embed in Gi+1, by theorem 2.3.4-(b), we get

Gi+1=Gi/Ni is hyperbolic relative to {Hi,1/Ni,1, Hi,2}. Since Hi,1/Ni,1, Hi,2 are both

cyclic groups, Hi,1/Ni,1, Hi,2 are hyperbolic. Therefore by lemma 2.3.5 Gi+1 is hy-

perbolic. If Gi+1 is elementary, then by lemma 2.3.6, we can get the infinite cyclic

subgroup Hi,2 has finite index in Gi+1. Hence by the proof of proposition 2.2.4, we

can see there is a finite index subgroup C contained in Hi,2 and is normal in Gi+1.

In particular, Chi ∩ C = C, where Chi is the conjugation of C by hi. Then by C

is infinite, we can get |Hi,2 ∩ Hhi
i,2| is not finite, hence by Lemma 2.3.7, we can get
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hi ∈ Hi,2, which implies hi has infinite order. Hence we get a contradiction, since hi

is non-trivial and has finite order qi in Gi+1. So we get Gi+1 is not elementary. Now

if Gi+1 has a finite normal subgroup, namely K, let Gi+1 acts on K by conjugation.

It induces a homomorphism from Gi+1 to Aut(K). The kernel is just centralizer of

K, i.e. CGi+1
(K). So we get |Gi+1/CGi+1

(K)| < |Aut(K)|. And since K is finite,

Aut(K) is finite. So the index of CGi+1
(K) is finite. Then we can conclude that K is

centralized by a finite index subgroup of Gi+1, rename CGi+1
(K) as P . In particular,

since P has finite index, by considering the cosets ti
1P, ti

2P, ti
3P..., we can see there

must be some j > 1 s.t. ti
jP = P i.e. ti

j ∈ P , i.e. K is centralized by a nontrivial

element h = ti
j of 〈ti〉=Hi,2. It implies that to any k ∈ K, 〈h〉 ⊆ |Hi,2 ∩Hk

i,2|, hence

|Hi,2 ∩ Hk
i,2| is not finite, therefore by Lemma 4.7, we can get k ∈ Hi,2. So we can

conclude K ⊆ Hi,2. Note as a infinite cyclic group, Hi,2 doesn’t contain non-trivial

finite subgroups, therefore K is trivial. Thus part (a) of the inductive assumption

holds for Gi+1.

For part (b), since we have already had Fi and σ(Pi) + 1/qi < ε, thus it suffices

to show Pi+1 is an irreducible torsion presentation. Indeed, by part (c) of Theorem

2.2.4, there is a natural homomorphism Gi → Gi/Ni = Gi+1, which is injective on

Ai, where Ai is the set of all powers of elements of Gi represented by R1, ..., Rk, so

the irreducibility is ensured.

For part(c), if gi+1 6= 1 in Gi+1, by what we showed above, hi ∈ xmi+1
� gi+1 �Gi ,

then in Gi+1/� gi+1 �Gi+1 , hi = xmi+1
. Also by definition of G0, we have xmi+1

p = 1

in G0, therefore xmi+1
p = 1 in Gi+1/� gi+1 �Gi+1 . Note, we require qi > p above,

hence xmi+1
= 1 in Gi+1/� gi+1 �Gi+1 , i.e. xmi+1

is in � gi+1 �Gi+1 . For the other

Gj, if xmj ∈ � gj �Gi , then it’s easy to see xmj ∈ � gj �Gi+1 since if xmj ∈ NCGi,

then x̄mj ∈ N̄ C Ḡi = Gi+1, also we know the preimage of normal subgroup of quo-

tient group under quotient epimorphism is normal, thus the normal subgroup of Gi+1

is in the form of N̄ CGi+1, where N CGi. Therefore, with the inductive assumption

this implies (c) for Gi+1. Thus the inductive step is completed.
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Step 4: Construction of simple group Q and proof of the equality

Now let Q be G0/∪∞i=1FiKer(fi...f0), note, since every fi is onto, Q is the limit of the

groups Gi in the topology of marked group presentations as described in section 1.2.2

above and hence β
(2)
1 (Q) ≥ lim supi→∞ β

(2)
1 (Gi) ≥ n− 1− ε. Here the first inequality

follows from semicontinuity of the first l2-Betti number [11] and the second one fol-

lows from (b) and Theorem 2.3.1, i.e. by β
(2)
1 (Gi) ≥ |X| − 1− σ(Pi) with σ(Pi) < ε.

Now we need to show Q is infinite. If Q was finite, it would be finitely presented and

hence by the construction of each Gj, all relations of Q would be contained in some

Gi, then it violates (a), since every Gi is not finite. Finally we need to show that Q

is simple. Indeed, let q ∈ Q be a nontrivial element. Since {(xm1, g1), (xm2, g2), ...}
enumerates all pairs of elements in X × (G0\{1}), hence it contains every (xi, q).

Thus part (c) of the inductive assumption ensures that x1, ..., xn ∈ � q �Q, hence

Q = � q �Q. And to every non-trivial normal subgroup N of Q, it must contain

a nontrivial element p, by the result above, Q = � p�Q ⊆ N ⊆ Q, hence Q is

simple. �

Corollary 2.3.9 (Corollary 1.2 in [2]) For every positive integer n there exists a

simple groupQ with d(Q) = n, where d(G) denotes the minimal number of generators

of G.

Sketch proof: By using the Morse inequality [12]: For every finitely generated group,

G, let X be a free G-CW -complex of finite type. Let αp be the number of p-cells in

G\X. Then we get for n ≥ 0:

n∑
p=0

(−1)n−pβ(2)
p (G) ≤

n∑
p=0

(−1)n−pαp

Now we can define X to be the Eilenberg-MacLane space: K(G, 1) space of G,

constructed in this way: there is one 0-cell, d(G) 1-cells corresponding to generators,

and several 2-cells corresponding to relations and several higher dimensional cells to

kill off the higher homotopy. Moreover, we take the n to be 1, and note since G is
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infinite, we have β
(2)
0 (G) = 0, therefore we can get a well-known inequality:

β
(2)
1 (G) ≤ d(G)− 1

Also by Theorem 2.3.8, for any n, and ε = 1/2, there exists a simple group Q gen-

erated by n elements (which implies d(Q) ≤ n) s.t. β
(2)
1 (Q) ≥ n − 1 − ε. Since

Q is finitely generated, apply the inequality above, we get β
(2)
1 (Q) ≤ d(Q) − 1, i.e.

d(Q)−1 ≥ β
(2)
1 (Q) ≥ n−1−ε i.e. d(Q) ≥ n−ε = n−1/2. So we have d(Q) ≥ n−1/2

and d(Q) ≤ n, which implies d(Q) = n. �
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